]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/intel_pstate.c
Merge remote-tracking branch 'input-current/for-linus'
[karo-tx-linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define BYT_RATIOS              0x66a
38 #define BYT_VIDS                0x66b
39 #define BYT_TURBO_RATIOS        0x66c
40 #define BYT_TURBO_VIDS          0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51
52 static inline int32_t div_fp(s64 x, s64 y)
53 {
54         return div64_s64((int64_t)x << FRAC_BITS, y);
55 }
56
57 static inline int ceiling_fp(int32_t x)
58 {
59         int mask, ret;
60
61         ret = fp_toint(x);
62         mask = (1 << FRAC_BITS) - 1;
63         if (x & mask)
64                 ret += 1;
65         return ret;
66 }
67
68 struct sample {
69         int32_t core_pct_busy;
70         u64 aperf;
71         u64 mperf;
72         u64 tsc;
73         int freq;
74         ktime_t time;
75 };
76
77 struct pstate_data {
78         int     current_pstate;
79         int     min_pstate;
80         int     max_pstate;
81         int     scaling;
82         int     turbo_pstate;
83 };
84
85 struct vid_data {
86         int min;
87         int max;
88         int turbo;
89         int32_t ratio;
90 };
91
92 struct _pid {
93         int setpoint;
94         int32_t integral;
95         int32_t p_gain;
96         int32_t i_gain;
97         int32_t d_gain;
98         int deadband;
99         int32_t last_err;
100 };
101
102 struct cpudata {
103         int cpu;
104
105         struct timer_list timer;
106
107         struct pstate_data pstate;
108         struct vid_data vid;
109         struct _pid pid;
110
111         ktime_t last_sample_time;
112         u64     prev_aperf;
113         u64     prev_mperf;
114         u64     prev_tsc;
115         struct sample sample;
116 };
117
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120         int sample_rate_ms;
121         int deadband;
122         int setpoint;
123         int p_gain_pct;
124         int d_gain_pct;
125         int i_gain_pct;
126 };
127
128 struct pstate_funcs {
129         int (*get_max)(void);
130         int (*get_min)(void);
131         int (*get_turbo)(void);
132         int (*get_scaling)(void);
133         void (*set)(struct cpudata*, int pstate);
134         void (*get_vid)(struct cpudata *);
135 };
136
137 struct cpu_defaults {
138         struct pstate_adjust_policy pid_policy;
139         struct pstate_funcs funcs;
140 };
141
142 static struct pstate_adjust_policy pid_params;
143 static struct pstate_funcs pstate_funcs;
144 static int hwp_active;
145
146 struct perf_limits {
147         int no_turbo;
148         int turbo_disabled;
149         int max_perf_pct;
150         int min_perf_pct;
151         int32_t max_perf;
152         int32_t min_perf;
153         int max_policy_pct;
154         int max_sysfs_pct;
155         int min_policy_pct;
156         int min_sysfs_pct;
157 };
158
159 static struct perf_limits limits = {
160         .no_turbo = 0,
161         .turbo_disabled = 0,
162         .max_perf_pct = 100,
163         .max_perf = int_tofp(1),
164         .min_perf_pct = 0,
165         .min_perf = 0,
166         .max_policy_pct = 100,
167         .max_sysfs_pct = 100,
168         .min_policy_pct = 0,
169         .min_sysfs_pct = 0,
170 };
171
172 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173                              int deadband, int integral) {
174         pid->setpoint = setpoint;
175         pid->deadband  = deadband;
176         pid->integral  = int_tofp(integral);
177         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
178 }
179
180 static inline void pid_p_gain_set(struct _pid *pid, int percent)
181 {
182         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
183 }
184
185 static inline void pid_i_gain_set(struct _pid *pid, int percent)
186 {
187         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
188 }
189
190 static inline void pid_d_gain_set(struct _pid *pid, int percent)
191 {
192         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
193 }
194
195 static signed int pid_calc(struct _pid *pid, int32_t busy)
196 {
197         signed int result;
198         int32_t pterm, dterm, fp_error;
199         int32_t integral_limit;
200
201         fp_error = int_tofp(pid->setpoint) - busy;
202
203         if (abs(fp_error) <= int_tofp(pid->deadband))
204                 return 0;
205
206         pterm = mul_fp(pid->p_gain, fp_error);
207
208         pid->integral += fp_error;
209
210         /*
211          * We limit the integral here so that it will never
212          * get higher than 30.  This prevents it from becoming
213          * too large an input over long periods of time and allows
214          * it to get factored out sooner.
215          *
216          * The value of 30 was chosen through experimentation.
217          */
218         integral_limit = int_tofp(30);
219         if (pid->integral > integral_limit)
220                 pid->integral = integral_limit;
221         if (pid->integral < -integral_limit)
222                 pid->integral = -integral_limit;
223
224         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
225         pid->last_err = fp_error;
226
227         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228         result = result + (1 << (FRAC_BITS-1));
229         return (signed int)fp_toint(result);
230 }
231
232 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
233 {
234         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
235         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
236         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237
238         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239 }
240
241 static inline void intel_pstate_reset_all_pid(void)
242 {
243         unsigned int cpu;
244
245         for_each_online_cpu(cpu) {
246                 if (all_cpu_data[cpu])
247                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
248         }
249 }
250
251 static inline void update_turbo_state(void)
252 {
253         u64 misc_en;
254         struct cpudata *cpu;
255
256         cpu = all_cpu_data[0];
257         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
258         limits.turbo_disabled =
259                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
260                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
261 }
262
263 static void intel_pstate_hwp_set(void)
264 {
265         int min, hw_min, max, hw_max, cpu, range, adj_range;
266         u64 value, cap;
267
268         rdmsrl(MSR_HWP_CAPABILITIES, cap);
269         hw_min = HWP_LOWEST_PERF(cap);
270         hw_max = HWP_HIGHEST_PERF(cap);
271         range = hw_max - hw_min;
272
273         get_online_cpus();
274
275         for_each_online_cpu(cpu) {
276                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
277                 adj_range = limits.min_perf_pct * range / 100;
278                 min = hw_min + adj_range;
279                 value &= ~HWP_MIN_PERF(~0L);
280                 value |= HWP_MIN_PERF(min);
281
282                 adj_range = limits.max_perf_pct * range / 100;
283                 max = hw_min + adj_range;
284                 if (limits.no_turbo) {
285                         hw_max = HWP_GUARANTEED_PERF(cap);
286                         if (hw_max < max)
287                                 max = hw_max;
288                 }
289
290                 value &= ~HWP_MAX_PERF(~0L);
291                 value |= HWP_MAX_PERF(max);
292                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
293         }
294
295         put_online_cpus();
296 }
297
298 /************************** debugfs begin ************************/
299 static int pid_param_set(void *data, u64 val)
300 {
301         *(u32 *)data = val;
302         intel_pstate_reset_all_pid();
303         return 0;
304 }
305
306 static int pid_param_get(void *data, u64 *val)
307 {
308         *val = *(u32 *)data;
309         return 0;
310 }
311 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
312
313 struct pid_param {
314         char *name;
315         void *value;
316 };
317
318 static struct pid_param pid_files[] = {
319         {"sample_rate_ms", &pid_params.sample_rate_ms},
320         {"d_gain_pct", &pid_params.d_gain_pct},
321         {"i_gain_pct", &pid_params.i_gain_pct},
322         {"deadband", &pid_params.deadband},
323         {"setpoint", &pid_params.setpoint},
324         {"p_gain_pct", &pid_params.p_gain_pct},
325         {NULL, NULL}
326 };
327
328 static void __init intel_pstate_debug_expose_params(void)
329 {
330         struct dentry *debugfs_parent;
331         int i = 0;
332
333         if (hwp_active)
334                 return;
335         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
336         if (IS_ERR_OR_NULL(debugfs_parent))
337                 return;
338         while (pid_files[i].name) {
339                 debugfs_create_file(pid_files[i].name, 0660,
340                                     debugfs_parent, pid_files[i].value,
341                                     &fops_pid_param);
342                 i++;
343         }
344 }
345
346 /************************** debugfs end ************************/
347
348 /************************** sysfs begin ************************/
349 #define show_one(file_name, object)                                     \
350         static ssize_t show_##file_name                                 \
351         (struct kobject *kobj, struct attribute *attr, char *buf)       \
352         {                                                               \
353                 return sprintf(buf, "%u\n", limits.object);             \
354         }
355
356 static ssize_t show_turbo_pct(struct kobject *kobj,
357                                 struct attribute *attr, char *buf)
358 {
359         struct cpudata *cpu;
360         int total, no_turbo, turbo_pct;
361         uint32_t turbo_fp;
362
363         cpu = all_cpu_data[0];
364
365         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
366         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
367         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
368         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
369         return sprintf(buf, "%u\n", turbo_pct);
370 }
371
372 static ssize_t show_num_pstates(struct kobject *kobj,
373                                 struct attribute *attr, char *buf)
374 {
375         struct cpudata *cpu;
376         int total;
377
378         cpu = all_cpu_data[0];
379         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
380         return sprintf(buf, "%u\n", total);
381 }
382
383 static ssize_t show_no_turbo(struct kobject *kobj,
384                              struct attribute *attr, char *buf)
385 {
386         ssize_t ret;
387
388         update_turbo_state();
389         if (limits.turbo_disabled)
390                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
391         else
392                 ret = sprintf(buf, "%u\n", limits.no_turbo);
393
394         return ret;
395 }
396
397 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
398                               const char *buf, size_t count)
399 {
400         unsigned int input;
401         int ret;
402
403         ret = sscanf(buf, "%u", &input);
404         if (ret != 1)
405                 return -EINVAL;
406
407         update_turbo_state();
408         if (limits.turbo_disabled) {
409                 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
410                 return -EPERM;
411         }
412
413         limits.no_turbo = clamp_t(int, input, 0, 1);
414
415         if (hwp_active)
416                 intel_pstate_hwp_set();
417
418         return count;
419 }
420
421 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
422                                   const char *buf, size_t count)
423 {
424         unsigned int input;
425         int ret;
426
427         ret = sscanf(buf, "%u", &input);
428         if (ret != 1)
429                 return -EINVAL;
430
431         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
432         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
433         limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
434         limits.max_perf_pct = max(limits.min_perf_pct, limits.max_perf_pct);
435         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
436
437         if (hwp_active)
438                 intel_pstate_hwp_set();
439         return count;
440 }
441
442 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
443                                   const char *buf, size_t count)
444 {
445         unsigned int input;
446         int ret;
447
448         ret = sscanf(buf, "%u", &input);
449         if (ret != 1)
450                 return -EINVAL;
451
452         limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
453         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
454         limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
455         limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
456         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
457
458         if (hwp_active)
459                 intel_pstate_hwp_set();
460         return count;
461 }
462
463 show_one(max_perf_pct, max_perf_pct);
464 show_one(min_perf_pct, min_perf_pct);
465
466 define_one_global_rw(no_turbo);
467 define_one_global_rw(max_perf_pct);
468 define_one_global_rw(min_perf_pct);
469 define_one_global_ro(turbo_pct);
470 define_one_global_ro(num_pstates);
471
472 static struct attribute *intel_pstate_attributes[] = {
473         &no_turbo.attr,
474         &max_perf_pct.attr,
475         &min_perf_pct.attr,
476         &turbo_pct.attr,
477         &num_pstates.attr,
478         NULL
479 };
480
481 static struct attribute_group intel_pstate_attr_group = {
482         .attrs = intel_pstate_attributes,
483 };
484
485 static void __init intel_pstate_sysfs_expose_params(void)
486 {
487         struct kobject *intel_pstate_kobject;
488         int rc;
489
490         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
491                                                 &cpu_subsys.dev_root->kobj);
492         BUG_ON(!intel_pstate_kobject);
493         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
494         BUG_ON(rc);
495 }
496 /************************** sysfs end ************************/
497
498 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
499 {
500         pr_info("intel_pstate: HWP enabled\n");
501
502         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
503 }
504
505 static int byt_get_min_pstate(void)
506 {
507         u64 value;
508
509         rdmsrl(BYT_RATIOS, value);
510         return (value >> 8) & 0x7F;
511 }
512
513 static int byt_get_max_pstate(void)
514 {
515         u64 value;
516
517         rdmsrl(BYT_RATIOS, value);
518         return (value >> 16) & 0x7F;
519 }
520
521 static int byt_get_turbo_pstate(void)
522 {
523         u64 value;
524
525         rdmsrl(BYT_TURBO_RATIOS, value);
526         return value & 0x7F;
527 }
528
529 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
530 {
531         u64 val;
532         int32_t vid_fp;
533         u32 vid;
534
535         val = (u64)pstate << 8;
536         if (limits.no_turbo && !limits.turbo_disabled)
537                 val |= (u64)1 << 32;
538
539         vid_fp = cpudata->vid.min + mul_fp(
540                 int_tofp(pstate - cpudata->pstate.min_pstate),
541                 cpudata->vid.ratio);
542
543         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
544         vid = ceiling_fp(vid_fp);
545
546         if (pstate > cpudata->pstate.max_pstate)
547                 vid = cpudata->vid.turbo;
548
549         val |= vid;
550
551         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
552 }
553
554 #define BYT_BCLK_FREQS 5
555 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
556
557 static int byt_get_scaling(void)
558 {
559         u64 value;
560         int i;
561
562         rdmsrl(MSR_FSB_FREQ, value);
563         i = value & 0x3;
564
565         BUG_ON(i > BYT_BCLK_FREQS);
566
567         return byt_freq_table[i] * 100;
568 }
569
570 static void byt_get_vid(struct cpudata *cpudata)
571 {
572         u64 value;
573
574         rdmsrl(BYT_VIDS, value);
575         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
576         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
577         cpudata->vid.ratio = div_fp(
578                 cpudata->vid.max - cpudata->vid.min,
579                 int_tofp(cpudata->pstate.max_pstate -
580                         cpudata->pstate.min_pstate));
581
582         rdmsrl(BYT_TURBO_VIDS, value);
583         cpudata->vid.turbo = value & 0x7f;
584 }
585
586 static int core_get_min_pstate(void)
587 {
588         u64 value;
589
590         rdmsrl(MSR_PLATFORM_INFO, value);
591         return (value >> 40) & 0xFF;
592 }
593
594 static int core_get_max_pstate(void)
595 {
596         u64 value;
597
598         rdmsrl(MSR_PLATFORM_INFO, value);
599         return (value >> 8) & 0xFF;
600 }
601
602 static int core_get_turbo_pstate(void)
603 {
604         u64 value;
605         int nont, ret;
606
607         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
608         nont = core_get_max_pstate();
609         ret = (value) & 255;
610         if (ret <= nont)
611                 ret = nont;
612         return ret;
613 }
614
615 static inline int core_get_scaling(void)
616 {
617         return 100000;
618 }
619
620 static void core_set_pstate(struct cpudata *cpudata, int pstate)
621 {
622         u64 val;
623
624         val = (u64)pstate << 8;
625         if (limits.no_turbo && !limits.turbo_disabled)
626                 val |= (u64)1 << 32;
627
628         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
629 }
630
631 static int knl_get_turbo_pstate(void)
632 {
633         u64 value;
634         int nont, ret;
635
636         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
637         nont = core_get_max_pstate();
638         ret = (((value) >> 8) & 0xFF);
639         if (ret <= nont)
640                 ret = nont;
641         return ret;
642 }
643
644 static struct cpu_defaults core_params = {
645         .pid_policy = {
646                 .sample_rate_ms = 10,
647                 .deadband = 0,
648                 .setpoint = 97,
649                 .p_gain_pct = 20,
650                 .d_gain_pct = 0,
651                 .i_gain_pct = 0,
652         },
653         .funcs = {
654                 .get_max = core_get_max_pstate,
655                 .get_min = core_get_min_pstate,
656                 .get_turbo = core_get_turbo_pstate,
657                 .get_scaling = core_get_scaling,
658                 .set = core_set_pstate,
659         },
660 };
661
662 static struct cpu_defaults byt_params = {
663         .pid_policy = {
664                 .sample_rate_ms = 10,
665                 .deadband = 0,
666                 .setpoint = 60,
667                 .p_gain_pct = 14,
668                 .d_gain_pct = 0,
669                 .i_gain_pct = 4,
670         },
671         .funcs = {
672                 .get_max = byt_get_max_pstate,
673                 .get_min = byt_get_min_pstate,
674                 .get_turbo = byt_get_turbo_pstate,
675                 .set = byt_set_pstate,
676                 .get_scaling = byt_get_scaling,
677                 .get_vid = byt_get_vid,
678         },
679 };
680
681 static struct cpu_defaults knl_params = {
682         .pid_policy = {
683                 .sample_rate_ms = 10,
684                 .deadband = 0,
685                 .setpoint = 97,
686                 .p_gain_pct = 20,
687                 .d_gain_pct = 0,
688                 .i_gain_pct = 0,
689         },
690         .funcs = {
691                 .get_max = core_get_max_pstate,
692                 .get_min = core_get_min_pstate,
693                 .get_turbo = knl_get_turbo_pstate,
694                 .get_scaling = core_get_scaling,
695                 .set = core_set_pstate,
696         },
697 };
698
699 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
700 {
701         int max_perf = cpu->pstate.turbo_pstate;
702         int max_perf_adj;
703         int min_perf;
704
705         if (limits.no_turbo || limits.turbo_disabled)
706                 max_perf = cpu->pstate.max_pstate;
707
708         /*
709          * performance can be limited by user through sysfs, by cpufreq
710          * policy, or by cpu specific default values determined through
711          * experimentation.
712          */
713         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
714         *max = clamp_t(int, max_perf_adj,
715                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
716
717         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
718         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
719 }
720
721 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
722 {
723         int max_perf, min_perf;
724
725         if (force) {
726                 update_turbo_state();
727
728                 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
729
730                 pstate = clamp_t(int, pstate, min_perf, max_perf);
731
732                 if (pstate == cpu->pstate.current_pstate)
733                         return;
734         }
735         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
736
737         cpu->pstate.current_pstate = pstate;
738
739         pstate_funcs.set(cpu, pstate);
740 }
741
742 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
743 {
744         cpu->pstate.min_pstate = pstate_funcs.get_min();
745         cpu->pstate.max_pstate = pstate_funcs.get_max();
746         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
747         cpu->pstate.scaling = pstate_funcs.get_scaling();
748
749         if (pstate_funcs.get_vid)
750                 pstate_funcs.get_vid(cpu);
751         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
752 }
753
754 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
755 {
756         struct sample *sample = &cpu->sample;
757         int64_t core_pct;
758
759         core_pct = int_tofp(sample->aperf) * int_tofp(100);
760         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
761
762         sample->freq = fp_toint(
763                 mul_fp(int_tofp(
764                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
765                         core_pct));
766
767         sample->core_pct_busy = (int32_t)core_pct;
768 }
769
770 static inline void intel_pstate_sample(struct cpudata *cpu)
771 {
772         u64 aperf, mperf;
773         unsigned long flags;
774         u64 tsc;
775
776         local_irq_save(flags);
777         rdmsrl(MSR_IA32_APERF, aperf);
778         rdmsrl(MSR_IA32_MPERF, mperf);
779         if (cpu->prev_mperf == mperf) {
780                 local_irq_restore(flags);
781                 return;
782         }
783
784         tsc = rdtsc();
785         local_irq_restore(flags);
786
787         cpu->last_sample_time = cpu->sample.time;
788         cpu->sample.time = ktime_get();
789         cpu->sample.aperf = aperf;
790         cpu->sample.mperf = mperf;
791         cpu->sample.tsc =  tsc;
792         cpu->sample.aperf -= cpu->prev_aperf;
793         cpu->sample.mperf -= cpu->prev_mperf;
794         cpu->sample.tsc -= cpu->prev_tsc;
795
796         intel_pstate_calc_busy(cpu);
797
798         cpu->prev_aperf = aperf;
799         cpu->prev_mperf = mperf;
800         cpu->prev_tsc = tsc;
801 }
802
803 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
804 {
805         int delay;
806
807         delay = msecs_to_jiffies(50);
808         mod_timer_pinned(&cpu->timer, jiffies + delay);
809 }
810
811 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
812 {
813         int delay;
814
815         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
816         mod_timer_pinned(&cpu->timer, jiffies + delay);
817 }
818
819 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
820 {
821         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
822         s64 duration_us;
823         u32 sample_time;
824
825         /*
826          * core_busy is the ratio of actual performance to max
827          * max_pstate is the max non turbo pstate available
828          * current_pstate was the pstate that was requested during
829          *      the last sample period.
830          *
831          * We normalize core_busy, which was our actual percent
832          * performance to what we requested during the last sample
833          * period. The result will be a percentage of busy at a
834          * specified pstate.
835          */
836         core_busy = cpu->sample.core_pct_busy;
837         max_pstate = int_tofp(cpu->pstate.max_pstate);
838         current_pstate = int_tofp(cpu->pstate.current_pstate);
839         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
840
841         /*
842          * Since we have a deferred timer, it will not fire unless
843          * we are in C0.  So, determine if the actual elapsed time
844          * is significantly greater (3x) than our sample interval.  If it
845          * is, then we were idle for a long enough period of time
846          * to adjust our busyness.
847          */
848         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
849         duration_us = ktime_us_delta(cpu->sample.time,
850                                      cpu->last_sample_time);
851         if (duration_us > sample_time * 3) {
852                 sample_ratio = div_fp(int_tofp(sample_time),
853                                       int_tofp(duration_us));
854                 core_busy = mul_fp(core_busy, sample_ratio);
855         }
856
857         return core_busy;
858 }
859
860 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
861 {
862         int32_t busy_scaled;
863         struct _pid *pid;
864         signed int ctl;
865         int from;
866         struct sample *sample;
867
868         from = cpu->pstate.current_pstate;
869
870         pid = &cpu->pid;
871         busy_scaled = intel_pstate_get_scaled_busy(cpu);
872
873         ctl = pid_calc(pid, busy_scaled);
874
875         /* Negative values of ctl increase the pstate and vice versa */
876         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
877
878         sample = &cpu->sample;
879         trace_pstate_sample(fp_toint(sample->core_pct_busy),
880                 fp_toint(busy_scaled),
881                 from,
882                 cpu->pstate.current_pstate,
883                 sample->mperf,
884                 sample->aperf,
885                 sample->tsc,
886                 sample->freq);
887 }
888
889 static void intel_hwp_timer_func(unsigned long __data)
890 {
891         struct cpudata *cpu = (struct cpudata *) __data;
892
893         intel_pstate_sample(cpu);
894         intel_hwp_set_sample_time(cpu);
895 }
896
897 static void intel_pstate_timer_func(unsigned long __data)
898 {
899         struct cpudata *cpu = (struct cpudata *) __data;
900
901         intel_pstate_sample(cpu);
902
903         intel_pstate_adjust_busy_pstate(cpu);
904
905         intel_pstate_set_sample_time(cpu);
906 }
907
908 #define ICPU(model, policy) \
909         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
910                         (unsigned long)&policy }
911
912 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
913         ICPU(0x2a, core_params),
914         ICPU(0x2d, core_params),
915         ICPU(0x37, byt_params),
916         ICPU(0x3a, core_params),
917         ICPU(0x3c, core_params),
918         ICPU(0x3d, core_params),
919         ICPU(0x3e, core_params),
920         ICPU(0x3f, core_params),
921         ICPU(0x45, core_params),
922         ICPU(0x46, core_params),
923         ICPU(0x47, core_params),
924         ICPU(0x4c, byt_params),
925         ICPU(0x4e, core_params),
926         ICPU(0x4f, core_params),
927         ICPU(0x5e, core_params),
928         ICPU(0x56, core_params),
929         ICPU(0x57, knl_params),
930         {}
931 };
932 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
933
934 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
935         ICPU(0x56, core_params),
936         {}
937 };
938
939 static int intel_pstate_init_cpu(unsigned int cpunum)
940 {
941         struct cpudata *cpu;
942
943         if (!all_cpu_data[cpunum])
944                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
945                                                GFP_KERNEL);
946         if (!all_cpu_data[cpunum])
947                 return -ENOMEM;
948
949         cpu = all_cpu_data[cpunum];
950
951         cpu->cpu = cpunum;
952
953         if (hwp_active)
954                 intel_pstate_hwp_enable(cpu);
955
956         intel_pstate_get_cpu_pstates(cpu);
957
958         init_timer_deferrable(&cpu->timer);
959         cpu->timer.data = (unsigned long)cpu;
960         cpu->timer.expires = jiffies + HZ/100;
961
962         if (!hwp_active)
963                 cpu->timer.function = intel_pstate_timer_func;
964         else
965                 cpu->timer.function = intel_hwp_timer_func;
966
967         intel_pstate_busy_pid_reset(cpu);
968         intel_pstate_sample(cpu);
969
970         add_timer_on(&cpu->timer, cpunum);
971
972         pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
973
974         return 0;
975 }
976
977 static unsigned int intel_pstate_get(unsigned int cpu_num)
978 {
979         struct sample *sample;
980         struct cpudata *cpu;
981
982         cpu = all_cpu_data[cpu_num];
983         if (!cpu)
984                 return 0;
985         sample = &cpu->sample;
986         return sample->freq;
987 }
988
989 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
990 {
991         if (!policy->cpuinfo.max_freq)
992                 return -ENODEV;
993
994         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
995             policy->max >= policy->cpuinfo.max_freq) {
996                 limits.min_policy_pct = 100;
997                 limits.min_perf_pct = 100;
998                 limits.min_perf = int_tofp(1);
999                 limits.max_policy_pct = 100;
1000                 limits.max_perf_pct = 100;
1001                 limits.max_perf = int_tofp(1);
1002                 limits.no_turbo = 0;
1003                 return 0;
1004         }
1005
1006         limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1007         limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
1008         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
1009         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
1010
1011         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1012         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
1013         limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
1014         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
1015         limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
1016
1017         /* Make sure min_perf_pct <= max_perf_pct */
1018         limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
1019
1020         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
1021         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
1022
1023         if (hwp_active)
1024                 intel_pstate_hwp_set();
1025
1026         return 0;
1027 }
1028
1029 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1030 {
1031         cpufreq_verify_within_cpu_limits(policy);
1032
1033         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1034             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1035                 return -EINVAL;
1036
1037         return 0;
1038 }
1039
1040 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1041 {
1042         int cpu_num = policy->cpu;
1043         struct cpudata *cpu = all_cpu_data[cpu_num];
1044
1045         pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1046
1047         del_timer_sync(&all_cpu_data[cpu_num]->timer);
1048         if (hwp_active)
1049                 return;
1050
1051         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1052 }
1053
1054 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1055 {
1056         struct cpudata *cpu;
1057         int rc;
1058
1059         rc = intel_pstate_init_cpu(policy->cpu);
1060         if (rc)
1061                 return rc;
1062
1063         cpu = all_cpu_data[policy->cpu];
1064
1065         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1066                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1067         else
1068                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1069
1070         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1071         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1072
1073         /* cpuinfo and default policy values */
1074         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1075         policy->cpuinfo.max_freq =
1076                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1077         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1078         cpumask_set_cpu(policy->cpu, policy->cpus);
1079
1080         return 0;
1081 }
1082
1083 static struct cpufreq_driver intel_pstate_driver = {
1084         .flags          = CPUFREQ_CONST_LOOPS,
1085         .verify         = intel_pstate_verify_policy,
1086         .setpolicy      = intel_pstate_set_policy,
1087         .get            = intel_pstate_get,
1088         .init           = intel_pstate_cpu_init,
1089         .stop_cpu       = intel_pstate_stop_cpu,
1090         .name           = "intel_pstate",
1091 };
1092
1093 static int __initdata no_load;
1094 static int __initdata no_hwp;
1095 static int __initdata hwp_only;
1096 static unsigned int force_load;
1097
1098 static int intel_pstate_msrs_not_valid(void)
1099 {
1100         if (!pstate_funcs.get_max() ||
1101             !pstate_funcs.get_min() ||
1102             !pstate_funcs.get_turbo())
1103                 return -ENODEV;
1104
1105         return 0;
1106 }
1107
1108 static void copy_pid_params(struct pstate_adjust_policy *policy)
1109 {
1110         pid_params.sample_rate_ms = policy->sample_rate_ms;
1111         pid_params.p_gain_pct = policy->p_gain_pct;
1112         pid_params.i_gain_pct = policy->i_gain_pct;
1113         pid_params.d_gain_pct = policy->d_gain_pct;
1114         pid_params.deadband = policy->deadband;
1115         pid_params.setpoint = policy->setpoint;
1116 }
1117
1118 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1119 {
1120         pstate_funcs.get_max   = funcs->get_max;
1121         pstate_funcs.get_min   = funcs->get_min;
1122         pstate_funcs.get_turbo = funcs->get_turbo;
1123         pstate_funcs.get_scaling = funcs->get_scaling;
1124         pstate_funcs.set       = funcs->set;
1125         pstate_funcs.get_vid   = funcs->get_vid;
1126 }
1127
1128 #if IS_ENABLED(CONFIG_ACPI)
1129 #include <acpi/processor.h>
1130
1131 static bool intel_pstate_no_acpi_pss(void)
1132 {
1133         int i;
1134
1135         for_each_possible_cpu(i) {
1136                 acpi_status status;
1137                 union acpi_object *pss;
1138                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1139                 struct acpi_processor *pr = per_cpu(processors, i);
1140
1141                 if (!pr)
1142                         continue;
1143
1144                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1145                 if (ACPI_FAILURE(status))
1146                         continue;
1147
1148                 pss = buffer.pointer;
1149                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1150                         kfree(pss);
1151                         return false;
1152                 }
1153
1154                 kfree(pss);
1155         }
1156
1157         return true;
1158 }
1159
1160 static bool intel_pstate_has_acpi_ppc(void)
1161 {
1162         int i;
1163
1164         for_each_possible_cpu(i) {
1165                 struct acpi_processor *pr = per_cpu(processors, i);
1166
1167                 if (!pr)
1168                         continue;
1169                 if (acpi_has_method(pr->handle, "_PPC"))
1170                         return true;
1171         }
1172         return false;
1173 }
1174
1175 enum {
1176         PSS,
1177         PPC,
1178 };
1179
1180 struct hw_vendor_info {
1181         u16  valid;
1182         char oem_id[ACPI_OEM_ID_SIZE];
1183         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1184         int  oem_pwr_table;
1185 };
1186
1187 /* Hardware vendor-specific info that has its own power management modes */
1188 static struct hw_vendor_info vendor_info[] = {
1189         {1, "HP    ", "ProLiant", PSS},
1190         {1, "ORACLE", "X4-2    ", PPC},
1191         {1, "ORACLE", "X4-2L   ", PPC},
1192         {1, "ORACLE", "X4-2B   ", PPC},
1193         {1, "ORACLE", "X3-2    ", PPC},
1194         {1, "ORACLE", "X3-2L   ", PPC},
1195         {1, "ORACLE", "X3-2B   ", PPC},
1196         {1, "ORACLE", "X4470M2 ", PPC},
1197         {1, "ORACLE", "X4270M3 ", PPC},
1198         {1, "ORACLE", "X4270M2 ", PPC},
1199         {1, "ORACLE", "X4170M2 ", PPC},
1200         {1, "ORACLE", "X4170 M3", PPC},
1201         {1, "ORACLE", "X4275 M3", PPC},
1202         {1, "ORACLE", "X6-2    ", PPC},
1203         {1, "ORACLE", "Sudbury ", PPC},
1204         {0, "", ""},
1205 };
1206
1207 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1208 {
1209         struct acpi_table_header hdr;
1210         struct hw_vendor_info *v_info;
1211         const struct x86_cpu_id *id;
1212         u64 misc_pwr;
1213
1214         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1215         if (id) {
1216                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1217                 if ( misc_pwr & (1 << 8))
1218                         return true;
1219         }
1220
1221         if (acpi_disabled ||
1222             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1223                 return false;
1224
1225         for (v_info = vendor_info; v_info->valid; v_info++) {
1226                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1227                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1228                                                 ACPI_OEM_TABLE_ID_SIZE))
1229                         switch (v_info->oem_pwr_table) {
1230                         case PSS:
1231                                 return intel_pstate_no_acpi_pss();
1232                         case PPC:
1233                                 return intel_pstate_has_acpi_ppc() &&
1234                                         (!force_load);
1235                         }
1236         }
1237
1238         return false;
1239 }
1240 #else /* CONFIG_ACPI not enabled */
1241 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1242 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1243 #endif /* CONFIG_ACPI */
1244
1245 static int __init intel_pstate_init(void)
1246 {
1247         int cpu, rc = 0;
1248         const struct x86_cpu_id *id;
1249         struct cpu_defaults *cpu_def;
1250
1251         if (no_load)
1252                 return -ENODEV;
1253
1254         id = x86_match_cpu(intel_pstate_cpu_ids);
1255         if (!id)
1256                 return -ENODEV;
1257
1258         /*
1259          * The Intel pstate driver will be ignored if the platform
1260          * firmware has its own power management modes.
1261          */
1262         if (intel_pstate_platform_pwr_mgmt_exists())
1263                 return -ENODEV;
1264
1265         cpu_def = (struct cpu_defaults *)id->driver_data;
1266
1267         copy_pid_params(&cpu_def->pid_policy);
1268         copy_cpu_funcs(&cpu_def->funcs);
1269
1270         if (intel_pstate_msrs_not_valid())
1271                 return -ENODEV;
1272
1273         pr_info("Intel P-state driver initializing.\n");
1274
1275         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1276         if (!all_cpu_data)
1277                 return -ENOMEM;
1278
1279         if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1280                 hwp_active++;
1281
1282         if (!hwp_active && hwp_only)
1283                 goto out;
1284
1285         rc = cpufreq_register_driver(&intel_pstate_driver);
1286         if (rc)
1287                 goto out;
1288
1289         intel_pstate_debug_expose_params();
1290         intel_pstate_sysfs_expose_params();
1291
1292         return rc;
1293 out:
1294         get_online_cpus();
1295         for_each_online_cpu(cpu) {
1296                 if (all_cpu_data[cpu]) {
1297                         del_timer_sync(&all_cpu_data[cpu]->timer);
1298                         kfree(all_cpu_data[cpu]);
1299                 }
1300         }
1301
1302         put_online_cpus();
1303         vfree(all_cpu_data);
1304         return -ENODEV;
1305 }
1306 device_initcall(intel_pstate_init);
1307
1308 static int __init intel_pstate_setup(char *str)
1309 {
1310         if (!str)
1311                 return -EINVAL;
1312
1313         if (!strcmp(str, "disable"))
1314                 no_load = 1;
1315         if (!strcmp(str, "no_hwp"))
1316                 no_hwp = 1;
1317         if (!strcmp(str, "force"))
1318                 force_load = 1;
1319         if (!strcmp(str, "hwp_only"))
1320                 hwp_only = 1;
1321         return 0;
1322 }
1323 early_param("intel_pstate", intel_pstate_setup);
1324
1325 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1326 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1327 MODULE_LICENSE("GPL");