]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/bluetooth/hci_intel.c
Merge tag 'regmap-offload-update-bits' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / bluetooth / hci_intel.c
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39
40 #include "hci_uart.h"
41 #include "btintel.h"
42
43 #define STATE_BOOTLOADER        0
44 #define STATE_DOWNLOADING       1
45 #define STATE_FIRMWARE_LOADED   2
46 #define STATE_FIRMWARE_FAILED   3
47 #define STATE_BOOTING           4
48 #define STATE_LPM_ENABLED       5
49 #define STATE_TX_ACTIVE         6
50 #define STATE_SUSPENDED         7
51 #define STATE_LPM_TRANSACTION   8
52
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61
62 #define LPM_SUSPEND_DELAY_MS 1000
63
64 struct hci_lpm_pkt {
65         __u8 opcode;
66         __u8 dlen;
67         __u8 data[0];
68 } __packed;
69
70 struct intel_device {
71         struct list_head list;
72         struct platform_device *pdev;
73         struct gpio_desc *reset;
74         struct hci_uart *hu;
75         struct mutex hu_lock;
76         int irq;
77 };
78
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81
82 struct intel_data {
83         struct sk_buff *rx_skb;
84         struct sk_buff_head txq;
85         struct work_struct busy_work;
86         struct hci_uart *hu;
87         unsigned long flags;
88 };
89
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92         switch (speed) {
93         case 9600:
94                 return 0x00;
95         case 19200:
96                 return 0x01;
97         case 38400:
98                 return 0x02;
99         case 57600:
100                 return 0x03;
101         case 115200:
102                 return 0x04;
103         case 230400:
104                 return 0x05;
105         case 460800:
106                 return 0x06;
107         case 921600:
108                 return 0x07;
109         case 1843200:
110                 return 0x08;
111         case 3250000:
112                 return 0x09;
113         case 2000000:
114                 return 0x0a;
115         case 3000000:
116                 return 0x0b;
117         default:
118                 return 0xff;
119         }
120 }
121
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124         struct intel_data *intel = hu->priv;
125         int err;
126
127         err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128                                   TASK_INTERRUPTIBLE,
129                                   msecs_to_jiffies(1000));
130
131         if (err == 1) {
132                 bt_dev_err(hu->hdev, "Device boot interrupted");
133                 return -EINTR;
134         }
135
136         if (err) {
137                 bt_dev_err(hu->hdev, "Device boot timeout");
138                 return -ETIMEDOUT;
139         }
140
141         return err;
142 }
143
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147         struct intel_data *intel = hu->priv;
148         int err;
149
150         err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151                                   TASK_INTERRUPTIBLE,
152                                   msecs_to_jiffies(1000));
153
154         if (err == 1) {
155                 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156                 return -EINTR;
157         }
158
159         if (err) {
160                 bt_dev_err(hu->hdev, "LPM transaction timeout");
161                 return -ETIMEDOUT;
162         }
163
164         return err;
165 }
166
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169         static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170         struct intel_data *intel = hu->priv;
171         struct sk_buff *skb;
172
173         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174             test_bit(STATE_SUSPENDED, &intel->flags))
175                 return 0;
176
177         if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178                 return -EAGAIN;
179
180         bt_dev_dbg(hu->hdev, "Suspending");
181
182         skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183         if (!skb) {
184                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185                 return -ENOMEM;
186         }
187
188         memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189         bt_cb(skb)->pkt_type = HCI_LPM_PKT;
190
191         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192
193         /* LPM flow is a priority, enqueue packet at list head */
194         skb_queue_head(&intel->txq, skb);
195         hci_uart_tx_wakeup(hu);
196
197         intel_wait_lpm_transaction(hu);
198         /* Even in case of failure, continue and test the suspended flag */
199
200         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201
202         if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203                 bt_dev_err(hu->hdev, "Device suspend error");
204                 return -EINVAL;
205         }
206
207         bt_dev_dbg(hu->hdev, "Suspended");
208
209         hci_uart_set_flow_control(hu, true);
210
211         return 0;
212 }
213
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216         struct intel_data *intel = hu->priv;
217         struct sk_buff *skb;
218
219         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220             !test_bit(STATE_SUSPENDED, &intel->flags))
221                 return 0;
222
223         bt_dev_dbg(hu->hdev, "Resuming");
224
225         hci_uart_set_flow_control(hu, false);
226
227         skb = bt_skb_alloc(0, GFP_KERNEL);
228         if (!skb) {
229                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230                 return -ENOMEM;
231         }
232
233         bt_cb(skb)->pkt_type = HCI_LPM_WAKE_PKT;
234
235         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236
237         /* LPM flow is a priority, enqueue packet at list head */
238         skb_queue_head(&intel->txq, skb);
239         hci_uart_tx_wakeup(hu);
240
241         intel_wait_lpm_transaction(hu);
242         /* Even in case of failure, continue and test the suspended flag */
243
244         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245
246         if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247                 bt_dev_err(hu->hdev, "Device resume error");
248                 return -EINVAL;
249         }
250
251         bt_dev_dbg(hu->hdev, "Resumed");
252
253         return 0;
254 }
255 #endif /* CONFIG_PM */
256
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259         static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260         struct intel_data *intel = hu->priv;
261         struct sk_buff *skb;
262
263         hci_uart_set_flow_control(hu, false);
264
265         clear_bit(STATE_SUSPENDED, &intel->flags);
266
267         skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268         if (!skb) {
269                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270                 return -ENOMEM;
271         }
272
273         memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274                sizeof(lpm_resume_ack));
275         bt_cb(skb)->pkt_type = HCI_LPM_PKT;
276
277         /* LPM flow is a priority, enqueue packet at list head */
278         skb_queue_head(&intel->txq, skb);
279         hci_uart_tx_wakeup(hu);
280
281         bt_dev_dbg(hu->hdev, "Resumed by controller");
282
283         return 0;
284 }
285
286 static irqreturn_t intel_irq(int irq, void *dev_id)
287 {
288         struct intel_device *idev = dev_id;
289
290         dev_info(&idev->pdev->dev, "hci_intel irq\n");
291
292         mutex_lock(&idev->hu_lock);
293         if (idev->hu)
294                 intel_lpm_host_wake(idev->hu);
295         mutex_unlock(&idev->hu_lock);
296
297         /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298         pm_runtime_get(&idev->pdev->dev);
299         pm_runtime_mark_last_busy(&idev->pdev->dev);
300         pm_runtime_put_autosuspend(&idev->pdev->dev);
301
302         return IRQ_HANDLED;
303 }
304
305 static int intel_set_power(struct hci_uart *hu, bool powered)
306 {
307         struct list_head *p;
308         int err = -ENODEV;
309
310         mutex_lock(&intel_device_list_lock);
311
312         list_for_each(p, &intel_device_list) {
313                 struct intel_device *idev = list_entry(p, struct intel_device,
314                                                        list);
315
316                 /* tty device and pdev device should share the same parent
317                  * which is the UART port.
318                  */
319                 if (hu->tty->dev->parent != idev->pdev->dev.parent)
320                         continue;
321
322                 if (!idev->reset) {
323                         err = -ENOTSUPP;
324                         break;
325                 }
326
327                 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
328                         hu, dev_name(&idev->pdev->dev), powered);
329
330                 gpiod_set_value(idev->reset, powered);
331
332                 /* Provide to idev a hu reference which is used to run LPM
333                  * transactions (lpm suspend/resume) from PM callbacks.
334                  * hu needs to be protected against concurrent removing during
335                  * these PM ops.
336                  */
337                 mutex_lock(&idev->hu_lock);
338                 idev->hu = powered ? hu : NULL;
339                 mutex_unlock(&idev->hu_lock);
340
341                 if (idev->irq < 0)
342                         break;
343
344                 if (powered && device_can_wakeup(&idev->pdev->dev)) {
345                         err = devm_request_threaded_irq(&idev->pdev->dev,
346                                                         idev->irq, NULL,
347                                                         intel_irq,
348                                                         IRQF_ONESHOT,
349                                                         "bt-host-wake", idev);
350                         if (err) {
351                                 BT_ERR("hu %p, unable to allocate irq-%d",
352                                        hu, idev->irq);
353                                 break;
354                         }
355
356                         device_wakeup_enable(&idev->pdev->dev);
357
358                         pm_runtime_set_active(&idev->pdev->dev);
359                         pm_runtime_use_autosuspend(&idev->pdev->dev);
360                         pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
361                                                          LPM_SUSPEND_DELAY_MS);
362                         pm_runtime_enable(&idev->pdev->dev);
363                 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
364                         devm_free_irq(&idev->pdev->dev, idev->irq, idev);
365                         device_wakeup_disable(&idev->pdev->dev);
366
367                         pm_runtime_disable(&idev->pdev->dev);
368                 }
369         }
370
371         mutex_unlock(&intel_device_list_lock);
372
373         return err;
374 }
375
376 static void intel_busy_work(struct work_struct *work)
377 {
378         struct list_head *p;
379         struct intel_data *intel = container_of(work, struct intel_data,
380                                                 busy_work);
381
382         /* Link is busy, delay the suspend */
383         mutex_lock(&intel_device_list_lock);
384         list_for_each(p, &intel_device_list) {
385                 struct intel_device *idev = list_entry(p, struct intel_device,
386                                                        list);
387
388                 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
389                         pm_runtime_get(&idev->pdev->dev);
390                         pm_runtime_mark_last_busy(&idev->pdev->dev);
391                         pm_runtime_put_autosuspend(&idev->pdev->dev);
392                         break;
393                 }
394         }
395         mutex_unlock(&intel_device_list_lock);
396 }
397
398 static int intel_open(struct hci_uart *hu)
399 {
400         struct intel_data *intel;
401
402         BT_DBG("hu %p", hu);
403
404         intel = kzalloc(sizeof(*intel), GFP_KERNEL);
405         if (!intel)
406                 return -ENOMEM;
407
408         skb_queue_head_init(&intel->txq);
409         INIT_WORK(&intel->busy_work, intel_busy_work);
410
411         intel->hu = hu;
412
413         hu->priv = intel;
414
415         if (!intel_set_power(hu, true))
416                 set_bit(STATE_BOOTING, &intel->flags);
417
418         return 0;
419 }
420
421 static int intel_close(struct hci_uart *hu)
422 {
423         struct intel_data *intel = hu->priv;
424
425         BT_DBG("hu %p", hu);
426
427         cancel_work_sync(&intel->busy_work);
428
429         intel_set_power(hu, false);
430
431         skb_queue_purge(&intel->txq);
432         kfree_skb(intel->rx_skb);
433         kfree(intel);
434
435         hu->priv = NULL;
436         return 0;
437 }
438
439 static int intel_flush(struct hci_uart *hu)
440 {
441         struct intel_data *intel = hu->priv;
442
443         BT_DBG("hu %p", hu);
444
445         skb_queue_purge(&intel->txq);
446
447         return 0;
448 }
449
450 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
451 {
452         struct sk_buff *skb;
453         struct hci_event_hdr *hdr;
454         struct hci_ev_cmd_complete *evt;
455
456         skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
457         if (!skb)
458                 return -ENOMEM;
459
460         hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
461         hdr->evt = HCI_EV_CMD_COMPLETE;
462         hdr->plen = sizeof(*evt) + 1;
463
464         evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
465         evt->ncmd = 0x01;
466         evt->opcode = cpu_to_le16(opcode);
467
468         *skb_put(skb, 1) = 0x00;
469
470         bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
471
472         return hci_recv_frame(hdev, skb);
473 }
474
475 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
476 {
477         struct intel_data *intel = hu->priv;
478         struct hci_dev *hdev = hu->hdev;
479         u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
480         struct sk_buff *skb;
481         int err;
482
483         /* This can be the first command sent to the chip, check
484          * that the controller is ready.
485          */
486         err = intel_wait_booting(hu);
487
488         clear_bit(STATE_BOOTING, &intel->flags);
489
490         /* In case of timeout, try to continue anyway */
491         if (err && err != ETIMEDOUT)
492                 return err;
493
494         bt_dev_info(hdev, "Change controller speed to %d", speed);
495
496         speed_cmd[3] = intel_convert_speed(speed);
497         if (speed_cmd[3] == 0xff) {
498                 bt_dev_err(hdev, "Unsupported speed");
499                 return -EINVAL;
500         }
501
502         /* Device will not accept speed change if Intel version has not been
503          * previously requested.
504          */
505         skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
506         if (IS_ERR(skb)) {
507                 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
508                            PTR_ERR(skb));
509                 return PTR_ERR(skb);
510         }
511         kfree_skb(skb);
512
513         skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
514         if (!skb) {
515                 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
516                 return -ENOMEM;
517         }
518
519         memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
520         bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
521
522         hci_uart_set_flow_control(hu, true);
523
524         skb_queue_tail(&intel->txq, skb);
525         hci_uart_tx_wakeup(hu);
526
527         /* wait 100ms to change baudrate on controller side */
528         msleep(100);
529
530         hci_uart_set_baudrate(hu, speed);
531         hci_uart_set_flow_control(hu, false);
532
533         return 0;
534 }
535
536 static int intel_setup(struct hci_uart *hu)
537 {
538         static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
539                                           0x00, 0x08, 0x04, 0x00 };
540         static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b };
541         struct intel_data *intel = hu->priv;
542         struct intel_device *idev = NULL;
543         struct hci_dev *hdev = hu->hdev;
544         struct sk_buff *skb;
545         struct intel_version *ver;
546         struct intel_boot_params *params;
547         struct list_head *p;
548         const struct firmware *fw;
549         const u8 *fw_ptr;
550         char fwname[64];
551         u32 frag_len;
552         ktime_t calltime, delta, rettime;
553         unsigned long long duration;
554         unsigned int init_speed, oper_speed;
555         int speed_change = 0;
556         int err;
557
558         bt_dev_dbg(hdev, "start intel_setup");
559
560         hu->hdev->set_bdaddr = btintel_set_bdaddr;
561
562         calltime = ktime_get();
563
564         if (hu->init_speed)
565                 init_speed = hu->init_speed;
566         else
567                 init_speed = hu->proto->init_speed;
568
569         if (hu->oper_speed)
570                 oper_speed = hu->oper_speed;
571         else
572                 oper_speed = hu->proto->oper_speed;
573
574         if (oper_speed && init_speed && oper_speed != init_speed)
575                 speed_change = 1;
576
577         /* Check that the controller is ready */
578         err = intel_wait_booting(hu);
579
580         clear_bit(STATE_BOOTING, &intel->flags);
581
582         /* In case of timeout, try to continue anyway */
583         if (err && err != ETIMEDOUT)
584                 return err;
585
586         set_bit(STATE_BOOTLOADER, &intel->flags);
587
588         /* Read the Intel version information to determine if the device
589          * is in bootloader mode or if it already has operational firmware
590          * loaded.
591          */
592         skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
593         if (IS_ERR(skb)) {
594                 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
595                            PTR_ERR(skb));
596                 return PTR_ERR(skb);
597         }
598
599         if (skb->len != sizeof(*ver)) {
600                 bt_dev_err(hdev, "Intel version event size mismatch");
601                 kfree_skb(skb);
602                 return -EILSEQ;
603         }
604
605         ver = (struct intel_version *)skb->data;
606         if (ver->status) {
607                 bt_dev_err(hdev, "Intel version command failure (%02x)",
608                            ver->status);
609                 err = -bt_to_errno(ver->status);
610                 kfree_skb(skb);
611                 return err;
612         }
613
614         /* The hardware platform number has a fixed value of 0x37 and
615          * for now only accept this single value.
616          */
617         if (ver->hw_platform != 0x37) {
618                 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
619                            ver->hw_platform);
620                 kfree_skb(skb);
621                 return -EINVAL;
622         }
623
624         /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
625          * supported by this firmware loading method. This check has been
626          * put in place to ensure correct forward compatibility options
627          * when newer hardware variants come along.
628          */
629         if (ver->hw_variant != 0x0b) {
630                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
631                            ver->hw_variant);
632                 kfree_skb(skb);
633                 return -EINVAL;
634         }
635
636         btintel_version_info(hdev, ver);
637
638         /* The firmware variant determines if the device is in bootloader
639          * mode or is running operational firmware. The value 0x06 identifies
640          * the bootloader and the value 0x23 identifies the operational
641          * firmware.
642          *
643          * When the operational firmware is already present, then only
644          * the check for valid Bluetooth device address is needed. This
645          * determines if the device will be added as configured or
646          * unconfigured controller.
647          *
648          * It is not possible to use the Secure Boot Parameters in this
649          * case since that command is only available in bootloader mode.
650          */
651         if (ver->fw_variant == 0x23) {
652                 kfree_skb(skb);
653                 clear_bit(STATE_BOOTLOADER, &intel->flags);
654                 btintel_check_bdaddr(hdev);
655                 return 0;
656         }
657
658         /* If the device is not in bootloader mode, then the only possible
659          * choice is to return an error and abort the device initialization.
660          */
661         if (ver->fw_variant != 0x06) {
662                 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
663                            ver->fw_variant);
664                 kfree_skb(skb);
665                 return -ENODEV;
666         }
667
668         kfree_skb(skb);
669
670         /* Read the secure boot parameters to identify the operating
671          * details of the bootloader.
672          */
673         skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
674         if (IS_ERR(skb)) {
675                 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
676                            PTR_ERR(skb));
677                 return PTR_ERR(skb);
678         }
679
680         if (skb->len != sizeof(*params)) {
681                 bt_dev_err(hdev, "Intel boot parameters size mismatch");
682                 kfree_skb(skb);
683                 return -EILSEQ;
684         }
685
686         params = (struct intel_boot_params *)skb->data;
687         if (params->status) {
688                 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
689                            params->status);
690                 err = -bt_to_errno(params->status);
691                 kfree_skb(skb);
692                 return err;
693         }
694
695         bt_dev_info(hdev, "Device revision is %u",
696                     le16_to_cpu(params->dev_revid));
697
698         bt_dev_info(hdev, "Secure boot is %s",
699                     params->secure_boot ? "enabled" : "disabled");
700
701         bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
702                 params->min_fw_build_nn, params->min_fw_build_cw,
703                 2000 + params->min_fw_build_yy);
704
705         /* It is required that every single firmware fragment is acknowledged
706          * with a command complete event. If the boot parameters indicate
707          * that this bootloader does not send them, then abort the setup.
708          */
709         if (params->limited_cce != 0x00) {
710                 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
711                            params->limited_cce);
712                 kfree_skb(skb);
713                 return -EINVAL;
714         }
715
716         /* If the OTP has no valid Bluetooth device address, then there will
717          * also be no valid address for the operational firmware.
718          */
719         if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
720                 bt_dev_info(hdev, "No device address configured");
721                 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
722         }
723
724         /* With this Intel bootloader only the hardware variant and device
725          * revision information are used to select the right firmware.
726          *
727          * Currently this bootloader support is limited to hardware variant
728          * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
729          */
730         snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
731                  le16_to_cpu(params->dev_revid));
732
733         err = request_firmware(&fw, fwname, &hdev->dev);
734         if (err < 0) {
735                 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
736                            err);
737                 kfree_skb(skb);
738                 return err;
739         }
740
741         bt_dev_info(hdev, "Found device firmware: %s", fwname);
742
743         /* Save the DDC file name for later */
744         snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
745                  le16_to_cpu(params->dev_revid));
746
747         kfree_skb(skb);
748
749         if (fw->size < 644) {
750                 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
751                            fw->size);
752                 err = -EBADF;
753                 goto done;
754         }
755
756         set_bit(STATE_DOWNLOADING, &intel->flags);
757
758         /* Start the firmware download transaction with the Init fragment
759          * represented by the 128 bytes of CSS header.
760          */
761         err = btintel_secure_send(hdev, 0x00, 128, fw->data);
762         if (err < 0) {
763                 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
764                 goto done;
765         }
766
767         /* Send the 256 bytes of public key information from the firmware
768          * as the PKey fragment.
769          */
770         err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
771         if (err < 0) {
772                 bt_dev_err(hdev, "Failed to send firmware public key (%d)",
773                            err);
774                 goto done;
775         }
776
777         /* Send the 256 bytes of signature information from the firmware
778          * as the Sign fragment.
779          */
780         err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
781         if (err < 0) {
782                 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
783                            err);
784                 goto done;
785         }
786
787         fw_ptr = fw->data + 644;
788         frag_len = 0;
789
790         while (fw_ptr - fw->data < fw->size) {
791                 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
792
793                 frag_len += sizeof(*cmd) + cmd->plen;
794
795                 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
796                            fw->size);
797
798                 /* The parameter length of the secure send command requires
799                  * a 4 byte alignment. It happens so that the firmware file
800                  * contains proper Intel_NOP commands to align the fragments
801                  * as needed.
802                  *
803                  * Send set of commands with 4 byte alignment from the
804                  * firmware data buffer as a single Data fragement.
805                  */
806                 if (frag_len % 4)
807                         continue;
808
809                 /* Send each command from the firmware data buffer as
810                  * a single Data fragment.
811                  */
812                 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
813                 if (err < 0) {
814                         bt_dev_err(hdev, "Failed to send firmware data (%d)",
815                                    err);
816                         goto done;
817                 }
818
819                 fw_ptr += frag_len;
820                 frag_len = 0;
821         }
822
823         set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
824
825         bt_dev_info(hdev, "Waiting for firmware download to complete");
826
827         /* Before switching the device into operational mode and with that
828          * booting the loaded firmware, wait for the bootloader notification
829          * that all fragments have been successfully received.
830          *
831          * When the event processing receives the notification, then the
832          * STATE_DOWNLOADING flag will be cleared.
833          *
834          * The firmware loading should not take longer than 5 seconds
835          * and thus just timeout if that happens and fail the setup
836          * of this device.
837          */
838         err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
839                                   TASK_INTERRUPTIBLE,
840                                   msecs_to_jiffies(5000));
841         if (err == 1) {
842                 bt_dev_err(hdev, "Firmware loading interrupted");
843                 err = -EINTR;
844                 goto done;
845         }
846
847         if (err) {
848                 bt_dev_err(hdev, "Firmware loading timeout");
849                 err = -ETIMEDOUT;
850                 goto done;
851         }
852
853         if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
854                 bt_dev_err(hdev, "Firmware loading failed");
855                 err = -ENOEXEC;
856                 goto done;
857         }
858
859         rettime = ktime_get();
860         delta = ktime_sub(rettime, calltime);
861         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
862
863         bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
864
865 done:
866         release_firmware(fw);
867
868         if (err < 0)
869                 return err;
870
871         /* We need to restore the default speed before Intel reset */
872         if (speed_change) {
873                 err = intel_set_baudrate(hu, init_speed);
874                 if (err)
875                         return err;
876         }
877
878         calltime = ktime_get();
879
880         set_bit(STATE_BOOTING, &intel->flags);
881
882         skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
883                              HCI_INIT_TIMEOUT);
884         if (IS_ERR(skb))
885                 return PTR_ERR(skb);
886
887         kfree_skb(skb);
888
889         /* The bootloader will not indicate when the device is ready. This
890          * is done by the operational firmware sending bootup notification.
891          *
892          * Booting into operational firmware should not take longer than
893          * 1 second. However if that happens, then just fail the setup
894          * since something went wrong.
895          */
896         bt_dev_info(hdev, "Waiting for device to boot");
897
898         err = intel_wait_booting(hu);
899         if (err)
900                 return err;
901
902         clear_bit(STATE_BOOTING, &intel->flags);
903
904         rettime = ktime_get();
905         delta = ktime_sub(rettime, calltime);
906         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
907
908         bt_dev_info(hdev, "Device booted in %llu usecs", duration);
909
910         /* Enable LPM if matching pdev with wakeup enabled */
911         mutex_lock(&intel_device_list_lock);
912         list_for_each(p, &intel_device_list) {
913                 struct intel_device *dev = list_entry(p, struct intel_device,
914                                                       list);
915                 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
916                         if (device_may_wakeup(&dev->pdev->dev))
917                                 idev = dev;
918                         break;
919                 }
920         }
921         mutex_unlock(&intel_device_list_lock);
922
923         if (!idev)
924                 goto no_lpm;
925
926         bt_dev_info(hdev, "Enabling LPM");
927
928         skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param,
929                              HCI_CMD_TIMEOUT);
930         if (IS_ERR(skb)) {
931                 bt_dev_err(hdev, "Failed to enable LPM");
932                 goto no_lpm;
933         }
934         kfree_skb(skb);
935
936         set_bit(STATE_LPM_ENABLED, &intel->flags);
937
938 no_lpm:
939         /* Ignore errors, device can work without DDC parameters */
940         btintel_load_ddc_config(hdev, fwname);
941
942         skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
943         if (IS_ERR(skb))
944                 return PTR_ERR(skb);
945         kfree_skb(skb);
946
947         if (speed_change) {
948                 err = intel_set_baudrate(hu, oper_speed);
949                 if (err)
950                         return err;
951         }
952
953         bt_dev_info(hdev, "Setup complete");
954
955         clear_bit(STATE_BOOTLOADER, &intel->flags);
956
957         return 0;
958 }
959
960 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
961 {
962         struct hci_uart *hu = hci_get_drvdata(hdev);
963         struct intel_data *intel = hu->priv;
964         struct hci_event_hdr *hdr;
965
966         if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
967             !test_bit(STATE_BOOTING, &intel->flags))
968                 goto recv;
969
970         hdr = (void *)skb->data;
971
972         /* When the firmware loading completes the device sends
973          * out a vendor specific event indicating the result of
974          * the firmware loading.
975          */
976         if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
977             skb->data[2] == 0x06) {
978                 if (skb->data[3] != 0x00)
979                         set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
980
981                 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
982                     test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
983                         smp_mb__after_atomic();
984                         wake_up_bit(&intel->flags, STATE_DOWNLOADING);
985                 }
986
987         /* When switching to the operational firmware the device
988          * sends a vendor specific event indicating that the bootup
989          * completed.
990          */
991         } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
992                    skb->data[2] == 0x02) {
993                 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
994                         smp_mb__after_atomic();
995                         wake_up_bit(&intel->flags, STATE_BOOTING);
996                 }
997         }
998 recv:
999         return hci_recv_frame(hdev, skb);
1000 }
1001
1002 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
1003 {
1004         struct hci_uart *hu = hci_get_drvdata(hdev);
1005         struct intel_data *intel = hu->priv;
1006
1007         bt_dev_dbg(hdev, "TX idle notification (%d)", value);
1008
1009         if (value) {
1010                 set_bit(STATE_TX_ACTIVE, &intel->flags);
1011                 schedule_work(&intel->busy_work);
1012         } else {
1013                 clear_bit(STATE_TX_ACTIVE, &intel->flags);
1014         }
1015 }
1016
1017 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
1018 {
1019         struct hci_lpm_pkt *lpm = (void *)skb->data;
1020         struct hci_uart *hu = hci_get_drvdata(hdev);
1021         struct intel_data *intel = hu->priv;
1022
1023         switch (lpm->opcode) {
1024         case LPM_OP_TX_NOTIFY:
1025                 if (lpm->dlen < 1) {
1026                         bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1027                         break;
1028                 }
1029                 intel_recv_lpm_notify(hdev, lpm->data[0]);
1030                 break;
1031         case LPM_OP_SUSPEND_ACK:
1032                 set_bit(STATE_SUSPENDED, &intel->flags);
1033                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1034                         smp_mb__after_atomic();
1035                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1036                 }
1037                 break;
1038         case LPM_OP_RESUME_ACK:
1039                 clear_bit(STATE_SUSPENDED, &intel->flags);
1040                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1041                         smp_mb__after_atomic();
1042                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1043                 }
1044                 break;
1045         default:
1046                 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1047                 break;
1048         }
1049
1050         kfree_skb(skb);
1051
1052         return 0;
1053 }
1054
1055 #define INTEL_RECV_LPM \
1056         .type = HCI_LPM_PKT, \
1057         .hlen = HCI_LPM_HDR_SIZE, \
1058         .loff = 1, \
1059         .lsize = 1, \
1060         .maxlen = HCI_LPM_MAX_SIZE
1061
1062 static const struct h4_recv_pkt intel_recv_pkts[] = {
1063         { H4_RECV_ACL,    .recv = hci_recv_frame   },
1064         { H4_RECV_SCO,    .recv = hci_recv_frame   },
1065         { H4_RECV_EVENT,  .recv = intel_recv_event },
1066         { INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1067 };
1068
1069 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1070 {
1071         struct intel_data *intel = hu->priv;
1072
1073         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1074                 return -EUNATCH;
1075
1076         intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1077                                     intel_recv_pkts,
1078                                     ARRAY_SIZE(intel_recv_pkts));
1079         if (IS_ERR(intel->rx_skb)) {
1080                 int err = PTR_ERR(intel->rx_skb);
1081                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1082                 intel->rx_skb = NULL;
1083                 return err;
1084         }
1085
1086         return count;
1087 }
1088
1089 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1090 {
1091         struct intel_data *intel = hu->priv;
1092         struct list_head *p;
1093
1094         BT_DBG("hu %p skb %p", hu, skb);
1095
1096         /* Be sure our controller is resumed and potential LPM transaction
1097          * completed before enqueuing any packet.
1098          */
1099         mutex_lock(&intel_device_list_lock);
1100         list_for_each(p, &intel_device_list) {
1101                 struct intel_device *idev = list_entry(p, struct intel_device,
1102                                                        list);
1103
1104                 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1105                         pm_runtime_get_sync(&idev->pdev->dev);
1106                         pm_runtime_mark_last_busy(&idev->pdev->dev);
1107                         pm_runtime_put_autosuspend(&idev->pdev->dev);
1108                         break;
1109                 }
1110         }
1111         mutex_unlock(&intel_device_list_lock);
1112
1113         skb_queue_tail(&intel->txq, skb);
1114
1115         return 0;
1116 }
1117
1118 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1119 {
1120         struct intel_data *intel = hu->priv;
1121         struct sk_buff *skb;
1122
1123         skb = skb_dequeue(&intel->txq);
1124         if (!skb)
1125                 return skb;
1126
1127         if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1128             (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)) {
1129                 struct hci_command_hdr *cmd = (void *)skb->data;
1130                 __u16 opcode = le16_to_cpu(cmd->opcode);
1131
1132                 /* When the 0xfc01 command is issued to boot into
1133                  * the operational firmware, it will actually not
1134                  * send a command complete event. To keep the flow
1135                  * control working inject that event here.
1136                  */
1137                 if (opcode == 0xfc01)
1138                         inject_cmd_complete(hu->hdev, opcode);
1139         }
1140
1141         /* Prepend skb with frame type */
1142         memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1);
1143
1144         return skb;
1145 }
1146
1147 static const struct hci_uart_proto intel_proto = {
1148         .id             = HCI_UART_INTEL,
1149         .name           = "Intel",
1150         .init_speed     = 115200,
1151         .oper_speed     = 3000000,
1152         .open           = intel_open,
1153         .close          = intel_close,
1154         .flush          = intel_flush,
1155         .setup          = intel_setup,
1156         .set_baudrate   = intel_set_baudrate,
1157         .recv           = intel_recv,
1158         .enqueue        = intel_enqueue,
1159         .dequeue        = intel_dequeue,
1160 };
1161
1162 #ifdef CONFIG_ACPI
1163 static const struct acpi_device_id intel_acpi_match[] = {
1164         { "INT33E1", 0 },
1165         { },
1166 };
1167 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1168
1169 static int intel_acpi_probe(struct intel_device *idev)
1170 {
1171         const struct acpi_device_id *id;
1172
1173         id = acpi_match_device(intel_acpi_match, &idev->pdev->dev);
1174         if (!id)
1175                 return -ENODEV;
1176
1177         return 0;
1178 }
1179 #else
1180 static int intel_acpi_probe(struct intel_device *idev)
1181 {
1182         return -ENODEV;
1183 }
1184 #endif
1185
1186 #ifdef CONFIG_PM
1187 static int intel_suspend_device(struct device *dev)
1188 {
1189         struct intel_device *idev = dev_get_drvdata(dev);
1190
1191         mutex_lock(&idev->hu_lock);
1192         if (idev->hu)
1193                 intel_lpm_suspend(idev->hu);
1194         mutex_unlock(&idev->hu_lock);
1195
1196         return 0;
1197 }
1198
1199 static int intel_resume_device(struct device *dev)
1200 {
1201         struct intel_device *idev = dev_get_drvdata(dev);
1202
1203         mutex_lock(&idev->hu_lock);
1204         if (idev->hu)
1205                 intel_lpm_resume(idev->hu);
1206         mutex_unlock(&idev->hu_lock);
1207
1208         return 0;
1209 }
1210 #endif
1211
1212 #ifdef CONFIG_PM_SLEEP
1213 static int intel_suspend(struct device *dev)
1214 {
1215         struct intel_device *idev = dev_get_drvdata(dev);
1216
1217         if (device_may_wakeup(dev))
1218                 enable_irq_wake(idev->irq);
1219
1220         return intel_suspend_device(dev);
1221 }
1222
1223 static int intel_resume(struct device *dev)
1224 {
1225         struct intel_device *idev = dev_get_drvdata(dev);
1226
1227         if (device_may_wakeup(dev))
1228                 disable_irq_wake(idev->irq);
1229
1230         return intel_resume_device(dev);
1231 }
1232 #endif
1233
1234 static const struct dev_pm_ops intel_pm_ops = {
1235         SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1236         SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1237 };
1238
1239 static int intel_probe(struct platform_device *pdev)
1240 {
1241         struct intel_device *idev;
1242
1243         idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1244         if (!idev)
1245                 return -ENOMEM;
1246
1247         mutex_init(&idev->hu_lock);
1248
1249         idev->pdev = pdev;
1250
1251         if (ACPI_HANDLE(&pdev->dev)) {
1252                 int err = intel_acpi_probe(idev);
1253                 if (err)
1254                         return err;
1255         } else {
1256                 return -ENODEV;
1257         }
1258
1259         idev->reset = devm_gpiod_get_optional(&pdev->dev, "reset",
1260                                               GPIOD_OUT_LOW);
1261         if (IS_ERR(idev->reset)) {
1262                 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1263                 return PTR_ERR(idev->reset);
1264         }
1265
1266         idev->irq = platform_get_irq(pdev, 0);
1267         if (idev->irq < 0) {
1268                 struct gpio_desc *host_wake;
1269
1270                 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1271
1272                 host_wake = devm_gpiod_get_optional(&pdev->dev, "host-wake",
1273                                                     GPIOD_IN);
1274                 if (IS_ERR(host_wake)) {
1275                         dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1276                         goto no_irq;
1277                 }
1278
1279                 idev->irq = gpiod_to_irq(host_wake);
1280                 if (idev->irq < 0) {
1281                         dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1282                         goto no_irq;
1283                 }
1284         }
1285
1286         /* Only enable wake-up/irq when controller is powered */
1287         device_set_wakeup_capable(&pdev->dev, true);
1288         device_wakeup_disable(&pdev->dev);
1289
1290 no_irq:
1291         platform_set_drvdata(pdev, idev);
1292
1293         /* Place this instance on the device list */
1294         mutex_lock(&intel_device_list_lock);
1295         list_add_tail(&idev->list, &intel_device_list);
1296         mutex_unlock(&intel_device_list_lock);
1297
1298         dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1299                  desc_to_gpio(idev->reset), idev->irq);
1300
1301         return 0;
1302 }
1303
1304 static int intel_remove(struct platform_device *pdev)
1305 {
1306         struct intel_device *idev = platform_get_drvdata(pdev);
1307
1308         device_wakeup_disable(&pdev->dev);
1309
1310         mutex_lock(&intel_device_list_lock);
1311         list_del(&idev->list);
1312         mutex_unlock(&intel_device_list_lock);
1313
1314         dev_info(&pdev->dev, "unregistered.\n");
1315
1316         return 0;
1317 }
1318
1319 static struct platform_driver intel_driver = {
1320         .probe = intel_probe,
1321         .remove = intel_remove,
1322         .driver = {
1323                 .name = "hci_intel",
1324                 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1325                 .pm = &intel_pm_ops,
1326         },
1327 };
1328
1329 int __init intel_init(void)
1330 {
1331         platform_driver_register(&intel_driver);
1332
1333         return hci_uart_register_proto(&intel_proto);
1334 }
1335
1336 int __exit intel_deinit(void)
1337 {
1338         platform_driver_unregister(&intel_driver);
1339
1340         return hci_uart_unregister_proto(&intel_proto);
1341 }