]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/crypto/mv_cesa.c
powerpc: Put the gpr save/restore functions in their own section
[karo-tx-linux.git] / drivers / crypto / mv_cesa.c
1 /*
2  * Support for Marvell's crypto engine which can be found on some Orion5X
3  * boards.
4  *
5  * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6  * License: GPLv2
7  *
8  */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/clk.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22
23 #include "mv_cesa.h"
24
25 #define MV_CESA "MV-CESA:"
26 #define MAX_HW_HASH_SIZE        0xFFFF
27
28 /*
29  * STM:
30  *   /---------------------------------------\
31  *   |                                       | request complete
32  *  \./                                      |
33  * IDLE -> new request -> BUSY -> done -> DEQUEUE
34  *                         /°\               |
35  *                          |                | more scatter entries
36  *                          \________________/
37  */
38 enum engine_status {
39         ENGINE_IDLE,
40         ENGINE_BUSY,
41         ENGINE_W_DEQUEUE,
42 };
43
44 /**
45  * struct req_progress - used for every crypt request
46  * @src_sg_it:          sg iterator for src
47  * @dst_sg_it:          sg iterator for dst
48  * @sg_src_left:        bytes left in src to process (scatter list)
49  * @src_start:          offset to add to src start position (scatter list)
50  * @crypt_len:          length of current hw crypt/hash process
51  * @hw_nbytes:          total bytes to process in hw for this request
52  * @copy_back:          whether to copy data back (crypt) or not (hash)
53  * @sg_dst_left:        bytes left dst to process in this scatter list
54  * @dst_start:          offset to add to dst start position (scatter list)
55  * @hw_processed_bytes: number of bytes processed by hw (request).
56  *
57  * sg helper are used to iterate over the scatterlist. Since the size of the
58  * SRAM may be less than the scatter size, this struct struct is used to keep
59  * track of progress within current scatterlist.
60  */
61 struct req_progress {
62         struct sg_mapping_iter src_sg_it;
63         struct sg_mapping_iter dst_sg_it;
64         void (*complete) (void);
65         void (*process) (int is_first);
66
67         /* src mostly */
68         int sg_src_left;
69         int src_start;
70         int crypt_len;
71         int hw_nbytes;
72         /* dst mostly */
73         int copy_back;
74         int sg_dst_left;
75         int dst_start;
76         int hw_processed_bytes;
77 };
78
79 struct crypto_priv {
80         void __iomem *reg;
81         void __iomem *sram;
82         int irq;
83         struct clk *clk;
84         struct task_struct *queue_th;
85
86         /* the lock protects queue and eng_st */
87         spinlock_t lock;
88         struct crypto_queue queue;
89         enum engine_status eng_st;
90         struct crypto_async_request *cur_req;
91         struct req_progress p;
92         int max_req_size;
93         int sram_size;
94         int has_sha1;
95         int has_hmac_sha1;
96 };
97
98 static struct crypto_priv *cpg;
99
100 struct mv_ctx {
101         u8 aes_enc_key[AES_KEY_LEN];
102         u32 aes_dec_key[8];
103         int key_len;
104         u32 need_calc_aes_dkey;
105 };
106
107 enum crypto_op {
108         COP_AES_ECB,
109         COP_AES_CBC,
110 };
111
112 struct mv_req_ctx {
113         enum crypto_op op;
114         int decrypt;
115 };
116
117 enum hash_op {
118         COP_SHA1,
119         COP_HMAC_SHA1
120 };
121
122 struct mv_tfm_hash_ctx {
123         struct crypto_shash *fallback;
124         struct crypto_shash *base_hash;
125         u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
126         int count_add;
127         enum hash_op op;
128 };
129
130 struct mv_req_hash_ctx {
131         u64 count;
132         u32 state[SHA1_DIGEST_SIZE / 4];
133         u8 buffer[SHA1_BLOCK_SIZE];
134         int first_hash;         /* marks that we don't have previous state */
135         int last_chunk;         /* marks that this is the 'final' request */
136         int extra_bytes;        /* unprocessed bytes in buffer */
137         enum hash_op op;
138         int count_add;
139 };
140
141 static void compute_aes_dec_key(struct mv_ctx *ctx)
142 {
143         struct crypto_aes_ctx gen_aes_key;
144         int key_pos;
145
146         if (!ctx->need_calc_aes_dkey)
147                 return;
148
149         crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
150
151         key_pos = ctx->key_len + 24;
152         memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
153         switch (ctx->key_len) {
154         case AES_KEYSIZE_256:
155                 key_pos -= 2;
156                 /* fall */
157         case AES_KEYSIZE_192:
158                 key_pos -= 2;
159                 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
160                                 4 * 4);
161                 break;
162         }
163         ctx->need_calc_aes_dkey = 0;
164 }
165
166 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
167                 unsigned int len)
168 {
169         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
170         struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
171
172         switch (len) {
173         case AES_KEYSIZE_128:
174         case AES_KEYSIZE_192:
175         case AES_KEYSIZE_256:
176                 break;
177         default:
178                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
179                 return -EINVAL;
180         }
181         ctx->key_len = len;
182         ctx->need_calc_aes_dkey = 1;
183
184         memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
185         return 0;
186 }
187
188 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
189 {
190         int ret;
191         void *sbuf;
192         int copy_len;
193
194         while (len) {
195                 if (!p->sg_src_left) {
196                         ret = sg_miter_next(&p->src_sg_it);
197                         BUG_ON(!ret);
198                         p->sg_src_left = p->src_sg_it.length;
199                         p->src_start = 0;
200                 }
201
202                 sbuf = p->src_sg_it.addr + p->src_start;
203
204                 copy_len = min(p->sg_src_left, len);
205                 memcpy(dbuf, sbuf, copy_len);
206
207                 p->src_start += copy_len;
208                 p->sg_src_left -= copy_len;
209
210                 len -= copy_len;
211                 dbuf += copy_len;
212         }
213 }
214
215 static void setup_data_in(void)
216 {
217         struct req_progress *p = &cpg->p;
218         int data_in_sram =
219             min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
220         copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
221                         data_in_sram - p->crypt_len);
222         p->crypt_len = data_in_sram;
223 }
224
225 static void mv_process_current_q(int first_block)
226 {
227         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
228         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
229         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
230         struct sec_accel_config op;
231
232         switch (req_ctx->op) {
233         case COP_AES_ECB:
234                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
235                 break;
236         case COP_AES_CBC:
237         default:
238                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
239                 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
240                         ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
241                 if (first_block)
242                         memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
243                 break;
244         }
245         if (req_ctx->decrypt) {
246                 op.config |= CFG_DIR_DEC;
247                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
248                                 AES_KEY_LEN);
249         } else {
250                 op.config |= CFG_DIR_ENC;
251                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
252                                 AES_KEY_LEN);
253         }
254
255         switch (ctx->key_len) {
256         case AES_KEYSIZE_128:
257                 op.config |= CFG_AES_LEN_128;
258                 break;
259         case AES_KEYSIZE_192:
260                 op.config |= CFG_AES_LEN_192;
261                 break;
262         case AES_KEYSIZE_256:
263                 op.config |= CFG_AES_LEN_256;
264                 break;
265         }
266         op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
267                 ENC_P_DST(SRAM_DATA_OUT_START);
268         op.enc_key_p = SRAM_DATA_KEY_P;
269
270         setup_data_in();
271         op.enc_len = cpg->p.crypt_len;
272         memcpy(cpg->sram + SRAM_CONFIG, &op,
273                         sizeof(struct sec_accel_config));
274
275         /* GO */
276         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
277
278         /*
279          * XXX: add timer if the interrupt does not occur for some mystery
280          * reason
281          */
282 }
283
284 static void mv_crypto_algo_completion(void)
285 {
286         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
287         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
288
289         sg_miter_stop(&cpg->p.src_sg_it);
290         sg_miter_stop(&cpg->p.dst_sg_it);
291
292         if (req_ctx->op != COP_AES_CBC)
293                 return ;
294
295         memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
296 }
297
298 static void mv_process_hash_current(int first_block)
299 {
300         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
301         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
302         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
303         struct req_progress *p = &cpg->p;
304         struct sec_accel_config op = { 0 };
305         int is_last;
306
307         switch (req_ctx->op) {
308         case COP_SHA1:
309         default:
310                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
311                 break;
312         case COP_HMAC_SHA1:
313                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
314                 memcpy(cpg->sram + SRAM_HMAC_IV_IN,
315                                 tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
316                 break;
317         }
318
319         op.mac_src_p =
320                 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
321                 req_ctx->
322                 count);
323
324         setup_data_in();
325
326         op.mac_digest =
327                 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
328         op.mac_iv =
329                 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
330                 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
331
332         is_last = req_ctx->last_chunk
333                 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
334                 && (req_ctx->count <= MAX_HW_HASH_SIZE);
335         if (req_ctx->first_hash) {
336                 if (is_last)
337                         op.config |= CFG_NOT_FRAG;
338                 else
339                         op.config |= CFG_FIRST_FRAG;
340
341                 req_ctx->first_hash = 0;
342         } else {
343                 if (is_last)
344                         op.config |= CFG_LAST_FRAG;
345                 else
346                         op.config |= CFG_MID_FRAG;
347
348                 if (first_block) {
349                         writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
350                         writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
351                         writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
352                         writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
353                         writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
354                 }
355         }
356
357         memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
358
359         /* GO */
360         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
361
362         /*
363         * XXX: add timer if the interrupt does not occur for some mystery
364         * reason
365         */
366 }
367
368 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
369                                           struct shash_desc *desc)
370 {
371         int i;
372         struct sha1_state shash_state;
373
374         shash_state.count = ctx->count + ctx->count_add;
375         for (i = 0; i < 5; i++)
376                 shash_state.state[i] = ctx->state[i];
377         memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
378         return crypto_shash_import(desc, &shash_state);
379 }
380
381 static int mv_hash_final_fallback(struct ahash_request *req)
382 {
383         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
384         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
385         struct {
386                 struct shash_desc shash;
387                 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
388         } desc;
389         int rc;
390
391         desc.shash.tfm = tfm_ctx->fallback;
392         desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
393         if (unlikely(req_ctx->first_hash)) {
394                 crypto_shash_init(&desc.shash);
395                 crypto_shash_update(&desc.shash, req_ctx->buffer,
396                                     req_ctx->extra_bytes);
397         } else {
398                 /* only SHA1 for now....
399                  */
400                 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
401                 if (rc)
402                         goto out;
403         }
404         rc = crypto_shash_final(&desc.shash, req->result);
405 out:
406         return rc;
407 }
408
409 static void mv_hash_algo_completion(void)
410 {
411         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
412         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
413
414         if (ctx->extra_bytes)
415                 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
416         sg_miter_stop(&cpg->p.src_sg_it);
417
418         if (likely(ctx->last_chunk)) {
419                 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
420                         memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
421                                crypto_ahash_digestsize(crypto_ahash_reqtfm
422                                                        (req)));
423                 } else
424                         mv_hash_final_fallback(req);
425         } else {
426                 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
427                 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
428                 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
429                 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
430                 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
431         }
432 }
433
434 static void dequeue_complete_req(void)
435 {
436         struct crypto_async_request *req = cpg->cur_req;
437         void *buf;
438         int ret;
439         cpg->p.hw_processed_bytes += cpg->p.crypt_len;
440         if (cpg->p.copy_back) {
441                 int need_copy_len = cpg->p.crypt_len;
442                 int sram_offset = 0;
443                 do {
444                         int dst_copy;
445
446                         if (!cpg->p.sg_dst_left) {
447                                 ret = sg_miter_next(&cpg->p.dst_sg_it);
448                                 BUG_ON(!ret);
449                                 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
450                                 cpg->p.dst_start = 0;
451                         }
452
453                         buf = cpg->p.dst_sg_it.addr;
454                         buf += cpg->p.dst_start;
455
456                         dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
457
458                         memcpy(buf,
459                                cpg->sram + SRAM_DATA_OUT_START + sram_offset,
460                                dst_copy);
461                         sram_offset += dst_copy;
462                         cpg->p.sg_dst_left -= dst_copy;
463                         need_copy_len -= dst_copy;
464                         cpg->p.dst_start += dst_copy;
465                 } while (need_copy_len > 0);
466         }
467
468         cpg->p.crypt_len = 0;
469
470         BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
471         if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
472                 /* process next scatter list entry */
473                 cpg->eng_st = ENGINE_BUSY;
474                 cpg->p.process(0);
475         } else {
476                 cpg->p.complete();
477                 cpg->eng_st = ENGINE_IDLE;
478                 local_bh_disable();
479                 req->complete(req, 0);
480                 local_bh_enable();
481         }
482 }
483
484 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
485 {
486         int i = 0;
487         size_t cur_len;
488
489         while (sl) {
490                 cur_len = sl[i].length;
491                 ++i;
492                 if (total_bytes > cur_len)
493                         total_bytes -= cur_len;
494                 else
495                         break;
496         }
497
498         return i;
499 }
500
501 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
502 {
503         struct req_progress *p = &cpg->p;
504         int num_sgs;
505
506         cpg->cur_req = &req->base;
507         memset(p, 0, sizeof(struct req_progress));
508         p->hw_nbytes = req->nbytes;
509         p->complete = mv_crypto_algo_completion;
510         p->process = mv_process_current_q;
511         p->copy_back = 1;
512
513         num_sgs = count_sgs(req->src, req->nbytes);
514         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
515
516         num_sgs = count_sgs(req->dst, req->nbytes);
517         sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
518
519         mv_process_current_q(1);
520 }
521
522 static void mv_start_new_hash_req(struct ahash_request *req)
523 {
524         struct req_progress *p = &cpg->p;
525         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
526         int num_sgs, hw_bytes, old_extra_bytes, rc;
527         cpg->cur_req = &req->base;
528         memset(p, 0, sizeof(struct req_progress));
529         hw_bytes = req->nbytes + ctx->extra_bytes;
530         old_extra_bytes = ctx->extra_bytes;
531
532         ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
533         if (ctx->extra_bytes != 0
534             && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
535                 hw_bytes -= ctx->extra_bytes;
536         else
537                 ctx->extra_bytes = 0;
538
539         num_sgs = count_sgs(req->src, req->nbytes);
540         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
541
542         if (hw_bytes) {
543                 p->hw_nbytes = hw_bytes;
544                 p->complete = mv_hash_algo_completion;
545                 p->process = mv_process_hash_current;
546
547                 if (unlikely(old_extra_bytes)) {
548                         memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
549                                old_extra_bytes);
550                         p->crypt_len = old_extra_bytes;
551                 }
552
553                 mv_process_hash_current(1);
554         } else {
555                 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
556                                 ctx->extra_bytes - old_extra_bytes);
557                 sg_miter_stop(&p->src_sg_it);
558                 if (ctx->last_chunk)
559                         rc = mv_hash_final_fallback(req);
560                 else
561                         rc = 0;
562                 cpg->eng_st = ENGINE_IDLE;
563                 local_bh_disable();
564                 req->base.complete(&req->base, rc);
565                 local_bh_enable();
566         }
567 }
568
569 static int queue_manag(void *data)
570 {
571         cpg->eng_st = ENGINE_IDLE;
572         do {
573                 struct crypto_async_request *async_req = NULL;
574                 struct crypto_async_request *backlog;
575
576                 __set_current_state(TASK_INTERRUPTIBLE);
577
578                 if (cpg->eng_st == ENGINE_W_DEQUEUE)
579                         dequeue_complete_req();
580
581                 spin_lock_irq(&cpg->lock);
582                 if (cpg->eng_st == ENGINE_IDLE) {
583                         backlog = crypto_get_backlog(&cpg->queue);
584                         async_req = crypto_dequeue_request(&cpg->queue);
585                         if (async_req) {
586                                 BUG_ON(cpg->eng_st != ENGINE_IDLE);
587                                 cpg->eng_st = ENGINE_BUSY;
588                         }
589                 }
590                 spin_unlock_irq(&cpg->lock);
591
592                 if (backlog) {
593                         backlog->complete(backlog, -EINPROGRESS);
594                         backlog = NULL;
595                 }
596
597                 if (async_req) {
598                         if (async_req->tfm->__crt_alg->cra_type !=
599                             &crypto_ahash_type) {
600                                 struct ablkcipher_request *req =
601                                     ablkcipher_request_cast(async_req);
602                                 mv_start_new_crypt_req(req);
603                         } else {
604                                 struct ahash_request *req =
605                                     ahash_request_cast(async_req);
606                                 mv_start_new_hash_req(req);
607                         }
608                         async_req = NULL;
609                 }
610
611                 schedule();
612
613         } while (!kthread_should_stop());
614         return 0;
615 }
616
617 static int mv_handle_req(struct crypto_async_request *req)
618 {
619         unsigned long flags;
620         int ret;
621
622         spin_lock_irqsave(&cpg->lock, flags);
623         ret = crypto_enqueue_request(&cpg->queue, req);
624         spin_unlock_irqrestore(&cpg->lock, flags);
625         wake_up_process(cpg->queue_th);
626         return ret;
627 }
628
629 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
630 {
631         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
632
633         req_ctx->op = COP_AES_ECB;
634         req_ctx->decrypt = 0;
635
636         return mv_handle_req(&req->base);
637 }
638
639 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
640 {
641         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
642         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
643
644         req_ctx->op = COP_AES_ECB;
645         req_ctx->decrypt = 1;
646
647         compute_aes_dec_key(ctx);
648         return mv_handle_req(&req->base);
649 }
650
651 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
652 {
653         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
654
655         req_ctx->op = COP_AES_CBC;
656         req_ctx->decrypt = 0;
657
658         return mv_handle_req(&req->base);
659 }
660
661 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
662 {
663         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
664         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
665
666         req_ctx->op = COP_AES_CBC;
667         req_ctx->decrypt = 1;
668
669         compute_aes_dec_key(ctx);
670         return mv_handle_req(&req->base);
671 }
672
673 static int mv_cra_init(struct crypto_tfm *tfm)
674 {
675         tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
676         return 0;
677 }
678
679 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
680                                  int is_last, unsigned int req_len,
681                                  int count_add)
682 {
683         memset(ctx, 0, sizeof(*ctx));
684         ctx->op = op;
685         ctx->count = req_len;
686         ctx->first_hash = 1;
687         ctx->last_chunk = is_last;
688         ctx->count_add = count_add;
689 }
690
691 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
692                                    unsigned req_len)
693 {
694         ctx->last_chunk = is_last;
695         ctx->count += req_len;
696 }
697
698 static int mv_hash_init(struct ahash_request *req)
699 {
700         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
701         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
702                              tfm_ctx->count_add);
703         return 0;
704 }
705
706 static int mv_hash_update(struct ahash_request *req)
707 {
708         if (!req->nbytes)
709                 return 0;
710
711         mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
712         return mv_handle_req(&req->base);
713 }
714
715 static int mv_hash_final(struct ahash_request *req)
716 {
717         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
718
719         ahash_request_set_crypt(req, NULL, req->result, 0);
720         mv_update_hash_req_ctx(ctx, 1, 0);
721         return mv_handle_req(&req->base);
722 }
723
724 static int mv_hash_finup(struct ahash_request *req)
725 {
726         mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
727         return mv_handle_req(&req->base);
728 }
729
730 static int mv_hash_digest(struct ahash_request *req)
731 {
732         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
733         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
734                              req->nbytes, tfm_ctx->count_add);
735         return mv_handle_req(&req->base);
736 }
737
738 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
739                              const void *ostate)
740 {
741         const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
742         int i;
743         for (i = 0; i < 5; i++) {
744                 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
745                 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
746         }
747 }
748
749 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
750                           unsigned int keylen)
751 {
752         int rc;
753         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
754         int bs, ds, ss;
755
756         if (!ctx->base_hash)
757                 return 0;
758
759         rc = crypto_shash_setkey(ctx->fallback, key, keylen);
760         if (rc)
761                 return rc;
762
763         /* Can't see a way to extract the ipad/opad from the fallback tfm
764            so I'm basically copying code from the hmac module */
765         bs = crypto_shash_blocksize(ctx->base_hash);
766         ds = crypto_shash_digestsize(ctx->base_hash);
767         ss = crypto_shash_statesize(ctx->base_hash);
768
769         {
770                 struct {
771                         struct shash_desc shash;
772                         char ctx[crypto_shash_descsize(ctx->base_hash)];
773                 } desc;
774                 unsigned int i;
775                 char ipad[ss];
776                 char opad[ss];
777
778                 desc.shash.tfm = ctx->base_hash;
779                 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
780                     CRYPTO_TFM_REQ_MAY_SLEEP;
781
782                 if (keylen > bs) {
783                         int err;
784
785                         err =
786                             crypto_shash_digest(&desc.shash, key, keylen, ipad);
787                         if (err)
788                                 return err;
789
790                         keylen = ds;
791                 } else
792                         memcpy(ipad, key, keylen);
793
794                 memset(ipad + keylen, 0, bs - keylen);
795                 memcpy(opad, ipad, bs);
796
797                 for (i = 0; i < bs; i++) {
798                         ipad[i] ^= 0x36;
799                         opad[i] ^= 0x5c;
800                 }
801
802                 rc = crypto_shash_init(&desc.shash) ? :
803                     crypto_shash_update(&desc.shash, ipad, bs) ? :
804                     crypto_shash_export(&desc.shash, ipad) ? :
805                     crypto_shash_init(&desc.shash) ? :
806                     crypto_shash_update(&desc.shash, opad, bs) ? :
807                     crypto_shash_export(&desc.shash, opad);
808
809                 if (rc == 0)
810                         mv_hash_init_ivs(ctx, ipad, opad);
811
812                 return rc;
813         }
814 }
815
816 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
817                             enum hash_op op, int count_add)
818 {
819         const char *fallback_driver_name = tfm->__crt_alg->cra_name;
820         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
821         struct crypto_shash *fallback_tfm = NULL;
822         struct crypto_shash *base_hash = NULL;
823         int err = -ENOMEM;
824
825         ctx->op = op;
826         ctx->count_add = count_add;
827
828         /* Allocate a fallback and abort if it failed. */
829         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
830                                           CRYPTO_ALG_NEED_FALLBACK);
831         if (IS_ERR(fallback_tfm)) {
832                 printk(KERN_WARNING MV_CESA
833                        "Fallback driver '%s' could not be loaded!\n",
834                        fallback_driver_name);
835                 err = PTR_ERR(fallback_tfm);
836                 goto out;
837         }
838         ctx->fallback = fallback_tfm;
839
840         if (base_hash_name) {
841                 /* Allocate a hash to compute the ipad/opad of hmac. */
842                 base_hash = crypto_alloc_shash(base_hash_name, 0,
843                                                CRYPTO_ALG_NEED_FALLBACK);
844                 if (IS_ERR(base_hash)) {
845                         printk(KERN_WARNING MV_CESA
846                                "Base driver '%s' could not be loaded!\n",
847                                base_hash_name);
848                         err = PTR_ERR(base_hash);
849                         goto err_bad_base;
850                 }
851         }
852         ctx->base_hash = base_hash;
853
854         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
855                                  sizeof(struct mv_req_hash_ctx) +
856                                  crypto_shash_descsize(ctx->fallback));
857         return 0;
858 err_bad_base:
859         crypto_free_shash(fallback_tfm);
860 out:
861         return err;
862 }
863
864 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
865 {
866         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
867
868         crypto_free_shash(ctx->fallback);
869         if (ctx->base_hash)
870                 crypto_free_shash(ctx->base_hash);
871 }
872
873 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
874 {
875         return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
876 }
877
878 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
879 {
880         return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
881 }
882
883 irqreturn_t crypto_int(int irq, void *priv)
884 {
885         u32 val;
886
887         val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
888         if (!(val & SEC_INT_ACCEL0_DONE))
889                 return IRQ_NONE;
890
891         val &= ~SEC_INT_ACCEL0_DONE;
892         writel(val, cpg->reg + FPGA_INT_STATUS);
893         writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
894         BUG_ON(cpg->eng_st != ENGINE_BUSY);
895         cpg->eng_st = ENGINE_W_DEQUEUE;
896         wake_up_process(cpg->queue_th);
897         return IRQ_HANDLED;
898 }
899
900 struct crypto_alg mv_aes_alg_ecb = {
901         .cra_name               = "ecb(aes)",
902         .cra_driver_name        = "mv-ecb-aes",
903         .cra_priority   = 300,
904         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
905                           CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
906         .cra_blocksize  = 16,
907         .cra_ctxsize    = sizeof(struct mv_ctx),
908         .cra_alignmask  = 0,
909         .cra_type       = &crypto_ablkcipher_type,
910         .cra_module     = THIS_MODULE,
911         .cra_init       = mv_cra_init,
912         .cra_u          = {
913                 .ablkcipher = {
914                         .min_keysize    =       AES_MIN_KEY_SIZE,
915                         .max_keysize    =       AES_MAX_KEY_SIZE,
916                         .setkey         =       mv_setkey_aes,
917                         .encrypt        =       mv_enc_aes_ecb,
918                         .decrypt        =       mv_dec_aes_ecb,
919                 },
920         },
921 };
922
923 struct crypto_alg mv_aes_alg_cbc = {
924         .cra_name               = "cbc(aes)",
925         .cra_driver_name        = "mv-cbc-aes",
926         .cra_priority   = 300,
927         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
928                           CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
929         .cra_blocksize  = AES_BLOCK_SIZE,
930         .cra_ctxsize    = sizeof(struct mv_ctx),
931         .cra_alignmask  = 0,
932         .cra_type       = &crypto_ablkcipher_type,
933         .cra_module     = THIS_MODULE,
934         .cra_init       = mv_cra_init,
935         .cra_u          = {
936                 .ablkcipher = {
937                         .ivsize         =       AES_BLOCK_SIZE,
938                         .min_keysize    =       AES_MIN_KEY_SIZE,
939                         .max_keysize    =       AES_MAX_KEY_SIZE,
940                         .setkey         =       mv_setkey_aes,
941                         .encrypt        =       mv_enc_aes_cbc,
942                         .decrypt        =       mv_dec_aes_cbc,
943                 },
944         },
945 };
946
947 struct ahash_alg mv_sha1_alg = {
948         .init = mv_hash_init,
949         .update = mv_hash_update,
950         .final = mv_hash_final,
951         .finup = mv_hash_finup,
952         .digest = mv_hash_digest,
953         .halg = {
954                  .digestsize = SHA1_DIGEST_SIZE,
955                  .base = {
956                           .cra_name = "sha1",
957                           .cra_driver_name = "mv-sha1",
958                           .cra_priority = 300,
959                           .cra_flags =
960                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
961                           CRYPTO_ALG_NEED_FALLBACK,
962                           .cra_blocksize = SHA1_BLOCK_SIZE,
963                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
964                           .cra_init = mv_cra_hash_sha1_init,
965                           .cra_exit = mv_cra_hash_exit,
966                           .cra_module = THIS_MODULE,
967                           }
968                  }
969 };
970
971 struct ahash_alg mv_hmac_sha1_alg = {
972         .init = mv_hash_init,
973         .update = mv_hash_update,
974         .final = mv_hash_final,
975         .finup = mv_hash_finup,
976         .digest = mv_hash_digest,
977         .setkey = mv_hash_setkey,
978         .halg = {
979                  .digestsize = SHA1_DIGEST_SIZE,
980                  .base = {
981                           .cra_name = "hmac(sha1)",
982                           .cra_driver_name = "mv-hmac-sha1",
983                           .cra_priority = 300,
984                           .cra_flags =
985                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
986                           CRYPTO_ALG_NEED_FALLBACK,
987                           .cra_blocksize = SHA1_BLOCK_SIZE,
988                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
989                           .cra_init = mv_cra_hash_hmac_sha1_init,
990                           .cra_exit = mv_cra_hash_exit,
991                           .cra_module = THIS_MODULE,
992                           }
993                  }
994 };
995
996 static int mv_probe(struct platform_device *pdev)
997 {
998         struct crypto_priv *cp;
999         struct resource *res;
1000         int irq;
1001         int ret;
1002
1003         if (cpg) {
1004                 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1005                 return -EEXIST;
1006         }
1007
1008         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1009         if (!res)
1010                 return -ENXIO;
1011
1012         cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1013         if (!cp)
1014                 return -ENOMEM;
1015
1016         spin_lock_init(&cp->lock);
1017         crypto_init_queue(&cp->queue, 50);
1018         cp->reg = ioremap(res->start, resource_size(res));
1019         if (!cp->reg) {
1020                 ret = -ENOMEM;
1021                 goto err;
1022         }
1023
1024         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1025         if (!res) {
1026                 ret = -ENXIO;
1027                 goto err_unmap_reg;
1028         }
1029         cp->sram_size = resource_size(res);
1030         cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1031         cp->sram = ioremap(res->start, cp->sram_size);
1032         if (!cp->sram) {
1033                 ret = -ENOMEM;
1034                 goto err_unmap_reg;
1035         }
1036
1037         irq = platform_get_irq(pdev, 0);
1038         if (irq < 0 || irq == NO_IRQ) {
1039                 ret = irq;
1040                 goto err_unmap_sram;
1041         }
1042         cp->irq = irq;
1043
1044         platform_set_drvdata(pdev, cp);
1045         cpg = cp;
1046
1047         cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1048         if (IS_ERR(cp->queue_th)) {
1049                 ret = PTR_ERR(cp->queue_th);
1050                 goto err_unmap_sram;
1051         }
1052
1053         ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1054                         cp);
1055         if (ret)
1056                 goto err_thread;
1057
1058         /* Not all platforms can gate the clock, so it is not
1059            an error if the clock does not exists. */
1060         cp->clk = clk_get(&pdev->dev, NULL);
1061         if (!IS_ERR(cp->clk))
1062                 clk_prepare_enable(cp->clk);
1063
1064         writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1065         writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1066         writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1067
1068         ret = crypto_register_alg(&mv_aes_alg_ecb);
1069         if (ret) {
1070                 printk(KERN_WARNING MV_CESA
1071                        "Could not register aes-ecb driver\n");
1072                 goto err_irq;
1073         }
1074
1075         ret = crypto_register_alg(&mv_aes_alg_cbc);
1076         if (ret) {
1077                 printk(KERN_WARNING MV_CESA
1078                        "Could not register aes-cbc driver\n");
1079                 goto err_unreg_ecb;
1080         }
1081
1082         ret = crypto_register_ahash(&mv_sha1_alg);
1083         if (ret == 0)
1084                 cpg->has_sha1 = 1;
1085         else
1086                 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1087
1088         ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1089         if (ret == 0) {
1090                 cpg->has_hmac_sha1 = 1;
1091         } else {
1092                 printk(KERN_WARNING MV_CESA
1093                        "Could not register hmac-sha1 driver\n");
1094         }
1095
1096         return 0;
1097 err_unreg_ecb:
1098         crypto_unregister_alg(&mv_aes_alg_ecb);
1099 err_irq:
1100         free_irq(irq, cp);
1101 err_thread:
1102         kthread_stop(cp->queue_th);
1103 err_unmap_sram:
1104         iounmap(cp->sram);
1105 err_unmap_reg:
1106         iounmap(cp->reg);
1107 err:
1108         kfree(cp);
1109         cpg = NULL;
1110         platform_set_drvdata(pdev, NULL);
1111         return ret;
1112 }
1113
1114 static int mv_remove(struct platform_device *pdev)
1115 {
1116         struct crypto_priv *cp = platform_get_drvdata(pdev);
1117
1118         crypto_unregister_alg(&mv_aes_alg_ecb);
1119         crypto_unregister_alg(&mv_aes_alg_cbc);
1120         if (cp->has_sha1)
1121                 crypto_unregister_ahash(&mv_sha1_alg);
1122         if (cp->has_hmac_sha1)
1123                 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1124         kthread_stop(cp->queue_th);
1125         free_irq(cp->irq, cp);
1126         memset(cp->sram, 0, cp->sram_size);
1127         iounmap(cp->sram);
1128         iounmap(cp->reg);
1129
1130         if (!IS_ERR(cp->clk)) {
1131                 clk_disable_unprepare(cp->clk);
1132                 clk_put(cp->clk);
1133         }
1134
1135         kfree(cp);
1136         cpg = NULL;
1137         return 0;
1138 }
1139
1140 static struct platform_driver marvell_crypto = {
1141         .probe          = mv_probe,
1142         .remove         = mv_remove,
1143         .driver         = {
1144                 .owner  = THIS_MODULE,
1145                 .name   = "mv_crypto",
1146         },
1147 };
1148 MODULE_ALIAS("platform:mv_crypto");
1149
1150 module_platform_driver(marvell_crypto);
1151
1152 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1153 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1154 MODULE_LICENSE("GPL");