]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge branch 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = { /* i915 and valleyview are the same */
83         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94         POSTING_READ(GEN8_##type##_IMR(which)); \
95         I915_WRITE(GEN8_##type##_IER(which), 0); \
96         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97         POSTING_READ(GEN8_##type##_IIR(which)); \
98         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99         POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101
102 #define GEN5_IRQ_RESET(type) do { \
103         I915_WRITE(type##IMR, 0xffffffff); \
104         POSTING_READ(type##IMR); \
105         I915_WRITE(type##IER, 0); \
106         I915_WRITE(type##IIR, 0xffffffff); \
107         POSTING_READ(type##IIR); \
108         I915_WRITE(type##IIR, 0xffffffff); \
109         POSTING_READ(type##IIR); \
110 } while (0)
111
112 /*
113  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114  */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116         u32 val = I915_READ(reg); \
117         if (val) { \
118                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119                      (reg), val); \
120                 I915_WRITE((reg), 0xffffffff); \
121                 POSTING_READ(reg); \
122                 I915_WRITE((reg), 0xffffffff); \
123                 POSTING_READ(reg); \
124         } \
125 } while (0)
126
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131         POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136         I915_WRITE(type##IER, (ier_val)); \
137         I915_WRITE(type##IMR, (imr_val)); \
138         POSTING_READ(type##IMR); \
139 } while (0)
140
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147         assert_spin_locked(&dev_priv->irq_lock);
148
149         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150                 return;
151
152         if ((dev_priv->irq_mask & mask) != 0) {
153                 dev_priv->irq_mask &= ~mask;
154                 I915_WRITE(DEIMR, dev_priv->irq_mask);
155                 POSTING_READ(DEIMR);
156         }
157 }
158
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162         assert_spin_locked(&dev_priv->irq_lock);
163
164         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165                 return;
166
167         if ((dev_priv->irq_mask & mask) != mask) {
168                 dev_priv->irq_mask |= mask;
169                 I915_WRITE(DEIMR, dev_priv->irq_mask);
170                 POSTING_READ(DEIMR);
171         }
172 }
173
174 /**
175  * ilk_update_gt_irq - update GTIMR
176  * @dev_priv: driver private
177  * @interrupt_mask: mask of interrupt bits to update
178  * @enabled_irq_mask: mask of interrupt bits to enable
179  */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181                               uint32_t interrupt_mask,
182                               uint32_t enabled_irq_mask)
183 {
184         assert_spin_locked(&dev_priv->irq_lock);
185
186         WARN_ON(enabled_irq_mask & ~interrupt_mask);
187
188         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
189                 return;
190
191         dev_priv->gt_irq_mask &= ~interrupt_mask;
192         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
193         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
194         POSTING_READ(GTIMR);
195 }
196
197 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
198 {
199         ilk_update_gt_irq(dev_priv, mask, mask);
200 }
201
202 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
203 {
204         ilk_update_gt_irq(dev_priv, mask, 0);
205 }
206
207 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
208 {
209         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
210 }
211
212 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
213 {
214         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
215 }
216
217 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
218 {
219         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
220 }
221
222 /**
223   * snb_update_pm_irq - update GEN6_PMIMR
224   * @dev_priv: driver private
225   * @interrupt_mask: mask of interrupt bits to update
226   * @enabled_irq_mask: mask of interrupt bits to enable
227   */
228 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
229                               uint32_t interrupt_mask,
230                               uint32_t enabled_irq_mask)
231 {
232         uint32_t new_val;
233
234         WARN_ON(enabled_irq_mask & ~interrupt_mask);
235
236         assert_spin_locked(&dev_priv->irq_lock);
237
238         new_val = dev_priv->pm_irq_mask;
239         new_val &= ~interrupt_mask;
240         new_val |= (~enabled_irq_mask & interrupt_mask);
241
242         if (new_val != dev_priv->pm_irq_mask) {
243                 dev_priv->pm_irq_mask = new_val;
244                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
245                 POSTING_READ(gen6_pm_imr(dev_priv));
246         }
247 }
248
249 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
250 {
251         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
252                 return;
253
254         snb_update_pm_irq(dev_priv, mask, mask);
255 }
256
257 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
258                                   uint32_t mask)
259 {
260         snb_update_pm_irq(dev_priv, mask, 0);
261 }
262
263 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
264 {
265         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
266                 return;
267
268         __gen6_disable_pm_irq(dev_priv, mask);
269 }
270
271 void gen6_reset_rps_interrupts(struct drm_device *dev)
272 {
273         struct drm_i915_private *dev_priv = dev->dev_private;
274         uint32_t reg = gen6_pm_iir(dev_priv);
275
276         spin_lock_irq(&dev_priv->irq_lock);
277         I915_WRITE(reg, dev_priv->pm_rps_events);
278         I915_WRITE(reg, dev_priv->pm_rps_events);
279         POSTING_READ(reg);
280         spin_unlock_irq(&dev_priv->irq_lock);
281 }
282
283 void gen6_enable_rps_interrupts(struct drm_device *dev)
284 {
285         struct drm_i915_private *dev_priv = dev->dev_private;
286
287         spin_lock_irq(&dev_priv->irq_lock);
288
289         WARN_ON(dev_priv->rps.pm_iir);
290         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
291         dev_priv->rps.interrupts_enabled = true;
292         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
293                                 dev_priv->pm_rps_events);
294         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
295
296         spin_unlock_irq(&dev_priv->irq_lock);
297 }
298
299 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
300 {
301         /*
302          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
303          * if GEN6_PM_UP_EI_EXPIRED is masked.
304          *
305          * TODO: verify if this can be reproduced on VLV,CHV.
306          */
307         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
308                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
309
310         if (INTEL_INFO(dev_priv)->gen >= 8)
311                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
312
313         return mask;
314 }
315
316 void gen6_disable_rps_interrupts(struct drm_device *dev)
317 {
318         struct drm_i915_private *dev_priv = dev->dev_private;
319
320         spin_lock_irq(&dev_priv->irq_lock);
321         dev_priv->rps.interrupts_enabled = false;
322         spin_unlock_irq(&dev_priv->irq_lock);
323
324         cancel_work_sync(&dev_priv->rps.work);
325
326         spin_lock_irq(&dev_priv->irq_lock);
327
328         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
329
330         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
331         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
332                                 ~dev_priv->pm_rps_events);
333         I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
334         I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
335
336         dev_priv->rps.pm_iir = 0;
337
338         spin_unlock_irq(&dev_priv->irq_lock);
339 }
340
341 /**
342  * ibx_display_interrupt_update - update SDEIMR
343  * @dev_priv: driver private
344  * @interrupt_mask: mask of interrupt bits to update
345  * @enabled_irq_mask: mask of interrupt bits to enable
346  */
347 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
348                                   uint32_t interrupt_mask,
349                                   uint32_t enabled_irq_mask)
350 {
351         uint32_t sdeimr = I915_READ(SDEIMR);
352         sdeimr &= ~interrupt_mask;
353         sdeimr |= (~enabled_irq_mask & interrupt_mask);
354
355         WARN_ON(enabled_irq_mask & ~interrupt_mask);
356
357         assert_spin_locked(&dev_priv->irq_lock);
358
359         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
360                 return;
361
362         I915_WRITE(SDEIMR, sdeimr);
363         POSTING_READ(SDEIMR);
364 }
365
366 static void
367 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
368                        u32 enable_mask, u32 status_mask)
369 {
370         u32 reg = PIPESTAT(pipe);
371         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
372
373         assert_spin_locked(&dev_priv->irq_lock);
374         WARN_ON(!intel_irqs_enabled(dev_priv));
375
376         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
377                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
378                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
379                       pipe_name(pipe), enable_mask, status_mask))
380                 return;
381
382         if ((pipestat & enable_mask) == enable_mask)
383                 return;
384
385         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
386
387         /* Enable the interrupt, clear any pending status */
388         pipestat |= enable_mask | status_mask;
389         I915_WRITE(reg, pipestat);
390         POSTING_READ(reg);
391 }
392
393 static void
394 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
395                         u32 enable_mask, u32 status_mask)
396 {
397         u32 reg = PIPESTAT(pipe);
398         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
399
400         assert_spin_locked(&dev_priv->irq_lock);
401         WARN_ON(!intel_irqs_enabled(dev_priv));
402
403         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
404                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
405                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
406                       pipe_name(pipe), enable_mask, status_mask))
407                 return;
408
409         if ((pipestat & enable_mask) == 0)
410                 return;
411
412         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
413
414         pipestat &= ~enable_mask;
415         I915_WRITE(reg, pipestat);
416         POSTING_READ(reg);
417 }
418
419 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
420 {
421         u32 enable_mask = status_mask << 16;
422
423         /*
424          * On pipe A we don't support the PSR interrupt yet,
425          * on pipe B and C the same bit MBZ.
426          */
427         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
428                 return 0;
429         /*
430          * On pipe B and C we don't support the PSR interrupt yet, on pipe
431          * A the same bit is for perf counters which we don't use either.
432          */
433         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
434                 return 0;
435
436         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
437                          SPRITE0_FLIP_DONE_INT_EN_VLV |
438                          SPRITE1_FLIP_DONE_INT_EN_VLV);
439         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
440                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
441         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
442                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
443
444         return enable_mask;
445 }
446
447 void
448 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
449                      u32 status_mask)
450 {
451         u32 enable_mask;
452
453         if (IS_VALLEYVIEW(dev_priv->dev))
454                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
455                                                            status_mask);
456         else
457                 enable_mask = status_mask << 16;
458         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
459 }
460
461 void
462 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
463                       u32 status_mask)
464 {
465         u32 enable_mask;
466
467         if (IS_VALLEYVIEW(dev_priv->dev))
468                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
469                                                            status_mask);
470         else
471                 enable_mask = status_mask << 16;
472         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
473 }
474
475 /**
476  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
477  */
478 static void i915_enable_asle_pipestat(struct drm_device *dev)
479 {
480         struct drm_i915_private *dev_priv = dev->dev_private;
481
482         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
483                 return;
484
485         spin_lock_irq(&dev_priv->irq_lock);
486
487         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
488         if (INTEL_INFO(dev)->gen >= 4)
489                 i915_enable_pipestat(dev_priv, PIPE_A,
490                                      PIPE_LEGACY_BLC_EVENT_STATUS);
491
492         spin_unlock_irq(&dev_priv->irq_lock);
493 }
494
495 /**
496  * i915_pipe_enabled - check if a pipe is enabled
497  * @dev: DRM device
498  * @pipe: pipe to check
499  *
500  * Reading certain registers when the pipe is disabled can hang the chip.
501  * Use this routine to make sure the PLL is running and the pipe is active
502  * before reading such registers if unsure.
503  */
504 static int
505 i915_pipe_enabled(struct drm_device *dev, int pipe)
506 {
507         struct drm_i915_private *dev_priv = dev->dev_private;
508
509         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
510                 /* Locking is horribly broken here, but whatever. */
511                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
512                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
513
514                 return intel_crtc->active;
515         } else {
516                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
517         }
518 }
519
520 /*
521  * This timing diagram depicts the video signal in and
522  * around the vertical blanking period.
523  *
524  * Assumptions about the fictitious mode used in this example:
525  *  vblank_start >= 3
526  *  vsync_start = vblank_start + 1
527  *  vsync_end = vblank_start + 2
528  *  vtotal = vblank_start + 3
529  *
530  *           start of vblank:
531  *           latch double buffered registers
532  *           increment frame counter (ctg+)
533  *           generate start of vblank interrupt (gen4+)
534  *           |
535  *           |          frame start:
536  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
537  *           |          may be shifted forward 1-3 extra lines via PIPECONF
538  *           |          |
539  *           |          |  start of vsync:
540  *           |          |  generate vsync interrupt
541  *           |          |  |
542  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
543  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
544  * ----va---> <-----------------vb--------------------> <--------va-------------
545  *       |          |       <----vs----->                     |
546  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
547  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
548  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
549  *       |          |                                         |
550  *       last visible pixel                                   first visible pixel
551  *                  |                                         increment frame counter (gen3/4)
552  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
553  *
554  * x  = horizontal active
555  * _  = horizontal blanking
556  * hs = horizontal sync
557  * va = vertical active
558  * vb = vertical blanking
559  * vs = vertical sync
560  * vbs = vblank_start (number)
561  *
562  * Summary:
563  * - most events happen at the start of horizontal sync
564  * - frame start happens at the start of horizontal blank, 1-4 lines
565  *   (depending on PIPECONF settings) after the start of vblank
566  * - gen3/4 pixel and frame counter are synchronized with the start
567  *   of horizontal active on the first line of vertical active
568  */
569
570 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
571 {
572         /* Gen2 doesn't have a hardware frame counter */
573         return 0;
574 }
575
576 /* Called from drm generic code, passed a 'crtc', which
577  * we use as a pipe index
578  */
579 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
580 {
581         struct drm_i915_private *dev_priv = dev->dev_private;
582         unsigned long high_frame;
583         unsigned long low_frame;
584         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
585
586         if (!i915_pipe_enabled(dev, pipe)) {
587                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
588                                 "pipe %c\n", pipe_name(pipe));
589                 return 0;
590         }
591
592         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
593                 struct intel_crtc *intel_crtc =
594                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
595                 const struct drm_display_mode *mode =
596                         &intel_crtc->config->base.adjusted_mode;
597
598                 htotal = mode->crtc_htotal;
599                 hsync_start = mode->crtc_hsync_start;
600                 vbl_start = mode->crtc_vblank_start;
601                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
602                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
603         } else {
604                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
605
606                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
607                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
608                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
609                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
610                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
611                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
612         }
613
614         /* Convert to pixel count */
615         vbl_start *= htotal;
616
617         /* Start of vblank event occurs at start of hsync */
618         vbl_start -= htotal - hsync_start;
619
620         high_frame = PIPEFRAME(pipe);
621         low_frame = PIPEFRAMEPIXEL(pipe);
622
623         /*
624          * High & low register fields aren't synchronized, so make sure
625          * we get a low value that's stable across two reads of the high
626          * register.
627          */
628         do {
629                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
630                 low   = I915_READ(low_frame);
631                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
632         } while (high1 != high2);
633
634         high1 >>= PIPE_FRAME_HIGH_SHIFT;
635         pixel = low & PIPE_PIXEL_MASK;
636         low >>= PIPE_FRAME_LOW_SHIFT;
637
638         /*
639          * The frame counter increments at beginning of active.
640          * Cook up a vblank counter by also checking the pixel
641          * counter against vblank start.
642          */
643         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
644 }
645
646 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
647 {
648         struct drm_i915_private *dev_priv = dev->dev_private;
649         int reg = PIPE_FRMCOUNT_GM45(pipe);
650
651         if (!i915_pipe_enabled(dev, pipe)) {
652                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
653                                  "pipe %c\n", pipe_name(pipe));
654                 return 0;
655         }
656
657         return I915_READ(reg);
658 }
659
660 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
661 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
662
663 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
664 {
665         struct drm_device *dev = crtc->base.dev;
666         struct drm_i915_private *dev_priv = dev->dev_private;
667         const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
668         enum pipe pipe = crtc->pipe;
669         int position, vtotal;
670
671         vtotal = mode->crtc_vtotal;
672         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
673                 vtotal /= 2;
674
675         if (IS_GEN2(dev))
676                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
677         else
678                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
679
680         /*
681          * See update_scanline_offset() for the details on the
682          * scanline_offset adjustment.
683          */
684         return (position + crtc->scanline_offset) % vtotal;
685 }
686
687 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
688                                     unsigned int flags, int *vpos, int *hpos,
689                                     ktime_t *stime, ktime_t *etime)
690 {
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
693         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
694         const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
695         int position;
696         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
697         bool in_vbl = true;
698         int ret = 0;
699         unsigned long irqflags;
700
701         if (!intel_crtc->active) {
702                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
703                                  "pipe %c\n", pipe_name(pipe));
704                 return 0;
705         }
706
707         htotal = mode->crtc_htotal;
708         hsync_start = mode->crtc_hsync_start;
709         vtotal = mode->crtc_vtotal;
710         vbl_start = mode->crtc_vblank_start;
711         vbl_end = mode->crtc_vblank_end;
712
713         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
714                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
715                 vbl_end /= 2;
716                 vtotal /= 2;
717         }
718
719         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
720
721         /*
722          * Lock uncore.lock, as we will do multiple timing critical raw
723          * register reads, potentially with preemption disabled, so the
724          * following code must not block on uncore.lock.
725          */
726         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
727
728         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
729
730         /* Get optional system timestamp before query. */
731         if (stime)
732                 *stime = ktime_get();
733
734         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
735                 /* No obvious pixelcount register. Only query vertical
736                  * scanout position from Display scan line register.
737                  */
738                 position = __intel_get_crtc_scanline(intel_crtc);
739         } else {
740                 /* Have access to pixelcount since start of frame.
741                  * We can split this into vertical and horizontal
742                  * scanout position.
743                  */
744                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
745
746                 /* convert to pixel counts */
747                 vbl_start *= htotal;
748                 vbl_end *= htotal;
749                 vtotal *= htotal;
750
751                 /*
752                  * In interlaced modes, the pixel counter counts all pixels,
753                  * so one field will have htotal more pixels. In order to avoid
754                  * the reported position from jumping backwards when the pixel
755                  * counter is beyond the length of the shorter field, just
756                  * clamp the position the length of the shorter field. This
757                  * matches how the scanline counter based position works since
758                  * the scanline counter doesn't count the two half lines.
759                  */
760                 if (position >= vtotal)
761                         position = vtotal - 1;
762
763                 /*
764                  * Start of vblank interrupt is triggered at start of hsync,
765                  * just prior to the first active line of vblank. However we
766                  * consider lines to start at the leading edge of horizontal
767                  * active. So, should we get here before we've crossed into
768                  * the horizontal active of the first line in vblank, we would
769                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
770                  * always add htotal-hsync_start to the current pixel position.
771                  */
772                 position = (position + htotal - hsync_start) % vtotal;
773         }
774
775         /* Get optional system timestamp after query. */
776         if (etime)
777                 *etime = ktime_get();
778
779         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
780
781         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
782
783         in_vbl = position >= vbl_start && position < vbl_end;
784
785         /*
786          * While in vblank, position will be negative
787          * counting up towards 0 at vbl_end. And outside
788          * vblank, position will be positive counting
789          * up since vbl_end.
790          */
791         if (position >= vbl_start)
792                 position -= vbl_end;
793         else
794                 position += vtotal - vbl_end;
795
796         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
797                 *vpos = position;
798                 *hpos = 0;
799         } else {
800                 *vpos = position / htotal;
801                 *hpos = position - (*vpos * htotal);
802         }
803
804         /* In vblank? */
805         if (in_vbl)
806                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
807
808         return ret;
809 }
810
811 int intel_get_crtc_scanline(struct intel_crtc *crtc)
812 {
813         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
814         unsigned long irqflags;
815         int position;
816
817         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
818         position = __intel_get_crtc_scanline(crtc);
819         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
820
821         return position;
822 }
823
824 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
825                               int *max_error,
826                               struct timeval *vblank_time,
827                               unsigned flags)
828 {
829         struct drm_crtc *crtc;
830
831         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
832                 DRM_ERROR("Invalid crtc %d\n", pipe);
833                 return -EINVAL;
834         }
835
836         /* Get drm_crtc to timestamp: */
837         crtc = intel_get_crtc_for_pipe(dev, pipe);
838         if (crtc == NULL) {
839                 DRM_ERROR("Invalid crtc %d\n", pipe);
840                 return -EINVAL;
841         }
842
843         if (!crtc->enabled) {
844                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
845                 return -EBUSY;
846         }
847
848         /* Helper routine in DRM core does all the work: */
849         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
850                                                      vblank_time, flags,
851                                                      crtc,
852                                                      &to_intel_crtc(crtc)->config->base.adjusted_mode);
853 }
854
855 static bool intel_hpd_irq_event(struct drm_device *dev,
856                                 struct drm_connector *connector)
857 {
858         enum drm_connector_status old_status;
859
860         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
861         old_status = connector->status;
862
863         connector->status = connector->funcs->detect(connector, false);
864         if (old_status == connector->status)
865                 return false;
866
867         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
868                       connector->base.id,
869                       connector->name,
870                       drm_get_connector_status_name(old_status),
871                       drm_get_connector_status_name(connector->status));
872
873         return true;
874 }
875
876 static void i915_digport_work_func(struct work_struct *work)
877 {
878         struct drm_i915_private *dev_priv =
879                 container_of(work, struct drm_i915_private, dig_port_work);
880         u32 long_port_mask, short_port_mask;
881         struct intel_digital_port *intel_dig_port;
882         int i;
883         u32 old_bits = 0;
884
885         spin_lock_irq(&dev_priv->irq_lock);
886         long_port_mask = dev_priv->long_hpd_port_mask;
887         dev_priv->long_hpd_port_mask = 0;
888         short_port_mask = dev_priv->short_hpd_port_mask;
889         dev_priv->short_hpd_port_mask = 0;
890         spin_unlock_irq(&dev_priv->irq_lock);
891
892         for (i = 0; i < I915_MAX_PORTS; i++) {
893                 bool valid = false;
894                 bool long_hpd = false;
895                 intel_dig_port = dev_priv->hpd_irq_port[i];
896                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
897                         continue;
898
899                 if (long_port_mask & (1 << i))  {
900                         valid = true;
901                         long_hpd = true;
902                 } else if (short_port_mask & (1 << i))
903                         valid = true;
904
905                 if (valid) {
906                         enum irqreturn ret;
907
908                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
909                         if (ret == IRQ_NONE) {
910                                 /* fall back to old school hpd */
911                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
912                         }
913                 }
914         }
915
916         if (old_bits) {
917                 spin_lock_irq(&dev_priv->irq_lock);
918                 dev_priv->hpd_event_bits |= old_bits;
919                 spin_unlock_irq(&dev_priv->irq_lock);
920                 schedule_work(&dev_priv->hotplug_work);
921         }
922 }
923
924 /*
925  * Handle hotplug events outside the interrupt handler proper.
926  */
927 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
928
929 static void i915_hotplug_work_func(struct work_struct *work)
930 {
931         struct drm_i915_private *dev_priv =
932                 container_of(work, struct drm_i915_private, hotplug_work);
933         struct drm_device *dev = dev_priv->dev;
934         struct drm_mode_config *mode_config = &dev->mode_config;
935         struct intel_connector *intel_connector;
936         struct intel_encoder *intel_encoder;
937         struct drm_connector *connector;
938         bool hpd_disabled = false;
939         bool changed = false;
940         u32 hpd_event_bits;
941
942         mutex_lock(&mode_config->mutex);
943         DRM_DEBUG_KMS("running encoder hotplug functions\n");
944
945         spin_lock_irq(&dev_priv->irq_lock);
946
947         hpd_event_bits = dev_priv->hpd_event_bits;
948         dev_priv->hpd_event_bits = 0;
949         list_for_each_entry(connector, &mode_config->connector_list, head) {
950                 intel_connector = to_intel_connector(connector);
951                 if (!intel_connector->encoder)
952                         continue;
953                 intel_encoder = intel_connector->encoder;
954                 if (intel_encoder->hpd_pin > HPD_NONE &&
955                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
956                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
957                         DRM_INFO("HPD interrupt storm detected on connector %s: "
958                                  "switching from hotplug detection to polling\n",
959                                 connector->name);
960                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
961                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
962                                 | DRM_CONNECTOR_POLL_DISCONNECT;
963                         hpd_disabled = true;
964                 }
965                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
966                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
967                                       connector->name, intel_encoder->hpd_pin);
968                 }
969         }
970          /* if there were no outputs to poll, poll was disabled,
971           * therefore make sure it's enabled when disabling HPD on
972           * some connectors */
973         if (hpd_disabled) {
974                 drm_kms_helper_poll_enable(dev);
975                 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
976                                  msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
977         }
978
979         spin_unlock_irq(&dev_priv->irq_lock);
980
981         list_for_each_entry(connector, &mode_config->connector_list, head) {
982                 intel_connector = to_intel_connector(connector);
983                 if (!intel_connector->encoder)
984                         continue;
985                 intel_encoder = intel_connector->encoder;
986                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
987                         if (intel_encoder->hot_plug)
988                                 intel_encoder->hot_plug(intel_encoder);
989                         if (intel_hpd_irq_event(dev, connector))
990                                 changed = true;
991                 }
992         }
993         mutex_unlock(&mode_config->mutex);
994
995         if (changed)
996                 drm_kms_helper_hotplug_event(dev);
997 }
998
999 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1000 {
1001         struct drm_i915_private *dev_priv = dev->dev_private;
1002         u32 busy_up, busy_down, max_avg, min_avg;
1003         u8 new_delay;
1004
1005         spin_lock(&mchdev_lock);
1006
1007         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1008
1009         new_delay = dev_priv->ips.cur_delay;
1010
1011         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1012         busy_up = I915_READ(RCPREVBSYTUPAVG);
1013         busy_down = I915_READ(RCPREVBSYTDNAVG);
1014         max_avg = I915_READ(RCBMAXAVG);
1015         min_avg = I915_READ(RCBMINAVG);
1016
1017         /* Handle RCS change request from hw */
1018         if (busy_up > max_avg) {
1019                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1020                         new_delay = dev_priv->ips.cur_delay - 1;
1021                 if (new_delay < dev_priv->ips.max_delay)
1022                         new_delay = dev_priv->ips.max_delay;
1023         } else if (busy_down < min_avg) {
1024                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1025                         new_delay = dev_priv->ips.cur_delay + 1;
1026                 if (new_delay > dev_priv->ips.min_delay)
1027                         new_delay = dev_priv->ips.min_delay;
1028         }
1029
1030         if (ironlake_set_drps(dev, new_delay))
1031                 dev_priv->ips.cur_delay = new_delay;
1032
1033         spin_unlock(&mchdev_lock);
1034
1035         return;
1036 }
1037
1038 static void notify_ring(struct drm_device *dev,
1039                         struct intel_engine_cs *ring)
1040 {
1041         if (!intel_ring_initialized(ring))
1042                 return;
1043
1044         trace_i915_gem_request_notify(ring);
1045
1046         wake_up_all(&ring->irq_queue);
1047 }
1048
1049 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1050                             struct intel_rps_ei *rps_ei)
1051 {
1052         u32 cz_ts, cz_freq_khz;
1053         u32 render_count, media_count;
1054         u32 elapsed_render, elapsed_media, elapsed_time;
1055         u32 residency = 0;
1056
1057         cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1058         cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1059
1060         render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1061         media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1062
1063         if (rps_ei->cz_clock == 0) {
1064                 rps_ei->cz_clock = cz_ts;
1065                 rps_ei->render_c0 = render_count;
1066                 rps_ei->media_c0 = media_count;
1067
1068                 return dev_priv->rps.cur_freq;
1069         }
1070
1071         elapsed_time = cz_ts - rps_ei->cz_clock;
1072         rps_ei->cz_clock = cz_ts;
1073
1074         elapsed_render = render_count - rps_ei->render_c0;
1075         rps_ei->render_c0 = render_count;
1076
1077         elapsed_media = media_count - rps_ei->media_c0;
1078         rps_ei->media_c0 = media_count;
1079
1080         /* Convert all the counters into common unit of milli sec */
1081         elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1082         elapsed_render /=  cz_freq_khz;
1083         elapsed_media /= cz_freq_khz;
1084
1085         /*
1086          * Calculate overall C0 residency percentage
1087          * only if elapsed time is non zero
1088          */
1089         if (elapsed_time) {
1090                 residency =
1091                         ((max(elapsed_render, elapsed_media) * 100)
1092                                 / elapsed_time);
1093         }
1094
1095         return residency;
1096 }
1097
1098 /**
1099  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1100  * busy-ness calculated from C0 counters of render & media power wells
1101  * @dev_priv: DRM device private
1102  *
1103  */
1104 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1105 {
1106         u32 residency_C0_up = 0, residency_C0_down = 0;
1107         int new_delay, adj;
1108
1109         dev_priv->rps.ei_interrupt_count++;
1110
1111         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1112
1113
1114         if (dev_priv->rps.up_ei.cz_clock == 0) {
1115                 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1116                 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1117                 return dev_priv->rps.cur_freq;
1118         }
1119
1120
1121         /*
1122          * To down throttle, C0 residency should be less than down threshold
1123          * for continous EI intervals. So calculate down EI counters
1124          * once in VLV_INT_COUNT_FOR_DOWN_EI
1125          */
1126         if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1127
1128                 dev_priv->rps.ei_interrupt_count = 0;
1129
1130                 residency_C0_down = vlv_c0_residency(dev_priv,
1131                                                      &dev_priv->rps.down_ei);
1132         } else {
1133                 residency_C0_up = vlv_c0_residency(dev_priv,
1134                                                    &dev_priv->rps.up_ei);
1135         }
1136
1137         new_delay = dev_priv->rps.cur_freq;
1138
1139         adj = dev_priv->rps.last_adj;
1140         /* C0 residency is greater than UP threshold. Increase Frequency */
1141         if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1142                 if (adj > 0)
1143                         adj *= 2;
1144                 else
1145                         adj = 1;
1146
1147                 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1148                         new_delay = dev_priv->rps.cur_freq + adj;
1149
1150                 /*
1151                  * For better performance, jump directly
1152                  * to RPe if we're below it.
1153                  */
1154                 if (new_delay < dev_priv->rps.efficient_freq)
1155                         new_delay = dev_priv->rps.efficient_freq;
1156
1157         } else if (!dev_priv->rps.ei_interrupt_count &&
1158                         (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1159                 if (adj < 0)
1160                         adj *= 2;
1161                 else
1162                         adj = -1;
1163                 /*
1164                  * This means, C0 residency is less than down threshold over
1165                  * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1166                  */
1167                 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1168                         new_delay = dev_priv->rps.cur_freq + adj;
1169         }
1170
1171         return new_delay;
1172 }
1173
1174 static void gen6_pm_rps_work(struct work_struct *work)
1175 {
1176         struct drm_i915_private *dev_priv =
1177                 container_of(work, struct drm_i915_private, rps.work);
1178         u32 pm_iir;
1179         int new_delay, adj;
1180
1181         spin_lock_irq(&dev_priv->irq_lock);
1182         /* Speed up work cancelation during disabling rps interrupts. */
1183         if (!dev_priv->rps.interrupts_enabled) {
1184                 spin_unlock_irq(&dev_priv->irq_lock);
1185                 return;
1186         }
1187         pm_iir = dev_priv->rps.pm_iir;
1188         dev_priv->rps.pm_iir = 0;
1189         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1190         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1191         spin_unlock_irq(&dev_priv->irq_lock);
1192
1193         /* Make sure we didn't queue anything we're not going to process. */
1194         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1195
1196         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1197                 return;
1198
1199         mutex_lock(&dev_priv->rps.hw_lock);
1200
1201         adj = dev_priv->rps.last_adj;
1202         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1203                 if (adj > 0)
1204                         adj *= 2;
1205                 else {
1206                         /* CHV needs even encode values */
1207                         adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1208                 }
1209                 new_delay = dev_priv->rps.cur_freq + adj;
1210
1211                 /*
1212                  * For better performance, jump directly
1213                  * to RPe if we're below it.
1214                  */
1215                 if (new_delay < dev_priv->rps.efficient_freq)
1216                         new_delay = dev_priv->rps.efficient_freq;
1217         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1218                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1219                         new_delay = dev_priv->rps.efficient_freq;
1220                 else
1221                         new_delay = dev_priv->rps.min_freq_softlimit;
1222                 adj = 0;
1223         } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1224                 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1225         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1226                 if (adj < 0)
1227                         adj *= 2;
1228                 else {
1229                         /* CHV needs even encode values */
1230                         adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1231                 }
1232                 new_delay = dev_priv->rps.cur_freq + adj;
1233         } else { /* unknown event */
1234                 new_delay = dev_priv->rps.cur_freq;
1235         }
1236
1237         /* sysfs frequency interfaces may have snuck in while servicing the
1238          * interrupt
1239          */
1240         new_delay = clamp_t(int, new_delay,
1241                             dev_priv->rps.min_freq_softlimit,
1242                             dev_priv->rps.max_freq_softlimit);
1243
1244         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1245
1246         if (IS_VALLEYVIEW(dev_priv->dev))
1247                 valleyview_set_rps(dev_priv->dev, new_delay);
1248         else
1249                 gen6_set_rps(dev_priv->dev, new_delay);
1250
1251         mutex_unlock(&dev_priv->rps.hw_lock);
1252 }
1253
1254
1255 /**
1256  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1257  * occurred.
1258  * @work: workqueue struct
1259  *
1260  * Doesn't actually do anything except notify userspace. As a consequence of
1261  * this event, userspace should try to remap the bad rows since statistically
1262  * it is likely the same row is more likely to go bad again.
1263  */
1264 static void ivybridge_parity_work(struct work_struct *work)
1265 {
1266         struct drm_i915_private *dev_priv =
1267                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1268         u32 error_status, row, bank, subbank;
1269         char *parity_event[6];
1270         uint32_t misccpctl;
1271         uint8_t slice = 0;
1272
1273         /* We must turn off DOP level clock gating to access the L3 registers.
1274          * In order to prevent a get/put style interface, acquire struct mutex
1275          * any time we access those registers.
1276          */
1277         mutex_lock(&dev_priv->dev->struct_mutex);
1278
1279         /* If we've screwed up tracking, just let the interrupt fire again */
1280         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1281                 goto out;
1282
1283         misccpctl = I915_READ(GEN7_MISCCPCTL);
1284         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1285         POSTING_READ(GEN7_MISCCPCTL);
1286
1287         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1288                 u32 reg;
1289
1290                 slice--;
1291                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1292                         break;
1293
1294                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1295
1296                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1297
1298                 error_status = I915_READ(reg);
1299                 row = GEN7_PARITY_ERROR_ROW(error_status);
1300                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1301                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1302
1303                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1304                 POSTING_READ(reg);
1305
1306                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1307                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1308                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1309                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1310                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1311                 parity_event[5] = NULL;
1312
1313                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1314                                    KOBJ_CHANGE, parity_event);
1315
1316                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1317                           slice, row, bank, subbank);
1318
1319                 kfree(parity_event[4]);
1320                 kfree(parity_event[3]);
1321                 kfree(parity_event[2]);
1322                 kfree(parity_event[1]);
1323         }
1324
1325         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1326
1327 out:
1328         WARN_ON(dev_priv->l3_parity.which_slice);
1329         spin_lock_irq(&dev_priv->irq_lock);
1330         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1331         spin_unlock_irq(&dev_priv->irq_lock);
1332
1333         mutex_unlock(&dev_priv->dev->struct_mutex);
1334 }
1335
1336 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1337 {
1338         struct drm_i915_private *dev_priv = dev->dev_private;
1339
1340         if (!HAS_L3_DPF(dev))
1341                 return;
1342
1343         spin_lock(&dev_priv->irq_lock);
1344         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1345         spin_unlock(&dev_priv->irq_lock);
1346
1347         iir &= GT_PARITY_ERROR(dev);
1348         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1349                 dev_priv->l3_parity.which_slice |= 1 << 1;
1350
1351         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1352                 dev_priv->l3_parity.which_slice |= 1 << 0;
1353
1354         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1355 }
1356
1357 static void ilk_gt_irq_handler(struct drm_device *dev,
1358                                struct drm_i915_private *dev_priv,
1359                                u32 gt_iir)
1360 {
1361         if (gt_iir &
1362             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1363                 notify_ring(dev, &dev_priv->ring[RCS]);
1364         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1365                 notify_ring(dev, &dev_priv->ring[VCS]);
1366 }
1367
1368 static void snb_gt_irq_handler(struct drm_device *dev,
1369                                struct drm_i915_private *dev_priv,
1370                                u32 gt_iir)
1371 {
1372
1373         if (gt_iir &
1374             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1375                 notify_ring(dev, &dev_priv->ring[RCS]);
1376         if (gt_iir & GT_BSD_USER_INTERRUPT)
1377                 notify_ring(dev, &dev_priv->ring[VCS]);
1378         if (gt_iir & GT_BLT_USER_INTERRUPT)
1379                 notify_ring(dev, &dev_priv->ring[BCS]);
1380
1381         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1382                       GT_BSD_CS_ERROR_INTERRUPT |
1383                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1384                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1385
1386         if (gt_iir & GT_PARITY_ERROR(dev))
1387                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1388 }
1389
1390 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1391                                        struct drm_i915_private *dev_priv,
1392                                        u32 master_ctl)
1393 {
1394         struct intel_engine_cs *ring;
1395         u32 rcs, bcs, vcs;
1396         uint32_t tmp = 0;
1397         irqreturn_t ret = IRQ_NONE;
1398
1399         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1400                 tmp = I915_READ(GEN8_GT_IIR(0));
1401                 if (tmp) {
1402                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1403                         ret = IRQ_HANDLED;
1404
1405                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1406                         ring = &dev_priv->ring[RCS];
1407                         if (rcs & GT_RENDER_USER_INTERRUPT)
1408                                 notify_ring(dev, ring);
1409                         if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1410                                 intel_lrc_irq_handler(ring);
1411
1412                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1413                         ring = &dev_priv->ring[BCS];
1414                         if (bcs & GT_RENDER_USER_INTERRUPT)
1415                                 notify_ring(dev, ring);
1416                         if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1417                                 intel_lrc_irq_handler(ring);
1418                 } else
1419                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1420         }
1421
1422         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1423                 tmp = I915_READ(GEN8_GT_IIR(1));
1424                 if (tmp) {
1425                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1426                         ret = IRQ_HANDLED;
1427
1428                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1429                         ring = &dev_priv->ring[VCS];
1430                         if (vcs & GT_RENDER_USER_INTERRUPT)
1431                                 notify_ring(dev, ring);
1432                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1433                                 intel_lrc_irq_handler(ring);
1434
1435                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1436                         ring = &dev_priv->ring[VCS2];
1437                         if (vcs & GT_RENDER_USER_INTERRUPT)
1438                                 notify_ring(dev, ring);
1439                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1440                                 intel_lrc_irq_handler(ring);
1441                 } else
1442                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1443         }
1444
1445         if (master_ctl & GEN8_GT_PM_IRQ) {
1446                 tmp = I915_READ(GEN8_GT_IIR(2));
1447                 if (tmp & dev_priv->pm_rps_events) {
1448                         I915_WRITE(GEN8_GT_IIR(2),
1449                                    tmp & dev_priv->pm_rps_events);
1450                         ret = IRQ_HANDLED;
1451                         gen6_rps_irq_handler(dev_priv, tmp);
1452                 } else
1453                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1454         }
1455
1456         if (master_ctl & GEN8_GT_VECS_IRQ) {
1457                 tmp = I915_READ(GEN8_GT_IIR(3));
1458                 if (tmp) {
1459                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1460                         ret = IRQ_HANDLED;
1461
1462                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1463                         ring = &dev_priv->ring[VECS];
1464                         if (vcs & GT_RENDER_USER_INTERRUPT)
1465                                 notify_ring(dev, ring);
1466                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1467                                 intel_lrc_irq_handler(ring);
1468                 } else
1469                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1470         }
1471
1472         return ret;
1473 }
1474
1475 #define HPD_STORM_DETECT_PERIOD 1000
1476 #define HPD_STORM_THRESHOLD 5
1477
1478 static int pch_port_to_hotplug_shift(enum port port)
1479 {
1480         switch (port) {
1481         case PORT_A:
1482         case PORT_E:
1483         default:
1484                 return -1;
1485         case PORT_B:
1486                 return 0;
1487         case PORT_C:
1488                 return 8;
1489         case PORT_D:
1490                 return 16;
1491         }
1492 }
1493
1494 static int i915_port_to_hotplug_shift(enum port port)
1495 {
1496         switch (port) {
1497         case PORT_A:
1498         case PORT_E:
1499         default:
1500                 return -1;
1501         case PORT_B:
1502                 return 17;
1503         case PORT_C:
1504                 return 19;
1505         case PORT_D:
1506                 return 21;
1507         }
1508 }
1509
1510 static inline enum port get_port_from_pin(enum hpd_pin pin)
1511 {
1512         switch (pin) {
1513         case HPD_PORT_B:
1514                 return PORT_B;
1515         case HPD_PORT_C:
1516                 return PORT_C;
1517         case HPD_PORT_D:
1518                 return PORT_D;
1519         default:
1520                 return PORT_A; /* no hpd */
1521         }
1522 }
1523
1524 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1525                                          u32 hotplug_trigger,
1526                                          u32 dig_hotplug_reg,
1527                                          const u32 hpd[HPD_NUM_PINS])
1528 {
1529         struct drm_i915_private *dev_priv = dev->dev_private;
1530         int i;
1531         enum port port;
1532         bool storm_detected = false;
1533         bool queue_dig = false, queue_hp = false;
1534         u32 dig_shift;
1535         u32 dig_port_mask = 0;
1536
1537         if (!hotplug_trigger)
1538                 return;
1539
1540         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1541                          hotplug_trigger, dig_hotplug_reg);
1542
1543         spin_lock(&dev_priv->irq_lock);
1544         for (i = 1; i < HPD_NUM_PINS; i++) {
1545                 if (!(hpd[i] & hotplug_trigger))
1546                         continue;
1547
1548                 port = get_port_from_pin(i);
1549                 if (port && dev_priv->hpd_irq_port[port]) {
1550                         bool long_hpd;
1551
1552                         if (HAS_PCH_SPLIT(dev)) {
1553                                 dig_shift = pch_port_to_hotplug_shift(port);
1554                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1555                         } else {
1556                                 dig_shift = i915_port_to_hotplug_shift(port);
1557                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1558                         }
1559
1560                         DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1561                                          port_name(port),
1562                                          long_hpd ? "long" : "short");
1563                         /* for long HPD pulses we want to have the digital queue happen,
1564                            but we still want HPD storm detection to function. */
1565                         if (long_hpd) {
1566                                 dev_priv->long_hpd_port_mask |= (1 << port);
1567                                 dig_port_mask |= hpd[i];
1568                         } else {
1569                                 /* for short HPD just trigger the digital queue */
1570                                 dev_priv->short_hpd_port_mask |= (1 << port);
1571                                 hotplug_trigger &= ~hpd[i];
1572                         }
1573                         queue_dig = true;
1574                 }
1575         }
1576
1577         for (i = 1; i < HPD_NUM_PINS; i++) {
1578                 if (hpd[i] & hotplug_trigger &&
1579                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1580                         /*
1581                          * On GMCH platforms the interrupt mask bits only
1582                          * prevent irq generation, not the setting of the
1583                          * hotplug bits itself. So only WARN about unexpected
1584                          * interrupts on saner platforms.
1585                          */
1586                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1587                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1588                                   hotplug_trigger, i, hpd[i]);
1589
1590                         continue;
1591                 }
1592
1593                 if (!(hpd[i] & hotplug_trigger) ||
1594                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1595                         continue;
1596
1597                 if (!(dig_port_mask & hpd[i])) {
1598                         dev_priv->hpd_event_bits |= (1 << i);
1599                         queue_hp = true;
1600                 }
1601
1602                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1603                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1604                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1605                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1606                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1607                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1608                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1609                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1610                         dev_priv->hpd_event_bits &= ~(1 << i);
1611                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1612                         storm_detected = true;
1613                 } else {
1614                         dev_priv->hpd_stats[i].hpd_cnt++;
1615                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1616                                       dev_priv->hpd_stats[i].hpd_cnt);
1617                 }
1618         }
1619
1620         if (storm_detected)
1621                 dev_priv->display.hpd_irq_setup(dev);
1622         spin_unlock(&dev_priv->irq_lock);
1623
1624         /*
1625          * Our hotplug handler can grab modeset locks (by calling down into the
1626          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1627          * queue for otherwise the flush_work in the pageflip code will
1628          * deadlock.
1629          */
1630         if (queue_dig)
1631                 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1632         if (queue_hp)
1633                 schedule_work(&dev_priv->hotplug_work);
1634 }
1635
1636 static void gmbus_irq_handler(struct drm_device *dev)
1637 {
1638         struct drm_i915_private *dev_priv = dev->dev_private;
1639
1640         wake_up_all(&dev_priv->gmbus_wait_queue);
1641 }
1642
1643 static void dp_aux_irq_handler(struct drm_device *dev)
1644 {
1645         struct drm_i915_private *dev_priv = dev->dev_private;
1646
1647         wake_up_all(&dev_priv->gmbus_wait_queue);
1648 }
1649
1650 #if defined(CONFIG_DEBUG_FS)
1651 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1652                                          uint32_t crc0, uint32_t crc1,
1653                                          uint32_t crc2, uint32_t crc3,
1654                                          uint32_t crc4)
1655 {
1656         struct drm_i915_private *dev_priv = dev->dev_private;
1657         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1658         struct intel_pipe_crc_entry *entry;
1659         int head, tail;
1660
1661         spin_lock(&pipe_crc->lock);
1662
1663         if (!pipe_crc->entries) {
1664                 spin_unlock(&pipe_crc->lock);
1665                 DRM_DEBUG_KMS("spurious interrupt\n");
1666                 return;
1667         }
1668
1669         head = pipe_crc->head;
1670         tail = pipe_crc->tail;
1671
1672         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1673                 spin_unlock(&pipe_crc->lock);
1674                 DRM_ERROR("CRC buffer overflowing\n");
1675                 return;
1676         }
1677
1678         entry = &pipe_crc->entries[head];
1679
1680         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1681         entry->crc[0] = crc0;
1682         entry->crc[1] = crc1;
1683         entry->crc[2] = crc2;
1684         entry->crc[3] = crc3;
1685         entry->crc[4] = crc4;
1686
1687         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1688         pipe_crc->head = head;
1689
1690         spin_unlock(&pipe_crc->lock);
1691
1692         wake_up_interruptible(&pipe_crc->wq);
1693 }
1694 #else
1695 static inline void
1696 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1697                              uint32_t crc0, uint32_t crc1,
1698                              uint32_t crc2, uint32_t crc3,
1699                              uint32_t crc4) {}
1700 #endif
1701
1702
1703 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1704 {
1705         struct drm_i915_private *dev_priv = dev->dev_private;
1706
1707         display_pipe_crc_irq_handler(dev, pipe,
1708                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1709                                      0, 0, 0, 0);
1710 }
1711
1712 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1713 {
1714         struct drm_i915_private *dev_priv = dev->dev_private;
1715
1716         display_pipe_crc_irq_handler(dev, pipe,
1717                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1718                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1719                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1720                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1721                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1722 }
1723
1724 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1725 {
1726         struct drm_i915_private *dev_priv = dev->dev_private;
1727         uint32_t res1, res2;
1728
1729         if (INTEL_INFO(dev)->gen >= 3)
1730                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1731         else
1732                 res1 = 0;
1733
1734         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1735                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1736         else
1737                 res2 = 0;
1738
1739         display_pipe_crc_irq_handler(dev, pipe,
1740                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1741                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1742                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1743                                      res1, res2);
1744 }
1745
1746 /* The RPS events need forcewake, so we add them to a work queue and mask their
1747  * IMR bits until the work is done. Other interrupts can be processed without
1748  * the work queue. */
1749 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1750 {
1751         /* TODO: RPS on GEN9+ is not supported yet. */
1752         if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1753                       "GEN9+: unexpected RPS IRQ\n"))
1754                 return;
1755
1756         if (pm_iir & dev_priv->pm_rps_events) {
1757                 spin_lock(&dev_priv->irq_lock);
1758                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1759                 if (dev_priv->rps.interrupts_enabled) {
1760                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1761                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1762                 }
1763                 spin_unlock(&dev_priv->irq_lock);
1764         }
1765
1766         if (INTEL_INFO(dev_priv)->gen >= 8)
1767                 return;
1768
1769         if (HAS_VEBOX(dev_priv->dev)) {
1770                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1771                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1772
1773                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1774                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1775         }
1776 }
1777
1778 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1779 {
1780         if (!drm_handle_vblank(dev, pipe))
1781                 return false;
1782
1783         return true;
1784 }
1785
1786 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1787 {
1788         struct drm_i915_private *dev_priv = dev->dev_private;
1789         u32 pipe_stats[I915_MAX_PIPES] = { };
1790         int pipe;
1791
1792         spin_lock(&dev_priv->irq_lock);
1793         for_each_pipe(dev_priv, pipe) {
1794                 int reg;
1795                 u32 mask, iir_bit = 0;
1796
1797                 /*
1798                  * PIPESTAT bits get signalled even when the interrupt is
1799                  * disabled with the mask bits, and some of the status bits do
1800                  * not generate interrupts at all (like the underrun bit). Hence
1801                  * we need to be careful that we only handle what we want to
1802                  * handle.
1803                  */
1804
1805                 /* fifo underruns are filterered in the underrun handler. */
1806                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1807
1808                 switch (pipe) {
1809                 case PIPE_A:
1810                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1811                         break;
1812                 case PIPE_B:
1813                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1814                         break;
1815                 case PIPE_C:
1816                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1817                         break;
1818                 }
1819                 if (iir & iir_bit)
1820                         mask |= dev_priv->pipestat_irq_mask[pipe];
1821
1822                 if (!mask)
1823                         continue;
1824
1825                 reg = PIPESTAT(pipe);
1826                 mask |= PIPESTAT_INT_ENABLE_MASK;
1827                 pipe_stats[pipe] = I915_READ(reg) & mask;
1828
1829                 /*
1830                  * Clear the PIPE*STAT regs before the IIR
1831                  */
1832                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1833                                         PIPESTAT_INT_STATUS_MASK))
1834                         I915_WRITE(reg, pipe_stats[pipe]);
1835         }
1836         spin_unlock(&dev_priv->irq_lock);
1837
1838         for_each_pipe(dev_priv, pipe) {
1839                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1840                     intel_pipe_handle_vblank(dev, pipe))
1841                         intel_check_page_flip(dev, pipe);
1842
1843                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1844                         intel_prepare_page_flip(dev, pipe);
1845                         intel_finish_page_flip(dev, pipe);
1846                 }
1847
1848                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1849                         i9xx_pipe_crc_irq_handler(dev, pipe);
1850
1851                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1852                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1853         }
1854
1855         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1856                 gmbus_irq_handler(dev);
1857 }
1858
1859 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1860 {
1861         struct drm_i915_private *dev_priv = dev->dev_private;
1862         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1863
1864         if (hotplug_status) {
1865                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1866                 /*
1867                  * Make sure hotplug status is cleared before we clear IIR, or else we
1868                  * may miss hotplug events.
1869                  */
1870                 POSTING_READ(PORT_HOTPLUG_STAT);
1871
1872                 if (IS_G4X(dev)) {
1873                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1874
1875                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1876                 } else {
1877                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1878
1879                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1880                 }
1881
1882                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1883                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1884                         dp_aux_irq_handler(dev);
1885         }
1886 }
1887
1888 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1889 {
1890         struct drm_device *dev = arg;
1891         struct drm_i915_private *dev_priv = dev->dev_private;
1892         u32 iir, gt_iir, pm_iir;
1893         irqreturn_t ret = IRQ_NONE;
1894
1895         if (!intel_irqs_enabled(dev_priv))
1896                 return IRQ_NONE;
1897
1898         while (true) {
1899                 /* Find, clear, then process each source of interrupt */
1900
1901                 gt_iir = I915_READ(GTIIR);
1902                 if (gt_iir)
1903                         I915_WRITE(GTIIR, gt_iir);
1904
1905                 pm_iir = I915_READ(GEN6_PMIIR);
1906                 if (pm_iir)
1907                         I915_WRITE(GEN6_PMIIR, pm_iir);
1908
1909                 iir = I915_READ(VLV_IIR);
1910                 if (iir) {
1911                         /* Consume port before clearing IIR or we'll miss events */
1912                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1913                                 i9xx_hpd_irq_handler(dev);
1914                         I915_WRITE(VLV_IIR, iir);
1915                 }
1916
1917                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1918                         goto out;
1919
1920                 ret = IRQ_HANDLED;
1921
1922                 if (gt_iir)
1923                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1924                 if (pm_iir)
1925                         gen6_rps_irq_handler(dev_priv, pm_iir);
1926                 /* Call regardless, as some status bits might not be
1927                  * signalled in iir */
1928                 valleyview_pipestat_irq_handler(dev, iir);
1929         }
1930
1931 out:
1932         return ret;
1933 }
1934
1935 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1936 {
1937         struct drm_device *dev = arg;
1938         struct drm_i915_private *dev_priv = dev->dev_private;
1939         u32 master_ctl, iir;
1940         irqreturn_t ret = IRQ_NONE;
1941
1942         if (!intel_irqs_enabled(dev_priv))
1943                 return IRQ_NONE;
1944
1945         for (;;) {
1946                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1947                 iir = I915_READ(VLV_IIR);
1948
1949                 if (master_ctl == 0 && iir == 0)
1950                         break;
1951
1952                 ret = IRQ_HANDLED;
1953
1954                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1955
1956                 /* Find, clear, then process each source of interrupt */
1957
1958                 if (iir) {
1959                         /* Consume port before clearing IIR or we'll miss events */
1960                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1961                                 i9xx_hpd_irq_handler(dev);
1962                         I915_WRITE(VLV_IIR, iir);
1963                 }
1964
1965                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1966
1967                 /* Call regardless, as some status bits might not be
1968                  * signalled in iir */
1969                 valleyview_pipestat_irq_handler(dev, iir);
1970
1971                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1972                 POSTING_READ(GEN8_MASTER_IRQ);
1973         }
1974
1975         return ret;
1976 }
1977
1978 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1979 {
1980         struct drm_i915_private *dev_priv = dev->dev_private;
1981         int pipe;
1982         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1983         u32 dig_hotplug_reg;
1984
1985         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1986         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1987
1988         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1989
1990         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1991                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1992                                SDE_AUDIO_POWER_SHIFT);
1993                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1994                                  port_name(port));
1995         }
1996
1997         if (pch_iir & SDE_AUX_MASK)
1998                 dp_aux_irq_handler(dev);
1999
2000         if (pch_iir & SDE_GMBUS)
2001                 gmbus_irq_handler(dev);
2002
2003         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2004                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2005
2006         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2007                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2008
2009         if (pch_iir & SDE_POISON)
2010                 DRM_ERROR("PCH poison interrupt\n");
2011
2012         if (pch_iir & SDE_FDI_MASK)
2013                 for_each_pipe(dev_priv, pipe)
2014                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2015                                          pipe_name(pipe),
2016                                          I915_READ(FDI_RX_IIR(pipe)));
2017
2018         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2019                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2020
2021         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2022                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2023
2024         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2025                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2026
2027         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2028                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2029 }
2030
2031 static void ivb_err_int_handler(struct drm_device *dev)
2032 {
2033         struct drm_i915_private *dev_priv = dev->dev_private;
2034         u32 err_int = I915_READ(GEN7_ERR_INT);
2035         enum pipe pipe;
2036
2037         if (err_int & ERR_INT_POISON)
2038                 DRM_ERROR("Poison interrupt\n");
2039
2040         for_each_pipe(dev_priv, pipe) {
2041                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2042                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2043
2044                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2045                         if (IS_IVYBRIDGE(dev))
2046                                 ivb_pipe_crc_irq_handler(dev, pipe);
2047                         else
2048                                 hsw_pipe_crc_irq_handler(dev, pipe);
2049                 }
2050         }
2051
2052         I915_WRITE(GEN7_ERR_INT, err_int);
2053 }
2054
2055 static void cpt_serr_int_handler(struct drm_device *dev)
2056 {
2057         struct drm_i915_private *dev_priv = dev->dev_private;
2058         u32 serr_int = I915_READ(SERR_INT);
2059
2060         if (serr_int & SERR_INT_POISON)
2061                 DRM_ERROR("PCH poison interrupt\n");
2062
2063         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2064                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2065
2066         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2067                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2068
2069         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2070                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2071
2072         I915_WRITE(SERR_INT, serr_int);
2073 }
2074
2075 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2076 {
2077         struct drm_i915_private *dev_priv = dev->dev_private;
2078         int pipe;
2079         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2080         u32 dig_hotplug_reg;
2081
2082         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2083         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2084
2085         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2086
2087         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2088                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2089                                SDE_AUDIO_POWER_SHIFT_CPT);
2090                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2091                                  port_name(port));
2092         }
2093
2094         if (pch_iir & SDE_AUX_MASK_CPT)
2095                 dp_aux_irq_handler(dev);
2096
2097         if (pch_iir & SDE_GMBUS_CPT)
2098                 gmbus_irq_handler(dev);
2099
2100         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2101                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2102
2103         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2104                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2105
2106         if (pch_iir & SDE_FDI_MASK_CPT)
2107                 for_each_pipe(dev_priv, pipe)
2108                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2109                                          pipe_name(pipe),
2110                                          I915_READ(FDI_RX_IIR(pipe)));
2111
2112         if (pch_iir & SDE_ERROR_CPT)
2113                 cpt_serr_int_handler(dev);
2114 }
2115
2116 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2117 {
2118         struct drm_i915_private *dev_priv = dev->dev_private;
2119         enum pipe pipe;
2120
2121         if (de_iir & DE_AUX_CHANNEL_A)
2122                 dp_aux_irq_handler(dev);
2123
2124         if (de_iir & DE_GSE)
2125                 intel_opregion_asle_intr(dev);
2126
2127         if (de_iir & DE_POISON)
2128                 DRM_ERROR("Poison interrupt\n");
2129
2130         for_each_pipe(dev_priv, pipe) {
2131                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2132                     intel_pipe_handle_vblank(dev, pipe))
2133                         intel_check_page_flip(dev, pipe);
2134
2135                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2136                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2137
2138                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2139                         i9xx_pipe_crc_irq_handler(dev, pipe);
2140
2141                 /* plane/pipes map 1:1 on ilk+ */
2142                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2143                         intel_prepare_page_flip(dev, pipe);
2144                         intel_finish_page_flip_plane(dev, pipe);
2145                 }
2146         }
2147
2148         /* check event from PCH */
2149         if (de_iir & DE_PCH_EVENT) {
2150                 u32 pch_iir = I915_READ(SDEIIR);
2151
2152                 if (HAS_PCH_CPT(dev))
2153                         cpt_irq_handler(dev, pch_iir);
2154                 else
2155                         ibx_irq_handler(dev, pch_iir);
2156
2157                 /* should clear PCH hotplug event before clear CPU irq */
2158                 I915_WRITE(SDEIIR, pch_iir);
2159         }
2160
2161         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2162                 ironlake_rps_change_irq_handler(dev);
2163 }
2164
2165 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2166 {
2167         struct drm_i915_private *dev_priv = dev->dev_private;
2168         enum pipe pipe;
2169
2170         if (de_iir & DE_ERR_INT_IVB)
2171                 ivb_err_int_handler(dev);
2172
2173         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2174                 dp_aux_irq_handler(dev);
2175
2176         if (de_iir & DE_GSE_IVB)
2177                 intel_opregion_asle_intr(dev);
2178
2179         for_each_pipe(dev_priv, pipe) {
2180                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2181                     intel_pipe_handle_vblank(dev, pipe))
2182                         intel_check_page_flip(dev, pipe);
2183
2184                 /* plane/pipes map 1:1 on ilk+ */
2185                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2186                         intel_prepare_page_flip(dev, pipe);
2187                         intel_finish_page_flip_plane(dev, pipe);
2188                 }
2189         }
2190
2191         /* check event from PCH */
2192         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2193                 u32 pch_iir = I915_READ(SDEIIR);
2194
2195                 cpt_irq_handler(dev, pch_iir);
2196
2197                 /* clear PCH hotplug event before clear CPU irq */
2198                 I915_WRITE(SDEIIR, pch_iir);
2199         }
2200 }
2201
2202 /*
2203  * To handle irqs with the minimum potential races with fresh interrupts, we:
2204  * 1 - Disable Master Interrupt Control.
2205  * 2 - Find the source(s) of the interrupt.
2206  * 3 - Clear the Interrupt Identity bits (IIR).
2207  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2208  * 5 - Re-enable Master Interrupt Control.
2209  */
2210 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2211 {
2212         struct drm_device *dev = arg;
2213         struct drm_i915_private *dev_priv = dev->dev_private;
2214         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2215         irqreturn_t ret = IRQ_NONE;
2216
2217         if (!intel_irqs_enabled(dev_priv))
2218                 return IRQ_NONE;
2219
2220         /* We get interrupts on unclaimed registers, so check for this before we
2221          * do any I915_{READ,WRITE}. */
2222         intel_uncore_check_errors(dev);
2223
2224         /* disable master interrupt before clearing iir  */
2225         de_ier = I915_READ(DEIER);
2226         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2227         POSTING_READ(DEIER);
2228
2229         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2230          * interrupts will will be stored on its back queue, and then we'll be
2231          * able to process them after we restore SDEIER (as soon as we restore
2232          * it, we'll get an interrupt if SDEIIR still has something to process
2233          * due to its back queue). */
2234         if (!HAS_PCH_NOP(dev)) {
2235                 sde_ier = I915_READ(SDEIER);
2236                 I915_WRITE(SDEIER, 0);
2237                 POSTING_READ(SDEIER);
2238         }
2239
2240         /* Find, clear, then process each source of interrupt */
2241
2242         gt_iir = I915_READ(GTIIR);
2243         if (gt_iir) {
2244                 I915_WRITE(GTIIR, gt_iir);
2245                 ret = IRQ_HANDLED;
2246                 if (INTEL_INFO(dev)->gen >= 6)
2247                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2248                 else
2249                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2250         }
2251
2252         de_iir = I915_READ(DEIIR);
2253         if (de_iir) {
2254                 I915_WRITE(DEIIR, de_iir);
2255                 ret = IRQ_HANDLED;
2256                 if (INTEL_INFO(dev)->gen >= 7)
2257                         ivb_display_irq_handler(dev, de_iir);
2258                 else
2259                         ilk_display_irq_handler(dev, de_iir);
2260         }
2261
2262         if (INTEL_INFO(dev)->gen >= 6) {
2263                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2264                 if (pm_iir) {
2265                         I915_WRITE(GEN6_PMIIR, pm_iir);
2266                         ret = IRQ_HANDLED;
2267                         gen6_rps_irq_handler(dev_priv, pm_iir);
2268                 }
2269         }
2270
2271         I915_WRITE(DEIER, de_ier);
2272         POSTING_READ(DEIER);
2273         if (!HAS_PCH_NOP(dev)) {
2274                 I915_WRITE(SDEIER, sde_ier);
2275                 POSTING_READ(SDEIER);
2276         }
2277
2278         return ret;
2279 }
2280
2281 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2282 {
2283         struct drm_device *dev = arg;
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285         u32 master_ctl;
2286         irqreturn_t ret = IRQ_NONE;
2287         uint32_t tmp = 0;
2288         enum pipe pipe;
2289         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2290
2291         if (!intel_irqs_enabled(dev_priv))
2292                 return IRQ_NONE;
2293
2294         if (IS_GEN9(dev))
2295                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2296                         GEN9_AUX_CHANNEL_D;
2297
2298         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2299         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2300         if (!master_ctl)
2301                 return IRQ_NONE;
2302
2303         I915_WRITE(GEN8_MASTER_IRQ, 0);
2304         POSTING_READ(GEN8_MASTER_IRQ);
2305
2306         /* Find, clear, then process each source of interrupt */
2307
2308         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2309
2310         if (master_ctl & GEN8_DE_MISC_IRQ) {
2311                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2312                 if (tmp) {
2313                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2314                         ret = IRQ_HANDLED;
2315                         if (tmp & GEN8_DE_MISC_GSE)
2316                                 intel_opregion_asle_intr(dev);
2317                         else
2318                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2319                 }
2320                 else
2321                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2322         }
2323
2324         if (master_ctl & GEN8_DE_PORT_IRQ) {
2325                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2326                 if (tmp) {
2327                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2328                         ret = IRQ_HANDLED;
2329
2330                         if (tmp & aux_mask)
2331                                 dp_aux_irq_handler(dev);
2332                         else
2333                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2334                 }
2335                 else
2336                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2337         }
2338
2339         for_each_pipe(dev_priv, pipe) {
2340                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2341
2342                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2343                         continue;
2344
2345                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2346                 if (pipe_iir) {
2347                         ret = IRQ_HANDLED;
2348                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2349
2350                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2351                             intel_pipe_handle_vblank(dev, pipe))
2352                                 intel_check_page_flip(dev, pipe);
2353
2354                         if (IS_GEN9(dev))
2355                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2356                         else
2357                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2358
2359                         if (flip_done) {
2360                                 intel_prepare_page_flip(dev, pipe);
2361                                 intel_finish_page_flip_plane(dev, pipe);
2362                         }
2363
2364                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2365                                 hsw_pipe_crc_irq_handler(dev, pipe);
2366
2367                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2368                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2369                                                                     pipe);
2370
2371
2372                         if (IS_GEN9(dev))
2373                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2374                         else
2375                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2376
2377                         if (fault_errors)
2378                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2379                                           pipe_name(pipe),
2380                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2381                 } else
2382                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2383         }
2384
2385         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2386                 /*
2387                  * FIXME(BDW): Assume for now that the new interrupt handling
2388                  * scheme also closed the SDE interrupt handling race we've seen
2389                  * on older pch-split platforms. But this needs testing.
2390                  */
2391                 u32 pch_iir = I915_READ(SDEIIR);
2392                 if (pch_iir) {
2393                         I915_WRITE(SDEIIR, pch_iir);
2394                         ret = IRQ_HANDLED;
2395                         cpt_irq_handler(dev, pch_iir);
2396                 } else
2397                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2398
2399         }
2400
2401         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2402         POSTING_READ(GEN8_MASTER_IRQ);
2403
2404         return ret;
2405 }
2406
2407 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2408                                bool reset_completed)
2409 {
2410         struct intel_engine_cs *ring;
2411         int i;
2412
2413         /*
2414          * Notify all waiters for GPU completion events that reset state has
2415          * been changed, and that they need to restart their wait after
2416          * checking for potential errors (and bail out to drop locks if there is
2417          * a gpu reset pending so that i915_error_work_func can acquire them).
2418          */
2419
2420         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2421         for_each_ring(ring, dev_priv, i)
2422                 wake_up_all(&ring->irq_queue);
2423
2424         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2425         wake_up_all(&dev_priv->pending_flip_queue);
2426
2427         /*
2428          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2429          * reset state is cleared.
2430          */
2431         if (reset_completed)
2432                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2433 }
2434
2435 /**
2436  * i915_reset_and_wakeup - do process context error handling work
2437  *
2438  * Fire an error uevent so userspace can see that a hang or error
2439  * was detected.
2440  */
2441 static void i915_reset_and_wakeup(struct drm_device *dev)
2442 {
2443         struct drm_i915_private *dev_priv = to_i915(dev);
2444         struct i915_gpu_error *error = &dev_priv->gpu_error;
2445         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2446         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2447         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2448         int ret;
2449
2450         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2451
2452         /*
2453          * Note that there's only one work item which does gpu resets, so we
2454          * need not worry about concurrent gpu resets potentially incrementing
2455          * error->reset_counter twice. We only need to take care of another
2456          * racing irq/hangcheck declaring the gpu dead for a second time. A
2457          * quick check for that is good enough: schedule_work ensures the
2458          * correct ordering between hang detection and this work item, and since
2459          * the reset in-progress bit is only ever set by code outside of this
2460          * work we don't need to worry about any other races.
2461          */
2462         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2463                 DRM_DEBUG_DRIVER("resetting chip\n");
2464                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2465                                    reset_event);
2466
2467                 /*
2468                  * In most cases it's guaranteed that we get here with an RPM
2469                  * reference held, for example because there is a pending GPU
2470                  * request that won't finish until the reset is done. This
2471                  * isn't the case at least when we get here by doing a
2472                  * simulated reset via debugs, so get an RPM reference.
2473                  */
2474                 intel_runtime_pm_get(dev_priv);
2475
2476                 intel_prepare_reset(dev);
2477
2478                 /*
2479                  * All state reset _must_ be completed before we update the
2480                  * reset counter, for otherwise waiters might miss the reset
2481                  * pending state and not properly drop locks, resulting in
2482                  * deadlocks with the reset work.
2483                  */
2484                 ret = i915_reset(dev);
2485
2486                 intel_finish_reset(dev);
2487
2488                 intel_runtime_pm_put(dev_priv);
2489
2490                 if (ret == 0) {
2491                         /*
2492                          * After all the gem state is reset, increment the reset
2493                          * counter and wake up everyone waiting for the reset to
2494                          * complete.
2495                          *
2496                          * Since unlock operations are a one-sided barrier only,
2497                          * we need to insert a barrier here to order any seqno
2498                          * updates before
2499                          * the counter increment.
2500                          */
2501                         smp_mb__before_atomic();
2502                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2503
2504                         kobject_uevent_env(&dev->primary->kdev->kobj,
2505                                            KOBJ_CHANGE, reset_done_event);
2506                 } else {
2507                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2508                 }
2509
2510                 /*
2511                  * Note: The wake_up also serves as a memory barrier so that
2512                  * waiters see the update value of the reset counter atomic_t.
2513                  */
2514                 i915_error_wake_up(dev_priv, true);
2515         }
2516 }
2517
2518 static void i915_report_and_clear_eir(struct drm_device *dev)
2519 {
2520         struct drm_i915_private *dev_priv = dev->dev_private;
2521         uint32_t instdone[I915_NUM_INSTDONE_REG];
2522         u32 eir = I915_READ(EIR);
2523         int pipe, i;
2524
2525         if (!eir)
2526                 return;
2527
2528         pr_err("render error detected, EIR: 0x%08x\n", eir);
2529
2530         i915_get_extra_instdone(dev, instdone);
2531
2532         if (IS_G4X(dev)) {
2533                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2534                         u32 ipeir = I915_READ(IPEIR_I965);
2535
2536                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2537                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2538                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2539                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2540                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2541                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2542                         I915_WRITE(IPEIR_I965, ipeir);
2543                         POSTING_READ(IPEIR_I965);
2544                 }
2545                 if (eir & GM45_ERROR_PAGE_TABLE) {
2546                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2547                         pr_err("page table error\n");
2548                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2549                         I915_WRITE(PGTBL_ER, pgtbl_err);
2550                         POSTING_READ(PGTBL_ER);
2551                 }
2552         }
2553
2554         if (!IS_GEN2(dev)) {
2555                 if (eir & I915_ERROR_PAGE_TABLE) {
2556                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2557                         pr_err("page table error\n");
2558                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2559                         I915_WRITE(PGTBL_ER, pgtbl_err);
2560                         POSTING_READ(PGTBL_ER);
2561                 }
2562         }
2563
2564         if (eir & I915_ERROR_MEMORY_REFRESH) {
2565                 pr_err("memory refresh error:\n");
2566                 for_each_pipe(dev_priv, pipe)
2567                         pr_err("pipe %c stat: 0x%08x\n",
2568                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2569                 /* pipestat has already been acked */
2570         }
2571         if (eir & I915_ERROR_INSTRUCTION) {
2572                 pr_err("instruction error\n");
2573                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2574                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2575                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2576                 if (INTEL_INFO(dev)->gen < 4) {
2577                         u32 ipeir = I915_READ(IPEIR);
2578
2579                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2580                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2581                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2582                         I915_WRITE(IPEIR, ipeir);
2583                         POSTING_READ(IPEIR);
2584                 } else {
2585                         u32 ipeir = I915_READ(IPEIR_I965);
2586
2587                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2588                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2589                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2590                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2591                         I915_WRITE(IPEIR_I965, ipeir);
2592                         POSTING_READ(IPEIR_I965);
2593                 }
2594         }
2595
2596         I915_WRITE(EIR, eir);
2597         POSTING_READ(EIR);
2598         eir = I915_READ(EIR);
2599         if (eir) {
2600                 /*
2601                  * some errors might have become stuck,
2602                  * mask them.
2603                  */
2604                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2605                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2606                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2607         }
2608 }
2609
2610 /**
2611  * i915_handle_error - handle a gpu error
2612  * @dev: drm device
2613  *
2614  * Do some basic checking of regsiter state at error time and
2615  * dump it to the syslog.  Also call i915_capture_error_state() to make
2616  * sure we get a record and make it available in debugfs.  Fire a uevent
2617  * so userspace knows something bad happened (should trigger collection
2618  * of a ring dump etc.).
2619  */
2620 void i915_handle_error(struct drm_device *dev, bool wedged,
2621                        const char *fmt, ...)
2622 {
2623         struct drm_i915_private *dev_priv = dev->dev_private;
2624         va_list args;
2625         char error_msg[80];
2626
2627         va_start(args, fmt);
2628         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2629         va_end(args);
2630
2631         i915_capture_error_state(dev, wedged, error_msg);
2632         i915_report_and_clear_eir(dev);
2633
2634         if (wedged) {
2635                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2636                                 &dev_priv->gpu_error.reset_counter);
2637
2638                 /*
2639                  * Wakeup waiting processes so that the reset function
2640                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2641                  * various locks. By bumping the reset counter first, the woken
2642                  * processes will see a reset in progress and back off,
2643                  * releasing their locks and then wait for the reset completion.
2644                  * We must do this for _all_ gpu waiters that might hold locks
2645                  * that the reset work needs to acquire.
2646                  *
2647                  * Note: The wake_up serves as the required memory barrier to
2648                  * ensure that the waiters see the updated value of the reset
2649                  * counter atomic_t.
2650                  */
2651                 i915_error_wake_up(dev_priv, false);
2652         }
2653
2654         i915_reset_and_wakeup(dev);
2655 }
2656
2657 /* Called from drm generic code, passed 'crtc' which
2658  * we use as a pipe index
2659  */
2660 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2661 {
2662         struct drm_i915_private *dev_priv = dev->dev_private;
2663         unsigned long irqflags;
2664
2665         if (!i915_pipe_enabled(dev, pipe))
2666                 return -EINVAL;
2667
2668         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2669         if (INTEL_INFO(dev)->gen >= 4)
2670                 i915_enable_pipestat(dev_priv, pipe,
2671                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2672         else
2673                 i915_enable_pipestat(dev_priv, pipe,
2674                                      PIPE_VBLANK_INTERRUPT_STATUS);
2675         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2676
2677         return 0;
2678 }
2679
2680 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2681 {
2682         struct drm_i915_private *dev_priv = dev->dev_private;
2683         unsigned long irqflags;
2684         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2685                                                      DE_PIPE_VBLANK(pipe);
2686
2687         if (!i915_pipe_enabled(dev, pipe))
2688                 return -EINVAL;
2689
2690         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2691         ironlake_enable_display_irq(dev_priv, bit);
2692         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2693
2694         return 0;
2695 }
2696
2697 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2698 {
2699         struct drm_i915_private *dev_priv = dev->dev_private;
2700         unsigned long irqflags;
2701
2702         if (!i915_pipe_enabled(dev, pipe))
2703                 return -EINVAL;
2704
2705         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2706         i915_enable_pipestat(dev_priv, pipe,
2707                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2708         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2709
2710         return 0;
2711 }
2712
2713 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2714 {
2715         struct drm_i915_private *dev_priv = dev->dev_private;
2716         unsigned long irqflags;
2717
2718         if (!i915_pipe_enabled(dev, pipe))
2719                 return -EINVAL;
2720
2721         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2722         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2723         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2724         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2725         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2726         return 0;
2727 }
2728
2729 /* Called from drm generic code, passed 'crtc' which
2730  * we use as a pipe index
2731  */
2732 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2733 {
2734         struct drm_i915_private *dev_priv = dev->dev_private;
2735         unsigned long irqflags;
2736
2737         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2738         i915_disable_pipestat(dev_priv, pipe,
2739                               PIPE_VBLANK_INTERRUPT_STATUS |
2740                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2741         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2742 }
2743
2744 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2745 {
2746         struct drm_i915_private *dev_priv = dev->dev_private;
2747         unsigned long irqflags;
2748         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2749                                                      DE_PIPE_VBLANK(pipe);
2750
2751         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2752         ironlake_disable_display_irq(dev_priv, bit);
2753         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754 }
2755
2756 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2757 {
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759         unsigned long irqflags;
2760
2761         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2762         i915_disable_pipestat(dev_priv, pipe,
2763                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2764         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2765 }
2766
2767 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2768 {
2769         struct drm_i915_private *dev_priv = dev->dev_private;
2770         unsigned long irqflags;
2771
2772         if (!i915_pipe_enabled(dev, pipe))
2773                 return;
2774
2775         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2776         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2777         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2778         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2779         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2780 }
2781
2782 static struct drm_i915_gem_request *
2783 ring_last_request(struct intel_engine_cs *ring)
2784 {
2785         return list_entry(ring->request_list.prev,
2786                           struct drm_i915_gem_request, list);
2787 }
2788
2789 static bool
2790 ring_idle(struct intel_engine_cs *ring)
2791 {
2792         return (list_empty(&ring->request_list) ||
2793                 i915_gem_request_completed(ring_last_request(ring), false));
2794 }
2795
2796 static bool
2797 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2798 {
2799         if (INTEL_INFO(dev)->gen >= 8) {
2800                 return (ipehr >> 23) == 0x1c;
2801         } else {
2802                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2803                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2804                                  MI_SEMAPHORE_REGISTER);
2805         }
2806 }
2807
2808 static struct intel_engine_cs *
2809 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2810 {
2811         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2812         struct intel_engine_cs *signaller;
2813         int i;
2814
2815         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2816                 for_each_ring(signaller, dev_priv, i) {
2817                         if (ring == signaller)
2818                                 continue;
2819
2820                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2821                                 return signaller;
2822                 }
2823         } else {
2824                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2825
2826                 for_each_ring(signaller, dev_priv, i) {
2827                         if(ring == signaller)
2828                                 continue;
2829
2830                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2831                                 return signaller;
2832                 }
2833         }
2834
2835         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2836                   ring->id, ipehr, offset);
2837
2838         return NULL;
2839 }
2840
2841 static struct intel_engine_cs *
2842 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2843 {
2844         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2845         u32 cmd, ipehr, head;
2846         u64 offset = 0;
2847         int i, backwards;
2848
2849         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2850         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2851                 return NULL;
2852
2853         /*
2854          * HEAD is likely pointing to the dword after the actual command,
2855          * so scan backwards until we find the MBOX. But limit it to just 3
2856          * or 4 dwords depending on the semaphore wait command size.
2857          * Note that we don't care about ACTHD here since that might
2858          * point at at batch, and semaphores are always emitted into the
2859          * ringbuffer itself.
2860          */
2861         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2862         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2863
2864         for (i = backwards; i; --i) {
2865                 /*
2866                  * Be paranoid and presume the hw has gone off into the wild -
2867                  * our ring is smaller than what the hardware (and hence
2868                  * HEAD_ADDR) allows. Also handles wrap-around.
2869                  */
2870                 head &= ring->buffer->size - 1;
2871
2872                 /* This here seems to blow up */
2873                 cmd = ioread32(ring->buffer->virtual_start + head);
2874                 if (cmd == ipehr)
2875                         break;
2876
2877                 head -= 4;
2878         }
2879
2880         if (!i)
2881                 return NULL;
2882
2883         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2884         if (INTEL_INFO(ring->dev)->gen >= 8) {
2885                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2886                 offset <<= 32;
2887                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2888         }
2889         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2890 }
2891
2892 static int semaphore_passed(struct intel_engine_cs *ring)
2893 {
2894         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2895         struct intel_engine_cs *signaller;
2896         u32 seqno;
2897
2898         ring->hangcheck.deadlock++;
2899
2900         signaller = semaphore_waits_for(ring, &seqno);
2901         if (signaller == NULL)
2902                 return -1;
2903
2904         /* Prevent pathological recursion due to driver bugs */
2905         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2906                 return -1;
2907
2908         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2909                 return 1;
2910
2911         /* cursory check for an unkickable deadlock */
2912         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2913             semaphore_passed(signaller) < 0)
2914                 return -1;
2915
2916         return 0;
2917 }
2918
2919 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2920 {
2921         struct intel_engine_cs *ring;
2922         int i;
2923
2924         for_each_ring(ring, dev_priv, i)
2925                 ring->hangcheck.deadlock = 0;
2926 }
2927
2928 static enum intel_ring_hangcheck_action
2929 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2930 {
2931         struct drm_device *dev = ring->dev;
2932         struct drm_i915_private *dev_priv = dev->dev_private;
2933         u32 tmp;
2934
2935         if (acthd != ring->hangcheck.acthd) {
2936                 if (acthd > ring->hangcheck.max_acthd) {
2937                         ring->hangcheck.max_acthd = acthd;
2938                         return HANGCHECK_ACTIVE;
2939                 }
2940
2941                 return HANGCHECK_ACTIVE_LOOP;
2942         }
2943
2944         if (IS_GEN2(dev))
2945                 return HANGCHECK_HUNG;
2946
2947         /* Is the chip hanging on a WAIT_FOR_EVENT?
2948          * If so we can simply poke the RB_WAIT bit
2949          * and break the hang. This should work on
2950          * all but the second generation chipsets.
2951          */
2952         tmp = I915_READ_CTL(ring);
2953         if (tmp & RING_WAIT) {
2954                 i915_handle_error(dev, false,
2955                                   "Kicking stuck wait on %s",
2956                                   ring->name);
2957                 I915_WRITE_CTL(ring, tmp);
2958                 return HANGCHECK_KICK;
2959         }
2960
2961         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2962                 switch (semaphore_passed(ring)) {
2963                 default:
2964                         return HANGCHECK_HUNG;
2965                 case 1:
2966                         i915_handle_error(dev, false,
2967                                           "Kicking stuck semaphore on %s",
2968                                           ring->name);
2969                         I915_WRITE_CTL(ring, tmp);
2970                         return HANGCHECK_KICK;
2971                 case 0:
2972                         return HANGCHECK_WAIT;
2973                 }
2974         }
2975
2976         return HANGCHECK_HUNG;
2977 }
2978
2979 /*
2980  * This is called when the chip hasn't reported back with completed
2981  * batchbuffers in a long time. We keep track per ring seqno progress and
2982  * if there are no progress, hangcheck score for that ring is increased.
2983  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2984  * we kick the ring. If we see no progress on three subsequent calls
2985  * we assume chip is wedged and try to fix it by resetting the chip.
2986  */
2987 static void i915_hangcheck_elapsed(struct work_struct *work)
2988 {
2989         struct drm_i915_private *dev_priv =
2990                 container_of(work, typeof(*dev_priv),
2991                              gpu_error.hangcheck_work.work);
2992         struct drm_device *dev = dev_priv->dev;
2993         struct intel_engine_cs *ring;
2994         int i;
2995         int busy_count = 0, rings_hung = 0;
2996         bool stuck[I915_NUM_RINGS] = { 0 };
2997 #define BUSY 1
2998 #define KICK 5
2999 #define HUNG 20
3000
3001         if (!i915.enable_hangcheck)
3002                 return;
3003
3004         for_each_ring(ring, dev_priv, i) {
3005                 u64 acthd;
3006                 u32 seqno;
3007                 bool busy = true;
3008
3009                 semaphore_clear_deadlocks(dev_priv);
3010
3011                 seqno = ring->get_seqno(ring, false);
3012                 acthd = intel_ring_get_active_head(ring);
3013
3014                 if (ring->hangcheck.seqno == seqno) {
3015                         if (ring_idle(ring)) {
3016                                 ring->hangcheck.action = HANGCHECK_IDLE;
3017
3018                                 if (waitqueue_active(&ring->irq_queue)) {
3019                                         /* Issue a wake-up to catch stuck h/w. */
3020                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3021                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3022                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3023                                                                   ring->name);
3024                                                 else
3025                                                         DRM_INFO("Fake missed irq on %s\n",
3026                                                                  ring->name);
3027                                                 wake_up_all(&ring->irq_queue);
3028                                         }
3029                                         /* Safeguard against driver failure */
3030                                         ring->hangcheck.score += BUSY;
3031                                 } else
3032                                         busy = false;
3033                         } else {
3034                                 /* We always increment the hangcheck score
3035                                  * if the ring is busy and still processing
3036                                  * the same request, so that no single request
3037                                  * can run indefinitely (such as a chain of
3038                                  * batches). The only time we do not increment
3039                                  * the hangcheck score on this ring, if this
3040                                  * ring is in a legitimate wait for another
3041                                  * ring. In that case the waiting ring is a
3042                                  * victim and we want to be sure we catch the
3043                                  * right culprit. Then every time we do kick
3044                                  * the ring, add a small increment to the
3045                                  * score so that we can catch a batch that is
3046                                  * being repeatedly kicked and so responsible
3047                                  * for stalling the machine.
3048                                  */
3049                                 ring->hangcheck.action = ring_stuck(ring,
3050                                                                     acthd);
3051
3052                                 switch (ring->hangcheck.action) {
3053                                 case HANGCHECK_IDLE:
3054                                 case HANGCHECK_WAIT:
3055                                 case HANGCHECK_ACTIVE:
3056                                         break;
3057                                 case HANGCHECK_ACTIVE_LOOP:
3058                                         ring->hangcheck.score += BUSY;
3059                                         break;
3060                                 case HANGCHECK_KICK:
3061                                         ring->hangcheck.score += KICK;
3062                                         break;
3063                                 case HANGCHECK_HUNG:
3064                                         ring->hangcheck.score += HUNG;
3065                                         stuck[i] = true;
3066                                         break;
3067                                 }
3068                         }
3069                 } else {
3070                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3071
3072                         /* Gradually reduce the count so that we catch DoS
3073                          * attempts across multiple batches.
3074                          */
3075                         if (ring->hangcheck.score > 0)
3076                                 ring->hangcheck.score--;
3077
3078                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3079                 }
3080
3081                 ring->hangcheck.seqno = seqno;
3082                 ring->hangcheck.acthd = acthd;
3083                 busy_count += busy;
3084         }
3085
3086         for_each_ring(ring, dev_priv, i) {
3087                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3088                         DRM_INFO("%s on %s\n",
3089                                  stuck[i] ? "stuck" : "no progress",
3090                                  ring->name);
3091                         rings_hung++;
3092                 }
3093         }
3094
3095         if (rings_hung)
3096                 return i915_handle_error(dev, true, "Ring hung");
3097
3098         if (busy_count)
3099                 /* Reset timer case chip hangs without another request
3100                  * being added */
3101                 i915_queue_hangcheck(dev);
3102 }
3103
3104 void i915_queue_hangcheck(struct drm_device *dev)
3105 {
3106         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3107
3108         if (!i915.enable_hangcheck)
3109                 return;
3110
3111         /* Don't continually defer the hangcheck so that it is always run at
3112          * least once after work has been scheduled on any ring. Otherwise,
3113          * we will ignore a hung ring if a second ring is kept busy.
3114          */
3115
3116         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3117                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3118 }
3119
3120 static void ibx_irq_reset(struct drm_device *dev)
3121 {
3122         struct drm_i915_private *dev_priv = dev->dev_private;
3123
3124         if (HAS_PCH_NOP(dev))
3125                 return;
3126
3127         GEN5_IRQ_RESET(SDE);
3128
3129         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3130                 I915_WRITE(SERR_INT, 0xffffffff);
3131 }
3132
3133 /*
3134  * SDEIER is also touched by the interrupt handler to work around missed PCH
3135  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3136  * instead we unconditionally enable all PCH interrupt sources here, but then
3137  * only unmask them as needed with SDEIMR.
3138  *
3139  * This function needs to be called before interrupts are enabled.
3140  */
3141 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3142 {
3143         struct drm_i915_private *dev_priv = dev->dev_private;
3144
3145         if (HAS_PCH_NOP(dev))
3146                 return;
3147
3148         WARN_ON(I915_READ(SDEIER) != 0);
3149         I915_WRITE(SDEIER, 0xffffffff);
3150         POSTING_READ(SDEIER);
3151 }
3152
3153 static void gen5_gt_irq_reset(struct drm_device *dev)
3154 {
3155         struct drm_i915_private *dev_priv = dev->dev_private;
3156
3157         GEN5_IRQ_RESET(GT);
3158         if (INTEL_INFO(dev)->gen >= 6)
3159                 GEN5_IRQ_RESET(GEN6_PM);
3160 }
3161
3162 /* drm_dma.h hooks
3163 */
3164 static void ironlake_irq_reset(struct drm_device *dev)
3165 {
3166         struct drm_i915_private *dev_priv = dev->dev_private;
3167
3168         I915_WRITE(HWSTAM, 0xffffffff);
3169
3170         GEN5_IRQ_RESET(DE);
3171         if (IS_GEN7(dev))
3172                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3173
3174         gen5_gt_irq_reset(dev);
3175
3176         ibx_irq_reset(dev);
3177 }
3178
3179 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3180 {
3181         enum pipe pipe;
3182
3183         I915_WRITE(PORT_HOTPLUG_EN, 0);
3184         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3185
3186         for_each_pipe(dev_priv, pipe)
3187                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3188
3189         GEN5_IRQ_RESET(VLV_);
3190 }
3191
3192 static void valleyview_irq_preinstall(struct drm_device *dev)
3193 {
3194         struct drm_i915_private *dev_priv = dev->dev_private;
3195
3196         /* VLV magic */
3197         I915_WRITE(VLV_IMR, 0);
3198         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3199         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3200         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3201
3202         gen5_gt_irq_reset(dev);
3203
3204         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3205
3206         vlv_display_irq_reset(dev_priv);
3207 }
3208
3209 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3210 {
3211         GEN8_IRQ_RESET_NDX(GT, 0);
3212         GEN8_IRQ_RESET_NDX(GT, 1);
3213         GEN8_IRQ_RESET_NDX(GT, 2);
3214         GEN8_IRQ_RESET_NDX(GT, 3);
3215 }
3216
3217 static void gen8_irq_reset(struct drm_device *dev)
3218 {
3219         struct drm_i915_private *dev_priv = dev->dev_private;
3220         int pipe;
3221
3222         I915_WRITE(GEN8_MASTER_IRQ, 0);
3223         POSTING_READ(GEN8_MASTER_IRQ);
3224
3225         gen8_gt_irq_reset(dev_priv);
3226
3227         for_each_pipe(dev_priv, pipe)
3228                 if (intel_display_power_is_enabled(dev_priv,
3229                                                    POWER_DOMAIN_PIPE(pipe)))
3230                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3231
3232         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3233         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3234         GEN5_IRQ_RESET(GEN8_PCU_);
3235
3236         ibx_irq_reset(dev);
3237 }
3238
3239 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3240 {
3241         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3242
3243         spin_lock_irq(&dev_priv->irq_lock);
3244         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3245                           ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3246         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3247                           ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3248         spin_unlock_irq(&dev_priv->irq_lock);
3249 }
3250
3251 static void cherryview_irq_preinstall(struct drm_device *dev)
3252 {
3253         struct drm_i915_private *dev_priv = dev->dev_private;
3254
3255         I915_WRITE(GEN8_MASTER_IRQ, 0);
3256         POSTING_READ(GEN8_MASTER_IRQ);
3257
3258         gen8_gt_irq_reset(dev_priv);
3259
3260         GEN5_IRQ_RESET(GEN8_PCU_);
3261
3262         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3263
3264         vlv_display_irq_reset(dev_priv);
3265 }
3266
3267 static void ibx_hpd_irq_setup(struct drm_device *dev)
3268 {
3269         struct drm_i915_private *dev_priv = dev->dev_private;
3270         struct intel_encoder *intel_encoder;
3271         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3272
3273         if (HAS_PCH_IBX(dev)) {
3274                 hotplug_irqs = SDE_HOTPLUG_MASK;
3275                 for_each_intel_encoder(dev, intel_encoder)
3276                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3277                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3278         } else {
3279                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3280                 for_each_intel_encoder(dev, intel_encoder)
3281                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3282                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3283         }
3284
3285         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3286
3287         /*
3288          * Enable digital hotplug on the PCH, and configure the DP short pulse
3289          * duration to 2ms (which is the minimum in the Display Port spec)
3290          *
3291          * This register is the same on all known PCH chips.
3292          */
3293         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3294         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3295         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3296         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3297         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3298         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3299 }
3300
3301 static void ibx_irq_postinstall(struct drm_device *dev)
3302 {
3303         struct drm_i915_private *dev_priv = dev->dev_private;
3304         u32 mask;
3305
3306         if (HAS_PCH_NOP(dev))
3307                 return;
3308
3309         if (HAS_PCH_IBX(dev))
3310                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3311         else
3312                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3313
3314         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3315         I915_WRITE(SDEIMR, ~mask);
3316 }
3317
3318 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3319 {
3320         struct drm_i915_private *dev_priv = dev->dev_private;
3321         u32 pm_irqs, gt_irqs;
3322
3323         pm_irqs = gt_irqs = 0;
3324
3325         dev_priv->gt_irq_mask = ~0;
3326         if (HAS_L3_DPF(dev)) {
3327                 /* L3 parity interrupt is always unmasked. */
3328                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3329                 gt_irqs |= GT_PARITY_ERROR(dev);
3330         }
3331
3332         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3333         if (IS_GEN5(dev)) {
3334                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3335                            ILK_BSD_USER_INTERRUPT;
3336         } else {
3337                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3338         }
3339
3340         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3341
3342         if (INTEL_INFO(dev)->gen >= 6) {
3343                 /*
3344                  * RPS interrupts will get enabled/disabled on demand when RPS
3345                  * itself is enabled/disabled.
3346                  */
3347                 if (HAS_VEBOX(dev))
3348                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3349
3350                 dev_priv->pm_irq_mask = 0xffffffff;
3351                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3352         }
3353 }
3354
3355 static int ironlake_irq_postinstall(struct drm_device *dev)
3356 {
3357         struct drm_i915_private *dev_priv = dev->dev_private;
3358         u32 display_mask, extra_mask;
3359
3360         if (INTEL_INFO(dev)->gen >= 7) {
3361                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3362                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3363                                 DE_PLANEB_FLIP_DONE_IVB |
3364                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3365                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3366                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3367         } else {
3368                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3369                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3370                                 DE_AUX_CHANNEL_A |
3371                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3372                                 DE_POISON);
3373                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3374                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3375         }
3376
3377         dev_priv->irq_mask = ~display_mask;
3378
3379         I915_WRITE(HWSTAM, 0xeffe);
3380
3381         ibx_irq_pre_postinstall(dev);
3382
3383         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3384
3385         gen5_gt_irq_postinstall(dev);
3386
3387         ibx_irq_postinstall(dev);
3388
3389         if (IS_IRONLAKE_M(dev)) {
3390                 /* Enable PCU event interrupts
3391                  *
3392                  * spinlocking not required here for correctness since interrupt
3393                  * setup is guaranteed to run in single-threaded context. But we
3394                  * need it to make the assert_spin_locked happy. */
3395                 spin_lock_irq(&dev_priv->irq_lock);
3396                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3397                 spin_unlock_irq(&dev_priv->irq_lock);
3398         }
3399
3400         return 0;
3401 }
3402
3403 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3404 {
3405         u32 pipestat_mask;
3406         u32 iir_mask;
3407         enum pipe pipe;
3408
3409         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3410                         PIPE_FIFO_UNDERRUN_STATUS;
3411
3412         for_each_pipe(dev_priv, pipe)
3413                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3414         POSTING_READ(PIPESTAT(PIPE_A));
3415
3416         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3417                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3418
3419         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3420         for_each_pipe(dev_priv, pipe)
3421                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3422
3423         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3424                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3425                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3426         if (IS_CHERRYVIEW(dev_priv))
3427                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3428         dev_priv->irq_mask &= ~iir_mask;
3429
3430         I915_WRITE(VLV_IIR, iir_mask);
3431         I915_WRITE(VLV_IIR, iir_mask);
3432         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3433         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3434         POSTING_READ(VLV_IMR);
3435 }
3436
3437 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3438 {
3439         u32 pipestat_mask;
3440         u32 iir_mask;
3441         enum pipe pipe;
3442
3443         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3444                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3445                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3446         if (IS_CHERRYVIEW(dev_priv))
3447                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3448
3449         dev_priv->irq_mask |= iir_mask;
3450         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3451         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3452         I915_WRITE(VLV_IIR, iir_mask);
3453         I915_WRITE(VLV_IIR, iir_mask);
3454         POSTING_READ(VLV_IIR);
3455
3456         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3457                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3458
3459         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3460         for_each_pipe(dev_priv, pipe)
3461                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3462
3463         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3464                         PIPE_FIFO_UNDERRUN_STATUS;
3465
3466         for_each_pipe(dev_priv, pipe)
3467                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3468         POSTING_READ(PIPESTAT(PIPE_A));
3469 }
3470
3471 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3472 {
3473         assert_spin_locked(&dev_priv->irq_lock);
3474
3475         if (dev_priv->display_irqs_enabled)
3476                 return;
3477
3478         dev_priv->display_irqs_enabled = true;
3479
3480         if (intel_irqs_enabled(dev_priv))
3481                 valleyview_display_irqs_install(dev_priv);
3482 }
3483
3484 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3485 {
3486         assert_spin_locked(&dev_priv->irq_lock);
3487
3488         if (!dev_priv->display_irqs_enabled)
3489                 return;
3490
3491         dev_priv->display_irqs_enabled = false;
3492
3493         if (intel_irqs_enabled(dev_priv))
3494                 valleyview_display_irqs_uninstall(dev_priv);
3495 }
3496
3497 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3498 {
3499         dev_priv->irq_mask = ~0;
3500
3501         I915_WRITE(PORT_HOTPLUG_EN, 0);
3502         POSTING_READ(PORT_HOTPLUG_EN);
3503
3504         I915_WRITE(VLV_IIR, 0xffffffff);
3505         I915_WRITE(VLV_IIR, 0xffffffff);
3506         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3507         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3508         POSTING_READ(VLV_IMR);
3509
3510         /* Interrupt setup is already guaranteed to be single-threaded, this is
3511          * just to make the assert_spin_locked check happy. */
3512         spin_lock_irq(&dev_priv->irq_lock);
3513         if (dev_priv->display_irqs_enabled)
3514                 valleyview_display_irqs_install(dev_priv);
3515         spin_unlock_irq(&dev_priv->irq_lock);
3516 }
3517
3518 static int valleyview_irq_postinstall(struct drm_device *dev)
3519 {
3520         struct drm_i915_private *dev_priv = dev->dev_private;
3521
3522         vlv_display_irq_postinstall(dev_priv);
3523
3524         gen5_gt_irq_postinstall(dev);
3525
3526         /* ack & enable invalid PTE error interrupts */
3527 #if 0 /* FIXME: add support to irq handler for checking these bits */
3528         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3529         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3530 #endif
3531
3532         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3533
3534         return 0;
3535 }
3536
3537 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3538 {
3539         /* These are interrupts we'll toggle with the ring mask register */
3540         uint32_t gt_interrupts[] = {
3541                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3542                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3543                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3544                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3545                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3546                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3547                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3548                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3549                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3550                 0,
3551                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3552                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3553                 };
3554
3555         dev_priv->pm_irq_mask = 0xffffffff;
3556         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3557         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3558         /*
3559          * RPS interrupts will get enabled/disabled on demand when RPS itself
3560          * is enabled/disabled.
3561          */
3562         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3563         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3564 }
3565
3566 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3567 {
3568         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3569         uint32_t de_pipe_enables;
3570         int pipe;
3571         u32 aux_en = GEN8_AUX_CHANNEL_A;
3572
3573         if (IS_GEN9(dev_priv)) {
3574                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3575                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3576                 aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3577                         GEN9_AUX_CHANNEL_D;
3578         } else
3579                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3580                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3581
3582         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3583                                            GEN8_PIPE_FIFO_UNDERRUN;
3584
3585         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3586         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3587         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3588
3589         for_each_pipe(dev_priv, pipe)
3590                 if (intel_display_power_is_enabled(dev_priv,
3591                                 POWER_DOMAIN_PIPE(pipe)))
3592                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3593                                           dev_priv->de_irq_mask[pipe],
3594                                           de_pipe_enables);
3595
3596         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3597 }
3598
3599 static int gen8_irq_postinstall(struct drm_device *dev)
3600 {
3601         struct drm_i915_private *dev_priv = dev->dev_private;
3602
3603         ibx_irq_pre_postinstall(dev);
3604
3605         gen8_gt_irq_postinstall(dev_priv);
3606         gen8_de_irq_postinstall(dev_priv);
3607
3608         ibx_irq_postinstall(dev);
3609
3610         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3611         POSTING_READ(GEN8_MASTER_IRQ);
3612
3613         return 0;
3614 }
3615
3616 static int cherryview_irq_postinstall(struct drm_device *dev)
3617 {
3618         struct drm_i915_private *dev_priv = dev->dev_private;
3619
3620         vlv_display_irq_postinstall(dev_priv);
3621
3622         gen8_gt_irq_postinstall(dev_priv);
3623
3624         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3625         POSTING_READ(GEN8_MASTER_IRQ);
3626
3627         return 0;
3628 }
3629
3630 static void gen8_irq_uninstall(struct drm_device *dev)
3631 {
3632         struct drm_i915_private *dev_priv = dev->dev_private;
3633
3634         if (!dev_priv)
3635                 return;
3636
3637         gen8_irq_reset(dev);
3638 }
3639
3640 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3641 {
3642         /* Interrupt setup is already guaranteed to be single-threaded, this is
3643          * just to make the assert_spin_locked check happy. */
3644         spin_lock_irq(&dev_priv->irq_lock);
3645         if (dev_priv->display_irqs_enabled)
3646                 valleyview_display_irqs_uninstall(dev_priv);
3647         spin_unlock_irq(&dev_priv->irq_lock);
3648
3649         vlv_display_irq_reset(dev_priv);
3650
3651         dev_priv->irq_mask = ~0;
3652 }
3653
3654 static void valleyview_irq_uninstall(struct drm_device *dev)
3655 {
3656         struct drm_i915_private *dev_priv = dev->dev_private;
3657
3658         if (!dev_priv)
3659                 return;
3660
3661         I915_WRITE(VLV_MASTER_IER, 0);
3662
3663         gen5_gt_irq_reset(dev);
3664
3665         I915_WRITE(HWSTAM, 0xffffffff);
3666
3667         vlv_display_irq_uninstall(dev_priv);
3668 }
3669
3670 static void cherryview_irq_uninstall(struct drm_device *dev)
3671 {
3672         struct drm_i915_private *dev_priv = dev->dev_private;
3673
3674         if (!dev_priv)
3675                 return;
3676
3677         I915_WRITE(GEN8_MASTER_IRQ, 0);
3678         POSTING_READ(GEN8_MASTER_IRQ);
3679
3680         gen8_gt_irq_reset(dev_priv);
3681
3682         GEN5_IRQ_RESET(GEN8_PCU_);
3683
3684         vlv_display_irq_uninstall(dev_priv);
3685 }
3686
3687 static void ironlake_irq_uninstall(struct drm_device *dev)
3688 {
3689         struct drm_i915_private *dev_priv = dev->dev_private;
3690
3691         if (!dev_priv)
3692                 return;
3693
3694         ironlake_irq_reset(dev);
3695 }
3696
3697 static void i8xx_irq_preinstall(struct drm_device * dev)
3698 {
3699         struct drm_i915_private *dev_priv = dev->dev_private;
3700         int pipe;
3701
3702         for_each_pipe(dev_priv, pipe)
3703                 I915_WRITE(PIPESTAT(pipe), 0);
3704         I915_WRITE16(IMR, 0xffff);
3705         I915_WRITE16(IER, 0x0);
3706         POSTING_READ16(IER);
3707 }
3708
3709 static int i8xx_irq_postinstall(struct drm_device *dev)
3710 {
3711         struct drm_i915_private *dev_priv = dev->dev_private;
3712
3713         I915_WRITE16(EMR,
3714                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3715
3716         /* Unmask the interrupts that we always want on. */
3717         dev_priv->irq_mask =
3718                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3719                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3720                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3721                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3722                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3723         I915_WRITE16(IMR, dev_priv->irq_mask);
3724
3725         I915_WRITE16(IER,
3726                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3727                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3728                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3729                      I915_USER_INTERRUPT);
3730         POSTING_READ16(IER);
3731
3732         /* Interrupt setup is already guaranteed to be single-threaded, this is
3733          * just to make the assert_spin_locked check happy. */
3734         spin_lock_irq(&dev_priv->irq_lock);
3735         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3736         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3737         spin_unlock_irq(&dev_priv->irq_lock);
3738
3739         return 0;
3740 }
3741
3742 /*
3743  * Returns true when a page flip has completed.
3744  */
3745 static bool i8xx_handle_vblank(struct drm_device *dev,
3746                                int plane, int pipe, u32 iir)
3747 {
3748         struct drm_i915_private *dev_priv = dev->dev_private;
3749         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3750
3751         if (!intel_pipe_handle_vblank(dev, pipe))
3752                 return false;
3753
3754         if ((iir & flip_pending) == 0)
3755                 goto check_page_flip;
3756
3757         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3758          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3759          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3760          * the flip is completed (no longer pending). Since this doesn't raise
3761          * an interrupt per se, we watch for the change at vblank.
3762          */
3763         if (I915_READ16(ISR) & flip_pending)
3764                 goto check_page_flip;
3765
3766         intel_prepare_page_flip(dev, plane);
3767         intel_finish_page_flip(dev, pipe);
3768         return true;
3769
3770 check_page_flip:
3771         intel_check_page_flip(dev, pipe);
3772         return false;
3773 }
3774
3775 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3776 {
3777         struct drm_device *dev = arg;
3778         struct drm_i915_private *dev_priv = dev->dev_private;
3779         u16 iir, new_iir;
3780         u32 pipe_stats[2];
3781         int pipe;
3782         u16 flip_mask =
3783                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3784                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3785
3786         if (!intel_irqs_enabled(dev_priv))
3787                 return IRQ_NONE;
3788
3789         iir = I915_READ16(IIR);
3790         if (iir == 0)
3791                 return IRQ_NONE;
3792
3793         while (iir & ~flip_mask) {
3794                 /* Can't rely on pipestat interrupt bit in iir as it might
3795                  * have been cleared after the pipestat interrupt was received.
3796                  * It doesn't set the bit in iir again, but it still produces
3797                  * interrupts (for non-MSI).
3798                  */
3799                 spin_lock(&dev_priv->irq_lock);
3800                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3801                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3802
3803                 for_each_pipe(dev_priv, pipe) {
3804                         int reg = PIPESTAT(pipe);
3805                         pipe_stats[pipe] = I915_READ(reg);
3806
3807                         /*
3808                          * Clear the PIPE*STAT regs before the IIR
3809                          */
3810                         if (pipe_stats[pipe] & 0x8000ffff)
3811                                 I915_WRITE(reg, pipe_stats[pipe]);
3812                 }
3813                 spin_unlock(&dev_priv->irq_lock);
3814
3815                 I915_WRITE16(IIR, iir & ~flip_mask);
3816                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3817
3818                 if (iir & I915_USER_INTERRUPT)
3819                         notify_ring(dev, &dev_priv->ring[RCS]);
3820
3821                 for_each_pipe(dev_priv, pipe) {
3822                         int plane = pipe;
3823                         if (HAS_FBC(dev))
3824                                 plane = !plane;
3825
3826                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3827                             i8xx_handle_vblank(dev, plane, pipe, iir))
3828                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3829
3830                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3831                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3832
3833                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3834                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3835                                                                     pipe);
3836                 }
3837
3838                 iir = new_iir;
3839         }
3840
3841         return IRQ_HANDLED;
3842 }
3843
3844 static void i8xx_irq_uninstall(struct drm_device * dev)
3845 {
3846         struct drm_i915_private *dev_priv = dev->dev_private;
3847         int pipe;
3848
3849         for_each_pipe(dev_priv, pipe) {
3850                 /* Clear enable bits; then clear status bits */
3851                 I915_WRITE(PIPESTAT(pipe), 0);
3852                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3853         }
3854         I915_WRITE16(IMR, 0xffff);
3855         I915_WRITE16(IER, 0x0);
3856         I915_WRITE16(IIR, I915_READ16(IIR));
3857 }
3858
3859 static void i915_irq_preinstall(struct drm_device * dev)
3860 {
3861         struct drm_i915_private *dev_priv = dev->dev_private;
3862         int pipe;
3863
3864         if (I915_HAS_HOTPLUG(dev)) {
3865                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3866                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3867         }
3868
3869         I915_WRITE16(HWSTAM, 0xeffe);
3870         for_each_pipe(dev_priv, pipe)
3871                 I915_WRITE(PIPESTAT(pipe), 0);
3872         I915_WRITE(IMR, 0xffffffff);
3873         I915_WRITE(IER, 0x0);
3874         POSTING_READ(IER);
3875 }
3876
3877 static int i915_irq_postinstall(struct drm_device *dev)
3878 {
3879         struct drm_i915_private *dev_priv = dev->dev_private;
3880         u32 enable_mask;
3881
3882         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3883
3884         /* Unmask the interrupts that we always want on. */
3885         dev_priv->irq_mask =
3886                 ~(I915_ASLE_INTERRUPT |
3887                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3888                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3889                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3890                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3891                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3892
3893         enable_mask =
3894                 I915_ASLE_INTERRUPT |
3895                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3896                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3897                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3898                 I915_USER_INTERRUPT;
3899
3900         if (I915_HAS_HOTPLUG(dev)) {
3901                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3902                 POSTING_READ(PORT_HOTPLUG_EN);
3903
3904                 /* Enable in IER... */
3905                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3906                 /* and unmask in IMR */
3907                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3908         }
3909
3910         I915_WRITE(IMR, dev_priv->irq_mask);
3911         I915_WRITE(IER, enable_mask);
3912         POSTING_READ(IER);
3913
3914         i915_enable_asle_pipestat(dev);
3915
3916         /* Interrupt setup is already guaranteed to be single-threaded, this is
3917          * just to make the assert_spin_locked check happy. */
3918         spin_lock_irq(&dev_priv->irq_lock);
3919         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3920         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3921         spin_unlock_irq(&dev_priv->irq_lock);
3922
3923         return 0;
3924 }
3925
3926 /*
3927  * Returns true when a page flip has completed.
3928  */
3929 static bool i915_handle_vblank(struct drm_device *dev,
3930                                int plane, int pipe, u32 iir)
3931 {
3932         struct drm_i915_private *dev_priv = dev->dev_private;
3933         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3934
3935         if (!intel_pipe_handle_vblank(dev, pipe))
3936                 return false;
3937
3938         if ((iir & flip_pending) == 0)
3939                 goto check_page_flip;
3940
3941         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3942          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3943          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3944          * the flip is completed (no longer pending). Since this doesn't raise
3945          * an interrupt per se, we watch for the change at vblank.
3946          */
3947         if (I915_READ(ISR) & flip_pending)
3948                 goto check_page_flip;
3949
3950         intel_prepare_page_flip(dev, plane);
3951         intel_finish_page_flip(dev, pipe);
3952         return true;
3953
3954 check_page_flip:
3955         intel_check_page_flip(dev, pipe);
3956         return false;
3957 }
3958
3959 static irqreturn_t i915_irq_handler(int irq, void *arg)
3960 {
3961         struct drm_device *dev = arg;
3962         struct drm_i915_private *dev_priv = dev->dev_private;
3963         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3964         u32 flip_mask =
3965                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3966                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3967         int pipe, ret = IRQ_NONE;
3968
3969         if (!intel_irqs_enabled(dev_priv))
3970                 return IRQ_NONE;
3971
3972         iir = I915_READ(IIR);
3973         do {
3974                 bool irq_received = (iir & ~flip_mask) != 0;
3975                 bool blc_event = false;
3976
3977                 /* Can't rely on pipestat interrupt bit in iir as it might
3978                  * have been cleared after the pipestat interrupt was received.
3979                  * It doesn't set the bit in iir again, but it still produces
3980                  * interrupts (for non-MSI).
3981                  */
3982                 spin_lock(&dev_priv->irq_lock);
3983                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3984                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3985
3986                 for_each_pipe(dev_priv, pipe) {
3987                         int reg = PIPESTAT(pipe);
3988                         pipe_stats[pipe] = I915_READ(reg);
3989
3990                         /* Clear the PIPE*STAT regs before the IIR */
3991                         if (pipe_stats[pipe] & 0x8000ffff) {
3992                                 I915_WRITE(reg, pipe_stats[pipe]);
3993                                 irq_received = true;
3994                         }
3995                 }
3996                 spin_unlock(&dev_priv->irq_lock);
3997
3998                 if (!irq_received)
3999                         break;
4000
4001                 /* Consume port.  Then clear IIR or we'll miss events */
4002                 if (I915_HAS_HOTPLUG(dev) &&
4003                     iir & I915_DISPLAY_PORT_INTERRUPT)
4004                         i9xx_hpd_irq_handler(dev);
4005
4006                 I915_WRITE(IIR, iir & ~flip_mask);
4007                 new_iir = I915_READ(IIR); /* Flush posted writes */
4008
4009                 if (iir & I915_USER_INTERRUPT)
4010                         notify_ring(dev, &dev_priv->ring[RCS]);
4011
4012                 for_each_pipe(dev_priv, pipe) {
4013                         int plane = pipe;
4014                         if (HAS_FBC(dev))
4015                                 plane = !plane;
4016
4017                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4018                             i915_handle_vblank(dev, plane, pipe, iir))
4019                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4020
4021                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4022                                 blc_event = true;
4023
4024                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4025                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4026
4027                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4028                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4029                                                                     pipe);
4030                 }
4031
4032                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4033                         intel_opregion_asle_intr(dev);
4034
4035                 /* With MSI, interrupts are only generated when iir
4036                  * transitions from zero to nonzero.  If another bit got
4037                  * set while we were handling the existing iir bits, then
4038                  * we would never get another interrupt.
4039                  *
4040                  * This is fine on non-MSI as well, as if we hit this path
4041                  * we avoid exiting the interrupt handler only to generate
4042                  * another one.
4043                  *
4044                  * Note that for MSI this could cause a stray interrupt report
4045                  * if an interrupt landed in the time between writing IIR and
4046                  * the posting read.  This should be rare enough to never
4047                  * trigger the 99% of 100,000 interrupts test for disabling
4048                  * stray interrupts.
4049                  */
4050                 ret = IRQ_HANDLED;
4051                 iir = new_iir;
4052         } while (iir & ~flip_mask);
4053
4054         return ret;
4055 }
4056
4057 static void i915_irq_uninstall(struct drm_device * dev)
4058 {
4059         struct drm_i915_private *dev_priv = dev->dev_private;
4060         int pipe;
4061
4062         if (I915_HAS_HOTPLUG(dev)) {
4063                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4064                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4065         }
4066
4067         I915_WRITE16(HWSTAM, 0xffff);
4068         for_each_pipe(dev_priv, pipe) {
4069                 /* Clear enable bits; then clear status bits */
4070                 I915_WRITE(PIPESTAT(pipe), 0);
4071                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4072         }
4073         I915_WRITE(IMR, 0xffffffff);
4074         I915_WRITE(IER, 0x0);
4075
4076         I915_WRITE(IIR, I915_READ(IIR));
4077 }
4078
4079 static void i965_irq_preinstall(struct drm_device * dev)
4080 {
4081         struct drm_i915_private *dev_priv = dev->dev_private;
4082         int pipe;
4083
4084         I915_WRITE(PORT_HOTPLUG_EN, 0);
4085         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4086
4087         I915_WRITE(HWSTAM, 0xeffe);
4088         for_each_pipe(dev_priv, pipe)
4089                 I915_WRITE(PIPESTAT(pipe), 0);
4090         I915_WRITE(IMR, 0xffffffff);
4091         I915_WRITE(IER, 0x0);
4092         POSTING_READ(IER);
4093 }
4094
4095 static int i965_irq_postinstall(struct drm_device *dev)
4096 {
4097         struct drm_i915_private *dev_priv = dev->dev_private;
4098         u32 enable_mask;
4099         u32 error_mask;
4100
4101         /* Unmask the interrupts that we always want on. */
4102         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4103                                I915_DISPLAY_PORT_INTERRUPT |
4104                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4105                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4106                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4107                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4108                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4109
4110         enable_mask = ~dev_priv->irq_mask;
4111         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4112                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4113         enable_mask |= I915_USER_INTERRUPT;
4114
4115         if (IS_G4X(dev))
4116                 enable_mask |= I915_BSD_USER_INTERRUPT;
4117
4118         /* Interrupt setup is already guaranteed to be single-threaded, this is
4119          * just to make the assert_spin_locked check happy. */
4120         spin_lock_irq(&dev_priv->irq_lock);
4121         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4122         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4123         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4124         spin_unlock_irq(&dev_priv->irq_lock);
4125
4126         /*
4127          * Enable some error detection, note the instruction error mask
4128          * bit is reserved, so we leave it masked.
4129          */
4130         if (IS_G4X(dev)) {
4131                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4132                                GM45_ERROR_MEM_PRIV |
4133                                GM45_ERROR_CP_PRIV |
4134                                I915_ERROR_MEMORY_REFRESH);
4135         } else {
4136                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4137                                I915_ERROR_MEMORY_REFRESH);
4138         }
4139         I915_WRITE(EMR, error_mask);
4140
4141         I915_WRITE(IMR, dev_priv->irq_mask);
4142         I915_WRITE(IER, enable_mask);
4143         POSTING_READ(IER);
4144
4145         I915_WRITE(PORT_HOTPLUG_EN, 0);
4146         POSTING_READ(PORT_HOTPLUG_EN);
4147
4148         i915_enable_asle_pipestat(dev);
4149
4150         return 0;
4151 }
4152
4153 static void i915_hpd_irq_setup(struct drm_device *dev)
4154 {
4155         struct drm_i915_private *dev_priv = dev->dev_private;
4156         struct intel_encoder *intel_encoder;
4157         u32 hotplug_en;
4158
4159         assert_spin_locked(&dev_priv->irq_lock);
4160
4161         hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4162         hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4163         /* Note HDMI and DP share hotplug bits */
4164         /* enable bits are the same for all generations */
4165         for_each_intel_encoder(dev, intel_encoder)
4166                 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4167                         hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4168         /* Programming the CRT detection parameters tends
4169            to generate a spurious hotplug event about three
4170            seconds later.  So just do it once.
4171         */
4172         if (IS_G4X(dev))
4173                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4174         hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4175         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4176
4177         /* Ignore TV since it's buggy */
4178         I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4179 }
4180
4181 static irqreturn_t i965_irq_handler(int irq, void *arg)
4182 {
4183         struct drm_device *dev = arg;
4184         struct drm_i915_private *dev_priv = dev->dev_private;
4185         u32 iir, new_iir;
4186         u32 pipe_stats[I915_MAX_PIPES];
4187         int ret = IRQ_NONE, pipe;
4188         u32 flip_mask =
4189                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4190                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4191
4192         if (!intel_irqs_enabled(dev_priv))
4193                 return IRQ_NONE;
4194
4195         iir = I915_READ(IIR);
4196
4197         for (;;) {
4198                 bool irq_received = (iir & ~flip_mask) != 0;
4199                 bool blc_event = false;
4200
4201                 /* Can't rely on pipestat interrupt bit in iir as it might
4202                  * have been cleared after the pipestat interrupt was received.
4203                  * It doesn't set the bit in iir again, but it still produces
4204                  * interrupts (for non-MSI).
4205                  */
4206                 spin_lock(&dev_priv->irq_lock);
4207                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4208                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4209
4210                 for_each_pipe(dev_priv, pipe) {
4211                         int reg = PIPESTAT(pipe);
4212                         pipe_stats[pipe] = I915_READ(reg);
4213
4214                         /*
4215                          * Clear the PIPE*STAT regs before the IIR
4216                          */
4217                         if (pipe_stats[pipe] & 0x8000ffff) {
4218                                 I915_WRITE(reg, pipe_stats[pipe]);
4219                                 irq_received = true;
4220                         }
4221                 }
4222                 spin_unlock(&dev_priv->irq_lock);
4223
4224                 if (!irq_received)
4225                         break;
4226
4227                 ret = IRQ_HANDLED;
4228
4229                 /* Consume port.  Then clear IIR or we'll miss events */
4230                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4231                         i9xx_hpd_irq_handler(dev);
4232
4233                 I915_WRITE(IIR, iir & ~flip_mask);
4234                 new_iir = I915_READ(IIR); /* Flush posted writes */
4235
4236                 if (iir & I915_USER_INTERRUPT)
4237                         notify_ring(dev, &dev_priv->ring[RCS]);
4238                 if (iir & I915_BSD_USER_INTERRUPT)
4239                         notify_ring(dev, &dev_priv->ring[VCS]);
4240
4241                 for_each_pipe(dev_priv, pipe) {
4242                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4243                             i915_handle_vblank(dev, pipe, pipe, iir))
4244                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4245
4246                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4247                                 blc_event = true;
4248
4249                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4250                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4251
4252                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4253                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4254                 }
4255
4256                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4257                         intel_opregion_asle_intr(dev);
4258
4259                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4260                         gmbus_irq_handler(dev);
4261
4262                 /* With MSI, interrupts are only generated when iir
4263                  * transitions from zero to nonzero.  If another bit got
4264                  * set while we were handling the existing iir bits, then
4265                  * we would never get another interrupt.
4266                  *
4267                  * This is fine on non-MSI as well, as if we hit this path
4268                  * we avoid exiting the interrupt handler only to generate
4269                  * another one.
4270                  *
4271                  * Note that for MSI this could cause a stray interrupt report
4272                  * if an interrupt landed in the time between writing IIR and
4273                  * the posting read.  This should be rare enough to never
4274                  * trigger the 99% of 100,000 interrupts test for disabling
4275                  * stray interrupts.
4276                  */
4277                 iir = new_iir;
4278         }
4279
4280         return ret;
4281 }
4282
4283 static void i965_irq_uninstall(struct drm_device * dev)
4284 {
4285         struct drm_i915_private *dev_priv = dev->dev_private;
4286         int pipe;
4287
4288         if (!dev_priv)
4289                 return;
4290
4291         I915_WRITE(PORT_HOTPLUG_EN, 0);
4292         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4293
4294         I915_WRITE(HWSTAM, 0xffffffff);
4295         for_each_pipe(dev_priv, pipe)
4296                 I915_WRITE(PIPESTAT(pipe), 0);
4297         I915_WRITE(IMR, 0xffffffff);
4298         I915_WRITE(IER, 0x0);
4299
4300         for_each_pipe(dev_priv, pipe)
4301                 I915_WRITE(PIPESTAT(pipe),
4302                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4303         I915_WRITE(IIR, I915_READ(IIR));
4304 }
4305
4306 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4307 {
4308         struct drm_i915_private *dev_priv =
4309                 container_of(work, typeof(*dev_priv),
4310                              hotplug_reenable_work.work);
4311         struct drm_device *dev = dev_priv->dev;
4312         struct drm_mode_config *mode_config = &dev->mode_config;
4313         int i;
4314
4315         intel_runtime_pm_get(dev_priv);
4316
4317         spin_lock_irq(&dev_priv->irq_lock);
4318         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4319                 struct drm_connector *connector;
4320
4321                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4322                         continue;
4323
4324                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4325
4326                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4327                         struct intel_connector *intel_connector = to_intel_connector(connector);
4328
4329                         if (intel_connector->encoder->hpd_pin == i) {
4330                                 if (connector->polled != intel_connector->polled)
4331                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4332                                                          connector->name);
4333                                 connector->polled = intel_connector->polled;
4334                                 if (!connector->polled)
4335                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4336                         }
4337                 }
4338         }
4339         if (dev_priv->display.hpd_irq_setup)
4340                 dev_priv->display.hpd_irq_setup(dev);
4341         spin_unlock_irq(&dev_priv->irq_lock);
4342
4343         intel_runtime_pm_put(dev_priv);
4344 }
4345
4346 /**
4347  * intel_irq_init - initializes irq support
4348  * @dev_priv: i915 device instance
4349  *
4350  * This function initializes all the irq support including work items, timers
4351  * and all the vtables. It does not setup the interrupt itself though.
4352  */
4353 void intel_irq_init(struct drm_i915_private *dev_priv)
4354 {
4355         struct drm_device *dev = dev_priv->dev;
4356
4357         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4358         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4359         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4360         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4361
4362         /* Let's track the enabled rps events */
4363         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4364                 /* WaGsvRC0ResidencyMethod:vlv */
4365                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4366         else
4367                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4368
4369         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4370                           i915_hangcheck_elapsed);
4371         INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4372                           intel_hpd_irq_reenable_work);
4373
4374         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4375
4376         if (IS_GEN2(dev_priv)) {
4377                 dev->max_vblank_count = 0;
4378                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4379         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4380                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4381                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4382         } else {
4383                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4384                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4385         }
4386
4387         /*
4388          * Opt out of the vblank disable timer on everything except gen2.
4389          * Gen2 doesn't have a hardware frame counter and so depends on
4390          * vblank interrupts to produce sane vblank seuquence numbers.
4391          */
4392         if (!IS_GEN2(dev_priv))
4393                 dev->vblank_disable_immediate = true;
4394
4395         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4396                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4397                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4398         }
4399
4400         if (IS_CHERRYVIEW(dev_priv)) {
4401                 dev->driver->irq_handler = cherryview_irq_handler;
4402                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4403                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4404                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4405                 dev->driver->enable_vblank = valleyview_enable_vblank;
4406                 dev->driver->disable_vblank = valleyview_disable_vblank;
4407                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4408         } else if (IS_VALLEYVIEW(dev_priv)) {
4409                 dev->driver->irq_handler = valleyview_irq_handler;
4410                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4411                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4412                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4413                 dev->driver->enable_vblank = valleyview_enable_vblank;
4414                 dev->driver->disable_vblank = valleyview_disable_vblank;
4415                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4416         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4417                 dev->driver->irq_handler = gen8_irq_handler;
4418                 dev->driver->irq_preinstall = gen8_irq_reset;
4419                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4420                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4421                 dev->driver->enable_vblank = gen8_enable_vblank;
4422                 dev->driver->disable_vblank = gen8_disable_vblank;
4423                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4424         } else if (HAS_PCH_SPLIT(dev)) {
4425                 dev->driver->irq_handler = ironlake_irq_handler;
4426                 dev->driver->irq_preinstall = ironlake_irq_reset;
4427                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4428                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4429                 dev->driver->enable_vblank = ironlake_enable_vblank;
4430                 dev->driver->disable_vblank = ironlake_disable_vblank;
4431                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4432         } else {
4433                 if (INTEL_INFO(dev_priv)->gen == 2) {
4434                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4435                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4436                         dev->driver->irq_handler = i8xx_irq_handler;
4437                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4438                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4439                         dev->driver->irq_preinstall = i915_irq_preinstall;
4440                         dev->driver->irq_postinstall = i915_irq_postinstall;
4441                         dev->driver->irq_uninstall = i915_irq_uninstall;
4442                         dev->driver->irq_handler = i915_irq_handler;
4443                 } else {
4444                         dev->driver->irq_preinstall = i965_irq_preinstall;
4445                         dev->driver->irq_postinstall = i965_irq_postinstall;
4446                         dev->driver->irq_uninstall = i965_irq_uninstall;
4447                         dev->driver->irq_handler = i965_irq_handler;
4448                 }
4449                 if (I915_HAS_HOTPLUG(dev_priv))
4450                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4451                 dev->driver->enable_vblank = i915_enable_vblank;
4452                 dev->driver->disable_vblank = i915_disable_vblank;
4453         }
4454 }
4455
4456 /**
4457  * intel_hpd_init - initializes and enables hpd support
4458  * @dev_priv: i915 device instance
4459  *
4460  * This function enables the hotplug support. It requires that interrupts have
4461  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4462  * poll request can run concurrently to other code, so locking rules must be
4463  * obeyed.
4464  *
4465  * This is a separate step from interrupt enabling to simplify the locking rules
4466  * in the driver load and resume code.
4467  */
4468 void intel_hpd_init(struct drm_i915_private *dev_priv)
4469 {
4470         struct drm_device *dev = dev_priv->dev;
4471         struct drm_mode_config *mode_config = &dev->mode_config;
4472         struct drm_connector *connector;
4473         int i;
4474
4475         for (i = 1; i < HPD_NUM_PINS; i++) {
4476                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4477                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4478         }
4479         list_for_each_entry(connector, &mode_config->connector_list, head) {
4480                 struct intel_connector *intel_connector = to_intel_connector(connector);
4481                 connector->polled = intel_connector->polled;
4482                 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4483                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4484                 if (intel_connector->mst_port)
4485                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4486         }
4487
4488         /* Interrupt setup is already guaranteed to be single-threaded, this is
4489          * just to make the assert_spin_locked checks happy. */
4490         spin_lock_irq(&dev_priv->irq_lock);
4491         if (dev_priv->display.hpd_irq_setup)
4492                 dev_priv->display.hpd_irq_setup(dev);
4493         spin_unlock_irq(&dev_priv->irq_lock);
4494 }
4495
4496 /**
4497  * intel_irq_install - enables the hardware interrupt
4498  * @dev_priv: i915 device instance
4499  *
4500  * This function enables the hardware interrupt handling, but leaves the hotplug
4501  * handling still disabled. It is called after intel_irq_init().
4502  *
4503  * In the driver load and resume code we need working interrupts in a few places
4504  * but don't want to deal with the hassle of concurrent probe and hotplug
4505  * workers. Hence the split into this two-stage approach.
4506  */
4507 int intel_irq_install(struct drm_i915_private *dev_priv)
4508 {
4509         /*
4510          * We enable some interrupt sources in our postinstall hooks, so mark
4511          * interrupts as enabled _before_ actually enabling them to avoid
4512          * special cases in our ordering checks.
4513          */
4514         dev_priv->pm.irqs_enabled = true;
4515
4516         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4517 }
4518
4519 /**
4520  * intel_irq_uninstall - finilizes all irq handling
4521  * @dev_priv: i915 device instance
4522  *
4523  * This stops interrupt and hotplug handling and unregisters and frees all
4524  * resources acquired in the init functions.
4525  */
4526 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4527 {
4528         drm_irq_uninstall(dev_priv->dev);
4529         intel_hpd_cancel_work(dev_priv);
4530         dev_priv->pm.irqs_enabled = false;
4531 }
4532
4533 /**
4534  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4535  * @dev_priv: i915 device instance
4536  *
4537  * This function is used to disable interrupts at runtime, both in the runtime
4538  * pm and the system suspend/resume code.
4539  */
4540 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4541 {
4542         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4543         dev_priv->pm.irqs_enabled = false;
4544         synchronize_irq(dev_priv->dev->irq);
4545 }
4546
4547 /**
4548  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4549  * @dev_priv: i915 device instance
4550  *
4551  * This function is used to enable interrupts at runtime, both in the runtime
4552  * pm and the system suspend/resume code.
4553  */
4554 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4555 {
4556         dev_priv->pm.irqs_enabled = true;
4557         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4558         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4559 }