]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
81358ca2adfbf729b8a08f2cb5cbf06a9e346b26
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75         DRM_FORMAT_YUYV,
76         DRM_FORMAT_YVYU,
77         DRM_FORMAT_UYVY,
78         DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83         DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
120 typedef struct {
121         int     min, max;
122 } intel_range_t;
123
124 typedef struct {
125         int     dot_limit;
126         int     p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
132         intel_p2_t          p2;
133 };
134
135 /* returns HPLL frequency in kHz */
136 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
137 {
138         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
139
140         /* Obtain SKU information */
141         mutex_lock(&dev_priv->sb_lock);
142         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
143                 CCK_FUSE_HPLL_FREQ_MASK;
144         mutex_unlock(&dev_priv->sb_lock);
145
146         return vco_freq[hpll_freq] * 1000;
147 }
148
149 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
150                                   const char *name, u32 reg)
151 {
152         u32 val;
153         int divider;
154
155         if (dev_priv->hpll_freq == 0)
156                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
157
158         mutex_lock(&dev_priv->sb_lock);
159         val = vlv_cck_read(dev_priv, reg);
160         mutex_unlock(&dev_priv->sb_lock);
161
162         divider = val & CCK_FREQUENCY_VALUES;
163
164         WARN((val & CCK_FREQUENCY_STATUS) !=
165              (divider << CCK_FREQUENCY_STATUS_SHIFT),
166              "%s change in progress\n", name);
167
168         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
169 }
170
171 int
172 intel_pch_rawclk(struct drm_device *dev)
173 {
174         struct drm_i915_private *dev_priv = dev->dev_private;
175
176         WARN_ON(!HAS_PCH_SPLIT(dev));
177
178         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
179 }
180
181 /* hrawclock is 1/4 the FSB frequency */
182 int intel_hrawclk(struct drm_device *dev)
183 {
184         struct drm_i915_private *dev_priv = dev->dev_private;
185         uint32_t clkcfg;
186
187         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188         if (IS_VALLEYVIEW(dev))
189                 return 200;
190
191         clkcfg = I915_READ(CLKCFG);
192         switch (clkcfg & CLKCFG_FSB_MASK) {
193         case CLKCFG_FSB_400:
194                 return 100;
195         case CLKCFG_FSB_533:
196                 return 133;
197         case CLKCFG_FSB_667:
198                 return 166;
199         case CLKCFG_FSB_800:
200                 return 200;
201         case CLKCFG_FSB_1067:
202                 return 266;
203         case CLKCFG_FSB_1333:
204                 return 333;
205         /* these two are just a guess; one of them might be right */
206         case CLKCFG_FSB_1600:
207         case CLKCFG_FSB_1600_ALT:
208                 return 400;
209         default:
210                 return 133;
211         }
212 }
213
214 static void intel_update_czclk(struct drm_i915_private *dev_priv)
215 {
216         if (!IS_VALLEYVIEW(dev_priv))
217                 return;
218
219         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
220                                                       CCK_CZ_CLOCK_CONTROL);
221
222         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
223 }
224
225 static inline u32 /* units of 100MHz */
226 intel_fdi_link_freq(struct drm_device *dev)
227 {
228         if (IS_GEN5(dev)) {
229                 struct drm_i915_private *dev_priv = dev->dev_private;
230                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
231         } else
232                 return 27;
233 }
234
235 static const intel_limit_t intel_limits_i8xx_dac = {
236         .dot = { .min = 25000, .max = 350000 },
237         .vco = { .min = 908000, .max = 1512000 },
238         .n = { .min = 2, .max = 16 },
239         .m = { .min = 96, .max = 140 },
240         .m1 = { .min = 18, .max = 26 },
241         .m2 = { .min = 6, .max = 16 },
242         .p = { .min = 4, .max = 128 },
243         .p1 = { .min = 2, .max = 33 },
244         .p2 = { .dot_limit = 165000,
245                 .p2_slow = 4, .p2_fast = 2 },
246 };
247
248 static const intel_limit_t intel_limits_i8xx_dvo = {
249         .dot = { .min = 25000, .max = 350000 },
250         .vco = { .min = 908000, .max = 1512000 },
251         .n = { .min = 2, .max = 16 },
252         .m = { .min = 96, .max = 140 },
253         .m1 = { .min = 18, .max = 26 },
254         .m2 = { .min = 6, .max = 16 },
255         .p = { .min = 4, .max = 128 },
256         .p1 = { .min = 2, .max = 33 },
257         .p2 = { .dot_limit = 165000,
258                 .p2_slow = 4, .p2_fast = 4 },
259 };
260
261 static const intel_limit_t intel_limits_i8xx_lvds = {
262         .dot = { .min = 25000, .max = 350000 },
263         .vco = { .min = 908000, .max = 1512000 },
264         .n = { .min = 2, .max = 16 },
265         .m = { .min = 96, .max = 140 },
266         .m1 = { .min = 18, .max = 26 },
267         .m2 = { .min = 6, .max = 16 },
268         .p = { .min = 4, .max = 128 },
269         .p1 = { .min = 1, .max = 6 },
270         .p2 = { .dot_limit = 165000,
271                 .p2_slow = 14, .p2_fast = 7 },
272 };
273
274 static const intel_limit_t intel_limits_i9xx_sdvo = {
275         .dot = { .min = 20000, .max = 400000 },
276         .vco = { .min = 1400000, .max = 2800000 },
277         .n = { .min = 1, .max = 6 },
278         .m = { .min = 70, .max = 120 },
279         .m1 = { .min = 8, .max = 18 },
280         .m2 = { .min = 3, .max = 7 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 200000,
284                 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_i9xx_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1400000, .max = 2800000 },
290         .n = { .min = 1, .max = 6 },
291         .m = { .min = 70, .max = 120 },
292         .m1 = { .min = 8, .max = 18 },
293         .m2 = { .min = 3, .max = 7 },
294         .p = { .min = 7, .max = 98 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 7 },
298 };
299
300
301 static const intel_limit_t intel_limits_g4x_sdvo = {
302         .dot = { .min = 25000, .max = 270000 },
303         .vco = { .min = 1750000, .max = 3500000},
304         .n = { .min = 1, .max = 4 },
305         .m = { .min = 104, .max = 138 },
306         .m1 = { .min = 17, .max = 23 },
307         .m2 = { .min = 5, .max = 11 },
308         .p = { .min = 10, .max = 30 },
309         .p1 = { .min = 1, .max = 3},
310         .p2 = { .dot_limit = 270000,
311                 .p2_slow = 10,
312                 .p2_fast = 10
313         },
314 };
315
316 static const intel_limit_t intel_limits_g4x_hdmi = {
317         .dot = { .min = 22000, .max = 400000 },
318         .vco = { .min = 1750000, .max = 3500000},
319         .n = { .min = 1, .max = 4 },
320         .m = { .min = 104, .max = 138 },
321         .m1 = { .min = 16, .max = 23 },
322         .m2 = { .min = 5, .max = 11 },
323         .p = { .min = 5, .max = 80 },
324         .p1 = { .min = 1, .max = 8},
325         .p2 = { .dot_limit = 165000,
326                 .p2_slow = 10, .p2_fast = 5 },
327 };
328
329 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
330         .dot = { .min = 20000, .max = 115000 },
331         .vco = { .min = 1750000, .max = 3500000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 104, .max = 138 },
334         .m1 = { .min = 17, .max = 23 },
335         .m2 = { .min = 5, .max = 11 },
336         .p = { .min = 28, .max = 112 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 0,
339                 .p2_slow = 14, .p2_fast = 14
340         },
341 };
342
343 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
344         .dot = { .min = 80000, .max = 224000 },
345         .vco = { .min = 1750000, .max = 3500000 },
346         .n = { .min = 1, .max = 3 },
347         .m = { .min = 104, .max = 138 },
348         .m1 = { .min = 17, .max = 23 },
349         .m2 = { .min = 5, .max = 11 },
350         .p = { .min = 14, .max = 42 },
351         .p1 = { .min = 2, .max = 6 },
352         .p2 = { .dot_limit = 0,
353                 .p2_slow = 7, .p2_fast = 7
354         },
355 };
356
357 static const intel_limit_t intel_limits_pineview_sdvo = {
358         .dot = { .min = 20000, .max = 400000},
359         .vco = { .min = 1700000, .max = 3500000 },
360         /* Pineview's Ncounter is a ring counter */
361         .n = { .min = 3, .max = 6 },
362         .m = { .min = 2, .max = 256 },
363         /* Pineview only has one combined m divider, which we treat as m2. */
364         .m1 = { .min = 0, .max = 0 },
365         .m2 = { .min = 0, .max = 254 },
366         .p = { .min = 5, .max = 80 },
367         .p1 = { .min = 1, .max = 8 },
368         .p2 = { .dot_limit = 200000,
369                 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const intel_limit_t intel_limits_pineview_lvds = {
373         .dot = { .min = 20000, .max = 400000 },
374         .vco = { .min = 1700000, .max = 3500000 },
375         .n = { .min = 3, .max = 6 },
376         .m = { .min = 2, .max = 256 },
377         .m1 = { .min = 0, .max = 0 },
378         .m2 = { .min = 0, .max = 254 },
379         .p = { .min = 7, .max = 112 },
380         .p1 = { .min = 1, .max = 8 },
381         .p2 = { .dot_limit = 112000,
382                 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 /* Ironlake / Sandybridge
386  *
387  * We calculate clock using (register_value + 2) for N/M1/M2, so here
388  * the range value for them is (actual_value - 2).
389  */
390 static const intel_limit_t intel_limits_ironlake_dac = {
391         .dot = { .min = 25000, .max = 350000 },
392         .vco = { .min = 1760000, .max = 3510000 },
393         .n = { .min = 1, .max = 5 },
394         .m = { .min = 79, .max = 127 },
395         .m1 = { .min = 12, .max = 22 },
396         .m2 = { .min = 5, .max = 9 },
397         .p = { .min = 5, .max = 80 },
398         .p1 = { .min = 1, .max = 8 },
399         .p2 = { .dot_limit = 225000,
400                 .p2_slow = 10, .p2_fast = 5 },
401 };
402
403 static const intel_limit_t intel_limits_ironlake_single_lvds = {
404         .dot = { .min = 25000, .max = 350000 },
405         .vco = { .min = 1760000, .max = 3510000 },
406         .n = { .min = 1, .max = 3 },
407         .m = { .min = 79, .max = 118 },
408         .m1 = { .min = 12, .max = 22 },
409         .m2 = { .min = 5, .max = 9 },
410         .p = { .min = 28, .max = 112 },
411         .p1 = { .min = 2, .max = 8 },
412         .p2 = { .dot_limit = 225000,
413                 .p2_slow = 14, .p2_fast = 14 },
414 };
415
416 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
417         .dot = { .min = 25000, .max = 350000 },
418         .vco = { .min = 1760000, .max = 3510000 },
419         .n = { .min = 1, .max = 3 },
420         .m = { .min = 79, .max = 127 },
421         .m1 = { .min = 12, .max = 22 },
422         .m2 = { .min = 5, .max = 9 },
423         .p = { .min = 14, .max = 56 },
424         .p1 = { .min = 2, .max = 8 },
425         .p2 = { .dot_limit = 225000,
426                 .p2_slow = 7, .p2_fast = 7 },
427 };
428
429 /* LVDS 100mhz refclk limits. */
430 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
431         .dot = { .min = 25000, .max = 350000 },
432         .vco = { .min = 1760000, .max = 3510000 },
433         .n = { .min = 1, .max = 2 },
434         .m = { .min = 79, .max = 126 },
435         .m1 = { .min = 12, .max = 22 },
436         .m2 = { .min = 5, .max = 9 },
437         .p = { .min = 28, .max = 112 },
438         .p1 = { .min = 2, .max = 8 },
439         .p2 = { .dot_limit = 225000,
440                 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
444         .dot = { .min = 25000, .max = 350000 },
445         .vco = { .min = 1760000, .max = 3510000 },
446         .n = { .min = 1, .max = 3 },
447         .m = { .min = 79, .max = 126 },
448         .m1 = { .min = 12, .max = 22 },
449         .m2 = { .min = 5, .max = 9 },
450         .p = { .min = 14, .max = 42 },
451         .p1 = { .min = 2, .max = 6 },
452         .p2 = { .dot_limit = 225000,
453                 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 static const intel_limit_t intel_limits_vlv = {
457          /*
458           * These are the data rate limits (measured in fast clocks)
459           * since those are the strictest limits we have. The fast
460           * clock and actual rate limits are more relaxed, so checking
461           * them would make no difference.
462           */
463         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
464         .vco = { .min = 4000000, .max = 6000000 },
465         .n = { .min = 1, .max = 7 },
466         .m1 = { .min = 2, .max = 3 },
467         .m2 = { .min = 11, .max = 156 },
468         .p1 = { .min = 2, .max = 3 },
469         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
470 };
471
472 static const intel_limit_t intel_limits_chv = {
473         /*
474          * These are the data rate limits (measured in fast clocks)
475          * since those are the strictest limits we have.  The fast
476          * clock and actual rate limits are more relaxed, so checking
477          * them would make no difference.
478          */
479         .dot = { .min = 25000 * 5, .max = 540000 * 5},
480         .vco = { .min = 4800000, .max = 6480000 },
481         .n = { .min = 1, .max = 1 },
482         .m1 = { .min = 2, .max = 2 },
483         .m2 = { .min = 24 << 22, .max = 175 << 22 },
484         .p1 = { .min = 2, .max = 4 },
485         .p2 = { .p2_slow = 1, .p2_fast = 14 },
486 };
487
488 static const intel_limit_t intel_limits_bxt = {
489         /* FIXME: find real dot limits */
490         .dot = { .min = 0, .max = INT_MAX },
491         .vco = { .min = 4800000, .max = 6700000 },
492         .n = { .min = 1, .max = 1 },
493         .m1 = { .min = 2, .max = 2 },
494         /* FIXME: find real m2 limits */
495         .m2 = { .min = 2 << 22, .max = 255 << 22 },
496         .p1 = { .min = 2, .max = 4 },
497         .p2 = { .p2_slow = 1, .p2_fast = 20 },
498 };
499
500 static bool
501 needs_modeset(struct drm_crtc_state *state)
502 {
503         return drm_atomic_crtc_needs_modeset(state);
504 }
505
506 /**
507  * Returns whether any output on the specified pipe is of the specified type
508  */
509 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
510 {
511         struct drm_device *dev = crtc->base.dev;
512         struct intel_encoder *encoder;
513
514         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
515                 if (encoder->type == type)
516                         return true;
517
518         return false;
519 }
520
521 /**
522  * Returns whether any output on the specified pipe will have the specified
523  * type after a staged modeset is complete, i.e., the same as
524  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
525  * encoder->crtc.
526  */
527 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
528                                       int type)
529 {
530         struct drm_atomic_state *state = crtc_state->base.state;
531         struct drm_connector *connector;
532         struct drm_connector_state *connector_state;
533         struct intel_encoder *encoder;
534         int i, num_connectors = 0;
535
536         for_each_connector_in_state(state, connector, connector_state, i) {
537                 if (connector_state->crtc != crtc_state->base.crtc)
538                         continue;
539
540                 num_connectors++;
541
542                 encoder = to_intel_encoder(connector_state->best_encoder);
543                 if (encoder->type == type)
544                         return true;
545         }
546
547         WARN_ON(num_connectors == 0);
548
549         return false;
550 }
551
552 static const intel_limit_t *
553 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
554 {
555         struct drm_device *dev = crtc_state->base.crtc->dev;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
559                 if (intel_is_dual_link_lvds(dev)) {
560                         if (refclk == 100000)
561                                 limit = &intel_limits_ironlake_dual_lvds_100m;
562                         else
563                                 limit = &intel_limits_ironlake_dual_lvds;
564                 } else {
565                         if (refclk == 100000)
566                                 limit = &intel_limits_ironlake_single_lvds_100m;
567                         else
568                                 limit = &intel_limits_ironlake_single_lvds;
569                 }
570         } else
571                 limit = &intel_limits_ironlake_dac;
572
573         return limit;
574 }
575
576 static const intel_limit_t *
577 intel_g4x_limit(struct intel_crtc_state *crtc_state)
578 {
579         struct drm_device *dev = crtc_state->base.crtc->dev;
580         const intel_limit_t *limit;
581
582         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
583                 if (intel_is_dual_link_lvds(dev))
584                         limit = &intel_limits_g4x_dual_channel_lvds;
585                 else
586                         limit = &intel_limits_g4x_single_channel_lvds;
587         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
588                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
589                 limit = &intel_limits_g4x_hdmi;
590         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
591                 limit = &intel_limits_g4x_sdvo;
592         } else /* The option is for other outputs */
593                 limit = &intel_limits_i9xx_sdvo;
594
595         return limit;
596 }
597
598 static const intel_limit_t *
599 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
600 {
601         struct drm_device *dev = crtc_state->base.crtc->dev;
602         const intel_limit_t *limit;
603
604         if (IS_BROXTON(dev))
605                 limit = &intel_limits_bxt;
606         else if (HAS_PCH_SPLIT(dev))
607                 limit = intel_ironlake_limit(crtc_state, refclk);
608         else if (IS_G4X(dev)) {
609                 limit = intel_g4x_limit(crtc_state);
610         } else if (IS_PINEVIEW(dev)) {
611                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
612                         limit = &intel_limits_pineview_lvds;
613                 else
614                         limit = &intel_limits_pineview_sdvo;
615         } else if (IS_CHERRYVIEW(dev)) {
616                 limit = &intel_limits_chv;
617         } else if (IS_VALLEYVIEW(dev)) {
618                 limit = &intel_limits_vlv;
619         } else if (!IS_GEN2(dev)) {
620                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
621                         limit = &intel_limits_i9xx_lvds;
622                 else
623                         limit = &intel_limits_i9xx_sdvo;
624         } else {
625                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
626                         limit = &intel_limits_i8xx_lvds;
627                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
628                         limit = &intel_limits_i8xx_dvo;
629                 else
630                         limit = &intel_limits_i8xx_dac;
631         }
632         return limit;
633 }
634
635 /*
636  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
637  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
638  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
639  * The helpers' return value is the rate of the clock that is fed to the
640  * display engine's pipe which can be the above fast dot clock rate or a
641  * divided-down version of it.
642  */
643 /* m1 is reserved as 0 in Pineview, n is a ring counter */
644 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
645 {
646         clock->m = clock->m2 + 2;
647         clock->p = clock->p1 * clock->p2;
648         if (WARN_ON(clock->n == 0 || clock->p == 0))
649                 return 0;
650         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
651         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
652
653         return clock->dot;
654 }
655
656 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
657 {
658         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
659 }
660
661 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
662 {
663         clock->m = i9xx_dpll_compute_m(clock);
664         clock->p = clock->p1 * clock->p2;
665         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
666                 return 0;
667         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
668         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
669
670         return clock->dot;
671 }
672
673 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
674 {
675         clock->m = clock->m1 * clock->m2;
676         clock->p = clock->p1 * clock->p2;
677         if (WARN_ON(clock->n == 0 || clock->p == 0))
678                 return 0;
679         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
680         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
681
682         return clock->dot / 5;
683 }
684
685 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
686 {
687         clock->m = clock->m1 * clock->m2;
688         clock->p = clock->p1 * clock->p2;
689         if (WARN_ON(clock->n == 0 || clock->p == 0))
690                 return 0;
691         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
692                         clock->n << 22);
693         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
694
695         return clock->dot / 5;
696 }
697
698 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
699 /**
700  * Returns whether the given set of divisors are valid for a given refclk with
701  * the given connectors.
702  */
703
704 static bool intel_PLL_is_valid(struct drm_device *dev,
705                                const intel_limit_t *limit,
706                                const intel_clock_t *clock)
707 {
708         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
709                 INTELPllInvalid("n out of range\n");
710         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
711                 INTELPllInvalid("p1 out of range\n");
712         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
713                 INTELPllInvalid("m2 out of range\n");
714         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
715                 INTELPllInvalid("m1 out of range\n");
716
717         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
718                 if (clock->m1 <= clock->m2)
719                         INTELPllInvalid("m1 <= m2\n");
720
721         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
722                 if (clock->p < limit->p.min || limit->p.max < clock->p)
723                         INTELPllInvalid("p out of range\n");
724                 if (clock->m < limit->m.min || limit->m.max < clock->m)
725                         INTELPllInvalid("m out of range\n");
726         }
727
728         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
729                 INTELPllInvalid("vco out of range\n");
730         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
731          * connector, etc., rather than just a single range.
732          */
733         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
734                 INTELPllInvalid("dot out of range\n");
735
736         return true;
737 }
738
739 static int
740 i9xx_select_p2_div(const intel_limit_t *limit,
741                    const struct intel_crtc_state *crtc_state,
742                    int target)
743 {
744         struct drm_device *dev = crtc_state->base.crtc->dev;
745
746         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
747                 /*
748                  * For LVDS just rely on its current settings for dual-channel.
749                  * We haven't figured out how to reliably set up different
750                  * single/dual channel state, if we even can.
751                  */
752                 if (intel_is_dual_link_lvds(dev))
753                         return limit->p2.p2_fast;
754                 else
755                         return limit->p2.p2_slow;
756         } else {
757                 if (target < limit->p2.dot_limit)
758                         return limit->p2.p2_slow;
759                 else
760                         return limit->p2.p2_fast;
761         }
762 }
763
764 static bool
765 i9xx_find_best_dpll(const intel_limit_t *limit,
766                     struct intel_crtc_state *crtc_state,
767                     int target, int refclk, intel_clock_t *match_clock,
768                     intel_clock_t *best_clock)
769 {
770         struct drm_device *dev = crtc_state->base.crtc->dev;
771         intel_clock_t clock;
772         int err = target;
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779              clock.m1++) {
780                 for (clock.m2 = limit->m2.min;
781                      clock.m2 <= limit->m2.max; clock.m2++) {
782                         if (clock.m2 >= clock.m1)
783                                 break;
784                         for (clock.n = limit->n.min;
785                              clock.n <= limit->n.max; clock.n++) {
786                                 for (clock.p1 = limit->p1.min;
787                                         clock.p1 <= limit->p1.max; clock.p1++) {
788                                         int this_err;
789
790                                         i9xx_calc_dpll_params(refclk, &clock);
791                                         if (!intel_PLL_is_valid(dev, limit,
792                                                                 &clock))
793                                                 continue;
794                                         if (match_clock &&
795                                             clock.p != match_clock->p)
796                                                 continue;
797
798                                         this_err = abs(clock.dot - target);
799                                         if (this_err < err) {
800                                                 *best_clock = clock;
801                                                 err = this_err;
802                                         }
803                                 }
804                         }
805                 }
806         }
807
808         return (err != target);
809 }
810
811 static bool
812 pnv_find_best_dpll(const intel_limit_t *limit,
813                    struct intel_crtc_state *crtc_state,
814                    int target, int refclk, intel_clock_t *match_clock,
815                    intel_clock_t *best_clock)
816 {
817         struct drm_device *dev = crtc_state->base.crtc->dev;
818         intel_clock_t clock;
819         int err = target;
820
821         memset(best_clock, 0, sizeof(*best_clock));
822
823         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
824
825         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826              clock.m1++) {
827                 for (clock.m2 = limit->m2.min;
828                      clock.m2 <= limit->m2.max; clock.m2++) {
829                         for (clock.n = limit->n.min;
830                              clock.n <= limit->n.max; clock.n++) {
831                                 for (clock.p1 = limit->p1.min;
832                                         clock.p1 <= limit->p1.max; clock.p1++) {
833                                         int this_err;
834
835                                         pnv_calc_dpll_params(refclk, &clock);
836                                         if (!intel_PLL_is_valid(dev, limit,
837                                                                 &clock))
838                                                 continue;
839                                         if (match_clock &&
840                                             clock.p != match_clock->p)
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err) {
845                                                 *best_clock = clock;
846                                                 err = this_err;
847                                         }
848                                 }
849                         }
850                 }
851         }
852
853         return (err != target);
854 }
855
856 static bool
857 g4x_find_best_dpll(const intel_limit_t *limit,
858                    struct intel_crtc_state *crtc_state,
859                    int target, int refclk, intel_clock_t *match_clock,
860                    intel_clock_t *best_clock)
861 {
862         struct drm_device *dev = crtc_state->base.crtc->dev;
863         intel_clock_t clock;
864         int max_n;
865         bool found = false;
866         /* approximately equals target * 0.00585 */
867         int err_most = (target >> 8) + (target >> 9);
868
869         memset(best_clock, 0, sizeof(*best_clock));
870
871         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
872
873         max_n = limit->n.max;
874         /* based on hardware requirement, prefer smaller n to precision */
875         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
876                 /* based on hardware requirement, prefere larger m1,m2 */
877                 for (clock.m1 = limit->m1.max;
878                      clock.m1 >= limit->m1.min; clock.m1--) {
879                         for (clock.m2 = limit->m2.max;
880                              clock.m2 >= limit->m2.min; clock.m2--) {
881                                 for (clock.p1 = limit->p1.max;
882                                      clock.p1 >= limit->p1.min; clock.p1--) {
883                                         int this_err;
884
885                                         i9xx_calc_dpll_params(refclk, &clock);
886                                         if (!intel_PLL_is_valid(dev, limit,
887                                                                 &clock))
888                                                 continue;
889
890                                         this_err = abs(clock.dot - target);
891                                         if (this_err < err_most) {
892                                                 *best_clock = clock;
893                                                 err_most = this_err;
894                                                 max_n = clock.n;
895                                                 found = true;
896                                         }
897                                 }
898                         }
899                 }
900         }
901         return found;
902 }
903
904 /*
905  * Check if the calculated PLL configuration is more optimal compared to the
906  * best configuration and error found so far. Return the calculated error.
907  */
908 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
909                                const intel_clock_t *calculated_clock,
910                                const intel_clock_t *best_clock,
911                                unsigned int best_error_ppm,
912                                unsigned int *error_ppm)
913 {
914         /*
915          * For CHV ignore the error and consider only the P value.
916          * Prefer a bigger P value based on HW requirements.
917          */
918         if (IS_CHERRYVIEW(dev)) {
919                 *error_ppm = 0;
920
921                 return calculated_clock->p > best_clock->p;
922         }
923
924         if (WARN_ON_ONCE(!target_freq))
925                 return false;
926
927         *error_ppm = div_u64(1000000ULL *
928                                 abs(target_freq - calculated_clock->dot),
929                              target_freq);
930         /*
931          * Prefer a better P value over a better (smaller) error if the error
932          * is small. Ensure this preference for future configurations too by
933          * setting the error to 0.
934          */
935         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
936                 *error_ppm = 0;
937
938                 return true;
939         }
940
941         return *error_ppm + 10 < best_error_ppm;
942 }
943
944 static bool
945 vlv_find_best_dpll(const intel_limit_t *limit,
946                    struct intel_crtc_state *crtc_state,
947                    int target, int refclk, intel_clock_t *match_clock,
948                    intel_clock_t *best_clock)
949 {
950         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
951         struct drm_device *dev = crtc->base.dev;
952         intel_clock_t clock;
953         unsigned int bestppm = 1000000;
954         /* min update 19.2 MHz */
955         int max_n = min(limit->n.max, refclk / 19200);
956         bool found = false;
957
958         target *= 5; /* fast clock */
959
960         memset(best_clock, 0, sizeof(*best_clock));
961
962         /* based on hardware requirement, prefer smaller n to precision */
963         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
964                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
965                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
966                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
967                                 clock.p = clock.p1 * clock.p2;
968                                 /* based on hardware requirement, prefer bigger m1,m2 values */
969                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
970                                         unsigned int ppm;
971
972                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
973                                                                      refclk * clock.m1);
974
975                                         vlv_calc_dpll_params(refclk, &clock);
976
977                                         if (!intel_PLL_is_valid(dev, limit,
978                                                                 &clock))
979                                                 continue;
980
981                                         if (!vlv_PLL_is_optimal(dev, target,
982                                                                 &clock,
983                                                                 best_clock,
984                                                                 bestppm, &ppm))
985                                                 continue;
986
987                                         *best_clock = clock;
988                                         bestppm = ppm;
989                                         found = true;
990                                 }
991                         }
992                 }
993         }
994
995         return found;
996 }
997
998 static bool
999 chv_find_best_dpll(const intel_limit_t *limit,
1000                    struct intel_crtc_state *crtc_state,
1001                    int target, int refclk, intel_clock_t *match_clock,
1002                    intel_clock_t *best_clock)
1003 {
1004         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1005         struct drm_device *dev = crtc->base.dev;
1006         unsigned int best_error_ppm;
1007         intel_clock_t clock;
1008         uint64_t m2;
1009         int found = false;
1010
1011         memset(best_clock, 0, sizeof(*best_clock));
1012         best_error_ppm = 1000000;
1013
1014         /*
1015          * Based on hardware doc, the n always set to 1, and m1 always
1016          * set to 2.  If requires to support 200Mhz refclk, we need to
1017          * revisit this because n may not 1 anymore.
1018          */
1019         clock.n = 1, clock.m1 = 2;
1020         target *= 5;    /* fast clock */
1021
1022         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1023                 for (clock.p2 = limit->p2.p2_fast;
1024                                 clock.p2 >= limit->p2.p2_slow;
1025                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1026                         unsigned int error_ppm;
1027
1028                         clock.p = clock.p1 * clock.p2;
1029
1030                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1031                                         clock.n) << 22, refclk * clock.m1);
1032
1033                         if (m2 > INT_MAX/clock.m1)
1034                                 continue;
1035
1036                         clock.m2 = m2;
1037
1038                         chv_calc_dpll_params(refclk, &clock);
1039
1040                         if (!intel_PLL_is_valid(dev, limit, &clock))
1041                                 continue;
1042
1043                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1044                                                 best_error_ppm, &error_ppm))
1045                                 continue;
1046
1047                         *best_clock = clock;
1048                         best_error_ppm = error_ppm;
1049                         found = true;
1050                 }
1051         }
1052
1053         return found;
1054 }
1055
1056 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1057                         intel_clock_t *best_clock)
1058 {
1059         int refclk = i9xx_get_refclk(crtc_state, 0);
1060
1061         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1062                                   target_clock, refclk, NULL, best_clock);
1063 }
1064
1065 bool intel_crtc_active(struct drm_crtc *crtc)
1066 {
1067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068
1069         /* Be paranoid as we can arrive here with only partial
1070          * state retrieved from the hardware during setup.
1071          *
1072          * We can ditch the adjusted_mode.crtc_clock check as soon
1073          * as Haswell has gained clock readout/fastboot support.
1074          *
1075          * We can ditch the crtc->primary->fb check as soon as we can
1076          * properly reconstruct framebuffers.
1077          *
1078          * FIXME: The intel_crtc->active here should be switched to
1079          * crtc->state->active once we have proper CRTC states wired up
1080          * for atomic.
1081          */
1082         return intel_crtc->active && crtc->primary->state->fb &&
1083                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1084 }
1085
1086 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1087                                              enum pipe pipe)
1088 {
1089         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1091
1092         return intel_crtc->config->cpu_transcoder;
1093 }
1094
1095 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1096 {
1097         struct drm_i915_private *dev_priv = dev->dev_private;
1098         u32 reg = PIPEDSL(pipe);
1099         u32 line1, line2;
1100         u32 line_mask;
1101
1102         if (IS_GEN2(dev))
1103                 line_mask = DSL_LINEMASK_GEN2;
1104         else
1105                 line_mask = DSL_LINEMASK_GEN3;
1106
1107         line1 = I915_READ(reg) & line_mask;
1108         msleep(5);
1109         line2 = I915_READ(reg) & line_mask;
1110
1111         return line1 == line2;
1112 }
1113
1114 /*
1115  * intel_wait_for_pipe_off - wait for pipe to turn off
1116  * @crtc: crtc whose pipe to wait for
1117  *
1118  * After disabling a pipe, we can't wait for vblank in the usual way,
1119  * spinning on the vblank interrupt status bit, since we won't actually
1120  * see an interrupt when the pipe is disabled.
1121  *
1122  * On Gen4 and above:
1123  *   wait for the pipe register state bit to turn off
1124  *
1125  * Otherwise:
1126  *   wait for the display line value to settle (it usually
1127  *   ends up stopping at the start of the next frame).
1128  *
1129  */
1130 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1131 {
1132         struct drm_device *dev = crtc->base.dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1135         enum pipe pipe = crtc->pipe;
1136
1137         if (INTEL_INFO(dev)->gen >= 4) {
1138                 int reg = PIPECONF(cpu_transcoder);
1139
1140                 /* Wait for the Pipe State to go off */
1141                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1142                              100))
1143                         WARN(1, "pipe_off wait timed out\n");
1144         } else {
1145                 /* Wait for the display line to settle */
1146                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1147                         WARN(1, "pipe_off wait timed out\n");
1148         }
1149 }
1150
1151 static const char *state_string(bool enabled)
1152 {
1153         return enabled ? "on" : "off";
1154 }
1155
1156 /* Only for pre-ILK configs */
1157 void assert_pll(struct drm_i915_private *dev_priv,
1158                 enum pipe pipe, bool state)
1159 {
1160         u32 val;
1161         bool cur_state;
1162
1163         val = I915_READ(DPLL(pipe));
1164         cur_state = !!(val & DPLL_VCO_ENABLE);
1165         I915_STATE_WARN(cur_state != state,
1166              "PLL state assertion failure (expected %s, current %s)\n",
1167              state_string(state), state_string(cur_state));
1168 }
1169
1170 /* XXX: the dsi pll is shared between MIPI DSI ports */
1171 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1172 {
1173         u32 val;
1174         bool cur_state;
1175
1176         mutex_lock(&dev_priv->sb_lock);
1177         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1178         mutex_unlock(&dev_priv->sb_lock);
1179
1180         cur_state = val & DSI_PLL_VCO_EN;
1181         I915_STATE_WARN(cur_state != state,
1182              "DSI PLL state assertion failure (expected %s, current %s)\n",
1183              state_string(state), state_string(cur_state));
1184 }
1185 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1186 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1187
1188 struct intel_shared_dpll *
1189 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1190 {
1191         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1192
1193         if (crtc->config->shared_dpll < 0)
1194                 return NULL;
1195
1196         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1197 }
1198
1199 /* For ILK+ */
1200 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1201                         struct intel_shared_dpll *pll,
1202                         bool state)
1203 {
1204         bool cur_state;
1205         struct intel_dpll_hw_state hw_state;
1206
1207         if (WARN (!pll,
1208                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1209                 return;
1210
1211         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1212         I915_STATE_WARN(cur_state != state,
1213              "%s assertion failure (expected %s, current %s)\n",
1214              pll->name, state_string(state), state_string(cur_state));
1215 }
1216
1217 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1218                           enum pipe pipe, bool state)
1219 {
1220         bool cur_state;
1221         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1222                                                                       pipe);
1223
1224         if (HAS_DDI(dev_priv->dev)) {
1225                 /* DDI does not have a specific FDI_TX register */
1226                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1227                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1228         } else {
1229                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1230                 cur_state = !!(val & FDI_TX_ENABLE);
1231         }
1232         I915_STATE_WARN(cur_state != state,
1233              "FDI TX state assertion failure (expected %s, current %s)\n",
1234              state_string(state), state_string(cur_state));
1235 }
1236 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1237 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1238
1239 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1240                           enum pipe pipe, bool state)
1241 {
1242         u32 val;
1243         bool cur_state;
1244
1245         val = I915_READ(FDI_RX_CTL(pipe));
1246         cur_state = !!(val & FDI_RX_ENABLE);
1247         I915_STATE_WARN(cur_state != state,
1248              "FDI RX state assertion failure (expected %s, current %s)\n",
1249              state_string(state), state_string(cur_state));
1250 }
1251 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1252 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1253
1254 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1255                                       enum pipe pipe)
1256 {
1257         u32 val;
1258
1259         /* ILK FDI PLL is always enabled */
1260         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1261                 return;
1262
1263         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1264         if (HAS_DDI(dev_priv->dev))
1265                 return;
1266
1267         val = I915_READ(FDI_TX_CTL(pipe));
1268         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1269 }
1270
1271 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1272                        enum pipe pipe, bool state)
1273 {
1274         u32 val;
1275         bool cur_state;
1276
1277         val = I915_READ(FDI_RX_CTL(pipe));
1278         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1279         I915_STATE_WARN(cur_state != state,
1280              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1281              state_string(state), state_string(cur_state));
1282 }
1283
1284 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1285                            enum pipe pipe)
1286 {
1287         struct drm_device *dev = dev_priv->dev;
1288         int pp_reg;
1289         u32 val;
1290         enum pipe panel_pipe = PIPE_A;
1291         bool locked = true;
1292
1293         if (WARN_ON(HAS_DDI(dev)))
1294                 return;
1295
1296         if (HAS_PCH_SPLIT(dev)) {
1297                 u32 port_sel;
1298
1299                 pp_reg = PCH_PP_CONTROL;
1300                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1301
1302                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1303                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1304                         panel_pipe = PIPE_B;
1305                 /* XXX: else fix for eDP */
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 /* presumably write lock depends on pipe, not port select */
1308                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1309                 panel_pipe = pipe;
1310         } else {
1311                 pp_reg = PP_CONTROL;
1312                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1313                         panel_pipe = PIPE_B;
1314         }
1315
1316         val = I915_READ(pp_reg);
1317         if (!(val & PANEL_POWER_ON) ||
1318             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1319                 locked = false;
1320
1321         I915_STATE_WARN(panel_pipe == pipe && locked,
1322              "panel assertion failure, pipe %c regs locked\n",
1323              pipe_name(pipe));
1324 }
1325
1326 static void assert_cursor(struct drm_i915_private *dev_priv,
1327                           enum pipe pipe, bool state)
1328 {
1329         struct drm_device *dev = dev_priv->dev;
1330         bool cur_state;
1331
1332         if (IS_845G(dev) || IS_I865G(dev))
1333                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1334         else
1335                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1336
1337         I915_STATE_WARN(cur_state != state,
1338              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1339              pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1342 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1343
1344 void assert_pipe(struct drm_i915_private *dev_priv,
1345                  enum pipe pipe, bool state)
1346 {
1347         bool cur_state;
1348         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1349                                                                       pipe);
1350
1351         /* if we need the pipe quirk it must be always on */
1352         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1353             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1354                 state = true;
1355
1356         if (!intel_display_power_is_enabled(dev_priv,
1357                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1358                 cur_state = false;
1359         } else {
1360                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1361                 cur_state = !!(val & PIPECONF_ENABLE);
1362         }
1363
1364         I915_STATE_WARN(cur_state != state,
1365              "pipe %c assertion failure (expected %s, current %s)\n",
1366              pipe_name(pipe), state_string(state), state_string(cur_state));
1367 }
1368
1369 static void assert_plane(struct drm_i915_private *dev_priv,
1370                          enum plane plane, bool state)
1371 {
1372         u32 val;
1373         bool cur_state;
1374
1375         val = I915_READ(DSPCNTR(plane));
1376         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1377         I915_STATE_WARN(cur_state != state,
1378              "plane %c assertion failure (expected %s, current %s)\n",
1379              plane_name(plane), state_string(state), state_string(cur_state));
1380 }
1381
1382 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1383 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1384
1385 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1386                                    enum pipe pipe)
1387 {
1388         struct drm_device *dev = dev_priv->dev;
1389         int i;
1390
1391         /* Primary planes are fixed to pipes on gen4+ */
1392         if (INTEL_INFO(dev)->gen >= 4) {
1393                 u32 val = I915_READ(DSPCNTR(pipe));
1394                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1395                      "plane %c assertion failure, should be disabled but not\n",
1396                      plane_name(pipe));
1397                 return;
1398         }
1399
1400         /* Need to check both planes against the pipe */
1401         for_each_pipe(dev_priv, i) {
1402                 u32 val = I915_READ(DSPCNTR(i));
1403                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1404                         DISPPLANE_SEL_PIPE_SHIFT;
1405                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1406                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1407                      plane_name(i), pipe_name(pipe));
1408         }
1409 }
1410
1411 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1412                                     enum pipe pipe)
1413 {
1414         struct drm_device *dev = dev_priv->dev;
1415         int sprite;
1416
1417         if (INTEL_INFO(dev)->gen >= 9) {
1418                 for_each_sprite(dev_priv, pipe, sprite) {
1419                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1420                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1421                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1422                              sprite, pipe_name(pipe));
1423                 }
1424         } else if (IS_VALLEYVIEW(dev)) {
1425                 for_each_sprite(dev_priv, pipe, sprite) {
1426                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1427                         I915_STATE_WARN(val & SP_ENABLE,
1428                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1429                              sprite_name(pipe, sprite), pipe_name(pipe));
1430                 }
1431         } else if (INTEL_INFO(dev)->gen >= 7) {
1432                 u32 val = I915_READ(SPRCTL(pipe));
1433                 I915_STATE_WARN(val & SPRITE_ENABLE,
1434                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1435                      plane_name(pipe), pipe_name(pipe));
1436         } else if (INTEL_INFO(dev)->gen >= 5) {
1437                 u32 val = I915_READ(DVSCNTR(pipe));
1438                 I915_STATE_WARN(val & DVS_ENABLE,
1439                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1440                      plane_name(pipe), pipe_name(pipe));
1441         }
1442 }
1443
1444 static void assert_vblank_disabled(struct drm_crtc *crtc)
1445 {
1446         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1447                 drm_crtc_vblank_put(crtc);
1448 }
1449
1450 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1451 {
1452         u32 val;
1453         bool enabled;
1454
1455         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1456
1457         val = I915_READ(PCH_DREF_CONTROL);
1458         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1459                             DREF_SUPERSPREAD_SOURCE_MASK));
1460         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1461 }
1462
1463 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1464                                            enum pipe pipe)
1465 {
1466         u32 val;
1467         bool enabled;
1468
1469         val = I915_READ(PCH_TRANSCONF(pipe));
1470         enabled = !!(val & TRANS_ENABLE);
1471         I915_STATE_WARN(enabled,
1472              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1473              pipe_name(pipe));
1474 }
1475
1476 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1477                             enum pipe pipe, u32 port_sel, u32 val)
1478 {
1479         if ((val & DP_PORT_EN) == 0)
1480                 return false;
1481
1482         if (HAS_PCH_CPT(dev_priv->dev)) {
1483                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1484                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1485                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1486                         return false;
1487         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1488                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1489                         return false;
1490         } else {
1491                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1492                         return false;
1493         }
1494         return true;
1495 }
1496
1497 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1498                               enum pipe pipe, u32 val)
1499 {
1500         if ((val & SDVO_ENABLE) == 0)
1501                 return false;
1502
1503         if (HAS_PCH_CPT(dev_priv->dev)) {
1504                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1505                         return false;
1506         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1507                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1508                         return false;
1509         } else {
1510                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1511                         return false;
1512         }
1513         return true;
1514 }
1515
1516 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1517                               enum pipe pipe, u32 val)
1518 {
1519         if ((val & LVDS_PORT_EN) == 0)
1520                 return false;
1521
1522         if (HAS_PCH_CPT(dev_priv->dev)) {
1523                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524                         return false;
1525         } else {
1526                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1527                         return false;
1528         }
1529         return true;
1530 }
1531
1532 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1533                               enum pipe pipe, u32 val)
1534 {
1535         if ((val & ADPA_DAC_ENABLE) == 0)
1536                 return false;
1537         if (HAS_PCH_CPT(dev_priv->dev)) {
1538                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1539                         return false;
1540         } else {
1541                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1542                         return false;
1543         }
1544         return true;
1545 }
1546
1547 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1548                                    enum pipe pipe, int reg, u32 port_sel)
1549 {
1550         u32 val = I915_READ(reg);
1551         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1552              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1553              reg, pipe_name(pipe));
1554
1555         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1556              && (val & DP_PIPEB_SELECT),
1557              "IBX PCH dp port still using transcoder B\n");
1558 }
1559
1560 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1561                                      enum pipe pipe, int reg)
1562 {
1563         u32 val = I915_READ(reg);
1564         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1565              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1566              reg, pipe_name(pipe));
1567
1568         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1569              && (val & SDVO_PIPE_B_SELECT),
1570              "IBX PCH hdmi port still using transcoder B\n");
1571 }
1572
1573 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1574                                       enum pipe pipe)
1575 {
1576         u32 val;
1577
1578         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1579         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1580         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1581
1582         val = I915_READ(PCH_ADPA);
1583         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1584              "PCH VGA enabled on transcoder %c, should be disabled\n",
1585              pipe_name(pipe));
1586
1587         val = I915_READ(PCH_LVDS);
1588         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1589              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1590              pipe_name(pipe));
1591
1592         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1595 }
1596
1597 static void vlv_enable_pll(struct intel_crtc *crtc,
1598                            const struct intel_crtc_state *pipe_config)
1599 {
1600         struct drm_device *dev = crtc->base.dev;
1601         struct drm_i915_private *dev_priv = dev->dev_private;
1602         int reg = DPLL(crtc->pipe);
1603         u32 dpll = pipe_config->dpll_hw_state.dpll;
1604
1605         assert_pipe_disabled(dev_priv, crtc->pipe);
1606
1607         /* No really, not for ILK+ */
1608         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1609
1610         /* PLL is protected by panel, make sure we can write it */
1611         if (IS_MOBILE(dev_priv->dev))
1612                 assert_panel_unlocked(dev_priv, crtc->pipe);
1613
1614         I915_WRITE(reg, dpll);
1615         POSTING_READ(reg);
1616         udelay(150);
1617
1618         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1619                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1620
1621         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1622         POSTING_READ(DPLL_MD(crtc->pipe));
1623
1624         /* We do this three times for luck */
1625         I915_WRITE(reg, dpll);
1626         POSTING_READ(reg);
1627         udelay(150); /* wait for warmup */
1628         I915_WRITE(reg, dpll);
1629         POSTING_READ(reg);
1630         udelay(150); /* wait for warmup */
1631         I915_WRITE(reg, dpll);
1632         POSTING_READ(reg);
1633         udelay(150); /* wait for warmup */
1634 }
1635
1636 static void chv_enable_pll(struct intel_crtc *crtc,
1637                            const struct intel_crtc_state *pipe_config)
1638 {
1639         struct drm_device *dev = crtc->base.dev;
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         int pipe = crtc->pipe;
1642         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1643         u32 tmp;
1644
1645         assert_pipe_disabled(dev_priv, crtc->pipe);
1646
1647         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1648
1649         mutex_lock(&dev_priv->sb_lock);
1650
1651         /* Enable back the 10bit clock to display controller */
1652         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1653         tmp |= DPIO_DCLKP_EN;
1654         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1655
1656         mutex_unlock(&dev_priv->sb_lock);
1657
1658         /*
1659          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1660          */
1661         udelay(1);
1662
1663         /* Enable PLL */
1664         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1665
1666         /* Check PLL is locked */
1667         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1668                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1669
1670         /* not sure when this should be written */
1671         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1672         POSTING_READ(DPLL_MD(pipe));
1673 }
1674
1675 static int intel_num_dvo_pipes(struct drm_device *dev)
1676 {
1677         struct intel_crtc *crtc;
1678         int count = 0;
1679
1680         for_each_intel_crtc(dev, crtc)
1681                 count += crtc->base.state->active &&
1682                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1683
1684         return count;
1685 }
1686
1687 static void i9xx_enable_pll(struct intel_crtc *crtc)
1688 {
1689         struct drm_device *dev = crtc->base.dev;
1690         struct drm_i915_private *dev_priv = dev->dev_private;
1691         int reg = DPLL(crtc->pipe);
1692         u32 dpll = crtc->config->dpll_hw_state.dpll;
1693
1694         assert_pipe_disabled(dev_priv, crtc->pipe);
1695
1696         /* No really, not for ILK+ */
1697         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1698
1699         /* PLL is protected by panel, make sure we can write it */
1700         if (IS_MOBILE(dev) && !IS_I830(dev))
1701                 assert_panel_unlocked(dev_priv, crtc->pipe);
1702
1703         /* Enable DVO 2x clock on both PLLs if necessary */
1704         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1705                 /*
1706                  * It appears to be important that we don't enable this
1707                  * for the current pipe before otherwise configuring the
1708                  * PLL. No idea how this should be handled if multiple
1709                  * DVO outputs are enabled simultaneosly.
1710                  */
1711                 dpll |= DPLL_DVO_2X_MODE;
1712                 I915_WRITE(DPLL(!crtc->pipe),
1713                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1714         }
1715
1716         /* Wait for the clocks to stabilize. */
1717         POSTING_READ(reg);
1718         udelay(150);
1719
1720         if (INTEL_INFO(dev)->gen >= 4) {
1721                 I915_WRITE(DPLL_MD(crtc->pipe),
1722                            crtc->config->dpll_hw_state.dpll_md);
1723         } else {
1724                 /* The pixel multiplier can only be updated once the
1725                  * DPLL is enabled and the clocks are stable.
1726                  *
1727                  * So write it again.
1728                  */
1729                 I915_WRITE(reg, dpll);
1730         }
1731
1732         /* We do this three times for luck */
1733         I915_WRITE(reg, dpll);
1734         POSTING_READ(reg);
1735         udelay(150); /* wait for warmup */
1736         I915_WRITE(reg, dpll);
1737         POSTING_READ(reg);
1738         udelay(150); /* wait for warmup */
1739         I915_WRITE(reg, dpll);
1740         POSTING_READ(reg);
1741         udelay(150); /* wait for warmup */
1742 }
1743
1744 /**
1745  * i9xx_disable_pll - disable a PLL
1746  * @dev_priv: i915 private structure
1747  * @pipe: pipe PLL to disable
1748  *
1749  * Disable the PLL for @pipe, making sure the pipe is off first.
1750  *
1751  * Note!  This is for pre-ILK only.
1752  */
1753 static void i9xx_disable_pll(struct intel_crtc *crtc)
1754 {
1755         struct drm_device *dev = crtc->base.dev;
1756         struct drm_i915_private *dev_priv = dev->dev_private;
1757         enum pipe pipe = crtc->pipe;
1758
1759         /* Disable DVO 2x clock on both PLLs if necessary */
1760         if (IS_I830(dev) &&
1761             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1762             !intel_num_dvo_pipes(dev)) {
1763                 I915_WRITE(DPLL(PIPE_B),
1764                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1765                 I915_WRITE(DPLL(PIPE_A),
1766                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1767         }
1768
1769         /* Don't disable pipe or pipe PLLs if needed */
1770         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1771             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1772                 return;
1773
1774         /* Make sure the pipe isn't still relying on us */
1775         assert_pipe_disabled(dev_priv, pipe);
1776
1777         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1778         POSTING_READ(DPLL(pipe));
1779 }
1780
1781 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1782 {
1783         u32 val;
1784
1785         /* Make sure the pipe isn't still relying on us */
1786         assert_pipe_disabled(dev_priv, pipe);
1787
1788         /*
1789          * Leave integrated clock source and reference clock enabled for pipe B.
1790          * The latter is needed for VGA hotplug / manual detection.
1791          */
1792         val = DPLL_VGA_MODE_DIS;
1793         if (pipe == PIPE_B)
1794                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1795         I915_WRITE(DPLL(pipe), val);
1796         POSTING_READ(DPLL(pipe));
1797
1798 }
1799
1800 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1801 {
1802         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1803         u32 val;
1804
1805         /* Make sure the pipe isn't still relying on us */
1806         assert_pipe_disabled(dev_priv, pipe);
1807
1808         /* Set PLL en = 0 */
1809         val = DPLL_SSC_REF_CLK_CHV |
1810                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1811         if (pipe != PIPE_A)
1812                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1813         I915_WRITE(DPLL(pipe), val);
1814         POSTING_READ(DPLL(pipe));
1815
1816         mutex_lock(&dev_priv->sb_lock);
1817
1818         /* Disable 10bit clock to display controller */
1819         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1820         val &= ~DPIO_DCLKP_EN;
1821         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1822
1823         mutex_unlock(&dev_priv->sb_lock);
1824 }
1825
1826 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1827                          struct intel_digital_port *dport,
1828                          unsigned int expected_mask)
1829 {
1830         u32 port_mask;
1831         int dpll_reg;
1832
1833         switch (dport->port) {
1834         case PORT_B:
1835                 port_mask = DPLL_PORTB_READY_MASK;
1836                 dpll_reg = DPLL(0);
1837                 break;
1838         case PORT_C:
1839                 port_mask = DPLL_PORTC_READY_MASK;
1840                 dpll_reg = DPLL(0);
1841                 expected_mask <<= 4;
1842                 break;
1843         case PORT_D:
1844                 port_mask = DPLL_PORTD_READY_MASK;
1845                 dpll_reg = DPIO_PHY_STATUS;
1846                 break;
1847         default:
1848                 BUG();
1849         }
1850
1851         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1852                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1853                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1854 }
1855
1856 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1857 {
1858         struct drm_device *dev = crtc->base.dev;
1859         struct drm_i915_private *dev_priv = dev->dev_private;
1860         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1861
1862         if (WARN_ON(pll == NULL))
1863                 return;
1864
1865         WARN_ON(!pll->config.crtc_mask);
1866         if (pll->active == 0) {
1867                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1868                 WARN_ON(pll->on);
1869                 assert_shared_dpll_disabled(dev_priv, pll);
1870
1871                 pll->mode_set(dev_priv, pll);
1872         }
1873 }
1874
1875 /**
1876  * intel_enable_shared_dpll - enable PCH PLL
1877  * @dev_priv: i915 private structure
1878  * @pipe: pipe PLL to enable
1879  *
1880  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1881  * drives the transcoder clock.
1882  */
1883 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1884 {
1885         struct drm_device *dev = crtc->base.dev;
1886         struct drm_i915_private *dev_priv = dev->dev_private;
1887         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1888
1889         if (WARN_ON(pll == NULL))
1890                 return;
1891
1892         if (WARN_ON(pll->config.crtc_mask == 0))
1893                 return;
1894
1895         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1896                       pll->name, pll->active, pll->on,
1897                       crtc->base.base.id);
1898
1899         if (pll->active++) {
1900                 WARN_ON(!pll->on);
1901                 assert_shared_dpll_enabled(dev_priv, pll);
1902                 return;
1903         }
1904         WARN_ON(pll->on);
1905
1906         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1907
1908         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1909         pll->enable(dev_priv, pll);
1910         pll->on = true;
1911 }
1912
1913 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1914 {
1915         struct drm_device *dev = crtc->base.dev;
1916         struct drm_i915_private *dev_priv = dev->dev_private;
1917         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1918
1919         /* PCH only available on ILK+ */
1920         if (INTEL_INFO(dev)->gen < 5)
1921                 return;
1922
1923         if (pll == NULL)
1924                 return;
1925
1926         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1927                 return;
1928
1929         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1930                       pll->name, pll->active, pll->on,
1931                       crtc->base.base.id);
1932
1933         if (WARN_ON(pll->active == 0)) {
1934                 assert_shared_dpll_disabled(dev_priv, pll);
1935                 return;
1936         }
1937
1938         assert_shared_dpll_enabled(dev_priv, pll);
1939         WARN_ON(!pll->on);
1940         if (--pll->active)
1941                 return;
1942
1943         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1944         pll->disable(dev_priv, pll);
1945         pll->on = false;
1946
1947         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1948 }
1949
1950 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1951                                            enum pipe pipe)
1952 {
1953         struct drm_device *dev = dev_priv->dev;
1954         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1956         uint32_t reg, val, pipeconf_val;
1957
1958         /* PCH only available on ILK+ */
1959         BUG_ON(!HAS_PCH_SPLIT(dev));
1960
1961         /* Make sure PCH DPLL is enabled */
1962         assert_shared_dpll_enabled(dev_priv,
1963                                    intel_crtc_to_shared_dpll(intel_crtc));
1964
1965         /* FDI must be feeding us bits for PCH ports */
1966         assert_fdi_tx_enabled(dev_priv, pipe);
1967         assert_fdi_rx_enabled(dev_priv, pipe);
1968
1969         if (HAS_PCH_CPT(dev)) {
1970                 /* Workaround: Set the timing override bit before enabling the
1971                  * pch transcoder. */
1972                 reg = TRANS_CHICKEN2(pipe);
1973                 val = I915_READ(reg);
1974                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1975                 I915_WRITE(reg, val);
1976         }
1977
1978         reg = PCH_TRANSCONF(pipe);
1979         val = I915_READ(reg);
1980         pipeconf_val = I915_READ(PIPECONF(pipe));
1981
1982         if (HAS_PCH_IBX(dev_priv->dev)) {
1983                 /*
1984                  * Make the BPC in transcoder be consistent with
1985                  * that in pipeconf reg. For HDMI we must use 8bpc
1986                  * here for both 8bpc and 12bpc.
1987                  */
1988                 val &= ~PIPECONF_BPC_MASK;
1989                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1990                         val |= PIPECONF_8BPC;
1991                 else
1992                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1993         }
1994
1995         val &= ~TRANS_INTERLACE_MASK;
1996         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1997                 if (HAS_PCH_IBX(dev_priv->dev) &&
1998                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1999                         val |= TRANS_LEGACY_INTERLACED_ILK;
2000                 else
2001                         val |= TRANS_INTERLACED;
2002         else
2003                 val |= TRANS_PROGRESSIVE;
2004
2005         I915_WRITE(reg, val | TRANS_ENABLE);
2006         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2007                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2008 }
2009
2010 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2011                                       enum transcoder cpu_transcoder)
2012 {
2013         u32 val, pipeconf_val;
2014
2015         /* PCH only available on ILK+ */
2016         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2017
2018         /* FDI must be feeding us bits for PCH ports */
2019         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2020         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2021
2022         /* Workaround: set timing override bit. */
2023         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2024         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2025         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2026
2027         val = TRANS_ENABLE;
2028         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2029
2030         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2031             PIPECONF_INTERLACED_ILK)
2032                 val |= TRANS_INTERLACED;
2033         else
2034                 val |= TRANS_PROGRESSIVE;
2035
2036         I915_WRITE(LPT_TRANSCONF, val);
2037         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2038                 DRM_ERROR("Failed to enable PCH transcoder\n");
2039 }
2040
2041 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2042                                             enum pipe pipe)
2043 {
2044         struct drm_device *dev = dev_priv->dev;
2045         uint32_t reg, val;
2046
2047         /* FDI relies on the transcoder */
2048         assert_fdi_tx_disabled(dev_priv, pipe);
2049         assert_fdi_rx_disabled(dev_priv, pipe);
2050
2051         /* Ports must be off as well */
2052         assert_pch_ports_disabled(dev_priv, pipe);
2053
2054         reg = PCH_TRANSCONF(pipe);
2055         val = I915_READ(reg);
2056         val &= ~TRANS_ENABLE;
2057         I915_WRITE(reg, val);
2058         /* wait for PCH transcoder off, transcoder state */
2059         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2060                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2061
2062         if (!HAS_PCH_IBX(dev)) {
2063                 /* Workaround: Clear the timing override chicken bit again. */
2064                 reg = TRANS_CHICKEN2(pipe);
2065                 val = I915_READ(reg);
2066                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2067                 I915_WRITE(reg, val);
2068         }
2069 }
2070
2071 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2072 {
2073         u32 val;
2074
2075         val = I915_READ(LPT_TRANSCONF);
2076         val &= ~TRANS_ENABLE;
2077         I915_WRITE(LPT_TRANSCONF, val);
2078         /* wait for PCH transcoder off, transcoder state */
2079         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2080                 DRM_ERROR("Failed to disable PCH transcoder\n");
2081
2082         /* Workaround: clear timing override bit. */
2083         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2084         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2085         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2086 }
2087
2088 /**
2089  * intel_enable_pipe - enable a pipe, asserting requirements
2090  * @crtc: crtc responsible for the pipe
2091  *
2092  * Enable @crtc's pipe, making sure that various hardware specific requirements
2093  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2094  */
2095 static void intel_enable_pipe(struct intel_crtc *crtc)
2096 {
2097         struct drm_device *dev = crtc->base.dev;
2098         struct drm_i915_private *dev_priv = dev->dev_private;
2099         enum pipe pipe = crtc->pipe;
2100         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2101                                                                       pipe);
2102         enum pipe pch_transcoder;
2103         int reg;
2104         u32 val;
2105
2106         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2107
2108         assert_planes_disabled(dev_priv, pipe);
2109         assert_cursor_disabled(dev_priv, pipe);
2110         assert_sprites_disabled(dev_priv, pipe);
2111
2112         if (HAS_PCH_LPT(dev_priv->dev))
2113                 pch_transcoder = TRANSCODER_A;
2114         else
2115                 pch_transcoder = pipe;
2116
2117         /*
2118          * A pipe without a PLL won't actually be able to drive bits from
2119          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2120          * need the check.
2121          */
2122         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2123                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2124                         assert_dsi_pll_enabled(dev_priv);
2125                 else
2126                         assert_pll_enabled(dev_priv, pipe);
2127         else {
2128                 if (crtc->config->has_pch_encoder) {
2129                         /* if driving the PCH, we need FDI enabled */
2130                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2131                         assert_fdi_tx_pll_enabled(dev_priv,
2132                                                   (enum pipe) cpu_transcoder);
2133                 }
2134                 /* FIXME: assert CPU port conditions for SNB+ */
2135         }
2136
2137         reg = PIPECONF(cpu_transcoder);
2138         val = I915_READ(reg);
2139         if (val & PIPECONF_ENABLE) {
2140                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2141                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2142                 return;
2143         }
2144
2145         I915_WRITE(reg, val | PIPECONF_ENABLE);
2146         POSTING_READ(reg);
2147 }
2148
2149 /**
2150  * intel_disable_pipe - disable a pipe, asserting requirements
2151  * @crtc: crtc whose pipes is to be disabled
2152  *
2153  * Disable the pipe of @crtc, making sure that various hardware
2154  * specific requirements are met, if applicable, e.g. plane
2155  * disabled, panel fitter off, etc.
2156  *
2157  * Will wait until the pipe has shut down before returning.
2158  */
2159 static void intel_disable_pipe(struct intel_crtc *crtc)
2160 {
2161         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2162         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2163         enum pipe pipe = crtc->pipe;
2164         int reg;
2165         u32 val;
2166
2167         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2168
2169         /*
2170          * Make sure planes won't keep trying to pump pixels to us,
2171          * or we might hang the display.
2172          */
2173         assert_planes_disabled(dev_priv, pipe);
2174         assert_cursor_disabled(dev_priv, pipe);
2175         assert_sprites_disabled(dev_priv, pipe);
2176
2177         reg = PIPECONF(cpu_transcoder);
2178         val = I915_READ(reg);
2179         if ((val & PIPECONF_ENABLE) == 0)
2180                 return;
2181
2182         /*
2183          * Double wide has implications for planes
2184          * so best keep it disabled when not needed.
2185          */
2186         if (crtc->config->double_wide)
2187                 val &= ~PIPECONF_DOUBLE_WIDE;
2188
2189         /* Don't disable pipe or pipe PLLs if needed */
2190         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2191             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2192                 val &= ~PIPECONF_ENABLE;
2193
2194         I915_WRITE(reg, val);
2195         if ((val & PIPECONF_ENABLE) == 0)
2196                 intel_wait_for_pipe_off(crtc);
2197 }
2198
2199 static bool need_vtd_wa(struct drm_device *dev)
2200 {
2201 #ifdef CONFIG_INTEL_IOMMU
2202         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2203                 return true;
2204 #endif
2205         return false;
2206 }
2207
2208 unsigned int
2209 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2210                   uint64_t fb_format_modifier, unsigned int plane)
2211 {
2212         unsigned int tile_height;
2213         uint32_t pixel_bytes;
2214
2215         switch (fb_format_modifier) {
2216         case DRM_FORMAT_MOD_NONE:
2217                 tile_height = 1;
2218                 break;
2219         case I915_FORMAT_MOD_X_TILED:
2220                 tile_height = IS_GEN2(dev) ? 16 : 8;
2221                 break;
2222         case I915_FORMAT_MOD_Y_TILED:
2223                 tile_height = 32;
2224                 break;
2225         case I915_FORMAT_MOD_Yf_TILED:
2226                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2227                 switch (pixel_bytes) {
2228                 default:
2229                 case 1:
2230                         tile_height = 64;
2231                         break;
2232                 case 2:
2233                 case 4:
2234                         tile_height = 32;
2235                         break;
2236                 case 8:
2237                         tile_height = 16;
2238                         break;
2239                 case 16:
2240                         WARN_ONCE(1,
2241                                   "128-bit pixels are not supported for display!");
2242                         tile_height = 16;
2243                         break;
2244                 }
2245                 break;
2246         default:
2247                 MISSING_CASE(fb_format_modifier);
2248                 tile_height = 1;
2249                 break;
2250         }
2251
2252         return tile_height;
2253 }
2254
2255 unsigned int
2256 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2257                       uint32_t pixel_format, uint64_t fb_format_modifier)
2258 {
2259         return ALIGN(height, intel_tile_height(dev, pixel_format,
2260                                                fb_format_modifier, 0));
2261 }
2262
2263 static int
2264 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2265                         const struct drm_plane_state *plane_state)
2266 {
2267         struct intel_rotation_info *info = &view->rotation_info;
2268         unsigned int tile_height, tile_pitch;
2269
2270         *view = i915_ggtt_view_normal;
2271
2272         if (!plane_state)
2273                 return 0;
2274
2275         if (!intel_rotation_90_or_270(plane_state->rotation))
2276                 return 0;
2277
2278         *view = i915_ggtt_view_rotated;
2279
2280         info->height = fb->height;
2281         info->pixel_format = fb->pixel_format;
2282         info->pitch = fb->pitches[0];
2283         info->uv_offset = fb->offsets[1];
2284         info->fb_modifier = fb->modifier[0];
2285
2286         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2287                                         fb->modifier[0], 0);
2288         tile_pitch = PAGE_SIZE / tile_height;
2289         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2290         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2291         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2292
2293         if (info->pixel_format == DRM_FORMAT_NV12) {
2294                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2295                                                 fb->modifier[0], 1);
2296                 tile_pitch = PAGE_SIZE / tile_height;
2297                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2298                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2299                                                      tile_height);
2300                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2301                                 PAGE_SIZE;
2302         }
2303
2304         return 0;
2305 }
2306
2307 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2308 {
2309         if (INTEL_INFO(dev_priv)->gen >= 9)
2310                 return 256 * 1024;
2311         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2312                  IS_VALLEYVIEW(dev_priv))
2313                 return 128 * 1024;
2314         else if (INTEL_INFO(dev_priv)->gen >= 4)
2315                 return 4 * 1024;
2316         else
2317                 return 0;
2318 }
2319
2320 int
2321 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2322                            struct drm_framebuffer *fb,
2323                            const struct drm_plane_state *plane_state,
2324                            struct intel_engine_cs *pipelined,
2325                            struct drm_i915_gem_request **pipelined_request)
2326 {
2327         struct drm_device *dev = fb->dev;
2328         struct drm_i915_private *dev_priv = dev->dev_private;
2329         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2330         struct i915_ggtt_view view;
2331         u32 alignment;
2332         int ret;
2333
2334         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2335
2336         switch (fb->modifier[0]) {
2337         case DRM_FORMAT_MOD_NONE:
2338                 alignment = intel_linear_alignment(dev_priv);
2339                 break;
2340         case I915_FORMAT_MOD_X_TILED:
2341                 if (INTEL_INFO(dev)->gen >= 9)
2342                         alignment = 256 * 1024;
2343                 else {
2344                         /* pin() will align the object as required by fence */
2345                         alignment = 0;
2346                 }
2347                 break;
2348         case I915_FORMAT_MOD_Y_TILED:
2349         case I915_FORMAT_MOD_Yf_TILED:
2350                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2351                           "Y tiling bo slipped through, driver bug!\n"))
2352                         return -EINVAL;
2353                 alignment = 1 * 1024 * 1024;
2354                 break;
2355         default:
2356                 MISSING_CASE(fb->modifier[0]);
2357                 return -EINVAL;
2358         }
2359
2360         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2361         if (ret)
2362                 return ret;
2363
2364         /* Note that the w/a also requires 64 PTE of padding following the
2365          * bo. We currently fill all unused PTE with the shadow page and so
2366          * we should always have valid PTE following the scanout preventing
2367          * the VT-d warning.
2368          */
2369         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2370                 alignment = 256 * 1024;
2371
2372         /*
2373          * Global gtt pte registers are special registers which actually forward
2374          * writes to a chunk of system memory. Which means that there is no risk
2375          * that the register values disappear as soon as we call
2376          * intel_runtime_pm_put(), so it is correct to wrap only the
2377          * pin/unpin/fence and not more.
2378          */
2379         intel_runtime_pm_get(dev_priv);
2380
2381         dev_priv->mm.interruptible = false;
2382         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2383                                                    pipelined_request, &view);
2384         if (ret)
2385                 goto err_interruptible;
2386
2387         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2388          * fence, whereas 965+ only requires a fence if using
2389          * framebuffer compression.  For simplicity, we always install
2390          * a fence as the cost is not that onerous.
2391          */
2392         ret = i915_gem_object_get_fence(obj);
2393         if (ret == -EDEADLK) {
2394                 /*
2395                  * -EDEADLK means there are no free fences
2396                  * no pending flips.
2397                  *
2398                  * This is propagated to atomic, but it uses
2399                  * -EDEADLK to force a locking recovery, so
2400                  * change the returned error to -EBUSY.
2401                  */
2402                 ret = -EBUSY;
2403                 goto err_unpin;
2404         } else if (ret)
2405                 goto err_unpin;
2406
2407         i915_gem_object_pin_fence(obj);
2408
2409         dev_priv->mm.interruptible = true;
2410         intel_runtime_pm_put(dev_priv);
2411         return 0;
2412
2413 err_unpin:
2414         i915_gem_object_unpin_from_display_plane(obj, &view);
2415 err_interruptible:
2416         dev_priv->mm.interruptible = true;
2417         intel_runtime_pm_put(dev_priv);
2418         return ret;
2419 }
2420
2421 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2422                                const struct drm_plane_state *plane_state)
2423 {
2424         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2425         struct i915_ggtt_view view;
2426         int ret;
2427
2428         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2429
2430         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2431         WARN_ONCE(ret, "Couldn't get view from plane state!");
2432
2433         i915_gem_object_unpin_fence(obj);
2434         i915_gem_object_unpin_from_display_plane(obj, &view);
2435 }
2436
2437 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2438  * is assumed to be a power-of-two. */
2439 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2440                                              int *x, int *y,
2441                                              unsigned int tiling_mode,
2442                                              unsigned int cpp,
2443                                              unsigned int pitch)
2444 {
2445         if (tiling_mode != I915_TILING_NONE) {
2446                 unsigned int tile_rows, tiles;
2447
2448                 tile_rows = *y / 8;
2449                 *y %= 8;
2450
2451                 tiles = *x / (512/cpp);
2452                 *x %= 512/cpp;
2453
2454                 return tile_rows * pitch * 8 + tiles * 4096;
2455         } else {
2456                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2457                 unsigned int offset;
2458
2459                 offset = *y * pitch + *x * cpp;
2460                 *y = (offset & alignment) / pitch;
2461                 *x = ((offset & alignment) - *y * pitch) / cpp;
2462                 return offset & ~alignment;
2463         }
2464 }
2465
2466 static int i9xx_format_to_fourcc(int format)
2467 {
2468         switch (format) {
2469         case DISPPLANE_8BPP:
2470                 return DRM_FORMAT_C8;
2471         case DISPPLANE_BGRX555:
2472                 return DRM_FORMAT_XRGB1555;
2473         case DISPPLANE_BGRX565:
2474                 return DRM_FORMAT_RGB565;
2475         default:
2476         case DISPPLANE_BGRX888:
2477                 return DRM_FORMAT_XRGB8888;
2478         case DISPPLANE_RGBX888:
2479                 return DRM_FORMAT_XBGR8888;
2480         case DISPPLANE_BGRX101010:
2481                 return DRM_FORMAT_XRGB2101010;
2482         case DISPPLANE_RGBX101010:
2483                 return DRM_FORMAT_XBGR2101010;
2484         }
2485 }
2486
2487 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2488 {
2489         switch (format) {
2490         case PLANE_CTL_FORMAT_RGB_565:
2491                 return DRM_FORMAT_RGB565;
2492         default:
2493         case PLANE_CTL_FORMAT_XRGB_8888:
2494                 if (rgb_order) {
2495                         if (alpha)
2496                                 return DRM_FORMAT_ABGR8888;
2497                         else
2498                                 return DRM_FORMAT_XBGR8888;
2499                 } else {
2500                         if (alpha)
2501                                 return DRM_FORMAT_ARGB8888;
2502                         else
2503                                 return DRM_FORMAT_XRGB8888;
2504                 }
2505         case PLANE_CTL_FORMAT_XRGB_2101010:
2506                 if (rgb_order)
2507                         return DRM_FORMAT_XBGR2101010;
2508                 else
2509                         return DRM_FORMAT_XRGB2101010;
2510         }
2511 }
2512
2513 static bool
2514 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2515                               struct intel_initial_plane_config *plane_config)
2516 {
2517         struct drm_device *dev = crtc->base.dev;
2518         struct drm_i915_private *dev_priv = to_i915(dev);
2519         struct drm_i915_gem_object *obj = NULL;
2520         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2521         struct drm_framebuffer *fb = &plane_config->fb->base;
2522         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2523         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2524                                     PAGE_SIZE);
2525
2526         size_aligned -= base_aligned;
2527
2528         if (plane_config->size == 0)
2529                 return false;
2530
2531         /* If the FB is too big, just don't use it since fbdev is not very
2532          * important and we should probably use that space with FBC or other
2533          * features. */
2534         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2535                 return false;
2536
2537         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2538                                                              base_aligned,
2539                                                              base_aligned,
2540                                                              size_aligned);
2541         if (!obj)
2542                 return false;
2543
2544         obj->tiling_mode = plane_config->tiling;
2545         if (obj->tiling_mode == I915_TILING_X)
2546                 obj->stride = fb->pitches[0];
2547
2548         mode_cmd.pixel_format = fb->pixel_format;
2549         mode_cmd.width = fb->width;
2550         mode_cmd.height = fb->height;
2551         mode_cmd.pitches[0] = fb->pitches[0];
2552         mode_cmd.modifier[0] = fb->modifier[0];
2553         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2554
2555         mutex_lock(&dev->struct_mutex);
2556         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2557                                    &mode_cmd, obj)) {
2558                 DRM_DEBUG_KMS("intel fb init failed\n");
2559                 goto out_unref_obj;
2560         }
2561         mutex_unlock(&dev->struct_mutex);
2562
2563         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2564         return true;
2565
2566 out_unref_obj:
2567         drm_gem_object_unreference(&obj->base);
2568         mutex_unlock(&dev->struct_mutex);
2569         return false;
2570 }
2571
2572 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2573 static void
2574 update_state_fb(struct drm_plane *plane)
2575 {
2576         if (plane->fb == plane->state->fb)
2577                 return;
2578
2579         if (plane->state->fb)
2580                 drm_framebuffer_unreference(plane->state->fb);
2581         plane->state->fb = plane->fb;
2582         if (plane->state->fb)
2583                 drm_framebuffer_reference(plane->state->fb);
2584 }
2585
2586 static void
2587 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2588                              struct intel_initial_plane_config *plane_config)
2589 {
2590         struct drm_device *dev = intel_crtc->base.dev;
2591         struct drm_i915_private *dev_priv = dev->dev_private;
2592         struct drm_crtc *c;
2593         struct intel_crtc *i;
2594         struct drm_i915_gem_object *obj;
2595         struct drm_plane *primary = intel_crtc->base.primary;
2596         struct drm_plane_state *plane_state = primary->state;
2597         struct drm_framebuffer *fb;
2598
2599         if (!plane_config->fb)
2600                 return;
2601
2602         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2603                 fb = &plane_config->fb->base;
2604                 goto valid_fb;
2605         }
2606
2607         kfree(plane_config->fb);
2608
2609         /*
2610          * Failed to alloc the obj, check to see if we should share
2611          * an fb with another CRTC instead
2612          */
2613         for_each_crtc(dev, c) {
2614                 i = to_intel_crtc(c);
2615
2616                 if (c == &intel_crtc->base)
2617                         continue;
2618
2619                 if (!i->active)
2620                         continue;
2621
2622                 fb = c->primary->fb;
2623                 if (!fb)
2624                         continue;
2625
2626                 obj = intel_fb_obj(fb);
2627                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2628                         drm_framebuffer_reference(fb);
2629                         goto valid_fb;
2630                 }
2631         }
2632
2633         return;
2634
2635 valid_fb:
2636         plane_state->src_x = plane_state->src_y = 0;
2637         plane_state->src_w = fb->width << 16;
2638         plane_state->src_h = fb->height << 16;
2639
2640         plane_state->crtc_x = plane_state->src_y = 0;
2641         plane_state->crtc_w = fb->width;
2642         plane_state->crtc_h = fb->height;
2643
2644         obj = intel_fb_obj(fb);
2645         if (obj->tiling_mode != I915_TILING_NONE)
2646                 dev_priv->preserve_bios_swizzle = true;
2647
2648         drm_framebuffer_reference(fb);
2649         primary->fb = primary->state->fb = fb;
2650         primary->crtc = primary->state->crtc = &intel_crtc->base;
2651         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2652         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2653 }
2654
2655 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2656                                       struct drm_framebuffer *fb,
2657                                       int x, int y)
2658 {
2659         struct drm_device *dev = crtc->dev;
2660         struct drm_i915_private *dev_priv = dev->dev_private;
2661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2662         struct drm_plane *primary = crtc->primary;
2663         bool visible = to_intel_plane_state(primary->state)->visible;
2664         struct drm_i915_gem_object *obj;
2665         int plane = intel_crtc->plane;
2666         unsigned long linear_offset;
2667         u32 dspcntr;
2668         u32 reg = DSPCNTR(plane);
2669         int pixel_size;
2670
2671         if (!visible || !fb) {
2672                 I915_WRITE(reg, 0);
2673                 if (INTEL_INFO(dev)->gen >= 4)
2674                         I915_WRITE(DSPSURF(plane), 0);
2675                 else
2676                         I915_WRITE(DSPADDR(plane), 0);
2677                 POSTING_READ(reg);
2678                 return;
2679         }
2680
2681         obj = intel_fb_obj(fb);
2682         if (WARN_ON(obj == NULL))
2683                 return;
2684
2685         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2686
2687         dspcntr = DISPPLANE_GAMMA_ENABLE;
2688
2689         dspcntr |= DISPLAY_PLANE_ENABLE;
2690
2691         if (INTEL_INFO(dev)->gen < 4) {
2692                 if (intel_crtc->pipe == PIPE_B)
2693                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2694
2695                 /* pipesrc and dspsize control the size that is scaled from,
2696                  * which should always be the user's requested size.
2697                  */
2698                 I915_WRITE(DSPSIZE(plane),
2699                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2700                            (intel_crtc->config->pipe_src_w - 1));
2701                 I915_WRITE(DSPPOS(plane), 0);
2702         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2703                 I915_WRITE(PRIMSIZE(plane),
2704                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2705                            (intel_crtc->config->pipe_src_w - 1));
2706                 I915_WRITE(PRIMPOS(plane), 0);
2707                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2708         }
2709
2710         switch (fb->pixel_format) {
2711         case DRM_FORMAT_C8:
2712                 dspcntr |= DISPPLANE_8BPP;
2713                 break;
2714         case DRM_FORMAT_XRGB1555:
2715                 dspcntr |= DISPPLANE_BGRX555;
2716                 break;
2717         case DRM_FORMAT_RGB565:
2718                 dspcntr |= DISPPLANE_BGRX565;
2719                 break;
2720         case DRM_FORMAT_XRGB8888:
2721                 dspcntr |= DISPPLANE_BGRX888;
2722                 break;
2723         case DRM_FORMAT_XBGR8888:
2724                 dspcntr |= DISPPLANE_RGBX888;
2725                 break;
2726         case DRM_FORMAT_XRGB2101010:
2727                 dspcntr |= DISPPLANE_BGRX101010;
2728                 break;
2729         case DRM_FORMAT_XBGR2101010:
2730                 dspcntr |= DISPPLANE_RGBX101010;
2731                 break;
2732         default:
2733                 BUG();
2734         }
2735
2736         if (INTEL_INFO(dev)->gen >= 4 &&
2737             obj->tiling_mode != I915_TILING_NONE)
2738                 dspcntr |= DISPPLANE_TILED;
2739
2740         if (IS_G4X(dev))
2741                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2742
2743         linear_offset = y * fb->pitches[0] + x * pixel_size;
2744
2745         if (INTEL_INFO(dev)->gen >= 4) {
2746                 intel_crtc->dspaddr_offset =
2747                         intel_gen4_compute_page_offset(dev_priv,
2748                                                        &x, &y, obj->tiling_mode,
2749                                                        pixel_size,
2750                                                        fb->pitches[0]);
2751                 linear_offset -= intel_crtc->dspaddr_offset;
2752         } else {
2753                 intel_crtc->dspaddr_offset = linear_offset;
2754         }
2755
2756         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2757                 dspcntr |= DISPPLANE_ROTATE_180;
2758
2759                 x += (intel_crtc->config->pipe_src_w - 1);
2760                 y += (intel_crtc->config->pipe_src_h - 1);
2761
2762                 /* Finding the last pixel of the last line of the display
2763                 data and adding to linear_offset*/
2764                 linear_offset +=
2765                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2766                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2767         }
2768
2769         intel_crtc->adjusted_x = x;
2770         intel_crtc->adjusted_y = y;
2771
2772         I915_WRITE(reg, dspcntr);
2773
2774         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2775         if (INTEL_INFO(dev)->gen >= 4) {
2776                 I915_WRITE(DSPSURF(plane),
2777                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2778                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2779                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2780         } else
2781                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2782         POSTING_READ(reg);
2783 }
2784
2785 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2786                                           struct drm_framebuffer *fb,
2787                                           int x, int y)
2788 {
2789         struct drm_device *dev = crtc->dev;
2790         struct drm_i915_private *dev_priv = dev->dev_private;
2791         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2792         struct drm_plane *primary = crtc->primary;
2793         bool visible = to_intel_plane_state(primary->state)->visible;
2794         struct drm_i915_gem_object *obj;
2795         int plane = intel_crtc->plane;
2796         unsigned long linear_offset;
2797         u32 dspcntr;
2798         u32 reg = DSPCNTR(plane);
2799         int pixel_size;
2800
2801         if (!visible || !fb) {
2802                 I915_WRITE(reg, 0);
2803                 I915_WRITE(DSPSURF(plane), 0);
2804                 POSTING_READ(reg);
2805                 return;
2806         }
2807
2808         obj = intel_fb_obj(fb);
2809         if (WARN_ON(obj == NULL))
2810                 return;
2811
2812         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2813
2814         dspcntr = DISPPLANE_GAMMA_ENABLE;
2815
2816         dspcntr |= DISPLAY_PLANE_ENABLE;
2817
2818         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2819                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2820
2821         switch (fb->pixel_format) {
2822         case DRM_FORMAT_C8:
2823                 dspcntr |= DISPPLANE_8BPP;
2824                 break;
2825         case DRM_FORMAT_RGB565:
2826                 dspcntr |= DISPPLANE_BGRX565;
2827                 break;
2828         case DRM_FORMAT_XRGB8888:
2829                 dspcntr |= DISPPLANE_BGRX888;
2830                 break;
2831         case DRM_FORMAT_XBGR8888:
2832                 dspcntr |= DISPPLANE_RGBX888;
2833                 break;
2834         case DRM_FORMAT_XRGB2101010:
2835                 dspcntr |= DISPPLANE_BGRX101010;
2836                 break;
2837         case DRM_FORMAT_XBGR2101010:
2838                 dspcntr |= DISPPLANE_RGBX101010;
2839                 break;
2840         default:
2841                 BUG();
2842         }
2843
2844         if (obj->tiling_mode != I915_TILING_NONE)
2845                 dspcntr |= DISPPLANE_TILED;
2846
2847         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2848                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2849
2850         linear_offset = y * fb->pitches[0] + x * pixel_size;
2851         intel_crtc->dspaddr_offset =
2852                 intel_gen4_compute_page_offset(dev_priv,
2853                                                &x, &y, obj->tiling_mode,
2854                                                pixel_size,
2855                                                fb->pitches[0]);
2856         linear_offset -= intel_crtc->dspaddr_offset;
2857         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2858                 dspcntr |= DISPPLANE_ROTATE_180;
2859
2860                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2861                         x += (intel_crtc->config->pipe_src_w - 1);
2862                         y += (intel_crtc->config->pipe_src_h - 1);
2863
2864                         /* Finding the last pixel of the last line of the display
2865                         data and adding to linear_offset*/
2866                         linear_offset +=
2867                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2868                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2869                 }
2870         }
2871
2872         intel_crtc->adjusted_x = x;
2873         intel_crtc->adjusted_y = y;
2874
2875         I915_WRITE(reg, dspcntr);
2876
2877         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2878         I915_WRITE(DSPSURF(plane),
2879                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2880         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2881                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2882         } else {
2883                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2884                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2885         }
2886         POSTING_READ(reg);
2887 }
2888
2889 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2890                               uint32_t pixel_format)
2891 {
2892         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2893
2894         /*
2895          * The stride is either expressed as a multiple of 64 bytes
2896          * chunks for linear buffers or in number of tiles for tiled
2897          * buffers.
2898          */
2899         switch (fb_modifier) {
2900         case DRM_FORMAT_MOD_NONE:
2901                 return 64;
2902         case I915_FORMAT_MOD_X_TILED:
2903                 if (INTEL_INFO(dev)->gen == 2)
2904                         return 128;
2905                 return 512;
2906         case I915_FORMAT_MOD_Y_TILED:
2907                 /* No need to check for old gens and Y tiling since this is
2908                  * about the display engine and those will be blocked before
2909                  * we get here.
2910                  */
2911                 return 128;
2912         case I915_FORMAT_MOD_Yf_TILED:
2913                 if (bits_per_pixel == 8)
2914                         return 64;
2915                 else
2916                         return 128;
2917         default:
2918                 MISSING_CASE(fb_modifier);
2919                 return 64;
2920         }
2921 }
2922
2923 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2924                                      struct drm_i915_gem_object *obj,
2925                                      unsigned int plane)
2926 {
2927         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2928         struct i915_vma *vma;
2929         unsigned char *offset;
2930
2931         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2932                 view = &i915_ggtt_view_rotated;
2933
2934         vma = i915_gem_obj_to_ggtt_view(obj, view);
2935         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2936                 view->type))
2937                 return -1;
2938
2939         offset = (unsigned char *)vma->node.start;
2940
2941         if (plane == 1) {
2942                 offset += vma->ggtt_view.rotation_info.uv_start_page *
2943                           PAGE_SIZE;
2944         }
2945
2946         return (unsigned long)offset;
2947 }
2948
2949 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2950 {
2951         struct drm_device *dev = intel_crtc->base.dev;
2952         struct drm_i915_private *dev_priv = dev->dev_private;
2953
2954         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2955         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2956         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2957 }
2958
2959 /*
2960  * This function detaches (aka. unbinds) unused scalers in hardware
2961  */
2962 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2963 {
2964         struct intel_crtc_scaler_state *scaler_state;
2965         int i;
2966
2967         scaler_state = &intel_crtc->config->scaler_state;
2968
2969         /* loop through and disable scalers that aren't in use */
2970         for (i = 0; i < intel_crtc->num_scalers; i++) {
2971                 if (!scaler_state->scalers[i].in_use)
2972                         skl_detach_scaler(intel_crtc, i);
2973         }
2974 }
2975
2976 u32 skl_plane_ctl_format(uint32_t pixel_format)
2977 {
2978         switch (pixel_format) {
2979         case DRM_FORMAT_C8:
2980                 return PLANE_CTL_FORMAT_INDEXED;
2981         case DRM_FORMAT_RGB565:
2982                 return PLANE_CTL_FORMAT_RGB_565;
2983         case DRM_FORMAT_XBGR8888:
2984                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2985         case DRM_FORMAT_XRGB8888:
2986                 return PLANE_CTL_FORMAT_XRGB_8888;
2987         /*
2988          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2989          * to be already pre-multiplied. We need to add a knob (or a different
2990          * DRM_FORMAT) for user-space to configure that.
2991          */
2992         case DRM_FORMAT_ABGR8888:
2993                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2994                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2995         case DRM_FORMAT_ARGB8888:
2996                 return PLANE_CTL_FORMAT_XRGB_8888 |
2997                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2998         case DRM_FORMAT_XRGB2101010:
2999                 return PLANE_CTL_FORMAT_XRGB_2101010;
3000         case DRM_FORMAT_XBGR2101010:
3001                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3002         case DRM_FORMAT_YUYV:
3003                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3004         case DRM_FORMAT_YVYU:
3005                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3006         case DRM_FORMAT_UYVY:
3007                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3008         case DRM_FORMAT_VYUY:
3009                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3010         default:
3011                 MISSING_CASE(pixel_format);
3012         }
3013
3014         return 0;
3015 }
3016
3017 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3018 {
3019         switch (fb_modifier) {
3020         case DRM_FORMAT_MOD_NONE:
3021                 break;
3022         case I915_FORMAT_MOD_X_TILED:
3023                 return PLANE_CTL_TILED_X;
3024         case I915_FORMAT_MOD_Y_TILED:
3025                 return PLANE_CTL_TILED_Y;
3026         case I915_FORMAT_MOD_Yf_TILED:
3027                 return PLANE_CTL_TILED_YF;
3028         default:
3029                 MISSING_CASE(fb_modifier);
3030         }
3031
3032         return 0;
3033 }
3034
3035 u32 skl_plane_ctl_rotation(unsigned int rotation)
3036 {
3037         switch (rotation) {
3038         case BIT(DRM_ROTATE_0):
3039                 break;
3040         /*
3041          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3042          * while i915 HW rotation is clockwise, thats why this swapping.
3043          */
3044         case BIT(DRM_ROTATE_90):
3045                 return PLANE_CTL_ROTATE_270;
3046         case BIT(DRM_ROTATE_180):
3047                 return PLANE_CTL_ROTATE_180;
3048         case BIT(DRM_ROTATE_270):
3049                 return PLANE_CTL_ROTATE_90;
3050         default:
3051                 MISSING_CASE(rotation);
3052         }
3053
3054         return 0;
3055 }
3056
3057 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3058                                          struct drm_framebuffer *fb,
3059                                          int x, int y)
3060 {
3061         struct drm_device *dev = crtc->dev;
3062         struct drm_i915_private *dev_priv = dev->dev_private;
3063         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3064         struct drm_plane *plane = crtc->primary;
3065         bool visible = to_intel_plane_state(plane->state)->visible;
3066         struct drm_i915_gem_object *obj;
3067         int pipe = intel_crtc->pipe;
3068         u32 plane_ctl, stride_div, stride;
3069         u32 tile_height, plane_offset, plane_size;
3070         unsigned int rotation;
3071         int x_offset, y_offset;
3072         unsigned long surf_addr;
3073         struct intel_crtc_state *crtc_state = intel_crtc->config;
3074         struct intel_plane_state *plane_state;
3075         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3076         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3077         int scaler_id = -1;
3078
3079         plane_state = to_intel_plane_state(plane->state);
3080
3081         if (!visible || !fb) {
3082                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3083                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3084                 POSTING_READ(PLANE_CTL(pipe, 0));
3085                 return;
3086         }
3087
3088         plane_ctl = PLANE_CTL_ENABLE |
3089                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3090                     PLANE_CTL_PIPE_CSC_ENABLE;
3091
3092         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3093         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3094         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3095
3096         rotation = plane->state->rotation;
3097         plane_ctl |= skl_plane_ctl_rotation(rotation);
3098
3099         obj = intel_fb_obj(fb);
3100         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3101                                                fb->pixel_format);
3102         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3103
3104         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3105
3106         scaler_id = plane_state->scaler_id;
3107         src_x = plane_state->src.x1 >> 16;
3108         src_y = plane_state->src.y1 >> 16;
3109         src_w = drm_rect_width(&plane_state->src) >> 16;
3110         src_h = drm_rect_height(&plane_state->src) >> 16;
3111         dst_x = plane_state->dst.x1;
3112         dst_y = plane_state->dst.y1;
3113         dst_w = drm_rect_width(&plane_state->dst);
3114         dst_h = drm_rect_height(&plane_state->dst);
3115
3116         WARN_ON(x != src_x || y != src_y);
3117
3118         if (intel_rotation_90_or_270(rotation)) {
3119                 /* stride = Surface height in tiles */
3120                 tile_height = intel_tile_height(dev, fb->pixel_format,
3121                                                 fb->modifier[0], 0);
3122                 stride = DIV_ROUND_UP(fb->height, tile_height);
3123                 x_offset = stride * tile_height - y - src_h;
3124                 y_offset = x;
3125                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3126         } else {
3127                 stride = fb->pitches[0] / stride_div;
3128                 x_offset = x;
3129                 y_offset = y;
3130                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3131         }
3132         plane_offset = y_offset << 16 | x_offset;
3133
3134         intel_crtc->adjusted_x = x_offset;
3135         intel_crtc->adjusted_y = y_offset;
3136
3137         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3138         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3139         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3140         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3141
3142         if (scaler_id >= 0) {
3143                 uint32_t ps_ctrl = 0;
3144
3145                 WARN_ON(!dst_w || !dst_h);
3146                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3147                         crtc_state->scaler_state.scalers[scaler_id].mode;
3148                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3149                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3150                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3151                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3152                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3153         } else {
3154                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3155         }
3156
3157         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3158
3159         POSTING_READ(PLANE_SURF(pipe, 0));
3160 }
3161
3162 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3163 static int
3164 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3165                            int x, int y, enum mode_set_atomic state)
3166 {
3167         struct drm_device *dev = crtc->dev;
3168         struct drm_i915_private *dev_priv = dev->dev_private;
3169
3170         if (dev_priv->fbc.disable_fbc)
3171                 dev_priv->fbc.disable_fbc(dev_priv);
3172
3173         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3174
3175         return 0;
3176 }
3177
3178 static void intel_complete_page_flips(struct drm_device *dev)
3179 {
3180         struct drm_crtc *crtc;
3181
3182         for_each_crtc(dev, crtc) {
3183                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3184                 enum plane plane = intel_crtc->plane;
3185
3186                 intel_prepare_page_flip(dev, plane);
3187                 intel_finish_page_flip_plane(dev, plane);
3188         }
3189 }
3190
3191 static void intel_update_primary_planes(struct drm_device *dev)
3192 {
3193         struct drm_crtc *crtc;
3194
3195         for_each_crtc(dev, crtc) {
3196                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3197                 struct intel_plane_state *plane_state;
3198
3199                 drm_modeset_lock_crtc(crtc, &plane->base);
3200
3201                 plane_state = to_intel_plane_state(plane->base.state);
3202
3203                 if (plane_state->base.fb)
3204                         plane->commit_plane(&plane->base, plane_state);
3205
3206                 drm_modeset_unlock_crtc(crtc);
3207         }
3208 }
3209
3210 void intel_prepare_reset(struct drm_device *dev)
3211 {
3212         /* no reset support for gen2 */
3213         if (IS_GEN2(dev))
3214                 return;
3215
3216         /* reset doesn't touch the display */
3217         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3218                 return;
3219
3220         drm_modeset_lock_all(dev);
3221         /*
3222          * Disabling the crtcs gracefully seems nicer. Also the
3223          * g33 docs say we should at least disable all the planes.
3224          */
3225         intel_display_suspend(dev);
3226 }
3227
3228 void intel_finish_reset(struct drm_device *dev)
3229 {
3230         struct drm_i915_private *dev_priv = to_i915(dev);
3231
3232         /*
3233          * Flips in the rings will be nuked by the reset,
3234          * so complete all pending flips so that user space
3235          * will get its events and not get stuck.
3236          */
3237         intel_complete_page_flips(dev);
3238
3239         /* no reset support for gen2 */
3240         if (IS_GEN2(dev))
3241                 return;
3242
3243         /* reset doesn't touch the display */
3244         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3245                 /*
3246                  * Flips in the rings have been nuked by the reset,
3247                  * so update the base address of all primary
3248                  * planes to the the last fb to make sure we're
3249                  * showing the correct fb after a reset.
3250                  *
3251                  * FIXME: Atomic will make this obsolete since we won't schedule
3252                  * CS-based flips (which might get lost in gpu resets) any more.
3253                  */
3254                 intel_update_primary_planes(dev);
3255                 return;
3256         }
3257
3258         /*
3259          * The display has been reset as well,
3260          * so need a full re-initialization.
3261          */
3262         intel_runtime_pm_disable_interrupts(dev_priv);
3263         intel_runtime_pm_enable_interrupts(dev_priv);
3264
3265         intel_modeset_init_hw(dev);
3266
3267         spin_lock_irq(&dev_priv->irq_lock);
3268         if (dev_priv->display.hpd_irq_setup)
3269                 dev_priv->display.hpd_irq_setup(dev);
3270         spin_unlock_irq(&dev_priv->irq_lock);
3271
3272         intel_display_resume(dev);
3273
3274         intel_hpd_init(dev_priv);
3275
3276         drm_modeset_unlock_all(dev);
3277 }
3278
3279 static void
3280 intel_finish_fb(struct drm_framebuffer *old_fb)
3281 {
3282         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3283         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3284         bool was_interruptible = dev_priv->mm.interruptible;
3285         int ret;
3286
3287         /* Big Hammer, we also need to ensure that any pending
3288          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3289          * current scanout is retired before unpinning the old
3290          * framebuffer. Note that we rely on userspace rendering
3291          * into the buffer attached to the pipe they are waiting
3292          * on. If not, userspace generates a GPU hang with IPEHR
3293          * point to the MI_WAIT_FOR_EVENT.
3294          *
3295          * This should only fail upon a hung GPU, in which case we
3296          * can safely continue.
3297          */
3298         dev_priv->mm.interruptible = false;
3299         ret = i915_gem_object_wait_rendering(obj, true);
3300         dev_priv->mm.interruptible = was_interruptible;
3301
3302         WARN_ON(ret);
3303 }
3304
3305 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3306 {
3307         struct drm_device *dev = crtc->dev;
3308         struct drm_i915_private *dev_priv = dev->dev_private;
3309         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3310         bool pending;
3311
3312         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3313             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3314                 return false;
3315
3316         spin_lock_irq(&dev->event_lock);
3317         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3318         spin_unlock_irq(&dev->event_lock);
3319
3320         return pending;
3321 }
3322
3323 static void intel_update_pipe_config(struct intel_crtc *crtc,
3324                                      struct intel_crtc_state *old_crtc_state)
3325 {
3326         struct drm_device *dev = crtc->base.dev;
3327         struct drm_i915_private *dev_priv = dev->dev_private;
3328         struct intel_crtc_state *pipe_config =
3329                 to_intel_crtc_state(crtc->base.state);
3330
3331         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3332         crtc->base.mode = crtc->base.state->mode;
3333
3334         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3335                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3336                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3337
3338         if (HAS_DDI(dev))
3339                 intel_set_pipe_csc(&crtc->base);
3340
3341         /*
3342          * Update pipe size and adjust fitter if needed: the reason for this is
3343          * that in compute_mode_changes we check the native mode (not the pfit
3344          * mode) to see if we can flip rather than do a full mode set. In the
3345          * fastboot case, we'll flip, but if we don't update the pipesrc and
3346          * pfit state, we'll end up with a big fb scanned out into the wrong
3347          * sized surface.
3348          */
3349
3350         I915_WRITE(PIPESRC(crtc->pipe),
3351                    ((pipe_config->pipe_src_w - 1) << 16) |
3352                    (pipe_config->pipe_src_h - 1));
3353
3354         /* on skylake this is done by detaching scalers */
3355         if (INTEL_INFO(dev)->gen >= 9) {
3356                 skl_detach_scalers(crtc);
3357
3358                 if (pipe_config->pch_pfit.enabled)
3359                         skylake_pfit_enable(crtc);
3360         } else if (HAS_PCH_SPLIT(dev)) {
3361                 if (pipe_config->pch_pfit.enabled)
3362                         ironlake_pfit_enable(crtc);
3363                 else if (old_crtc_state->pch_pfit.enabled)
3364                         ironlake_pfit_disable(crtc, true);
3365         }
3366 }
3367
3368 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3369 {
3370         struct drm_device *dev = crtc->dev;
3371         struct drm_i915_private *dev_priv = dev->dev_private;
3372         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3373         int pipe = intel_crtc->pipe;
3374         u32 reg, temp;
3375
3376         /* enable normal train */
3377         reg = FDI_TX_CTL(pipe);
3378         temp = I915_READ(reg);
3379         if (IS_IVYBRIDGE(dev)) {
3380                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3381                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3382         } else {
3383                 temp &= ~FDI_LINK_TRAIN_NONE;
3384                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3385         }
3386         I915_WRITE(reg, temp);
3387
3388         reg = FDI_RX_CTL(pipe);
3389         temp = I915_READ(reg);
3390         if (HAS_PCH_CPT(dev)) {
3391                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3392                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3393         } else {
3394                 temp &= ~FDI_LINK_TRAIN_NONE;
3395                 temp |= FDI_LINK_TRAIN_NONE;
3396         }
3397         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3398
3399         /* wait one idle pattern time */
3400         POSTING_READ(reg);
3401         udelay(1000);
3402
3403         /* IVB wants error correction enabled */
3404         if (IS_IVYBRIDGE(dev))
3405                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3406                            FDI_FE_ERRC_ENABLE);
3407 }
3408
3409 /* The FDI link training functions for ILK/Ibexpeak. */
3410 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3411 {
3412         struct drm_device *dev = crtc->dev;
3413         struct drm_i915_private *dev_priv = dev->dev_private;
3414         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3415         int pipe = intel_crtc->pipe;
3416         u32 reg, temp, tries;
3417
3418         /* FDI needs bits from pipe first */
3419         assert_pipe_enabled(dev_priv, pipe);
3420
3421         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3422            for train result */
3423         reg = FDI_RX_IMR(pipe);
3424         temp = I915_READ(reg);
3425         temp &= ~FDI_RX_SYMBOL_LOCK;
3426         temp &= ~FDI_RX_BIT_LOCK;
3427         I915_WRITE(reg, temp);
3428         I915_READ(reg);
3429         udelay(150);
3430
3431         /* enable CPU FDI TX and PCH FDI RX */
3432         reg = FDI_TX_CTL(pipe);
3433         temp = I915_READ(reg);
3434         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3435         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3436         temp &= ~FDI_LINK_TRAIN_NONE;
3437         temp |= FDI_LINK_TRAIN_PATTERN_1;
3438         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3439
3440         reg = FDI_RX_CTL(pipe);
3441         temp = I915_READ(reg);
3442         temp &= ~FDI_LINK_TRAIN_NONE;
3443         temp |= FDI_LINK_TRAIN_PATTERN_1;
3444         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3445
3446         POSTING_READ(reg);
3447         udelay(150);
3448
3449         /* Ironlake workaround, enable clock pointer after FDI enable*/
3450         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3451         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3452                    FDI_RX_PHASE_SYNC_POINTER_EN);
3453
3454         reg = FDI_RX_IIR(pipe);
3455         for (tries = 0; tries < 5; tries++) {
3456                 temp = I915_READ(reg);
3457                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3458
3459                 if ((temp & FDI_RX_BIT_LOCK)) {
3460                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3461                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3462                         break;
3463                 }
3464         }
3465         if (tries == 5)
3466                 DRM_ERROR("FDI train 1 fail!\n");
3467
3468         /* Train 2 */
3469         reg = FDI_TX_CTL(pipe);
3470         temp = I915_READ(reg);
3471         temp &= ~FDI_LINK_TRAIN_NONE;
3472         temp |= FDI_LINK_TRAIN_PATTERN_2;
3473         I915_WRITE(reg, temp);
3474
3475         reg = FDI_RX_CTL(pipe);
3476         temp = I915_READ(reg);
3477         temp &= ~FDI_LINK_TRAIN_NONE;
3478         temp |= FDI_LINK_TRAIN_PATTERN_2;
3479         I915_WRITE(reg, temp);
3480
3481         POSTING_READ(reg);
3482         udelay(150);
3483
3484         reg = FDI_RX_IIR(pipe);
3485         for (tries = 0; tries < 5; tries++) {
3486                 temp = I915_READ(reg);
3487                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3488
3489                 if (temp & FDI_RX_SYMBOL_LOCK) {
3490                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3491                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3492                         break;
3493                 }
3494         }
3495         if (tries == 5)
3496                 DRM_ERROR("FDI train 2 fail!\n");
3497
3498         DRM_DEBUG_KMS("FDI train done\n");
3499
3500 }
3501
3502 static const int snb_b_fdi_train_param[] = {
3503         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3504         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3505         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3506         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3507 };
3508
3509 /* The FDI link training functions for SNB/Cougarpoint. */
3510 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3511 {
3512         struct drm_device *dev = crtc->dev;
3513         struct drm_i915_private *dev_priv = dev->dev_private;
3514         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3515         int pipe = intel_crtc->pipe;
3516         u32 reg, temp, i, retry;
3517
3518         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3519            for train result */
3520         reg = FDI_RX_IMR(pipe);
3521         temp = I915_READ(reg);
3522         temp &= ~FDI_RX_SYMBOL_LOCK;
3523         temp &= ~FDI_RX_BIT_LOCK;
3524         I915_WRITE(reg, temp);
3525
3526         POSTING_READ(reg);
3527         udelay(150);
3528
3529         /* enable CPU FDI TX and PCH FDI RX */
3530         reg = FDI_TX_CTL(pipe);
3531         temp = I915_READ(reg);
3532         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3533         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3534         temp &= ~FDI_LINK_TRAIN_NONE;
3535         temp |= FDI_LINK_TRAIN_PATTERN_1;
3536         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3537         /* SNB-B */
3538         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3539         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3540
3541         I915_WRITE(FDI_RX_MISC(pipe),
3542                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3543
3544         reg = FDI_RX_CTL(pipe);
3545         temp = I915_READ(reg);
3546         if (HAS_PCH_CPT(dev)) {
3547                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3548                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3549         } else {
3550                 temp &= ~FDI_LINK_TRAIN_NONE;
3551                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3552         }
3553         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3554
3555         POSTING_READ(reg);
3556         udelay(150);
3557
3558         for (i = 0; i < 4; i++) {
3559                 reg = FDI_TX_CTL(pipe);
3560                 temp = I915_READ(reg);
3561                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3562                 temp |= snb_b_fdi_train_param[i];
3563                 I915_WRITE(reg, temp);
3564
3565                 POSTING_READ(reg);
3566                 udelay(500);
3567
3568                 for (retry = 0; retry < 5; retry++) {
3569                         reg = FDI_RX_IIR(pipe);
3570                         temp = I915_READ(reg);
3571                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3572                         if (temp & FDI_RX_BIT_LOCK) {
3573                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3574                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3575                                 break;
3576                         }
3577                         udelay(50);
3578                 }
3579                 if (retry < 5)
3580                         break;
3581         }
3582         if (i == 4)
3583                 DRM_ERROR("FDI train 1 fail!\n");
3584
3585         /* Train 2 */
3586         reg = FDI_TX_CTL(pipe);
3587         temp = I915_READ(reg);
3588         temp &= ~FDI_LINK_TRAIN_NONE;
3589         temp |= FDI_LINK_TRAIN_PATTERN_2;
3590         if (IS_GEN6(dev)) {
3591                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3592                 /* SNB-B */
3593                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3594         }
3595         I915_WRITE(reg, temp);
3596
3597         reg = FDI_RX_CTL(pipe);
3598         temp = I915_READ(reg);
3599         if (HAS_PCH_CPT(dev)) {
3600                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3601                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3602         } else {
3603                 temp &= ~FDI_LINK_TRAIN_NONE;
3604                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3605         }
3606         I915_WRITE(reg, temp);
3607
3608         POSTING_READ(reg);
3609         udelay(150);
3610
3611         for (i = 0; i < 4; i++) {
3612                 reg = FDI_TX_CTL(pipe);
3613                 temp = I915_READ(reg);
3614                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3615                 temp |= snb_b_fdi_train_param[i];
3616                 I915_WRITE(reg, temp);
3617
3618                 POSTING_READ(reg);
3619                 udelay(500);
3620
3621                 for (retry = 0; retry < 5; retry++) {
3622                         reg = FDI_RX_IIR(pipe);
3623                         temp = I915_READ(reg);
3624                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3625                         if (temp & FDI_RX_SYMBOL_LOCK) {
3626                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3627                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3628                                 break;
3629                         }
3630                         udelay(50);
3631                 }
3632                 if (retry < 5)
3633                         break;
3634         }
3635         if (i == 4)
3636                 DRM_ERROR("FDI train 2 fail!\n");
3637
3638         DRM_DEBUG_KMS("FDI train done.\n");
3639 }
3640
3641 /* Manual link training for Ivy Bridge A0 parts */
3642 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3643 {
3644         struct drm_device *dev = crtc->dev;
3645         struct drm_i915_private *dev_priv = dev->dev_private;
3646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3647         int pipe = intel_crtc->pipe;
3648         u32 reg, temp, i, j;
3649
3650         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3651            for train result */
3652         reg = FDI_RX_IMR(pipe);
3653         temp = I915_READ(reg);
3654         temp &= ~FDI_RX_SYMBOL_LOCK;
3655         temp &= ~FDI_RX_BIT_LOCK;
3656         I915_WRITE(reg, temp);
3657
3658         POSTING_READ(reg);
3659         udelay(150);
3660
3661         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3662                       I915_READ(FDI_RX_IIR(pipe)));
3663
3664         /* Try each vswing and preemphasis setting twice before moving on */
3665         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3666                 /* disable first in case we need to retry */
3667                 reg = FDI_TX_CTL(pipe);
3668                 temp = I915_READ(reg);
3669                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3670                 temp &= ~FDI_TX_ENABLE;
3671                 I915_WRITE(reg, temp);
3672
3673                 reg = FDI_RX_CTL(pipe);
3674                 temp = I915_READ(reg);
3675                 temp &= ~FDI_LINK_TRAIN_AUTO;
3676                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3677                 temp &= ~FDI_RX_ENABLE;
3678                 I915_WRITE(reg, temp);
3679
3680                 /* enable CPU FDI TX and PCH FDI RX */
3681                 reg = FDI_TX_CTL(pipe);
3682                 temp = I915_READ(reg);
3683                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3684                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3685                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3686                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3687                 temp |= snb_b_fdi_train_param[j/2];
3688                 temp |= FDI_COMPOSITE_SYNC;
3689                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3690
3691                 I915_WRITE(FDI_RX_MISC(pipe),
3692                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3693
3694                 reg = FDI_RX_CTL(pipe);
3695                 temp = I915_READ(reg);
3696                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3697                 temp |= FDI_COMPOSITE_SYNC;
3698                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3699
3700                 POSTING_READ(reg);
3701                 udelay(1); /* should be 0.5us */
3702
3703                 for (i = 0; i < 4; i++) {
3704                         reg = FDI_RX_IIR(pipe);
3705                         temp = I915_READ(reg);
3706                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3707
3708                         if (temp & FDI_RX_BIT_LOCK ||
3709                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3710                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3711                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3712                                               i);
3713                                 break;
3714                         }
3715                         udelay(1); /* should be 0.5us */
3716                 }
3717                 if (i == 4) {
3718                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3719                         continue;
3720                 }
3721
3722                 /* Train 2 */
3723                 reg = FDI_TX_CTL(pipe);
3724                 temp = I915_READ(reg);
3725                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3726                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3727                 I915_WRITE(reg, temp);
3728
3729                 reg = FDI_RX_CTL(pipe);
3730                 temp = I915_READ(reg);
3731                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3732                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3733                 I915_WRITE(reg, temp);
3734
3735                 POSTING_READ(reg);
3736                 udelay(2); /* should be 1.5us */
3737
3738                 for (i = 0; i < 4; i++) {
3739                         reg = FDI_RX_IIR(pipe);
3740                         temp = I915_READ(reg);
3741                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3742
3743                         if (temp & FDI_RX_SYMBOL_LOCK ||
3744                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3745                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3746                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3747                                               i);
3748                                 goto train_done;
3749                         }
3750                         udelay(2); /* should be 1.5us */
3751                 }
3752                 if (i == 4)
3753                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3754         }
3755
3756 train_done:
3757         DRM_DEBUG_KMS("FDI train done.\n");
3758 }
3759
3760 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3761 {
3762         struct drm_device *dev = intel_crtc->base.dev;
3763         struct drm_i915_private *dev_priv = dev->dev_private;
3764         int pipe = intel_crtc->pipe;
3765         u32 reg, temp;
3766
3767
3768         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3769         reg = FDI_RX_CTL(pipe);
3770         temp = I915_READ(reg);
3771         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3772         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3773         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3774         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3775
3776         POSTING_READ(reg);
3777         udelay(200);
3778
3779         /* Switch from Rawclk to PCDclk */
3780         temp = I915_READ(reg);
3781         I915_WRITE(reg, temp | FDI_PCDCLK);
3782
3783         POSTING_READ(reg);
3784         udelay(200);
3785
3786         /* Enable CPU FDI TX PLL, always on for Ironlake */
3787         reg = FDI_TX_CTL(pipe);
3788         temp = I915_READ(reg);
3789         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3790                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3791
3792                 POSTING_READ(reg);
3793                 udelay(100);
3794         }
3795 }
3796
3797 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3798 {
3799         struct drm_device *dev = intel_crtc->base.dev;
3800         struct drm_i915_private *dev_priv = dev->dev_private;
3801         int pipe = intel_crtc->pipe;
3802         u32 reg, temp;
3803
3804         /* Switch from PCDclk to Rawclk */
3805         reg = FDI_RX_CTL(pipe);
3806         temp = I915_READ(reg);
3807         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3808
3809         /* Disable CPU FDI TX PLL */
3810         reg = FDI_TX_CTL(pipe);
3811         temp = I915_READ(reg);
3812         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3813
3814         POSTING_READ(reg);
3815         udelay(100);
3816
3817         reg = FDI_RX_CTL(pipe);
3818         temp = I915_READ(reg);
3819         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3820
3821         /* Wait for the clocks to turn off. */
3822         POSTING_READ(reg);
3823         udelay(100);
3824 }
3825
3826 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3827 {
3828         struct drm_device *dev = crtc->dev;
3829         struct drm_i915_private *dev_priv = dev->dev_private;
3830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3831         int pipe = intel_crtc->pipe;
3832         u32 reg, temp;
3833
3834         /* disable CPU FDI tx and PCH FDI rx */
3835         reg = FDI_TX_CTL(pipe);
3836         temp = I915_READ(reg);
3837         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3838         POSTING_READ(reg);
3839
3840         reg = FDI_RX_CTL(pipe);
3841         temp = I915_READ(reg);
3842         temp &= ~(0x7 << 16);
3843         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3844         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3845
3846         POSTING_READ(reg);
3847         udelay(100);
3848
3849         /* Ironlake workaround, disable clock pointer after downing FDI */
3850         if (HAS_PCH_IBX(dev))
3851                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3852
3853         /* still set train pattern 1 */
3854         reg = FDI_TX_CTL(pipe);
3855         temp = I915_READ(reg);
3856         temp &= ~FDI_LINK_TRAIN_NONE;
3857         temp |= FDI_LINK_TRAIN_PATTERN_1;
3858         I915_WRITE(reg, temp);
3859
3860         reg = FDI_RX_CTL(pipe);
3861         temp = I915_READ(reg);
3862         if (HAS_PCH_CPT(dev)) {
3863                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3864                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3865         } else {
3866                 temp &= ~FDI_LINK_TRAIN_NONE;
3867                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3868         }
3869         /* BPC in FDI rx is consistent with that in PIPECONF */
3870         temp &= ~(0x07 << 16);
3871         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3872         I915_WRITE(reg, temp);
3873
3874         POSTING_READ(reg);
3875         udelay(100);
3876 }
3877
3878 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3879 {
3880         struct intel_crtc *crtc;
3881
3882         /* Note that we don't need to be called with mode_config.lock here
3883          * as our list of CRTC objects is static for the lifetime of the
3884          * device and so cannot disappear as we iterate. Similarly, we can
3885          * happily treat the predicates as racy, atomic checks as userspace
3886          * cannot claim and pin a new fb without at least acquring the
3887          * struct_mutex and so serialising with us.
3888          */
3889         for_each_intel_crtc(dev, crtc) {
3890                 if (atomic_read(&crtc->unpin_work_count) == 0)
3891                         continue;
3892
3893                 if (crtc->unpin_work)
3894                         intel_wait_for_vblank(dev, crtc->pipe);
3895
3896                 return true;
3897         }
3898
3899         return false;
3900 }
3901
3902 static void page_flip_completed(struct intel_crtc *intel_crtc)
3903 {
3904         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3905         struct intel_unpin_work *work = intel_crtc->unpin_work;
3906
3907         /* ensure that the unpin work is consistent wrt ->pending. */
3908         smp_rmb();
3909         intel_crtc->unpin_work = NULL;
3910
3911         if (work->event)
3912                 drm_send_vblank_event(intel_crtc->base.dev,
3913                                       intel_crtc->pipe,
3914                                       work->event);
3915
3916         drm_crtc_vblank_put(&intel_crtc->base);
3917
3918         wake_up_all(&dev_priv->pending_flip_queue);
3919         queue_work(dev_priv->wq, &work->work);
3920
3921         trace_i915_flip_complete(intel_crtc->plane,
3922                                  work->pending_flip_obj);
3923 }
3924
3925 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3926 {
3927         struct drm_device *dev = crtc->dev;
3928         struct drm_i915_private *dev_priv = dev->dev_private;
3929
3930         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3931         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3932                                        !intel_crtc_has_pending_flip(crtc),
3933                                        60*HZ) == 0)) {
3934                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3935
3936                 spin_lock_irq(&dev->event_lock);
3937                 if (intel_crtc->unpin_work) {
3938                         WARN_ONCE(1, "Removing stuck page flip\n");
3939                         page_flip_completed(intel_crtc);
3940                 }
3941                 spin_unlock_irq(&dev->event_lock);
3942         }
3943
3944         if (crtc->primary->fb) {
3945                 mutex_lock(&dev->struct_mutex);
3946                 intel_finish_fb(crtc->primary->fb);
3947                 mutex_unlock(&dev->struct_mutex);
3948         }
3949 }
3950
3951 /* Program iCLKIP clock to the desired frequency */
3952 static void lpt_program_iclkip(struct drm_crtc *crtc)
3953 {
3954         struct drm_device *dev = crtc->dev;
3955         struct drm_i915_private *dev_priv = dev->dev_private;
3956         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3957         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3958         u32 temp;
3959
3960         mutex_lock(&dev_priv->sb_lock);
3961
3962         /* It is necessary to ungate the pixclk gate prior to programming
3963          * the divisors, and gate it back when it is done.
3964          */
3965         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3966
3967         /* Disable SSCCTL */
3968         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3969                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3970                                 SBI_SSCCTL_DISABLE,
3971                         SBI_ICLK);
3972
3973         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3974         if (clock == 20000) {
3975                 auxdiv = 1;
3976                 divsel = 0x41;
3977                 phaseinc = 0x20;
3978         } else {
3979                 /* The iCLK virtual clock root frequency is in MHz,
3980                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3981                  * divisors, it is necessary to divide one by another, so we
3982                  * convert the virtual clock precision to KHz here for higher
3983                  * precision.
3984                  */
3985                 u32 iclk_virtual_root_freq = 172800 * 1000;
3986                 u32 iclk_pi_range = 64;
3987                 u32 desired_divisor, msb_divisor_value, pi_value;
3988
3989                 desired_divisor = (iclk_virtual_root_freq / clock);
3990                 msb_divisor_value = desired_divisor / iclk_pi_range;
3991                 pi_value = desired_divisor % iclk_pi_range;
3992
3993                 auxdiv = 0;
3994                 divsel = msb_divisor_value - 2;
3995                 phaseinc = pi_value;
3996         }
3997
3998         /* This should not happen with any sane values */
3999         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4000                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4001         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4002                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4003
4004         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4005                         clock,
4006                         auxdiv,
4007                         divsel,
4008                         phasedir,
4009                         phaseinc);
4010
4011         /* Program SSCDIVINTPHASE6 */
4012         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4013         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4014         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4015         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4016         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4017         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4018         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4019         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4020
4021         /* Program SSCAUXDIV */
4022         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4023         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4024         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4025         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4026
4027         /* Enable modulator and associated divider */
4028         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4029         temp &= ~SBI_SSCCTL_DISABLE;
4030         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4031
4032         /* Wait for initialization time */
4033         udelay(24);
4034
4035         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4036
4037         mutex_unlock(&dev_priv->sb_lock);
4038 }
4039
4040 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4041                                                 enum pipe pch_transcoder)
4042 {
4043         struct drm_device *dev = crtc->base.dev;
4044         struct drm_i915_private *dev_priv = dev->dev_private;
4045         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4046
4047         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4048                    I915_READ(HTOTAL(cpu_transcoder)));
4049         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4050                    I915_READ(HBLANK(cpu_transcoder)));
4051         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4052                    I915_READ(HSYNC(cpu_transcoder)));
4053
4054         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4055                    I915_READ(VTOTAL(cpu_transcoder)));
4056         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4057                    I915_READ(VBLANK(cpu_transcoder)));
4058         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4059                    I915_READ(VSYNC(cpu_transcoder)));
4060         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4061                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4062 }
4063
4064 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4065 {
4066         struct drm_i915_private *dev_priv = dev->dev_private;
4067         uint32_t temp;
4068
4069         temp = I915_READ(SOUTH_CHICKEN1);
4070         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4071                 return;
4072
4073         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4074         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4075
4076         temp &= ~FDI_BC_BIFURCATION_SELECT;
4077         if (enable)
4078                 temp |= FDI_BC_BIFURCATION_SELECT;
4079
4080         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4081         I915_WRITE(SOUTH_CHICKEN1, temp);
4082         POSTING_READ(SOUTH_CHICKEN1);
4083 }
4084
4085 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4086 {
4087         struct drm_device *dev = intel_crtc->base.dev;
4088
4089         switch (intel_crtc->pipe) {
4090         case PIPE_A:
4091                 break;
4092         case PIPE_B:
4093                 if (intel_crtc->config->fdi_lanes > 2)
4094                         cpt_set_fdi_bc_bifurcation(dev, false);
4095                 else
4096                         cpt_set_fdi_bc_bifurcation(dev, true);
4097
4098                 break;
4099         case PIPE_C:
4100                 cpt_set_fdi_bc_bifurcation(dev, true);
4101
4102                 break;
4103         default:
4104                 BUG();
4105         }
4106 }
4107
4108 /*
4109  * Enable PCH resources required for PCH ports:
4110  *   - PCH PLLs
4111  *   - FDI training & RX/TX
4112  *   - update transcoder timings
4113  *   - DP transcoding bits
4114  *   - transcoder
4115  */
4116 static void ironlake_pch_enable(struct drm_crtc *crtc)
4117 {
4118         struct drm_device *dev = crtc->dev;
4119         struct drm_i915_private *dev_priv = dev->dev_private;
4120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4121         int pipe = intel_crtc->pipe;
4122         u32 reg, temp;
4123
4124         assert_pch_transcoder_disabled(dev_priv, pipe);
4125
4126         if (IS_IVYBRIDGE(dev))
4127                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4128
4129         /* Write the TU size bits before fdi link training, so that error
4130          * detection works. */
4131         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4132                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4133
4134         /* For PCH output, training FDI link */
4135         dev_priv->display.fdi_link_train(crtc);
4136
4137         /* We need to program the right clock selection before writing the pixel
4138          * mutliplier into the DPLL. */
4139         if (HAS_PCH_CPT(dev)) {
4140                 u32 sel;
4141
4142                 temp = I915_READ(PCH_DPLL_SEL);
4143                 temp |= TRANS_DPLL_ENABLE(pipe);
4144                 sel = TRANS_DPLLB_SEL(pipe);
4145                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4146                         temp |= sel;
4147                 else
4148                         temp &= ~sel;
4149                 I915_WRITE(PCH_DPLL_SEL, temp);
4150         }
4151
4152         /* XXX: pch pll's can be enabled any time before we enable the PCH
4153          * transcoder, and we actually should do this to not upset any PCH
4154          * transcoder that already use the clock when we share it.
4155          *
4156          * Note that enable_shared_dpll tries to do the right thing, but
4157          * get_shared_dpll unconditionally resets the pll - we need that to have
4158          * the right LVDS enable sequence. */
4159         intel_enable_shared_dpll(intel_crtc);
4160
4161         /* set transcoder timing, panel must allow it */
4162         assert_panel_unlocked(dev_priv, pipe);
4163         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4164
4165         intel_fdi_normal_train(crtc);
4166
4167         /* For PCH DP, enable TRANS_DP_CTL */
4168         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4169                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4170                 reg = TRANS_DP_CTL(pipe);
4171                 temp = I915_READ(reg);
4172                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4173                           TRANS_DP_SYNC_MASK |
4174                           TRANS_DP_BPC_MASK);
4175                 temp |= TRANS_DP_OUTPUT_ENABLE;
4176                 temp |= bpc << 9; /* same format but at 11:9 */
4177
4178                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4179                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4180                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4181                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4182
4183                 switch (intel_trans_dp_port_sel(crtc)) {
4184                 case PCH_DP_B:
4185                         temp |= TRANS_DP_PORT_SEL_B;
4186                         break;
4187                 case PCH_DP_C:
4188                         temp |= TRANS_DP_PORT_SEL_C;
4189                         break;
4190                 case PCH_DP_D:
4191                         temp |= TRANS_DP_PORT_SEL_D;
4192                         break;
4193                 default:
4194                         BUG();
4195                 }
4196
4197                 I915_WRITE(reg, temp);
4198         }
4199
4200         ironlake_enable_pch_transcoder(dev_priv, pipe);
4201 }
4202
4203 static void lpt_pch_enable(struct drm_crtc *crtc)
4204 {
4205         struct drm_device *dev = crtc->dev;
4206         struct drm_i915_private *dev_priv = dev->dev_private;
4207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4208         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4209
4210         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4211
4212         lpt_program_iclkip(crtc);
4213
4214         /* Set transcoder timing. */
4215         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4216
4217         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4218 }
4219
4220 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4221                                                 struct intel_crtc_state *crtc_state)
4222 {
4223         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4224         struct intel_shared_dpll *pll;
4225         struct intel_shared_dpll_config *shared_dpll;
4226         enum intel_dpll_id i;
4227
4228         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4229
4230         if (HAS_PCH_IBX(dev_priv->dev)) {
4231                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4232                 i = (enum intel_dpll_id) crtc->pipe;
4233                 pll = &dev_priv->shared_dplls[i];
4234
4235                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4236                               crtc->base.base.id, pll->name);
4237
4238                 WARN_ON(shared_dpll[i].crtc_mask);
4239
4240                 goto found;
4241         }
4242
4243         if (IS_BROXTON(dev_priv->dev)) {
4244                 /* PLL is attached to port in bxt */
4245                 struct intel_encoder *encoder;
4246                 struct intel_digital_port *intel_dig_port;
4247
4248                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4249                 if (WARN_ON(!encoder))
4250                         return NULL;
4251
4252                 intel_dig_port = enc_to_dig_port(&encoder->base);
4253                 /* 1:1 mapping between ports and PLLs */
4254                 i = (enum intel_dpll_id)intel_dig_port->port;
4255                 pll = &dev_priv->shared_dplls[i];
4256                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4257                         crtc->base.base.id, pll->name);
4258                 WARN_ON(shared_dpll[i].crtc_mask);
4259
4260                 goto found;
4261         }
4262
4263         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4264                 pll = &dev_priv->shared_dplls[i];
4265
4266                 /* Only want to check enabled timings first */
4267                 if (shared_dpll[i].crtc_mask == 0)
4268                         continue;
4269
4270                 if (memcmp(&crtc_state->dpll_hw_state,
4271                            &shared_dpll[i].hw_state,
4272                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4273                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4274                                       crtc->base.base.id, pll->name,
4275                                       shared_dpll[i].crtc_mask,
4276                                       pll->active);
4277                         goto found;
4278                 }
4279         }
4280
4281         /* Ok no matching timings, maybe there's a free one? */
4282         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4283                 pll = &dev_priv->shared_dplls[i];
4284                 if (shared_dpll[i].crtc_mask == 0) {
4285                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4286                                       crtc->base.base.id, pll->name);
4287                         goto found;
4288                 }
4289         }
4290
4291         return NULL;
4292
4293 found:
4294         if (shared_dpll[i].crtc_mask == 0)
4295                 shared_dpll[i].hw_state =
4296                         crtc_state->dpll_hw_state;
4297
4298         crtc_state->shared_dpll = i;
4299         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4300                          pipe_name(crtc->pipe));
4301
4302         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4303
4304         return pll;
4305 }
4306
4307 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4308 {
4309         struct drm_i915_private *dev_priv = to_i915(state->dev);
4310         struct intel_shared_dpll_config *shared_dpll;
4311         struct intel_shared_dpll *pll;
4312         enum intel_dpll_id i;
4313
4314         if (!to_intel_atomic_state(state)->dpll_set)
4315                 return;
4316
4317         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4318         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4319                 pll = &dev_priv->shared_dplls[i];
4320                 pll->config = shared_dpll[i];
4321         }
4322 }
4323
4324 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4325 {
4326         struct drm_i915_private *dev_priv = dev->dev_private;
4327         int dslreg = PIPEDSL(pipe);
4328         u32 temp;
4329
4330         temp = I915_READ(dslreg);
4331         udelay(500);
4332         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4333                 if (wait_for(I915_READ(dslreg) != temp, 5))
4334                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4335         }
4336 }
4337
4338 static int
4339 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4340                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4341                   int src_w, int src_h, int dst_w, int dst_h)
4342 {
4343         struct intel_crtc_scaler_state *scaler_state =
4344                 &crtc_state->scaler_state;
4345         struct intel_crtc *intel_crtc =
4346                 to_intel_crtc(crtc_state->base.crtc);
4347         int need_scaling;
4348
4349         need_scaling = intel_rotation_90_or_270(rotation) ?
4350                 (src_h != dst_w || src_w != dst_h):
4351                 (src_w != dst_w || src_h != dst_h);
4352
4353         /*
4354          * if plane is being disabled or scaler is no more required or force detach
4355          *  - free scaler binded to this plane/crtc
4356          *  - in order to do this, update crtc->scaler_usage
4357          *
4358          * Here scaler state in crtc_state is set free so that
4359          * scaler can be assigned to other user. Actual register
4360          * update to free the scaler is done in plane/panel-fit programming.
4361          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4362          */
4363         if (force_detach || !need_scaling) {
4364                 if (*scaler_id >= 0) {
4365                         scaler_state->scaler_users &= ~(1 << scaler_user);
4366                         scaler_state->scalers[*scaler_id].in_use = 0;
4367
4368                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4369                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4370                                 intel_crtc->pipe, scaler_user, *scaler_id,
4371                                 scaler_state->scaler_users);
4372                         *scaler_id = -1;
4373                 }
4374                 return 0;
4375         }
4376
4377         /* range checks */
4378         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4379                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4380
4381                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4382                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4383                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4384                         "size is out of scaler range\n",
4385                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4386                 return -EINVAL;
4387         }
4388
4389         /* mark this plane as a scaler user in crtc_state */
4390         scaler_state->scaler_users |= (1 << scaler_user);
4391         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4392                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4393                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4394                 scaler_state->scaler_users);
4395
4396         return 0;
4397 }
4398
4399 /**
4400  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4401  *
4402  * @state: crtc's scaler state
4403  *
4404  * Return
4405  *     0 - scaler_usage updated successfully
4406  *    error - requested scaling cannot be supported or other error condition
4407  */
4408 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4409 {
4410         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4411         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4412
4413         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4414                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4415
4416         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4417                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4418                 state->pipe_src_w, state->pipe_src_h,
4419                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4420 }
4421
4422 /**
4423  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4424  *
4425  * @state: crtc's scaler state
4426  * @plane_state: atomic plane state to update
4427  *
4428  * Return
4429  *     0 - scaler_usage updated successfully
4430  *    error - requested scaling cannot be supported or other error condition
4431  */
4432 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4433                                    struct intel_plane_state *plane_state)
4434 {
4435
4436         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4437         struct intel_plane *intel_plane =
4438                 to_intel_plane(plane_state->base.plane);
4439         struct drm_framebuffer *fb = plane_state->base.fb;
4440         int ret;
4441
4442         bool force_detach = !fb || !plane_state->visible;
4443
4444         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4445                       intel_plane->base.base.id, intel_crtc->pipe,
4446                       drm_plane_index(&intel_plane->base));
4447
4448         ret = skl_update_scaler(crtc_state, force_detach,
4449                                 drm_plane_index(&intel_plane->base),
4450                                 &plane_state->scaler_id,
4451                                 plane_state->base.rotation,
4452                                 drm_rect_width(&plane_state->src) >> 16,
4453                                 drm_rect_height(&plane_state->src) >> 16,
4454                                 drm_rect_width(&plane_state->dst),
4455                                 drm_rect_height(&plane_state->dst));
4456
4457         if (ret || plane_state->scaler_id < 0)
4458                 return ret;
4459
4460         /* check colorkey */
4461         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4462                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4463                               intel_plane->base.base.id);
4464                 return -EINVAL;
4465         }
4466
4467         /* Check src format */
4468         switch (fb->pixel_format) {
4469         case DRM_FORMAT_RGB565:
4470         case DRM_FORMAT_XBGR8888:
4471         case DRM_FORMAT_XRGB8888:
4472         case DRM_FORMAT_ABGR8888:
4473         case DRM_FORMAT_ARGB8888:
4474         case DRM_FORMAT_XRGB2101010:
4475         case DRM_FORMAT_XBGR2101010:
4476         case DRM_FORMAT_YUYV:
4477         case DRM_FORMAT_YVYU:
4478         case DRM_FORMAT_UYVY:
4479         case DRM_FORMAT_VYUY:
4480                 break;
4481         default:
4482                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4483                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4484                 return -EINVAL;
4485         }
4486
4487         return 0;
4488 }
4489
4490 static void skylake_scaler_disable(struct intel_crtc *crtc)
4491 {
4492         int i;
4493
4494         for (i = 0; i < crtc->num_scalers; i++)
4495                 skl_detach_scaler(crtc, i);
4496 }
4497
4498 static void skylake_pfit_enable(struct intel_crtc *crtc)
4499 {
4500         struct drm_device *dev = crtc->base.dev;
4501         struct drm_i915_private *dev_priv = dev->dev_private;
4502         int pipe = crtc->pipe;
4503         struct intel_crtc_scaler_state *scaler_state =
4504                 &crtc->config->scaler_state;
4505
4506         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4507
4508         if (crtc->config->pch_pfit.enabled) {
4509                 int id;
4510
4511                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4512                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4513                         return;
4514                 }
4515
4516                 id = scaler_state->scaler_id;
4517                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4518                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4519                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4520                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4521
4522                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4523         }
4524 }
4525
4526 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4527 {
4528         struct drm_device *dev = crtc->base.dev;
4529         struct drm_i915_private *dev_priv = dev->dev_private;
4530         int pipe = crtc->pipe;
4531
4532         if (crtc->config->pch_pfit.enabled) {
4533                 /* Force use of hard-coded filter coefficients
4534                  * as some pre-programmed values are broken,
4535                  * e.g. x201.
4536                  */
4537                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4538                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4539                                                  PF_PIPE_SEL_IVB(pipe));
4540                 else
4541                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4542                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4543                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4544         }
4545 }
4546
4547 void hsw_enable_ips(struct intel_crtc *crtc)
4548 {
4549         struct drm_device *dev = crtc->base.dev;
4550         struct drm_i915_private *dev_priv = dev->dev_private;
4551
4552         if (!crtc->config->ips_enabled)
4553                 return;
4554
4555         /* We can only enable IPS after we enable a plane and wait for a vblank */
4556         intel_wait_for_vblank(dev, crtc->pipe);
4557
4558         assert_plane_enabled(dev_priv, crtc->plane);
4559         if (IS_BROADWELL(dev)) {
4560                 mutex_lock(&dev_priv->rps.hw_lock);
4561                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4562                 mutex_unlock(&dev_priv->rps.hw_lock);
4563                 /* Quoting Art Runyan: "its not safe to expect any particular
4564                  * value in IPS_CTL bit 31 after enabling IPS through the
4565                  * mailbox." Moreover, the mailbox may return a bogus state,
4566                  * so we need to just enable it and continue on.
4567                  */
4568         } else {
4569                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4570                 /* The bit only becomes 1 in the next vblank, so this wait here
4571                  * is essentially intel_wait_for_vblank. If we don't have this
4572                  * and don't wait for vblanks until the end of crtc_enable, then
4573                  * the HW state readout code will complain that the expected
4574                  * IPS_CTL value is not the one we read. */
4575                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4576                         DRM_ERROR("Timed out waiting for IPS enable\n");
4577         }
4578 }
4579
4580 void hsw_disable_ips(struct intel_crtc *crtc)
4581 {
4582         struct drm_device *dev = crtc->base.dev;
4583         struct drm_i915_private *dev_priv = dev->dev_private;
4584
4585         if (!crtc->config->ips_enabled)
4586                 return;
4587
4588         assert_plane_enabled(dev_priv, crtc->plane);
4589         if (IS_BROADWELL(dev)) {
4590                 mutex_lock(&dev_priv->rps.hw_lock);
4591                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4592                 mutex_unlock(&dev_priv->rps.hw_lock);
4593                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4594                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4595                         DRM_ERROR("Timed out waiting for IPS disable\n");
4596         } else {
4597                 I915_WRITE(IPS_CTL, 0);
4598                 POSTING_READ(IPS_CTL);
4599         }
4600
4601         /* We need to wait for a vblank before we can disable the plane. */
4602         intel_wait_for_vblank(dev, crtc->pipe);
4603 }
4604
4605 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4606 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4607 {
4608         struct drm_device *dev = crtc->dev;
4609         struct drm_i915_private *dev_priv = dev->dev_private;
4610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4611         enum pipe pipe = intel_crtc->pipe;
4612         int i;
4613         bool reenable_ips = false;
4614
4615         /* The clocks have to be on to load the palette. */
4616         if (!crtc->state->active)
4617                 return;
4618
4619         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4620                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4621                         assert_dsi_pll_enabled(dev_priv);
4622                 else
4623                         assert_pll_enabled(dev_priv, pipe);
4624         }
4625
4626         /* Workaround : Do not read or write the pipe palette/gamma data while
4627          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4628          */
4629         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4630             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4631              GAMMA_MODE_MODE_SPLIT)) {
4632                 hsw_disable_ips(intel_crtc);
4633                 reenable_ips = true;
4634         }
4635
4636         for (i = 0; i < 256; i++) {
4637                 u32 palreg;
4638
4639                 if (HAS_GMCH_DISPLAY(dev))
4640                         palreg = PALETTE(pipe, i);
4641                 else
4642                         palreg = LGC_PALETTE(pipe, i);
4643
4644                 I915_WRITE(palreg,
4645                            (intel_crtc->lut_r[i] << 16) |
4646                            (intel_crtc->lut_g[i] << 8) |
4647                            intel_crtc->lut_b[i]);
4648         }
4649
4650         if (reenable_ips)
4651                 hsw_enable_ips(intel_crtc);
4652 }
4653
4654 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4655 {
4656         if (intel_crtc->overlay) {
4657                 struct drm_device *dev = intel_crtc->base.dev;
4658                 struct drm_i915_private *dev_priv = dev->dev_private;
4659
4660                 mutex_lock(&dev->struct_mutex);
4661                 dev_priv->mm.interruptible = false;
4662                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4663                 dev_priv->mm.interruptible = true;
4664                 mutex_unlock(&dev->struct_mutex);
4665         }
4666
4667         /* Let userspace switch the overlay on again. In most cases userspace
4668          * has to recompute where to put it anyway.
4669          */
4670 }
4671
4672 /**
4673  * intel_post_enable_primary - Perform operations after enabling primary plane
4674  * @crtc: the CRTC whose primary plane was just enabled
4675  *
4676  * Performs potentially sleeping operations that must be done after the primary
4677  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4678  * called due to an explicit primary plane update, or due to an implicit
4679  * re-enable that is caused when a sprite plane is updated to no longer
4680  * completely hide the primary plane.
4681  */
4682 static void
4683 intel_post_enable_primary(struct drm_crtc *crtc)
4684 {
4685         struct drm_device *dev = crtc->dev;
4686         struct drm_i915_private *dev_priv = dev->dev_private;
4687         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4688         int pipe = intel_crtc->pipe;
4689
4690         /*
4691          * BDW signals flip done immediately if the plane
4692          * is disabled, even if the plane enable is already
4693          * armed to occur at the next vblank :(
4694          */
4695         if (IS_BROADWELL(dev))
4696                 intel_wait_for_vblank(dev, pipe);
4697
4698         /*
4699          * FIXME IPS should be fine as long as one plane is
4700          * enabled, but in practice it seems to have problems
4701          * when going from primary only to sprite only and vice
4702          * versa.
4703          */
4704         hsw_enable_ips(intel_crtc);
4705
4706         /*
4707          * Gen2 reports pipe underruns whenever all planes are disabled.
4708          * So don't enable underrun reporting before at least some planes
4709          * are enabled.
4710          * FIXME: Need to fix the logic to work when we turn off all planes
4711          * but leave the pipe running.
4712          */
4713         if (IS_GEN2(dev))
4714                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4715
4716         /* Underruns don't raise interrupts, so check manually. */
4717         if (HAS_GMCH_DISPLAY(dev))
4718                 i9xx_check_fifo_underruns(dev_priv);
4719 }
4720
4721 /**
4722  * intel_pre_disable_primary - Perform operations before disabling primary plane
4723  * @crtc: the CRTC whose primary plane is to be disabled
4724  *
4725  * Performs potentially sleeping operations that must be done before the
4726  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4727  * be called due to an explicit primary plane update, or due to an implicit
4728  * disable that is caused when a sprite plane completely hides the primary
4729  * plane.
4730  */
4731 static void
4732 intel_pre_disable_primary(struct drm_crtc *crtc)
4733 {
4734         struct drm_device *dev = crtc->dev;
4735         struct drm_i915_private *dev_priv = dev->dev_private;
4736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4737         int pipe = intel_crtc->pipe;
4738
4739         /*
4740          * Gen2 reports pipe underruns whenever all planes are disabled.
4741          * So diasble underrun reporting before all the planes get disabled.
4742          * FIXME: Need to fix the logic to work when we turn off all planes
4743          * but leave the pipe running.
4744          */
4745         if (IS_GEN2(dev))
4746                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4747
4748         /*
4749          * Vblank time updates from the shadow to live plane control register
4750          * are blocked if the memory self-refresh mode is active at that
4751          * moment. So to make sure the plane gets truly disabled, disable
4752          * first the self-refresh mode. The self-refresh enable bit in turn
4753          * will be checked/applied by the HW only at the next frame start
4754          * event which is after the vblank start event, so we need to have a
4755          * wait-for-vblank between disabling the plane and the pipe.
4756          */
4757         if (HAS_GMCH_DISPLAY(dev)) {
4758                 intel_set_memory_cxsr(dev_priv, false);
4759                 dev_priv->wm.vlv.cxsr = false;
4760                 intel_wait_for_vblank(dev, pipe);
4761         }
4762
4763         /*
4764          * FIXME IPS should be fine as long as one plane is
4765          * enabled, but in practice it seems to have problems
4766          * when going from primary only to sprite only and vice
4767          * versa.
4768          */
4769         hsw_disable_ips(intel_crtc);
4770 }
4771
4772 static void intel_post_plane_update(struct intel_crtc *crtc)
4773 {
4774         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4775         struct drm_device *dev = crtc->base.dev;
4776         struct drm_i915_private *dev_priv = dev->dev_private;
4777         struct drm_plane *plane;
4778
4779         if (atomic->wait_vblank)
4780                 intel_wait_for_vblank(dev, crtc->pipe);
4781
4782         intel_frontbuffer_flip(dev, atomic->fb_bits);
4783
4784         if (atomic->disable_cxsr)
4785                 crtc->wm.cxsr_allowed = true;
4786
4787         if (crtc->atomic.update_wm_post)
4788                 intel_update_watermarks(&crtc->base);
4789
4790         if (atomic->update_fbc)
4791                 intel_fbc_update(dev_priv);
4792
4793         if (atomic->post_enable_primary)
4794                 intel_post_enable_primary(&crtc->base);
4795
4796         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4797                 intel_update_sprite_watermarks(plane, &crtc->base,
4798                                                0, 0, 0, false, false);
4799
4800         memset(atomic, 0, sizeof(*atomic));
4801 }
4802
4803 static void intel_pre_plane_update(struct intel_crtc *crtc)
4804 {
4805         struct drm_device *dev = crtc->base.dev;
4806         struct drm_i915_private *dev_priv = dev->dev_private;
4807         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4808         struct drm_plane *p;
4809
4810         /* Track fb's for any planes being disabled */
4811         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4812                 struct intel_plane *plane = to_intel_plane(p);
4813
4814                 mutex_lock(&dev->struct_mutex);
4815                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4816                                   plane->frontbuffer_bit);
4817                 mutex_unlock(&dev->struct_mutex);
4818         }
4819
4820         if (atomic->wait_for_flips)
4821                 intel_crtc_wait_for_pending_flips(&crtc->base);
4822
4823         if (atomic->disable_fbc)
4824                 intel_fbc_disable_crtc(crtc);
4825
4826         if (crtc->atomic.disable_ips)
4827                 hsw_disable_ips(crtc);
4828
4829         if (atomic->pre_disable_primary)
4830                 intel_pre_disable_primary(&crtc->base);
4831
4832         if (atomic->disable_cxsr) {
4833                 crtc->wm.cxsr_allowed = false;
4834                 intel_set_memory_cxsr(dev_priv, false);
4835         }
4836 }
4837
4838 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4839 {
4840         struct drm_device *dev = crtc->dev;
4841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4842         struct drm_plane *p;
4843         int pipe = intel_crtc->pipe;
4844
4845         intel_crtc_dpms_overlay_disable(intel_crtc);
4846
4847         drm_for_each_plane_mask(p, dev, plane_mask)
4848                 to_intel_plane(p)->disable_plane(p, crtc);
4849
4850         /*
4851          * FIXME: Once we grow proper nuclear flip support out of this we need
4852          * to compute the mask of flip planes precisely. For the time being
4853          * consider this a flip to a NULL plane.
4854          */
4855         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4856 }
4857
4858 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4859 {
4860         struct drm_device *dev = crtc->dev;
4861         struct drm_i915_private *dev_priv = dev->dev_private;
4862         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4863         struct intel_encoder *encoder;
4864         int pipe = intel_crtc->pipe;
4865
4866         if (WARN_ON(intel_crtc->active))
4867                 return;
4868
4869         if (intel_crtc->config->has_pch_encoder)
4870                 intel_prepare_shared_dpll(intel_crtc);
4871
4872         if (intel_crtc->config->has_dp_encoder)
4873                 intel_dp_set_m_n(intel_crtc, M1_N1);
4874
4875         intel_set_pipe_timings(intel_crtc);
4876
4877         if (intel_crtc->config->has_pch_encoder) {
4878                 intel_cpu_transcoder_set_m_n(intel_crtc,
4879                                      &intel_crtc->config->fdi_m_n, NULL);
4880         }
4881
4882         ironlake_set_pipeconf(crtc);
4883
4884         intel_crtc->active = true;
4885
4886         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4887         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4888
4889         for_each_encoder_on_crtc(dev, crtc, encoder)
4890                 if (encoder->pre_enable)
4891                         encoder->pre_enable(encoder);
4892
4893         if (intel_crtc->config->has_pch_encoder) {
4894                 /* Note: FDI PLL enabling _must_ be done before we enable the
4895                  * cpu pipes, hence this is separate from all the other fdi/pch
4896                  * enabling. */
4897                 ironlake_fdi_pll_enable(intel_crtc);
4898         } else {
4899                 assert_fdi_tx_disabled(dev_priv, pipe);
4900                 assert_fdi_rx_disabled(dev_priv, pipe);
4901         }
4902
4903         ironlake_pfit_enable(intel_crtc);
4904
4905         /*
4906          * On ILK+ LUT must be loaded before the pipe is running but with
4907          * clocks enabled
4908          */
4909         intel_crtc_load_lut(crtc);
4910
4911         intel_update_watermarks(crtc);
4912         intel_enable_pipe(intel_crtc);
4913
4914         if (intel_crtc->config->has_pch_encoder)
4915                 ironlake_pch_enable(crtc);
4916
4917         assert_vblank_disabled(crtc);
4918         drm_crtc_vblank_on(crtc);
4919
4920         for_each_encoder_on_crtc(dev, crtc, encoder)
4921                 encoder->enable(encoder);
4922
4923         if (HAS_PCH_CPT(dev))
4924                 cpt_verify_modeset(dev, intel_crtc->pipe);
4925 }
4926
4927 /* IPS only exists on ULT machines and is tied to pipe A. */
4928 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4929 {
4930         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4931 }
4932
4933 static void haswell_crtc_enable(struct drm_crtc *crtc)
4934 {
4935         struct drm_device *dev = crtc->dev;
4936         struct drm_i915_private *dev_priv = dev->dev_private;
4937         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4938         struct intel_encoder *encoder;
4939         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4940         struct intel_crtc_state *pipe_config =
4941                 to_intel_crtc_state(crtc->state);
4942         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4943
4944         if (WARN_ON(intel_crtc->active))
4945                 return;
4946
4947         if (intel_crtc_to_shared_dpll(intel_crtc))
4948                 intel_enable_shared_dpll(intel_crtc);
4949
4950         if (intel_crtc->config->has_dp_encoder)
4951                 intel_dp_set_m_n(intel_crtc, M1_N1);
4952
4953         intel_set_pipe_timings(intel_crtc);
4954
4955         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4956                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4957                            intel_crtc->config->pixel_multiplier - 1);
4958         }
4959
4960         if (intel_crtc->config->has_pch_encoder) {
4961                 intel_cpu_transcoder_set_m_n(intel_crtc,
4962                                      &intel_crtc->config->fdi_m_n, NULL);
4963         }
4964
4965         haswell_set_pipeconf(crtc);
4966
4967         intel_set_pipe_csc(crtc);
4968
4969         intel_crtc->active = true;
4970
4971         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4972         for_each_encoder_on_crtc(dev, crtc, encoder) {
4973                 if (encoder->pre_pll_enable)
4974                         encoder->pre_pll_enable(encoder);
4975                 if (encoder->pre_enable)
4976                         encoder->pre_enable(encoder);
4977         }
4978
4979         if (intel_crtc->config->has_pch_encoder) {
4980                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4981                                                       true);
4982                 dev_priv->display.fdi_link_train(crtc);
4983         }
4984
4985         if (!is_dsi)
4986                 intel_ddi_enable_pipe_clock(intel_crtc);
4987
4988         if (INTEL_INFO(dev)->gen >= 9)
4989                 skylake_pfit_enable(intel_crtc);
4990         else
4991                 ironlake_pfit_enable(intel_crtc);
4992
4993         /*
4994          * On ILK+ LUT must be loaded before the pipe is running but with
4995          * clocks enabled
4996          */
4997         intel_crtc_load_lut(crtc);
4998
4999         intel_ddi_set_pipe_settings(crtc);
5000         if (!is_dsi)
5001                 intel_ddi_enable_transcoder_func(crtc);
5002
5003         intel_update_watermarks(crtc);
5004         intel_enable_pipe(intel_crtc);
5005
5006         if (intel_crtc->config->has_pch_encoder)
5007                 lpt_pch_enable(crtc);
5008
5009         if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5010                 intel_ddi_set_vc_payload_alloc(crtc, true);
5011
5012         assert_vblank_disabled(crtc);
5013         drm_crtc_vblank_on(crtc);
5014
5015         for_each_encoder_on_crtc(dev, crtc, encoder) {
5016                 encoder->enable(encoder);
5017                 intel_opregion_notify_encoder(encoder, true);
5018         }
5019
5020         /* If we change the relative order between pipe/planes enabling, we need
5021          * to change the workaround. */
5022         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5023         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5024                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5025                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5026         }
5027 }
5028
5029 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5030 {
5031         struct drm_device *dev = crtc->base.dev;
5032         struct drm_i915_private *dev_priv = dev->dev_private;
5033         int pipe = crtc->pipe;
5034
5035         /* To avoid upsetting the power well on haswell only disable the pfit if
5036          * it's in use. The hw state code will make sure we get this right. */
5037         if (force || crtc->config->pch_pfit.enabled) {
5038                 I915_WRITE(PF_CTL(pipe), 0);
5039                 I915_WRITE(PF_WIN_POS(pipe), 0);
5040                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5041         }
5042 }
5043
5044 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5045 {
5046         struct drm_device *dev = crtc->dev;
5047         struct drm_i915_private *dev_priv = dev->dev_private;
5048         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5049         struct intel_encoder *encoder;
5050         int pipe = intel_crtc->pipe;
5051         u32 reg, temp;
5052
5053         for_each_encoder_on_crtc(dev, crtc, encoder)
5054                 encoder->disable(encoder);
5055
5056         drm_crtc_vblank_off(crtc);
5057         assert_vblank_disabled(crtc);
5058
5059         if (intel_crtc->config->has_pch_encoder)
5060                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5061
5062         intel_disable_pipe(intel_crtc);
5063
5064         ironlake_pfit_disable(intel_crtc, false);
5065
5066         if (intel_crtc->config->has_pch_encoder)
5067                 ironlake_fdi_disable(crtc);
5068
5069         for_each_encoder_on_crtc(dev, crtc, encoder)
5070                 if (encoder->post_disable)
5071                         encoder->post_disable(encoder);
5072
5073         if (intel_crtc->config->has_pch_encoder) {
5074                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5075
5076                 if (HAS_PCH_CPT(dev)) {
5077                         /* disable TRANS_DP_CTL */
5078                         reg = TRANS_DP_CTL(pipe);
5079                         temp = I915_READ(reg);
5080                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5081                                   TRANS_DP_PORT_SEL_MASK);
5082                         temp |= TRANS_DP_PORT_SEL_NONE;
5083                         I915_WRITE(reg, temp);
5084
5085                         /* disable DPLL_SEL */
5086                         temp = I915_READ(PCH_DPLL_SEL);
5087                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5088                         I915_WRITE(PCH_DPLL_SEL, temp);
5089                 }
5090
5091                 ironlake_fdi_pll_disable(intel_crtc);
5092         }
5093 }
5094
5095 static void haswell_crtc_disable(struct drm_crtc *crtc)
5096 {
5097         struct drm_device *dev = crtc->dev;
5098         struct drm_i915_private *dev_priv = dev->dev_private;
5099         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5100         struct intel_encoder *encoder;
5101         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5102         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5103
5104         for_each_encoder_on_crtc(dev, crtc, encoder) {
5105                 intel_opregion_notify_encoder(encoder, false);
5106                 encoder->disable(encoder);
5107         }
5108
5109         drm_crtc_vblank_off(crtc);
5110         assert_vblank_disabled(crtc);
5111
5112         if (intel_crtc->config->has_pch_encoder)
5113                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5114                                                       false);
5115         intel_disable_pipe(intel_crtc);
5116
5117         if (intel_crtc->config->dp_encoder_is_mst)
5118                 intel_ddi_set_vc_payload_alloc(crtc, false);
5119
5120         if (!is_dsi)
5121                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5122
5123         if (INTEL_INFO(dev)->gen >= 9)
5124                 skylake_scaler_disable(intel_crtc);
5125         else
5126                 ironlake_pfit_disable(intel_crtc, false);
5127
5128         if (!is_dsi)
5129                 intel_ddi_disable_pipe_clock(intel_crtc);
5130
5131         if (intel_crtc->config->has_pch_encoder) {
5132                 lpt_disable_pch_transcoder(dev_priv);
5133                 intel_ddi_fdi_disable(crtc);
5134         }
5135
5136         for_each_encoder_on_crtc(dev, crtc, encoder)
5137                 if (encoder->post_disable)
5138                         encoder->post_disable(encoder);
5139 }
5140
5141 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5142 {
5143         struct drm_device *dev = crtc->base.dev;
5144         struct drm_i915_private *dev_priv = dev->dev_private;
5145         struct intel_crtc_state *pipe_config = crtc->config;
5146
5147         if (!pipe_config->gmch_pfit.control)
5148                 return;
5149
5150         /*
5151          * The panel fitter should only be adjusted whilst the pipe is disabled,
5152          * according to register description and PRM.
5153          */
5154         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5155         assert_pipe_disabled(dev_priv, crtc->pipe);
5156
5157         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5158         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5159
5160         /* Border color in case we don't scale up to the full screen. Black by
5161          * default, change to something else for debugging. */
5162         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5163 }
5164
5165 static enum intel_display_power_domain port_to_power_domain(enum port port)
5166 {
5167         switch (port) {
5168         case PORT_A:
5169                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5170         case PORT_B:
5171                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5172         case PORT_C:
5173                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5174         case PORT_D:
5175                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5176         case PORT_E:
5177                 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5178         default:
5179                 WARN_ON_ONCE(1);
5180                 return POWER_DOMAIN_PORT_OTHER;
5181         }
5182 }
5183
5184 #define for_each_power_domain(domain, mask)                             \
5185         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5186                 if ((1 << (domain)) & (mask))
5187
5188 enum intel_display_power_domain
5189 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5190 {
5191         struct drm_device *dev = intel_encoder->base.dev;
5192         struct intel_digital_port *intel_dig_port;
5193
5194         switch (intel_encoder->type) {
5195         case INTEL_OUTPUT_UNKNOWN:
5196                 /* Only DDI platforms should ever use this output type */
5197                 WARN_ON_ONCE(!HAS_DDI(dev));
5198         case INTEL_OUTPUT_DISPLAYPORT:
5199         case INTEL_OUTPUT_HDMI:
5200         case INTEL_OUTPUT_EDP:
5201                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5202                 return port_to_power_domain(intel_dig_port->port);
5203         case INTEL_OUTPUT_DP_MST:
5204                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5205                 return port_to_power_domain(intel_dig_port->port);
5206         case INTEL_OUTPUT_ANALOG:
5207                 return POWER_DOMAIN_PORT_CRT;
5208         case INTEL_OUTPUT_DSI:
5209                 return POWER_DOMAIN_PORT_DSI;
5210         default:
5211                 return POWER_DOMAIN_PORT_OTHER;
5212         }
5213 }
5214
5215 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5216 {
5217         struct drm_device *dev = crtc->dev;
5218         struct intel_encoder *intel_encoder;
5219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5220         enum pipe pipe = intel_crtc->pipe;
5221         unsigned long mask;
5222         enum transcoder transcoder;
5223
5224         if (!crtc->state->active)
5225                 return 0;
5226
5227         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5228
5229         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5230         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5231         if (intel_crtc->config->pch_pfit.enabled ||
5232             intel_crtc->config->pch_pfit.force_thru)
5233                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5234
5235         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5236                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5237
5238         return mask;
5239 }
5240
5241 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5242 {
5243         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5244         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5245         enum intel_display_power_domain domain;
5246         unsigned long domains, new_domains, old_domains;
5247
5248         old_domains = intel_crtc->enabled_power_domains;
5249         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5250
5251         domains = new_domains & ~old_domains;
5252
5253         for_each_power_domain(domain, domains)
5254                 intel_display_power_get(dev_priv, domain);
5255
5256         return old_domains & ~new_domains;
5257 }
5258
5259 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5260                                       unsigned long domains)
5261 {
5262         enum intel_display_power_domain domain;
5263
5264         for_each_power_domain(domain, domains)
5265                 intel_display_power_put(dev_priv, domain);
5266 }
5267
5268 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5269 {
5270         struct drm_device *dev = state->dev;
5271         struct drm_i915_private *dev_priv = dev->dev_private;
5272         unsigned long put_domains[I915_MAX_PIPES] = {};
5273         struct drm_crtc_state *crtc_state;
5274         struct drm_crtc *crtc;
5275         int i;
5276
5277         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5278                 if (needs_modeset(crtc->state))
5279                         put_domains[to_intel_crtc(crtc)->pipe] =
5280                                 modeset_get_crtc_power_domains(crtc);
5281         }
5282
5283         if (dev_priv->display.modeset_commit_cdclk) {
5284                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5285
5286                 if (cdclk != dev_priv->cdclk_freq &&
5287                     !WARN_ON(!state->allow_modeset))
5288                         dev_priv->display.modeset_commit_cdclk(state);
5289         }
5290
5291         for (i = 0; i < I915_MAX_PIPES; i++)
5292                 if (put_domains[i])
5293                         modeset_put_power_domains(dev_priv, put_domains[i]);
5294 }
5295
5296 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5297 {
5298         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5299
5300         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5301             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5302                 return max_cdclk_freq;
5303         else if (IS_CHERRYVIEW(dev_priv))
5304                 return max_cdclk_freq*95/100;
5305         else if (INTEL_INFO(dev_priv)->gen < 4)
5306                 return 2*max_cdclk_freq*90/100;
5307         else
5308                 return max_cdclk_freq*90/100;
5309 }
5310
5311 static void intel_update_max_cdclk(struct drm_device *dev)
5312 {
5313         struct drm_i915_private *dev_priv = dev->dev_private;
5314
5315         if (IS_SKYLAKE(dev)) {
5316                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5317
5318                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5319                         dev_priv->max_cdclk_freq = 675000;
5320                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5321                         dev_priv->max_cdclk_freq = 540000;
5322                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5323                         dev_priv->max_cdclk_freq = 450000;
5324                 else
5325                         dev_priv->max_cdclk_freq = 337500;
5326         } else if (IS_BROADWELL(dev))  {
5327                 /*
5328                  * FIXME with extra cooling we can allow
5329                  * 540 MHz for ULX and 675 Mhz for ULT.
5330                  * How can we know if extra cooling is
5331                  * available? PCI ID, VTB, something else?
5332                  */
5333                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5334                         dev_priv->max_cdclk_freq = 450000;
5335                 else if (IS_BDW_ULX(dev))
5336                         dev_priv->max_cdclk_freq = 450000;
5337                 else if (IS_BDW_ULT(dev))
5338                         dev_priv->max_cdclk_freq = 540000;
5339                 else
5340                         dev_priv->max_cdclk_freq = 675000;
5341         } else if (IS_CHERRYVIEW(dev)) {
5342                 dev_priv->max_cdclk_freq = 320000;
5343         } else if (IS_VALLEYVIEW(dev)) {
5344                 dev_priv->max_cdclk_freq = 400000;
5345         } else {
5346                 /* otherwise assume cdclk is fixed */
5347                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5348         }
5349
5350         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5351
5352         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5353                          dev_priv->max_cdclk_freq);
5354
5355         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5356                          dev_priv->max_dotclk_freq);
5357 }
5358
5359 static void intel_update_cdclk(struct drm_device *dev)
5360 {
5361         struct drm_i915_private *dev_priv = dev->dev_private;
5362
5363         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5364         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5365                          dev_priv->cdclk_freq);
5366
5367         /*
5368          * Program the gmbus_freq based on the cdclk frequency.
5369          * BSpec erroneously claims we should aim for 4MHz, but
5370          * in fact 1MHz is the correct frequency.
5371          */
5372         if (IS_VALLEYVIEW(dev)) {
5373                 /*
5374                  * Program the gmbus_freq based on the cdclk frequency.
5375                  * BSpec erroneously claims we should aim for 4MHz, but
5376                  * in fact 1MHz is the correct frequency.
5377                  */
5378                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5379         }
5380
5381         if (dev_priv->max_cdclk_freq == 0)
5382                 intel_update_max_cdclk(dev);
5383 }
5384
5385 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5386 {
5387         struct drm_i915_private *dev_priv = dev->dev_private;
5388         uint32_t divider;
5389         uint32_t ratio;
5390         uint32_t current_freq;
5391         int ret;
5392
5393         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5394         switch (frequency) {
5395         case 144000:
5396                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5397                 ratio = BXT_DE_PLL_RATIO(60);
5398                 break;
5399         case 288000:
5400                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5401                 ratio = BXT_DE_PLL_RATIO(60);
5402                 break;
5403         case 384000:
5404                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5405                 ratio = BXT_DE_PLL_RATIO(60);
5406                 break;
5407         case 576000:
5408                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5409                 ratio = BXT_DE_PLL_RATIO(60);
5410                 break;
5411         case 624000:
5412                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5413                 ratio = BXT_DE_PLL_RATIO(65);
5414                 break;
5415         case 19200:
5416                 /*
5417                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5418                  * to suppress GCC warning.
5419                  */
5420                 ratio = 0;
5421                 divider = 0;
5422                 break;
5423         default:
5424                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5425
5426                 return;
5427         }
5428
5429         mutex_lock(&dev_priv->rps.hw_lock);
5430         /* Inform power controller of upcoming frequency change */
5431         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5432                                       0x80000000);
5433         mutex_unlock(&dev_priv->rps.hw_lock);
5434
5435         if (ret) {
5436                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5437                           ret, frequency);
5438                 return;
5439         }
5440
5441         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5442         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5443         current_freq = current_freq * 500 + 1000;
5444
5445         /*
5446          * DE PLL has to be disabled when
5447          * - setting to 19.2MHz (bypass, PLL isn't used)
5448          * - before setting to 624MHz (PLL needs toggling)
5449          * - before setting to any frequency from 624MHz (PLL needs toggling)
5450          */
5451         if (frequency == 19200 || frequency == 624000 ||
5452             current_freq == 624000) {
5453                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5454                 /* Timeout 200us */
5455                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5456                              1))
5457                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5458         }
5459
5460         if (frequency != 19200) {
5461                 uint32_t val;
5462
5463                 val = I915_READ(BXT_DE_PLL_CTL);
5464                 val &= ~BXT_DE_PLL_RATIO_MASK;
5465                 val |= ratio;
5466                 I915_WRITE(BXT_DE_PLL_CTL, val);
5467
5468                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5469                 /* Timeout 200us */
5470                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5471                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5472
5473                 val = I915_READ(CDCLK_CTL);
5474                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5475                 val |= divider;
5476                 /*
5477                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5478                  * enable otherwise.
5479                  */
5480                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5481                 if (frequency >= 500000)
5482                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5483
5484                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5485                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5486                 val |= (frequency - 1000) / 500;
5487                 I915_WRITE(CDCLK_CTL, val);
5488         }
5489
5490         mutex_lock(&dev_priv->rps.hw_lock);
5491         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5492                                       DIV_ROUND_UP(frequency, 25000));
5493         mutex_unlock(&dev_priv->rps.hw_lock);
5494
5495         if (ret) {
5496                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5497                           ret, frequency);
5498                 return;
5499         }
5500
5501         intel_update_cdclk(dev);
5502 }
5503
5504 void broxton_init_cdclk(struct drm_device *dev)
5505 {
5506         struct drm_i915_private *dev_priv = dev->dev_private;
5507         uint32_t val;
5508
5509         /*
5510          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5511          * or else the reset will hang because there is no PCH to respond.
5512          * Move the handshake programming to initialization sequence.
5513          * Previously was left up to BIOS.
5514          */
5515         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5516         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5517         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5518
5519         /* Enable PG1 for cdclk */
5520         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5521
5522         /* check if cd clock is enabled */
5523         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5524                 DRM_DEBUG_KMS("Display already initialized\n");
5525                 return;
5526         }
5527
5528         /*
5529          * FIXME:
5530          * - The initial CDCLK needs to be read from VBT.
5531          *   Need to make this change after VBT has changes for BXT.
5532          * - check if setting the max (or any) cdclk freq is really necessary
5533          *   here, it belongs to modeset time
5534          */
5535         broxton_set_cdclk(dev, 624000);
5536
5537         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5538         POSTING_READ(DBUF_CTL);
5539
5540         udelay(10);
5541
5542         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5543                 DRM_ERROR("DBuf power enable timeout!\n");
5544 }
5545
5546 void broxton_uninit_cdclk(struct drm_device *dev)
5547 {
5548         struct drm_i915_private *dev_priv = dev->dev_private;
5549
5550         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5551         POSTING_READ(DBUF_CTL);
5552
5553         udelay(10);
5554
5555         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5556                 DRM_ERROR("DBuf power disable timeout!\n");
5557
5558         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5559         broxton_set_cdclk(dev, 19200);
5560
5561         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5562 }
5563
5564 static const struct skl_cdclk_entry {
5565         unsigned int freq;
5566         unsigned int vco;
5567 } skl_cdclk_frequencies[] = {
5568         { .freq = 308570, .vco = 8640 },
5569         { .freq = 337500, .vco = 8100 },
5570         { .freq = 432000, .vco = 8640 },
5571         { .freq = 450000, .vco = 8100 },
5572         { .freq = 540000, .vco = 8100 },
5573         { .freq = 617140, .vco = 8640 },
5574         { .freq = 675000, .vco = 8100 },
5575 };
5576
5577 static unsigned int skl_cdclk_decimal(unsigned int freq)
5578 {
5579         return (freq - 1000) / 500;
5580 }
5581
5582 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5583 {
5584         unsigned int i;
5585
5586         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5587                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5588
5589                 if (e->freq == freq)
5590                         return e->vco;
5591         }
5592
5593         return 8100;
5594 }
5595
5596 static void
5597 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5598 {
5599         unsigned int min_freq;
5600         u32 val;
5601
5602         /* select the minimum CDCLK before enabling DPLL 0 */
5603         val = I915_READ(CDCLK_CTL);
5604         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5605         val |= CDCLK_FREQ_337_308;
5606
5607         if (required_vco == 8640)
5608                 min_freq = 308570;
5609         else
5610                 min_freq = 337500;
5611
5612         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5613
5614         I915_WRITE(CDCLK_CTL, val);
5615         POSTING_READ(CDCLK_CTL);
5616
5617         /*
5618          * We always enable DPLL0 with the lowest link rate possible, but still
5619          * taking into account the VCO required to operate the eDP panel at the
5620          * desired frequency. The usual DP link rates operate with a VCO of
5621          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5622          * The modeset code is responsible for the selection of the exact link
5623          * rate later on, with the constraint of choosing a frequency that
5624          * works with required_vco.
5625          */
5626         val = I915_READ(DPLL_CTRL1);
5627
5628         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5629                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5630         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5631         if (required_vco == 8640)
5632                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5633                                             SKL_DPLL0);
5634         else
5635                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5636                                             SKL_DPLL0);
5637
5638         I915_WRITE(DPLL_CTRL1, val);
5639         POSTING_READ(DPLL_CTRL1);
5640
5641         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5642
5643         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5644                 DRM_ERROR("DPLL0 not locked\n");
5645 }
5646
5647 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5648 {
5649         int ret;
5650         u32 val;
5651
5652         /* inform PCU we want to change CDCLK */
5653         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5654         mutex_lock(&dev_priv->rps.hw_lock);
5655         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5656         mutex_unlock(&dev_priv->rps.hw_lock);
5657
5658         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5659 }
5660
5661 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5662 {
5663         unsigned int i;
5664
5665         for (i = 0; i < 15; i++) {
5666                 if (skl_cdclk_pcu_ready(dev_priv))
5667                         return true;
5668                 udelay(10);
5669         }
5670
5671         return false;
5672 }
5673
5674 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5675 {
5676         struct drm_device *dev = dev_priv->dev;
5677         u32 freq_select, pcu_ack;
5678
5679         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5680
5681         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5682                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5683                 return;
5684         }
5685
5686         /* set CDCLK_CTL */
5687         switch(freq) {
5688         case 450000:
5689         case 432000:
5690                 freq_select = CDCLK_FREQ_450_432;
5691                 pcu_ack = 1;
5692                 break;
5693         case 540000:
5694                 freq_select = CDCLK_FREQ_540;
5695                 pcu_ack = 2;
5696                 break;
5697         case 308570:
5698         case 337500:
5699         default:
5700                 freq_select = CDCLK_FREQ_337_308;
5701                 pcu_ack = 0;
5702                 break;
5703         case 617140:
5704         case 675000:
5705                 freq_select = CDCLK_FREQ_675_617;
5706                 pcu_ack = 3;
5707                 break;
5708         }
5709
5710         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5711         POSTING_READ(CDCLK_CTL);
5712
5713         /* inform PCU of the change */
5714         mutex_lock(&dev_priv->rps.hw_lock);
5715         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5716         mutex_unlock(&dev_priv->rps.hw_lock);
5717
5718         intel_update_cdclk(dev);
5719 }
5720
5721 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5722 {
5723         /* disable DBUF power */
5724         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5725         POSTING_READ(DBUF_CTL);
5726
5727         udelay(10);
5728
5729         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5730                 DRM_ERROR("DBuf power disable timeout\n");
5731
5732         /*
5733          * DMC assumes ownership of LCPLL and will get confused if we touch it.
5734          */
5735         if (dev_priv->csr.dmc_payload) {
5736                 /* disable DPLL0 */
5737                 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5738                                         ~LCPLL_PLL_ENABLE);
5739                 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5740                         DRM_ERROR("Couldn't disable DPLL0\n");
5741         }
5742
5743         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5744 }
5745
5746 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5747 {
5748         u32 val;
5749         unsigned int required_vco;
5750
5751         /* enable PCH reset handshake */
5752         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5753         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5754
5755         /* enable PG1 and Misc I/O */
5756         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5757
5758         /* DPLL0 not enabled (happens on early BIOS versions) */
5759         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5760                 /* enable DPLL0 */
5761                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5762                 skl_dpll0_enable(dev_priv, required_vco);
5763         }
5764
5765         /* set CDCLK to the frequency the BIOS chose */
5766         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5767
5768         /* enable DBUF power */
5769         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5770         POSTING_READ(DBUF_CTL);
5771
5772         udelay(10);
5773
5774         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5775                 DRM_ERROR("DBuf power enable timeout\n");
5776 }
5777
5778 /* Adjust CDclk dividers to allow high res or save power if possible */
5779 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5780 {
5781         struct drm_i915_private *dev_priv = dev->dev_private;
5782         u32 val, cmd;
5783
5784         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5785                                         != dev_priv->cdclk_freq);
5786
5787         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5788                 cmd = 2;
5789         else if (cdclk == 266667)
5790                 cmd = 1;
5791         else
5792                 cmd = 0;
5793
5794         mutex_lock(&dev_priv->rps.hw_lock);
5795         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5796         val &= ~DSPFREQGUAR_MASK;
5797         val |= (cmd << DSPFREQGUAR_SHIFT);
5798         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5799         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5800                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5801                      50)) {
5802                 DRM_ERROR("timed out waiting for CDclk change\n");
5803         }
5804         mutex_unlock(&dev_priv->rps.hw_lock);
5805
5806         mutex_lock(&dev_priv->sb_lock);
5807
5808         if (cdclk == 400000) {
5809                 u32 divider;
5810
5811                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5812
5813                 /* adjust cdclk divider */
5814                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5815                 val &= ~CCK_FREQUENCY_VALUES;
5816                 val |= divider;
5817                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5818
5819                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5820                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5821                              50))
5822                         DRM_ERROR("timed out waiting for CDclk change\n");
5823         }
5824
5825         /* adjust self-refresh exit latency value */
5826         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5827         val &= ~0x7f;
5828
5829         /*
5830          * For high bandwidth configs, we set a higher latency in the bunit
5831          * so that the core display fetch happens in time to avoid underruns.
5832          */
5833         if (cdclk == 400000)
5834                 val |= 4500 / 250; /* 4.5 usec */
5835         else
5836                 val |= 3000 / 250; /* 3.0 usec */
5837         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5838
5839         mutex_unlock(&dev_priv->sb_lock);
5840
5841         intel_update_cdclk(dev);
5842 }
5843
5844 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5845 {
5846         struct drm_i915_private *dev_priv = dev->dev_private;
5847         u32 val, cmd;
5848
5849         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5850                                                 != dev_priv->cdclk_freq);
5851
5852         switch (cdclk) {
5853         case 333333:
5854         case 320000:
5855         case 266667:
5856         case 200000:
5857                 break;
5858         default:
5859                 MISSING_CASE(cdclk);
5860                 return;
5861         }
5862
5863         /*
5864          * Specs are full of misinformation, but testing on actual
5865          * hardware has shown that we just need to write the desired
5866          * CCK divider into the Punit register.
5867          */
5868         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5869
5870         mutex_lock(&dev_priv->rps.hw_lock);
5871         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5872         val &= ~DSPFREQGUAR_MASK_CHV;
5873         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5874         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5875         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5876                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5877                      50)) {
5878                 DRM_ERROR("timed out waiting for CDclk change\n");
5879         }
5880         mutex_unlock(&dev_priv->rps.hw_lock);
5881
5882         intel_update_cdclk(dev);
5883 }
5884
5885 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5886                                  int max_pixclk)
5887 {
5888         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5889         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5890
5891         /*
5892          * Really only a few cases to deal with, as only 4 CDclks are supported:
5893          *   200MHz
5894          *   267MHz
5895          *   320/333MHz (depends on HPLL freq)
5896          *   400MHz (VLV only)
5897          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5898          * of the lower bin and adjust if needed.
5899          *
5900          * We seem to get an unstable or solid color picture at 200MHz.
5901          * Not sure what's wrong. For now use 200MHz only when all pipes
5902          * are off.
5903          */
5904         if (!IS_CHERRYVIEW(dev_priv) &&
5905             max_pixclk > freq_320*limit/100)
5906                 return 400000;
5907         else if (max_pixclk > 266667*limit/100)
5908                 return freq_320;
5909         else if (max_pixclk > 0)
5910                 return 266667;
5911         else
5912                 return 200000;
5913 }
5914
5915 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5916                               int max_pixclk)
5917 {
5918         /*
5919          * FIXME:
5920          * - remove the guardband, it's not needed on BXT
5921          * - set 19.2MHz bypass frequency if there are no active pipes
5922          */
5923         if (max_pixclk > 576000*9/10)
5924                 return 624000;
5925         else if (max_pixclk > 384000*9/10)
5926                 return 576000;
5927         else if (max_pixclk > 288000*9/10)
5928                 return 384000;
5929         else if (max_pixclk > 144000*9/10)
5930                 return 288000;
5931         else
5932                 return 144000;
5933 }
5934
5935 /* Compute the max pixel clock for new configuration. Uses atomic state if
5936  * that's non-NULL, look at current state otherwise. */
5937 static int intel_mode_max_pixclk(struct drm_device *dev,
5938                                  struct drm_atomic_state *state)
5939 {
5940         struct intel_crtc *intel_crtc;
5941         struct intel_crtc_state *crtc_state;
5942         int max_pixclk = 0;
5943
5944         for_each_intel_crtc(dev, intel_crtc) {
5945                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5946                 if (IS_ERR(crtc_state))
5947                         return PTR_ERR(crtc_state);
5948
5949                 if (!crtc_state->base.enable)
5950                         continue;
5951
5952                 max_pixclk = max(max_pixclk,
5953                                  crtc_state->base.adjusted_mode.crtc_clock);
5954         }
5955
5956         return max_pixclk;
5957 }
5958
5959 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5960 {
5961         struct drm_device *dev = state->dev;
5962         struct drm_i915_private *dev_priv = dev->dev_private;
5963         int max_pixclk = intel_mode_max_pixclk(dev, state);
5964
5965         if (max_pixclk < 0)
5966                 return max_pixclk;
5967
5968         to_intel_atomic_state(state)->cdclk =
5969                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5970
5971         return 0;
5972 }
5973
5974 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5975 {
5976         struct drm_device *dev = state->dev;
5977         struct drm_i915_private *dev_priv = dev->dev_private;
5978         int max_pixclk = intel_mode_max_pixclk(dev, state);
5979
5980         if (max_pixclk < 0)
5981                 return max_pixclk;
5982
5983         to_intel_atomic_state(state)->cdclk =
5984                 broxton_calc_cdclk(dev_priv, max_pixclk);
5985
5986         return 0;
5987 }
5988
5989 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5990 {
5991         unsigned int credits, default_credits;
5992
5993         if (IS_CHERRYVIEW(dev_priv))
5994                 default_credits = PFI_CREDIT(12);
5995         else
5996                 default_credits = PFI_CREDIT(8);
5997
5998         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
5999                 /* CHV suggested value is 31 or 63 */
6000                 if (IS_CHERRYVIEW(dev_priv))
6001                         credits = PFI_CREDIT_63;
6002                 else
6003                         credits = PFI_CREDIT(15);
6004         } else {
6005                 credits = default_credits;
6006         }
6007
6008         /*
6009          * WA - write default credits before re-programming
6010          * FIXME: should we also set the resend bit here?
6011          */
6012         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6013                    default_credits);
6014
6015         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6016                    credits | PFI_CREDIT_RESEND);
6017
6018         /*
6019          * FIXME is this guaranteed to clear
6020          * immediately or should we poll for it?
6021          */
6022         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6023 }
6024
6025 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6026 {
6027         struct drm_device *dev = old_state->dev;
6028         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6029         struct drm_i915_private *dev_priv = dev->dev_private;
6030
6031         /*
6032          * FIXME: We can end up here with all power domains off, yet
6033          * with a CDCLK frequency other than the minimum. To account
6034          * for this take the PIPE-A power domain, which covers the HW
6035          * blocks needed for the following programming. This can be
6036          * removed once it's guaranteed that we get here either with
6037          * the minimum CDCLK set, or the required power domains
6038          * enabled.
6039          */
6040         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6041
6042         if (IS_CHERRYVIEW(dev))
6043                 cherryview_set_cdclk(dev, req_cdclk);
6044         else
6045                 valleyview_set_cdclk(dev, req_cdclk);
6046
6047         vlv_program_pfi_credits(dev_priv);
6048
6049         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6050 }
6051
6052 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6053 {
6054         struct drm_device *dev = crtc->dev;
6055         struct drm_i915_private *dev_priv = to_i915(dev);
6056         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6057         struct intel_encoder *encoder;
6058         int pipe = intel_crtc->pipe;
6059         bool is_dsi;
6060
6061         if (WARN_ON(intel_crtc->active))
6062                 return;
6063
6064         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6065
6066         if (intel_crtc->config->has_dp_encoder)
6067                 intel_dp_set_m_n(intel_crtc, M1_N1);
6068
6069         intel_set_pipe_timings(intel_crtc);
6070
6071         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6072                 struct drm_i915_private *dev_priv = dev->dev_private;
6073
6074                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6075                 I915_WRITE(CHV_CANVAS(pipe), 0);
6076         }
6077
6078         i9xx_set_pipeconf(intel_crtc);
6079
6080         intel_crtc->active = true;
6081
6082         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6083
6084         for_each_encoder_on_crtc(dev, crtc, encoder)
6085                 if (encoder->pre_pll_enable)
6086                         encoder->pre_pll_enable(encoder);
6087
6088         if (!is_dsi) {
6089                 if (IS_CHERRYVIEW(dev)) {
6090                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6091                         chv_enable_pll(intel_crtc, intel_crtc->config);
6092                 } else {
6093                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6094                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6095                 }
6096         }
6097
6098         for_each_encoder_on_crtc(dev, crtc, encoder)
6099                 if (encoder->pre_enable)
6100                         encoder->pre_enable(encoder);
6101
6102         i9xx_pfit_enable(intel_crtc);
6103
6104         intel_crtc_load_lut(crtc);
6105
6106         intel_enable_pipe(intel_crtc);
6107
6108         assert_vblank_disabled(crtc);
6109         drm_crtc_vblank_on(crtc);
6110
6111         for_each_encoder_on_crtc(dev, crtc, encoder)
6112                 encoder->enable(encoder);
6113 }
6114
6115 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6116 {
6117         struct drm_device *dev = crtc->base.dev;
6118         struct drm_i915_private *dev_priv = dev->dev_private;
6119
6120         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6121         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6122 }
6123
6124 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6125 {
6126         struct drm_device *dev = crtc->dev;
6127         struct drm_i915_private *dev_priv = to_i915(dev);
6128         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6129         struct intel_encoder *encoder;
6130         int pipe = intel_crtc->pipe;
6131
6132         if (WARN_ON(intel_crtc->active))
6133                 return;
6134
6135         i9xx_set_pll_dividers(intel_crtc);
6136
6137         if (intel_crtc->config->has_dp_encoder)
6138                 intel_dp_set_m_n(intel_crtc, M1_N1);
6139
6140         intel_set_pipe_timings(intel_crtc);
6141
6142         i9xx_set_pipeconf(intel_crtc);
6143
6144         intel_crtc->active = true;
6145
6146         if (!IS_GEN2(dev))
6147                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6148
6149         for_each_encoder_on_crtc(dev, crtc, encoder)
6150                 if (encoder->pre_enable)
6151                         encoder->pre_enable(encoder);
6152
6153         i9xx_enable_pll(intel_crtc);
6154
6155         i9xx_pfit_enable(intel_crtc);
6156
6157         intel_crtc_load_lut(crtc);
6158
6159         intel_update_watermarks(crtc);
6160         intel_enable_pipe(intel_crtc);
6161
6162         assert_vblank_disabled(crtc);
6163         drm_crtc_vblank_on(crtc);
6164
6165         for_each_encoder_on_crtc(dev, crtc, encoder)
6166                 encoder->enable(encoder);
6167 }
6168
6169 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6170 {
6171         struct drm_device *dev = crtc->base.dev;
6172         struct drm_i915_private *dev_priv = dev->dev_private;
6173
6174         if (!crtc->config->gmch_pfit.control)
6175                 return;
6176
6177         assert_pipe_disabled(dev_priv, crtc->pipe);
6178
6179         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6180                          I915_READ(PFIT_CONTROL));
6181         I915_WRITE(PFIT_CONTROL, 0);
6182 }
6183
6184 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6185 {
6186         struct drm_device *dev = crtc->dev;
6187         struct drm_i915_private *dev_priv = dev->dev_private;
6188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6189         struct intel_encoder *encoder;
6190         int pipe = intel_crtc->pipe;
6191
6192         /*
6193          * On gen2 planes are double buffered but the pipe isn't, so we must
6194          * wait for planes to fully turn off before disabling the pipe.
6195          * We also need to wait on all gmch platforms because of the
6196          * self-refresh mode constraint explained above.
6197          */
6198         intel_wait_for_vblank(dev, pipe);
6199
6200         for_each_encoder_on_crtc(dev, crtc, encoder)
6201                 encoder->disable(encoder);
6202
6203         drm_crtc_vblank_off(crtc);
6204         assert_vblank_disabled(crtc);
6205
6206         intel_disable_pipe(intel_crtc);
6207
6208         i9xx_pfit_disable(intel_crtc);
6209
6210         for_each_encoder_on_crtc(dev, crtc, encoder)
6211                 if (encoder->post_disable)
6212                         encoder->post_disable(encoder);
6213
6214         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6215                 if (IS_CHERRYVIEW(dev))
6216                         chv_disable_pll(dev_priv, pipe);
6217                 else if (IS_VALLEYVIEW(dev))
6218                         vlv_disable_pll(dev_priv, pipe);
6219                 else
6220                         i9xx_disable_pll(intel_crtc);
6221         }
6222
6223         for_each_encoder_on_crtc(dev, crtc, encoder)
6224                 if (encoder->post_pll_disable)
6225                         encoder->post_pll_disable(encoder);
6226
6227         if (!IS_GEN2(dev))
6228                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6229 }
6230
6231 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6232 {
6233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6234         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6235         enum intel_display_power_domain domain;
6236         unsigned long domains;
6237
6238         if (!intel_crtc->active)
6239                 return;
6240
6241         if (to_intel_plane_state(crtc->primary->state)->visible) {
6242                 intel_crtc_wait_for_pending_flips(crtc);
6243                 intel_pre_disable_primary(crtc);
6244         }
6245
6246         intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6247         dev_priv->display.crtc_disable(crtc);
6248         intel_crtc->active = false;
6249         intel_update_watermarks(crtc);
6250         intel_disable_shared_dpll(intel_crtc);
6251
6252         domains = intel_crtc->enabled_power_domains;
6253         for_each_power_domain(domain, domains)
6254                 intel_display_power_put(dev_priv, domain);
6255         intel_crtc->enabled_power_domains = 0;
6256 }
6257
6258 /*
6259  * turn all crtc's off, but do not adjust state
6260  * This has to be paired with a call to intel_modeset_setup_hw_state.
6261  */
6262 int intel_display_suspend(struct drm_device *dev)
6263 {
6264         struct drm_mode_config *config = &dev->mode_config;
6265         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6266         struct drm_atomic_state *state;
6267         struct drm_crtc *crtc;
6268         unsigned crtc_mask = 0;
6269         int ret = 0;
6270
6271         if (WARN_ON(!ctx))
6272                 return 0;
6273
6274         lockdep_assert_held(&ctx->ww_ctx);
6275         state = drm_atomic_state_alloc(dev);
6276         if (WARN_ON(!state))
6277                 return -ENOMEM;
6278
6279         state->acquire_ctx = ctx;
6280         state->allow_modeset = true;
6281
6282         for_each_crtc(dev, crtc) {
6283                 struct drm_crtc_state *crtc_state =
6284                         drm_atomic_get_crtc_state(state, crtc);
6285
6286                 ret = PTR_ERR_OR_ZERO(crtc_state);
6287                 if (ret)
6288                         goto free;
6289
6290                 if (!crtc_state->active)
6291                         continue;
6292
6293                 crtc_state->active = false;
6294                 crtc_mask |= 1 << drm_crtc_index(crtc);
6295         }
6296
6297         if (crtc_mask) {
6298                 ret = drm_atomic_commit(state);
6299
6300                 if (!ret) {
6301                         for_each_crtc(dev, crtc)
6302                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6303                                         crtc->state->active = true;
6304
6305                         return ret;
6306                 }
6307         }
6308
6309 free:
6310         if (ret)
6311                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6312         drm_atomic_state_free(state);
6313         return ret;
6314 }
6315
6316 void intel_encoder_destroy(struct drm_encoder *encoder)
6317 {
6318         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6319
6320         drm_encoder_cleanup(encoder);
6321         kfree(intel_encoder);
6322 }
6323
6324 /* Cross check the actual hw state with our own modeset state tracking (and it's
6325  * internal consistency). */
6326 static void intel_connector_check_state(struct intel_connector *connector)
6327 {
6328         struct drm_crtc *crtc = connector->base.state->crtc;
6329
6330         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6331                       connector->base.base.id,
6332                       connector->base.name);
6333
6334         if (connector->get_hw_state(connector)) {
6335                 struct intel_encoder *encoder = connector->encoder;
6336                 struct drm_connector_state *conn_state = connector->base.state;
6337
6338                 I915_STATE_WARN(!crtc,
6339                          "connector enabled without attached crtc\n");
6340
6341                 if (!crtc)
6342                         return;
6343
6344                 I915_STATE_WARN(!crtc->state->active,
6345                       "connector is active, but attached crtc isn't\n");
6346
6347                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6348                         return;
6349
6350                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6351                         "atomic encoder doesn't match attached encoder\n");
6352
6353                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6354                         "attached encoder crtc differs from connector crtc\n");
6355         } else {
6356                 I915_STATE_WARN(crtc && crtc->state->active,
6357                         "attached crtc is active, but connector isn't\n");
6358                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6359                         "best encoder set without crtc!\n");
6360         }
6361 }
6362
6363 int intel_connector_init(struct intel_connector *connector)
6364 {
6365         struct drm_connector_state *connector_state;
6366
6367         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6368         if (!connector_state)
6369                 return -ENOMEM;
6370
6371         connector->base.state = connector_state;
6372         return 0;
6373 }
6374
6375 struct intel_connector *intel_connector_alloc(void)
6376 {
6377         struct intel_connector *connector;
6378
6379         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6380         if (!connector)
6381                 return NULL;
6382
6383         if (intel_connector_init(connector) < 0) {
6384                 kfree(connector);
6385                 return NULL;
6386         }
6387
6388         return connector;
6389 }
6390
6391 /* Simple connector->get_hw_state implementation for encoders that support only
6392  * one connector and no cloning and hence the encoder state determines the state
6393  * of the connector. */
6394 bool intel_connector_get_hw_state(struct intel_connector *connector)
6395 {
6396         enum pipe pipe = 0;
6397         struct intel_encoder *encoder = connector->encoder;
6398
6399         return encoder->get_hw_state(encoder, &pipe);
6400 }
6401
6402 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6403 {
6404         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6405                 return crtc_state->fdi_lanes;
6406
6407         return 0;
6408 }
6409
6410 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6411                                      struct intel_crtc_state *pipe_config)
6412 {
6413         struct drm_atomic_state *state = pipe_config->base.state;
6414         struct intel_crtc *other_crtc;
6415         struct intel_crtc_state *other_crtc_state;
6416
6417         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6418                       pipe_name(pipe), pipe_config->fdi_lanes);
6419         if (pipe_config->fdi_lanes > 4) {
6420                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6421                               pipe_name(pipe), pipe_config->fdi_lanes);
6422                 return -EINVAL;
6423         }
6424
6425         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6426                 if (pipe_config->fdi_lanes > 2) {
6427                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6428                                       pipe_config->fdi_lanes);
6429                         return -EINVAL;
6430                 } else {
6431                         return 0;
6432                 }
6433         }
6434
6435         if (INTEL_INFO(dev)->num_pipes == 2)
6436                 return 0;
6437
6438         /* Ivybridge 3 pipe is really complicated */
6439         switch (pipe) {
6440         case PIPE_A:
6441                 return 0;
6442         case PIPE_B:
6443                 if (pipe_config->fdi_lanes <= 2)
6444                         return 0;
6445
6446                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6447                 other_crtc_state =
6448                         intel_atomic_get_crtc_state(state, other_crtc);
6449                 if (IS_ERR(other_crtc_state))
6450                         return PTR_ERR(other_crtc_state);
6451
6452                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6453                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6454                                       pipe_name(pipe), pipe_config->fdi_lanes);
6455                         return -EINVAL;
6456                 }
6457                 return 0;
6458         case PIPE_C:
6459                 if (pipe_config->fdi_lanes > 2) {
6460                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6461                                       pipe_name(pipe), pipe_config->fdi_lanes);
6462                         return -EINVAL;
6463                 }
6464
6465                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6466                 other_crtc_state =
6467                         intel_atomic_get_crtc_state(state, other_crtc);
6468                 if (IS_ERR(other_crtc_state))
6469                         return PTR_ERR(other_crtc_state);
6470
6471                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6472                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6473                         return -EINVAL;
6474                 }
6475                 return 0;
6476         default:
6477                 BUG();
6478         }
6479 }
6480
6481 #define RETRY 1
6482 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6483                                        struct intel_crtc_state *pipe_config)
6484 {
6485         struct drm_device *dev = intel_crtc->base.dev;
6486         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6487         int lane, link_bw, fdi_dotclock, ret;
6488         bool needs_recompute = false;
6489
6490 retry:
6491         /* FDI is a binary signal running at ~2.7GHz, encoding
6492          * each output octet as 10 bits. The actual frequency
6493          * is stored as a divider into a 100MHz clock, and the
6494          * mode pixel clock is stored in units of 1KHz.
6495          * Hence the bw of each lane in terms of the mode signal
6496          * is:
6497          */
6498         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6499
6500         fdi_dotclock = adjusted_mode->crtc_clock;
6501
6502         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6503                                            pipe_config->pipe_bpp);
6504
6505         pipe_config->fdi_lanes = lane;
6506
6507         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6508                                link_bw, &pipe_config->fdi_m_n);
6509
6510         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6511                                        intel_crtc->pipe, pipe_config);
6512         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6513                 pipe_config->pipe_bpp -= 2*3;
6514                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6515                               pipe_config->pipe_bpp);
6516                 needs_recompute = true;
6517                 pipe_config->bw_constrained = true;
6518
6519                 goto retry;
6520         }
6521
6522         if (needs_recompute)
6523                 return RETRY;
6524
6525         return ret;
6526 }
6527
6528 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6529                                      struct intel_crtc_state *pipe_config)
6530 {
6531         if (pipe_config->pipe_bpp > 24)
6532                 return false;
6533
6534         /* HSW can handle pixel rate up to cdclk? */
6535         if (IS_HASWELL(dev_priv->dev))
6536                 return true;
6537
6538         /*
6539          * We compare against max which means we must take
6540          * the increased cdclk requirement into account when
6541          * calculating the new cdclk.
6542          *
6543          * Should measure whether using a lower cdclk w/o IPS
6544          */
6545         return ilk_pipe_pixel_rate(pipe_config) <=
6546                 dev_priv->max_cdclk_freq * 95 / 100;
6547 }
6548
6549 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6550                                    struct intel_crtc_state *pipe_config)
6551 {
6552         struct drm_device *dev = crtc->base.dev;
6553         struct drm_i915_private *dev_priv = dev->dev_private;
6554
6555         pipe_config->ips_enabled = i915.enable_ips &&
6556                 hsw_crtc_supports_ips(crtc) &&
6557                 pipe_config_supports_ips(dev_priv, pipe_config);
6558 }
6559
6560 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6561                                      struct intel_crtc_state *pipe_config)
6562 {
6563         struct drm_device *dev = crtc->base.dev;
6564         struct drm_i915_private *dev_priv = dev->dev_private;
6565         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6566
6567         /* FIXME should check pixel clock limits on all platforms */
6568         if (INTEL_INFO(dev)->gen < 4) {
6569                 int clock_limit = dev_priv->max_cdclk_freq;
6570
6571                 /*
6572                  * Enable pixel doubling when the dot clock
6573                  * is > 90% of the (display) core speed.
6574                  *
6575                  * GDG double wide on either pipe,
6576                  * otherwise pipe A only.
6577                  */
6578                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6579                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6580                         clock_limit *= 2;
6581                         pipe_config->double_wide = true;
6582                 }
6583
6584                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6585                         return -EINVAL;
6586         }
6587
6588         /*
6589          * Pipe horizontal size must be even in:
6590          * - DVO ganged mode
6591          * - LVDS dual channel mode
6592          * - Double wide pipe
6593          */
6594         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6595              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6596                 pipe_config->pipe_src_w &= ~1;
6597
6598         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6599          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6600          */
6601         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6602                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6603                 return -EINVAL;
6604
6605         if (HAS_IPS(dev))
6606                 hsw_compute_ips_config(crtc, pipe_config);
6607
6608         if (pipe_config->has_pch_encoder)
6609                 return ironlake_fdi_compute_config(crtc, pipe_config);
6610
6611         return 0;
6612 }
6613
6614 static int skylake_get_display_clock_speed(struct drm_device *dev)
6615 {
6616         struct drm_i915_private *dev_priv = to_i915(dev);
6617         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6618         uint32_t cdctl = I915_READ(CDCLK_CTL);
6619         uint32_t linkrate;
6620
6621         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6622                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6623
6624         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6625                 return 540000;
6626
6627         linkrate = (I915_READ(DPLL_CTRL1) &
6628                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6629
6630         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6631             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6632                 /* vco 8640 */
6633                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6634                 case CDCLK_FREQ_450_432:
6635                         return 432000;
6636                 case CDCLK_FREQ_337_308:
6637                         return 308570;
6638                 case CDCLK_FREQ_675_617:
6639                         return 617140;
6640                 default:
6641                         WARN(1, "Unknown cd freq selection\n");
6642                 }
6643         } else {
6644                 /* vco 8100 */
6645                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6646                 case CDCLK_FREQ_450_432:
6647                         return 450000;
6648                 case CDCLK_FREQ_337_308:
6649                         return 337500;
6650                 case CDCLK_FREQ_675_617:
6651                         return 675000;
6652                 default:
6653                         WARN(1, "Unknown cd freq selection\n");
6654                 }
6655         }
6656
6657         /* error case, do as if DPLL0 isn't enabled */
6658         return 24000;
6659 }
6660
6661 static int broxton_get_display_clock_speed(struct drm_device *dev)
6662 {
6663         struct drm_i915_private *dev_priv = to_i915(dev);
6664         uint32_t cdctl = I915_READ(CDCLK_CTL);
6665         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6666         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6667         int cdclk;
6668
6669         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6670                 return 19200;
6671
6672         cdclk = 19200 * pll_ratio / 2;
6673
6674         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6675         case BXT_CDCLK_CD2X_DIV_SEL_1:
6676                 return cdclk;  /* 576MHz or 624MHz */
6677         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6678                 return cdclk * 2 / 3; /* 384MHz */
6679         case BXT_CDCLK_CD2X_DIV_SEL_2:
6680                 return cdclk / 2; /* 288MHz */
6681         case BXT_CDCLK_CD2X_DIV_SEL_4:
6682                 return cdclk / 4; /* 144MHz */
6683         }
6684
6685         /* error case, do as if DE PLL isn't enabled */
6686         return 19200;
6687 }
6688
6689 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6690 {
6691         struct drm_i915_private *dev_priv = dev->dev_private;
6692         uint32_t lcpll = I915_READ(LCPLL_CTL);
6693         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6694
6695         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6696                 return 800000;
6697         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6698                 return 450000;
6699         else if (freq == LCPLL_CLK_FREQ_450)
6700                 return 450000;
6701         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6702                 return 540000;
6703         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6704                 return 337500;
6705         else
6706                 return 675000;
6707 }
6708
6709 static int haswell_get_display_clock_speed(struct drm_device *dev)
6710 {
6711         struct drm_i915_private *dev_priv = dev->dev_private;
6712         uint32_t lcpll = I915_READ(LCPLL_CTL);
6713         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6714
6715         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6716                 return 800000;
6717         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6718                 return 450000;
6719         else if (freq == LCPLL_CLK_FREQ_450)
6720                 return 450000;
6721         else if (IS_HSW_ULT(dev))
6722                 return 337500;
6723         else
6724                 return 540000;
6725 }
6726
6727 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6728 {
6729         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6730                                       CCK_DISPLAY_CLOCK_CONTROL);
6731 }
6732
6733 static int ilk_get_display_clock_speed(struct drm_device *dev)
6734 {
6735         return 450000;
6736 }
6737
6738 static int i945_get_display_clock_speed(struct drm_device *dev)
6739 {
6740         return 400000;
6741 }
6742
6743 static int i915_get_display_clock_speed(struct drm_device *dev)
6744 {
6745         return 333333;
6746 }
6747
6748 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6749 {
6750         return 200000;
6751 }
6752
6753 static int pnv_get_display_clock_speed(struct drm_device *dev)
6754 {
6755         u16 gcfgc = 0;
6756
6757         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6758
6759         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6760         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6761                 return 266667;
6762         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6763                 return 333333;
6764         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6765                 return 444444;
6766         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6767                 return 200000;
6768         default:
6769                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6770         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6771                 return 133333;
6772         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6773                 return 166667;
6774         }
6775 }
6776
6777 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6778 {
6779         u16 gcfgc = 0;
6780
6781         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6782
6783         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6784                 return 133333;
6785         else {
6786                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6787                 case GC_DISPLAY_CLOCK_333_MHZ:
6788                         return 333333;
6789                 default:
6790                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6791                         return 190000;
6792                 }
6793         }
6794 }
6795
6796 static int i865_get_display_clock_speed(struct drm_device *dev)
6797 {
6798         return 266667;
6799 }
6800
6801 static int i85x_get_display_clock_speed(struct drm_device *dev)
6802 {
6803         u16 hpllcc = 0;
6804
6805         /*
6806          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6807          * encoding is different :(
6808          * FIXME is this the right way to detect 852GM/852GMV?
6809          */
6810         if (dev->pdev->revision == 0x1)
6811                 return 133333;
6812
6813         pci_bus_read_config_word(dev->pdev->bus,
6814                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6815
6816         /* Assume that the hardware is in the high speed state.  This
6817          * should be the default.
6818          */
6819         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6820         case GC_CLOCK_133_200:
6821         case GC_CLOCK_133_200_2:
6822         case GC_CLOCK_100_200:
6823                 return 200000;
6824         case GC_CLOCK_166_250:
6825                 return 250000;
6826         case GC_CLOCK_100_133:
6827                 return 133333;
6828         case GC_CLOCK_133_266:
6829         case GC_CLOCK_133_266_2:
6830         case GC_CLOCK_166_266:
6831                 return 266667;
6832         }
6833
6834         /* Shouldn't happen */
6835         return 0;
6836 }
6837
6838 static int i830_get_display_clock_speed(struct drm_device *dev)
6839 {
6840         return 133333;
6841 }
6842
6843 static unsigned int intel_hpll_vco(struct drm_device *dev)
6844 {
6845         struct drm_i915_private *dev_priv = dev->dev_private;
6846         static const unsigned int blb_vco[8] = {
6847                 [0] = 3200000,
6848                 [1] = 4000000,
6849                 [2] = 5333333,
6850                 [3] = 4800000,
6851                 [4] = 6400000,
6852         };
6853         static const unsigned int pnv_vco[8] = {
6854                 [0] = 3200000,
6855                 [1] = 4000000,
6856                 [2] = 5333333,
6857                 [3] = 4800000,
6858                 [4] = 2666667,
6859         };
6860         static const unsigned int cl_vco[8] = {
6861                 [0] = 3200000,
6862                 [1] = 4000000,
6863                 [2] = 5333333,
6864                 [3] = 6400000,
6865                 [4] = 3333333,
6866                 [5] = 3566667,
6867                 [6] = 4266667,
6868         };
6869         static const unsigned int elk_vco[8] = {
6870                 [0] = 3200000,
6871                 [1] = 4000000,
6872                 [2] = 5333333,
6873                 [3] = 4800000,
6874         };
6875         static const unsigned int ctg_vco[8] = {
6876                 [0] = 3200000,
6877                 [1] = 4000000,
6878                 [2] = 5333333,
6879                 [3] = 6400000,
6880                 [4] = 2666667,
6881                 [5] = 4266667,
6882         };
6883         const unsigned int *vco_table;
6884         unsigned int vco;
6885         uint8_t tmp = 0;
6886
6887         /* FIXME other chipsets? */
6888         if (IS_GM45(dev))
6889                 vco_table = ctg_vco;
6890         else if (IS_G4X(dev))
6891                 vco_table = elk_vco;
6892         else if (IS_CRESTLINE(dev))
6893                 vco_table = cl_vco;
6894         else if (IS_PINEVIEW(dev))
6895                 vco_table = pnv_vco;
6896         else if (IS_G33(dev))
6897                 vco_table = blb_vco;
6898         else
6899                 return 0;
6900
6901         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6902
6903         vco = vco_table[tmp & 0x7];
6904         if (vco == 0)
6905                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6906         else
6907                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6908
6909         return vco;
6910 }
6911
6912 static int gm45_get_display_clock_speed(struct drm_device *dev)
6913 {
6914         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6915         uint16_t tmp = 0;
6916
6917         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6918
6919         cdclk_sel = (tmp >> 12) & 0x1;
6920
6921         switch (vco) {
6922         case 2666667:
6923         case 4000000:
6924         case 5333333:
6925                 return cdclk_sel ? 333333 : 222222;
6926         case 3200000:
6927                 return cdclk_sel ? 320000 : 228571;
6928         default:
6929                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6930                 return 222222;
6931         }
6932 }
6933
6934 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6935 {
6936         static const uint8_t div_3200[] = { 16, 10,  8 };
6937         static const uint8_t div_4000[] = { 20, 12, 10 };
6938         static const uint8_t div_5333[] = { 24, 16, 14 };
6939         const uint8_t *div_table;
6940         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6941         uint16_t tmp = 0;
6942
6943         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6944
6945         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6946
6947         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6948                 goto fail;
6949
6950         switch (vco) {
6951         case 3200000:
6952                 div_table = div_3200;
6953                 break;
6954         case 4000000:
6955                 div_table = div_4000;
6956                 break;
6957         case 5333333:
6958                 div_table = div_5333;
6959                 break;
6960         default:
6961                 goto fail;
6962         }
6963
6964         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6965
6966 fail:
6967         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6968         return 200000;
6969 }
6970
6971 static int g33_get_display_clock_speed(struct drm_device *dev)
6972 {
6973         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6974         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6975         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6976         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6977         const uint8_t *div_table;
6978         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6979         uint16_t tmp = 0;
6980
6981         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6982
6983         cdclk_sel = (tmp >> 4) & 0x7;
6984
6985         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6986                 goto fail;
6987
6988         switch (vco) {
6989         case 3200000:
6990                 div_table = div_3200;
6991                 break;
6992         case 4000000:
6993                 div_table = div_4000;
6994                 break;
6995         case 4800000:
6996                 div_table = div_4800;
6997                 break;
6998         case 5333333:
6999                 div_table = div_5333;
7000                 break;
7001         default:
7002                 goto fail;
7003         }
7004
7005         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7006
7007 fail:
7008         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7009         return 190476;
7010 }
7011
7012 static void
7013 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7014 {
7015         while (*num > DATA_LINK_M_N_MASK ||
7016                *den > DATA_LINK_M_N_MASK) {
7017                 *num >>= 1;
7018                 *den >>= 1;
7019         }
7020 }
7021
7022 static void compute_m_n(unsigned int m, unsigned int n,
7023                         uint32_t *ret_m, uint32_t *ret_n)
7024 {
7025         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7026         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7027         intel_reduce_m_n_ratio(ret_m, ret_n);
7028 }
7029
7030 void
7031 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7032                        int pixel_clock, int link_clock,
7033                        struct intel_link_m_n *m_n)
7034 {
7035         m_n->tu = 64;
7036
7037         compute_m_n(bits_per_pixel * pixel_clock,
7038                     link_clock * nlanes * 8,
7039                     &m_n->gmch_m, &m_n->gmch_n);
7040
7041         compute_m_n(pixel_clock, link_clock,
7042                     &m_n->link_m, &m_n->link_n);
7043 }
7044
7045 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7046 {
7047         if (i915.panel_use_ssc >= 0)
7048                 return i915.panel_use_ssc != 0;
7049         return dev_priv->vbt.lvds_use_ssc
7050                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7051 }
7052
7053 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7054                            int num_connectors)
7055 {
7056         struct drm_device *dev = crtc_state->base.crtc->dev;
7057         struct drm_i915_private *dev_priv = dev->dev_private;
7058         int refclk;
7059
7060         WARN_ON(!crtc_state->base.state);
7061
7062         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7063                 refclk = 100000;
7064         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7065             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7066                 refclk = dev_priv->vbt.lvds_ssc_freq;
7067                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7068         } else if (!IS_GEN2(dev)) {
7069                 refclk = 96000;
7070         } else {
7071                 refclk = 48000;
7072         }
7073
7074         return refclk;
7075 }
7076
7077 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7078 {
7079         return (1 << dpll->n) << 16 | dpll->m2;
7080 }
7081
7082 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7083 {
7084         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7085 }
7086
7087 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7088                                      struct intel_crtc_state *crtc_state,
7089                                      intel_clock_t *reduced_clock)
7090 {
7091         struct drm_device *dev = crtc->base.dev;
7092         u32 fp, fp2 = 0;
7093
7094         if (IS_PINEVIEW(dev)) {
7095                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7096                 if (reduced_clock)
7097                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7098         } else {
7099                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7100                 if (reduced_clock)
7101                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7102         }
7103
7104         crtc_state->dpll_hw_state.fp0 = fp;
7105
7106         crtc->lowfreq_avail = false;
7107         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7108             reduced_clock) {
7109                 crtc_state->dpll_hw_state.fp1 = fp2;
7110                 crtc->lowfreq_avail = true;
7111         } else {
7112                 crtc_state->dpll_hw_state.fp1 = fp;
7113         }
7114 }
7115
7116 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7117                 pipe)
7118 {
7119         u32 reg_val;
7120
7121         /*
7122          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7123          * and set it to a reasonable value instead.
7124          */
7125         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7126         reg_val &= 0xffffff00;
7127         reg_val |= 0x00000030;
7128         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7129
7130         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7131         reg_val &= 0x8cffffff;
7132         reg_val = 0x8c000000;
7133         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7134
7135         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7136         reg_val &= 0xffffff00;
7137         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7138
7139         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7140         reg_val &= 0x00ffffff;
7141         reg_val |= 0xb0000000;
7142         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7143 }
7144
7145 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7146                                          struct intel_link_m_n *m_n)
7147 {
7148         struct drm_device *dev = crtc->base.dev;
7149         struct drm_i915_private *dev_priv = dev->dev_private;
7150         int pipe = crtc->pipe;
7151
7152         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7153         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7154         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7155         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7156 }
7157
7158 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7159                                          struct intel_link_m_n *m_n,
7160                                          struct intel_link_m_n *m2_n2)
7161 {
7162         struct drm_device *dev = crtc->base.dev;
7163         struct drm_i915_private *dev_priv = dev->dev_private;
7164         int pipe = crtc->pipe;
7165         enum transcoder transcoder = crtc->config->cpu_transcoder;
7166
7167         if (INTEL_INFO(dev)->gen >= 5) {
7168                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7169                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7170                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7171                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7172                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7173                  * for gen < 8) and if DRRS is supported (to make sure the
7174                  * registers are not unnecessarily accessed).
7175                  */
7176                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7177                         crtc->config->has_drrs) {
7178                         I915_WRITE(PIPE_DATA_M2(transcoder),
7179                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7180                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7181                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7182                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7183                 }
7184         } else {
7185                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7186                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7187                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7188                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7189         }
7190 }
7191
7192 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7193 {
7194         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7195
7196         if (m_n == M1_N1) {
7197                 dp_m_n = &crtc->config->dp_m_n;
7198                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7199         } else if (m_n == M2_N2) {
7200
7201                 /*
7202                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7203                  * needs to be programmed into M1_N1.
7204                  */
7205                 dp_m_n = &crtc->config->dp_m2_n2;
7206         } else {
7207                 DRM_ERROR("Unsupported divider value\n");
7208                 return;
7209         }
7210
7211         if (crtc->config->has_pch_encoder)
7212                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7213         else
7214                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7215 }
7216
7217 static void vlv_compute_dpll(struct intel_crtc *crtc,
7218                              struct intel_crtc_state *pipe_config)
7219 {
7220         u32 dpll, dpll_md;
7221
7222         /*
7223          * Enable DPIO clock input. We should never disable the reference
7224          * clock for pipe B, since VGA hotplug / manual detection depends
7225          * on it.
7226          */
7227         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7228                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7229         /* We should never disable this, set it here for state tracking */
7230         if (crtc->pipe == PIPE_B)
7231                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7232         dpll |= DPLL_VCO_ENABLE;
7233         pipe_config->dpll_hw_state.dpll = dpll;
7234
7235         dpll_md = (pipe_config->pixel_multiplier - 1)
7236                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7237         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7238 }
7239
7240 static void vlv_prepare_pll(struct intel_crtc *crtc,
7241                             const struct intel_crtc_state *pipe_config)
7242 {
7243         struct drm_device *dev = crtc->base.dev;
7244         struct drm_i915_private *dev_priv = dev->dev_private;
7245         int pipe = crtc->pipe;
7246         u32 mdiv;
7247         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7248         u32 coreclk, reg_val;
7249
7250         mutex_lock(&dev_priv->sb_lock);
7251
7252         bestn = pipe_config->dpll.n;
7253         bestm1 = pipe_config->dpll.m1;
7254         bestm2 = pipe_config->dpll.m2;
7255         bestp1 = pipe_config->dpll.p1;
7256         bestp2 = pipe_config->dpll.p2;
7257
7258         /* See eDP HDMI DPIO driver vbios notes doc */
7259
7260         /* PLL B needs special handling */
7261         if (pipe == PIPE_B)
7262                 vlv_pllb_recal_opamp(dev_priv, pipe);
7263
7264         /* Set up Tx target for periodic Rcomp update */
7265         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7266
7267         /* Disable target IRef on PLL */
7268         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7269         reg_val &= 0x00ffffff;
7270         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7271
7272         /* Disable fast lock */
7273         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7274
7275         /* Set idtafcrecal before PLL is enabled */
7276         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7277         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7278         mdiv |= ((bestn << DPIO_N_SHIFT));
7279         mdiv |= (1 << DPIO_K_SHIFT);
7280
7281         /*
7282          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7283          * but we don't support that).
7284          * Note: don't use the DAC post divider as it seems unstable.
7285          */
7286         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7287         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7288
7289         mdiv |= DPIO_ENABLE_CALIBRATION;
7290         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7291
7292         /* Set HBR and RBR LPF coefficients */
7293         if (pipe_config->port_clock == 162000 ||
7294             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7295             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7296                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7297                                  0x009f0003);
7298         else
7299                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7300                                  0x00d0000f);
7301
7302         if (pipe_config->has_dp_encoder) {
7303                 /* Use SSC source */
7304                 if (pipe == PIPE_A)
7305                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7306                                          0x0df40000);
7307                 else
7308                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7309                                          0x0df70000);
7310         } else { /* HDMI or VGA */
7311                 /* Use bend source */
7312                 if (pipe == PIPE_A)
7313                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7314                                          0x0df70000);
7315                 else
7316                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7317                                          0x0df40000);
7318         }
7319
7320         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7321         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7322         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7323             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7324                 coreclk |= 0x01000000;
7325         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7326
7327         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7328         mutex_unlock(&dev_priv->sb_lock);
7329 }
7330
7331 static void chv_compute_dpll(struct intel_crtc *crtc,
7332                              struct intel_crtc_state *pipe_config)
7333 {
7334         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7335                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7336                 DPLL_VCO_ENABLE;
7337         if (crtc->pipe != PIPE_A)
7338                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7339
7340         pipe_config->dpll_hw_state.dpll_md =
7341                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7342 }
7343
7344 static void chv_prepare_pll(struct intel_crtc *crtc,
7345                             const struct intel_crtc_state *pipe_config)
7346 {
7347         struct drm_device *dev = crtc->base.dev;
7348         struct drm_i915_private *dev_priv = dev->dev_private;
7349         int pipe = crtc->pipe;
7350         int dpll_reg = DPLL(crtc->pipe);
7351         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7352         u32 loopfilter, tribuf_calcntr;
7353         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7354         u32 dpio_val;
7355         int vco;
7356
7357         bestn = pipe_config->dpll.n;
7358         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7359         bestm1 = pipe_config->dpll.m1;
7360         bestm2 = pipe_config->dpll.m2 >> 22;
7361         bestp1 = pipe_config->dpll.p1;
7362         bestp2 = pipe_config->dpll.p2;
7363         vco = pipe_config->dpll.vco;
7364         dpio_val = 0;
7365         loopfilter = 0;
7366
7367         /*
7368          * Enable Refclk and SSC
7369          */
7370         I915_WRITE(dpll_reg,
7371                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7372
7373         mutex_lock(&dev_priv->sb_lock);
7374
7375         /* p1 and p2 divider */
7376         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7377                         5 << DPIO_CHV_S1_DIV_SHIFT |
7378                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7379                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7380                         1 << DPIO_CHV_K_DIV_SHIFT);
7381
7382         /* Feedback post-divider - m2 */
7383         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7384
7385         /* Feedback refclk divider - n and m1 */
7386         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7387                         DPIO_CHV_M1_DIV_BY_2 |
7388                         1 << DPIO_CHV_N_DIV_SHIFT);
7389
7390         /* M2 fraction division */
7391         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7392
7393         /* M2 fraction division enable */
7394         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7395         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7396         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7397         if (bestm2_frac)
7398                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7399         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7400
7401         /* Program digital lock detect threshold */
7402         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7403         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7404                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7405         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7406         if (!bestm2_frac)
7407                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7408         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7409
7410         /* Loop filter */
7411         if (vco == 5400000) {
7412                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7413                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7414                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7415                 tribuf_calcntr = 0x9;
7416         } else if (vco <= 6200000) {
7417                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7418                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7419                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7420                 tribuf_calcntr = 0x9;
7421         } else if (vco <= 6480000) {
7422                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7423                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7424                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7425                 tribuf_calcntr = 0x8;
7426         } else {
7427                 /* Not supported. Apply the same limits as in the max case */
7428                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7429                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7430                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7431                 tribuf_calcntr = 0;
7432         }
7433         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7434
7435         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7436         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7437         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7438         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7439
7440         /* AFC Recal */
7441         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7442                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7443                         DPIO_AFC_RECAL);
7444
7445         mutex_unlock(&dev_priv->sb_lock);
7446 }
7447
7448 /**
7449  * vlv_force_pll_on - forcibly enable just the PLL
7450  * @dev_priv: i915 private structure
7451  * @pipe: pipe PLL to enable
7452  * @dpll: PLL configuration
7453  *
7454  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7455  * in cases where we need the PLL enabled even when @pipe is not going to
7456  * be enabled.
7457  */
7458 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7459                       const struct dpll *dpll)
7460 {
7461         struct intel_crtc *crtc =
7462                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7463         struct intel_crtc_state pipe_config = {
7464                 .base.crtc = &crtc->base,
7465                 .pixel_multiplier = 1,
7466                 .dpll = *dpll,
7467         };
7468
7469         if (IS_CHERRYVIEW(dev)) {
7470                 chv_compute_dpll(crtc, &pipe_config);
7471                 chv_prepare_pll(crtc, &pipe_config);
7472                 chv_enable_pll(crtc, &pipe_config);
7473         } else {
7474                 vlv_compute_dpll(crtc, &pipe_config);
7475                 vlv_prepare_pll(crtc, &pipe_config);
7476                 vlv_enable_pll(crtc, &pipe_config);
7477         }
7478 }
7479
7480 /**
7481  * vlv_force_pll_off - forcibly disable just the PLL
7482  * @dev_priv: i915 private structure
7483  * @pipe: pipe PLL to disable
7484  *
7485  * Disable the PLL for @pipe. To be used in cases where we need
7486  * the PLL enabled even when @pipe is not going to be enabled.
7487  */
7488 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7489 {
7490         if (IS_CHERRYVIEW(dev))
7491                 chv_disable_pll(to_i915(dev), pipe);
7492         else
7493                 vlv_disable_pll(to_i915(dev), pipe);
7494 }
7495
7496 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7497                               struct intel_crtc_state *crtc_state,
7498                               intel_clock_t *reduced_clock,
7499                               int num_connectors)
7500 {
7501         struct drm_device *dev = crtc->base.dev;
7502         struct drm_i915_private *dev_priv = dev->dev_private;
7503         u32 dpll;
7504         bool is_sdvo;
7505         struct dpll *clock = &crtc_state->dpll;
7506
7507         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7508
7509         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7510                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7511
7512         dpll = DPLL_VGA_MODE_DIS;
7513
7514         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7515                 dpll |= DPLLB_MODE_LVDS;
7516         else
7517                 dpll |= DPLLB_MODE_DAC_SERIAL;
7518
7519         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7520                 dpll |= (crtc_state->pixel_multiplier - 1)
7521                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7522         }
7523
7524         if (is_sdvo)
7525                 dpll |= DPLL_SDVO_HIGH_SPEED;
7526
7527         if (crtc_state->has_dp_encoder)
7528                 dpll |= DPLL_SDVO_HIGH_SPEED;
7529
7530         /* compute bitmask from p1 value */
7531         if (IS_PINEVIEW(dev))
7532                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7533         else {
7534                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7535                 if (IS_G4X(dev) && reduced_clock)
7536                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7537         }
7538         switch (clock->p2) {
7539         case 5:
7540                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7541                 break;
7542         case 7:
7543                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7544                 break;
7545         case 10:
7546                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7547                 break;
7548         case 14:
7549                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7550                 break;
7551         }
7552         if (INTEL_INFO(dev)->gen >= 4)
7553                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7554
7555         if (crtc_state->sdvo_tv_clock)
7556                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7557         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7558                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7559                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7560         else
7561                 dpll |= PLL_REF_INPUT_DREFCLK;
7562
7563         dpll |= DPLL_VCO_ENABLE;
7564         crtc_state->dpll_hw_state.dpll = dpll;
7565
7566         if (INTEL_INFO(dev)->gen >= 4) {
7567                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7568                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7569                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7570         }
7571 }
7572
7573 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7574                               struct intel_crtc_state *crtc_state,
7575                               intel_clock_t *reduced_clock,
7576                               int num_connectors)
7577 {
7578         struct drm_device *dev = crtc->base.dev;
7579         struct drm_i915_private *dev_priv = dev->dev_private;
7580         u32 dpll;
7581         struct dpll *clock = &crtc_state->dpll;
7582
7583         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7584
7585         dpll = DPLL_VGA_MODE_DIS;
7586
7587         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7588                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7589         } else {
7590                 if (clock->p1 == 2)
7591                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7592                 else
7593                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7594                 if (clock->p2 == 4)
7595                         dpll |= PLL_P2_DIVIDE_BY_4;
7596         }
7597
7598         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7599                 dpll |= DPLL_DVO_2X_MODE;
7600
7601         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7602                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7603                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7604         else
7605                 dpll |= PLL_REF_INPUT_DREFCLK;
7606
7607         dpll |= DPLL_VCO_ENABLE;
7608         crtc_state->dpll_hw_state.dpll = dpll;
7609 }
7610
7611 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7612 {
7613         struct drm_device *dev = intel_crtc->base.dev;
7614         struct drm_i915_private *dev_priv = dev->dev_private;
7615         enum pipe pipe = intel_crtc->pipe;
7616         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7617         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7618         uint32_t crtc_vtotal, crtc_vblank_end;
7619         int vsyncshift = 0;
7620
7621         /* We need to be careful not to changed the adjusted mode, for otherwise
7622          * the hw state checker will get angry at the mismatch. */
7623         crtc_vtotal = adjusted_mode->crtc_vtotal;
7624         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7625
7626         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7627                 /* the chip adds 2 halflines automatically */
7628                 crtc_vtotal -= 1;
7629                 crtc_vblank_end -= 1;
7630
7631                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7632                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7633                 else
7634                         vsyncshift = adjusted_mode->crtc_hsync_start -
7635                                 adjusted_mode->crtc_htotal / 2;
7636                 if (vsyncshift < 0)
7637                         vsyncshift += adjusted_mode->crtc_htotal;
7638         }
7639
7640         if (INTEL_INFO(dev)->gen > 3)
7641                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7642
7643         I915_WRITE(HTOTAL(cpu_transcoder),
7644                    (adjusted_mode->crtc_hdisplay - 1) |
7645                    ((adjusted_mode->crtc_htotal - 1) << 16));
7646         I915_WRITE(HBLANK(cpu_transcoder),
7647                    (adjusted_mode->crtc_hblank_start - 1) |
7648                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7649         I915_WRITE(HSYNC(cpu_transcoder),
7650                    (adjusted_mode->crtc_hsync_start - 1) |
7651                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7652
7653         I915_WRITE(VTOTAL(cpu_transcoder),
7654                    (adjusted_mode->crtc_vdisplay - 1) |
7655                    ((crtc_vtotal - 1) << 16));
7656         I915_WRITE(VBLANK(cpu_transcoder),
7657                    (adjusted_mode->crtc_vblank_start - 1) |
7658                    ((crtc_vblank_end - 1) << 16));
7659         I915_WRITE(VSYNC(cpu_transcoder),
7660                    (adjusted_mode->crtc_vsync_start - 1) |
7661                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7662
7663         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7664          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7665          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7666          * bits. */
7667         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7668             (pipe == PIPE_B || pipe == PIPE_C))
7669                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7670
7671         /* pipesrc controls the size that is scaled from, which should
7672          * always be the user's requested size.
7673          */
7674         I915_WRITE(PIPESRC(pipe),
7675                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7676                    (intel_crtc->config->pipe_src_h - 1));
7677 }
7678
7679 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7680                                    struct intel_crtc_state *pipe_config)
7681 {
7682         struct drm_device *dev = crtc->base.dev;
7683         struct drm_i915_private *dev_priv = dev->dev_private;
7684         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7685         uint32_t tmp;
7686
7687         tmp = I915_READ(HTOTAL(cpu_transcoder));
7688         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7689         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7690         tmp = I915_READ(HBLANK(cpu_transcoder));
7691         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7692         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7693         tmp = I915_READ(HSYNC(cpu_transcoder));
7694         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7695         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7696
7697         tmp = I915_READ(VTOTAL(cpu_transcoder));
7698         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7699         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7700         tmp = I915_READ(VBLANK(cpu_transcoder));
7701         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7702         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7703         tmp = I915_READ(VSYNC(cpu_transcoder));
7704         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7705         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7706
7707         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7708                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7709                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7710                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7711         }
7712
7713         tmp = I915_READ(PIPESRC(crtc->pipe));
7714         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7715         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7716
7717         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7718         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7719 }
7720
7721 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7722                                  struct intel_crtc_state *pipe_config)
7723 {
7724         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7725         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7726         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7727         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7728
7729         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7730         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7731         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7732         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7733
7734         mode->flags = pipe_config->base.adjusted_mode.flags;
7735         mode->type = DRM_MODE_TYPE_DRIVER;
7736
7737         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7738         mode->flags |= pipe_config->base.adjusted_mode.flags;
7739
7740         mode->hsync = drm_mode_hsync(mode);
7741         mode->vrefresh = drm_mode_vrefresh(mode);
7742         drm_mode_set_name(mode);
7743 }
7744
7745 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7746 {
7747         struct drm_device *dev = intel_crtc->base.dev;
7748         struct drm_i915_private *dev_priv = dev->dev_private;
7749         uint32_t pipeconf;
7750
7751         pipeconf = 0;
7752
7753         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7754             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7755                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7756
7757         if (intel_crtc->config->double_wide)
7758                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7759
7760         /* only g4x and later have fancy bpc/dither controls */
7761         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7762                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7763                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7764                         pipeconf |= PIPECONF_DITHER_EN |
7765                                     PIPECONF_DITHER_TYPE_SP;
7766
7767                 switch (intel_crtc->config->pipe_bpp) {
7768                 case 18:
7769                         pipeconf |= PIPECONF_6BPC;
7770                         break;
7771                 case 24:
7772                         pipeconf |= PIPECONF_8BPC;
7773                         break;
7774                 case 30:
7775                         pipeconf |= PIPECONF_10BPC;
7776                         break;
7777                 default:
7778                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7779                         BUG();
7780                 }
7781         }
7782
7783         if (HAS_PIPE_CXSR(dev)) {
7784                 if (intel_crtc->lowfreq_avail) {
7785                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7786                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7787                 } else {
7788                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7789                 }
7790         }
7791
7792         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7793                 if (INTEL_INFO(dev)->gen < 4 ||
7794                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7795                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7796                 else
7797                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7798         } else
7799                 pipeconf |= PIPECONF_PROGRESSIVE;
7800
7801         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7802                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7803
7804         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7805         POSTING_READ(PIPECONF(intel_crtc->pipe));
7806 }
7807
7808 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7809                                    struct intel_crtc_state *crtc_state)
7810 {
7811         struct drm_device *dev = crtc->base.dev;
7812         struct drm_i915_private *dev_priv = dev->dev_private;
7813         int refclk, num_connectors = 0;
7814         intel_clock_t clock;
7815         bool ok;
7816         bool is_dsi = false;
7817         struct intel_encoder *encoder;
7818         const intel_limit_t *limit;
7819         struct drm_atomic_state *state = crtc_state->base.state;
7820         struct drm_connector *connector;
7821         struct drm_connector_state *connector_state;
7822         int i;
7823
7824         memset(&crtc_state->dpll_hw_state, 0,
7825                sizeof(crtc_state->dpll_hw_state));
7826
7827         for_each_connector_in_state(state, connector, connector_state, i) {
7828                 if (connector_state->crtc != &crtc->base)
7829                         continue;
7830
7831                 encoder = to_intel_encoder(connector_state->best_encoder);
7832
7833                 switch (encoder->type) {
7834                 case INTEL_OUTPUT_DSI:
7835                         is_dsi = true;
7836                         break;
7837                 default:
7838                         break;
7839                 }
7840
7841                 num_connectors++;
7842         }
7843
7844         if (is_dsi)
7845                 return 0;
7846
7847         if (!crtc_state->clock_set) {
7848                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7849
7850                 /*
7851                  * Returns a set of divisors for the desired target clock with
7852                  * the given refclk, or FALSE.  The returned values represent
7853                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7854                  * 2) / p1 / p2.
7855                  */
7856                 limit = intel_limit(crtc_state, refclk);
7857                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7858                                                  crtc_state->port_clock,
7859                                                  refclk, NULL, &clock);
7860                 if (!ok) {
7861                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7862                         return -EINVAL;
7863                 }
7864
7865                 /* Compat-code for transition, will disappear. */
7866                 crtc_state->dpll.n = clock.n;
7867                 crtc_state->dpll.m1 = clock.m1;
7868                 crtc_state->dpll.m2 = clock.m2;
7869                 crtc_state->dpll.p1 = clock.p1;
7870                 crtc_state->dpll.p2 = clock.p2;
7871         }
7872
7873         if (IS_GEN2(dev)) {
7874                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7875                                   num_connectors);
7876         } else if (IS_CHERRYVIEW(dev)) {
7877                 chv_compute_dpll(crtc, crtc_state);
7878         } else if (IS_VALLEYVIEW(dev)) {
7879                 vlv_compute_dpll(crtc, crtc_state);
7880         } else {
7881                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7882                                   num_connectors);
7883         }
7884
7885         return 0;
7886 }
7887
7888 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7889                                  struct intel_crtc_state *pipe_config)
7890 {
7891         struct drm_device *dev = crtc->base.dev;
7892         struct drm_i915_private *dev_priv = dev->dev_private;
7893         uint32_t tmp;
7894
7895         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7896                 return;
7897
7898         tmp = I915_READ(PFIT_CONTROL);
7899         if (!(tmp & PFIT_ENABLE))
7900                 return;
7901
7902         /* Check whether the pfit is attached to our pipe. */
7903         if (INTEL_INFO(dev)->gen < 4) {
7904                 if (crtc->pipe != PIPE_B)
7905                         return;
7906         } else {
7907                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7908                         return;
7909         }
7910
7911         pipe_config->gmch_pfit.control = tmp;
7912         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7913         if (INTEL_INFO(dev)->gen < 5)
7914                 pipe_config->gmch_pfit.lvds_border_bits =
7915                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7916 }
7917
7918 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7919                                struct intel_crtc_state *pipe_config)
7920 {
7921         struct drm_device *dev = crtc->base.dev;
7922         struct drm_i915_private *dev_priv = dev->dev_private;
7923         int pipe = pipe_config->cpu_transcoder;
7924         intel_clock_t clock;
7925         u32 mdiv;
7926         int refclk = 100000;
7927
7928         /* In case of MIPI DPLL will not even be used */
7929         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7930                 return;
7931
7932         mutex_lock(&dev_priv->sb_lock);
7933         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7934         mutex_unlock(&dev_priv->sb_lock);
7935
7936         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7937         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7938         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7939         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7940         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7941
7942         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7943 }
7944
7945 static void
7946 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7947                               struct intel_initial_plane_config *plane_config)
7948 {
7949         struct drm_device *dev = crtc->base.dev;
7950         struct drm_i915_private *dev_priv = dev->dev_private;
7951         u32 val, base, offset;
7952         int pipe = crtc->pipe, plane = crtc->plane;
7953         int fourcc, pixel_format;
7954         unsigned int aligned_height;
7955         struct drm_framebuffer *fb;
7956         struct intel_framebuffer *intel_fb;
7957
7958         val = I915_READ(DSPCNTR(plane));
7959         if (!(val & DISPLAY_PLANE_ENABLE))
7960                 return;
7961
7962         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7963         if (!intel_fb) {
7964                 DRM_DEBUG_KMS("failed to alloc fb\n");
7965                 return;
7966         }
7967
7968         fb = &intel_fb->base;
7969
7970         if (INTEL_INFO(dev)->gen >= 4) {
7971                 if (val & DISPPLANE_TILED) {
7972                         plane_config->tiling = I915_TILING_X;
7973                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7974                 }
7975         }
7976
7977         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7978         fourcc = i9xx_format_to_fourcc(pixel_format);
7979         fb->pixel_format = fourcc;
7980         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7981
7982         if (INTEL_INFO(dev)->gen >= 4) {
7983                 if (plane_config->tiling)
7984                         offset = I915_READ(DSPTILEOFF(plane));
7985                 else
7986                         offset = I915_READ(DSPLINOFF(plane));
7987                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7988         } else {
7989                 base = I915_READ(DSPADDR(plane));
7990         }
7991         plane_config->base = base;
7992
7993         val = I915_READ(PIPESRC(pipe));
7994         fb->width = ((val >> 16) & 0xfff) + 1;
7995         fb->height = ((val >> 0) & 0xfff) + 1;
7996
7997         val = I915_READ(DSPSTRIDE(pipe));
7998         fb->pitches[0] = val & 0xffffffc0;
7999
8000         aligned_height = intel_fb_align_height(dev, fb->height,
8001                                                fb->pixel_format,
8002                                                fb->modifier[0]);
8003
8004         plane_config->size = fb->pitches[0] * aligned_height;
8005
8006         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8007                       pipe_name(pipe), plane, fb->width, fb->height,
8008                       fb->bits_per_pixel, base, fb->pitches[0],
8009                       plane_config->size);
8010
8011         plane_config->fb = intel_fb;
8012 }
8013
8014 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8015                                struct intel_crtc_state *pipe_config)
8016 {
8017         struct drm_device *dev = crtc->base.dev;
8018         struct drm_i915_private *dev_priv = dev->dev_private;
8019         int pipe = pipe_config->cpu_transcoder;
8020         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8021         intel_clock_t clock;
8022         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8023         int refclk = 100000;
8024
8025         mutex_lock(&dev_priv->sb_lock);
8026         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8027         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8028         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8029         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8030         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8031         mutex_unlock(&dev_priv->sb_lock);
8032
8033         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8034         clock.m2 = (pll_dw0 & 0xff) << 22;
8035         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8036                 clock.m2 |= pll_dw2 & 0x3fffff;
8037         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8038         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8039         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8040
8041         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8042 }
8043
8044 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8045                                  struct intel_crtc_state *pipe_config)
8046 {
8047         struct drm_device *dev = crtc->base.dev;
8048         struct drm_i915_private *dev_priv = dev->dev_private;
8049         uint32_t tmp;
8050
8051         if (!intel_display_power_is_enabled(dev_priv,
8052                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8053                 return false;
8054
8055         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8056         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8057
8058         tmp = I915_READ(PIPECONF(crtc->pipe));
8059         if (!(tmp & PIPECONF_ENABLE))
8060                 return false;
8061
8062         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8063                 switch (tmp & PIPECONF_BPC_MASK) {
8064                 case PIPECONF_6BPC:
8065                         pipe_config->pipe_bpp = 18;
8066                         break;
8067                 case PIPECONF_8BPC:
8068                         pipe_config->pipe_bpp = 24;
8069                         break;
8070                 case PIPECONF_10BPC:
8071                         pipe_config->pipe_bpp = 30;
8072                         break;
8073                 default:
8074                         break;
8075                 }
8076         }
8077
8078         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8079                 pipe_config->limited_color_range = true;
8080
8081         if (INTEL_INFO(dev)->gen < 4)
8082                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8083
8084         intel_get_pipe_timings(crtc, pipe_config);
8085
8086         i9xx_get_pfit_config(crtc, pipe_config);
8087
8088         if (INTEL_INFO(dev)->gen >= 4) {
8089                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8090                 pipe_config->pixel_multiplier =
8091                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8092                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8093                 pipe_config->dpll_hw_state.dpll_md = tmp;
8094         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8095                 tmp = I915_READ(DPLL(crtc->pipe));
8096                 pipe_config->pixel_multiplier =
8097                         ((tmp & SDVO_MULTIPLIER_MASK)
8098                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8099         } else {
8100                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8101                  * port and will be fixed up in the encoder->get_config
8102                  * function. */
8103                 pipe_config->pixel_multiplier = 1;
8104         }
8105         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8106         if (!IS_VALLEYVIEW(dev)) {
8107                 /*
8108                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8109                  * on 830. Filter it out here so that we don't
8110                  * report errors due to that.
8111                  */
8112                 if (IS_I830(dev))
8113                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8114
8115                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8116                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8117         } else {
8118                 /* Mask out read-only status bits. */
8119                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8120                                                      DPLL_PORTC_READY_MASK |
8121                                                      DPLL_PORTB_READY_MASK);
8122         }
8123
8124         if (IS_CHERRYVIEW(dev))
8125                 chv_crtc_clock_get(crtc, pipe_config);
8126         else if (IS_VALLEYVIEW(dev))
8127                 vlv_crtc_clock_get(crtc, pipe_config);
8128         else
8129                 i9xx_crtc_clock_get(crtc, pipe_config);
8130
8131         /*
8132          * Normally the dotclock is filled in by the encoder .get_config()
8133          * but in case the pipe is enabled w/o any ports we need a sane
8134          * default.
8135          */
8136         pipe_config->base.adjusted_mode.crtc_clock =
8137                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8138
8139         return true;
8140 }
8141
8142 static void ironlake_init_pch_refclk(struct drm_device *dev)
8143 {
8144         struct drm_i915_private *dev_priv = dev->dev_private;
8145         struct intel_encoder *encoder;
8146         u32 val, final;
8147         bool has_lvds = false;
8148         bool has_cpu_edp = false;
8149         bool has_panel = false;
8150         bool has_ck505 = false;
8151         bool can_ssc = false;
8152
8153         /* We need to take the global config into account */
8154         for_each_intel_encoder(dev, encoder) {
8155                 switch (encoder->type) {
8156                 case INTEL_OUTPUT_LVDS:
8157                         has_panel = true;
8158                         has_lvds = true;
8159                         break;
8160                 case INTEL_OUTPUT_EDP:
8161                         has_panel = true;
8162                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8163                                 has_cpu_edp = true;
8164                         break;
8165                 default:
8166                         break;
8167                 }
8168         }
8169
8170         if (HAS_PCH_IBX(dev)) {
8171                 has_ck505 = dev_priv->vbt.display_clock_mode;
8172                 can_ssc = has_ck505;
8173         } else {
8174                 has_ck505 = false;
8175                 can_ssc = true;
8176         }
8177
8178         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8179                       has_panel, has_lvds, has_ck505);
8180
8181         /* Ironlake: try to setup display ref clock before DPLL
8182          * enabling. This is only under driver's control after
8183          * PCH B stepping, previous chipset stepping should be
8184          * ignoring this setting.
8185          */
8186         val = I915_READ(PCH_DREF_CONTROL);
8187
8188         /* As we must carefully and slowly disable/enable each source in turn,
8189          * compute the final state we want first and check if we need to
8190          * make any changes at all.
8191          */
8192         final = val;
8193         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8194         if (has_ck505)
8195                 final |= DREF_NONSPREAD_CK505_ENABLE;
8196         else
8197                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8198
8199         final &= ~DREF_SSC_SOURCE_MASK;
8200         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8201         final &= ~DREF_SSC1_ENABLE;
8202
8203         if (has_panel) {
8204                 final |= DREF_SSC_SOURCE_ENABLE;
8205
8206                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8207                         final |= DREF_SSC1_ENABLE;
8208
8209                 if (has_cpu_edp) {
8210                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8211                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8212                         else
8213                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8214                 } else
8215                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8216         } else {
8217                 final |= DREF_SSC_SOURCE_DISABLE;
8218                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8219         }
8220
8221         if (final == val)
8222                 return;
8223
8224         /* Always enable nonspread source */
8225         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8226
8227         if (has_ck505)
8228                 val |= DREF_NONSPREAD_CK505_ENABLE;
8229         else
8230                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8231
8232         if (has_panel) {
8233                 val &= ~DREF_SSC_SOURCE_MASK;
8234                 val |= DREF_SSC_SOURCE_ENABLE;
8235
8236                 /* SSC must be turned on before enabling the CPU output  */
8237                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8238                         DRM_DEBUG_KMS("Using SSC on panel\n");
8239                         val |= DREF_SSC1_ENABLE;
8240                 } else
8241                         val &= ~DREF_SSC1_ENABLE;
8242
8243                 /* Get SSC going before enabling the outputs */
8244                 I915_WRITE(PCH_DREF_CONTROL, val);
8245                 POSTING_READ(PCH_DREF_CONTROL);
8246                 udelay(200);
8247
8248                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8249
8250                 /* Enable CPU source on CPU attached eDP */
8251                 if (has_cpu_edp) {
8252                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8253                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8254                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8255                         } else
8256                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8257                 } else
8258                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8259
8260                 I915_WRITE(PCH_DREF_CONTROL, val);
8261                 POSTING_READ(PCH_DREF_CONTROL);
8262                 udelay(200);
8263         } else {
8264                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8265
8266                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8267
8268                 /* Turn off CPU output */
8269                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8270
8271                 I915_WRITE(PCH_DREF_CONTROL, val);
8272                 POSTING_READ(PCH_DREF_CONTROL);
8273                 udelay(200);
8274
8275                 /* Turn off the SSC source */
8276                 val &= ~DREF_SSC_SOURCE_MASK;
8277                 val |= DREF_SSC_SOURCE_DISABLE;
8278
8279                 /* Turn off SSC1 */
8280                 val &= ~DREF_SSC1_ENABLE;
8281
8282                 I915_WRITE(PCH_DREF_CONTROL, val);
8283                 POSTING_READ(PCH_DREF_CONTROL);
8284                 udelay(200);
8285         }
8286
8287         BUG_ON(val != final);
8288 }
8289
8290 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8291 {
8292         uint32_t tmp;
8293
8294         tmp = I915_READ(SOUTH_CHICKEN2);
8295         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8296         I915_WRITE(SOUTH_CHICKEN2, tmp);
8297
8298         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8299                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8300                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8301
8302         tmp = I915_READ(SOUTH_CHICKEN2);
8303         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8304         I915_WRITE(SOUTH_CHICKEN2, tmp);
8305
8306         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8307                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8308                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8309 }
8310
8311 /* WaMPhyProgramming:hsw */
8312 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8313 {
8314         uint32_t tmp;
8315
8316         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8317         tmp &= ~(0xFF << 24);
8318         tmp |= (0x12 << 24);
8319         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8320
8321         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8322         tmp |= (1 << 11);
8323         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8324
8325         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8326         tmp |= (1 << 11);
8327         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8328
8329         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8330         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8331         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8332
8333         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8334         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8335         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8336
8337         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8338         tmp &= ~(7 << 13);
8339         tmp |= (5 << 13);
8340         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8341
8342         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8343         tmp &= ~(7 << 13);
8344         tmp |= (5 << 13);
8345         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8346
8347         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8348         tmp &= ~0xFF;
8349         tmp |= 0x1C;
8350         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8351
8352         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8353         tmp &= ~0xFF;
8354         tmp |= 0x1C;
8355         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8356
8357         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8358         tmp &= ~(0xFF << 16);
8359         tmp |= (0x1C << 16);
8360         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8361
8362         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8363         tmp &= ~(0xFF << 16);
8364         tmp |= (0x1C << 16);
8365         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8366
8367         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8368         tmp |= (1 << 27);
8369         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8370
8371         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8372         tmp |= (1 << 27);
8373         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8374
8375         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8376         tmp &= ~(0xF << 28);
8377         tmp |= (4 << 28);
8378         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8379
8380         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8381         tmp &= ~(0xF << 28);
8382         tmp |= (4 << 28);
8383         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8384 }
8385
8386 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8387  * Programming" based on the parameters passed:
8388  * - Sequence to enable CLKOUT_DP
8389  * - Sequence to enable CLKOUT_DP without spread
8390  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8391  */
8392 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8393                                  bool with_fdi)
8394 {
8395         struct drm_i915_private *dev_priv = dev->dev_private;
8396         uint32_t reg, tmp;
8397
8398         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8399                 with_spread = true;
8400         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8401                 with_fdi = false;
8402
8403         mutex_lock(&dev_priv->sb_lock);
8404
8405         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8406         tmp &= ~SBI_SSCCTL_DISABLE;
8407         tmp |= SBI_SSCCTL_PATHALT;
8408         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8409
8410         udelay(24);
8411
8412         if (with_spread) {
8413                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8414                 tmp &= ~SBI_SSCCTL_PATHALT;
8415                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8416
8417                 if (with_fdi) {
8418                         lpt_reset_fdi_mphy(dev_priv);
8419                         lpt_program_fdi_mphy(dev_priv);
8420                 }
8421         }
8422
8423         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8424         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8425         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8426         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8427
8428         mutex_unlock(&dev_priv->sb_lock);
8429 }
8430
8431 /* Sequence to disable CLKOUT_DP */
8432 static void lpt_disable_clkout_dp(struct drm_device *dev)
8433 {
8434         struct drm_i915_private *dev_priv = dev->dev_private;
8435         uint32_t reg, tmp;
8436
8437         mutex_lock(&dev_priv->sb_lock);
8438
8439         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8440         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8441         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8442         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8443
8444         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8445         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8446                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8447                         tmp |= SBI_SSCCTL_PATHALT;
8448                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8449                         udelay(32);
8450                 }
8451                 tmp |= SBI_SSCCTL_DISABLE;
8452                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8453         }
8454
8455         mutex_unlock(&dev_priv->sb_lock);
8456 }
8457
8458 static void lpt_init_pch_refclk(struct drm_device *dev)
8459 {
8460         struct intel_encoder *encoder;
8461         bool has_vga = false;
8462
8463         for_each_intel_encoder(dev, encoder) {
8464                 switch (encoder->type) {
8465                 case INTEL_OUTPUT_ANALOG:
8466                         has_vga = true;
8467                         break;
8468                 default:
8469                         break;
8470                 }
8471         }
8472
8473         if (has_vga)
8474                 lpt_enable_clkout_dp(dev, true, true);
8475         else
8476                 lpt_disable_clkout_dp(dev);
8477 }
8478
8479 /*
8480  * Initialize reference clocks when the driver loads
8481  */
8482 void intel_init_pch_refclk(struct drm_device *dev)
8483 {
8484         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8485                 ironlake_init_pch_refclk(dev);
8486         else if (HAS_PCH_LPT(dev))
8487                 lpt_init_pch_refclk(dev);
8488 }
8489
8490 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8491 {
8492         struct drm_device *dev = crtc_state->base.crtc->dev;
8493         struct drm_i915_private *dev_priv = dev->dev_private;
8494         struct drm_atomic_state *state = crtc_state->base.state;
8495         struct drm_connector *connector;
8496         struct drm_connector_state *connector_state;
8497         struct intel_encoder *encoder;
8498         int num_connectors = 0, i;
8499         bool is_lvds = false;
8500
8501         for_each_connector_in_state(state, connector, connector_state, i) {
8502                 if (connector_state->crtc != crtc_state->base.crtc)
8503                         continue;
8504
8505                 encoder = to_intel_encoder(connector_state->best_encoder);
8506
8507                 switch (encoder->type) {
8508                 case INTEL_OUTPUT_LVDS:
8509                         is_lvds = true;
8510                         break;
8511                 default:
8512                         break;
8513                 }
8514                 num_connectors++;
8515         }
8516
8517         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8518                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8519                               dev_priv->vbt.lvds_ssc_freq);
8520                 return dev_priv->vbt.lvds_ssc_freq;
8521         }
8522
8523         return 120000;
8524 }
8525
8526 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8527 {
8528         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8529         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8530         int pipe = intel_crtc->pipe;
8531         uint32_t val;
8532
8533         val = 0;
8534
8535         switch (intel_crtc->config->pipe_bpp) {
8536         case 18:
8537                 val |= PIPECONF_6BPC;
8538                 break;
8539         case 24:
8540                 val |= PIPECONF_8BPC;
8541                 break;
8542         case 30:
8543                 val |= PIPECONF_10BPC;
8544                 break;
8545         case 36:
8546                 val |= PIPECONF_12BPC;
8547                 break;
8548         default:
8549                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8550                 BUG();
8551         }
8552
8553         if (intel_crtc->config->dither)
8554                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8555
8556         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8557                 val |= PIPECONF_INTERLACED_ILK;
8558         else
8559                 val |= PIPECONF_PROGRESSIVE;
8560
8561         if (intel_crtc->config->limited_color_range)
8562                 val |= PIPECONF_COLOR_RANGE_SELECT;
8563
8564         I915_WRITE(PIPECONF(pipe), val);
8565         POSTING_READ(PIPECONF(pipe));
8566 }
8567
8568 /*
8569  * Set up the pipe CSC unit.
8570  *
8571  * Currently only full range RGB to limited range RGB conversion
8572  * is supported, but eventually this should handle various
8573  * RGB<->YCbCr scenarios as well.
8574  */
8575 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8576 {
8577         struct drm_device *dev = crtc->dev;
8578         struct drm_i915_private *dev_priv = dev->dev_private;
8579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8580         int pipe = intel_crtc->pipe;
8581         uint16_t coeff = 0x7800; /* 1.0 */
8582
8583         /*
8584          * TODO: Check what kind of values actually come out of the pipe
8585          * with these coeff/postoff values and adjust to get the best
8586          * accuracy. Perhaps we even need to take the bpc value into
8587          * consideration.
8588          */
8589
8590         if (intel_crtc->config->limited_color_range)
8591                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8592
8593         /*
8594          * GY/GU and RY/RU should be the other way around according
8595          * to BSpec, but reality doesn't agree. Just set them up in
8596          * a way that results in the correct picture.
8597          */
8598         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8599         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8600
8601         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8602         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8603
8604         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8605         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8606
8607         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8608         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8609         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8610
8611         if (INTEL_INFO(dev)->gen > 6) {
8612                 uint16_t postoff = 0;
8613
8614                 if (intel_crtc->config->limited_color_range)
8615                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8616
8617                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8618                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8619                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8620
8621                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8622         } else {
8623                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8624
8625                 if (intel_crtc->config->limited_color_range)
8626                         mode |= CSC_BLACK_SCREEN_OFFSET;
8627
8628                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8629         }
8630 }
8631
8632 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8633 {
8634         struct drm_device *dev = crtc->dev;
8635         struct drm_i915_private *dev_priv = dev->dev_private;
8636         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8637         enum pipe pipe = intel_crtc->pipe;
8638         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8639         uint32_t val;
8640
8641         val = 0;
8642
8643         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8644                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8645
8646         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8647                 val |= PIPECONF_INTERLACED_ILK;
8648         else
8649                 val |= PIPECONF_PROGRESSIVE;
8650
8651         I915_WRITE(PIPECONF(cpu_transcoder), val);
8652         POSTING_READ(PIPECONF(cpu_transcoder));
8653
8654         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8655         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8656
8657         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8658                 val = 0;
8659
8660                 switch (intel_crtc->config->pipe_bpp) {
8661                 case 18:
8662                         val |= PIPEMISC_DITHER_6_BPC;
8663                         break;
8664                 case 24:
8665                         val |= PIPEMISC_DITHER_8_BPC;
8666                         break;
8667                 case 30:
8668                         val |= PIPEMISC_DITHER_10_BPC;
8669                         break;
8670                 case 36:
8671                         val |= PIPEMISC_DITHER_12_BPC;
8672                         break;
8673                 default:
8674                         /* Case prevented by pipe_config_set_bpp. */
8675                         BUG();
8676                 }
8677
8678                 if (intel_crtc->config->dither)
8679                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8680
8681                 I915_WRITE(PIPEMISC(pipe), val);
8682         }
8683 }
8684
8685 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8686                                     struct intel_crtc_state *crtc_state,
8687                                     intel_clock_t *clock,
8688                                     bool *has_reduced_clock,
8689                                     intel_clock_t *reduced_clock)
8690 {
8691         struct drm_device *dev = crtc->dev;
8692         struct drm_i915_private *dev_priv = dev->dev_private;
8693         int refclk;
8694         const intel_limit_t *limit;
8695         bool ret;
8696
8697         refclk = ironlake_get_refclk(crtc_state);
8698
8699         /*
8700          * Returns a set of divisors for the desired target clock with the given
8701          * refclk, or FALSE.  The returned values represent the clock equation:
8702          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8703          */
8704         limit = intel_limit(crtc_state, refclk);
8705         ret = dev_priv->display.find_dpll(limit, crtc_state,
8706                                           crtc_state->port_clock,
8707                                           refclk, NULL, clock);
8708         if (!ret)
8709                 return false;
8710
8711         return true;
8712 }
8713
8714 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8715 {
8716         /*
8717          * Account for spread spectrum to avoid
8718          * oversubscribing the link. Max center spread
8719          * is 2.5%; use 5% for safety's sake.
8720          */
8721         u32 bps = target_clock * bpp * 21 / 20;
8722         return DIV_ROUND_UP(bps, link_bw * 8);
8723 }
8724
8725 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8726 {
8727         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8728 }
8729
8730 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8731                                       struct intel_crtc_state *crtc_state,
8732                                       u32 *fp,
8733                                       intel_clock_t *reduced_clock, u32 *fp2)
8734 {
8735         struct drm_crtc *crtc = &intel_crtc->base;
8736         struct drm_device *dev = crtc->dev;
8737         struct drm_i915_private *dev_priv = dev->dev_private;
8738         struct drm_atomic_state *state = crtc_state->base.state;
8739         struct drm_connector *connector;
8740         struct drm_connector_state *connector_state;
8741         struct intel_encoder *encoder;
8742         uint32_t dpll;
8743         int factor, num_connectors = 0, i;
8744         bool is_lvds = false, is_sdvo = false;
8745
8746         for_each_connector_in_state(state, connector, connector_state, i) {
8747                 if (connector_state->crtc != crtc_state->base.crtc)
8748                         continue;
8749
8750                 encoder = to_intel_encoder(connector_state->best_encoder);
8751
8752                 switch (encoder->type) {
8753                 case INTEL_OUTPUT_LVDS:
8754                         is_lvds = true;
8755                         break;
8756                 case INTEL_OUTPUT_SDVO:
8757                 case INTEL_OUTPUT_HDMI:
8758                         is_sdvo = true;
8759                         break;
8760                 default:
8761                         break;
8762                 }
8763
8764                 num_connectors++;
8765         }
8766
8767         /* Enable autotuning of the PLL clock (if permissible) */
8768         factor = 21;
8769         if (is_lvds) {
8770                 if ((intel_panel_use_ssc(dev_priv) &&
8771                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8772                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8773                         factor = 25;
8774         } else if (crtc_state->sdvo_tv_clock)
8775                 factor = 20;
8776
8777         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8778                 *fp |= FP_CB_TUNE;
8779
8780         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8781                 *fp2 |= FP_CB_TUNE;
8782
8783         dpll = 0;
8784
8785         if (is_lvds)
8786                 dpll |= DPLLB_MODE_LVDS;
8787         else
8788                 dpll |= DPLLB_MODE_DAC_SERIAL;
8789
8790         dpll |= (crtc_state->pixel_multiplier - 1)
8791                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8792
8793         if (is_sdvo)
8794                 dpll |= DPLL_SDVO_HIGH_SPEED;
8795         if (crtc_state->has_dp_encoder)
8796                 dpll |= DPLL_SDVO_HIGH_SPEED;
8797
8798         /* compute bitmask from p1 value */
8799         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8800         /* also FPA1 */
8801         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8802
8803         switch (crtc_state->dpll.p2) {
8804         case 5:
8805                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8806                 break;
8807         case 7:
8808                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8809                 break;
8810         case 10:
8811                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8812                 break;
8813         case 14:
8814                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8815                 break;
8816         }
8817
8818         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8819                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8820         else
8821                 dpll |= PLL_REF_INPUT_DREFCLK;
8822
8823         return dpll | DPLL_VCO_ENABLE;
8824 }
8825
8826 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8827                                        struct intel_crtc_state *crtc_state)
8828 {
8829         struct drm_device *dev = crtc->base.dev;
8830         intel_clock_t clock, reduced_clock;
8831         u32 dpll = 0, fp = 0, fp2 = 0;
8832         bool ok, has_reduced_clock = false;
8833         bool is_lvds = false;
8834         struct intel_shared_dpll *pll;
8835
8836         memset(&crtc_state->dpll_hw_state, 0,
8837                sizeof(crtc_state->dpll_hw_state));
8838
8839         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8840
8841         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8842              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8843
8844         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8845                                      &has_reduced_clock, &reduced_clock);
8846         if (!ok && !crtc_state->clock_set) {
8847                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8848                 return -EINVAL;
8849         }
8850         /* Compat-code for transition, will disappear. */
8851         if (!crtc_state->clock_set) {
8852                 crtc_state->dpll.n = clock.n;
8853                 crtc_state->dpll.m1 = clock.m1;
8854                 crtc_state->dpll.m2 = clock.m2;
8855                 crtc_state->dpll.p1 = clock.p1;
8856                 crtc_state->dpll.p2 = clock.p2;
8857         }
8858
8859         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8860         if (crtc_state->has_pch_encoder) {
8861                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8862                 if (has_reduced_clock)
8863                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8864
8865                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8866                                              &fp, &reduced_clock,
8867                                              has_reduced_clock ? &fp2 : NULL);
8868
8869                 crtc_state->dpll_hw_state.dpll = dpll;
8870                 crtc_state->dpll_hw_state.fp0 = fp;
8871                 if (has_reduced_clock)
8872                         crtc_state->dpll_hw_state.fp1 = fp2;
8873                 else
8874                         crtc_state->dpll_hw_state.fp1 = fp;
8875
8876                 pll = intel_get_shared_dpll(crtc, crtc_state);
8877                 if (pll == NULL) {
8878                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8879                                          pipe_name(crtc->pipe));
8880                         return -EINVAL;
8881                 }
8882         }
8883
8884         if (is_lvds && has_reduced_clock)
8885                 crtc->lowfreq_avail = true;
8886         else
8887                 crtc->lowfreq_avail = false;
8888
8889         return 0;
8890 }
8891
8892 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8893                                          struct intel_link_m_n *m_n)
8894 {
8895         struct drm_device *dev = crtc->base.dev;
8896         struct drm_i915_private *dev_priv = dev->dev_private;
8897         enum pipe pipe = crtc->pipe;
8898
8899         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8900         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8901         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8902                 & ~TU_SIZE_MASK;
8903         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8904         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8905                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8906 }
8907
8908 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8909                                          enum transcoder transcoder,
8910                                          struct intel_link_m_n *m_n,
8911                                          struct intel_link_m_n *m2_n2)
8912 {
8913         struct drm_device *dev = crtc->base.dev;
8914         struct drm_i915_private *dev_priv = dev->dev_private;
8915         enum pipe pipe = crtc->pipe;
8916
8917         if (INTEL_INFO(dev)->gen >= 5) {
8918                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8919                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8920                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8921                         & ~TU_SIZE_MASK;
8922                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8923                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8924                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8925                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8926                  * gen < 8) and if DRRS is supported (to make sure the
8927                  * registers are not unnecessarily read).
8928                  */
8929                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8930                         crtc->config->has_drrs) {
8931                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8932                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8933                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8934                                         & ~TU_SIZE_MASK;
8935                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8936                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8937                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8938                 }
8939         } else {
8940                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8941                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8942                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8943                         & ~TU_SIZE_MASK;
8944                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8945                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8946                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8947         }
8948 }
8949
8950 void intel_dp_get_m_n(struct intel_crtc *crtc,
8951                       struct intel_crtc_state *pipe_config)
8952 {
8953         if (pipe_config->has_pch_encoder)
8954                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8955         else
8956                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8957                                              &pipe_config->dp_m_n,
8958                                              &pipe_config->dp_m2_n2);
8959 }
8960
8961 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8962                                         struct intel_crtc_state *pipe_config)
8963 {
8964         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8965                                      &pipe_config->fdi_m_n, NULL);
8966 }
8967
8968 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8969                                     struct intel_crtc_state *pipe_config)
8970 {
8971         struct drm_device *dev = crtc->base.dev;
8972         struct drm_i915_private *dev_priv = dev->dev_private;
8973         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8974         uint32_t ps_ctrl = 0;
8975         int id = -1;
8976         int i;
8977
8978         /* find scaler attached to this pipe */
8979         for (i = 0; i < crtc->num_scalers; i++) {
8980                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8981                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8982                         id = i;
8983                         pipe_config->pch_pfit.enabled = true;
8984                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8985                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8986                         break;
8987                 }
8988         }
8989
8990         scaler_state->scaler_id = id;
8991         if (id >= 0) {
8992                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8993         } else {
8994                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8995         }
8996 }
8997
8998 static void
8999 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9000                                  struct intel_initial_plane_config *plane_config)
9001 {
9002         struct drm_device *dev = crtc->base.dev;
9003         struct drm_i915_private *dev_priv = dev->dev_private;
9004         u32 val, base, offset, stride_mult, tiling;
9005         int pipe = crtc->pipe;
9006         int fourcc, pixel_format;
9007         unsigned int aligned_height;
9008         struct drm_framebuffer *fb;
9009         struct intel_framebuffer *intel_fb;
9010
9011         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9012         if (!intel_fb) {
9013                 DRM_DEBUG_KMS("failed to alloc fb\n");
9014                 return;
9015         }
9016
9017         fb = &intel_fb->base;
9018
9019         val = I915_READ(PLANE_CTL(pipe, 0));
9020         if (!(val & PLANE_CTL_ENABLE))
9021                 goto error;
9022
9023         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9024         fourcc = skl_format_to_fourcc(pixel_format,
9025                                       val & PLANE_CTL_ORDER_RGBX,
9026                                       val & PLANE_CTL_ALPHA_MASK);
9027         fb->pixel_format = fourcc;
9028         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9029
9030         tiling = val & PLANE_CTL_TILED_MASK;
9031         switch (tiling) {
9032         case PLANE_CTL_TILED_LINEAR:
9033                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9034                 break;
9035         case PLANE_CTL_TILED_X:
9036                 plane_config->tiling = I915_TILING_X;
9037                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9038                 break;
9039         case PLANE_CTL_TILED_Y:
9040                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9041                 break;
9042         case PLANE_CTL_TILED_YF:
9043                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9044                 break;
9045         default:
9046                 MISSING_CASE(tiling);
9047                 goto error;
9048         }
9049
9050         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9051         plane_config->base = base;
9052
9053         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9054
9055         val = I915_READ(PLANE_SIZE(pipe, 0));
9056         fb->height = ((val >> 16) & 0xfff) + 1;
9057         fb->width = ((val >> 0) & 0x1fff) + 1;
9058
9059         val = I915_READ(PLANE_STRIDE(pipe, 0));
9060         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9061                                                 fb->pixel_format);
9062         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9063
9064         aligned_height = intel_fb_align_height(dev, fb->height,
9065                                                fb->pixel_format,
9066                                                fb->modifier[0]);
9067
9068         plane_config->size = fb->pitches[0] * aligned_height;
9069
9070         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9071                       pipe_name(pipe), fb->width, fb->height,
9072                       fb->bits_per_pixel, base, fb->pitches[0],
9073                       plane_config->size);
9074
9075         plane_config->fb = intel_fb;
9076         return;
9077
9078 error:
9079         kfree(fb);
9080 }
9081
9082 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9083                                      struct intel_crtc_state *pipe_config)
9084 {
9085         struct drm_device *dev = crtc->base.dev;
9086         struct drm_i915_private *dev_priv = dev->dev_private;
9087         uint32_t tmp;
9088
9089         tmp = I915_READ(PF_CTL(crtc->pipe));
9090
9091         if (tmp & PF_ENABLE) {
9092                 pipe_config->pch_pfit.enabled = true;
9093                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9094                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9095
9096                 /* We currently do not free assignements of panel fitters on
9097                  * ivb/hsw (since we don't use the higher upscaling modes which
9098                  * differentiates them) so just WARN about this case for now. */
9099                 if (IS_GEN7(dev)) {
9100                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9101                                 PF_PIPE_SEL_IVB(crtc->pipe));
9102                 }
9103         }
9104 }
9105
9106 static void
9107 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9108                                   struct intel_initial_plane_config *plane_config)
9109 {
9110         struct drm_device *dev = crtc->base.dev;
9111         struct drm_i915_private *dev_priv = dev->dev_private;
9112         u32 val, base, offset;
9113         int pipe = crtc->pipe;
9114         int fourcc, pixel_format;
9115         unsigned int aligned_height;
9116         struct drm_framebuffer *fb;
9117         struct intel_framebuffer *intel_fb;
9118
9119         val = I915_READ(DSPCNTR(pipe));
9120         if (!(val & DISPLAY_PLANE_ENABLE))
9121                 return;
9122
9123         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9124         if (!intel_fb) {
9125                 DRM_DEBUG_KMS("failed to alloc fb\n");
9126                 return;
9127         }
9128
9129         fb = &intel_fb->base;
9130
9131         if (INTEL_INFO(dev)->gen >= 4) {
9132                 if (val & DISPPLANE_TILED) {
9133                         plane_config->tiling = I915_TILING_X;
9134                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9135                 }
9136         }
9137
9138         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9139         fourcc = i9xx_format_to_fourcc(pixel_format);
9140         fb->pixel_format = fourcc;
9141         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9142
9143         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9144         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9145                 offset = I915_READ(DSPOFFSET(pipe));
9146         } else {
9147                 if (plane_config->tiling)
9148                         offset = I915_READ(DSPTILEOFF(pipe));
9149                 else
9150                         offset = I915_READ(DSPLINOFF(pipe));
9151         }
9152         plane_config->base = base;
9153
9154         val = I915_READ(PIPESRC(pipe));
9155         fb->width = ((val >> 16) & 0xfff) + 1;
9156         fb->height = ((val >> 0) & 0xfff) + 1;
9157
9158         val = I915_READ(DSPSTRIDE(pipe));
9159         fb->pitches[0] = val & 0xffffffc0;
9160
9161         aligned_height = intel_fb_align_height(dev, fb->height,
9162                                                fb->pixel_format,
9163                                                fb->modifier[0]);
9164
9165         plane_config->size = fb->pitches[0] * aligned_height;
9166
9167         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9168                       pipe_name(pipe), fb->width, fb->height,
9169                       fb->bits_per_pixel, base, fb->pitches[0],
9170                       plane_config->size);
9171
9172         plane_config->fb = intel_fb;
9173 }
9174
9175 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9176                                      struct intel_crtc_state *pipe_config)
9177 {
9178         struct drm_device *dev = crtc->base.dev;
9179         struct drm_i915_private *dev_priv = dev->dev_private;
9180         uint32_t tmp;
9181
9182         if (!intel_display_power_is_enabled(dev_priv,
9183                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9184                 return false;
9185
9186         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9187         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9188
9189         tmp = I915_READ(PIPECONF(crtc->pipe));
9190         if (!(tmp & PIPECONF_ENABLE))
9191                 return false;
9192
9193         switch (tmp & PIPECONF_BPC_MASK) {
9194         case PIPECONF_6BPC:
9195                 pipe_config->pipe_bpp = 18;
9196                 break;
9197         case PIPECONF_8BPC:
9198                 pipe_config->pipe_bpp = 24;
9199                 break;
9200         case PIPECONF_10BPC:
9201                 pipe_config->pipe_bpp = 30;
9202                 break;
9203         case PIPECONF_12BPC:
9204                 pipe_config->pipe_bpp = 36;
9205                 break;
9206         default:
9207                 break;
9208         }
9209
9210         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9211                 pipe_config->limited_color_range = true;
9212
9213         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9214                 struct intel_shared_dpll *pll;
9215
9216                 pipe_config->has_pch_encoder = true;
9217
9218                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9219                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9220                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9221
9222                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9223
9224                 if (HAS_PCH_IBX(dev_priv->dev)) {
9225                         pipe_config->shared_dpll =
9226                                 (enum intel_dpll_id) crtc->pipe;
9227                 } else {
9228                         tmp = I915_READ(PCH_DPLL_SEL);
9229                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9230                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9231                         else
9232                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9233                 }
9234
9235                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9236
9237                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9238                                            &pipe_config->dpll_hw_state));
9239
9240                 tmp = pipe_config->dpll_hw_state.dpll;
9241                 pipe_config->pixel_multiplier =
9242                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9243                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9244
9245                 ironlake_pch_clock_get(crtc, pipe_config);
9246         } else {
9247                 pipe_config->pixel_multiplier = 1;
9248         }
9249
9250         intel_get_pipe_timings(crtc, pipe_config);
9251
9252         ironlake_get_pfit_config(crtc, pipe_config);
9253
9254         return true;
9255 }
9256
9257 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9258 {
9259         struct drm_device *dev = dev_priv->dev;
9260         struct intel_crtc *crtc;
9261
9262         for_each_intel_crtc(dev, crtc)
9263                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9264                      pipe_name(crtc->pipe));
9265
9266         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9267         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9268         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9269         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9270         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9271         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9272              "CPU PWM1 enabled\n");
9273         if (IS_HASWELL(dev))
9274                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9275                      "CPU PWM2 enabled\n");
9276         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9277              "PCH PWM1 enabled\n");
9278         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9279              "Utility pin enabled\n");
9280         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9281
9282         /*
9283          * In theory we can still leave IRQs enabled, as long as only the HPD
9284          * interrupts remain enabled. We used to check for that, but since it's
9285          * gen-specific and since we only disable LCPLL after we fully disable
9286          * the interrupts, the check below should be enough.
9287          */
9288         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9289 }
9290
9291 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9292 {
9293         struct drm_device *dev = dev_priv->dev;
9294
9295         if (IS_HASWELL(dev))
9296                 return I915_READ(D_COMP_HSW);
9297         else
9298                 return I915_READ(D_COMP_BDW);
9299 }
9300
9301 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9302 {
9303         struct drm_device *dev = dev_priv->dev;
9304
9305         if (IS_HASWELL(dev)) {
9306                 mutex_lock(&dev_priv->rps.hw_lock);
9307                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9308                                             val))
9309                         DRM_ERROR("Failed to write to D_COMP\n");
9310                 mutex_unlock(&dev_priv->rps.hw_lock);
9311         } else {
9312                 I915_WRITE(D_COMP_BDW, val);
9313                 POSTING_READ(D_COMP_BDW);
9314         }
9315 }
9316
9317 /*
9318  * This function implements pieces of two sequences from BSpec:
9319  * - Sequence for display software to disable LCPLL
9320  * - Sequence for display software to allow package C8+
9321  * The steps implemented here are just the steps that actually touch the LCPLL
9322  * register. Callers should take care of disabling all the display engine
9323  * functions, doing the mode unset, fixing interrupts, etc.
9324  */
9325 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9326                               bool switch_to_fclk, bool allow_power_down)
9327 {
9328         uint32_t val;
9329
9330         assert_can_disable_lcpll(dev_priv);
9331
9332         val = I915_READ(LCPLL_CTL);
9333
9334         if (switch_to_fclk) {
9335                 val |= LCPLL_CD_SOURCE_FCLK;
9336                 I915_WRITE(LCPLL_CTL, val);
9337
9338                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9339                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9340                         DRM_ERROR("Switching to FCLK failed\n");
9341
9342                 val = I915_READ(LCPLL_CTL);
9343         }
9344
9345         val |= LCPLL_PLL_DISABLE;
9346         I915_WRITE(LCPLL_CTL, val);
9347         POSTING_READ(LCPLL_CTL);
9348
9349         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9350                 DRM_ERROR("LCPLL still locked\n");
9351
9352         val = hsw_read_dcomp(dev_priv);
9353         val |= D_COMP_COMP_DISABLE;
9354         hsw_write_dcomp(dev_priv, val);
9355         ndelay(100);
9356
9357         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9358                      1))
9359                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9360
9361         if (allow_power_down) {
9362                 val = I915_READ(LCPLL_CTL);
9363                 val |= LCPLL_POWER_DOWN_ALLOW;
9364                 I915_WRITE(LCPLL_CTL, val);
9365                 POSTING_READ(LCPLL_CTL);
9366         }
9367 }
9368
9369 /*
9370  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9371  * source.
9372  */
9373 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9374 {
9375         uint32_t val;
9376
9377         val = I915_READ(LCPLL_CTL);
9378
9379         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9380                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9381                 return;
9382
9383         /*
9384          * Make sure we're not on PC8 state before disabling PC8, otherwise
9385          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9386          */
9387         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9388
9389         if (val & LCPLL_POWER_DOWN_ALLOW) {
9390                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9391                 I915_WRITE(LCPLL_CTL, val);
9392                 POSTING_READ(LCPLL_CTL);
9393         }
9394
9395         val = hsw_read_dcomp(dev_priv);
9396         val |= D_COMP_COMP_FORCE;
9397         val &= ~D_COMP_COMP_DISABLE;
9398         hsw_write_dcomp(dev_priv, val);
9399
9400         val = I915_READ(LCPLL_CTL);
9401         val &= ~LCPLL_PLL_DISABLE;
9402         I915_WRITE(LCPLL_CTL, val);
9403
9404         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9405                 DRM_ERROR("LCPLL not locked yet\n");
9406
9407         if (val & LCPLL_CD_SOURCE_FCLK) {
9408                 val = I915_READ(LCPLL_CTL);
9409                 val &= ~LCPLL_CD_SOURCE_FCLK;
9410                 I915_WRITE(LCPLL_CTL, val);
9411
9412                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9413                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9414                         DRM_ERROR("Switching back to LCPLL failed\n");
9415         }
9416
9417         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9418         intel_update_cdclk(dev_priv->dev);
9419 }
9420
9421 /*
9422  * Package states C8 and deeper are really deep PC states that can only be
9423  * reached when all the devices on the system allow it, so even if the graphics
9424  * device allows PC8+, it doesn't mean the system will actually get to these
9425  * states. Our driver only allows PC8+ when going into runtime PM.
9426  *
9427  * The requirements for PC8+ are that all the outputs are disabled, the power
9428  * well is disabled and most interrupts are disabled, and these are also
9429  * requirements for runtime PM. When these conditions are met, we manually do
9430  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9431  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9432  * hang the machine.
9433  *
9434  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9435  * the state of some registers, so when we come back from PC8+ we need to
9436  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9437  * need to take care of the registers kept by RC6. Notice that this happens even
9438  * if we don't put the device in PCI D3 state (which is what currently happens
9439  * because of the runtime PM support).
9440  *
9441  * For more, read "Display Sequences for Package C8" on the hardware
9442  * documentation.
9443  */
9444 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9445 {
9446         struct drm_device *dev = dev_priv->dev;
9447         uint32_t val;
9448
9449         DRM_DEBUG_KMS("Enabling package C8+\n");
9450
9451         if (HAS_PCH_LPT_LP(dev)) {
9452                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9453                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9454                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9455         }
9456
9457         lpt_disable_clkout_dp(dev);
9458         hsw_disable_lcpll(dev_priv, true, true);
9459 }
9460
9461 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9462 {
9463         struct drm_device *dev = dev_priv->dev;
9464         uint32_t val;
9465
9466         DRM_DEBUG_KMS("Disabling package C8+\n");
9467
9468         hsw_restore_lcpll(dev_priv);
9469         lpt_init_pch_refclk(dev);
9470
9471         if (HAS_PCH_LPT_LP(dev)) {
9472                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9473                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9474                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9475         }
9476
9477         intel_prepare_ddi(dev);
9478 }
9479
9480 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9481 {
9482         struct drm_device *dev = old_state->dev;
9483         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9484
9485         broxton_set_cdclk(dev, req_cdclk);
9486 }
9487
9488 /* compute the max rate for new configuration */
9489 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9490 {
9491         struct intel_crtc *intel_crtc;
9492         struct intel_crtc_state *crtc_state;
9493         int max_pixel_rate = 0;
9494
9495         for_each_intel_crtc(state->dev, intel_crtc) {
9496                 int pixel_rate;
9497
9498                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9499                 if (IS_ERR(crtc_state))
9500                         return PTR_ERR(crtc_state);
9501
9502                 if (!crtc_state->base.enable)
9503                         continue;
9504
9505                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9506
9507                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9508                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9509                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9510
9511                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9512         }
9513
9514         return max_pixel_rate;
9515 }
9516
9517 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9518 {
9519         struct drm_i915_private *dev_priv = dev->dev_private;
9520         uint32_t val, data;
9521         int ret;
9522
9523         if (WARN((I915_READ(LCPLL_CTL) &
9524                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9525                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9526                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9527                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9528                  "trying to change cdclk frequency with cdclk not enabled\n"))
9529                 return;
9530
9531         mutex_lock(&dev_priv->rps.hw_lock);
9532         ret = sandybridge_pcode_write(dev_priv,
9533                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9534         mutex_unlock(&dev_priv->rps.hw_lock);
9535         if (ret) {
9536                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9537                 return;
9538         }
9539
9540         val = I915_READ(LCPLL_CTL);
9541         val |= LCPLL_CD_SOURCE_FCLK;
9542         I915_WRITE(LCPLL_CTL, val);
9543
9544         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9545                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9546                 DRM_ERROR("Switching to FCLK failed\n");
9547
9548         val = I915_READ(LCPLL_CTL);
9549         val &= ~LCPLL_CLK_FREQ_MASK;
9550
9551         switch (cdclk) {
9552         case 450000:
9553                 val |= LCPLL_CLK_FREQ_450;
9554                 data = 0;
9555                 break;
9556         case 540000:
9557                 val |= LCPLL_CLK_FREQ_54O_BDW;
9558                 data = 1;
9559                 break;
9560         case 337500:
9561                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9562                 data = 2;
9563                 break;
9564         case 675000:
9565                 val |= LCPLL_CLK_FREQ_675_BDW;
9566                 data = 3;
9567                 break;
9568         default:
9569                 WARN(1, "invalid cdclk frequency\n");
9570                 return;
9571         }
9572
9573         I915_WRITE(LCPLL_CTL, val);
9574
9575         val = I915_READ(LCPLL_CTL);
9576         val &= ~LCPLL_CD_SOURCE_FCLK;
9577         I915_WRITE(LCPLL_CTL, val);
9578
9579         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9580                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9581                 DRM_ERROR("Switching back to LCPLL failed\n");
9582
9583         mutex_lock(&dev_priv->rps.hw_lock);
9584         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9585         mutex_unlock(&dev_priv->rps.hw_lock);
9586
9587         intel_update_cdclk(dev);
9588
9589         WARN(cdclk != dev_priv->cdclk_freq,
9590              "cdclk requested %d kHz but got %d kHz\n",
9591              cdclk, dev_priv->cdclk_freq);
9592 }
9593
9594 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9595 {
9596         struct drm_i915_private *dev_priv = to_i915(state->dev);
9597         int max_pixclk = ilk_max_pixel_rate(state);
9598         int cdclk;
9599
9600         /*
9601          * FIXME should also account for plane ratio
9602          * once 64bpp pixel formats are supported.
9603          */
9604         if (max_pixclk > 540000)
9605                 cdclk = 675000;
9606         else if (max_pixclk > 450000)
9607                 cdclk = 540000;
9608         else if (max_pixclk > 337500)
9609                 cdclk = 450000;
9610         else
9611                 cdclk = 337500;
9612
9613         /*
9614          * FIXME move the cdclk caclulation to
9615          * compute_config() so we can fail gracegully.
9616          */
9617         if (cdclk > dev_priv->max_cdclk_freq) {
9618                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9619                           cdclk, dev_priv->max_cdclk_freq);
9620                 cdclk = dev_priv->max_cdclk_freq;
9621         }
9622
9623         to_intel_atomic_state(state)->cdclk = cdclk;
9624
9625         return 0;
9626 }
9627
9628 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9629 {
9630         struct drm_device *dev = old_state->dev;
9631         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9632
9633         broadwell_set_cdclk(dev, req_cdclk);
9634 }
9635
9636 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9637                                       struct intel_crtc_state *crtc_state)
9638 {
9639         if (!intel_ddi_pll_select(crtc, crtc_state))
9640                 return -EINVAL;
9641
9642         crtc->lowfreq_avail = false;
9643
9644         return 0;
9645 }
9646
9647 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9648                                 enum port port,
9649                                 struct intel_crtc_state *pipe_config)
9650 {
9651         switch (port) {
9652         case PORT_A:
9653                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9654                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9655                 break;
9656         case PORT_B:
9657                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9658                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9659                 break;
9660         case PORT_C:
9661                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9662                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9663                 break;
9664         default:
9665                 DRM_ERROR("Incorrect port type\n");
9666         }
9667 }
9668
9669 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9670                                 enum port port,
9671                                 struct intel_crtc_state *pipe_config)
9672 {
9673         u32 temp, dpll_ctl1;
9674
9675         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9676         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9677
9678         switch (pipe_config->ddi_pll_sel) {
9679         case SKL_DPLL0:
9680                 /*
9681                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9682                  * of the shared DPLL framework and thus needs to be read out
9683                  * separately
9684                  */
9685                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9686                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9687                 break;
9688         case SKL_DPLL1:
9689                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9690                 break;
9691         case SKL_DPLL2:
9692                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9693                 break;
9694         case SKL_DPLL3:
9695                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9696                 break;
9697         }
9698 }
9699
9700 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9701                                 enum port port,
9702                                 struct intel_crtc_state *pipe_config)
9703 {
9704         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9705
9706         switch (pipe_config->ddi_pll_sel) {
9707         case PORT_CLK_SEL_WRPLL1:
9708                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9709                 break;
9710         case PORT_CLK_SEL_WRPLL2:
9711                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9712                 break;
9713         }
9714 }
9715
9716 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9717                                        struct intel_crtc_state *pipe_config)
9718 {
9719         struct drm_device *dev = crtc->base.dev;
9720         struct drm_i915_private *dev_priv = dev->dev_private;
9721         struct intel_shared_dpll *pll;
9722         enum port port;
9723         uint32_t tmp;
9724
9725         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9726
9727         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9728
9729         if (IS_SKYLAKE(dev))
9730                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9731         else if (IS_BROXTON(dev))
9732                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9733         else
9734                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9735
9736         if (pipe_config->shared_dpll >= 0) {
9737                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9738
9739                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9740                                            &pipe_config->dpll_hw_state));
9741         }
9742
9743         /*
9744          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9745          * DDI E. So just check whether this pipe is wired to DDI E and whether
9746          * the PCH transcoder is on.
9747          */
9748         if (INTEL_INFO(dev)->gen < 9 &&
9749             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9750                 pipe_config->has_pch_encoder = true;
9751
9752                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9753                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9754                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9755
9756                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9757         }
9758 }
9759
9760 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9761                                     struct intel_crtc_state *pipe_config)
9762 {
9763         struct drm_device *dev = crtc->base.dev;
9764         struct drm_i915_private *dev_priv = dev->dev_private;
9765         enum intel_display_power_domain pfit_domain;
9766         uint32_t tmp;
9767
9768         if (!intel_display_power_is_enabled(dev_priv,
9769                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9770                 return false;
9771
9772         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9773         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9774
9775         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9776         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9777                 enum pipe trans_edp_pipe;
9778                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9779                 default:
9780                         WARN(1, "unknown pipe linked to edp transcoder\n");
9781                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9782                 case TRANS_DDI_EDP_INPUT_A_ON:
9783                         trans_edp_pipe = PIPE_A;
9784                         break;
9785                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9786                         trans_edp_pipe = PIPE_B;
9787                         break;
9788                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9789                         trans_edp_pipe = PIPE_C;
9790                         break;
9791                 }
9792
9793                 if (trans_edp_pipe == crtc->pipe)
9794                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9795         }
9796
9797         if (!intel_display_power_is_enabled(dev_priv,
9798                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9799                 return false;
9800
9801         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9802         if (!(tmp & PIPECONF_ENABLE))
9803                 return false;
9804
9805         haswell_get_ddi_port_state(crtc, pipe_config);
9806
9807         intel_get_pipe_timings(crtc, pipe_config);
9808
9809         if (INTEL_INFO(dev)->gen >= 9) {
9810                 skl_init_scalers(dev, crtc, pipe_config);
9811         }
9812
9813         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9814
9815         if (INTEL_INFO(dev)->gen >= 9) {
9816                 pipe_config->scaler_state.scaler_id = -1;
9817                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9818         }
9819
9820         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9821                 if (INTEL_INFO(dev)->gen >= 9)
9822                         skylake_get_pfit_config(crtc, pipe_config);
9823                 else
9824                         ironlake_get_pfit_config(crtc, pipe_config);
9825         }
9826
9827         if (IS_HASWELL(dev))
9828                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9829                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9830
9831         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9832                 pipe_config->pixel_multiplier =
9833                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9834         } else {
9835                 pipe_config->pixel_multiplier = 1;
9836         }
9837
9838         return true;
9839 }
9840
9841 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9842 {
9843         struct drm_device *dev = crtc->dev;
9844         struct drm_i915_private *dev_priv = dev->dev_private;
9845         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9846         uint32_t cntl = 0, size = 0;
9847
9848         if (base) {
9849                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9850                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9851                 unsigned int stride = roundup_pow_of_two(width) * 4;
9852
9853                 switch (stride) {
9854                 default:
9855                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9856                                   width, stride);
9857                         stride = 256;
9858                         /* fallthrough */
9859                 case 256:
9860                 case 512:
9861                 case 1024:
9862                 case 2048:
9863                         break;
9864                 }
9865
9866                 cntl |= CURSOR_ENABLE |
9867                         CURSOR_GAMMA_ENABLE |
9868                         CURSOR_FORMAT_ARGB |
9869                         CURSOR_STRIDE(stride);
9870
9871                 size = (height << 12) | width;
9872         }
9873
9874         if (intel_crtc->cursor_cntl != 0 &&
9875             (intel_crtc->cursor_base != base ||
9876              intel_crtc->cursor_size != size ||
9877              intel_crtc->cursor_cntl != cntl)) {
9878                 /* On these chipsets we can only modify the base/size/stride
9879                  * whilst the cursor is disabled.
9880                  */
9881                 I915_WRITE(CURCNTR(PIPE_A), 0);
9882                 POSTING_READ(CURCNTR(PIPE_A));
9883                 intel_crtc->cursor_cntl = 0;
9884         }
9885
9886         if (intel_crtc->cursor_base != base) {
9887                 I915_WRITE(CURBASE(PIPE_A), base);
9888                 intel_crtc->cursor_base = base;
9889         }
9890
9891         if (intel_crtc->cursor_size != size) {
9892                 I915_WRITE(CURSIZE, size);
9893                 intel_crtc->cursor_size = size;
9894         }
9895
9896         if (intel_crtc->cursor_cntl != cntl) {
9897                 I915_WRITE(CURCNTR(PIPE_A), cntl);
9898                 POSTING_READ(CURCNTR(PIPE_A));
9899                 intel_crtc->cursor_cntl = cntl;
9900         }
9901 }
9902
9903 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9904 {
9905         struct drm_device *dev = crtc->dev;
9906         struct drm_i915_private *dev_priv = dev->dev_private;
9907         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9908         int pipe = intel_crtc->pipe;
9909         uint32_t cntl;
9910
9911         cntl = 0;
9912         if (base) {
9913                 cntl = MCURSOR_GAMMA_ENABLE;
9914                 switch (intel_crtc->base.cursor->state->crtc_w) {
9915                         case 64:
9916                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9917                                 break;
9918                         case 128:
9919                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9920                                 break;
9921                         case 256:
9922                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9923                                 break;
9924                         default:
9925                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9926                                 return;
9927                 }
9928                 cntl |= pipe << 28; /* Connect to correct pipe */
9929
9930                 if (HAS_DDI(dev))
9931                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9932         }
9933
9934         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9935                 cntl |= CURSOR_ROTATE_180;
9936
9937         if (intel_crtc->cursor_cntl != cntl) {
9938                 I915_WRITE(CURCNTR(pipe), cntl);
9939                 POSTING_READ(CURCNTR(pipe));
9940                 intel_crtc->cursor_cntl = cntl;
9941         }
9942
9943         /* and commit changes on next vblank */
9944         I915_WRITE(CURBASE(pipe), base);
9945         POSTING_READ(CURBASE(pipe));
9946
9947         intel_crtc->cursor_base = base;
9948 }
9949
9950 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9951 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9952                                      bool on)
9953 {
9954         struct drm_device *dev = crtc->dev;
9955         struct drm_i915_private *dev_priv = dev->dev_private;
9956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9957         int pipe = intel_crtc->pipe;
9958         struct drm_plane_state *cursor_state = crtc->cursor->state;
9959         int x = cursor_state->crtc_x;
9960         int y = cursor_state->crtc_y;
9961         u32 base = 0, pos = 0;
9962
9963         if (on)
9964                 base = intel_crtc->cursor_addr;
9965
9966         if (x >= intel_crtc->config->pipe_src_w)
9967                 base = 0;
9968
9969         if (y >= intel_crtc->config->pipe_src_h)
9970                 base = 0;
9971
9972         if (x < 0) {
9973                 if (x + cursor_state->crtc_w <= 0)
9974                         base = 0;
9975
9976                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9977                 x = -x;
9978         }
9979         pos |= x << CURSOR_X_SHIFT;
9980
9981         if (y < 0) {
9982                 if (y + cursor_state->crtc_h <= 0)
9983                         base = 0;
9984
9985                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9986                 y = -y;
9987         }
9988         pos |= y << CURSOR_Y_SHIFT;
9989
9990         if (base == 0 && intel_crtc->cursor_base == 0)
9991                 return;
9992
9993         I915_WRITE(CURPOS(pipe), pos);
9994
9995         /* ILK+ do this automagically */
9996         if (HAS_GMCH_DISPLAY(dev) &&
9997             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9998                 base += (cursor_state->crtc_h *
9999                          cursor_state->crtc_w - 1) * 4;
10000         }
10001
10002         if (IS_845G(dev) || IS_I865G(dev))
10003                 i845_update_cursor(crtc, base);
10004         else
10005                 i9xx_update_cursor(crtc, base);
10006 }
10007
10008 static bool cursor_size_ok(struct drm_device *dev,
10009                            uint32_t width, uint32_t height)
10010 {
10011         if (width == 0 || height == 0)
10012                 return false;
10013
10014         /*
10015          * 845g/865g are special in that they are only limited by
10016          * the width of their cursors, the height is arbitrary up to
10017          * the precision of the register. Everything else requires
10018          * square cursors, limited to a few power-of-two sizes.
10019          */
10020         if (IS_845G(dev) || IS_I865G(dev)) {
10021                 if ((width & 63) != 0)
10022                         return false;
10023
10024                 if (width > (IS_845G(dev) ? 64 : 512))
10025                         return false;
10026
10027                 if (height > 1023)
10028                         return false;
10029         } else {
10030                 switch (width | height) {
10031                 case 256:
10032                 case 128:
10033                         if (IS_GEN2(dev))
10034                                 return false;
10035                 case 64:
10036                         break;
10037                 default:
10038                         return false;
10039                 }
10040         }
10041
10042         return true;
10043 }
10044
10045 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10046                                  u16 *blue, uint32_t start, uint32_t size)
10047 {
10048         int end = (start + size > 256) ? 256 : start + size, i;
10049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10050
10051         for (i = start; i < end; i++) {
10052                 intel_crtc->lut_r[i] = red[i] >> 8;
10053                 intel_crtc->lut_g[i] = green[i] >> 8;
10054                 intel_crtc->lut_b[i] = blue[i] >> 8;
10055         }
10056
10057         intel_crtc_load_lut(crtc);
10058 }
10059
10060 /* VESA 640x480x72Hz mode to set on the pipe */
10061 static struct drm_display_mode load_detect_mode = {
10062         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10063                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10064 };
10065
10066 struct drm_framebuffer *
10067 __intel_framebuffer_create(struct drm_device *dev,
10068                            struct drm_mode_fb_cmd2 *mode_cmd,
10069                            struct drm_i915_gem_object *obj)
10070 {
10071         struct intel_framebuffer *intel_fb;
10072         int ret;
10073
10074         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10075         if (!intel_fb) {
10076                 drm_gem_object_unreference(&obj->base);
10077                 return ERR_PTR(-ENOMEM);
10078         }
10079
10080         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10081         if (ret)
10082                 goto err;
10083
10084         return &intel_fb->base;
10085 err:
10086         drm_gem_object_unreference(&obj->base);
10087         kfree(intel_fb);
10088
10089         return ERR_PTR(ret);
10090 }
10091
10092 static struct drm_framebuffer *
10093 intel_framebuffer_create(struct drm_device *dev,
10094                          struct drm_mode_fb_cmd2 *mode_cmd,
10095                          struct drm_i915_gem_object *obj)
10096 {
10097         struct drm_framebuffer *fb;
10098         int ret;
10099
10100         ret = i915_mutex_lock_interruptible(dev);
10101         if (ret)
10102                 return ERR_PTR(ret);
10103         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10104         mutex_unlock(&dev->struct_mutex);
10105
10106         return fb;
10107 }
10108
10109 static u32
10110 intel_framebuffer_pitch_for_width(int width, int bpp)
10111 {
10112         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10113         return ALIGN(pitch, 64);
10114 }
10115
10116 static u32
10117 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10118 {
10119         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10120         return PAGE_ALIGN(pitch * mode->vdisplay);
10121 }
10122
10123 static struct drm_framebuffer *
10124 intel_framebuffer_create_for_mode(struct drm_device *dev,
10125                                   struct drm_display_mode *mode,
10126                                   int depth, int bpp)
10127 {
10128         struct drm_i915_gem_object *obj;
10129         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10130
10131         obj = i915_gem_alloc_object(dev,
10132                                     intel_framebuffer_size_for_mode(mode, bpp));
10133         if (obj == NULL)
10134                 return ERR_PTR(-ENOMEM);
10135
10136         mode_cmd.width = mode->hdisplay;
10137         mode_cmd.height = mode->vdisplay;
10138         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10139                                                                 bpp);
10140         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10141
10142         return intel_framebuffer_create(dev, &mode_cmd, obj);
10143 }
10144
10145 static struct drm_framebuffer *
10146 mode_fits_in_fbdev(struct drm_device *dev,
10147                    struct drm_display_mode *mode)
10148 {
10149 #ifdef CONFIG_DRM_FBDEV_EMULATION
10150         struct drm_i915_private *dev_priv = dev->dev_private;
10151         struct drm_i915_gem_object *obj;
10152         struct drm_framebuffer *fb;
10153
10154         if (!dev_priv->fbdev)
10155                 return NULL;
10156
10157         if (!dev_priv->fbdev->fb)
10158                 return NULL;
10159
10160         obj = dev_priv->fbdev->fb->obj;
10161         BUG_ON(!obj);
10162
10163         fb = &dev_priv->fbdev->fb->base;
10164         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10165                                                                fb->bits_per_pixel))
10166                 return NULL;
10167
10168         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10169                 return NULL;
10170
10171         return fb;
10172 #else
10173         return NULL;
10174 #endif
10175 }
10176
10177 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10178                                            struct drm_crtc *crtc,
10179                                            struct drm_display_mode *mode,
10180                                            struct drm_framebuffer *fb,
10181                                            int x, int y)
10182 {
10183         struct drm_plane_state *plane_state;
10184         int hdisplay, vdisplay;
10185         int ret;
10186
10187         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10188         if (IS_ERR(plane_state))
10189                 return PTR_ERR(plane_state);
10190
10191         if (mode)
10192                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10193         else
10194                 hdisplay = vdisplay = 0;
10195
10196         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10197         if (ret)
10198                 return ret;
10199         drm_atomic_set_fb_for_plane(plane_state, fb);
10200         plane_state->crtc_x = 0;
10201         plane_state->crtc_y = 0;
10202         plane_state->crtc_w = hdisplay;
10203         plane_state->crtc_h = vdisplay;
10204         plane_state->src_x = x << 16;
10205         plane_state->src_y = y << 16;
10206         plane_state->src_w = hdisplay << 16;
10207         plane_state->src_h = vdisplay << 16;
10208
10209         return 0;
10210 }
10211
10212 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10213                                 struct drm_display_mode *mode,
10214                                 struct intel_load_detect_pipe *old,
10215                                 struct drm_modeset_acquire_ctx *ctx)
10216 {
10217         struct intel_crtc *intel_crtc;
10218         struct intel_encoder *intel_encoder =
10219                 intel_attached_encoder(connector);
10220         struct drm_crtc *possible_crtc;
10221         struct drm_encoder *encoder = &intel_encoder->base;
10222         struct drm_crtc *crtc = NULL;
10223         struct drm_device *dev = encoder->dev;
10224         struct drm_framebuffer *fb;
10225         struct drm_mode_config *config = &dev->mode_config;
10226         struct drm_atomic_state *state = NULL;
10227         struct drm_connector_state *connector_state;
10228         struct intel_crtc_state *crtc_state;
10229         int ret, i = -1;
10230
10231         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10232                       connector->base.id, connector->name,
10233                       encoder->base.id, encoder->name);
10234
10235 retry:
10236         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10237         if (ret)
10238                 goto fail;
10239
10240         /*
10241          * Algorithm gets a little messy:
10242          *
10243          *   - if the connector already has an assigned crtc, use it (but make
10244          *     sure it's on first)
10245          *
10246          *   - try to find the first unused crtc that can drive this connector,
10247          *     and use that if we find one
10248          */
10249
10250         /* See if we already have a CRTC for this connector */
10251         if (encoder->crtc) {
10252                 crtc = encoder->crtc;
10253
10254                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10255                 if (ret)
10256                         goto fail;
10257                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10258                 if (ret)
10259                         goto fail;
10260
10261                 old->dpms_mode = connector->dpms;
10262                 old->load_detect_temp = false;
10263
10264                 /* Make sure the crtc and connector are running */
10265                 if (connector->dpms != DRM_MODE_DPMS_ON)
10266                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10267
10268                 return true;
10269         }
10270
10271         /* Find an unused one (if possible) */
10272         for_each_crtc(dev, possible_crtc) {
10273                 i++;
10274                 if (!(encoder->possible_crtcs & (1 << i)))
10275                         continue;
10276                 if (possible_crtc->state->enable)
10277                         continue;
10278
10279                 crtc = possible_crtc;
10280                 break;
10281         }
10282
10283         /*
10284          * If we didn't find an unused CRTC, don't use any.
10285          */
10286         if (!crtc) {
10287                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10288                 goto fail;
10289         }
10290
10291         ret = drm_modeset_lock(&crtc->mutex, ctx);
10292         if (ret)
10293                 goto fail;
10294         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10295         if (ret)
10296                 goto fail;
10297
10298         intel_crtc = to_intel_crtc(crtc);
10299         old->dpms_mode = connector->dpms;
10300         old->load_detect_temp = true;
10301         old->release_fb = NULL;
10302
10303         state = drm_atomic_state_alloc(dev);
10304         if (!state)
10305                 return false;
10306
10307         state->acquire_ctx = ctx;
10308
10309         connector_state = drm_atomic_get_connector_state(state, connector);
10310         if (IS_ERR(connector_state)) {
10311                 ret = PTR_ERR(connector_state);
10312                 goto fail;
10313         }
10314
10315         connector_state->crtc = crtc;
10316         connector_state->best_encoder = &intel_encoder->base;
10317
10318         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10319         if (IS_ERR(crtc_state)) {
10320                 ret = PTR_ERR(crtc_state);
10321                 goto fail;
10322         }
10323
10324         crtc_state->base.active = crtc_state->base.enable = true;
10325
10326         if (!mode)
10327                 mode = &load_detect_mode;
10328
10329         /* We need a framebuffer large enough to accommodate all accesses
10330          * that the plane may generate whilst we perform load detection.
10331          * We can not rely on the fbcon either being present (we get called
10332          * during its initialisation to detect all boot displays, or it may
10333          * not even exist) or that it is large enough to satisfy the
10334          * requested mode.
10335          */
10336         fb = mode_fits_in_fbdev(dev, mode);
10337         if (fb == NULL) {
10338                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10339                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10340                 old->release_fb = fb;
10341         } else
10342                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10343         if (IS_ERR(fb)) {
10344                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10345                 goto fail;
10346         }
10347
10348         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10349         if (ret)
10350                 goto fail;
10351
10352         drm_mode_copy(&crtc_state->base.mode, mode);
10353
10354         if (drm_atomic_commit(state)) {
10355                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10356                 if (old->release_fb)
10357                         old->release_fb->funcs->destroy(old->release_fb);
10358                 goto fail;
10359         }
10360         crtc->primary->crtc = crtc;
10361
10362         /* let the connector get through one full cycle before testing */
10363         intel_wait_for_vblank(dev, intel_crtc->pipe);
10364         return true;
10365
10366 fail:
10367         drm_atomic_state_free(state);
10368         state = NULL;
10369
10370         if (ret == -EDEADLK) {
10371                 drm_modeset_backoff(ctx);
10372                 goto retry;
10373         }
10374
10375         return false;
10376 }
10377
10378 void intel_release_load_detect_pipe(struct drm_connector *connector,
10379                                     struct intel_load_detect_pipe *old,
10380                                     struct drm_modeset_acquire_ctx *ctx)
10381 {
10382         struct drm_device *dev = connector->dev;
10383         struct intel_encoder *intel_encoder =
10384                 intel_attached_encoder(connector);
10385         struct drm_encoder *encoder = &intel_encoder->base;
10386         struct drm_crtc *crtc = encoder->crtc;
10387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10388         struct drm_atomic_state *state;
10389         struct drm_connector_state *connector_state;
10390         struct intel_crtc_state *crtc_state;
10391         int ret;
10392
10393         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10394                       connector->base.id, connector->name,
10395                       encoder->base.id, encoder->name);
10396
10397         if (old->load_detect_temp) {
10398                 state = drm_atomic_state_alloc(dev);
10399                 if (!state)
10400                         goto fail;
10401
10402                 state->acquire_ctx = ctx;
10403
10404                 connector_state = drm_atomic_get_connector_state(state, connector);
10405                 if (IS_ERR(connector_state))
10406                         goto fail;
10407
10408                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10409                 if (IS_ERR(crtc_state))
10410                         goto fail;
10411
10412                 connector_state->best_encoder = NULL;
10413                 connector_state->crtc = NULL;
10414
10415                 crtc_state->base.enable = crtc_state->base.active = false;
10416
10417                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10418                                                       0, 0);
10419                 if (ret)
10420                         goto fail;
10421
10422                 ret = drm_atomic_commit(state);
10423                 if (ret)
10424                         goto fail;
10425
10426                 if (old->release_fb) {
10427                         drm_framebuffer_unregister_private(old->release_fb);
10428                         drm_framebuffer_unreference(old->release_fb);
10429                 }
10430
10431                 return;
10432         }
10433
10434         /* Switch crtc and encoder back off if necessary */
10435         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10436                 connector->funcs->dpms(connector, old->dpms_mode);
10437
10438         return;
10439 fail:
10440         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10441         drm_atomic_state_free(state);
10442 }
10443
10444 static int i9xx_pll_refclk(struct drm_device *dev,
10445                            const struct intel_crtc_state *pipe_config)
10446 {
10447         struct drm_i915_private *dev_priv = dev->dev_private;
10448         u32 dpll = pipe_config->dpll_hw_state.dpll;
10449
10450         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10451                 return dev_priv->vbt.lvds_ssc_freq;
10452         else if (HAS_PCH_SPLIT(dev))
10453                 return 120000;
10454         else if (!IS_GEN2(dev))
10455                 return 96000;
10456         else
10457                 return 48000;
10458 }
10459
10460 /* Returns the clock of the currently programmed mode of the given pipe. */
10461 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10462                                 struct intel_crtc_state *pipe_config)
10463 {
10464         struct drm_device *dev = crtc->base.dev;
10465         struct drm_i915_private *dev_priv = dev->dev_private;
10466         int pipe = pipe_config->cpu_transcoder;
10467         u32 dpll = pipe_config->dpll_hw_state.dpll;
10468         u32 fp;
10469         intel_clock_t clock;
10470         int port_clock;
10471         int refclk = i9xx_pll_refclk(dev, pipe_config);
10472
10473         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10474                 fp = pipe_config->dpll_hw_state.fp0;
10475         else
10476                 fp = pipe_config->dpll_hw_state.fp1;
10477
10478         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10479         if (IS_PINEVIEW(dev)) {
10480                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10481                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10482         } else {
10483                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10484                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10485         }
10486
10487         if (!IS_GEN2(dev)) {
10488                 if (IS_PINEVIEW(dev))
10489                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10490                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10491                 else
10492                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10493                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10494
10495                 switch (dpll & DPLL_MODE_MASK) {
10496                 case DPLLB_MODE_DAC_SERIAL:
10497                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10498                                 5 : 10;
10499                         break;
10500                 case DPLLB_MODE_LVDS:
10501                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10502                                 7 : 14;
10503                         break;
10504                 default:
10505                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10506                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10507                         return;
10508                 }
10509
10510                 if (IS_PINEVIEW(dev))
10511                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10512                 else
10513                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10514         } else {
10515                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10516                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10517
10518                 if (is_lvds) {
10519                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10520                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10521
10522                         if (lvds & LVDS_CLKB_POWER_UP)
10523                                 clock.p2 = 7;
10524                         else
10525                                 clock.p2 = 14;
10526                 } else {
10527                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10528                                 clock.p1 = 2;
10529                         else {
10530                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10531                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10532                         }
10533                         if (dpll & PLL_P2_DIVIDE_BY_4)
10534                                 clock.p2 = 4;
10535                         else
10536                                 clock.p2 = 2;
10537                 }
10538
10539                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10540         }
10541
10542         /*
10543          * This value includes pixel_multiplier. We will use
10544          * port_clock to compute adjusted_mode.crtc_clock in the
10545          * encoder's get_config() function.
10546          */
10547         pipe_config->port_clock = port_clock;
10548 }
10549
10550 int intel_dotclock_calculate(int link_freq,
10551                              const struct intel_link_m_n *m_n)
10552 {
10553         /*
10554          * The calculation for the data clock is:
10555          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10556          * But we want to avoid losing precison if possible, so:
10557          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10558          *
10559          * and the link clock is simpler:
10560          * link_clock = (m * link_clock) / n
10561          */
10562
10563         if (!m_n->link_n)
10564                 return 0;
10565
10566         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10567 }
10568
10569 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10570                                    struct intel_crtc_state *pipe_config)
10571 {
10572         struct drm_device *dev = crtc->base.dev;
10573
10574         /* read out port_clock from the DPLL */
10575         i9xx_crtc_clock_get(crtc, pipe_config);
10576
10577         /*
10578          * This value does not include pixel_multiplier.
10579          * We will check that port_clock and adjusted_mode.crtc_clock
10580          * agree once we know their relationship in the encoder's
10581          * get_config() function.
10582          */
10583         pipe_config->base.adjusted_mode.crtc_clock =
10584                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10585                                          &pipe_config->fdi_m_n);
10586 }
10587
10588 /** Returns the currently programmed mode of the given pipe. */
10589 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10590                                              struct drm_crtc *crtc)
10591 {
10592         struct drm_i915_private *dev_priv = dev->dev_private;
10593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10594         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10595         struct drm_display_mode *mode;
10596         struct intel_crtc_state pipe_config;
10597         int htot = I915_READ(HTOTAL(cpu_transcoder));
10598         int hsync = I915_READ(HSYNC(cpu_transcoder));
10599         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10600         int vsync = I915_READ(VSYNC(cpu_transcoder));
10601         enum pipe pipe = intel_crtc->pipe;
10602
10603         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10604         if (!mode)
10605                 return NULL;
10606
10607         /*
10608          * Construct a pipe_config sufficient for getting the clock info
10609          * back out of crtc_clock_get.
10610          *
10611          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10612          * to use a real value here instead.
10613          */
10614         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10615         pipe_config.pixel_multiplier = 1;
10616         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10617         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10618         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10619         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10620
10621         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10622         mode->hdisplay = (htot & 0xffff) + 1;
10623         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10624         mode->hsync_start = (hsync & 0xffff) + 1;
10625         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10626         mode->vdisplay = (vtot & 0xffff) + 1;
10627         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10628         mode->vsync_start = (vsync & 0xffff) + 1;
10629         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10630
10631         drm_mode_set_name(mode);
10632
10633         return mode;
10634 }
10635
10636 void intel_mark_busy(struct drm_device *dev)
10637 {
10638         struct drm_i915_private *dev_priv = dev->dev_private;
10639
10640         if (dev_priv->mm.busy)
10641                 return;
10642
10643         intel_runtime_pm_get(dev_priv);
10644         i915_update_gfx_val(dev_priv);
10645         if (INTEL_INFO(dev)->gen >= 6)
10646                 gen6_rps_busy(dev_priv);
10647         dev_priv->mm.busy = true;
10648 }
10649
10650 void intel_mark_idle(struct drm_device *dev)
10651 {
10652         struct drm_i915_private *dev_priv = dev->dev_private;
10653
10654         if (!dev_priv->mm.busy)
10655                 return;
10656
10657         dev_priv->mm.busy = false;
10658
10659         if (INTEL_INFO(dev)->gen >= 6)
10660                 gen6_rps_idle(dev->dev_private);
10661
10662         intel_runtime_pm_put(dev_priv);
10663 }
10664
10665 static void intel_crtc_destroy(struct drm_crtc *crtc)
10666 {
10667         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10668         struct drm_device *dev = crtc->dev;
10669         struct intel_unpin_work *work;
10670
10671         spin_lock_irq(&dev->event_lock);
10672         work = intel_crtc->unpin_work;
10673         intel_crtc->unpin_work = NULL;
10674         spin_unlock_irq(&dev->event_lock);
10675
10676         if (work) {
10677                 cancel_work_sync(&work->work);
10678                 kfree(work);
10679         }
10680
10681         drm_crtc_cleanup(crtc);
10682
10683         kfree(intel_crtc);
10684 }
10685
10686 static void intel_unpin_work_fn(struct work_struct *__work)
10687 {
10688         struct intel_unpin_work *work =
10689                 container_of(__work, struct intel_unpin_work, work);
10690         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10691         struct drm_device *dev = crtc->base.dev;
10692         struct drm_plane *primary = crtc->base.primary;
10693
10694         mutex_lock(&dev->struct_mutex);
10695         intel_unpin_fb_obj(work->old_fb, primary->state);
10696         drm_gem_object_unreference(&work->pending_flip_obj->base);
10697
10698         if (work->flip_queued_req)
10699                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10700         mutex_unlock(&dev->struct_mutex);
10701
10702         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10703         drm_framebuffer_unreference(work->old_fb);
10704
10705         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10706         atomic_dec(&crtc->unpin_work_count);
10707
10708         kfree(work);
10709 }
10710
10711 static void do_intel_finish_page_flip(struct drm_device *dev,
10712                                       struct drm_crtc *crtc)
10713 {
10714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10715         struct intel_unpin_work *work;
10716         unsigned long flags;
10717
10718         /* Ignore early vblank irqs */
10719         if (intel_crtc == NULL)
10720                 return;
10721
10722         /*
10723          * This is called both by irq handlers and the reset code (to complete
10724          * lost pageflips) so needs the full irqsave spinlocks.
10725          */
10726         spin_lock_irqsave(&dev->event_lock, flags);
10727         work = intel_crtc->unpin_work;
10728
10729         /* Ensure we don't miss a work->pending update ... */
10730         smp_rmb();
10731
10732         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10733                 spin_unlock_irqrestore(&dev->event_lock, flags);
10734                 return;
10735         }
10736
10737         page_flip_completed(intel_crtc);
10738
10739         spin_unlock_irqrestore(&dev->event_lock, flags);
10740 }
10741
10742 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10743 {
10744         struct drm_i915_private *dev_priv = dev->dev_private;
10745         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10746
10747         do_intel_finish_page_flip(dev, crtc);
10748 }
10749
10750 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10751 {
10752         struct drm_i915_private *dev_priv = dev->dev_private;
10753         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10754
10755         do_intel_finish_page_flip(dev, crtc);
10756 }
10757
10758 /* Is 'a' after or equal to 'b'? */
10759 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10760 {
10761         return !((a - b) & 0x80000000);
10762 }
10763
10764 static bool page_flip_finished(struct intel_crtc *crtc)
10765 {
10766         struct drm_device *dev = crtc->base.dev;
10767         struct drm_i915_private *dev_priv = dev->dev_private;
10768
10769         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10770             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10771                 return true;
10772
10773         /*
10774          * The relevant registers doen't exist on pre-ctg.
10775          * As the flip done interrupt doesn't trigger for mmio
10776          * flips on gmch platforms, a flip count check isn't
10777          * really needed there. But since ctg has the registers,
10778          * include it in the check anyway.
10779          */
10780         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10781                 return true;
10782
10783         /*
10784          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10785          * used the same base address. In that case the mmio flip might
10786          * have completed, but the CS hasn't even executed the flip yet.
10787          *
10788          * A flip count check isn't enough as the CS might have updated
10789          * the base address just after start of vblank, but before we
10790          * managed to process the interrupt. This means we'd complete the
10791          * CS flip too soon.
10792          *
10793          * Combining both checks should get us a good enough result. It may
10794          * still happen that the CS flip has been executed, but has not
10795          * yet actually completed. But in case the base address is the same
10796          * anyway, we don't really care.
10797          */
10798         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10799                 crtc->unpin_work->gtt_offset &&
10800                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10801                                     crtc->unpin_work->flip_count);
10802 }
10803
10804 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10805 {
10806         struct drm_i915_private *dev_priv = dev->dev_private;
10807         struct intel_crtc *intel_crtc =
10808                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10809         unsigned long flags;
10810
10811
10812         /*
10813          * This is called both by irq handlers and the reset code (to complete
10814          * lost pageflips) so needs the full irqsave spinlocks.
10815          *
10816          * NB: An MMIO update of the plane base pointer will also
10817          * generate a page-flip completion irq, i.e. every modeset
10818          * is also accompanied by a spurious intel_prepare_page_flip().
10819          */
10820         spin_lock_irqsave(&dev->event_lock, flags);
10821         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10822                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10823         spin_unlock_irqrestore(&dev->event_lock, flags);
10824 }
10825
10826 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10827 {
10828         /* Ensure that the work item is consistent when activating it ... */
10829         smp_wmb();
10830         atomic_set(&work->pending, INTEL_FLIP_PENDING);
10831         /* and that it is marked active as soon as the irq could fire. */
10832         smp_wmb();
10833 }
10834
10835 static int intel_gen2_queue_flip(struct drm_device *dev,
10836                                  struct drm_crtc *crtc,
10837                                  struct drm_framebuffer *fb,
10838                                  struct drm_i915_gem_object *obj,
10839                                  struct drm_i915_gem_request *req,
10840                                  uint32_t flags)
10841 {
10842         struct intel_engine_cs *ring = req->ring;
10843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10844         u32 flip_mask;
10845         int ret;
10846
10847         ret = intel_ring_begin(req, 6);
10848         if (ret)
10849                 return ret;
10850
10851         /* Can't queue multiple flips, so wait for the previous
10852          * one to finish before executing the next.
10853          */
10854         if (intel_crtc->plane)
10855                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10856         else
10857                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10858         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10859         intel_ring_emit(ring, MI_NOOP);
10860         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10861                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10862         intel_ring_emit(ring, fb->pitches[0]);
10863         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10864         intel_ring_emit(ring, 0); /* aux display base address, unused */
10865
10866         intel_mark_page_flip_active(intel_crtc->unpin_work);
10867         return 0;
10868 }
10869
10870 static int intel_gen3_queue_flip(struct drm_device *dev,
10871                                  struct drm_crtc *crtc,
10872                                  struct drm_framebuffer *fb,
10873                                  struct drm_i915_gem_object *obj,
10874                                  struct drm_i915_gem_request *req,
10875                                  uint32_t flags)
10876 {
10877         struct intel_engine_cs *ring = req->ring;
10878         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10879         u32 flip_mask;
10880         int ret;
10881
10882         ret = intel_ring_begin(req, 6);
10883         if (ret)
10884                 return ret;
10885
10886         if (intel_crtc->plane)
10887                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10888         else
10889                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10890         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10891         intel_ring_emit(ring, MI_NOOP);
10892         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10893                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10894         intel_ring_emit(ring, fb->pitches[0]);
10895         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10896         intel_ring_emit(ring, MI_NOOP);
10897
10898         intel_mark_page_flip_active(intel_crtc->unpin_work);
10899         return 0;
10900 }
10901
10902 static int intel_gen4_queue_flip(struct drm_device *dev,
10903                                  struct drm_crtc *crtc,
10904                                  struct drm_framebuffer *fb,
10905                                  struct drm_i915_gem_object *obj,
10906                                  struct drm_i915_gem_request *req,
10907                                  uint32_t flags)
10908 {
10909         struct intel_engine_cs *ring = req->ring;
10910         struct drm_i915_private *dev_priv = dev->dev_private;
10911         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10912         uint32_t pf, pipesrc;
10913         int ret;
10914
10915         ret = intel_ring_begin(req, 4);
10916         if (ret)
10917                 return ret;
10918
10919         /* i965+ uses the linear or tiled offsets from the
10920          * Display Registers (which do not change across a page-flip)
10921          * so we need only reprogram the base address.
10922          */
10923         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10924                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10925         intel_ring_emit(ring, fb->pitches[0]);
10926         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10927                         obj->tiling_mode);
10928
10929         /* XXX Enabling the panel-fitter across page-flip is so far
10930          * untested on non-native modes, so ignore it for now.
10931          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10932          */
10933         pf = 0;
10934         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10935         intel_ring_emit(ring, pf | pipesrc);
10936
10937         intel_mark_page_flip_active(intel_crtc->unpin_work);
10938         return 0;
10939 }
10940
10941 static int intel_gen6_queue_flip(struct drm_device *dev,
10942                                  struct drm_crtc *crtc,
10943                                  struct drm_framebuffer *fb,
10944                                  struct drm_i915_gem_object *obj,
10945                                  struct drm_i915_gem_request *req,
10946                                  uint32_t flags)
10947 {
10948         struct intel_engine_cs *ring = req->ring;
10949         struct drm_i915_private *dev_priv = dev->dev_private;
10950         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10951         uint32_t pf, pipesrc;
10952         int ret;
10953
10954         ret = intel_ring_begin(req, 4);
10955         if (ret)
10956                 return ret;
10957
10958         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10959                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10960         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10961         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10962
10963         /* Contrary to the suggestions in the documentation,
10964          * "Enable Panel Fitter" does not seem to be required when page
10965          * flipping with a non-native mode, and worse causes a normal
10966          * modeset to fail.
10967          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10968          */
10969         pf = 0;
10970         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10971         intel_ring_emit(ring, pf | pipesrc);
10972
10973         intel_mark_page_flip_active(intel_crtc->unpin_work);
10974         return 0;
10975 }
10976
10977 static int intel_gen7_queue_flip(struct drm_device *dev,
10978                                  struct drm_crtc *crtc,
10979                                  struct drm_framebuffer *fb,
10980                                  struct drm_i915_gem_object *obj,
10981                                  struct drm_i915_gem_request *req,
10982                                  uint32_t flags)
10983 {
10984         struct intel_engine_cs *ring = req->ring;
10985         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10986         uint32_t plane_bit = 0;
10987         int len, ret;
10988
10989         switch (intel_crtc->plane) {
10990         case PLANE_A:
10991                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10992                 break;
10993         case PLANE_B:
10994                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10995                 break;
10996         case PLANE_C:
10997                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10998                 break;
10999         default:
11000                 WARN_ONCE(1, "unknown plane in flip command\n");
11001                 return -ENODEV;
11002         }
11003
11004         len = 4;
11005         if (ring->id == RCS) {
11006                 len += 6;
11007                 /*
11008                  * On Gen 8, SRM is now taking an extra dword to accommodate
11009                  * 48bits addresses, and we need a NOOP for the batch size to
11010                  * stay even.
11011                  */
11012                 if (IS_GEN8(dev))
11013                         len += 2;
11014         }
11015
11016         /*
11017          * BSpec MI_DISPLAY_FLIP for IVB:
11018          * "The full packet must be contained within the same cache line."
11019          *
11020          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11021          * cacheline, if we ever start emitting more commands before
11022          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11023          * then do the cacheline alignment, and finally emit the
11024          * MI_DISPLAY_FLIP.
11025          */
11026         ret = intel_ring_cacheline_align(req);
11027         if (ret)
11028                 return ret;
11029
11030         ret = intel_ring_begin(req, len);
11031         if (ret)
11032                 return ret;
11033
11034         /* Unmask the flip-done completion message. Note that the bspec says that
11035          * we should do this for both the BCS and RCS, and that we must not unmask
11036          * more than one flip event at any time (or ensure that one flip message
11037          * can be sent by waiting for flip-done prior to queueing new flips).
11038          * Experimentation says that BCS works despite DERRMR masking all
11039          * flip-done completion events and that unmasking all planes at once
11040          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11041          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11042          */
11043         if (ring->id == RCS) {
11044                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11045                 intel_ring_emit(ring, DERRMR);
11046                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11047                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11048                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11049                 if (IS_GEN8(dev))
11050                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11051                                               MI_SRM_LRM_GLOBAL_GTT);
11052                 else
11053                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11054                                               MI_SRM_LRM_GLOBAL_GTT);
11055                 intel_ring_emit(ring, DERRMR);
11056                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11057                 if (IS_GEN8(dev)) {
11058                         intel_ring_emit(ring, 0);
11059                         intel_ring_emit(ring, MI_NOOP);
11060                 }
11061         }
11062
11063         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11064         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11065         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11066         intel_ring_emit(ring, (MI_NOOP));
11067
11068         intel_mark_page_flip_active(intel_crtc->unpin_work);
11069         return 0;
11070 }
11071
11072 static bool use_mmio_flip(struct intel_engine_cs *ring,
11073                           struct drm_i915_gem_object *obj)
11074 {
11075         /*
11076          * This is not being used for older platforms, because
11077          * non-availability of flip done interrupt forces us to use
11078          * CS flips. Older platforms derive flip done using some clever
11079          * tricks involving the flip_pending status bits and vblank irqs.
11080          * So using MMIO flips there would disrupt this mechanism.
11081          */
11082
11083         if (ring == NULL)
11084                 return true;
11085
11086         if (INTEL_INFO(ring->dev)->gen < 5)
11087                 return false;
11088
11089         if (i915.use_mmio_flip < 0)
11090                 return false;
11091         else if (i915.use_mmio_flip > 0)
11092                 return true;
11093         else if (i915.enable_execlists)
11094                 return true;
11095         else
11096                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11097 }
11098
11099 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11100                              struct intel_unpin_work *work)
11101 {
11102         struct drm_device *dev = intel_crtc->base.dev;
11103         struct drm_i915_private *dev_priv = dev->dev_private;
11104         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11105         const enum pipe pipe = intel_crtc->pipe;
11106         u32 ctl, stride;
11107
11108         ctl = I915_READ(PLANE_CTL(pipe, 0));
11109         ctl &= ~PLANE_CTL_TILED_MASK;
11110         switch (fb->modifier[0]) {
11111         case DRM_FORMAT_MOD_NONE:
11112                 break;
11113         case I915_FORMAT_MOD_X_TILED:
11114                 ctl |= PLANE_CTL_TILED_X;
11115                 break;
11116         case I915_FORMAT_MOD_Y_TILED:
11117                 ctl |= PLANE_CTL_TILED_Y;
11118                 break;
11119         case I915_FORMAT_MOD_Yf_TILED:
11120                 ctl |= PLANE_CTL_TILED_YF;
11121                 break;
11122         default:
11123                 MISSING_CASE(fb->modifier[0]);
11124         }
11125
11126         /*
11127          * The stride is either expressed as a multiple of 64 bytes chunks for
11128          * linear buffers or in number of tiles for tiled buffers.
11129          */
11130         stride = fb->pitches[0] /
11131                  intel_fb_stride_alignment(dev, fb->modifier[0],
11132                                            fb->pixel_format);
11133
11134         /*
11135          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11136          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11137          */
11138         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11139         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11140
11141         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11142         POSTING_READ(PLANE_SURF(pipe, 0));
11143 }
11144
11145 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11146                              struct intel_unpin_work *work)
11147 {
11148         struct drm_device *dev = intel_crtc->base.dev;
11149         struct drm_i915_private *dev_priv = dev->dev_private;
11150         struct intel_framebuffer *intel_fb =
11151                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11152         struct drm_i915_gem_object *obj = intel_fb->obj;
11153         u32 dspcntr;
11154         u32 reg;
11155
11156         reg = DSPCNTR(intel_crtc->plane);
11157         dspcntr = I915_READ(reg);
11158
11159         if (obj->tiling_mode != I915_TILING_NONE)
11160                 dspcntr |= DISPPLANE_TILED;
11161         else
11162                 dspcntr &= ~DISPPLANE_TILED;
11163
11164         I915_WRITE(reg, dspcntr);
11165
11166         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11167         POSTING_READ(DSPSURF(intel_crtc->plane));
11168 }
11169
11170 /*
11171  * XXX: This is the temporary way to update the plane registers until we get
11172  * around to using the usual plane update functions for MMIO flips
11173  */
11174 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11175 {
11176         struct intel_crtc *crtc = mmio_flip->crtc;
11177         struct intel_unpin_work *work;
11178
11179         spin_lock_irq(&crtc->base.dev->event_lock);
11180         work = crtc->unpin_work;
11181         spin_unlock_irq(&crtc->base.dev->event_lock);
11182         if (work == NULL)
11183                 return;
11184
11185         intel_mark_page_flip_active(work);
11186
11187         intel_pipe_update_start(crtc);
11188
11189         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11190                 skl_do_mmio_flip(crtc, work);
11191         else
11192                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11193                 ilk_do_mmio_flip(crtc, work);
11194
11195         intel_pipe_update_end(crtc);
11196 }
11197
11198 static void intel_mmio_flip_work_func(struct work_struct *work)
11199 {
11200         struct intel_mmio_flip *mmio_flip =
11201                 container_of(work, struct intel_mmio_flip, work);
11202
11203         if (mmio_flip->req) {
11204                 WARN_ON(__i915_wait_request(mmio_flip->req,
11205                                             mmio_flip->crtc->reset_counter,
11206                                             false, NULL,
11207                                             &mmio_flip->i915->rps.mmioflips));
11208                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11209         }
11210
11211         intel_do_mmio_flip(mmio_flip);
11212         kfree(mmio_flip);
11213 }
11214
11215 static int intel_queue_mmio_flip(struct drm_device *dev,
11216                                  struct drm_crtc *crtc,
11217                                  struct drm_framebuffer *fb,
11218                                  struct drm_i915_gem_object *obj,
11219                                  struct intel_engine_cs *ring,
11220                                  uint32_t flags)
11221 {
11222         struct intel_mmio_flip *mmio_flip;
11223
11224         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11225         if (mmio_flip == NULL)
11226                 return -ENOMEM;
11227
11228         mmio_flip->i915 = to_i915(dev);
11229         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11230         mmio_flip->crtc = to_intel_crtc(crtc);
11231
11232         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11233         schedule_work(&mmio_flip->work);
11234
11235         return 0;
11236 }
11237
11238 static int intel_default_queue_flip(struct drm_device *dev,
11239                                     struct drm_crtc *crtc,
11240                                     struct drm_framebuffer *fb,
11241                                     struct drm_i915_gem_object *obj,
11242                                     struct drm_i915_gem_request *req,
11243                                     uint32_t flags)
11244 {
11245         return -ENODEV;
11246 }
11247
11248 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11249                                          struct drm_crtc *crtc)
11250 {
11251         struct drm_i915_private *dev_priv = dev->dev_private;
11252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11253         struct intel_unpin_work *work = intel_crtc->unpin_work;
11254         u32 addr;
11255
11256         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11257                 return true;
11258
11259         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11260                 return false;
11261
11262         if (!work->enable_stall_check)
11263                 return false;
11264
11265         if (work->flip_ready_vblank == 0) {
11266                 if (work->flip_queued_req &&
11267                     !i915_gem_request_completed(work->flip_queued_req, true))
11268                         return false;
11269
11270                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11271         }
11272
11273         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11274                 return false;
11275
11276         /* Potential stall - if we see that the flip has happened,
11277          * assume a missed interrupt. */
11278         if (INTEL_INFO(dev)->gen >= 4)
11279                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11280         else
11281                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11282
11283         /* There is a potential issue here with a false positive after a flip
11284          * to the same address. We could address this by checking for a
11285          * non-incrementing frame counter.
11286          */
11287         return addr == work->gtt_offset;
11288 }
11289
11290 void intel_check_page_flip(struct drm_device *dev, int pipe)
11291 {
11292         struct drm_i915_private *dev_priv = dev->dev_private;
11293         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11294         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11295         struct intel_unpin_work *work;
11296
11297         WARN_ON(!in_interrupt());
11298
11299         if (crtc == NULL)
11300                 return;
11301
11302         spin_lock(&dev->event_lock);
11303         work = intel_crtc->unpin_work;
11304         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11305                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11306                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11307                 page_flip_completed(intel_crtc);
11308                 work = NULL;
11309         }
11310         if (work != NULL &&
11311             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11312                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11313         spin_unlock(&dev->event_lock);
11314 }
11315
11316 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11317                                 struct drm_framebuffer *fb,
11318                                 struct drm_pending_vblank_event *event,
11319                                 uint32_t page_flip_flags)
11320 {
11321         struct drm_device *dev = crtc->dev;
11322         struct drm_i915_private *dev_priv = dev->dev_private;
11323         struct drm_framebuffer *old_fb = crtc->primary->fb;
11324         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11325         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11326         struct drm_plane *primary = crtc->primary;
11327         enum pipe pipe = intel_crtc->pipe;
11328         struct intel_unpin_work *work;
11329         struct intel_engine_cs *ring;
11330         bool mmio_flip;
11331         struct drm_i915_gem_request *request = NULL;
11332         int ret;
11333
11334         /*
11335          * drm_mode_page_flip_ioctl() should already catch this, but double
11336          * check to be safe.  In the future we may enable pageflipping from
11337          * a disabled primary plane.
11338          */
11339         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11340                 return -EBUSY;
11341
11342         /* Can't change pixel format via MI display flips. */
11343         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11344                 return -EINVAL;
11345
11346         /*
11347          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11348          * Note that pitch changes could also affect these register.
11349          */
11350         if (INTEL_INFO(dev)->gen > 3 &&
11351             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11352              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11353                 return -EINVAL;
11354
11355         if (i915_terminally_wedged(&dev_priv->gpu_error))
11356                 goto out_hang;
11357
11358         work = kzalloc(sizeof(*work), GFP_KERNEL);
11359         if (work == NULL)
11360                 return -ENOMEM;
11361
11362         work->event = event;
11363         work->crtc = crtc;
11364         work->old_fb = old_fb;
11365         INIT_WORK(&work->work, intel_unpin_work_fn);
11366
11367         ret = drm_crtc_vblank_get(crtc);
11368         if (ret)
11369                 goto free_work;
11370
11371         /* We borrow the event spin lock for protecting unpin_work */
11372         spin_lock_irq(&dev->event_lock);
11373         if (intel_crtc->unpin_work) {
11374                 /* Before declaring the flip queue wedged, check if
11375                  * the hardware completed the operation behind our backs.
11376                  */
11377                 if (__intel_pageflip_stall_check(dev, crtc)) {
11378                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11379                         page_flip_completed(intel_crtc);
11380                 } else {
11381                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11382                         spin_unlock_irq(&dev->event_lock);
11383
11384                         drm_crtc_vblank_put(crtc);
11385                         kfree(work);
11386                         return -EBUSY;
11387                 }
11388         }
11389         intel_crtc->unpin_work = work;
11390         spin_unlock_irq(&dev->event_lock);
11391
11392         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11393                 flush_workqueue(dev_priv->wq);
11394
11395         /* Reference the objects for the scheduled work. */
11396         drm_framebuffer_reference(work->old_fb);
11397         drm_gem_object_reference(&obj->base);
11398
11399         crtc->primary->fb = fb;
11400         update_state_fb(crtc->primary);
11401
11402         work->pending_flip_obj = obj;
11403
11404         ret = i915_mutex_lock_interruptible(dev);
11405         if (ret)
11406                 goto cleanup;
11407
11408         atomic_inc(&intel_crtc->unpin_work_count);
11409         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11410
11411         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11412                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11413
11414         if (IS_VALLEYVIEW(dev)) {
11415                 ring = &dev_priv->ring[BCS];
11416                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11417                         /* vlv: DISPLAY_FLIP fails to change tiling */
11418                         ring = NULL;
11419         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11420                 ring = &dev_priv->ring[BCS];
11421         } else if (INTEL_INFO(dev)->gen >= 7) {
11422                 ring = i915_gem_request_get_ring(obj->last_write_req);
11423                 if (ring == NULL || ring->id != RCS)
11424                         ring = &dev_priv->ring[BCS];
11425         } else {
11426                 ring = &dev_priv->ring[RCS];
11427         }
11428
11429         mmio_flip = use_mmio_flip(ring, obj);
11430
11431         /* When using CS flips, we want to emit semaphores between rings.
11432          * However, when using mmio flips we will create a task to do the
11433          * synchronisation, so all we want here is to pin the framebuffer
11434          * into the display plane and skip any waits.
11435          */
11436         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11437                                          crtc->primary->state,
11438                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11439         if (ret)
11440                 goto cleanup_pending;
11441
11442         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11443                                                   obj, 0);
11444         work->gtt_offset += intel_crtc->dspaddr_offset;
11445
11446         if (mmio_flip) {
11447                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11448                                             page_flip_flags);
11449                 if (ret)
11450                         goto cleanup_unpin;
11451
11452                 i915_gem_request_assign(&work->flip_queued_req,
11453                                         obj->last_write_req);
11454         } else {
11455                 if (!request) {
11456                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11457                         if (ret)
11458                                 goto cleanup_unpin;
11459                 }
11460
11461                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11462                                                    page_flip_flags);
11463                 if (ret)
11464                         goto cleanup_unpin;
11465
11466                 i915_gem_request_assign(&work->flip_queued_req, request);
11467         }
11468
11469         if (request)
11470                 i915_add_request_no_flush(request);
11471
11472         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11473         work->enable_stall_check = true;
11474
11475         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11476                           to_intel_plane(primary)->frontbuffer_bit);
11477         mutex_unlock(&dev->struct_mutex);
11478
11479         intel_fbc_disable_crtc(intel_crtc);
11480         intel_frontbuffer_flip_prepare(dev,
11481                                        to_intel_plane(primary)->frontbuffer_bit);
11482
11483         trace_i915_flip_request(intel_crtc->plane, obj);
11484
11485         return 0;
11486
11487 cleanup_unpin:
11488         intel_unpin_fb_obj(fb, crtc->primary->state);
11489 cleanup_pending:
11490         if (request)
11491                 i915_gem_request_cancel(request);
11492         atomic_dec(&intel_crtc->unpin_work_count);
11493         mutex_unlock(&dev->struct_mutex);
11494 cleanup:
11495         crtc->primary->fb = old_fb;
11496         update_state_fb(crtc->primary);
11497
11498         drm_gem_object_unreference_unlocked(&obj->base);
11499         drm_framebuffer_unreference(work->old_fb);
11500
11501         spin_lock_irq(&dev->event_lock);
11502         intel_crtc->unpin_work = NULL;
11503         spin_unlock_irq(&dev->event_lock);
11504
11505         drm_crtc_vblank_put(crtc);
11506 free_work:
11507         kfree(work);
11508
11509         if (ret == -EIO) {
11510                 struct drm_atomic_state *state;
11511                 struct drm_plane_state *plane_state;
11512
11513 out_hang:
11514                 state = drm_atomic_state_alloc(dev);
11515                 if (!state)
11516                         return -ENOMEM;
11517                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11518
11519 retry:
11520                 plane_state = drm_atomic_get_plane_state(state, primary);
11521                 ret = PTR_ERR_OR_ZERO(plane_state);
11522                 if (!ret) {
11523                         drm_atomic_set_fb_for_plane(plane_state, fb);
11524
11525                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11526                         if (!ret)
11527                                 ret = drm_atomic_commit(state);
11528                 }
11529
11530                 if (ret == -EDEADLK) {
11531                         drm_modeset_backoff(state->acquire_ctx);
11532                         drm_atomic_state_clear(state);
11533                         goto retry;
11534                 }
11535
11536                 if (ret)
11537                         drm_atomic_state_free(state);
11538
11539                 if (ret == 0 && event) {
11540                         spin_lock_irq(&dev->event_lock);
11541                         drm_send_vblank_event(dev, pipe, event);
11542                         spin_unlock_irq(&dev->event_lock);
11543                 }
11544         }
11545         return ret;
11546 }
11547
11548
11549 /**
11550  * intel_wm_need_update - Check whether watermarks need updating
11551  * @plane: drm plane
11552  * @state: new plane state
11553  *
11554  * Check current plane state versus the new one to determine whether
11555  * watermarks need to be recalculated.
11556  *
11557  * Returns true or false.
11558  */
11559 static bool intel_wm_need_update(struct drm_plane *plane,
11560                                  struct drm_plane_state *state)
11561 {
11562         /* Update watermarks on tiling changes. */
11563         if (!plane->state->fb || !state->fb ||
11564             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11565             plane->state->rotation != state->rotation)
11566                 return true;
11567
11568         if (plane->state->crtc_w != state->crtc_w)
11569                 return true;
11570
11571         return false;
11572 }
11573
11574 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11575                                     struct drm_plane_state *plane_state)
11576 {
11577         struct drm_crtc *crtc = crtc_state->crtc;
11578         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11579         struct drm_plane *plane = plane_state->plane;
11580         struct drm_device *dev = crtc->dev;
11581         struct drm_i915_private *dev_priv = dev->dev_private;
11582         struct intel_plane_state *old_plane_state =
11583                 to_intel_plane_state(plane->state);
11584         int idx = intel_crtc->base.base.id, ret;
11585         int i = drm_plane_index(plane);
11586         bool mode_changed = needs_modeset(crtc_state);
11587         bool was_crtc_enabled = crtc->state->active;
11588         bool is_crtc_enabled = crtc_state->active;
11589
11590         bool turn_off, turn_on, visible, was_visible;
11591         struct drm_framebuffer *fb = plane_state->fb;
11592
11593         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11594             plane->type != DRM_PLANE_TYPE_CURSOR) {
11595                 ret = skl_update_scaler_plane(
11596                         to_intel_crtc_state(crtc_state),
11597                         to_intel_plane_state(plane_state));
11598                 if (ret)
11599                         return ret;
11600         }
11601
11602         /*
11603          * Disabling a plane is always okay; we just need to update
11604          * fb tracking in a special way since cleanup_fb() won't
11605          * get called by the plane helpers.
11606          */
11607         if (old_plane_state->base.fb && !fb)
11608                 intel_crtc->atomic.disabled_planes |= 1 << i;
11609
11610         was_visible = old_plane_state->visible;
11611         visible = to_intel_plane_state(plane_state)->visible;
11612
11613         if (!was_crtc_enabled && WARN_ON(was_visible))
11614                 was_visible = false;
11615
11616         if (!is_crtc_enabled && WARN_ON(visible))
11617                 visible = false;
11618
11619         if (!was_visible && !visible)
11620                 return 0;
11621
11622         turn_off = was_visible && (!visible || mode_changed);
11623         turn_on = visible && (!was_visible || mode_changed);
11624
11625         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11626                          plane->base.id, fb ? fb->base.id : -1);
11627
11628         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11629                          plane->base.id, was_visible, visible,
11630                          turn_off, turn_on, mode_changed);
11631
11632         if (turn_on) {
11633                 intel_crtc->atomic.update_wm_pre = true;
11634                 /* must disable cxsr around plane enable/disable */
11635                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11636                         intel_crtc->atomic.disable_cxsr = true;
11637                         /* to potentially re-enable cxsr */
11638                         intel_crtc->atomic.wait_vblank = true;
11639                         intel_crtc->atomic.update_wm_post = true;
11640                 }
11641         } else if (turn_off) {
11642                 intel_crtc->atomic.update_wm_post = true;
11643                 /* must disable cxsr around plane enable/disable */
11644                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11645                         if (is_crtc_enabled)
11646                                 intel_crtc->atomic.wait_vblank = true;
11647                         intel_crtc->atomic.disable_cxsr = true;
11648                 }
11649         } else if (intel_wm_need_update(plane, plane_state)) {
11650                 intel_crtc->atomic.update_wm_pre = true;
11651         }
11652
11653         if (visible || was_visible)
11654                 intel_crtc->atomic.fb_bits |=
11655                         to_intel_plane(plane)->frontbuffer_bit;
11656
11657         switch (plane->type) {
11658         case DRM_PLANE_TYPE_PRIMARY:
11659                 intel_crtc->atomic.wait_for_flips = true;
11660                 intel_crtc->atomic.pre_disable_primary = turn_off;
11661                 intel_crtc->atomic.post_enable_primary = turn_on;
11662
11663                 if (turn_off) {
11664                         /*
11665                          * FIXME: Actually if we will still have any other
11666                          * plane enabled on the pipe we could let IPS enabled
11667                          * still, but for now lets consider that when we make
11668                          * primary invisible by setting DSPCNTR to 0 on
11669                          * update_primary_plane function IPS needs to be
11670                          * disable.
11671                          */
11672                         intel_crtc->atomic.disable_ips = true;
11673
11674                         intel_crtc->atomic.disable_fbc = true;
11675                 }
11676
11677                 /*
11678                  * FBC does not work on some platforms for rotated
11679                  * planes, so disable it when rotation is not 0 and
11680                  * update it when rotation is set back to 0.
11681                  *
11682                  * FIXME: This is redundant with the fbc update done in
11683                  * the primary plane enable function except that that
11684                  * one is done too late. We eventually need to unify
11685                  * this.
11686                  */
11687
11688                 if (visible &&
11689                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11690                     dev_priv->fbc.crtc == intel_crtc &&
11691                     plane_state->rotation != BIT(DRM_ROTATE_0))
11692                         intel_crtc->atomic.disable_fbc = true;
11693
11694                 /*
11695                  * BDW signals flip done immediately if the plane
11696                  * is disabled, even if the plane enable is already
11697                  * armed to occur at the next vblank :(
11698                  */
11699                 if (turn_on && IS_BROADWELL(dev))
11700                         intel_crtc->atomic.wait_vblank = true;
11701
11702                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11703                 break;
11704         case DRM_PLANE_TYPE_CURSOR:
11705                 break;
11706         case DRM_PLANE_TYPE_OVERLAY:
11707                 if (turn_off && !mode_changed) {
11708                         intel_crtc->atomic.wait_vblank = true;
11709                         intel_crtc->atomic.update_sprite_watermarks |=
11710                                 1 << i;
11711                 }
11712         }
11713         return 0;
11714 }
11715
11716 static bool encoders_cloneable(const struct intel_encoder *a,
11717                                const struct intel_encoder *b)
11718 {
11719         /* masks could be asymmetric, so check both ways */
11720         return a == b || (a->cloneable & (1 << b->type) &&
11721                           b->cloneable & (1 << a->type));
11722 }
11723
11724 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11725                                          struct intel_crtc *crtc,
11726                                          struct intel_encoder *encoder)
11727 {
11728         struct intel_encoder *source_encoder;
11729         struct drm_connector *connector;
11730         struct drm_connector_state *connector_state;
11731         int i;
11732
11733         for_each_connector_in_state(state, connector, connector_state, i) {
11734                 if (connector_state->crtc != &crtc->base)
11735                         continue;
11736
11737                 source_encoder =
11738                         to_intel_encoder(connector_state->best_encoder);
11739                 if (!encoders_cloneable(encoder, source_encoder))
11740                         return false;
11741         }
11742
11743         return true;
11744 }
11745
11746 static bool check_encoder_cloning(struct drm_atomic_state *state,
11747                                   struct intel_crtc *crtc)
11748 {
11749         struct intel_encoder *encoder;
11750         struct drm_connector *connector;
11751         struct drm_connector_state *connector_state;
11752         int i;
11753
11754         for_each_connector_in_state(state, connector, connector_state, i) {
11755                 if (connector_state->crtc != &crtc->base)
11756                         continue;
11757
11758                 encoder = to_intel_encoder(connector_state->best_encoder);
11759                 if (!check_single_encoder_cloning(state, crtc, encoder))
11760                         return false;
11761         }
11762
11763         return true;
11764 }
11765
11766 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11767                                    struct drm_crtc_state *crtc_state)
11768 {
11769         struct drm_device *dev = crtc->dev;
11770         struct drm_i915_private *dev_priv = dev->dev_private;
11771         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11772         struct intel_crtc_state *pipe_config =
11773                 to_intel_crtc_state(crtc_state);
11774         struct drm_atomic_state *state = crtc_state->state;
11775         int ret;
11776         bool mode_changed = needs_modeset(crtc_state);
11777
11778         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11779                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11780                 return -EINVAL;
11781         }
11782
11783         if (mode_changed && !crtc_state->active)
11784                 intel_crtc->atomic.update_wm_post = true;
11785
11786         if (mode_changed && crtc_state->enable &&
11787             dev_priv->display.crtc_compute_clock &&
11788             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11789                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11790                                                            pipe_config);
11791                 if (ret)
11792                         return ret;
11793         }
11794
11795         ret = 0;
11796         if (INTEL_INFO(dev)->gen >= 9) {
11797                 if (mode_changed)
11798                         ret = skl_update_scaler_crtc(pipe_config);
11799
11800                 if (!ret)
11801                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11802                                                          pipe_config);
11803         }
11804
11805         return ret;
11806 }
11807
11808 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11809         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11810         .load_lut = intel_crtc_load_lut,
11811         .atomic_begin = intel_begin_crtc_commit,
11812         .atomic_flush = intel_finish_crtc_commit,
11813         .atomic_check = intel_crtc_atomic_check,
11814 };
11815
11816 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11817 {
11818         struct intel_connector *connector;
11819
11820         for_each_intel_connector(dev, connector) {
11821                 if (connector->base.encoder) {
11822                         connector->base.state->best_encoder =
11823                                 connector->base.encoder;
11824                         connector->base.state->crtc =
11825                                 connector->base.encoder->crtc;
11826                 } else {
11827                         connector->base.state->best_encoder = NULL;
11828                         connector->base.state->crtc = NULL;
11829                 }
11830         }
11831 }
11832
11833 static void
11834 connected_sink_compute_bpp(struct intel_connector *connector,
11835                            struct intel_crtc_state *pipe_config)
11836 {
11837         int bpp = pipe_config->pipe_bpp;
11838
11839         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11840                 connector->base.base.id,
11841                 connector->base.name);
11842
11843         /* Don't use an invalid EDID bpc value */
11844         if (connector->base.display_info.bpc &&
11845             connector->base.display_info.bpc * 3 < bpp) {
11846                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11847                               bpp, connector->base.display_info.bpc*3);
11848                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11849         }
11850
11851         /* Clamp bpp to 8 on screens without EDID 1.4 */
11852         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11853                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11854                               bpp);
11855                 pipe_config->pipe_bpp = 24;
11856         }
11857 }
11858
11859 static int
11860 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11861                           struct intel_crtc_state *pipe_config)
11862 {
11863         struct drm_device *dev = crtc->base.dev;
11864         struct drm_atomic_state *state;
11865         struct drm_connector *connector;
11866         struct drm_connector_state *connector_state;
11867         int bpp, i;
11868
11869         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11870                 bpp = 10*3;
11871         else if (INTEL_INFO(dev)->gen >= 5)
11872                 bpp = 12*3;
11873         else
11874                 bpp = 8*3;
11875
11876
11877         pipe_config->pipe_bpp = bpp;
11878
11879         state = pipe_config->base.state;
11880
11881         /* Clamp display bpp to EDID value */
11882         for_each_connector_in_state(state, connector, connector_state, i) {
11883                 if (connector_state->crtc != &crtc->base)
11884                         continue;
11885
11886                 connected_sink_compute_bpp(to_intel_connector(connector),
11887                                            pipe_config);
11888         }
11889
11890         return bpp;
11891 }
11892
11893 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11894 {
11895         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11896                         "type: 0x%x flags: 0x%x\n",
11897                 mode->crtc_clock,
11898                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11899                 mode->crtc_hsync_end, mode->crtc_htotal,
11900                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11901                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11902 }
11903
11904 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11905                                    struct intel_crtc_state *pipe_config,
11906                                    const char *context)
11907 {
11908         struct drm_device *dev = crtc->base.dev;
11909         struct drm_plane *plane;
11910         struct intel_plane *intel_plane;
11911         struct intel_plane_state *state;
11912         struct drm_framebuffer *fb;
11913
11914         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11915                       context, pipe_config, pipe_name(crtc->pipe));
11916
11917         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11918         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11919                       pipe_config->pipe_bpp, pipe_config->dither);
11920         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11921                       pipe_config->has_pch_encoder,
11922                       pipe_config->fdi_lanes,
11923                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11924                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11925                       pipe_config->fdi_m_n.tu);
11926         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11927                       pipe_config->has_dp_encoder,
11928                       pipe_config->lane_count,
11929                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11930                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11931                       pipe_config->dp_m_n.tu);
11932
11933         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11934                       pipe_config->has_dp_encoder,
11935                       pipe_config->lane_count,
11936                       pipe_config->dp_m2_n2.gmch_m,
11937                       pipe_config->dp_m2_n2.gmch_n,
11938                       pipe_config->dp_m2_n2.link_m,
11939                       pipe_config->dp_m2_n2.link_n,
11940                       pipe_config->dp_m2_n2.tu);
11941
11942         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11943                       pipe_config->has_audio,
11944                       pipe_config->has_infoframe);
11945
11946         DRM_DEBUG_KMS("requested mode:\n");
11947         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11948         DRM_DEBUG_KMS("adjusted mode:\n");
11949         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11950         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11951         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11952         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11953                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11954         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11955                       crtc->num_scalers,
11956                       pipe_config->scaler_state.scaler_users,
11957                       pipe_config->scaler_state.scaler_id);
11958         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11959                       pipe_config->gmch_pfit.control,
11960                       pipe_config->gmch_pfit.pgm_ratios,
11961                       pipe_config->gmch_pfit.lvds_border_bits);
11962         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11963                       pipe_config->pch_pfit.pos,
11964                       pipe_config->pch_pfit.size,
11965                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11966         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11967         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11968
11969         if (IS_BROXTON(dev)) {
11970                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11971                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11972                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11973                               pipe_config->ddi_pll_sel,
11974                               pipe_config->dpll_hw_state.ebb0,
11975                               pipe_config->dpll_hw_state.ebb4,
11976                               pipe_config->dpll_hw_state.pll0,
11977                               pipe_config->dpll_hw_state.pll1,
11978                               pipe_config->dpll_hw_state.pll2,
11979                               pipe_config->dpll_hw_state.pll3,
11980                               pipe_config->dpll_hw_state.pll6,
11981                               pipe_config->dpll_hw_state.pll8,
11982                               pipe_config->dpll_hw_state.pll9,
11983                               pipe_config->dpll_hw_state.pll10,
11984                               pipe_config->dpll_hw_state.pcsdw12);
11985         } else if (IS_SKYLAKE(dev)) {
11986                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11987                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11988                               pipe_config->ddi_pll_sel,
11989                               pipe_config->dpll_hw_state.ctrl1,
11990                               pipe_config->dpll_hw_state.cfgcr1,
11991                               pipe_config->dpll_hw_state.cfgcr2);
11992         } else if (HAS_DDI(dev)) {
11993                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11994                               pipe_config->ddi_pll_sel,
11995                               pipe_config->dpll_hw_state.wrpll);
11996         } else {
11997                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11998                               "fp0: 0x%x, fp1: 0x%x\n",
11999                               pipe_config->dpll_hw_state.dpll,
12000                               pipe_config->dpll_hw_state.dpll_md,
12001                               pipe_config->dpll_hw_state.fp0,
12002                               pipe_config->dpll_hw_state.fp1);
12003         }
12004
12005         DRM_DEBUG_KMS("planes on this crtc\n");
12006         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12007                 intel_plane = to_intel_plane(plane);
12008                 if (intel_plane->pipe != crtc->pipe)
12009                         continue;
12010
12011                 state = to_intel_plane_state(plane->state);
12012                 fb = state->base.fb;
12013                 if (!fb) {
12014                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12015                                 "disabled, scaler_id = %d\n",
12016                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12017                                 plane->base.id, intel_plane->pipe,
12018                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12019                                 drm_plane_index(plane), state->scaler_id);
12020                         continue;
12021                 }
12022
12023                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12024                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12025                         plane->base.id, intel_plane->pipe,
12026                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12027                         drm_plane_index(plane));
12028                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12029                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12030                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12031                         state->scaler_id,
12032                         state->src.x1 >> 16, state->src.y1 >> 16,
12033                         drm_rect_width(&state->src) >> 16,
12034                         drm_rect_height(&state->src) >> 16,
12035                         state->dst.x1, state->dst.y1,
12036                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12037         }
12038 }
12039
12040 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12041 {
12042         struct drm_device *dev = state->dev;
12043         struct intel_encoder *encoder;
12044         struct drm_connector *connector;
12045         struct drm_connector_state *connector_state;
12046         unsigned int used_ports = 0;
12047         int i;
12048
12049         /*
12050          * Walk the connector list instead of the encoder
12051          * list to detect the problem on ddi platforms
12052          * where there's just one encoder per digital port.
12053          */
12054         for_each_connector_in_state(state, connector, connector_state, i) {
12055                 if (!connector_state->best_encoder)
12056                         continue;
12057
12058                 encoder = to_intel_encoder(connector_state->best_encoder);
12059
12060                 WARN_ON(!connector_state->crtc);
12061
12062                 switch (encoder->type) {
12063                         unsigned int port_mask;
12064                 case INTEL_OUTPUT_UNKNOWN:
12065                         if (WARN_ON(!HAS_DDI(dev)))
12066                                 break;
12067                 case INTEL_OUTPUT_DISPLAYPORT:
12068                 case INTEL_OUTPUT_HDMI:
12069                 case INTEL_OUTPUT_EDP:
12070                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12071
12072                         /* the same port mustn't appear more than once */
12073                         if (used_ports & port_mask)
12074                                 return false;
12075
12076                         used_ports |= port_mask;
12077                 default:
12078                         break;
12079                 }
12080         }
12081
12082         return true;
12083 }
12084
12085 static void
12086 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12087 {
12088         struct drm_crtc_state tmp_state;
12089         struct intel_crtc_scaler_state scaler_state;
12090         struct intel_dpll_hw_state dpll_hw_state;
12091         enum intel_dpll_id shared_dpll;
12092         uint32_t ddi_pll_sel;
12093         bool force_thru;
12094
12095         /* FIXME: before the switch to atomic started, a new pipe_config was
12096          * kzalloc'd. Code that depends on any field being zero should be
12097          * fixed, so that the crtc_state can be safely duplicated. For now,
12098          * only fields that are know to not cause problems are preserved. */
12099
12100         tmp_state = crtc_state->base;
12101         scaler_state = crtc_state->scaler_state;
12102         shared_dpll = crtc_state->shared_dpll;
12103         dpll_hw_state = crtc_state->dpll_hw_state;
12104         ddi_pll_sel = crtc_state->ddi_pll_sel;
12105         force_thru = crtc_state->pch_pfit.force_thru;
12106
12107         memset(crtc_state, 0, sizeof *crtc_state);
12108
12109         crtc_state->base = tmp_state;
12110         crtc_state->scaler_state = scaler_state;
12111         crtc_state->shared_dpll = shared_dpll;
12112         crtc_state->dpll_hw_state = dpll_hw_state;
12113         crtc_state->ddi_pll_sel = ddi_pll_sel;
12114         crtc_state->pch_pfit.force_thru = force_thru;
12115 }
12116
12117 static int
12118 intel_modeset_pipe_config(struct drm_crtc *crtc,
12119                           struct intel_crtc_state *pipe_config)
12120 {
12121         struct drm_atomic_state *state = pipe_config->base.state;
12122         struct intel_encoder *encoder;
12123         struct drm_connector *connector;
12124         struct drm_connector_state *connector_state;
12125         int base_bpp, ret = -EINVAL;
12126         int i;
12127         bool retry = true;
12128
12129         clear_intel_crtc_state(pipe_config);
12130
12131         pipe_config->cpu_transcoder =
12132                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12133
12134         /*
12135          * Sanitize sync polarity flags based on requested ones. If neither
12136          * positive or negative polarity is requested, treat this as meaning
12137          * negative polarity.
12138          */
12139         if (!(pipe_config->base.adjusted_mode.flags &
12140               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12141                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12142
12143         if (!(pipe_config->base.adjusted_mode.flags &
12144               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12145                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12146
12147         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12148                                              pipe_config);
12149         if (base_bpp < 0)
12150                 goto fail;
12151
12152         /*
12153          * Determine the real pipe dimensions. Note that stereo modes can
12154          * increase the actual pipe size due to the frame doubling and
12155          * insertion of additional space for blanks between the frame. This
12156          * is stored in the crtc timings. We use the requested mode to do this
12157          * computation to clearly distinguish it from the adjusted mode, which
12158          * can be changed by the connectors in the below retry loop.
12159          */
12160         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12161                                &pipe_config->pipe_src_w,
12162                                &pipe_config->pipe_src_h);
12163
12164 encoder_retry:
12165         /* Ensure the port clock defaults are reset when retrying. */
12166         pipe_config->port_clock = 0;
12167         pipe_config->pixel_multiplier = 1;
12168
12169         /* Fill in default crtc timings, allow encoders to overwrite them. */
12170         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12171                               CRTC_STEREO_DOUBLE);
12172
12173         /* Pass our mode to the connectors and the CRTC to give them a chance to
12174          * adjust it according to limitations or connector properties, and also
12175          * a chance to reject the mode entirely.
12176          */
12177         for_each_connector_in_state(state, connector, connector_state, i) {
12178                 if (connector_state->crtc != crtc)
12179                         continue;
12180
12181                 encoder = to_intel_encoder(connector_state->best_encoder);
12182
12183                 if (!(encoder->compute_config(encoder, pipe_config))) {
12184                         DRM_DEBUG_KMS("Encoder config failure\n");
12185                         goto fail;
12186                 }
12187         }
12188
12189         /* Set default port clock if not overwritten by the encoder. Needs to be
12190          * done afterwards in case the encoder adjusts the mode. */
12191         if (!pipe_config->port_clock)
12192                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12193                         * pipe_config->pixel_multiplier;
12194
12195         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12196         if (ret < 0) {
12197                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12198                 goto fail;
12199         }
12200
12201         if (ret == RETRY) {
12202                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12203                         ret = -EINVAL;
12204                         goto fail;
12205                 }
12206
12207                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12208                 retry = false;
12209                 goto encoder_retry;
12210         }
12211
12212         /* Dithering seems to not pass-through bits correctly when it should, so
12213          * only enable it on 6bpc panels. */
12214         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12215         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12216                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12217
12218 fail:
12219         return ret;
12220 }
12221
12222 static void
12223 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12224 {
12225         struct drm_crtc *crtc;
12226         struct drm_crtc_state *crtc_state;
12227         int i;
12228
12229         /* Double check state. */
12230         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12231                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12232
12233                 /* Update hwmode for vblank functions */
12234                 if (crtc->state->active)
12235                         crtc->hwmode = crtc->state->adjusted_mode;
12236                 else
12237                         crtc->hwmode.crtc_clock = 0;
12238         }
12239 }
12240
12241 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12242 {
12243         int diff;
12244
12245         if (clock1 == clock2)
12246                 return true;
12247
12248         if (!clock1 || !clock2)
12249                 return false;
12250
12251         diff = abs(clock1 - clock2);
12252
12253         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12254                 return true;
12255
12256         return false;
12257 }
12258
12259 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12260         list_for_each_entry((intel_crtc), \
12261                             &(dev)->mode_config.crtc_list, \
12262                             base.head) \
12263                 if (mask & (1 <<(intel_crtc)->pipe))
12264
12265 static bool
12266 intel_compare_m_n(unsigned int m, unsigned int n,
12267                   unsigned int m2, unsigned int n2,
12268                   bool exact)
12269 {
12270         if (m == m2 && n == n2)
12271                 return true;
12272
12273         if (exact || !m || !n || !m2 || !n2)
12274                 return false;
12275
12276         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12277
12278         if (m > m2) {
12279                 while (m > m2) {
12280                         m2 <<= 1;
12281                         n2 <<= 1;
12282                 }
12283         } else if (m < m2) {
12284                 while (m < m2) {
12285                         m <<= 1;
12286                         n <<= 1;
12287                 }
12288         }
12289
12290         return m == m2 && n == n2;
12291 }
12292
12293 static bool
12294 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12295                        struct intel_link_m_n *m2_n2,
12296                        bool adjust)
12297 {
12298         if (m_n->tu == m2_n2->tu &&
12299             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12300                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12301             intel_compare_m_n(m_n->link_m, m_n->link_n,
12302                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12303                 if (adjust)
12304                         *m2_n2 = *m_n;
12305
12306                 return true;
12307         }
12308
12309         return false;
12310 }
12311
12312 static bool
12313 intel_pipe_config_compare(struct drm_device *dev,
12314                           struct intel_crtc_state *current_config,
12315                           struct intel_crtc_state *pipe_config,
12316                           bool adjust)
12317 {
12318         bool ret = true;
12319
12320 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12321         do { \
12322                 if (!adjust) \
12323                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12324                 else \
12325                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12326         } while (0)
12327
12328 #define PIPE_CONF_CHECK_X(name) \
12329         if (current_config->name != pipe_config->name) { \
12330                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12331                           "(expected 0x%08x, found 0x%08x)\n", \
12332                           current_config->name, \
12333                           pipe_config->name); \
12334                 ret = false; \
12335         }
12336
12337 #define PIPE_CONF_CHECK_I(name) \
12338         if (current_config->name != pipe_config->name) { \
12339                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12340                           "(expected %i, found %i)\n", \
12341                           current_config->name, \
12342                           pipe_config->name); \
12343                 ret = false; \
12344         }
12345
12346 #define PIPE_CONF_CHECK_M_N(name) \
12347         if (!intel_compare_link_m_n(&current_config->name, \
12348                                     &pipe_config->name,\
12349                                     adjust)) { \
12350                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12351                           "(expected tu %i gmch %i/%i link %i/%i, " \
12352                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12353                           current_config->name.tu, \
12354                           current_config->name.gmch_m, \
12355                           current_config->name.gmch_n, \
12356                           current_config->name.link_m, \
12357                           current_config->name.link_n, \
12358                           pipe_config->name.tu, \
12359                           pipe_config->name.gmch_m, \
12360                           pipe_config->name.gmch_n, \
12361                           pipe_config->name.link_m, \
12362                           pipe_config->name.link_n); \
12363                 ret = false; \
12364         }
12365
12366 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12367         if (!intel_compare_link_m_n(&current_config->name, \
12368                                     &pipe_config->name, adjust) && \
12369             !intel_compare_link_m_n(&current_config->alt_name, \
12370                                     &pipe_config->name, adjust)) { \
12371                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12372                           "(expected tu %i gmch %i/%i link %i/%i, " \
12373                           "or tu %i gmch %i/%i link %i/%i, " \
12374                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12375                           current_config->name.tu, \
12376                           current_config->name.gmch_m, \
12377                           current_config->name.gmch_n, \
12378                           current_config->name.link_m, \
12379                           current_config->name.link_n, \
12380                           current_config->alt_name.tu, \
12381                           current_config->alt_name.gmch_m, \
12382                           current_config->alt_name.gmch_n, \
12383                           current_config->alt_name.link_m, \
12384                           current_config->alt_name.link_n, \
12385                           pipe_config->name.tu, \
12386                           pipe_config->name.gmch_m, \
12387                           pipe_config->name.gmch_n, \
12388                           pipe_config->name.link_m, \
12389                           pipe_config->name.link_n); \
12390                 ret = false; \
12391         }
12392
12393 /* This is required for BDW+ where there is only one set of registers for
12394  * switching between high and low RR.
12395  * This macro can be used whenever a comparison has to be made between one
12396  * hw state and multiple sw state variables.
12397  */
12398 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12399         if ((current_config->name != pipe_config->name) && \
12400                 (current_config->alt_name != pipe_config->name)) { \
12401                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12402                                   "(expected %i or %i, found %i)\n", \
12403                                   current_config->name, \
12404                                   current_config->alt_name, \
12405                                   pipe_config->name); \
12406                         ret = false; \
12407         }
12408
12409 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12410         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12411                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12412                           "(expected %i, found %i)\n", \
12413                           current_config->name & (mask), \
12414                           pipe_config->name & (mask)); \
12415                 ret = false; \
12416         }
12417
12418 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12419         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12420                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12421                           "(expected %i, found %i)\n", \
12422                           current_config->name, \
12423                           pipe_config->name); \
12424                 ret = false; \
12425         }
12426
12427 #define PIPE_CONF_QUIRK(quirk)  \
12428         ((current_config->quirks | pipe_config->quirks) & (quirk))
12429
12430         PIPE_CONF_CHECK_I(cpu_transcoder);
12431
12432         PIPE_CONF_CHECK_I(has_pch_encoder);
12433         PIPE_CONF_CHECK_I(fdi_lanes);
12434         PIPE_CONF_CHECK_M_N(fdi_m_n);
12435
12436         PIPE_CONF_CHECK_I(has_dp_encoder);
12437         PIPE_CONF_CHECK_I(lane_count);
12438
12439         if (INTEL_INFO(dev)->gen < 8) {
12440                 PIPE_CONF_CHECK_M_N(dp_m_n);
12441
12442                 PIPE_CONF_CHECK_I(has_drrs);
12443                 if (current_config->has_drrs)
12444                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12445         } else
12446                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12447
12448         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12449         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12450         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12451         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12452         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12453         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12454
12455         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12456         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12457         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12458         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12459         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12460         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12461
12462         PIPE_CONF_CHECK_I(pixel_multiplier);
12463         PIPE_CONF_CHECK_I(has_hdmi_sink);
12464         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12465             IS_VALLEYVIEW(dev))
12466                 PIPE_CONF_CHECK_I(limited_color_range);
12467         PIPE_CONF_CHECK_I(has_infoframe);
12468
12469         PIPE_CONF_CHECK_I(has_audio);
12470
12471         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12472                               DRM_MODE_FLAG_INTERLACE);
12473
12474         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12475                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12476                                       DRM_MODE_FLAG_PHSYNC);
12477                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12478                                       DRM_MODE_FLAG_NHSYNC);
12479                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12480                                       DRM_MODE_FLAG_PVSYNC);
12481                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12482                                       DRM_MODE_FLAG_NVSYNC);
12483         }
12484
12485         PIPE_CONF_CHECK_X(gmch_pfit.control);
12486         /* pfit ratios are autocomputed by the hw on gen4+ */
12487         if (INTEL_INFO(dev)->gen < 4)
12488                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12489         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12490
12491         if (!adjust) {
12492                 PIPE_CONF_CHECK_I(pipe_src_w);
12493                 PIPE_CONF_CHECK_I(pipe_src_h);
12494
12495                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12496                 if (current_config->pch_pfit.enabled) {
12497                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12498                         PIPE_CONF_CHECK_X(pch_pfit.size);
12499                 }
12500
12501                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12502         }
12503
12504         /* BDW+ don't expose a synchronous way to read the state */
12505         if (IS_HASWELL(dev))
12506                 PIPE_CONF_CHECK_I(ips_enabled);
12507
12508         PIPE_CONF_CHECK_I(double_wide);
12509
12510         PIPE_CONF_CHECK_X(ddi_pll_sel);
12511
12512         PIPE_CONF_CHECK_I(shared_dpll);
12513         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12514         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12515         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12516         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12517         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12518         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12519         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12520         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12521
12522         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12523                 PIPE_CONF_CHECK_I(pipe_bpp);
12524
12525         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12526         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12527
12528 #undef PIPE_CONF_CHECK_X
12529 #undef PIPE_CONF_CHECK_I
12530 #undef PIPE_CONF_CHECK_I_ALT
12531 #undef PIPE_CONF_CHECK_FLAGS
12532 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12533 #undef PIPE_CONF_QUIRK
12534 #undef INTEL_ERR_OR_DBG_KMS
12535
12536         return ret;
12537 }
12538
12539 static void check_wm_state(struct drm_device *dev)
12540 {
12541         struct drm_i915_private *dev_priv = dev->dev_private;
12542         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12543         struct intel_crtc *intel_crtc;
12544         int plane;
12545
12546         if (INTEL_INFO(dev)->gen < 9)
12547                 return;
12548
12549         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12550         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12551
12552         for_each_intel_crtc(dev, intel_crtc) {
12553                 struct skl_ddb_entry *hw_entry, *sw_entry;
12554                 const enum pipe pipe = intel_crtc->pipe;
12555
12556                 if (!intel_crtc->active)
12557                         continue;
12558
12559                 /* planes */
12560                 for_each_plane(dev_priv, pipe, plane) {
12561                         hw_entry = &hw_ddb.plane[pipe][plane];
12562                         sw_entry = &sw_ddb->plane[pipe][plane];
12563
12564                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12565                                 continue;
12566
12567                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12568                                   "(expected (%u,%u), found (%u,%u))\n",
12569                                   pipe_name(pipe), plane + 1,
12570                                   sw_entry->start, sw_entry->end,
12571                                   hw_entry->start, hw_entry->end);
12572                 }
12573
12574                 /* cursor */
12575                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12576                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12577
12578                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12579                         continue;
12580
12581                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12582                           "(expected (%u,%u), found (%u,%u))\n",
12583                           pipe_name(pipe),
12584                           sw_entry->start, sw_entry->end,
12585                           hw_entry->start, hw_entry->end);
12586         }
12587 }
12588
12589 static void
12590 check_connector_state(struct drm_device *dev,
12591                       struct drm_atomic_state *old_state)
12592 {
12593         struct drm_connector_state *old_conn_state;
12594         struct drm_connector *connector;
12595         int i;
12596
12597         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12598                 struct drm_encoder *encoder = connector->encoder;
12599                 struct drm_connector_state *state = connector->state;
12600
12601                 /* This also checks the encoder/connector hw state with the
12602                  * ->get_hw_state callbacks. */
12603                 intel_connector_check_state(to_intel_connector(connector));
12604
12605                 I915_STATE_WARN(state->best_encoder != encoder,
12606                      "connector's atomic encoder doesn't match legacy encoder\n");
12607         }
12608 }
12609
12610 static void
12611 check_encoder_state(struct drm_device *dev)
12612 {
12613         struct intel_encoder *encoder;
12614         struct intel_connector *connector;
12615
12616         for_each_intel_encoder(dev, encoder) {
12617                 bool enabled = false;
12618                 enum pipe pipe;
12619
12620                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12621                               encoder->base.base.id,
12622                               encoder->base.name);
12623
12624                 for_each_intel_connector(dev, connector) {
12625                         if (connector->base.state->best_encoder != &encoder->base)
12626                                 continue;
12627                         enabled = true;
12628
12629                         I915_STATE_WARN(connector->base.state->crtc !=
12630                                         encoder->base.crtc,
12631                              "connector's crtc doesn't match encoder crtc\n");
12632                 }
12633
12634                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12635                      "encoder's enabled state mismatch "
12636                      "(expected %i, found %i)\n",
12637                      !!encoder->base.crtc, enabled);
12638
12639                 if (!encoder->base.crtc) {
12640                         bool active;
12641
12642                         active = encoder->get_hw_state(encoder, &pipe);
12643                         I915_STATE_WARN(active,
12644                              "encoder detached but still enabled on pipe %c.\n",
12645                              pipe_name(pipe));
12646                 }
12647         }
12648 }
12649
12650 static void
12651 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12652 {
12653         struct drm_i915_private *dev_priv = dev->dev_private;
12654         struct intel_encoder *encoder;
12655         struct drm_crtc_state *old_crtc_state;
12656         struct drm_crtc *crtc;
12657         int i;
12658
12659         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12660                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12661                 struct intel_crtc_state *pipe_config, *sw_config;
12662                 bool active;
12663
12664                 if (!needs_modeset(crtc->state) &&
12665                     !to_intel_crtc_state(crtc->state)->update_pipe)
12666                         continue;
12667
12668                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12669                 pipe_config = to_intel_crtc_state(old_crtc_state);
12670                 memset(pipe_config, 0, sizeof(*pipe_config));
12671                 pipe_config->base.crtc = crtc;
12672                 pipe_config->base.state = old_state;
12673
12674                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12675                               crtc->base.id);
12676
12677                 active = dev_priv->display.get_pipe_config(intel_crtc,
12678                                                            pipe_config);
12679
12680                 /* hw state is inconsistent with the pipe quirk */
12681                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12682                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12683                         active = crtc->state->active;
12684
12685                 I915_STATE_WARN(crtc->state->active != active,
12686                      "crtc active state doesn't match with hw state "
12687                      "(expected %i, found %i)\n", crtc->state->active, active);
12688
12689                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12690                      "transitional active state does not match atomic hw state "
12691                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12692
12693                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12694                         enum pipe pipe;
12695
12696                         active = encoder->get_hw_state(encoder, &pipe);
12697                         I915_STATE_WARN(active != crtc->state->active,
12698                                 "[ENCODER:%i] active %i with crtc active %i\n",
12699                                 encoder->base.base.id, active, crtc->state->active);
12700
12701                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12702                                         "Encoder connected to wrong pipe %c\n",
12703                                         pipe_name(pipe));
12704
12705                         if (active)
12706                                 encoder->get_config(encoder, pipe_config);
12707                 }
12708
12709                 if (!crtc->state->active)
12710                         continue;
12711
12712                 sw_config = to_intel_crtc_state(crtc->state);
12713                 if (!intel_pipe_config_compare(dev, sw_config,
12714                                                pipe_config, false)) {
12715                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12716                         intel_dump_pipe_config(intel_crtc, pipe_config,
12717                                                "[hw state]");
12718                         intel_dump_pipe_config(intel_crtc, sw_config,
12719                                                "[sw state]");
12720                 }
12721         }
12722 }
12723
12724 static void
12725 check_shared_dpll_state(struct drm_device *dev)
12726 {
12727         struct drm_i915_private *dev_priv = dev->dev_private;
12728         struct intel_crtc *crtc;
12729         struct intel_dpll_hw_state dpll_hw_state;
12730         int i;
12731
12732         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12733                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12734                 int enabled_crtcs = 0, active_crtcs = 0;
12735                 bool active;
12736
12737                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12738
12739                 DRM_DEBUG_KMS("%s\n", pll->name);
12740
12741                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12742
12743                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12744                      "more active pll users than references: %i vs %i\n",
12745                      pll->active, hweight32(pll->config.crtc_mask));
12746                 I915_STATE_WARN(pll->active && !pll->on,
12747                      "pll in active use but not on in sw tracking\n");
12748                 I915_STATE_WARN(pll->on && !pll->active,
12749                      "pll in on but not on in use in sw tracking\n");
12750                 I915_STATE_WARN(pll->on != active,
12751                      "pll on state mismatch (expected %i, found %i)\n",
12752                      pll->on, active);
12753
12754                 for_each_intel_crtc(dev, crtc) {
12755                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12756                                 enabled_crtcs++;
12757                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12758                                 active_crtcs++;
12759                 }
12760                 I915_STATE_WARN(pll->active != active_crtcs,
12761                      "pll active crtcs mismatch (expected %i, found %i)\n",
12762                      pll->active, active_crtcs);
12763                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12764                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12765                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12766
12767                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12768                                        sizeof(dpll_hw_state)),
12769                      "pll hw state mismatch\n");
12770         }
12771 }
12772
12773 static void
12774 intel_modeset_check_state(struct drm_device *dev,
12775                           struct drm_atomic_state *old_state)
12776 {
12777         check_wm_state(dev);
12778         check_connector_state(dev, old_state);
12779         check_encoder_state(dev);
12780         check_crtc_state(dev, old_state);
12781         check_shared_dpll_state(dev);
12782 }
12783
12784 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12785                                      int dotclock)
12786 {
12787         /*
12788          * FDI already provided one idea for the dotclock.
12789          * Yell if the encoder disagrees.
12790          */
12791         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12792              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12793              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12794 }
12795
12796 static void update_scanline_offset(struct intel_crtc *crtc)
12797 {
12798         struct drm_device *dev = crtc->base.dev;
12799
12800         /*
12801          * The scanline counter increments at the leading edge of hsync.
12802          *
12803          * On most platforms it starts counting from vtotal-1 on the
12804          * first active line. That means the scanline counter value is
12805          * always one less than what we would expect. Ie. just after
12806          * start of vblank, which also occurs at start of hsync (on the
12807          * last active line), the scanline counter will read vblank_start-1.
12808          *
12809          * On gen2 the scanline counter starts counting from 1 instead
12810          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12811          * to keep the value positive), instead of adding one.
12812          *
12813          * On HSW+ the behaviour of the scanline counter depends on the output
12814          * type. For DP ports it behaves like most other platforms, but on HDMI
12815          * there's an extra 1 line difference. So we need to add two instead of
12816          * one to the value.
12817          */
12818         if (IS_GEN2(dev)) {
12819                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12820                 int vtotal;
12821
12822                 vtotal = adjusted_mode->crtc_vtotal;
12823                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12824                         vtotal /= 2;
12825
12826                 crtc->scanline_offset = vtotal - 1;
12827         } else if (HAS_DDI(dev) &&
12828                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12829                 crtc->scanline_offset = 2;
12830         } else
12831                 crtc->scanline_offset = 1;
12832 }
12833
12834 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12835 {
12836         struct drm_device *dev = state->dev;
12837         struct drm_i915_private *dev_priv = to_i915(dev);
12838         struct intel_shared_dpll_config *shared_dpll = NULL;
12839         struct intel_crtc *intel_crtc;
12840         struct intel_crtc_state *intel_crtc_state;
12841         struct drm_crtc *crtc;
12842         struct drm_crtc_state *crtc_state;
12843         int i;
12844
12845         if (!dev_priv->display.crtc_compute_clock)
12846                 return;
12847
12848         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12849                 int dpll;
12850
12851                 intel_crtc = to_intel_crtc(crtc);
12852                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12853                 dpll = intel_crtc_state->shared_dpll;
12854
12855                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12856                         continue;
12857
12858                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12859
12860                 if (!shared_dpll)
12861                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
12862
12863                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12864         }
12865 }
12866
12867 /*
12868  * This implements the workaround described in the "notes" section of the mode
12869  * set sequence documentation. When going from no pipes or single pipe to
12870  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12871  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12872  */
12873 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12874 {
12875         struct drm_crtc_state *crtc_state;
12876         struct intel_crtc *intel_crtc;
12877         struct drm_crtc *crtc;
12878         struct intel_crtc_state *first_crtc_state = NULL;
12879         struct intel_crtc_state *other_crtc_state = NULL;
12880         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12881         int i;
12882
12883         /* look at all crtc's that are going to be enabled in during modeset */
12884         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12885                 intel_crtc = to_intel_crtc(crtc);
12886
12887                 if (!crtc_state->active || !needs_modeset(crtc_state))
12888                         continue;
12889
12890                 if (first_crtc_state) {
12891                         other_crtc_state = to_intel_crtc_state(crtc_state);
12892                         break;
12893                 } else {
12894                         first_crtc_state = to_intel_crtc_state(crtc_state);
12895                         first_pipe = intel_crtc->pipe;
12896                 }
12897         }
12898
12899         /* No workaround needed? */
12900         if (!first_crtc_state)
12901                 return 0;
12902
12903         /* w/a possibly needed, check how many crtc's are already enabled. */
12904         for_each_intel_crtc(state->dev, intel_crtc) {
12905                 struct intel_crtc_state *pipe_config;
12906
12907                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12908                 if (IS_ERR(pipe_config))
12909                         return PTR_ERR(pipe_config);
12910
12911                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12912
12913                 if (!pipe_config->base.active ||
12914                     needs_modeset(&pipe_config->base))
12915                         continue;
12916
12917                 /* 2 or more enabled crtcs means no need for w/a */
12918                 if (enabled_pipe != INVALID_PIPE)
12919                         return 0;
12920
12921                 enabled_pipe = intel_crtc->pipe;
12922         }
12923
12924         if (enabled_pipe != INVALID_PIPE)
12925                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12926         else if (other_crtc_state)
12927                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12928
12929         return 0;
12930 }
12931
12932 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12933 {
12934         struct drm_crtc *crtc;
12935         struct drm_crtc_state *crtc_state;
12936         int ret = 0;
12937
12938         /* add all active pipes to the state */
12939         for_each_crtc(state->dev, crtc) {
12940                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12941                 if (IS_ERR(crtc_state))
12942                         return PTR_ERR(crtc_state);
12943
12944                 if (!crtc_state->active || needs_modeset(crtc_state))
12945                         continue;
12946
12947                 crtc_state->mode_changed = true;
12948
12949                 ret = drm_atomic_add_affected_connectors(state, crtc);
12950                 if (ret)
12951                         break;
12952
12953                 ret = drm_atomic_add_affected_planes(state, crtc);
12954                 if (ret)
12955                         break;
12956         }
12957
12958         return ret;
12959 }
12960
12961 static int intel_modeset_checks(struct drm_atomic_state *state)
12962 {
12963         struct drm_device *dev = state->dev;
12964         struct drm_i915_private *dev_priv = dev->dev_private;
12965         int ret;
12966
12967         if (!check_digital_port_conflicts(state)) {
12968                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12969                 return -EINVAL;
12970         }
12971
12972         /*
12973          * See if the config requires any additional preparation, e.g.
12974          * to adjust global state with pipes off.  We need to do this
12975          * here so we can get the modeset_pipe updated config for the new
12976          * mode set on this crtc.  For other crtcs we need to use the
12977          * adjusted_mode bits in the crtc directly.
12978          */
12979         if (dev_priv->display.modeset_calc_cdclk) {
12980                 unsigned int cdclk;
12981
12982                 ret = dev_priv->display.modeset_calc_cdclk(state);
12983
12984                 cdclk = to_intel_atomic_state(state)->cdclk;
12985                 if (!ret && cdclk != dev_priv->cdclk_freq)
12986                         ret = intel_modeset_all_pipes(state);
12987
12988                 if (ret < 0)
12989                         return ret;
12990         } else
12991                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
12992
12993         intel_modeset_clear_plls(state);
12994
12995         if (IS_HASWELL(dev))
12996                 return haswell_mode_set_planes_workaround(state);
12997
12998         return 0;
12999 }
13000
13001 /**
13002  * intel_atomic_check - validate state object
13003  * @dev: drm device
13004  * @state: state to validate
13005  */
13006 static int intel_atomic_check(struct drm_device *dev,
13007                               struct drm_atomic_state *state)
13008 {
13009         struct drm_crtc *crtc;
13010         struct drm_crtc_state *crtc_state;
13011         int ret, i;
13012         bool any_ms = false;
13013
13014         ret = drm_atomic_helper_check_modeset(dev, state);
13015         if (ret)
13016                 return ret;
13017
13018         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13019                 struct intel_crtc_state *pipe_config =
13020                         to_intel_crtc_state(crtc_state);
13021
13022                 /* Catch I915_MODE_FLAG_INHERITED */
13023                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13024                         crtc_state->mode_changed = true;
13025
13026                 if (!crtc_state->enable) {
13027                         if (needs_modeset(crtc_state))
13028                                 any_ms = true;
13029                         continue;
13030                 }
13031
13032                 if (!needs_modeset(crtc_state))
13033                         continue;
13034
13035                 /* FIXME: For only active_changed we shouldn't need to do any
13036                  * state recomputation at all. */
13037
13038                 ret = drm_atomic_add_affected_connectors(state, crtc);
13039                 if (ret)
13040                         return ret;
13041
13042                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13043                 if (ret)
13044                         return ret;
13045
13046                 if (intel_pipe_config_compare(state->dev,
13047                                         to_intel_crtc_state(crtc->state),
13048                                         pipe_config, true)) {
13049                         crtc_state->mode_changed = false;
13050                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13051                 }
13052
13053                 if (needs_modeset(crtc_state)) {
13054                         any_ms = true;
13055
13056                         ret = drm_atomic_add_affected_planes(state, crtc);
13057                         if (ret)
13058                                 return ret;
13059                 }
13060
13061                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13062                                        needs_modeset(crtc_state) ?
13063                                        "[modeset]" : "[fastset]");
13064         }
13065
13066         if (any_ms) {
13067                 ret = intel_modeset_checks(state);
13068
13069                 if (ret)
13070                         return ret;
13071         } else
13072                 to_intel_atomic_state(state)->cdclk =
13073                         to_i915(state->dev)->cdclk_freq;
13074
13075         return drm_atomic_helper_check_planes(state->dev, state);
13076 }
13077
13078 /**
13079  * intel_atomic_commit - commit validated state object
13080  * @dev: DRM device
13081  * @state: the top-level driver state object
13082  * @async: asynchronous commit
13083  *
13084  * This function commits a top-level state object that has been validated
13085  * with drm_atomic_helper_check().
13086  *
13087  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13088  * we can only handle plane-related operations and do not yet support
13089  * asynchronous commit.
13090  *
13091  * RETURNS
13092  * Zero for success or -errno.
13093  */
13094 static int intel_atomic_commit(struct drm_device *dev,
13095                                struct drm_atomic_state *state,
13096                                bool async)
13097 {
13098         struct drm_i915_private *dev_priv = dev->dev_private;
13099         struct drm_crtc *crtc;
13100         struct drm_crtc_state *crtc_state;
13101         int ret = 0;
13102         int i;
13103         bool any_ms = false;
13104
13105         if (async) {
13106                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13107                 return -EINVAL;
13108         }
13109
13110         ret = drm_atomic_helper_prepare_planes(dev, state);
13111         if (ret)
13112                 return ret;
13113
13114         drm_atomic_helper_swap_state(dev, state);
13115
13116         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13117                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13118
13119                 if (!needs_modeset(crtc->state))
13120                         continue;
13121
13122                 any_ms = true;
13123                 intel_pre_plane_update(intel_crtc);
13124
13125                 if (crtc_state->active) {
13126                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13127                         dev_priv->display.crtc_disable(crtc);
13128                         intel_crtc->active = false;
13129                         intel_disable_shared_dpll(intel_crtc);
13130                 }
13131         }
13132
13133         /* Only after disabling all output pipelines that will be changed can we
13134          * update the the output configuration. */
13135         intel_modeset_update_crtc_state(state);
13136
13137         if (any_ms) {
13138                 intel_shared_dpll_commit(state);
13139
13140                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13141                 modeset_update_crtc_power_domains(state);
13142         }
13143
13144         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13145         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13146                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13147                 bool modeset = needs_modeset(crtc->state);
13148                 bool update_pipe = !modeset &&
13149                         to_intel_crtc_state(crtc->state)->update_pipe;
13150                 unsigned long put_domains = 0;
13151
13152                 if (modeset && crtc->state->active) {
13153                         update_scanline_offset(to_intel_crtc(crtc));
13154                         dev_priv->display.crtc_enable(crtc);
13155                 }
13156
13157                 if (update_pipe) {
13158                         put_domains = modeset_get_crtc_power_domains(crtc);
13159
13160                         /* make sure intel_modeset_check_state runs */
13161                         any_ms = true;
13162                 }
13163
13164                 if (!modeset)
13165                         intel_pre_plane_update(intel_crtc);
13166
13167                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13168
13169                 if (put_domains)
13170                         modeset_put_power_domains(dev_priv, put_domains);
13171
13172                 intel_post_plane_update(intel_crtc);
13173         }
13174
13175         /* FIXME: add subpixel order */
13176
13177         drm_atomic_helper_wait_for_vblanks(dev, state);
13178         drm_atomic_helper_cleanup_planes(dev, state);
13179
13180         if (any_ms)
13181                 intel_modeset_check_state(dev, state);
13182
13183         drm_atomic_state_free(state);
13184
13185         return 0;
13186 }
13187
13188 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13189 {
13190         struct drm_device *dev = crtc->dev;
13191         struct drm_atomic_state *state;
13192         struct drm_crtc_state *crtc_state;
13193         int ret;
13194
13195         state = drm_atomic_state_alloc(dev);
13196         if (!state) {
13197                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13198                               crtc->base.id);
13199                 return;
13200         }
13201
13202         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13203
13204 retry:
13205         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13206         ret = PTR_ERR_OR_ZERO(crtc_state);
13207         if (!ret) {
13208                 if (!crtc_state->active)
13209                         goto out;
13210
13211                 crtc_state->mode_changed = true;
13212                 ret = drm_atomic_commit(state);
13213         }
13214
13215         if (ret == -EDEADLK) {
13216                 drm_atomic_state_clear(state);
13217                 drm_modeset_backoff(state->acquire_ctx);
13218                 goto retry;
13219         }
13220
13221         if (ret)
13222 out:
13223                 drm_atomic_state_free(state);
13224 }
13225
13226 #undef for_each_intel_crtc_masked
13227
13228 static const struct drm_crtc_funcs intel_crtc_funcs = {
13229         .gamma_set = intel_crtc_gamma_set,
13230         .set_config = drm_atomic_helper_set_config,
13231         .destroy = intel_crtc_destroy,
13232         .page_flip = intel_crtc_page_flip,
13233         .atomic_duplicate_state = intel_crtc_duplicate_state,
13234         .atomic_destroy_state = intel_crtc_destroy_state,
13235 };
13236
13237 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13238                                       struct intel_shared_dpll *pll,
13239                                       struct intel_dpll_hw_state *hw_state)
13240 {
13241         uint32_t val;
13242
13243         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13244                 return false;
13245
13246         val = I915_READ(PCH_DPLL(pll->id));
13247         hw_state->dpll = val;
13248         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13249         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13250
13251         return val & DPLL_VCO_ENABLE;
13252 }
13253
13254 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13255                                   struct intel_shared_dpll *pll)
13256 {
13257         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13258         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13259 }
13260
13261 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13262                                 struct intel_shared_dpll *pll)
13263 {
13264         /* PCH refclock must be enabled first */
13265         ibx_assert_pch_refclk_enabled(dev_priv);
13266
13267         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13268
13269         /* Wait for the clocks to stabilize. */
13270         POSTING_READ(PCH_DPLL(pll->id));
13271         udelay(150);
13272
13273         /* The pixel multiplier can only be updated once the
13274          * DPLL is enabled and the clocks are stable.
13275          *
13276          * So write it again.
13277          */
13278         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13279         POSTING_READ(PCH_DPLL(pll->id));
13280         udelay(200);
13281 }
13282
13283 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13284                                  struct intel_shared_dpll *pll)
13285 {
13286         struct drm_device *dev = dev_priv->dev;
13287         struct intel_crtc *crtc;
13288
13289         /* Make sure no transcoder isn't still depending on us. */
13290         for_each_intel_crtc(dev, crtc) {
13291                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13292                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13293         }
13294
13295         I915_WRITE(PCH_DPLL(pll->id), 0);
13296         POSTING_READ(PCH_DPLL(pll->id));
13297         udelay(200);
13298 }
13299
13300 static char *ibx_pch_dpll_names[] = {
13301         "PCH DPLL A",
13302         "PCH DPLL B",
13303 };
13304
13305 static void ibx_pch_dpll_init(struct drm_device *dev)
13306 {
13307         struct drm_i915_private *dev_priv = dev->dev_private;
13308         int i;
13309
13310         dev_priv->num_shared_dpll = 2;
13311
13312         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13313                 dev_priv->shared_dplls[i].id = i;
13314                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13315                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13316                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13317                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13318                 dev_priv->shared_dplls[i].get_hw_state =
13319                         ibx_pch_dpll_get_hw_state;
13320         }
13321 }
13322
13323 static void intel_shared_dpll_init(struct drm_device *dev)
13324 {
13325         struct drm_i915_private *dev_priv = dev->dev_private;
13326
13327         if (HAS_DDI(dev))
13328                 intel_ddi_pll_init(dev);
13329         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13330                 ibx_pch_dpll_init(dev);
13331         else
13332                 dev_priv->num_shared_dpll = 0;
13333
13334         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13335 }
13336
13337 /**
13338  * intel_prepare_plane_fb - Prepare fb for usage on plane
13339  * @plane: drm plane to prepare for
13340  * @fb: framebuffer to prepare for presentation
13341  *
13342  * Prepares a framebuffer for usage on a display plane.  Generally this
13343  * involves pinning the underlying object and updating the frontbuffer tracking
13344  * bits.  Some older platforms need special physical address handling for
13345  * cursor planes.
13346  *
13347  * Returns 0 on success, negative error code on failure.
13348  */
13349 int
13350 intel_prepare_plane_fb(struct drm_plane *plane,
13351                        const struct drm_plane_state *new_state)
13352 {
13353         struct drm_device *dev = plane->dev;
13354         struct drm_framebuffer *fb = new_state->fb;
13355         struct intel_plane *intel_plane = to_intel_plane(plane);
13356         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13357         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13358         int ret = 0;
13359
13360         if (!obj)
13361                 return 0;
13362
13363         mutex_lock(&dev->struct_mutex);
13364
13365         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13366             INTEL_INFO(dev)->cursor_needs_physical) {
13367                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13368                 ret = i915_gem_object_attach_phys(obj, align);
13369                 if (ret)
13370                         DRM_DEBUG_KMS("failed to attach phys object\n");
13371         } else {
13372                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13373         }
13374
13375         if (ret == 0)
13376                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13377
13378         mutex_unlock(&dev->struct_mutex);
13379
13380         return ret;
13381 }
13382
13383 /**
13384  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13385  * @plane: drm plane to clean up for
13386  * @fb: old framebuffer that was on plane
13387  *
13388  * Cleans up a framebuffer that has just been removed from a plane.
13389  */
13390 void
13391 intel_cleanup_plane_fb(struct drm_plane *plane,
13392                        const struct drm_plane_state *old_state)
13393 {
13394         struct drm_device *dev = plane->dev;
13395         struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13396
13397         if (!obj)
13398                 return;
13399
13400         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13401             !INTEL_INFO(dev)->cursor_needs_physical) {
13402                 mutex_lock(&dev->struct_mutex);
13403                 intel_unpin_fb_obj(old_state->fb, old_state);
13404                 mutex_unlock(&dev->struct_mutex);
13405         }
13406 }
13407
13408 int
13409 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13410 {
13411         int max_scale;
13412         struct drm_device *dev;
13413         struct drm_i915_private *dev_priv;
13414         int crtc_clock, cdclk;
13415
13416         if (!intel_crtc || !crtc_state)
13417                 return DRM_PLANE_HELPER_NO_SCALING;
13418
13419         dev = intel_crtc->base.dev;
13420         dev_priv = dev->dev_private;
13421         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13422         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13423
13424         if (!crtc_clock || !cdclk)
13425                 return DRM_PLANE_HELPER_NO_SCALING;
13426
13427         /*
13428          * skl max scale is lower of:
13429          *    close to 3 but not 3, -1 is for that purpose
13430          *            or
13431          *    cdclk/crtc_clock
13432          */
13433         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13434
13435         return max_scale;
13436 }
13437
13438 static int
13439 intel_check_primary_plane(struct drm_plane *plane,
13440                           struct intel_crtc_state *crtc_state,
13441                           struct intel_plane_state *state)
13442 {
13443         struct drm_crtc *crtc = state->base.crtc;
13444         struct drm_framebuffer *fb = state->base.fb;
13445         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13446         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13447         bool can_position = false;
13448
13449         /* use scaler when colorkey is not required */
13450         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13451             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13452                 min_scale = 1;
13453                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13454                 can_position = true;
13455         }
13456
13457         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13458                                              &state->dst, &state->clip,
13459                                              min_scale, max_scale,
13460                                              can_position, true,
13461                                              &state->visible);
13462 }
13463
13464 static void
13465 intel_commit_primary_plane(struct drm_plane *plane,
13466                            struct intel_plane_state *state)
13467 {
13468         struct drm_crtc *crtc = state->base.crtc;
13469         struct drm_framebuffer *fb = state->base.fb;
13470         struct drm_device *dev = plane->dev;
13471         struct drm_i915_private *dev_priv = dev->dev_private;
13472         struct intel_crtc *intel_crtc;
13473         struct drm_rect *src = &state->src;
13474
13475         crtc = crtc ? crtc : plane->crtc;
13476         intel_crtc = to_intel_crtc(crtc);
13477
13478         plane->fb = fb;
13479         crtc->x = src->x1 >> 16;
13480         crtc->y = src->y1 >> 16;
13481
13482         if (!crtc->state->active)
13483                 return;
13484
13485         dev_priv->display.update_primary_plane(crtc, fb,
13486                                                state->src.x1 >> 16,
13487                                                state->src.y1 >> 16);
13488 }
13489
13490 static void
13491 intel_disable_primary_plane(struct drm_plane *plane,
13492                             struct drm_crtc *crtc)
13493 {
13494         struct drm_device *dev = plane->dev;
13495         struct drm_i915_private *dev_priv = dev->dev_private;
13496
13497         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13498 }
13499
13500 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13501                                     struct drm_crtc_state *old_crtc_state)
13502 {
13503         struct drm_device *dev = crtc->dev;
13504         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13505         struct intel_crtc_state *old_intel_state =
13506                 to_intel_crtc_state(old_crtc_state);
13507         bool modeset = needs_modeset(crtc->state);
13508
13509         if (intel_crtc->atomic.update_wm_pre)
13510                 intel_update_watermarks(crtc);
13511
13512         /* Perform vblank evasion around commit operation */
13513         if (crtc->state->active)
13514                 intel_pipe_update_start(intel_crtc);
13515
13516         if (modeset)
13517                 return;
13518
13519         if (to_intel_crtc_state(crtc->state)->update_pipe)
13520                 intel_update_pipe_config(intel_crtc, old_intel_state);
13521         else if (INTEL_INFO(dev)->gen >= 9)
13522                 skl_detach_scalers(intel_crtc);
13523 }
13524
13525 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13526                                      struct drm_crtc_state *old_crtc_state)
13527 {
13528         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13529
13530         if (crtc->state->active)
13531                 intel_pipe_update_end(intel_crtc);
13532 }
13533
13534 /**
13535  * intel_plane_destroy - destroy a plane
13536  * @plane: plane to destroy
13537  *
13538  * Common destruction function for all types of planes (primary, cursor,
13539  * sprite).
13540  */
13541 void intel_plane_destroy(struct drm_plane *plane)
13542 {
13543         struct intel_plane *intel_plane = to_intel_plane(plane);
13544         drm_plane_cleanup(plane);
13545         kfree(intel_plane);
13546 }
13547
13548 const struct drm_plane_funcs intel_plane_funcs = {
13549         .update_plane = drm_atomic_helper_update_plane,
13550         .disable_plane = drm_atomic_helper_disable_plane,
13551         .destroy = intel_plane_destroy,
13552         .set_property = drm_atomic_helper_plane_set_property,
13553         .atomic_get_property = intel_plane_atomic_get_property,
13554         .atomic_set_property = intel_plane_atomic_set_property,
13555         .atomic_duplicate_state = intel_plane_duplicate_state,
13556         .atomic_destroy_state = intel_plane_destroy_state,
13557
13558 };
13559
13560 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13561                                                     int pipe)
13562 {
13563         struct intel_plane *primary;
13564         struct intel_plane_state *state;
13565         const uint32_t *intel_primary_formats;
13566         unsigned int num_formats;
13567
13568         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13569         if (primary == NULL)
13570                 return NULL;
13571
13572         state = intel_create_plane_state(&primary->base);
13573         if (!state) {
13574                 kfree(primary);
13575                 return NULL;
13576         }
13577         primary->base.state = &state->base;
13578
13579         primary->can_scale = false;
13580         primary->max_downscale = 1;
13581         if (INTEL_INFO(dev)->gen >= 9) {
13582                 primary->can_scale = true;
13583                 state->scaler_id = -1;
13584         }
13585         primary->pipe = pipe;
13586         primary->plane = pipe;
13587         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13588         primary->check_plane = intel_check_primary_plane;
13589         primary->commit_plane = intel_commit_primary_plane;
13590         primary->disable_plane = intel_disable_primary_plane;
13591         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13592                 primary->plane = !pipe;
13593
13594         if (INTEL_INFO(dev)->gen >= 9) {
13595                 intel_primary_formats = skl_primary_formats;
13596                 num_formats = ARRAY_SIZE(skl_primary_formats);
13597         } else if (INTEL_INFO(dev)->gen >= 4) {
13598                 intel_primary_formats = i965_primary_formats;
13599                 num_formats = ARRAY_SIZE(i965_primary_formats);
13600         } else {
13601                 intel_primary_formats = i8xx_primary_formats;
13602                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13603         }
13604
13605         drm_universal_plane_init(dev, &primary->base, 0,
13606                                  &intel_plane_funcs,
13607                                  intel_primary_formats, num_formats,
13608                                  DRM_PLANE_TYPE_PRIMARY);
13609
13610         if (INTEL_INFO(dev)->gen >= 4)
13611                 intel_create_rotation_property(dev, primary);
13612
13613         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13614
13615         return &primary->base;
13616 }
13617
13618 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13619 {
13620         if (!dev->mode_config.rotation_property) {
13621                 unsigned long flags = BIT(DRM_ROTATE_0) |
13622                         BIT(DRM_ROTATE_180);
13623
13624                 if (INTEL_INFO(dev)->gen >= 9)
13625                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13626
13627                 dev->mode_config.rotation_property =
13628                         drm_mode_create_rotation_property(dev, flags);
13629         }
13630         if (dev->mode_config.rotation_property)
13631                 drm_object_attach_property(&plane->base.base,
13632                                 dev->mode_config.rotation_property,
13633                                 plane->base.state->rotation);
13634 }
13635
13636 static int
13637 intel_check_cursor_plane(struct drm_plane *plane,
13638                          struct intel_crtc_state *crtc_state,
13639                          struct intel_plane_state *state)
13640 {
13641         struct drm_crtc *crtc = crtc_state->base.crtc;
13642         struct drm_framebuffer *fb = state->base.fb;
13643         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13644         unsigned stride;
13645         int ret;
13646
13647         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13648                                             &state->dst, &state->clip,
13649                                             DRM_PLANE_HELPER_NO_SCALING,
13650                                             DRM_PLANE_HELPER_NO_SCALING,
13651                                             true, true, &state->visible);
13652         if (ret)
13653                 return ret;
13654
13655         /* if we want to turn off the cursor ignore width and height */
13656         if (!obj)
13657                 return 0;
13658
13659         /* Check for which cursor types we support */
13660         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13661                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13662                           state->base.crtc_w, state->base.crtc_h);
13663                 return -EINVAL;
13664         }
13665
13666         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13667         if (obj->base.size < stride * state->base.crtc_h) {
13668                 DRM_DEBUG_KMS("buffer is too small\n");
13669                 return -ENOMEM;
13670         }
13671
13672         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13673                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13674                 return -EINVAL;
13675         }
13676
13677         return 0;
13678 }
13679
13680 static void
13681 intel_disable_cursor_plane(struct drm_plane *plane,
13682                            struct drm_crtc *crtc)
13683 {
13684         intel_crtc_update_cursor(crtc, false);
13685 }
13686
13687 static void
13688 intel_commit_cursor_plane(struct drm_plane *plane,
13689                           struct intel_plane_state *state)
13690 {
13691         struct drm_crtc *crtc = state->base.crtc;
13692         struct drm_device *dev = plane->dev;
13693         struct intel_crtc *intel_crtc;
13694         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13695         uint32_t addr;
13696
13697         crtc = crtc ? crtc : plane->crtc;
13698         intel_crtc = to_intel_crtc(crtc);
13699
13700         if (intel_crtc->cursor_bo == obj)
13701                 goto update;
13702
13703         if (!obj)
13704                 addr = 0;
13705         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13706                 addr = i915_gem_obj_ggtt_offset(obj);
13707         else
13708                 addr = obj->phys_handle->busaddr;
13709
13710         intel_crtc->cursor_addr = addr;
13711         intel_crtc->cursor_bo = obj;
13712
13713 update:
13714         if (crtc->state->active)
13715                 intel_crtc_update_cursor(crtc, state->visible);
13716 }
13717
13718 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13719                                                    int pipe)
13720 {
13721         struct intel_plane *cursor;
13722         struct intel_plane_state *state;
13723
13724         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13725         if (cursor == NULL)
13726                 return NULL;
13727
13728         state = intel_create_plane_state(&cursor->base);
13729         if (!state) {
13730                 kfree(cursor);
13731                 return NULL;
13732         }
13733         cursor->base.state = &state->base;
13734
13735         cursor->can_scale = false;
13736         cursor->max_downscale = 1;
13737         cursor->pipe = pipe;
13738         cursor->plane = pipe;
13739         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13740         cursor->check_plane = intel_check_cursor_plane;
13741         cursor->commit_plane = intel_commit_cursor_plane;
13742         cursor->disable_plane = intel_disable_cursor_plane;
13743
13744         drm_universal_plane_init(dev, &cursor->base, 0,
13745                                  &intel_plane_funcs,
13746                                  intel_cursor_formats,
13747                                  ARRAY_SIZE(intel_cursor_formats),
13748                                  DRM_PLANE_TYPE_CURSOR);
13749
13750         if (INTEL_INFO(dev)->gen >= 4) {
13751                 if (!dev->mode_config.rotation_property)
13752                         dev->mode_config.rotation_property =
13753                                 drm_mode_create_rotation_property(dev,
13754                                                         BIT(DRM_ROTATE_0) |
13755                                                         BIT(DRM_ROTATE_180));
13756                 if (dev->mode_config.rotation_property)
13757                         drm_object_attach_property(&cursor->base.base,
13758                                 dev->mode_config.rotation_property,
13759                                 state->base.rotation);
13760         }
13761
13762         if (INTEL_INFO(dev)->gen >=9)
13763                 state->scaler_id = -1;
13764
13765         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13766
13767         return &cursor->base;
13768 }
13769
13770 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13771         struct intel_crtc_state *crtc_state)
13772 {
13773         int i;
13774         struct intel_scaler *intel_scaler;
13775         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13776
13777         for (i = 0; i < intel_crtc->num_scalers; i++) {
13778                 intel_scaler = &scaler_state->scalers[i];
13779                 intel_scaler->in_use = 0;
13780                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13781         }
13782
13783         scaler_state->scaler_id = -1;
13784 }
13785
13786 static void intel_crtc_init(struct drm_device *dev, int pipe)
13787 {
13788         struct drm_i915_private *dev_priv = dev->dev_private;
13789         struct intel_crtc *intel_crtc;
13790         struct intel_crtc_state *crtc_state = NULL;
13791         struct drm_plane *primary = NULL;
13792         struct drm_plane *cursor = NULL;
13793         int i, ret;
13794
13795         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13796         if (intel_crtc == NULL)
13797                 return;
13798
13799         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13800         if (!crtc_state)
13801                 goto fail;
13802         intel_crtc->config = crtc_state;
13803         intel_crtc->base.state = &crtc_state->base;
13804         crtc_state->base.crtc = &intel_crtc->base;
13805
13806         /* initialize shared scalers */
13807         if (INTEL_INFO(dev)->gen >= 9) {
13808                 if (pipe == PIPE_C)
13809                         intel_crtc->num_scalers = 1;
13810                 else
13811                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13812
13813                 skl_init_scalers(dev, intel_crtc, crtc_state);
13814         }
13815
13816         primary = intel_primary_plane_create(dev, pipe);
13817         if (!primary)
13818                 goto fail;
13819
13820         cursor = intel_cursor_plane_create(dev, pipe);
13821         if (!cursor)
13822                 goto fail;
13823
13824         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13825                                         cursor, &intel_crtc_funcs);
13826         if (ret)
13827                 goto fail;
13828
13829         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13830         for (i = 0; i < 256; i++) {
13831                 intel_crtc->lut_r[i] = i;
13832                 intel_crtc->lut_g[i] = i;
13833                 intel_crtc->lut_b[i] = i;
13834         }
13835
13836         /*
13837          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13838          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13839          */
13840         intel_crtc->pipe = pipe;
13841         intel_crtc->plane = pipe;
13842         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13843                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13844                 intel_crtc->plane = !pipe;
13845         }
13846
13847         intel_crtc->cursor_base = ~0;
13848         intel_crtc->cursor_cntl = ~0;
13849         intel_crtc->cursor_size = ~0;
13850
13851         intel_crtc->wm.cxsr_allowed = true;
13852
13853         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13854                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13855         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13856         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13857
13858         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13859
13860         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13861         return;
13862
13863 fail:
13864         if (primary)
13865                 drm_plane_cleanup(primary);
13866         if (cursor)
13867                 drm_plane_cleanup(cursor);
13868         kfree(crtc_state);
13869         kfree(intel_crtc);
13870 }
13871
13872 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13873 {
13874         struct drm_encoder *encoder = connector->base.encoder;
13875         struct drm_device *dev = connector->base.dev;
13876
13877         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13878
13879         if (!encoder || WARN_ON(!encoder->crtc))
13880                 return INVALID_PIPE;
13881
13882         return to_intel_crtc(encoder->crtc)->pipe;
13883 }
13884
13885 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13886                                 struct drm_file *file)
13887 {
13888         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13889         struct drm_crtc *drmmode_crtc;
13890         struct intel_crtc *crtc;
13891
13892         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13893
13894         if (!drmmode_crtc) {
13895                 DRM_ERROR("no such CRTC id\n");
13896                 return -ENOENT;
13897         }
13898
13899         crtc = to_intel_crtc(drmmode_crtc);
13900         pipe_from_crtc_id->pipe = crtc->pipe;
13901
13902         return 0;
13903 }
13904
13905 static int intel_encoder_clones(struct intel_encoder *encoder)
13906 {
13907         struct drm_device *dev = encoder->base.dev;
13908         struct intel_encoder *source_encoder;
13909         int index_mask = 0;
13910         int entry = 0;
13911
13912         for_each_intel_encoder(dev, source_encoder) {
13913                 if (encoders_cloneable(encoder, source_encoder))
13914                         index_mask |= (1 << entry);
13915
13916                 entry++;
13917         }
13918
13919         return index_mask;
13920 }
13921
13922 static bool has_edp_a(struct drm_device *dev)
13923 {
13924         struct drm_i915_private *dev_priv = dev->dev_private;
13925
13926         if (!IS_MOBILE(dev))
13927                 return false;
13928
13929         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13930                 return false;
13931
13932         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13933                 return false;
13934
13935         return true;
13936 }
13937
13938 static bool intel_crt_present(struct drm_device *dev)
13939 {
13940         struct drm_i915_private *dev_priv = dev->dev_private;
13941
13942         if (INTEL_INFO(dev)->gen >= 9)
13943                 return false;
13944
13945         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13946                 return false;
13947
13948         if (IS_CHERRYVIEW(dev))
13949                 return false;
13950
13951         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13952                 return false;
13953
13954         return true;
13955 }
13956
13957 static void intel_setup_outputs(struct drm_device *dev)
13958 {
13959         struct drm_i915_private *dev_priv = dev->dev_private;
13960         struct intel_encoder *encoder;
13961         bool dpd_is_edp = false;
13962
13963         intel_lvds_init(dev);
13964
13965         if (intel_crt_present(dev))
13966                 intel_crt_init(dev);
13967
13968         if (IS_BROXTON(dev)) {
13969                 /*
13970                  * FIXME: Broxton doesn't support port detection via the
13971                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13972                  * detect the ports.
13973                  */
13974                 intel_ddi_init(dev, PORT_A);
13975                 intel_ddi_init(dev, PORT_B);
13976                 intel_ddi_init(dev, PORT_C);
13977         } else if (HAS_DDI(dev)) {
13978                 int found;
13979
13980                 /*
13981                  * Haswell uses DDI functions to detect digital outputs.
13982                  * On SKL pre-D0 the strap isn't connected, so we assume
13983                  * it's there.
13984                  */
13985                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
13986                 /* WaIgnoreDDIAStrap: skl */
13987                 if (found || IS_SKYLAKE(dev))
13988                         intel_ddi_init(dev, PORT_A);
13989
13990                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13991                  * register */
13992                 found = I915_READ(SFUSE_STRAP);
13993
13994                 if (found & SFUSE_STRAP_DDIB_DETECTED)
13995                         intel_ddi_init(dev, PORT_B);
13996                 if (found & SFUSE_STRAP_DDIC_DETECTED)
13997                         intel_ddi_init(dev, PORT_C);
13998                 if (found & SFUSE_STRAP_DDID_DETECTED)
13999                         intel_ddi_init(dev, PORT_D);
14000                 /*
14001                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14002                  */
14003                 if (IS_SKYLAKE(dev) &&
14004                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14005                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14006                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14007                         intel_ddi_init(dev, PORT_E);
14008
14009         } else if (HAS_PCH_SPLIT(dev)) {
14010                 int found;
14011                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14012
14013                 if (has_edp_a(dev))
14014                         intel_dp_init(dev, DP_A, PORT_A);
14015
14016                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14017                         /* PCH SDVOB multiplex with HDMIB */
14018                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14019                         if (!found)
14020                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14021                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14022                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14023                 }
14024
14025                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14026                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14027
14028                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14029                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14030
14031                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14032                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14033
14034                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14035                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14036         } else if (IS_VALLEYVIEW(dev)) {
14037                 /*
14038                  * The DP_DETECTED bit is the latched state of the DDC
14039                  * SDA pin at boot. However since eDP doesn't require DDC
14040                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14041                  * eDP ports may have been muxed to an alternate function.
14042                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14043                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14044                  * detect eDP ports.
14045                  */
14046                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14047                     !intel_dp_is_edp(dev, PORT_B))
14048                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14049                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14050                     intel_dp_is_edp(dev, PORT_B))
14051                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14052
14053                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14054                     !intel_dp_is_edp(dev, PORT_C))
14055                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14056                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14057                     intel_dp_is_edp(dev, PORT_C))
14058                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14059
14060                 if (IS_CHERRYVIEW(dev)) {
14061                         /* eDP not supported on port D, so don't check VBT */
14062                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14063                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14064                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14065                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14066                 }
14067
14068                 intel_dsi_init(dev);
14069         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14070                 bool found = false;
14071
14072                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14073                         DRM_DEBUG_KMS("probing SDVOB\n");
14074                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14075                         if (!found && IS_G4X(dev)) {
14076                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14077                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14078                         }
14079
14080                         if (!found && IS_G4X(dev))
14081                                 intel_dp_init(dev, DP_B, PORT_B);
14082                 }
14083
14084                 /* Before G4X SDVOC doesn't have its own detect register */
14085
14086                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14087                         DRM_DEBUG_KMS("probing SDVOC\n");
14088                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14089                 }
14090
14091                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14092
14093                         if (IS_G4X(dev)) {
14094                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14095                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14096                         }
14097                         if (IS_G4X(dev))
14098                                 intel_dp_init(dev, DP_C, PORT_C);
14099                 }
14100
14101                 if (IS_G4X(dev) &&
14102                     (I915_READ(DP_D) & DP_DETECTED))
14103                         intel_dp_init(dev, DP_D, PORT_D);
14104         } else if (IS_GEN2(dev))
14105                 intel_dvo_init(dev);
14106
14107         if (SUPPORTS_TV(dev))
14108                 intel_tv_init(dev);
14109
14110         intel_psr_init(dev);
14111
14112         for_each_intel_encoder(dev, encoder) {
14113                 encoder->base.possible_crtcs = encoder->crtc_mask;
14114                 encoder->base.possible_clones =
14115                         intel_encoder_clones(encoder);
14116         }
14117
14118         intel_init_pch_refclk(dev);
14119
14120         drm_helper_move_panel_connectors_to_head(dev);
14121 }
14122
14123 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14124 {
14125         struct drm_device *dev = fb->dev;
14126         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14127
14128         drm_framebuffer_cleanup(fb);
14129         mutex_lock(&dev->struct_mutex);
14130         WARN_ON(!intel_fb->obj->framebuffer_references--);
14131         drm_gem_object_unreference(&intel_fb->obj->base);
14132         mutex_unlock(&dev->struct_mutex);
14133         kfree(intel_fb);
14134 }
14135
14136 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14137                                                 struct drm_file *file,
14138                                                 unsigned int *handle)
14139 {
14140         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14141         struct drm_i915_gem_object *obj = intel_fb->obj;
14142
14143         return drm_gem_handle_create(file, &obj->base, handle);
14144 }
14145
14146 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14147                                         struct drm_file *file,
14148                                         unsigned flags, unsigned color,
14149                                         struct drm_clip_rect *clips,
14150                                         unsigned num_clips)
14151 {
14152         struct drm_device *dev = fb->dev;
14153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14154         struct drm_i915_gem_object *obj = intel_fb->obj;
14155
14156         mutex_lock(&dev->struct_mutex);
14157         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14158         mutex_unlock(&dev->struct_mutex);
14159
14160         return 0;
14161 }
14162
14163 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14164         .destroy = intel_user_framebuffer_destroy,
14165         .create_handle = intel_user_framebuffer_create_handle,
14166         .dirty = intel_user_framebuffer_dirty,
14167 };
14168
14169 static
14170 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14171                          uint32_t pixel_format)
14172 {
14173         u32 gen = INTEL_INFO(dev)->gen;
14174
14175         if (gen >= 9) {
14176                 /* "The stride in bytes must not exceed the of the size of 8K
14177                  *  pixels and 32K bytes."
14178                  */
14179                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14180         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14181                 return 32*1024;
14182         } else if (gen >= 4) {
14183                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14184                         return 16*1024;
14185                 else
14186                         return 32*1024;
14187         } else if (gen >= 3) {
14188                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14189                         return 8*1024;
14190                 else
14191                         return 16*1024;
14192         } else {
14193                 /* XXX DSPC is limited to 4k tiled */
14194                 return 8*1024;
14195         }
14196 }
14197
14198 static int intel_framebuffer_init(struct drm_device *dev,
14199                                   struct intel_framebuffer *intel_fb,
14200                                   struct drm_mode_fb_cmd2 *mode_cmd,
14201                                   struct drm_i915_gem_object *obj)
14202 {
14203         unsigned int aligned_height;
14204         int ret;
14205         u32 pitch_limit, stride_alignment;
14206
14207         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14208
14209         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14210                 /* Enforce that fb modifier and tiling mode match, but only for
14211                  * X-tiled. This is needed for FBC. */
14212                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14213                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14214                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14215                         return -EINVAL;
14216                 }
14217         } else {
14218                 if (obj->tiling_mode == I915_TILING_X)
14219                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14220                 else if (obj->tiling_mode == I915_TILING_Y) {
14221                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14222                         return -EINVAL;
14223                 }
14224         }
14225
14226         /* Passed in modifier sanity checking. */
14227         switch (mode_cmd->modifier[0]) {
14228         case I915_FORMAT_MOD_Y_TILED:
14229         case I915_FORMAT_MOD_Yf_TILED:
14230                 if (INTEL_INFO(dev)->gen < 9) {
14231                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14232                                   mode_cmd->modifier[0]);
14233                         return -EINVAL;
14234                 }
14235         case DRM_FORMAT_MOD_NONE:
14236         case I915_FORMAT_MOD_X_TILED:
14237                 break;
14238         default:
14239                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14240                           mode_cmd->modifier[0]);
14241                 return -EINVAL;
14242         }
14243
14244         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14245                                                      mode_cmd->pixel_format);
14246         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14247                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14248                           mode_cmd->pitches[0], stride_alignment);
14249                 return -EINVAL;
14250         }
14251
14252         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14253                                            mode_cmd->pixel_format);
14254         if (mode_cmd->pitches[0] > pitch_limit) {
14255                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14256                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14257                           "tiled" : "linear",
14258                           mode_cmd->pitches[0], pitch_limit);
14259                 return -EINVAL;
14260         }
14261
14262         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14263             mode_cmd->pitches[0] != obj->stride) {
14264                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14265                           mode_cmd->pitches[0], obj->stride);
14266                 return -EINVAL;
14267         }
14268
14269         /* Reject formats not supported by any plane early. */
14270         switch (mode_cmd->pixel_format) {
14271         case DRM_FORMAT_C8:
14272         case DRM_FORMAT_RGB565:
14273         case DRM_FORMAT_XRGB8888:
14274         case DRM_FORMAT_ARGB8888:
14275                 break;
14276         case DRM_FORMAT_XRGB1555:
14277                 if (INTEL_INFO(dev)->gen > 3) {
14278                         DRM_DEBUG("unsupported pixel format: %s\n",
14279                                   drm_get_format_name(mode_cmd->pixel_format));
14280                         return -EINVAL;
14281                 }
14282                 break;
14283         case DRM_FORMAT_ABGR8888:
14284                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14285                         DRM_DEBUG("unsupported pixel format: %s\n",
14286                                   drm_get_format_name(mode_cmd->pixel_format));
14287                         return -EINVAL;
14288                 }
14289                 break;
14290         case DRM_FORMAT_XBGR8888:
14291         case DRM_FORMAT_XRGB2101010:
14292         case DRM_FORMAT_XBGR2101010:
14293                 if (INTEL_INFO(dev)->gen < 4) {
14294                         DRM_DEBUG("unsupported pixel format: %s\n",
14295                                   drm_get_format_name(mode_cmd->pixel_format));
14296                         return -EINVAL;
14297                 }
14298                 break;
14299         case DRM_FORMAT_ABGR2101010:
14300                 if (!IS_VALLEYVIEW(dev)) {
14301                         DRM_DEBUG("unsupported pixel format: %s\n",
14302                                   drm_get_format_name(mode_cmd->pixel_format));
14303                         return -EINVAL;
14304                 }
14305                 break;
14306         case DRM_FORMAT_YUYV:
14307         case DRM_FORMAT_UYVY:
14308         case DRM_FORMAT_YVYU:
14309         case DRM_FORMAT_VYUY:
14310                 if (INTEL_INFO(dev)->gen < 5) {
14311                         DRM_DEBUG("unsupported pixel format: %s\n",
14312                                   drm_get_format_name(mode_cmd->pixel_format));
14313                         return -EINVAL;
14314                 }
14315                 break;
14316         default:
14317                 DRM_DEBUG("unsupported pixel format: %s\n",
14318                           drm_get_format_name(mode_cmd->pixel_format));
14319                 return -EINVAL;
14320         }
14321
14322         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14323         if (mode_cmd->offsets[0] != 0)
14324                 return -EINVAL;
14325
14326         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14327                                                mode_cmd->pixel_format,
14328                                                mode_cmd->modifier[0]);
14329         /* FIXME drm helper for size checks (especially planar formats)? */
14330         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14331                 return -EINVAL;
14332
14333         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14334         intel_fb->obj = obj;
14335         intel_fb->obj->framebuffer_references++;
14336
14337         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14338         if (ret) {
14339                 DRM_ERROR("framebuffer init failed %d\n", ret);
14340                 return ret;
14341         }
14342
14343         return 0;
14344 }
14345
14346 static struct drm_framebuffer *
14347 intel_user_framebuffer_create(struct drm_device *dev,
14348                               struct drm_file *filp,
14349                               struct drm_mode_fb_cmd2 *mode_cmd)
14350 {
14351         struct drm_i915_gem_object *obj;
14352
14353         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14354                                                 mode_cmd->handles[0]));
14355         if (&obj->base == NULL)
14356                 return ERR_PTR(-ENOENT);
14357
14358         return intel_framebuffer_create(dev, mode_cmd, obj);
14359 }
14360
14361 #ifndef CONFIG_DRM_FBDEV_EMULATION
14362 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14363 {
14364 }
14365 #endif
14366
14367 static const struct drm_mode_config_funcs intel_mode_funcs = {
14368         .fb_create = intel_user_framebuffer_create,
14369         .output_poll_changed = intel_fbdev_output_poll_changed,
14370         .atomic_check = intel_atomic_check,
14371         .atomic_commit = intel_atomic_commit,
14372         .atomic_state_alloc = intel_atomic_state_alloc,
14373         .atomic_state_clear = intel_atomic_state_clear,
14374 };
14375
14376 /* Set up chip specific display functions */
14377 static void intel_init_display(struct drm_device *dev)
14378 {
14379         struct drm_i915_private *dev_priv = dev->dev_private;
14380
14381         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14382                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14383         else if (IS_CHERRYVIEW(dev))
14384                 dev_priv->display.find_dpll = chv_find_best_dpll;
14385         else if (IS_VALLEYVIEW(dev))
14386                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14387         else if (IS_PINEVIEW(dev))
14388                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14389         else
14390                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14391
14392         if (INTEL_INFO(dev)->gen >= 9) {
14393                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14394                 dev_priv->display.get_initial_plane_config =
14395                         skylake_get_initial_plane_config;
14396                 dev_priv->display.crtc_compute_clock =
14397                         haswell_crtc_compute_clock;
14398                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14399                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14400                 dev_priv->display.update_primary_plane =
14401                         skylake_update_primary_plane;
14402         } else if (HAS_DDI(dev)) {
14403                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14404                 dev_priv->display.get_initial_plane_config =
14405                         ironlake_get_initial_plane_config;
14406                 dev_priv->display.crtc_compute_clock =
14407                         haswell_crtc_compute_clock;
14408                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14409                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14410                 dev_priv->display.update_primary_plane =
14411                         ironlake_update_primary_plane;
14412         } else if (HAS_PCH_SPLIT(dev)) {
14413                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14414                 dev_priv->display.get_initial_plane_config =
14415                         ironlake_get_initial_plane_config;
14416                 dev_priv->display.crtc_compute_clock =
14417                         ironlake_crtc_compute_clock;
14418                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14419                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14420                 dev_priv->display.update_primary_plane =
14421                         ironlake_update_primary_plane;
14422         } else if (IS_VALLEYVIEW(dev)) {
14423                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14424                 dev_priv->display.get_initial_plane_config =
14425                         i9xx_get_initial_plane_config;
14426                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14427                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14428                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14429                 dev_priv->display.update_primary_plane =
14430                         i9xx_update_primary_plane;
14431         } else {
14432                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14433                 dev_priv->display.get_initial_plane_config =
14434                         i9xx_get_initial_plane_config;
14435                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14436                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14437                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14438                 dev_priv->display.update_primary_plane =
14439                         i9xx_update_primary_plane;
14440         }
14441
14442         /* Returns the core display clock speed */
14443         if (IS_SKYLAKE(dev))
14444                 dev_priv->display.get_display_clock_speed =
14445                         skylake_get_display_clock_speed;
14446         else if (IS_BROXTON(dev))
14447                 dev_priv->display.get_display_clock_speed =
14448                         broxton_get_display_clock_speed;
14449         else if (IS_BROADWELL(dev))
14450                 dev_priv->display.get_display_clock_speed =
14451                         broadwell_get_display_clock_speed;
14452         else if (IS_HASWELL(dev))
14453                 dev_priv->display.get_display_clock_speed =
14454                         haswell_get_display_clock_speed;
14455         else if (IS_VALLEYVIEW(dev))
14456                 dev_priv->display.get_display_clock_speed =
14457                         valleyview_get_display_clock_speed;
14458         else if (IS_GEN5(dev))
14459                 dev_priv->display.get_display_clock_speed =
14460                         ilk_get_display_clock_speed;
14461         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14462                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14463                 dev_priv->display.get_display_clock_speed =
14464                         i945_get_display_clock_speed;
14465         else if (IS_GM45(dev))
14466                 dev_priv->display.get_display_clock_speed =
14467                         gm45_get_display_clock_speed;
14468         else if (IS_CRESTLINE(dev))
14469                 dev_priv->display.get_display_clock_speed =
14470                         i965gm_get_display_clock_speed;
14471         else if (IS_PINEVIEW(dev))
14472                 dev_priv->display.get_display_clock_speed =
14473                         pnv_get_display_clock_speed;
14474         else if (IS_G33(dev) || IS_G4X(dev))
14475                 dev_priv->display.get_display_clock_speed =
14476                         g33_get_display_clock_speed;
14477         else if (IS_I915G(dev))
14478                 dev_priv->display.get_display_clock_speed =
14479                         i915_get_display_clock_speed;
14480         else if (IS_I945GM(dev) || IS_845G(dev))
14481                 dev_priv->display.get_display_clock_speed =
14482                         i9xx_misc_get_display_clock_speed;
14483         else if (IS_PINEVIEW(dev))
14484                 dev_priv->display.get_display_clock_speed =
14485                         pnv_get_display_clock_speed;
14486         else if (IS_I915GM(dev))
14487                 dev_priv->display.get_display_clock_speed =
14488                         i915gm_get_display_clock_speed;
14489         else if (IS_I865G(dev))
14490                 dev_priv->display.get_display_clock_speed =
14491                         i865_get_display_clock_speed;
14492         else if (IS_I85X(dev))
14493                 dev_priv->display.get_display_clock_speed =
14494                         i85x_get_display_clock_speed;
14495         else { /* 830 */
14496                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14497                 dev_priv->display.get_display_clock_speed =
14498                         i830_get_display_clock_speed;
14499         }
14500
14501         if (IS_GEN5(dev)) {
14502                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14503         } else if (IS_GEN6(dev)) {
14504                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14505         } else if (IS_IVYBRIDGE(dev)) {
14506                 /* FIXME: detect B0+ stepping and use auto training */
14507                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14508         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14509                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14510                 if (IS_BROADWELL(dev)) {
14511                         dev_priv->display.modeset_commit_cdclk =
14512                                 broadwell_modeset_commit_cdclk;
14513                         dev_priv->display.modeset_calc_cdclk =
14514                                 broadwell_modeset_calc_cdclk;
14515                 }
14516         } else if (IS_VALLEYVIEW(dev)) {
14517                 dev_priv->display.modeset_commit_cdclk =
14518                         valleyview_modeset_commit_cdclk;
14519                 dev_priv->display.modeset_calc_cdclk =
14520                         valleyview_modeset_calc_cdclk;
14521         } else if (IS_BROXTON(dev)) {
14522                 dev_priv->display.modeset_commit_cdclk =
14523                         broxton_modeset_commit_cdclk;
14524                 dev_priv->display.modeset_calc_cdclk =
14525                         broxton_modeset_calc_cdclk;
14526         }
14527
14528         switch (INTEL_INFO(dev)->gen) {
14529         case 2:
14530                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14531                 break;
14532
14533         case 3:
14534                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14535                 break;
14536
14537         case 4:
14538         case 5:
14539                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14540                 break;
14541
14542         case 6:
14543                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14544                 break;
14545         case 7:
14546         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14547                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14548                 break;
14549         case 9:
14550                 /* Drop through - unsupported since execlist only. */
14551         default:
14552                 /* Default just returns -ENODEV to indicate unsupported */
14553                 dev_priv->display.queue_flip = intel_default_queue_flip;
14554         }
14555
14556         mutex_init(&dev_priv->pps_mutex);
14557 }
14558
14559 /*
14560  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14561  * resume, or other times.  This quirk makes sure that's the case for
14562  * affected systems.
14563  */
14564 static void quirk_pipea_force(struct drm_device *dev)
14565 {
14566         struct drm_i915_private *dev_priv = dev->dev_private;
14567
14568         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14569         DRM_INFO("applying pipe a force quirk\n");
14570 }
14571
14572 static void quirk_pipeb_force(struct drm_device *dev)
14573 {
14574         struct drm_i915_private *dev_priv = dev->dev_private;
14575
14576         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14577         DRM_INFO("applying pipe b force quirk\n");
14578 }
14579
14580 /*
14581  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14582  */
14583 static void quirk_ssc_force_disable(struct drm_device *dev)
14584 {
14585         struct drm_i915_private *dev_priv = dev->dev_private;
14586         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14587         DRM_INFO("applying lvds SSC disable quirk\n");
14588 }
14589
14590 /*
14591  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14592  * brightness value
14593  */
14594 static void quirk_invert_brightness(struct drm_device *dev)
14595 {
14596         struct drm_i915_private *dev_priv = dev->dev_private;
14597         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14598         DRM_INFO("applying inverted panel brightness quirk\n");
14599 }
14600
14601 /* Some VBT's incorrectly indicate no backlight is present */
14602 static void quirk_backlight_present(struct drm_device *dev)
14603 {
14604         struct drm_i915_private *dev_priv = dev->dev_private;
14605         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14606         DRM_INFO("applying backlight present quirk\n");
14607 }
14608
14609 struct intel_quirk {
14610         int device;
14611         int subsystem_vendor;
14612         int subsystem_device;
14613         void (*hook)(struct drm_device *dev);
14614 };
14615
14616 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14617 struct intel_dmi_quirk {
14618         void (*hook)(struct drm_device *dev);
14619         const struct dmi_system_id (*dmi_id_list)[];
14620 };
14621
14622 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14623 {
14624         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14625         return 1;
14626 }
14627
14628 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14629         {
14630                 .dmi_id_list = &(const struct dmi_system_id[]) {
14631                         {
14632                                 .callback = intel_dmi_reverse_brightness,
14633                                 .ident = "NCR Corporation",
14634                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14635                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14636                                 },
14637                         },
14638                         { }  /* terminating entry */
14639                 },
14640                 .hook = quirk_invert_brightness,
14641         },
14642 };
14643
14644 static struct intel_quirk intel_quirks[] = {
14645         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14646         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14647
14648         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14649         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14650
14651         /* 830 needs to leave pipe A & dpll A up */
14652         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14653
14654         /* 830 needs to leave pipe B & dpll B up */
14655         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14656
14657         /* Lenovo U160 cannot use SSC on LVDS */
14658         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14659
14660         /* Sony Vaio Y cannot use SSC on LVDS */
14661         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14662
14663         /* Acer Aspire 5734Z must invert backlight brightness */
14664         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14665
14666         /* Acer/eMachines G725 */
14667         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14668
14669         /* Acer/eMachines e725 */
14670         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14671
14672         /* Acer/Packard Bell NCL20 */
14673         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14674
14675         /* Acer Aspire 4736Z */
14676         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14677
14678         /* Acer Aspire 5336 */
14679         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14680
14681         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14682         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14683
14684         /* Acer C720 Chromebook (Core i3 4005U) */
14685         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14686
14687         /* Apple Macbook 2,1 (Core 2 T7400) */
14688         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14689
14690         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14691         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14692
14693         /* HP Chromebook 14 (Celeron 2955U) */
14694         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14695
14696         /* Dell Chromebook 11 */
14697         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14698
14699         /* Dell Chromebook 11 (2015 version) */
14700         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14701 };
14702
14703 static void intel_init_quirks(struct drm_device *dev)
14704 {
14705         struct pci_dev *d = dev->pdev;
14706         int i;
14707
14708         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14709                 struct intel_quirk *q = &intel_quirks[i];
14710
14711                 if (d->device == q->device &&
14712                     (d->subsystem_vendor == q->subsystem_vendor ||
14713                      q->subsystem_vendor == PCI_ANY_ID) &&
14714                     (d->subsystem_device == q->subsystem_device ||
14715                      q->subsystem_device == PCI_ANY_ID))
14716                         q->hook(dev);
14717         }
14718         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14719                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14720                         intel_dmi_quirks[i].hook(dev);
14721         }
14722 }
14723
14724 /* Disable the VGA plane that we never use */
14725 static void i915_disable_vga(struct drm_device *dev)
14726 {
14727         struct drm_i915_private *dev_priv = dev->dev_private;
14728         u8 sr1;
14729         u32 vga_reg = i915_vgacntrl_reg(dev);
14730
14731         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14732         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14733         outb(SR01, VGA_SR_INDEX);
14734         sr1 = inb(VGA_SR_DATA);
14735         outb(sr1 | 1<<5, VGA_SR_DATA);
14736         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14737         udelay(300);
14738
14739         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14740         POSTING_READ(vga_reg);
14741 }
14742
14743 void intel_modeset_init_hw(struct drm_device *dev)
14744 {
14745         intel_update_cdclk(dev);
14746         intel_prepare_ddi(dev);
14747         intel_init_clock_gating(dev);
14748         intel_enable_gt_powersave(dev);
14749 }
14750
14751 void intel_modeset_init(struct drm_device *dev)
14752 {
14753         struct drm_i915_private *dev_priv = dev->dev_private;
14754         int sprite, ret;
14755         enum pipe pipe;
14756         struct intel_crtc *crtc;
14757
14758         drm_mode_config_init(dev);
14759
14760         dev->mode_config.min_width = 0;
14761         dev->mode_config.min_height = 0;
14762
14763         dev->mode_config.preferred_depth = 24;
14764         dev->mode_config.prefer_shadow = 1;
14765
14766         dev->mode_config.allow_fb_modifiers = true;
14767
14768         dev->mode_config.funcs = &intel_mode_funcs;
14769
14770         intel_init_quirks(dev);
14771
14772         intel_init_pm(dev);
14773
14774         if (INTEL_INFO(dev)->num_pipes == 0)
14775                 return;
14776
14777         /*
14778          * There may be no VBT; and if the BIOS enabled SSC we can
14779          * just keep using it to avoid unnecessary flicker.  Whereas if the
14780          * BIOS isn't using it, don't assume it will work even if the VBT
14781          * indicates as much.
14782          */
14783         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14784                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14785                                             DREF_SSC1_ENABLE);
14786
14787                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14788                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14789                                      bios_lvds_use_ssc ? "en" : "dis",
14790                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14791                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14792                 }
14793         }
14794
14795         intel_init_display(dev);
14796         intel_init_audio(dev);
14797
14798         if (IS_GEN2(dev)) {
14799                 dev->mode_config.max_width = 2048;
14800                 dev->mode_config.max_height = 2048;
14801         } else if (IS_GEN3(dev)) {
14802                 dev->mode_config.max_width = 4096;
14803                 dev->mode_config.max_height = 4096;
14804         } else {
14805                 dev->mode_config.max_width = 8192;
14806                 dev->mode_config.max_height = 8192;
14807         }
14808
14809         if (IS_845G(dev) || IS_I865G(dev)) {
14810                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14811                 dev->mode_config.cursor_height = 1023;
14812         } else if (IS_GEN2(dev)) {
14813                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14814                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14815         } else {
14816                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14817                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14818         }
14819
14820         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14821
14822         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14823                       INTEL_INFO(dev)->num_pipes,
14824                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14825
14826         for_each_pipe(dev_priv, pipe) {
14827                 intel_crtc_init(dev, pipe);
14828                 for_each_sprite(dev_priv, pipe, sprite) {
14829                         ret = intel_plane_init(dev, pipe, sprite);
14830                         if (ret)
14831                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14832                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14833                 }
14834         }
14835
14836         intel_update_czclk(dev_priv);
14837         intel_update_cdclk(dev);
14838
14839         intel_shared_dpll_init(dev);
14840
14841         /* Just disable it once at startup */
14842         i915_disable_vga(dev);
14843         intel_setup_outputs(dev);
14844
14845         /* Just in case the BIOS is doing something questionable. */
14846         intel_fbc_disable(dev_priv);
14847
14848         drm_modeset_lock_all(dev);
14849         intel_modeset_setup_hw_state(dev);
14850         drm_modeset_unlock_all(dev);
14851
14852         for_each_intel_crtc(dev, crtc) {
14853                 struct intel_initial_plane_config plane_config = {};
14854
14855                 if (!crtc->active)
14856                         continue;
14857
14858                 /*
14859                  * Note that reserving the BIOS fb up front prevents us
14860                  * from stuffing other stolen allocations like the ring
14861                  * on top.  This prevents some ugliness at boot time, and
14862                  * can even allow for smooth boot transitions if the BIOS
14863                  * fb is large enough for the active pipe configuration.
14864                  */
14865                 dev_priv->display.get_initial_plane_config(crtc,
14866                                                            &plane_config);
14867
14868                 /*
14869                  * If the fb is shared between multiple heads, we'll
14870                  * just get the first one.
14871                  */
14872                 intel_find_initial_plane_obj(crtc, &plane_config);
14873         }
14874 }
14875
14876 static void intel_enable_pipe_a(struct drm_device *dev)
14877 {
14878         struct intel_connector *connector;
14879         struct drm_connector *crt = NULL;
14880         struct intel_load_detect_pipe load_detect_temp;
14881         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14882
14883         /* We can't just switch on the pipe A, we need to set things up with a
14884          * proper mode and output configuration. As a gross hack, enable pipe A
14885          * by enabling the load detect pipe once. */
14886         for_each_intel_connector(dev, connector) {
14887                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14888                         crt = &connector->base;
14889                         break;
14890                 }
14891         }
14892
14893         if (!crt)
14894                 return;
14895
14896         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14897                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14898 }
14899
14900 static bool
14901 intel_check_plane_mapping(struct intel_crtc *crtc)
14902 {
14903         struct drm_device *dev = crtc->base.dev;
14904         struct drm_i915_private *dev_priv = dev->dev_private;
14905         u32 val;
14906
14907         if (INTEL_INFO(dev)->num_pipes == 1)
14908                 return true;
14909
14910         val = I915_READ(DSPCNTR(!crtc->plane));
14911
14912         if ((val & DISPLAY_PLANE_ENABLE) &&
14913             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14914                 return false;
14915
14916         return true;
14917 }
14918
14919 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14920 {
14921         struct drm_device *dev = crtc->base.dev;
14922         struct intel_encoder *encoder;
14923
14924         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14925                 return true;
14926
14927         return false;
14928 }
14929
14930 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14931 {
14932         struct drm_device *dev = crtc->base.dev;
14933         struct drm_i915_private *dev_priv = dev->dev_private;
14934         u32 reg;
14935
14936         /* Clear any frame start delays used for debugging left by the BIOS */
14937         reg = PIPECONF(crtc->config->cpu_transcoder);
14938         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14939
14940         /* restore vblank interrupts to correct state */
14941         drm_crtc_vblank_reset(&crtc->base);
14942         if (crtc->active) {
14943                 struct intel_plane *plane;
14944
14945                 drm_crtc_vblank_on(&crtc->base);
14946
14947                 /* Disable everything but the primary plane */
14948                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14949                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
14950                                 continue;
14951
14952                         plane->disable_plane(&plane->base, &crtc->base);
14953                 }
14954         }
14955
14956         /* We need to sanitize the plane -> pipe mapping first because this will
14957          * disable the crtc (and hence change the state) if it is wrong. Note
14958          * that gen4+ has a fixed plane -> pipe mapping.  */
14959         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14960                 bool plane;
14961
14962                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14963                               crtc->base.base.id);
14964
14965                 /* Pipe has the wrong plane attached and the plane is active.
14966                  * Temporarily change the plane mapping and disable everything
14967                  * ...  */
14968                 plane = crtc->plane;
14969                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14970                 crtc->plane = !plane;
14971                 intel_crtc_disable_noatomic(&crtc->base);
14972                 crtc->plane = plane;
14973         }
14974
14975         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14976             crtc->pipe == PIPE_A && !crtc->active) {
14977                 /* BIOS forgot to enable pipe A, this mostly happens after
14978                  * resume. Force-enable the pipe to fix this, the update_dpms
14979                  * call below we restore the pipe to the right state, but leave
14980                  * the required bits on. */
14981                 intel_enable_pipe_a(dev);
14982         }
14983
14984         /* Adjust the state of the output pipe according to whether we
14985          * have active connectors/encoders. */
14986         if (!intel_crtc_has_encoders(crtc))
14987                 intel_crtc_disable_noatomic(&crtc->base);
14988
14989         if (crtc->active != crtc->base.state->active) {
14990                 struct intel_encoder *encoder;
14991
14992                 /* This can happen either due to bugs in the get_hw_state
14993                  * functions or because of calls to intel_crtc_disable_noatomic,
14994                  * or because the pipe is force-enabled due to the
14995                  * pipe A quirk. */
14996                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14997                               crtc->base.base.id,
14998                               crtc->base.state->enable ? "enabled" : "disabled",
14999                               crtc->active ? "enabled" : "disabled");
15000
15001                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15002                 crtc->base.state->active = crtc->active;
15003                 crtc->base.enabled = crtc->active;
15004
15005                 /* Because we only establish the connector -> encoder ->
15006                  * crtc links if something is active, this means the
15007                  * crtc is now deactivated. Break the links. connector
15008                  * -> encoder links are only establish when things are
15009                  *  actually up, hence no need to break them. */
15010                 WARN_ON(crtc->active);
15011
15012                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15013                         encoder->base.crtc = NULL;
15014         }
15015
15016         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15017                 /*
15018                  * We start out with underrun reporting disabled to avoid races.
15019                  * For correct bookkeeping mark this on active crtcs.
15020                  *
15021                  * Also on gmch platforms we dont have any hardware bits to
15022                  * disable the underrun reporting. Which means we need to start
15023                  * out with underrun reporting disabled also on inactive pipes,
15024                  * since otherwise we'll complain about the garbage we read when
15025                  * e.g. coming up after runtime pm.
15026                  *
15027                  * No protection against concurrent access is required - at
15028                  * worst a fifo underrun happens which also sets this to false.
15029                  */
15030                 crtc->cpu_fifo_underrun_disabled = true;
15031                 crtc->pch_fifo_underrun_disabled = true;
15032         }
15033 }
15034
15035 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15036 {
15037         struct intel_connector *connector;
15038         struct drm_device *dev = encoder->base.dev;
15039         bool active = false;
15040
15041         /* We need to check both for a crtc link (meaning that the
15042          * encoder is active and trying to read from a pipe) and the
15043          * pipe itself being active. */
15044         bool has_active_crtc = encoder->base.crtc &&
15045                 to_intel_crtc(encoder->base.crtc)->active;
15046
15047         for_each_intel_connector(dev, connector) {
15048                 if (connector->base.encoder != &encoder->base)
15049                         continue;
15050
15051                 active = true;
15052                 break;
15053         }
15054
15055         if (active && !has_active_crtc) {
15056                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15057                               encoder->base.base.id,
15058                               encoder->base.name);
15059
15060                 /* Connector is active, but has no active pipe. This is
15061                  * fallout from our resume register restoring. Disable
15062                  * the encoder manually again. */
15063                 if (encoder->base.crtc) {
15064                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15065                                       encoder->base.base.id,
15066                                       encoder->base.name);
15067                         encoder->disable(encoder);
15068                         if (encoder->post_disable)
15069                                 encoder->post_disable(encoder);
15070                 }
15071                 encoder->base.crtc = NULL;
15072
15073                 /* Inconsistent output/port/pipe state happens presumably due to
15074                  * a bug in one of the get_hw_state functions. Or someplace else
15075                  * in our code, like the register restore mess on resume. Clamp
15076                  * things to off as a safer default. */
15077                 for_each_intel_connector(dev, connector) {
15078                         if (connector->encoder != encoder)
15079                                 continue;
15080                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15081                         connector->base.encoder = NULL;
15082                 }
15083         }
15084         /* Enabled encoders without active connectors will be fixed in
15085          * the crtc fixup. */
15086 }
15087
15088 void i915_redisable_vga_power_on(struct drm_device *dev)
15089 {
15090         struct drm_i915_private *dev_priv = dev->dev_private;
15091         u32 vga_reg = i915_vgacntrl_reg(dev);
15092
15093         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15094                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15095                 i915_disable_vga(dev);
15096         }
15097 }
15098
15099 void i915_redisable_vga(struct drm_device *dev)
15100 {
15101         struct drm_i915_private *dev_priv = dev->dev_private;
15102
15103         /* This function can be called both from intel_modeset_setup_hw_state or
15104          * at a very early point in our resume sequence, where the power well
15105          * structures are not yet restored. Since this function is at a very
15106          * paranoid "someone might have enabled VGA while we were not looking"
15107          * level, just check if the power well is enabled instead of trying to
15108          * follow the "don't touch the power well if we don't need it" policy
15109          * the rest of the driver uses. */
15110         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15111                 return;
15112
15113         i915_redisable_vga_power_on(dev);
15114 }
15115
15116 static bool primary_get_hw_state(struct intel_plane *plane)
15117 {
15118         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15119
15120         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15121 }
15122
15123 /* FIXME read out full plane state for all planes */
15124 static void readout_plane_state(struct intel_crtc *crtc)
15125 {
15126         struct drm_plane *primary = crtc->base.primary;
15127         struct intel_plane_state *plane_state =
15128                 to_intel_plane_state(primary->state);
15129
15130         plane_state->visible =
15131                 primary_get_hw_state(to_intel_plane(primary));
15132
15133         if (plane_state->visible)
15134                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15135 }
15136
15137 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15138 {
15139         struct drm_i915_private *dev_priv = dev->dev_private;
15140         enum pipe pipe;
15141         struct intel_crtc *crtc;
15142         struct intel_encoder *encoder;
15143         struct intel_connector *connector;
15144         int i;
15145
15146         for_each_intel_crtc(dev, crtc) {
15147                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15148                 memset(crtc->config, 0, sizeof(*crtc->config));
15149                 crtc->config->base.crtc = &crtc->base;
15150
15151                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15152                                                                  crtc->config);
15153
15154                 crtc->base.state->active = crtc->active;
15155                 crtc->base.enabled = crtc->active;
15156
15157                 readout_plane_state(crtc);
15158
15159                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15160                               crtc->base.base.id,
15161                               crtc->active ? "enabled" : "disabled");
15162         }
15163
15164         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15165                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15166
15167                 pll->on = pll->get_hw_state(dev_priv, pll,
15168                                             &pll->config.hw_state);
15169                 pll->active = 0;
15170                 pll->config.crtc_mask = 0;
15171                 for_each_intel_crtc(dev, crtc) {
15172                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15173                                 pll->active++;
15174                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15175                         }
15176                 }
15177
15178                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15179                               pll->name, pll->config.crtc_mask, pll->on);
15180
15181                 if (pll->config.crtc_mask)
15182                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15183         }
15184
15185         for_each_intel_encoder(dev, encoder) {
15186                 pipe = 0;
15187
15188                 if (encoder->get_hw_state(encoder, &pipe)) {
15189                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15190                         encoder->base.crtc = &crtc->base;
15191                         encoder->get_config(encoder, crtc->config);
15192                 } else {
15193                         encoder->base.crtc = NULL;
15194                 }
15195
15196                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15197                               encoder->base.base.id,
15198                               encoder->base.name,
15199                               encoder->base.crtc ? "enabled" : "disabled",
15200                               pipe_name(pipe));
15201         }
15202
15203         for_each_intel_connector(dev, connector) {
15204                 if (connector->get_hw_state(connector)) {
15205                         connector->base.dpms = DRM_MODE_DPMS_ON;
15206                         connector->base.encoder = &connector->encoder->base;
15207                 } else {
15208                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15209                         connector->base.encoder = NULL;
15210                 }
15211                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15212                               connector->base.base.id,
15213                               connector->base.name,
15214                               connector->base.encoder ? "enabled" : "disabled");
15215         }
15216
15217         for_each_intel_crtc(dev, crtc) {
15218                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15219
15220                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15221                 if (crtc->base.state->active) {
15222                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15223                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15224                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15225
15226                         /*
15227                          * The initial mode needs to be set in order to keep
15228                          * the atomic core happy. It wants a valid mode if the
15229                          * crtc's enabled, so we do the above call.
15230                          *
15231                          * At this point some state updated by the connectors
15232                          * in their ->detect() callback has not run yet, so
15233                          * no recalculation can be done yet.
15234                          *
15235                          * Even if we could do a recalculation and modeset
15236                          * right now it would cause a double modeset if
15237                          * fbdev or userspace chooses a different initial mode.
15238                          *
15239                          * If that happens, someone indicated they wanted a
15240                          * mode change, which means it's safe to do a full
15241                          * recalculation.
15242                          */
15243                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15244
15245                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15246                         update_scanline_offset(crtc);
15247                 }
15248         }
15249 }
15250
15251 /* Scan out the current hw modeset state,
15252  * and sanitizes it to the current state
15253  */
15254 static void
15255 intel_modeset_setup_hw_state(struct drm_device *dev)
15256 {
15257         struct drm_i915_private *dev_priv = dev->dev_private;
15258         enum pipe pipe;
15259         struct intel_crtc *crtc;
15260         struct intel_encoder *encoder;
15261         int i;
15262
15263         intel_modeset_readout_hw_state(dev);
15264
15265         /* HW state is read out, now we need to sanitize this mess. */
15266         for_each_intel_encoder(dev, encoder) {
15267                 intel_sanitize_encoder(encoder);
15268         }
15269
15270         for_each_pipe(dev_priv, pipe) {
15271                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15272                 intel_sanitize_crtc(crtc);
15273                 intel_dump_pipe_config(crtc, crtc->config,
15274                                        "[setup_hw_state]");
15275         }
15276
15277         intel_modeset_update_connector_atomic_state(dev);
15278
15279         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15280                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15281
15282                 if (!pll->on || pll->active)
15283                         continue;
15284
15285                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15286
15287                 pll->disable(dev_priv, pll);
15288                 pll->on = false;
15289         }
15290
15291         if (IS_VALLEYVIEW(dev))
15292                 vlv_wm_get_hw_state(dev);
15293         else if (IS_GEN9(dev))
15294                 skl_wm_get_hw_state(dev);
15295         else if (HAS_PCH_SPLIT(dev))
15296                 ilk_wm_get_hw_state(dev);
15297
15298         for_each_intel_crtc(dev, crtc) {
15299                 unsigned long put_domains;
15300
15301                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15302                 if (WARN_ON(put_domains))
15303                         modeset_put_power_domains(dev_priv, put_domains);
15304         }
15305         intel_display_set_init_power(dev_priv, false);
15306 }
15307
15308 void intel_display_resume(struct drm_device *dev)
15309 {
15310         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15311         struct intel_connector *conn;
15312         struct intel_plane *plane;
15313         struct drm_crtc *crtc;
15314         int ret;
15315
15316         if (!state)
15317                 return;
15318
15319         state->acquire_ctx = dev->mode_config.acquire_ctx;
15320
15321         /* preserve complete old state, including dpll */
15322         intel_atomic_get_shared_dpll_state(state);
15323
15324         for_each_crtc(dev, crtc) {
15325                 struct drm_crtc_state *crtc_state =
15326                         drm_atomic_get_crtc_state(state, crtc);
15327
15328                 ret = PTR_ERR_OR_ZERO(crtc_state);
15329                 if (ret)
15330                         goto err;
15331
15332                 /* force a restore */
15333                 crtc_state->mode_changed = true;
15334         }
15335
15336         for_each_intel_plane(dev, plane) {
15337                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15338                 if (ret)
15339                         goto err;
15340         }
15341
15342         for_each_intel_connector(dev, conn) {
15343                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15344                 if (ret)
15345                         goto err;
15346         }
15347
15348         intel_modeset_setup_hw_state(dev);
15349
15350         i915_redisable_vga(dev);
15351         ret = drm_atomic_commit(state);
15352         if (!ret)
15353                 return;
15354
15355 err:
15356         DRM_ERROR("Restoring old state failed with %i\n", ret);
15357         drm_atomic_state_free(state);
15358 }
15359
15360 void intel_modeset_gem_init(struct drm_device *dev)
15361 {
15362         struct drm_crtc *c;
15363         struct drm_i915_gem_object *obj;
15364         int ret;
15365
15366         mutex_lock(&dev->struct_mutex);
15367         intel_init_gt_powersave(dev);
15368         mutex_unlock(&dev->struct_mutex);
15369
15370         intel_modeset_init_hw(dev);
15371
15372         intel_setup_overlay(dev);
15373
15374         /*
15375          * Make sure any fbs we allocated at startup are properly
15376          * pinned & fenced.  When we do the allocation it's too early
15377          * for this.
15378          */
15379         for_each_crtc(dev, c) {
15380                 obj = intel_fb_obj(c->primary->fb);
15381                 if (obj == NULL)
15382                         continue;
15383
15384                 mutex_lock(&dev->struct_mutex);
15385                 ret = intel_pin_and_fence_fb_obj(c->primary,
15386                                                  c->primary->fb,
15387                                                  c->primary->state,
15388                                                  NULL, NULL);
15389                 mutex_unlock(&dev->struct_mutex);
15390                 if (ret) {
15391                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15392                                   to_intel_crtc(c)->pipe);
15393                         drm_framebuffer_unreference(c->primary->fb);
15394                         c->primary->fb = NULL;
15395                         c->primary->crtc = c->primary->state->crtc = NULL;
15396                         update_state_fb(c->primary);
15397                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15398                 }
15399         }
15400
15401         intel_backlight_register(dev);
15402 }
15403
15404 void intel_connector_unregister(struct intel_connector *intel_connector)
15405 {
15406         struct drm_connector *connector = &intel_connector->base;
15407
15408         intel_panel_destroy_backlight(connector);
15409         drm_connector_unregister(connector);
15410 }
15411
15412 void intel_modeset_cleanup(struct drm_device *dev)
15413 {
15414         struct drm_i915_private *dev_priv = dev->dev_private;
15415         struct drm_connector *connector;
15416
15417         intel_disable_gt_powersave(dev);
15418
15419         intel_backlight_unregister(dev);
15420
15421         /*
15422          * Interrupts and polling as the first thing to avoid creating havoc.
15423          * Too much stuff here (turning of connectors, ...) would
15424          * experience fancy races otherwise.
15425          */
15426         intel_irq_uninstall(dev_priv);
15427
15428         /*
15429          * Due to the hpd irq storm handling the hotplug work can re-arm the
15430          * poll handlers. Hence disable polling after hpd handling is shut down.
15431          */
15432         drm_kms_helper_poll_fini(dev);
15433
15434         intel_unregister_dsm_handler();
15435
15436         intel_fbc_disable(dev_priv);
15437
15438         /* flush any delayed tasks or pending work */
15439         flush_scheduled_work();
15440
15441         /* destroy the backlight and sysfs files before encoders/connectors */
15442         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15443                 struct intel_connector *intel_connector;
15444
15445                 intel_connector = to_intel_connector(connector);
15446                 intel_connector->unregister(intel_connector);
15447         }
15448
15449         drm_mode_config_cleanup(dev);
15450
15451         intel_cleanup_overlay(dev);
15452
15453         mutex_lock(&dev->struct_mutex);
15454         intel_cleanup_gt_powersave(dev);
15455         mutex_unlock(&dev->struct_mutex);
15456 }
15457
15458 /*
15459  * Return which encoder is currently attached for connector.
15460  */
15461 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15462 {
15463         return &intel_attached_encoder(connector)->base;
15464 }
15465
15466 void intel_connector_attach_encoder(struct intel_connector *connector,
15467                                     struct intel_encoder *encoder)
15468 {
15469         connector->encoder = encoder;
15470         drm_mode_connector_attach_encoder(&connector->base,
15471                                           &encoder->base);
15472 }
15473
15474 /*
15475  * set vga decode state - true == enable VGA decode
15476  */
15477 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15478 {
15479         struct drm_i915_private *dev_priv = dev->dev_private;
15480         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15481         u16 gmch_ctrl;
15482
15483         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15484                 DRM_ERROR("failed to read control word\n");
15485                 return -EIO;
15486         }
15487
15488         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15489                 return 0;
15490
15491         if (state)
15492                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15493         else
15494                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15495
15496         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15497                 DRM_ERROR("failed to write control word\n");
15498                 return -EIO;
15499         }
15500
15501         return 0;
15502 }
15503
15504 struct intel_display_error_state {
15505
15506         u32 power_well_driver;
15507
15508         int num_transcoders;
15509
15510         struct intel_cursor_error_state {
15511                 u32 control;
15512                 u32 position;
15513                 u32 base;
15514                 u32 size;
15515         } cursor[I915_MAX_PIPES];
15516
15517         struct intel_pipe_error_state {
15518                 bool power_domain_on;
15519                 u32 source;
15520                 u32 stat;
15521         } pipe[I915_MAX_PIPES];
15522
15523         struct intel_plane_error_state {
15524                 u32 control;
15525                 u32 stride;
15526                 u32 size;
15527                 u32 pos;
15528                 u32 addr;
15529                 u32 surface;
15530                 u32 tile_offset;
15531         } plane[I915_MAX_PIPES];
15532
15533         struct intel_transcoder_error_state {
15534                 bool power_domain_on;
15535                 enum transcoder cpu_transcoder;
15536
15537                 u32 conf;
15538
15539                 u32 htotal;
15540                 u32 hblank;
15541                 u32 hsync;
15542                 u32 vtotal;
15543                 u32 vblank;
15544                 u32 vsync;
15545         } transcoder[4];
15546 };
15547
15548 struct intel_display_error_state *
15549 intel_display_capture_error_state(struct drm_device *dev)
15550 {
15551         struct drm_i915_private *dev_priv = dev->dev_private;
15552         struct intel_display_error_state *error;
15553         int transcoders[] = {
15554                 TRANSCODER_A,
15555                 TRANSCODER_B,
15556                 TRANSCODER_C,
15557                 TRANSCODER_EDP,
15558         };
15559         int i;
15560
15561         if (INTEL_INFO(dev)->num_pipes == 0)
15562                 return NULL;
15563
15564         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15565         if (error == NULL)
15566                 return NULL;
15567
15568         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15569                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15570
15571         for_each_pipe(dev_priv, i) {
15572                 error->pipe[i].power_domain_on =
15573                         __intel_display_power_is_enabled(dev_priv,
15574                                                          POWER_DOMAIN_PIPE(i));
15575                 if (!error->pipe[i].power_domain_on)
15576                         continue;
15577
15578                 error->cursor[i].control = I915_READ(CURCNTR(i));
15579                 error->cursor[i].position = I915_READ(CURPOS(i));
15580                 error->cursor[i].base = I915_READ(CURBASE(i));
15581
15582                 error->plane[i].control = I915_READ(DSPCNTR(i));
15583                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15584                 if (INTEL_INFO(dev)->gen <= 3) {
15585                         error->plane[i].size = I915_READ(DSPSIZE(i));
15586                         error->plane[i].pos = I915_READ(DSPPOS(i));
15587                 }
15588                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15589                         error->plane[i].addr = I915_READ(DSPADDR(i));
15590                 if (INTEL_INFO(dev)->gen >= 4) {
15591                         error->plane[i].surface = I915_READ(DSPSURF(i));
15592                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15593                 }
15594
15595                 error->pipe[i].source = I915_READ(PIPESRC(i));
15596
15597                 if (HAS_GMCH_DISPLAY(dev))
15598                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15599         }
15600
15601         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15602         if (HAS_DDI(dev_priv->dev))
15603                 error->num_transcoders++; /* Account for eDP. */
15604
15605         for (i = 0; i < error->num_transcoders; i++) {
15606                 enum transcoder cpu_transcoder = transcoders[i];
15607
15608                 error->transcoder[i].power_domain_on =
15609                         __intel_display_power_is_enabled(dev_priv,
15610                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15611                 if (!error->transcoder[i].power_domain_on)
15612                         continue;
15613
15614                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15615
15616                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15617                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15618                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15619                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15620                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15621                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15622                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15623         }
15624
15625         return error;
15626 }
15627
15628 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15629
15630 void
15631 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15632                                 struct drm_device *dev,
15633                                 struct intel_display_error_state *error)
15634 {
15635         struct drm_i915_private *dev_priv = dev->dev_private;
15636         int i;
15637
15638         if (!error)
15639                 return;
15640
15641         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15642         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15643                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15644                            error->power_well_driver);
15645         for_each_pipe(dev_priv, i) {
15646                 err_printf(m, "Pipe [%d]:\n", i);
15647                 err_printf(m, "  Power: %s\n",
15648                            error->pipe[i].power_domain_on ? "on" : "off");
15649                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15650                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15651
15652                 err_printf(m, "Plane [%d]:\n", i);
15653                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15654                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15655                 if (INTEL_INFO(dev)->gen <= 3) {
15656                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15657                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15658                 }
15659                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15660                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15661                 if (INTEL_INFO(dev)->gen >= 4) {
15662                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15663                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15664                 }
15665
15666                 err_printf(m, "Cursor [%d]:\n", i);
15667                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15668                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15669                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15670         }
15671
15672         for (i = 0; i < error->num_transcoders; i++) {
15673                 err_printf(m, "CPU transcoder: %c\n",
15674                            transcoder_name(error->transcoder[i].cpu_transcoder));
15675                 err_printf(m, "  Power: %s\n",
15676                            error->transcoder[i].power_domain_on ? "on" : "off");
15677                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15678                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15679                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15680                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15681                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15682                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15683                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15684         }
15685 }
15686
15687 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15688 {
15689         struct intel_crtc *crtc;
15690
15691         for_each_intel_crtc(dev, crtc) {
15692                 struct intel_unpin_work *work;
15693
15694                 spin_lock_irq(&dev->event_lock);
15695
15696                 work = crtc->unpin_work;
15697
15698                 if (work && work->event &&
15699                     work->event->base.file_priv == file) {
15700                         kfree(work->event);
15701                         work->event = NULL;
15702                 }
15703
15704                 spin_unlock_irq(&dev->event_lock);
15705         }
15706 }