]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge tag 'drm-intel-next-2013-06-01' of git://people.freedesktop.org/~danvet/drm...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
56 {
57         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
58
59         return intel_dig_port->base.base.dev;
60 }
61
62 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
63 {
64         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
65 }
66
67 static void intel_dp_link_down(struct intel_dp *intel_dp);
68
69 static int
70 intel_dp_max_link_bw(struct intel_dp *intel_dp)
71 {
72         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
73
74         switch (max_link_bw) {
75         case DP_LINK_BW_1_62:
76         case DP_LINK_BW_2_7:
77                 break;
78         default:
79                 max_link_bw = DP_LINK_BW_1_62;
80                 break;
81         }
82         return max_link_bw;
83 }
84
85 /*
86  * The units on the numbers in the next two are... bizarre.  Examples will
87  * make it clearer; this one parallels an example in the eDP spec.
88  *
89  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
90  *
91  *     270000 * 1 * 8 / 10 == 216000
92  *
93  * The actual data capacity of that configuration is 2.16Gbit/s, so the
94  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
95  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
96  * 119000.  At 18bpp that's 2142000 kilobits per second.
97  *
98  * Thus the strange-looking division by 10 in intel_dp_link_required, to
99  * get the result in decakilobits instead of kilobits.
100  */
101
102 static int
103 intel_dp_link_required(int pixel_clock, int bpp)
104 {
105         return (pixel_clock * bpp + 9) / 10;
106 }
107
108 static int
109 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
110 {
111         return (max_link_clock * max_lanes * 8) / 10;
112 }
113
114 static int
115 intel_dp_mode_valid(struct drm_connector *connector,
116                     struct drm_display_mode *mode)
117 {
118         struct intel_dp *intel_dp = intel_attached_dp(connector);
119         struct intel_connector *intel_connector = to_intel_connector(connector);
120         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
121         int target_clock = mode->clock;
122         int max_rate, mode_rate, max_lanes, max_link_clock;
123
124         if (is_edp(intel_dp) && fixed_mode) {
125                 if (mode->hdisplay > fixed_mode->hdisplay)
126                         return MODE_PANEL;
127
128                 if (mode->vdisplay > fixed_mode->vdisplay)
129                         return MODE_PANEL;
130
131                 target_clock = fixed_mode->clock;
132         }
133
134         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
135         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
136
137         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
138         mode_rate = intel_dp_link_required(target_clock, 18);
139
140         if (mode_rate > max_rate)
141                 return MODE_CLOCK_HIGH;
142
143         if (mode->clock < 10000)
144                 return MODE_CLOCK_LOW;
145
146         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
147                 return MODE_H_ILLEGAL;
148
149         return MODE_OK;
150 }
151
152 static uint32_t
153 pack_aux(uint8_t *src, int src_bytes)
154 {
155         int     i;
156         uint32_t v = 0;
157
158         if (src_bytes > 4)
159                 src_bytes = 4;
160         for (i = 0; i < src_bytes; i++)
161                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
162         return v;
163 }
164
165 static void
166 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
167 {
168         int i;
169         if (dst_bytes > 4)
170                 dst_bytes = 4;
171         for (i = 0; i < dst_bytes; i++)
172                 dst[i] = src >> ((3-i) * 8);
173 }
174
175 /* hrawclock is 1/4 the FSB frequency */
176 static int
177 intel_hrawclk(struct drm_device *dev)
178 {
179         struct drm_i915_private *dev_priv = dev->dev_private;
180         uint32_t clkcfg;
181
182         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
183         if (IS_VALLEYVIEW(dev))
184                 return 200;
185
186         clkcfg = I915_READ(CLKCFG);
187         switch (clkcfg & CLKCFG_FSB_MASK) {
188         case CLKCFG_FSB_400:
189                 return 100;
190         case CLKCFG_FSB_533:
191                 return 133;
192         case CLKCFG_FSB_667:
193                 return 166;
194         case CLKCFG_FSB_800:
195                 return 200;
196         case CLKCFG_FSB_1067:
197                 return 266;
198         case CLKCFG_FSB_1333:
199                 return 333;
200         /* these two are just a guess; one of them might be right */
201         case CLKCFG_FSB_1600:
202         case CLKCFG_FSB_1600_ALT:
203                 return 400;
204         default:
205                 return 133;
206         }
207 }
208
209 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
210 {
211         struct drm_device *dev = intel_dp_to_dev(intel_dp);
212         struct drm_i915_private *dev_priv = dev->dev_private;
213         u32 pp_stat_reg;
214
215         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
216         return (I915_READ(pp_stat_reg) & PP_ON) != 0;
217 }
218
219 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
220 {
221         struct drm_device *dev = intel_dp_to_dev(intel_dp);
222         struct drm_i915_private *dev_priv = dev->dev_private;
223         u32 pp_ctrl_reg;
224
225         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
226         return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
227 }
228
229 static void
230 intel_dp_check_edp(struct intel_dp *intel_dp)
231 {
232         struct drm_device *dev = intel_dp_to_dev(intel_dp);
233         struct drm_i915_private *dev_priv = dev->dev_private;
234         u32 pp_stat_reg, pp_ctrl_reg;
235
236         if (!is_edp(intel_dp))
237                 return;
238
239         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
240         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
241
242         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
243                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
244                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
245                                 I915_READ(pp_stat_reg),
246                                 I915_READ(pp_ctrl_reg));
247         }
248 }
249
250 static uint32_t
251 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
252 {
253         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
254         struct drm_device *dev = intel_dig_port->base.base.dev;
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
257         uint32_t status;
258         bool done;
259
260 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
261         if (has_aux_irq)
262                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
263                                           msecs_to_jiffies_timeout(10));
264         else
265                 done = wait_for_atomic(C, 10) == 0;
266         if (!done)
267                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
268                           has_aux_irq);
269 #undef C
270
271         return status;
272 }
273
274 static int
275 intel_dp_aux_ch(struct intel_dp *intel_dp,
276                 uint8_t *send, int send_bytes,
277                 uint8_t *recv, int recv_size)
278 {
279         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
280         struct drm_device *dev = intel_dig_port->base.base.dev;
281         struct drm_i915_private *dev_priv = dev->dev_private;
282         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
283         uint32_t ch_data = ch_ctl + 4;
284         int i, ret, recv_bytes;
285         uint32_t status;
286         uint32_t aux_clock_divider;
287         int try, precharge;
288         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
289
290         /* dp aux is extremely sensitive to irq latency, hence request the
291          * lowest possible wakeup latency and so prevent the cpu from going into
292          * deep sleep states.
293          */
294         pm_qos_update_request(&dev_priv->pm_qos, 0);
295
296         intel_dp_check_edp(intel_dp);
297         /* The clock divider is based off the hrawclk,
298          * and would like to run at 2MHz. So, take the
299          * hrawclk value and divide by 2 and use that
300          *
301          * Note that PCH attached eDP panels should use a 125MHz input
302          * clock divider.
303          */
304         if (IS_VALLEYVIEW(dev)) {
305                 aux_clock_divider = 100;
306         } else if (intel_dig_port->port == PORT_A) {
307                 if (HAS_DDI(dev))
308                         aux_clock_divider = DIV_ROUND_CLOSEST(
309                                 intel_ddi_get_cdclk_freq(dev_priv), 2000);
310                 else if (IS_GEN6(dev) || IS_GEN7(dev))
311                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
312                 else
313                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
314         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
315                 /* Workaround for non-ULT HSW */
316                 aux_clock_divider = 74;
317         } else if (HAS_PCH_SPLIT(dev)) {
318                 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
319         } else {
320                 aux_clock_divider = intel_hrawclk(dev) / 2;
321         }
322
323         if (IS_GEN6(dev))
324                 precharge = 3;
325         else
326                 precharge = 5;
327
328         /* Try to wait for any previous AUX channel activity */
329         for (try = 0; try < 3; try++) {
330                 status = I915_READ_NOTRACE(ch_ctl);
331                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
332                         break;
333                 msleep(1);
334         }
335
336         if (try == 3) {
337                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
338                      I915_READ(ch_ctl));
339                 ret = -EBUSY;
340                 goto out;
341         }
342
343         /* Must try at least 3 times according to DP spec */
344         for (try = 0; try < 5; try++) {
345                 /* Load the send data into the aux channel data registers */
346                 for (i = 0; i < send_bytes; i += 4)
347                         I915_WRITE(ch_data + i,
348                                    pack_aux(send + i, send_bytes - i));
349
350                 /* Send the command and wait for it to complete */
351                 I915_WRITE(ch_ctl,
352                            DP_AUX_CH_CTL_SEND_BUSY |
353                            (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
354                            DP_AUX_CH_CTL_TIME_OUT_400us |
355                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
356                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
357                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
358                            DP_AUX_CH_CTL_DONE |
359                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
360                            DP_AUX_CH_CTL_RECEIVE_ERROR);
361
362                 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
363
364                 /* Clear done status and any errors */
365                 I915_WRITE(ch_ctl,
366                            status |
367                            DP_AUX_CH_CTL_DONE |
368                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
369                            DP_AUX_CH_CTL_RECEIVE_ERROR);
370
371                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
372                               DP_AUX_CH_CTL_RECEIVE_ERROR))
373                         continue;
374                 if (status & DP_AUX_CH_CTL_DONE)
375                         break;
376         }
377
378         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
379                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
380                 ret = -EBUSY;
381                 goto out;
382         }
383
384         /* Check for timeout or receive error.
385          * Timeouts occur when the sink is not connected
386          */
387         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
388                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
389                 ret = -EIO;
390                 goto out;
391         }
392
393         /* Timeouts occur when the device isn't connected, so they're
394          * "normal" -- don't fill the kernel log with these */
395         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
396                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
397                 ret = -ETIMEDOUT;
398                 goto out;
399         }
400
401         /* Unload any bytes sent back from the other side */
402         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
403                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
404         if (recv_bytes > recv_size)
405                 recv_bytes = recv_size;
406
407         for (i = 0; i < recv_bytes; i += 4)
408                 unpack_aux(I915_READ(ch_data + i),
409                            recv + i, recv_bytes - i);
410
411         ret = recv_bytes;
412 out:
413         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
414
415         return ret;
416 }
417
418 /* Write data to the aux channel in native mode */
419 static int
420 intel_dp_aux_native_write(struct intel_dp *intel_dp,
421                           uint16_t address, uint8_t *send, int send_bytes)
422 {
423         int ret;
424         uint8_t msg[20];
425         int msg_bytes;
426         uint8_t ack;
427
428         intel_dp_check_edp(intel_dp);
429         if (send_bytes > 16)
430                 return -1;
431         msg[0] = AUX_NATIVE_WRITE << 4;
432         msg[1] = address >> 8;
433         msg[2] = address & 0xff;
434         msg[3] = send_bytes - 1;
435         memcpy(&msg[4], send, send_bytes);
436         msg_bytes = send_bytes + 4;
437         for (;;) {
438                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
439                 if (ret < 0)
440                         return ret;
441                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
442                         break;
443                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
444                         udelay(100);
445                 else
446                         return -EIO;
447         }
448         return send_bytes;
449 }
450
451 /* Write a single byte to the aux channel in native mode */
452 static int
453 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
454                             uint16_t address, uint8_t byte)
455 {
456         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
457 }
458
459 /* read bytes from a native aux channel */
460 static int
461 intel_dp_aux_native_read(struct intel_dp *intel_dp,
462                          uint16_t address, uint8_t *recv, int recv_bytes)
463 {
464         uint8_t msg[4];
465         int msg_bytes;
466         uint8_t reply[20];
467         int reply_bytes;
468         uint8_t ack;
469         int ret;
470
471         intel_dp_check_edp(intel_dp);
472         msg[0] = AUX_NATIVE_READ << 4;
473         msg[1] = address >> 8;
474         msg[2] = address & 0xff;
475         msg[3] = recv_bytes - 1;
476
477         msg_bytes = 4;
478         reply_bytes = recv_bytes + 1;
479
480         for (;;) {
481                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
482                                       reply, reply_bytes);
483                 if (ret == 0)
484                         return -EPROTO;
485                 if (ret < 0)
486                         return ret;
487                 ack = reply[0];
488                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
489                         memcpy(recv, reply + 1, ret - 1);
490                         return ret - 1;
491                 }
492                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
493                         udelay(100);
494                 else
495                         return -EIO;
496         }
497 }
498
499 static int
500 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
501                     uint8_t write_byte, uint8_t *read_byte)
502 {
503         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
504         struct intel_dp *intel_dp = container_of(adapter,
505                                                 struct intel_dp,
506                                                 adapter);
507         uint16_t address = algo_data->address;
508         uint8_t msg[5];
509         uint8_t reply[2];
510         unsigned retry;
511         int msg_bytes;
512         int reply_bytes;
513         int ret;
514
515         intel_dp_check_edp(intel_dp);
516         /* Set up the command byte */
517         if (mode & MODE_I2C_READ)
518                 msg[0] = AUX_I2C_READ << 4;
519         else
520                 msg[0] = AUX_I2C_WRITE << 4;
521
522         if (!(mode & MODE_I2C_STOP))
523                 msg[0] |= AUX_I2C_MOT << 4;
524
525         msg[1] = address >> 8;
526         msg[2] = address;
527
528         switch (mode) {
529         case MODE_I2C_WRITE:
530                 msg[3] = 0;
531                 msg[4] = write_byte;
532                 msg_bytes = 5;
533                 reply_bytes = 1;
534                 break;
535         case MODE_I2C_READ:
536                 msg[3] = 0;
537                 msg_bytes = 4;
538                 reply_bytes = 2;
539                 break;
540         default:
541                 msg_bytes = 3;
542                 reply_bytes = 1;
543                 break;
544         }
545
546         for (retry = 0; retry < 5; retry++) {
547                 ret = intel_dp_aux_ch(intel_dp,
548                                       msg, msg_bytes,
549                                       reply, reply_bytes);
550                 if (ret < 0) {
551                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
552                         return ret;
553                 }
554
555                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
556                 case AUX_NATIVE_REPLY_ACK:
557                         /* I2C-over-AUX Reply field is only valid
558                          * when paired with AUX ACK.
559                          */
560                         break;
561                 case AUX_NATIVE_REPLY_NACK:
562                         DRM_DEBUG_KMS("aux_ch native nack\n");
563                         return -EREMOTEIO;
564                 case AUX_NATIVE_REPLY_DEFER:
565                         udelay(100);
566                         continue;
567                 default:
568                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
569                                   reply[0]);
570                         return -EREMOTEIO;
571                 }
572
573                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
574                 case AUX_I2C_REPLY_ACK:
575                         if (mode == MODE_I2C_READ) {
576                                 *read_byte = reply[1];
577                         }
578                         return reply_bytes - 1;
579                 case AUX_I2C_REPLY_NACK:
580                         DRM_DEBUG_KMS("aux_i2c nack\n");
581                         return -EREMOTEIO;
582                 case AUX_I2C_REPLY_DEFER:
583                         DRM_DEBUG_KMS("aux_i2c defer\n");
584                         udelay(100);
585                         break;
586                 default:
587                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
588                         return -EREMOTEIO;
589                 }
590         }
591
592         DRM_ERROR("too many retries, giving up\n");
593         return -EREMOTEIO;
594 }
595
596 static int
597 intel_dp_i2c_init(struct intel_dp *intel_dp,
598                   struct intel_connector *intel_connector, const char *name)
599 {
600         int     ret;
601
602         DRM_DEBUG_KMS("i2c_init %s\n", name);
603         intel_dp->algo.running = false;
604         intel_dp->algo.address = 0;
605         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
606
607         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
608         intel_dp->adapter.owner = THIS_MODULE;
609         intel_dp->adapter.class = I2C_CLASS_DDC;
610         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
611         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
612         intel_dp->adapter.algo_data = &intel_dp->algo;
613         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
614
615         ironlake_edp_panel_vdd_on(intel_dp);
616         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
617         ironlake_edp_panel_vdd_off(intel_dp, false);
618         return ret;
619 }
620
621 static void
622 intel_dp_set_clock(struct intel_encoder *encoder,
623                    struct intel_crtc_config *pipe_config, int link_bw)
624 {
625         struct drm_device *dev = encoder->base.dev;
626
627         if (IS_G4X(dev)) {
628                 if (link_bw == DP_LINK_BW_1_62) {
629                         pipe_config->dpll.p1 = 2;
630                         pipe_config->dpll.p2 = 10;
631                         pipe_config->dpll.n = 2;
632                         pipe_config->dpll.m1 = 23;
633                         pipe_config->dpll.m2 = 8;
634                 } else {
635                         pipe_config->dpll.p1 = 1;
636                         pipe_config->dpll.p2 = 10;
637                         pipe_config->dpll.n = 1;
638                         pipe_config->dpll.m1 = 14;
639                         pipe_config->dpll.m2 = 2;
640                 }
641                 pipe_config->clock_set = true;
642         } else if (IS_HASWELL(dev)) {
643                 /* Haswell has special-purpose DP DDI clocks. */
644         } else if (HAS_PCH_SPLIT(dev)) {
645                 if (link_bw == DP_LINK_BW_1_62) {
646                         pipe_config->dpll.n = 1;
647                         pipe_config->dpll.p1 = 2;
648                         pipe_config->dpll.p2 = 10;
649                         pipe_config->dpll.m1 = 12;
650                         pipe_config->dpll.m2 = 9;
651                 } else {
652                         pipe_config->dpll.n = 2;
653                         pipe_config->dpll.p1 = 1;
654                         pipe_config->dpll.p2 = 10;
655                         pipe_config->dpll.m1 = 14;
656                         pipe_config->dpll.m2 = 8;
657                 }
658                 pipe_config->clock_set = true;
659         } else if (IS_VALLEYVIEW(dev)) {
660                 /* FIXME: Need to figure out optimized DP clocks for vlv. */
661         }
662 }
663
664 bool
665 intel_dp_compute_config(struct intel_encoder *encoder,
666                         struct intel_crtc_config *pipe_config)
667 {
668         struct drm_device *dev = encoder->base.dev;
669         struct drm_i915_private *dev_priv = dev->dev_private;
670         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
671         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
672         enum port port = dp_to_dig_port(intel_dp)->port;
673         struct intel_crtc *intel_crtc = encoder->new_crtc;
674         struct intel_connector *intel_connector = intel_dp->attached_connector;
675         int lane_count, clock;
676         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
677         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
678         int bpp, mode_rate;
679         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
680         int target_clock, link_avail, link_clock;
681
682         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
683                 pipe_config->has_pch_encoder = true;
684
685         pipe_config->has_dp_encoder = true;
686
687         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
688                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
689                                        adjusted_mode);
690                 if (!HAS_PCH_SPLIT(dev))
691                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
692                                                  intel_connector->panel.fitting_mode);
693                 else
694                         intel_pch_panel_fitting(intel_crtc, pipe_config,
695                                                 intel_connector->panel.fitting_mode);
696         }
697         /* We need to take the panel's fixed mode into account. */
698         target_clock = adjusted_mode->clock;
699
700         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
701                 return false;
702
703         DRM_DEBUG_KMS("DP link computation with max lane count %i "
704                       "max bw %02x pixel clock %iKHz\n",
705                       max_lane_count, bws[max_clock], adjusted_mode->clock);
706
707         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
708          * bpc in between. */
709         bpp = min_t(int, 8*3, pipe_config->pipe_bpp);
710         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp)
711                 bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
712
713         for (; bpp >= 6*3; bpp -= 2*3) {
714                 mode_rate = intel_dp_link_required(target_clock, bpp);
715
716                 for (clock = 0; clock <= max_clock; clock++) {
717                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
718                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
719                                 link_avail = intel_dp_max_data_rate(link_clock,
720                                                                     lane_count);
721
722                                 if (mode_rate <= link_avail) {
723                                         goto found;
724                                 }
725                         }
726                 }
727         }
728
729         return false;
730
731 found:
732         if (intel_dp->color_range_auto) {
733                 /*
734                  * See:
735                  * CEA-861-E - 5.1 Default Encoding Parameters
736                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
737                  */
738                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
739                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
740                 else
741                         intel_dp->color_range = 0;
742         }
743
744         if (intel_dp->color_range)
745                 pipe_config->limited_color_range = true;
746
747         intel_dp->link_bw = bws[clock];
748         intel_dp->lane_count = lane_count;
749         adjusted_mode->clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
750         pipe_config->pipe_bpp = bpp;
751         pipe_config->pixel_target_clock = target_clock;
752
753         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
754                       intel_dp->link_bw, intel_dp->lane_count,
755                       adjusted_mode->clock, bpp);
756         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
757                       mode_rate, link_avail);
758
759         intel_link_compute_m_n(bpp, lane_count,
760                                target_clock, adjusted_mode->clock,
761                                &pipe_config->dp_m_n);
762
763         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
764
765         return true;
766 }
767
768 void intel_dp_init_link_config(struct intel_dp *intel_dp)
769 {
770         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
771         intel_dp->link_configuration[0] = intel_dp->link_bw;
772         intel_dp->link_configuration[1] = intel_dp->lane_count;
773         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
774         /*
775          * Check for DPCD version > 1.1 and enhanced framing support
776          */
777         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
778             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
779                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
780         }
781 }
782
783 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
784 {
785         struct drm_device *dev = crtc->dev;
786         struct drm_i915_private *dev_priv = dev->dev_private;
787         u32 dpa_ctl;
788
789         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
790         dpa_ctl = I915_READ(DP_A);
791         dpa_ctl &= ~DP_PLL_FREQ_MASK;
792
793         if (clock < 200000) {
794                 /* For a long time we've carried around a ILK-DevA w/a for the
795                  * 160MHz clock. If we're really unlucky, it's still required.
796                  */
797                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
798                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
799         } else {
800                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
801         }
802
803         I915_WRITE(DP_A, dpa_ctl);
804
805         POSTING_READ(DP_A);
806         udelay(500);
807 }
808
809 static void
810 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
811                   struct drm_display_mode *adjusted_mode)
812 {
813         struct drm_device *dev = encoder->dev;
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
816         enum port port = dp_to_dig_port(intel_dp)->port;
817         struct drm_crtc *crtc = encoder->crtc;
818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
819
820         /*
821          * There are four kinds of DP registers:
822          *
823          *      IBX PCH
824          *      SNB CPU
825          *      IVB CPU
826          *      CPT PCH
827          *
828          * IBX PCH and CPU are the same for almost everything,
829          * except that the CPU DP PLL is configured in this
830          * register
831          *
832          * CPT PCH is quite different, having many bits moved
833          * to the TRANS_DP_CTL register instead. That
834          * configuration happens (oddly) in ironlake_pch_enable
835          */
836
837         /* Preserve the BIOS-computed detected bit. This is
838          * supposed to be read-only.
839          */
840         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
841
842         /* Handle DP bits in common between all three register formats */
843         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
844         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
845
846         if (intel_dp->has_audio) {
847                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
848                                  pipe_name(intel_crtc->pipe));
849                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
850                 intel_write_eld(encoder, adjusted_mode);
851         }
852
853         intel_dp_init_link_config(intel_dp);
854
855         /* Split out the IBX/CPU vs CPT settings */
856
857         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
858                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
859                         intel_dp->DP |= DP_SYNC_HS_HIGH;
860                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
861                         intel_dp->DP |= DP_SYNC_VS_HIGH;
862                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
863
864                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
865                         intel_dp->DP |= DP_ENHANCED_FRAMING;
866
867                 intel_dp->DP |= intel_crtc->pipe << 29;
868
869                 /* don't miss out required setting for eDP */
870                 if (adjusted_mode->clock < 200000)
871                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
872                 else
873                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
874         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
875                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
876                         intel_dp->DP |= intel_dp->color_range;
877
878                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
879                         intel_dp->DP |= DP_SYNC_HS_HIGH;
880                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
881                         intel_dp->DP |= DP_SYNC_VS_HIGH;
882                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
883
884                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
885                         intel_dp->DP |= DP_ENHANCED_FRAMING;
886
887                 if (intel_crtc->pipe == 1)
888                         intel_dp->DP |= DP_PIPEB_SELECT;
889
890                 if (port == PORT_A && !IS_VALLEYVIEW(dev)) {
891                         /* don't miss out required setting for eDP */
892                         if (adjusted_mode->clock < 200000)
893                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
894                         else
895                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
896                 }
897         } else {
898                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
899         }
900
901         if (port == PORT_A && !IS_VALLEYVIEW(dev))
902                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
903 }
904
905 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
906 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
907
908 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
909 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
910
911 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
912 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
913
914 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
915                                        u32 mask,
916                                        u32 value)
917 {
918         struct drm_device *dev = intel_dp_to_dev(intel_dp);
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         u32 pp_stat_reg, pp_ctrl_reg;
921
922         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
923         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
924
925         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
926                         mask, value,
927                         I915_READ(pp_stat_reg),
928                         I915_READ(pp_ctrl_reg));
929
930         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
931                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
932                                 I915_READ(pp_stat_reg),
933                                 I915_READ(pp_ctrl_reg));
934         }
935 }
936
937 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
938 {
939         DRM_DEBUG_KMS("Wait for panel power on\n");
940         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
941 }
942
943 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
944 {
945         DRM_DEBUG_KMS("Wait for panel power off time\n");
946         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
947 }
948
949 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
950 {
951         DRM_DEBUG_KMS("Wait for panel power cycle\n");
952         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
953 }
954
955
956 /* Read the current pp_control value, unlocking the register if it
957  * is locked
958  */
959
960 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
961 {
962         struct drm_device *dev = intel_dp_to_dev(intel_dp);
963         struct drm_i915_private *dev_priv = dev->dev_private;
964         u32 control;
965         u32 pp_ctrl_reg;
966
967         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
968         control = I915_READ(pp_ctrl_reg);
969
970         control &= ~PANEL_UNLOCK_MASK;
971         control |= PANEL_UNLOCK_REGS;
972         return control;
973 }
974
975 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
976 {
977         struct drm_device *dev = intel_dp_to_dev(intel_dp);
978         struct drm_i915_private *dev_priv = dev->dev_private;
979         u32 pp;
980         u32 pp_stat_reg, pp_ctrl_reg;
981
982         if (!is_edp(intel_dp))
983                 return;
984         DRM_DEBUG_KMS("Turn eDP VDD on\n");
985
986         WARN(intel_dp->want_panel_vdd,
987              "eDP VDD already requested on\n");
988
989         intel_dp->want_panel_vdd = true;
990
991         if (ironlake_edp_have_panel_vdd(intel_dp)) {
992                 DRM_DEBUG_KMS("eDP VDD already on\n");
993                 return;
994         }
995
996         if (!ironlake_edp_have_panel_power(intel_dp))
997                 ironlake_wait_panel_power_cycle(intel_dp);
998
999         pp = ironlake_get_pp_control(intel_dp);
1000         pp |= EDP_FORCE_VDD;
1001
1002         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1003         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1004
1005         I915_WRITE(pp_ctrl_reg, pp);
1006         POSTING_READ(pp_ctrl_reg);
1007         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1008                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1009         /*
1010          * If the panel wasn't on, delay before accessing aux channel
1011          */
1012         if (!ironlake_edp_have_panel_power(intel_dp)) {
1013                 DRM_DEBUG_KMS("eDP was not running\n");
1014                 msleep(intel_dp->panel_power_up_delay);
1015         }
1016 }
1017
1018 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1019 {
1020         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1021         struct drm_i915_private *dev_priv = dev->dev_private;
1022         u32 pp;
1023         u32 pp_stat_reg, pp_ctrl_reg;
1024
1025         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1026
1027         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1028                 pp = ironlake_get_pp_control(intel_dp);
1029                 pp &= ~EDP_FORCE_VDD;
1030
1031                 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1032                 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1033
1034                 I915_WRITE(pp_ctrl_reg, pp);
1035                 POSTING_READ(pp_ctrl_reg);
1036
1037                 /* Make sure sequencer is idle before allowing subsequent activity */
1038                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1039                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1040                 msleep(intel_dp->panel_power_down_delay);
1041         }
1042 }
1043
1044 static void ironlake_panel_vdd_work(struct work_struct *__work)
1045 {
1046         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1047                                                  struct intel_dp, panel_vdd_work);
1048         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1049
1050         mutex_lock(&dev->mode_config.mutex);
1051         ironlake_panel_vdd_off_sync(intel_dp);
1052         mutex_unlock(&dev->mode_config.mutex);
1053 }
1054
1055 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1056 {
1057         if (!is_edp(intel_dp))
1058                 return;
1059
1060         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1061         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1062
1063         intel_dp->want_panel_vdd = false;
1064
1065         if (sync) {
1066                 ironlake_panel_vdd_off_sync(intel_dp);
1067         } else {
1068                 /*
1069                  * Queue the timer to fire a long
1070                  * time from now (relative to the power down delay)
1071                  * to keep the panel power up across a sequence of operations
1072                  */
1073                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1074                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1075         }
1076 }
1077
1078 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1079 {
1080         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1081         struct drm_i915_private *dev_priv = dev->dev_private;
1082         u32 pp;
1083         u32 pp_ctrl_reg;
1084
1085         if (!is_edp(intel_dp))
1086                 return;
1087
1088         DRM_DEBUG_KMS("Turn eDP power on\n");
1089
1090         if (ironlake_edp_have_panel_power(intel_dp)) {
1091                 DRM_DEBUG_KMS("eDP power already on\n");
1092                 return;
1093         }
1094
1095         ironlake_wait_panel_power_cycle(intel_dp);
1096
1097         pp = ironlake_get_pp_control(intel_dp);
1098         if (IS_GEN5(dev)) {
1099                 /* ILK workaround: disable reset around power sequence */
1100                 pp &= ~PANEL_POWER_RESET;
1101                 I915_WRITE(PCH_PP_CONTROL, pp);
1102                 POSTING_READ(PCH_PP_CONTROL);
1103         }
1104
1105         pp |= POWER_TARGET_ON;
1106         if (!IS_GEN5(dev))
1107                 pp |= PANEL_POWER_RESET;
1108
1109         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1110
1111         I915_WRITE(pp_ctrl_reg, pp);
1112         POSTING_READ(pp_ctrl_reg);
1113
1114         ironlake_wait_panel_on(intel_dp);
1115
1116         if (IS_GEN5(dev)) {
1117                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1118                 I915_WRITE(PCH_PP_CONTROL, pp);
1119                 POSTING_READ(PCH_PP_CONTROL);
1120         }
1121 }
1122
1123 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1124 {
1125         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1126         struct drm_i915_private *dev_priv = dev->dev_private;
1127         u32 pp;
1128         u32 pp_ctrl_reg;
1129
1130         if (!is_edp(intel_dp))
1131                 return;
1132
1133         DRM_DEBUG_KMS("Turn eDP power off\n");
1134
1135         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1136
1137         pp = ironlake_get_pp_control(intel_dp);
1138         /* We need to switch off panel power _and_ force vdd, for otherwise some
1139          * panels get very unhappy and cease to work. */
1140         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1141
1142         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1143
1144         I915_WRITE(pp_ctrl_reg, pp);
1145         POSTING_READ(pp_ctrl_reg);
1146
1147         intel_dp->want_panel_vdd = false;
1148
1149         ironlake_wait_panel_off(intel_dp);
1150 }
1151
1152 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1153 {
1154         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1155         struct drm_device *dev = intel_dig_port->base.base.dev;
1156         struct drm_i915_private *dev_priv = dev->dev_private;
1157         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1158         u32 pp;
1159         u32 pp_ctrl_reg;
1160
1161         if (!is_edp(intel_dp))
1162                 return;
1163
1164         DRM_DEBUG_KMS("\n");
1165         /*
1166          * If we enable the backlight right away following a panel power
1167          * on, we may see slight flicker as the panel syncs with the eDP
1168          * link.  So delay a bit to make sure the image is solid before
1169          * allowing it to appear.
1170          */
1171         msleep(intel_dp->backlight_on_delay);
1172         pp = ironlake_get_pp_control(intel_dp);
1173         pp |= EDP_BLC_ENABLE;
1174
1175         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1176
1177         I915_WRITE(pp_ctrl_reg, pp);
1178         POSTING_READ(pp_ctrl_reg);
1179
1180         intel_panel_enable_backlight(dev, pipe);
1181 }
1182
1183 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1184 {
1185         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1186         struct drm_i915_private *dev_priv = dev->dev_private;
1187         u32 pp;
1188         u32 pp_ctrl_reg;
1189
1190         if (!is_edp(intel_dp))
1191                 return;
1192
1193         intel_panel_disable_backlight(dev);
1194
1195         DRM_DEBUG_KMS("\n");
1196         pp = ironlake_get_pp_control(intel_dp);
1197         pp &= ~EDP_BLC_ENABLE;
1198
1199         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1200
1201         I915_WRITE(pp_ctrl_reg, pp);
1202         POSTING_READ(pp_ctrl_reg);
1203         msleep(intel_dp->backlight_off_delay);
1204 }
1205
1206 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1207 {
1208         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1209         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1210         struct drm_device *dev = crtc->dev;
1211         struct drm_i915_private *dev_priv = dev->dev_private;
1212         u32 dpa_ctl;
1213
1214         assert_pipe_disabled(dev_priv,
1215                              to_intel_crtc(crtc)->pipe);
1216
1217         DRM_DEBUG_KMS("\n");
1218         dpa_ctl = I915_READ(DP_A);
1219         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1220         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1221
1222         /* We don't adjust intel_dp->DP while tearing down the link, to
1223          * facilitate link retraining (e.g. after hotplug). Hence clear all
1224          * enable bits here to ensure that we don't enable too much. */
1225         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1226         intel_dp->DP |= DP_PLL_ENABLE;
1227         I915_WRITE(DP_A, intel_dp->DP);
1228         POSTING_READ(DP_A);
1229         udelay(200);
1230 }
1231
1232 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1233 {
1234         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1235         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1236         struct drm_device *dev = crtc->dev;
1237         struct drm_i915_private *dev_priv = dev->dev_private;
1238         u32 dpa_ctl;
1239
1240         assert_pipe_disabled(dev_priv,
1241                              to_intel_crtc(crtc)->pipe);
1242
1243         dpa_ctl = I915_READ(DP_A);
1244         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1245              "dp pll off, should be on\n");
1246         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1247
1248         /* We can't rely on the value tracked for the DP register in
1249          * intel_dp->DP because link_down must not change that (otherwise link
1250          * re-training will fail. */
1251         dpa_ctl &= ~DP_PLL_ENABLE;
1252         I915_WRITE(DP_A, dpa_ctl);
1253         POSTING_READ(DP_A);
1254         udelay(200);
1255 }
1256
1257 /* If the sink supports it, try to set the power state appropriately */
1258 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1259 {
1260         int ret, i;
1261
1262         /* Should have a valid DPCD by this point */
1263         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1264                 return;
1265
1266         if (mode != DRM_MODE_DPMS_ON) {
1267                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1268                                                   DP_SET_POWER_D3);
1269                 if (ret != 1)
1270                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1271         } else {
1272                 /*
1273                  * When turning on, we need to retry for 1ms to give the sink
1274                  * time to wake up.
1275                  */
1276                 for (i = 0; i < 3; i++) {
1277                         ret = intel_dp_aux_native_write_1(intel_dp,
1278                                                           DP_SET_POWER,
1279                                                           DP_SET_POWER_D0);
1280                         if (ret == 1)
1281                                 break;
1282                         msleep(1);
1283                 }
1284         }
1285 }
1286
1287 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1288                                   enum pipe *pipe)
1289 {
1290         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1291         enum port port = dp_to_dig_port(intel_dp)->port;
1292         struct drm_device *dev = encoder->base.dev;
1293         struct drm_i915_private *dev_priv = dev->dev_private;
1294         u32 tmp = I915_READ(intel_dp->output_reg);
1295
1296         if (!(tmp & DP_PORT_EN))
1297                 return false;
1298
1299         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1300                 *pipe = PORT_TO_PIPE_CPT(tmp);
1301         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1302                 *pipe = PORT_TO_PIPE(tmp);
1303         } else {
1304                 u32 trans_sel;
1305                 u32 trans_dp;
1306                 int i;
1307
1308                 switch (intel_dp->output_reg) {
1309                 case PCH_DP_B:
1310                         trans_sel = TRANS_DP_PORT_SEL_B;
1311                         break;
1312                 case PCH_DP_C:
1313                         trans_sel = TRANS_DP_PORT_SEL_C;
1314                         break;
1315                 case PCH_DP_D:
1316                         trans_sel = TRANS_DP_PORT_SEL_D;
1317                         break;
1318                 default:
1319                         return true;
1320                 }
1321
1322                 for_each_pipe(i) {
1323                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1324                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1325                                 *pipe = i;
1326                                 return true;
1327                         }
1328                 }
1329
1330                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1331                               intel_dp->output_reg);
1332         }
1333
1334         return true;
1335 }
1336
1337 static void intel_dp_get_config(struct intel_encoder *encoder,
1338                                 struct intel_crtc_config *pipe_config)
1339 {
1340         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1341         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1342         u32 tmp, flags = 0;
1343
1344         tmp = I915_READ(intel_dp->output_reg);
1345
1346         if (tmp & DP_SYNC_HS_HIGH)
1347                 flags |= DRM_MODE_FLAG_PHSYNC;
1348         else
1349                 flags |= DRM_MODE_FLAG_NHSYNC;
1350
1351         if (tmp & DP_SYNC_VS_HIGH)
1352                 flags |= DRM_MODE_FLAG_PVSYNC;
1353         else
1354                 flags |= DRM_MODE_FLAG_NVSYNC;
1355
1356         pipe_config->adjusted_mode.flags |= flags;
1357 }
1358
1359 static void intel_disable_dp(struct intel_encoder *encoder)
1360 {
1361         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1362         enum port port = dp_to_dig_port(intel_dp)->port;
1363         struct drm_device *dev = encoder->base.dev;
1364
1365         /* Make sure the panel is off before trying to change the mode. But also
1366          * ensure that we have vdd while we switch off the panel. */
1367         ironlake_edp_panel_vdd_on(intel_dp);
1368         ironlake_edp_backlight_off(intel_dp);
1369         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1370         ironlake_edp_panel_off(intel_dp);
1371
1372         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1373         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1374                 intel_dp_link_down(intel_dp);
1375 }
1376
1377 static void intel_post_disable_dp(struct intel_encoder *encoder)
1378 {
1379         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1380         enum port port = dp_to_dig_port(intel_dp)->port;
1381         struct drm_device *dev = encoder->base.dev;
1382
1383         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1384                 intel_dp_link_down(intel_dp);
1385                 if (!IS_VALLEYVIEW(dev))
1386                         ironlake_edp_pll_off(intel_dp);
1387         }
1388 }
1389
1390 static void intel_enable_dp(struct intel_encoder *encoder)
1391 {
1392         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1393         struct drm_device *dev = encoder->base.dev;
1394         struct drm_i915_private *dev_priv = dev->dev_private;
1395         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1396
1397         if (WARN_ON(dp_reg & DP_PORT_EN))
1398                 return;
1399
1400         ironlake_edp_panel_vdd_on(intel_dp);
1401         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1402         intel_dp_start_link_train(intel_dp);
1403         ironlake_edp_panel_on(intel_dp);
1404         ironlake_edp_panel_vdd_off(intel_dp, true);
1405         intel_dp_complete_link_train(intel_dp);
1406         intel_dp_stop_link_train(intel_dp);
1407         ironlake_edp_backlight_on(intel_dp);
1408
1409         if (IS_VALLEYVIEW(dev)) {
1410                 struct intel_digital_port *dport =
1411                         enc_to_dig_port(&encoder->base);
1412                 int channel = vlv_dport_to_channel(dport);
1413
1414                 vlv_wait_port_ready(dev_priv, channel);
1415         }
1416 }
1417
1418 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1419 {
1420         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1421         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1422         struct drm_device *dev = encoder->base.dev;
1423         struct drm_i915_private *dev_priv = dev->dev_private;
1424
1425         if (dport->port == PORT_A && !IS_VALLEYVIEW(dev))
1426                 ironlake_edp_pll_on(intel_dp);
1427
1428         if (IS_VALLEYVIEW(dev)) {
1429                 struct intel_crtc *intel_crtc =
1430                         to_intel_crtc(encoder->base.crtc);
1431                 int port = vlv_dport_to_channel(dport);
1432                 int pipe = intel_crtc->pipe;
1433                 u32 val;
1434
1435                 val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
1436                 val = 0;
1437                 if (pipe)
1438                         val |= (1<<21);
1439                 else
1440                         val &= ~(1<<21);
1441                 val |= 0x001000c4;
1442                 vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
1443
1444                 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port),
1445                                  0x00760018);
1446                 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port),
1447                                  0x00400888);
1448         }
1449 }
1450
1451 static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
1452 {
1453         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1454         struct drm_device *dev = encoder->base.dev;
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456         int port = vlv_dport_to_channel(dport);
1457
1458         if (!IS_VALLEYVIEW(dev))
1459                 return;
1460
1461         /* Program Tx lane resets to default */
1462         vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
1463                          DPIO_PCS_TX_LANE2_RESET |
1464                          DPIO_PCS_TX_LANE1_RESET);
1465         vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
1466                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1467                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1468                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1469                                  DPIO_PCS_CLK_SOFT_RESET);
1470
1471         /* Fix up inter-pair skew failure */
1472         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
1473         vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
1474         vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
1475 }
1476
1477 /*
1478  * Native read with retry for link status and receiver capability reads for
1479  * cases where the sink may still be asleep.
1480  */
1481 static bool
1482 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1483                                uint8_t *recv, int recv_bytes)
1484 {
1485         int ret, i;
1486
1487         /*
1488          * Sinks are *supposed* to come up within 1ms from an off state,
1489          * but we're also supposed to retry 3 times per the spec.
1490          */
1491         for (i = 0; i < 3; i++) {
1492                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1493                                                recv_bytes);
1494                 if (ret == recv_bytes)
1495                         return true;
1496                 msleep(1);
1497         }
1498
1499         return false;
1500 }
1501
1502 /*
1503  * Fetch AUX CH registers 0x202 - 0x207 which contain
1504  * link status information
1505  */
1506 static bool
1507 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1508 {
1509         return intel_dp_aux_native_read_retry(intel_dp,
1510                                               DP_LANE0_1_STATUS,
1511                                               link_status,
1512                                               DP_LINK_STATUS_SIZE);
1513 }
1514
1515 #if 0
1516 static char     *voltage_names[] = {
1517         "0.4V", "0.6V", "0.8V", "1.2V"
1518 };
1519 static char     *pre_emph_names[] = {
1520         "0dB", "3.5dB", "6dB", "9.5dB"
1521 };
1522 static char     *link_train_names[] = {
1523         "pattern 1", "pattern 2", "idle", "off"
1524 };
1525 #endif
1526
1527 /*
1528  * These are source-specific values; current Intel hardware supports
1529  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1530  */
1531
1532 static uint8_t
1533 intel_dp_voltage_max(struct intel_dp *intel_dp)
1534 {
1535         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1536         enum port port = dp_to_dig_port(intel_dp)->port;
1537
1538         if (IS_VALLEYVIEW(dev))
1539                 return DP_TRAIN_VOLTAGE_SWING_1200;
1540         else if (IS_GEN7(dev) && port == PORT_A)
1541                 return DP_TRAIN_VOLTAGE_SWING_800;
1542         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1543                 return DP_TRAIN_VOLTAGE_SWING_1200;
1544         else
1545                 return DP_TRAIN_VOLTAGE_SWING_800;
1546 }
1547
1548 static uint8_t
1549 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1550 {
1551         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1552         enum port port = dp_to_dig_port(intel_dp)->port;
1553
1554         if (HAS_DDI(dev)) {
1555                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1556                 case DP_TRAIN_VOLTAGE_SWING_400:
1557                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1558                 case DP_TRAIN_VOLTAGE_SWING_600:
1559                         return DP_TRAIN_PRE_EMPHASIS_6;
1560                 case DP_TRAIN_VOLTAGE_SWING_800:
1561                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1562                 case DP_TRAIN_VOLTAGE_SWING_1200:
1563                 default:
1564                         return DP_TRAIN_PRE_EMPHASIS_0;
1565                 }
1566         } else if (IS_VALLEYVIEW(dev)) {
1567                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1568                 case DP_TRAIN_VOLTAGE_SWING_400:
1569                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1570                 case DP_TRAIN_VOLTAGE_SWING_600:
1571                         return DP_TRAIN_PRE_EMPHASIS_6;
1572                 case DP_TRAIN_VOLTAGE_SWING_800:
1573                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1574                 case DP_TRAIN_VOLTAGE_SWING_1200:
1575                 default:
1576                         return DP_TRAIN_PRE_EMPHASIS_0;
1577                 }
1578         } else if (IS_GEN7(dev) && port == PORT_A) {
1579                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1580                 case DP_TRAIN_VOLTAGE_SWING_400:
1581                         return DP_TRAIN_PRE_EMPHASIS_6;
1582                 case DP_TRAIN_VOLTAGE_SWING_600:
1583                 case DP_TRAIN_VOLTAGE_SWING_800:
1584                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1585                 default:
1586                         return DP_TRAIN_PRE_EMPHASIS_0;
1587                 }
1588         } else {
1589                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1590                 case DP_TRAIN_VOLTAGE_SWING_400:
1591                         return DP_TRAIN_PRE_EMPHASIS_6;
1592                 case DP_TRAIN_VOLTAGE_SWING_600:
1593                         return DP_TRAIN_PRE_EMPHASIS_6;
1594                 case DP_TRAIN_VOLTAGE_SWING_800:
1595                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1596                 case DP_TRAIN_VOLTAGE_SWING_1200:
1597                 default:
1598                         return DP_TRAIN_PRE_EMPHASIS_0;
1599                 }
1600         }
1601 }
1602
1603 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1604 {
1605         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1606         struct drm_i915_private *dev_priv = dev->dev_private;
1607         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1608         unsigned long demph_reg_value, preemph_reg_value,
1609                 uniqtranscale_reg_value;
1610         uint8_t train_set = intel_dp->train_set[0];
1611         int port = vlv_dport_to_channel(dport);
1612
1613         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1614         case DP_TRAIN_PRE_EMPHASIS_0:
1615                 preemph_reg_value = 0x0004000;
1616                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1617                 case DP_TRAIN_VOLTAGE_SWING_400:
1618                         demph_reg_value = 0x2B405555;
1619                         uniqtranscale_reg_value = 0x552AB83A;
1620                         break;
1621                 case DP_TRAIN_VOLTAGE_SWING_600:
1622                         demph_reg_value = 0x2B404040;
1623                         uniqtranscale_reg_value = 0x5548B83A;
1624                         break;
1625                 case DP_TRAIN_VOLTAGE_SWING_800:
1626                         demph_reg_value = 0x2B245555;
1627                         uniqtranscale_reg_value = 0x5560B83A;
1628                         break;
1629                 case DP_TRAIN_VOLTAGE_SWING_1200:
1630                         demph_reg_value = 0x2B405555;
1631                         uniqtranscale_reg_value = 0x5598DA3A;
1632                         break;
1633                 default:
1634                         return 0;
1635                 }
1636                 break;
1637         case DP_TRAIN_PRE_EMPHASIS_3_5:
1638                 preemph_reg_value = 0x0002000;
1639                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1640                 case DP_TRAIN_VOLTAGE_SWING_400:
1641                         demph_reg_value = 0x2B404040;
1642                         uniqtranscale_reg_value = 0x5552B83A;
1643                         break;
1644                 case DP_TRAIN_VOLTAGE_SWING_600:
1645                         demph_reg_value = 0x2B404848;
1646                         uniqtranscale_reg_value = 0x5580B83A;
1647                         break;
1648                 case DP_TRAIN_VOLTAGE_SWING_800:
1649                         demph_reg_value = 0x2B404040;
1650                         uniqtranscale_reg_value = 0x55ADDA3A;
1651                         break;
1652                 default:
1653                         return 0;
1654                 }
1655                 break;
1656         case DP_TRAIN_PRE_EMPHASIS_6:
1657                 preemph_reg_value = 0x0000000;
1658                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1659                 case DP_TRAIN_VOLTAGE_SWING_400:
1660                         demph_reg_value = 0x2B305555;
1661                         uniqtranscale_reg_value = 0x5570B83A;
1662                         break;
1663                 case DP_TRAIN_VOLTAGE_SWING_600:
1664                         demph_reg_value = 0x2B2B4040;
1665                         uniqtranscale_reg_value = 0x55ADDA3A;
1666                         break;
1667                 default:
1668                         return 0;
1669                 }
1670                 break;
1671         case DP_TRAIN_PRE_EMPHASIS_9_5:
1672                 preemph_reg_value = 0x0006000;
1673                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1674                 case DP_TRAIN_VOLTAGE_SWING_400:
1675                         demph_reg_value = 0x1B405555;
1676                         uniqtranscale_reg_value = 0x55ADDA3A;
1677                         break;
1678                 default:
1679                         return 0;
1680                 }
1681                 break;
1682         default:
1683                 return 0;
1684         }
1685
1686         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
1687         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
1688         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
1689                          uniqtranscale_reg_value);
1690         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
1691         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
1692         vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
1693         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
1694
1695         return 0;
1696 }
1697
1698 static void
1699 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1700 {
1701         uint8_t v = 0;
1702         uint8_t p = 0;
1703         int lane;
1704         uint8_t voltage_max;
1705         uint8_t preemph_max;
1706
1707         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1708                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1709                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1710
1711                 if (this_v > v)
1712                         v = this_v;
1713                 if (this_p > p)
1714                         p = this_p;
1715         }
1716
1717         voltage_max = intel_dp_voltage_max(intel_dp);
1718         if (v >= voltage_max)
1719                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1720
1721         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1722         if (p >= preemph_max)
1723                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1724
1725         for (lane = 0; lane < 4; lane++)
1726                 intel_dp->train_set[lane] = v | p;
1727 }
1728
1729 static uint32_t
1730 intel_gen4_signal_levels(uint8_t train_set)
1731 {
1732         uint32_t        signal_levels = 0;
1733
1734         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1735         case DP_TRAIN_VOLTAGE_SWING_400:
1736         default:
1737                 signal_levels |= DP_VOLTAGE_0_4;
1738                 break;
1739         case DP_TRAIN_VOLTAGE_SWING_600:
1740                 signal_levels |= DP_VOLTAGE_0_6;
1741                 break;
1742         case DP_TRAIN_VOLTAGE_SWING_800:
1743                 signal_levels |= DP_VOLTAGE_0_8;
1744                 break;
1745         case DP_TRAIN_VOLTAGE_SWING_1200:
1746                 signal_levels |= DP_VOLTAGE_1_2;
1747                 break;
1748         }
1749         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1750         case DP_TRAIN_PRE_EMPHASIS_0:
1751         default:
1752                 signal_levels |= DP_PRE_EMPHASIS_0;
1753                 break;
1754         case DP_TRAIN_PRE_EMPHASIS_3_5:
1755                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1756                 break;
1757         case DP_TRAIN_PRE_EMPHASIS_6:
1758                 signal_levels |= DP_PRE_EMPHASIS_6;
1759                 break;
1760         case DP_TRAIN_PRE_EMPHASIS_9_5:
1761                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1762                 break;
1763         }
1764         return signal_levels;
1765 }
1766
1767 /* Gen6's DP voltage swing and pre-emphasis control */
1768 static uint32_t
1769 intel_gen6_edp_signal_levels(uint8_t train_set)
1770 {
1771         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1772                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1773         switch (signal_levels) {
1774         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1775         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1776                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1777         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1778                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1779         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1780         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1781                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1782         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1783         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1784                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1785         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1786         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1787                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1788         default:
1789                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1790                               "0x%x\n", signal_levels);
1791                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1792         }
1793 }
1794
1795 /* Gen7's DP voltage swing and pre-emphasis control */
1796 static uint32_t
1797 intel_gen7_edp_signal_levels(uint8_t train_set)
1798 {
1799         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1800                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1801         switch (signal_levels) {
1802         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1803                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1804         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1805                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1806         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1807                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1808
1809         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1810                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1811         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1812                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1813
1814         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1815                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1816         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1817                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1818
1819         default:
1820                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1821                               "0x%x\n", signal_levels);
1822                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1823         }
1824 }
1825
1826 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1827 static uint32_t
1828 intel_hsw_signal_levels(uint8_t train_set)
1829 {
1830         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1831                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1832         switch (signal_levels) {
1833         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1834                 return DDI_BUF_EMP_400MV_0DB_HSW;
1835         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1836                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1837         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1838                 return DDI_BUF_EMP_400MV_6DB_HSW;
1839         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1840                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1841
1842         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1843                 return DDI_BUF_EMP_600MV_0DB_HSW;
1844         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1845                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1846         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1847                 return DDI_BUF_EMP_600MV_6DB_HSW;
1848
1849         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1850                 return DDI_BUF_EMP_800MV_0DB_HSW;
1851         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1852                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1853         default:
1854                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1855                               "0x%x\n", signal_levels);
1856                 return DDI_BUF_EMP_400MV_0DB_HSW;
1857         }
1858 }
1859
1860 /* Properly updates "DP" with the correct signal levels. */
1861 static void
1862 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1863 {
1864         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1865         enum port port = intel_dig_port->port;
1866         struct drm_device *dev = intel_dig_port->base.base.dev;
1867         uint32_t signal_levels, mask;
1868         uint8_t train_set = intel_dp->train_set[0];
1869
1870         if (HAS_DDI(dev)) {
1871                 signal_levels = intel_hsw_signal_levels(train_set);
1872                 mask = DDI_BUF_EMP_MASK;
1873         } else if (IS_VALLEYVIEW(dev)) {
1874                 signal_levels = intel_vlv_signal_levels(intel_dp);
1875                 mask = 0;
1876         } else if (IS_GEN7(dev) && port == PORT_A) {
1877                 signal_levels = intel_gen7_edp_signal_levels(train_set);
1878                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1879         } else if (IS_GEN6(dev) && port == PORT_A) {
1880                 signal_levels = intel_gen6_edp_signal_levels(train_set);
1881                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1882         } else {
1883                 signal_levels = intel_gen4_signal_levels(train_set);
1884                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1885         }
1886
1887         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1888
1889         *DP = (*DP & ~mask) | signal_levels;
1890 }
1891
1892 static bool
1893 intel_dp_set_link_train(struct intel_dp *intel_dp,
1894                         uint32_t dp_reg_value,
1895                         uint8_t dp_train_pat)
1896 {
1897         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1898         struct drm_device *dev = intel_dig_port->base.base.dev;
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         enum port port = intel_dig_port->port;
1901         int ret;
1902
1903         if (HAS_DDI(dev)) {
1904                 uint32_t temp = I915_READ(DP_TP_CTL(port));
1905
1906                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1907                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1908                 else
1909                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1910
1911                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1912                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1913                 case DP_TRAINING_PATTERN_DISABLE:
1914                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1915
1916                         break;
1917                 case DP_TRAINING_PATTERN_1:
1918                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1919                         break;
1920                 case DP_TRAINING_PATTERN_2:
1921                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1922                         break;
1923                 case DP_TRAINING_PATTERN_3:
1924                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1925                         break;
1926                 }
1927                 I915_WRITE(DP_TP_CTL(port), temp);
1928
1929         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
1930                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1931
1932                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1933                 case DP_TRAINING_PATTERN_DISABLE:
1934                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1935                         break;
1936                 case DP_TRAINING_PATTERN_1:
1937                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1938                         break;
1939                 case DP_TRAINING_PATTERN_2:
1940                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1941                         break;
1942                 case DP_TRAINING_PATTERN_3:
1943                         DRM_ERROR("DP training pattern 3 not supported\n");
1944                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1945                         break;
1946                 }
1947
1948         } else {
1949                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1950
1951                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1952                 case DP_TRAINING_PATTERN_DISABLE:
1953                         dp_reg_value |= DP_LINK_TRAIN_OFF;
1954                         break;
1955                 case DP_TRAINING_PATTERN_1:
1956                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1957                         break;
1958                 case DP_TRAINING_PATTERN_2:
1959                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1960                         break;
1961                 case DP_TRAINING_PATTERN_3:
1962                         DRM_ERROR("DP training pattern 3 not supported\n");
1963                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1964                         break;
1965                 }
1966         }
1967
1968         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1969         POSTING_READ(intel_dp->output_reg);
1970
1971         intel_dp_aux_native_write_1(intel_dp,
1972                                     DP_TRAINING_PATTERN_SET,
1973                                     dp_train_pat);
1974
1975         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1976             DP_TRAINING_PATTERN_DISABLE) {
1977                 ret = intel_dp_aux_native_write(intel_dp,
1978                                                 DP_TRAINING_LANE0_SET,
1979                                                 intel_dp->train_set,
1980                                                 intel_dp->lane_count);
1981                 if (ret != intel_dp->lane_count)
1982                         return false;
1983         }
1984
1985         return true;
1986 }
1987
1988 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
1989 {
1990         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1991         struct drm_device *dev = intel_dig_port->base.base.dev;
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         enum port port = intel_dig_port->port;
1994         uint32_t val;
1995
1996         if (!HAS_DDI(dev))
1997                 return;
1998
1999         val = I915_READ(DP_TP_CTL(port));
2000         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2001         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2002         I915_WRITE(DP_TP_CTL(port), val);
2003
2004         /*
2005          * On PORT_A we can have only eDP in SST mode. There the only reason
2006          * we need to set idle transmission mode is to work around a HW issue
2007          * where we enable the pipe while not in idle link-training mode.
2008          * In this case there is requirement to wait for a minimum number of
2009          * idle patterns to be sent.
2010          */
2011         if (port == PORT_A)
2012                 return;
2013
2014         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2015                      1))
2016                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2017 }
2018
2019 /* Enable corresponding port and start training pattern 1 */
2020 void
2021 intel_dp_start_link_train(struct intel_dp *intel_dp)
2022 {
2023         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2024         struct drm_device *dev = encoder->dev;
2025         int i;
2026         uint8_t voltage;
2027         bool clock_recovery = false;
2028         int voltage_tries, loop_tries;
2029         uint32_t DP = intel_dp->DP;
2030
2031         if (HAS_DDI(dev))
2032                 intel_ddi_prepare_link_retrain(encoder);
2033
2034         /* Write the link configuration data */
2035         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
2036                                   intel_dp->link_configuration,
2037                                   DP_LINK_CONFIGURATION_SIZE);
2038
2039         DP |= DP_PORT_EN;
2040
2041         memset(intel_dp->train_set, 0, 4);
2042         voltage = 0xff;
2043         voltage_tries = 0;
2044         loop_tries = 0;
2045         clock_recovery = false;
2046         for (;;) {
2047                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2048                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2049
2050                 intel_dp_set_signal_levels(intel_dp, &DP);
2051
2052                 /* Set training pattern 1 */
2053                 if (!intel_dp_set_link_train(intel_dp, DP,
2054                                              DP_TRAINING_PATTERN_1 |
2055                                              DP_LINK_SCRAMBLING_DISABLE))
2056                         break;
2057
2058                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2059                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2060                         DRM_ERROR("failed to get link status\n");
2061                         break;
2062                 }
2063
2064                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2065                         DRM_DEBUG_KMS("clock recovery OK\n");
2066                         clock_recovery = true;
2067                         break;
2068                 }
2069
2070                 /* Check to see if we've tried the max voltage */
2071                 for (i = 0; i < intel_dp->lane_count; i++)
2072                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2073                                 break;
2074                 if (i == intel_dp->lane_count) {
2075                         ++loop_tries;
2076                         if (loop_tries == 5) {
2077                                 DRM_DEBUG_KMS("too many full retries, give up\n");
2078                                 break;
2079                         }
2080                         memset(intel_dp->train_set, 0, 4);
2081                         voltage_tries = 0;
2082                         continue;
2083                 }
2084
2085                 /* Check to see if we've tried the same voltage 5 times */
2086                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2087                         ++voltage_tries;
2088                         if (voltage_tries == 5) {
2089                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
2090                                 break;
2091                         }
2092                 } else
2093                         voltage_tries = 0;
2094                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2095
2096                 /* Compute new intel_dp->train_set as requested by target */
2097                 intel_get_adjust_train(intel_dp, link_status);
2098         }
2099
2100         intel_dp->DP = DP;
2101 }
2102
2103 void
2104 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2105 {
2106         bool channel_eq = false;
2107         int tries, cr_tries;
2108         uint32_t DP = intel_dp->DP;
2109
2110         /* channel equalization */
2111         tries = 0;
2112         cr_tries = 0;
2113         channel_eq = false;
2114         for (;;) {
2115                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2116
2117                 if (cr_tries > 5) {
2118                         DRM_ERROR("failed to train DP, aborting\n");
2119                         intel_dp_link_down(intel_dp);
2120                         break;
2121                 }
2122
2123                 intel_dp_set_signal_levels(intel_dp, &DP);
2124
2125                 /* channel eq pattern */
2126                 if (!intel_dp_set_link_train(intel_dp, DP,
2127                                              DP_TRAINING_PATTERN_2 |
2128                                              DP_LINK_SCRAMBLING_DISABLE))
2129                         break;
2130
2131                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2132                 if (!intel_dp_get_link_status(intel_dp, link_status))
2133                         break;
2134
2135                 /* Make sure clock is still ok */
2136                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2137                         intel_dp_start_link_train(intel_dp);
2138                         cr_tries++;
2139                         continue;
2140                 }
2141
2142                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2143                         channel_eq = true;
2144                         break;
2145                 }
2146
2147                 /* Try 5 times, then try clock recovery if that fails */
2148                 if (tries > 5) {
2149                         intel_dp_link_down(intel_dp);
2150                         intel_dp_start_link_train(intel_dp);
2151                         tries = 0;
2152                         cr_tries++;
2153                         continue;
2154                 }
2155
2156                 /* Compute new intel_dp->train_set as requested by target */
2157                 intel_get_adjust_train(intel_dp, link_status);
2158                 ++tries;
2159         }
2160
2161         intel_dp_set_idle_link_train(intel_dp);
2162
2163         intel_dp->DP = DP;
2164
2165         if (channel_eq)
2166                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2167
2168 }
2169
2170 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2171 {
2172         intel_dp_set_link_train(intel_dp, intel_dp->DP,
2173                                 DP_TRAINING_PATTERN_DISABLE);
2174 }
2175
2176 static void
2177 intel_dp_link_down(struct intel_dp *intel_dp)
2178 {
2179         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2180         enum port port = intel_dig_port->port;
2181         struct drm_device *dev = intel_dig_port->base.base.dev;
2182         struct drm_i915_private *dev_priv = dev->dev_private;
2183         struct intel_crtc *intel_crtc =
2184                 to_intel_crtc(intel_dig_port->base.base.crtc);
2185         uint32_t DP = intel_dp->DP;
2186
2187         /*
2188          * DDI code has a strict mode set sequence and we should try to respect
2189          * it, otherwise we might hang the machine in many different ways. So we
2190          * really should be disabling the port only on a complete crtc_disable
2191          * sequence. This function is just called under two conditions on DDI
2192          * code:
2193          * - Link train failed while doing crtc_enable, and on this case we
2194          *   really should respect the mode set sequence and wait for a
2195          *   crtc_disable.
2196          * - Someone turned the monitor off and intel_dp_check_link_status
2197          *   called us. We don't need to disable the whole port on this case, so
2198          *   when someone turns the monitor on again,
2199          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2200          *   train.
2201          */
2202         if (HAS_DDI(dev))
2203                 return;
2204
2205         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2206                 return;
2207
2208         DRM_DEBUG_KMS("\n");
2209
2210         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2211                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2212                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2213         } else {
2214                 DP &= ~DP_LINK_TRAIN_MASK;
2215                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2216         }
2217         POSTING_READ(intel_dp->output_reg);
2218
2219         /* We don't really know why we're doing this */
2220         intel_wait_for_vblank(dev, intel_crtc->pipe);
2221
2222         if (HAS_PCH_IBX(dev) &&
2223             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2224                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2225
2226                 /* Hardware workaround: leaving our transcoder select
2227                  * set to transcoder B while it's off will prevent the
2228                  * corresponding HDMI output on transcoder A.
2229                  *
2230                  * Combine this with another hardware workaround:
2231                  * transcoder select bit can only be cleared while the
2232                  * port is enabled.
2233                  */
2234                 DP &= ~DP_PIPEB_SELECT;
2235                 I915_WRITE(intel_dp->output_reg, DP);
2236
2237                 /* Changes to enable or select take place the vblank
2238                  * after being written.
2239                  */
2240                 if (WARN_ON(crtc == NULL)) {
2241                         /* We should never try to disable a port without a crtc
2242                          * attached. For paranoia keep the code around for a
2243                          * bit. */
2244                         POSTING_READ(intel_dp->output_reg);
2245                         msleep(50);
2246                 } else
2247                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2248         }
2249
2250         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2251         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2252         POSTING_READ(intel_dp->output_reg);
2253         msleep(intel_dp->panel_power_down_delay);
2254 }
2255
2256 static bool
2257 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2258 {
2259         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2260
2261         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2262                                            sizeof(intel_dp->dpcd)) == 0)
2263                 return false; /* aux transfer failed */
2264
2265         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2266                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2267         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2268
2269         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2270                 return false; /* DPCD not present */
2271
2272         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2273               DP_DWN_STRM_PORT_PRESENT))
2274                 return true; /* native DP sink */
2275
2276         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2277                 return true; /* no per-port downstream info */
2278
2279         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2280                                            intel_dp->downstream_ports,
2281                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2282                 return false; /* downstream port status fetch failed */
2283
2284         return true;
2285 }
2286
2287 static void
2288 intel_dp_probe_oui(struct intel_dp *intel_dp)
2289 {
2290         u8 buf[3];
2291
2292         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2293                 return;
2294
2295         ironlake_edp_panel_vdd_on(intel_dp);
2296
2297         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2298                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2299                               buf[0], buf[1], buf[2]);
2300
2301         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2302                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2303                               buf[0], buf[1], buf[2]);
2304
2305         ironlake_edp_panel_vdd_off(intel_dp, false);
2306 }
2307
2308 static bool
2309 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2310 {
2311         int ret;
2312
2313         ret = intel_dp_aux_native_read_retry(intel_dp,
2314                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2315                                              sink_irq_vector, 1);
2316         if (!ret)
2317                 return false;
2318
2319         return true;
2320 }
2321
2322 static void
2323 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2324 {
2325         /* NAK by default */
2326         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2327 }
2328
2329 /*
2330  * According to DP spec
2331  * 5.1.2:
2332  *  1. Read DPCD
2333  *  2. Configure link according to Receiver Capabilities
2334  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2335  *  4. Check link status on receipt of hot-plug interrupt
2336  */
2337
2338 void
2339 intel_dp_check_link_status(struct intel_dp *intel_dp)
2340 {
2341         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2342         u8 sink_irq_vector;
2343         u8 link_status[DP_LINK_STATUS_SIZE];
2344
2345         if (!intel_encoder->connectors_active)
2346                 return;
2347
2348         if (WARN_ON(!intel_encoder->base.crtc))
2349                 return;
2350
2351         /* Try to read receiver status if the link appears to be up */
2352         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2353                 intel_dp_link_down(intel_dp);
2354                 return;
2355         }
2356
2357         /* Now read the DPCD to see if it's actually running */
2358         if (!intel_dp_get_dpcd(intel_dp)) {
2359                 intel_dp_link_down(intel_dp);
2360                 return;
2361         }
2362
2363         /* Try to read the source of the interrupt */
2364         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2365             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2366                 /* Clear interrupt source */
2367                 intel_dp_aux_native_write_1(intel_dp,
2368                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2369                                             sink_irq_vector);
2370
2371                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2372                         intel_dp_handle_test_request(intel_dp);
2373                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2374                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2375         }
2376
2377         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2378                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2379                               drm_get_encoder_name(&intel_encoder->base));
2380                 intel_dp_start_link_train(intel_dp);
2381                 intel_dp_complete_link_train(intel_dp);
2382                 intel_dp_stop_link_train(intel_dp);
2383         }
2384 }
2385
2386 /* XXX this is probably wrong for multiple downstream ports */
2387 static enum drm_connector_status
2388 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2389 {
2390         uint8_t *dpcd = intel_dp->dpcd;
2391         bool hpd;
2392         uint8_t type;
2393
2394         if (!intel_dp_get_dpcd(intel_dp))
2395                 return connector_status_disconnected;
2396
2397         /* if there's no downstream port, we're done */
2398         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2399                 return connector_status_connected;
2400
2401         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2402         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2403         if (hpd) {
2404                 uint8_t reg;
2405                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2406                                                     &reg, 1))
2407                         return connector_status_unknown;
2408                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2409                                               : connector_status_disconnected;
2410         }
2411
2412         /* If no HPD, poke DDC gently */
2413         if (drm_probe_ddc(&intel_dp->adapter))
2414                 return connector_status_connected;
2415
2416         /* Well we tried, say unknown for unreliable port types */
2417         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2418         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2419                 return connector_status_unknown;
2420
2421         /* Anything else is out of spec, warn and ignore */
2422         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2423         return connector_status_disconnected;
2424 }
2425
2426 static enum drm_connector_status
2427 ironlake_dp_detect(struct intel_dp *intel_dp)
2428 {
2429         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2430         struct drm_i915_private *dev_priv = dev->dev_private;
2431         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2432         enum drm_connector_status status;
2433
2434         /* Can't disconnect eDP, but you can close the lid... */
2435         if (is_edp(intel_dp)) {
2436                 status = intel_panel_detect(dev);
2437                 if (status == connector_status_unknown)
2438                         status = connector_status_connected;
2439                 return status;
2440         }
2441
2442         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2443                 return connector_status_disconnected;
2444
2445         return intel_dp_detect_dpcd(intel_dp);
2446 }
2447
2448 static enum drm_connector_status
2449 g4x_dp_detect(struct intel_dp *intel_dp)
2450 {
2451         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2452         struct drm_i915_private *dev_priv = dev->dev_private;
2453         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2454         uint32_t bit;
2455
2456         /* Can't disconnect eDP, but you can close the lid... */
2457         if (is_edp(intel_dp)) {
2458                 enum drm_connector_status status;
2459
2460                 status = intel_panel_detect(dev);
2461                 if (status == connector_status_unknown)
2462                         status = connector_status_connected;
2463                 return status;
2464         }
2465
2466         switch (intel_dig_port->port) {
2467         case PORT_B:
2468                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2469                 break;
2470         case PORT_C:
2471                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2472                 break;
2473         case PORT_D:
2474                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2475                 break;
2476         default:
2477                 return connector_status_unknown;
2478         }
2479
2480         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2481                 return connector_status_disconnected;
2482
2483         return intel_dp_detect_dpcd(intel_dp);
2484 }
2485
2486 static struct edid *
2487 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2488 {
2489         struct intel_connector *intel_connector = to_intel_connector(connector);
2490
2491         /* use cached edid if we have one */
2492         if (intel_connector->edid) {
2493                 struct edid *edid;
2494                 int size;
2495
2496                 /* invalid edid */
2497                 if (IS_ERR(intel_connector->edid))
2498                         return NULL;
2499
2500                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2501                 edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
2502                 if (!edid)
2503                         return NULL;
2504
2505                 return edid;
2506         }
2507
2508         return drm_get_edid(connector, adapter);
2509 }
2510
2511 static int
2512 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2513 {
2514         struct intel_connector *intel_connector = to_intel_connector(connector);
2515
2516         /* use cached edid if we have one */
2517         if (intel_connector->edid) {
2518                 /* invalid edid */
2519                 if (IS_ERR(intel_connector->edid))
2520                         return 0;
2521
2522                 return intel_connector_update_modes(connector,
2523                                                     intel_connector->edid);
2524         }
2525
2526         return intel_ddc_get_modes(connector, adapter);
2527 }
2528
2529 static enum drm_connector_status
2530 intel_dp_detect(struct drm_connector *connector, bool force)
2531 {
2532         struct intel_dp *intel_dp = intel_attached_dp(connector);
2533         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2534         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2535         struct drm_device *dev = connector->dev;
2536         enum drm_connector_status status;
2537         struct edid *edid = NULL;
2538
2539         intel_dp->has_audio = false;
2540
2541         if (HAS_PCH_SPLIT(dev))
2542                 status = ironlake_dp_detect(intel_dp);
2543         else
2544                 status = g4x_dp_detect(intel_dp);
2545
2546         if (status != connector_status_connected)
2547                 return status;
2548
2549         intel_dp_probe_oui(intel_dp);
2550
2551         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2552                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2553         } else {
2554                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2555                 if (edid) {
2556                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2557                         kfree(edid);
2558                 }
2559         }
2560
2561         if (intel_encoder->type != INTEL_OUTPUT_EDP)
2562                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2563         return connector_status_connected;
2564 }
2565
2566 static int intel_dp_get_modes(struct drm_connector *connector)
2567 {
2568         struct intel_dp *intel_dp = intel_attached_dp(connector);
2569         struct intel_connector *intel_connector = to_intel_connector(connector);
2570         struct drm_device *dev = connector->dev;
2571         int ret;
2572
2573         /* We should parse the EDID data and find out if it has an audio sink
2574          */
2575
2576         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2577         if (ret)
2578                 return ret;
2579
2580         /* if eDP has no EDID, fall back to fixed mode */
2581         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2582                 struct drm_display_mode *mode;
2583                 mode = drm_mode_duplicate(dev,
2584                                           intel_connector->panel.fixed_mode);
2585                 if (mode) {
2586                         drm_mode_probed_add(connector, mode);
2587                         return 1;
2588                 }
2589         }
2590         return 0;
2591 }
2592
2593 static bool
2594 intel_dp_detect_audio(struct drm_connector *connector)
2595 {
2596         struct intel_dp *intel_dp = intel_attached_dp(connector);
2597         struct edid *edid;
2598         bool has_audio = false;
2599
2600         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2601         if (edid) {
2602                 has_audio = drm_detect_monitor_audio(edid);
2603                 kfree(edid);
2604         }
2605
2606         return has_audio;
2607 }
2608
2609 static int
2610 intel_dp_set_property(struct drm_connector *connector,
2611                       struct drm_property *property,
2612                       uint64_t val)
2613 {
2614         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2615         struct intel_connector *intel_connector = to_intel_connector(connector);
2616         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2617         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2618         int ret;
2619
2620         ret = drm_object_property_set_value(&connector->base, property, val);
2621         if (ret)
2622                 return ret;
2623
2624         if (property == dev_priv->force_audio_property) {
2625                 int i = val;
2626                 bool has_audio;
2627
2628                 if (i == intel_dp->force_audio)
2629                         return 0;
2630
2631                 intel_dp->force_audio = i;
2632
2633                 if (i == HDMI_AUDIO_AUTO)
2634                         has_audio = intel_dp_detect_audio(connector);
2635                 else
2636                         has_audio = (i == HDMI_AUDIO_ON);
2637
2638                 if (has_audio == intel_dp->has_audio)
2639                         return 0;
2640
2641                 intel_dp->has_audio = has_audio;
2642                 goto done;
2643         }
2644
2645         if (property == dev_priv->broadcast_rgb_property) {
2646                 bool old_auto = intel_dp->color_range_auto;
2647                 uint32_t old_range = intel_dp->color_range;
2648
2649                 switch (val) {
2650                 case INTEL_BROADCAST_RGB_AUTO:
2651                         intel_dp->color_range_auto = true;
2652                         break;
2653                 case INTEL_BROADCAST_RGB_FULL:
2654                         intel_dp->color_range_auto = false;
2655                         intel_dp->color_range = 0;
2656                         break;
2657                 case INTEL_BROADCAST_RGB_LIMITED:
2658                         intel_dp->color_range_auto = false;
2659                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
2660                         break;
2661                 default:
2662                         return -EINVAL;
2663                 }
2664
2665                 if (old_auto == intel_dp->color_range_auto &&
2666                     old_range == intel_dp->color_range)
2667                         return 0;
2668
2669                 goto done;
2670         }
2671
2672         if (is_edp(intel_dp) &&
2673             property == connector->dev->mode_config.scaling_mode_property) {
2674                 if (val == DRM_MODE_SCALE_NONE) {
2675                         DRM_DEBUG_KMS("no scaling not supported\n");
2676                         return -EINVAL;
2677                 }
2678
2679                 if (intel_connector->panel.fitting_mode == val) {
2680                         /* the eDP scaling property is not changed */
2681                         return 0;
2682                 }
2683                 intel_connector->panel.fitting_mode = val;
2684
2685                 goto done;
2686         }
2687
2688         return -EINVAL;
2689
2690 done:
2691         if (intel_encoder->base.crtc)
2692                 intel_crtc_restore_mode(intel_encoder->base.crtc);
2693
2694         return 0;
2695 }
2696
2697 static void
2698 intel_dp_destroy(struct drm_connector *connector)
2699 {
2700         struct intel_dp *intel_dp = intel_attached_dp(connector);
2701         struct intel_connector *intel_connector = to_intel_connector(connector);
2702
2703         if (!IS_ERR_OR_NULL(intel_connector->edid))
2704                 kfree(intel_connector->edid);
2705
2706         if (is_edp(intel_dp))
2707                 intel_panel_fini(&intel_connector->panel);
2708
2709         drm_sysfs_connector_remove(connector);
2710         drm_connector_cleanup(connector);
2711         kfree(connector);
2712 }
2713
2714 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2715 {
2716         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2717         struct intel_dp *intel_dp = &intel_dig_port->dp;
2718         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2719
2720         i2c_del_adapter(&intel_dp->adapter);
2721         drm_encoder_cleanup(encoder);
2722         if (is_edp(intel_dp)) {
2723                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2724                 mutex_lock(&dev->mode_config.mutex);
2725                 ironlake_panel_vdd_off_sync(intel_dp);
2726                 mutex_unlock(&dev->mode_config.mutex);
2727         }
2728         kfree(intel_dig_port);
2729 }
2730
2731 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2732         .mode_set = intel_dp_mode_set,
2733 };
2734
2735 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2736         .dpms = intel_connector_dpms,
2737         .detect = intel_dp_detect,
2738         .fill_modes = drm_helper_probe_single_connector_modes,
2739         .set_property = intel_dp_set_property,
2740         .destroy = intel_dp_destroy,
2741 };
2742
2743 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2744         .get_modes = intel_dp_get_modes,
2745         .mode_valid = intel_dp_mode_valid,
2746         .best_encoder = intel_best_encoder,
2747 };
2748
2749 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2750         .destroy = intel_dp_encoder_destroy,
2751 };
2752
2753 static void
2754 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2755 {
2756         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2757
2758         intel_dp_check_link_status(intel_dp);
2759 }
2760
2761 /* Return which DP Port should be selected for Transcoder DP control */
2762 int
2763 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2764 {
2765         struct drm_device *dev = crtc->dev;
2766         struct intel_encoder *intel_encoder;
2767         struct intel_dp *intel_dp;
2768
2769         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2770                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2771
2772                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2773                     intel_encoder->type == INTEL_OUTPUT_EDP)
2774                         return intel_dp->output_reg;
2775         }
2776
2777         return -1;
2778 }
2779
2780 /* check the VBT to see whether the eDP is on DP-D port */
2781 bool intel_dpd_is_edp(struct drm_device *dev)
2782 {
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         struct child_device_config *p_child;
2785         int i;
2786
2787         if (!dev_priv->vbt.child_dev_num)
2788                 return false;
2789
2790         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2791                 p_child = dev_priv->vbt.child_dev + i;
2792
2793                 if (p_child->dvo_port == PORT_IDPD &&
2794                     p_child->device_type == DEVICE_TYPE_eDP)
2795                         return true;
2796         }
2797         return false;
2798 }
2799
2800 static void
2801 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2802 {
2803         struct intel_connector *intel_connector = to_intel_connector(connector);
2804
2805         intel_attach_force_audio_property(connector);
2806         intel_attach_broadcast_rgb_property(connector);
2807         intel_dp->color_range_auto = true;
2808
2809         if (is_edp(intel_dp)) {
2810                 drm_mode_create_scaling_mode_property(connector->dev);
2811                 drm_object_attach_property(
2812                         &connector->base,
2813                         connector->dev->mode_config.scaling_mode_property,
2814                         DRM_MODE_SCALE_ASPECT);
2815                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2816         }
2817 }
2818
2819 static void
2820 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2821                                     struct intel_dp *intel_dp,
2822                                     struct edp_power_seq *out)
2823 {
2824         struct drm_i915_private *dev_priv = dev->dev_private;
2825         struct edp_power_seq cur, vbt, spec, final;
2826         u32 pp_on, pp_off, pp_div, pp;
2827         int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
2828
2829         if (HAS_PCH_SPLIT(dev)) {
2830                 pp_control_reg = PCH_PP_CONTROL;
2831                 pp_on_reg = PCH_PP_ON_DELAYS;
2832                 pp_off_reg = PCH_PP_OFF_DELAYS;
2833                 pp_div_reg = PCH_PP_DIVISOR;
2834         } else {
2835                 pp_control_reg = PIPEA_PP_CONTROL;
2836                 pp_on_reg = PIPEA_PP_ON_DELAYS;
2837                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
2838                 pp_div_reg = PIPEA_PP_DIVISOR;
2839         }
2840
2841         /* Workaround: Need to write PP_CONTROL with the unlock key as
2842          * the very first thing. */
2843         pp = ironlake_get_pp_control(intel_dp);
2844         I915_WRITE(pp_control_reg, pp);
2845
2846         pp_on = I915_READ(pp_on_reg);
2847         pp_off = I915_READ(pp_off_reg);
2848         pp_div = I915_READ(pp_div_reg);
2849
2850         /* Pull timing values out of registers */
2851         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2852                 PANEL_POWER_UP_DELAY_SHIFT;
2853
2854         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2855                 PANEL_LIGHT_ON_DELAY_SHIFT;
2856
2857         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2858                 PANEL_LIGHT_OFF_DELAY_SHIFT;
2859
2860         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2861                 PANEL_POWER_DOWN_DELAY_SHIFT;
2862
2863         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2864                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2865
2866         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2867                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2868
2869         vbt = dev_priv->vbt.edp_pps;
2870
2871         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2872          * our hw here, which are all in 100usec. */
2873         spec.t1_t3 = 210 * 10;
2874         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2875         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2876         spec.t10 = 500 * 10;
2877         /* This one is special and actually in units of 100ms, but zero
2878          * based in the hw (so we need to add 100 ms). But the sw vbt
2879          * table multiplies it with 1000 to make it in units of 100usec,
2880          * too. */
2881         spec.t11_t12 = (510 + 100) * 10;
2882
2883         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2884                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2885
2886         /* Use the max of the register settings and vbt. If both are
2887          * unset, fall back to the spec limits. */
2888 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
2889                                        spec.field : \
2890                                        max(cur.field, vbt.field))
2891         assign_final(t1_t3);
2892         assign_final(t8);
2893         assign_final(t9);
2894         assign_final(t10);
2895         assign_final(t11_t12);
2896 #undef assign_final
2897
2898 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
2899         intel_dp->panel_power_up_delay = get_delay(t1_t3);
2900         intel_dp->backlight_on_delay = get_delay(t8);
2901         intel_dp->backlight_off_delay = get_delay(t9);
2902         intel_dp->panel_power_down_delay = get_delay(t10);
2903         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2904 #undef get_delay
2905
2906         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2907                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2908                       intel_dp->panel_power_cycle_delay);
2909
2910         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2911                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2912
2913         if (out)
2914                 *out = final;
2915 }
2916
2917 static void
2918 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2919                                               struct intel_dp *intel_dp,
2920                                               struct edp_power_seq *seq)
2921 {
2922         struct drm_i915_private *dev_priv = dev->dev_private;
2923         u32 pp_on, pp_off, pp_div, port_sel = 0;
2924         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
2925         int pp_on_reg, pp_off_reg, pp_div_reg;
2926
2927         if (HAS_PCH_SPLIT(dev)) {
2928                 pp_on_reg = PCH_PP_ON_DELAYS;
2929                 pp_off_reg = PCH_PP_OFF_DELAYS;
2930                 pp_div_reg = PCH_PP_DIVISOR;
2931         } else {
2932                 pp_on_reg = PIPEA_PP_ON_DELAYS;
2933                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
2934                 pp_div_reg = PIPEA_PP_DIVISOR;
2935         }
2936
2937         /* And finally store the new values in the power sequencer. */
2938         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2939                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2940         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2941                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2942         /* Compute the divisor for the pp clock, simply match the Bspec
2943          * formula. */
2944         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
2945         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2946                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
2947
2948         /* Haswell doesn't have any port selection bits for the panel
2949          * power sequencer any more. */
2950         if (IS_VALLEYVIEW(dev)) {
2951                 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
2952         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2953                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
2954                         port_sel = PANEL_POWER_PORT_DP_A;
2955                 else
2956                         port_sel = PANEL_POWER_PORT_DP_D;
2957         }
2958
2959         pp_on |= port_sel;
2960
2961         I915_WRITE(pp_on_reg, pp_on);
2962         I915_WRITE(pp_off_reg, pp_off);
2963         I915_WRITE(pp_div_reg, pp_div);
2964
2965         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2966                       I915_READ(pp_on_reg),
2967                       I915_READ(pp_off_reg),
2968                       I915_READ(pp_div_reg));
2969 }
2970
2971 void
2972 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2973                         struct intel_connector *intel_connector)
2974 {
2975         struct drm_connector *connector = &intel_connector->base;
2976         struct intel_dp *intel_dp = &intel_dig_port->dp;
2977         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2978         struct drm_device *dev = intel_encoder->base.dev;
2979         struct drm_i915_private *dev_priv = dev->dev_private;
2980         struct drm_display_mode *fixed_mode = NULL;
2981         struct edp_power_seq power_seq = { 0 };
2982         enum port port = intel_dig_port->port;
2983         const char *name = NULL;
2984         int type;
2985
2986         /* Preserve the current hw state. */
2987         intel_dp->DP = I915_READ(intel_dp->output_reg);
2988         intel_dp->attached_connector = intel_connector;
2989
2990         type = DRM_MODE_CONNECTOR_DisplayPort;
2991         /*
2992          * FIXME : We need to initialize built-in panels before external panels.
2993          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2994          */
2995         switch (port) {
2996         case PORT_A:
2997                 type = DRM_MODE_CONNECTOR_eDP;
2998                 break;
2999         case PORT_C:
3000                 if (IS_VALLEYVIEW(dev))
3001                         type = DRM_MODE_CONNECTOR_eDP;
3002                 break;
3003         case PORT_D:
3004                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3005                         type = DRM_MODE_CONNECTOR_eDP;
3006                 break;
3007         default:        /* silence GCC warning */
3008                 break;
3009         }
3010
3011         /*
3012          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3013          * for DP the encoder type can be set by the caller to
3014          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3015          */
3016         if (type == DRM_MODE_CONNECTOR_eDP)
3017                 intel_encoder->type = INTEL_OUTPUT_EDP;
3018
3019         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3020                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3021                         port_name(port));
3022
3023         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3024         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3025
3026         connector->interlace_allowed = true;
3027         connector->doublescan_allowed = 0;
3028
3029         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3030                           ironlake_panel_vdd_work);
3031
3032         intel_connector_attach_encoder(intel_connector, intel_encoder);
3033         drm_sysfs_connector_add(connector);
3034
3035         if (HAS_DDI(dev))
3036                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3037         else
3038                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3039
3040         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3041         if (HAS_DDI(dev)) {
3042                 switch (intel_dig_port->port) {
3043                 case PORT_A:
3044                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3045                         break;
3046                 case PORT_B:
3047                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3048                         break;
3049                 case PORT_C:
3050                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3051                         break;
3052                 case PORT_D:
3053                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3054                         break;
3055                 default:
3056                         BUG();
3057                 }
3058         }
3059
3060         /* Set up the DDC bus. */
3061         switch (port) {
3062         case PORT_A:
3063                 intel_encoder->hpd_pin = HPD_PORT_A;
3064                 name = "DPDDC-A";
3065                 break;
3066         case PORT_B:
3067                 intel_encoder->hpd_pin = HPD_PORT_B;
3068                 name = "DPDDC-B";
3069                 break;
3070         case PORT_C:
3071                 intel_encoder->hpd_pin = HPD_PORT_C;
3072                 name = "DPDDC-C";
3073                 break;
3074         case PORT_D:
3075                 intel_encoder->hpd_pin = HPD_PORT_D;
3076                 name = "DPDDC-D";
3077                 break;
3078         default:
3079                 BUG();
3080         }
3081
3082         if (is_edp(intel_dp))
3083                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3084
3085         intel_dp_i2c_init(intel_dp, intel_connector, name);
3086
3087         /* Cache DPCD and EDID for edp. */
3088         if (is_edp(intel_dp)) {
3089                 bool ret;
3090                 struct drm_display_mode *scan;
3091                 struct edid *edid;
3092
3093                 ironlake_edp_panel_vdd_on(intel_dp);
3094                 ret = intel_dp_get_dpcd(intel_dp);
3095                 ironlake_edp_panel_vdd_off(intel_dp, false);
3096
3097                 if (ret) {
3098                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3099                                 dev_priv->no_aux_handshake =
3100                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3101                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3102                 } else {
3103                         /* if this fails, presume the device is a ghost */
3104                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
3105                         intel_dp_encoder_destroy(&intel_encoder->base);
3106                         intel_dp_destroy(connector);
3107                         return;
3108                 }
3109
3110                 /* We now know it's not a ghost, init power sequence regs. */
3111                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3112                                                               &power_seq);
3113
3114                 ironlake_edp_panel_vdd_on(intel_dp);
3115                 edid = drm_get_edid(connector, &intel_dp->adapter);
3116                 if (edid) {
3117                         if (drm_add_edid_modes(connector, edid)) {
3118                                 drm_mode_connector_update_edid_property(connector, edid);
3119                                 drm_edid_to_eld(connector, edid);
3120                         } else {
3121                                 kfree(edid);
3122                                 edid = ERR_PTR(-EINVAL);
3123                         }
3124                 } else {
3125                         edid = ERR_PTR(-ENOENT);
3126                 }
3127                 intel_connector->edid = edid;
3128
3129                 /* prefer fixed mode from EDID if available */
3130                 list_for_each_entry(scan, &connector->probed_modes, head) {
3131                         if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3132                                 fixed_mode = drm_mode_duplicate(dev, scan);
3133                                 break;
3134                         }
3135                 }
3136
3137                 /* fallback to VBT if available for eDP */
3138                 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3139                         fixed_mode = drm_mode_duplicate(dev, dev_priv->vbt.lfp_lvds_vbt_mode);
3140                         if (fixed_mode)
3141                                 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3142                 }
3143
3144                 ironlake_edp_panel_vdd_off(intel_dp, false);
3145         }
3146
3147         if (is_edp(intel_dp)) {
3148                 intel_panel_init(&intel_connector->panel, fixed_mode);
3149                 intel_panel_setup_backlight(connector);
3150         }
3151
3152         intel_dp_add_properties(intel_dp, connector);
3153
3154         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3155          * 0xd.  Failure to do so will result in spurious interrupts being
3156          * generated on the port when a cable is not attached.
3157          */
3158         if (IS_G4X(dev) && !IS_GM45(dev)) {
3159                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3160                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3161         }
3162 }
3163
3164 void
3165 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3166 {
3167         struct intel_digital_port *intel_dig_port;
3168         struct intel_encoder *intel_encoder;
3169         struct drm_encoder *encoder;
3170         struct intel_connector *intel_connector;
3171
3172         intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
3173         if (!intel_dig_port)
3174                 return;
3175
3176         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
3177         if (!intel_connector) {
3178                 kfree(intel_dig_port);
3179                 return;
3180         }
3181
3182         intel_encoder = &intel_dig_port->base;
3183         encoder = &intel_encoder->base;
3184
3185         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3186                          DRM_MODE_ENCODER_TMDS);
3187         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
3188
3189         intel_encoder->compute_config = intel_dp_compute_config;
3190         intel_encoder->enable = intel_enable_dp;
3191         intel_encoder->pre_enable = intel_pre_enable_dp;
3192         intel_encoder->disable = intel_disable_dp;
3193         intel_encoder->post_disable = intel_post_disable_dp;
3194         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3195         intel_encoder->get_config = intel_dp_get_config;
3196         if (IS_VALLEYVIEW(dev))
3197                 intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
3198
3199         intel_dig_port->port = port;
3200         intel_dig_port->dp.output_reg = output_reg;
3201
3202         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3203         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3204         intel_encoder->cloneable = false;
3205         intel_encoder->hot_plug = intel_dp_hot_plug;
3206
3207         intel_dp_init_connector(intel_dig_port, intel_connector);
3208 }