Merge remote-tracking branch 'drm/drm-next'
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - tail;
56         if (space <= 0)
57                 space += size;
58         return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63         if (ringbuf->last_retired_head != -1) {
64                 ringbuf->head = ringbuf->last_retired_head;
65                 ringbuf->last_retired_head = -1;
66         }
67
68         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69                                             ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74         intel_ring_update_space(ringbuf);
75         return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80         struct drm_i915_private *dev_priv = ring->dev->dev_private;
81         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86         struct intel_ringbuffer *ringbuf = ring->buffer;
87         ringbuf->tail &= ringbuf->size - 1;
88         if (intel_ring_stopped(ring))
89                 return;
90         ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95                        u32      invalidate_domains,
96                        u32      flush_domains)
97 {
98         struct intel_engine_cs *ring = req->ring;
99         u32 cmd;
100         int ret;
101
102         cmd = MI_FLUSH;
103         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104                 cmd |= MI_NO_WRITE_FLUSH;
105
106         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107                 cmd |= MI_READ_FLUSH;
108
109         ret = intel_ring_begin(req, 2);
110         if (ret)
111                 return ret;
112
113         intel_ring_emit(ring, cmd);
114         intel_ring_emit(ring, MI_NOOP);
115         intel_ring_advance(ring);
116
117         return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122                        u32      invalidate_domains,
123                        u32      flush_domains)
124 {
125         struct intel_engine_cs *ring = req->ring;
126         struct drm_device *dev = ring->dev;
127         u32 cmd;
128         int ret;
129
130         /*
131          * read/write caches:
132          *
133          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135          * also flushed at 2d versus 3d pipeline switches.
136          *
137          * read-only caches:
138          *
139          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140          * MI_READ_FLUSH is set, and is always flushed on 965.
141          *
142          * I915_GEM_DOMAIN_COMMAND may not exist?
143          *
144          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145          * invalidated when MI_EXE_FLUSH is set.
146          *
147          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148          * invalidated with every MI_FLUSH.
149          *
150          * TLBs:
151          *
152          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155          * are flushed at any MI_FLUSH.
156          */
157
158         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160                 cmd &= ~MI_NO_WRITE_FLUSH;
161         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162                 cmd |= MI_EXE_FLUSH;
163
164         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165             (IS_G4X(dev) || IS_GEN5(dev)))
166                 cmd |= MI_INVALIDATE_ISP;
167
168         ret = intel_ring_begin(req, 2);
169         if (ret)
170                 return ret;
171
172         intel_ring_emit(ring, cmd);
173         intel_ring_emit(ring, MI_NOOP);
174         intel_ring_advance(ring);
175
176         return 0;
177 }
178
179 /**
180  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181  * implementing two workarounds on gen6.  From section 1.4.7.1
182  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183  *
184  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185  * produced by non-pipelined state commands), software needs to first
186  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187  * 0.
188  *
189  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191  *
192  * And the workaround for these two requires this workaround first:
193  *
194  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195  * BEFORE the pipe-control with a post-sync op and no write-cache
196  * flushes.
197  *
198  * And this last workaround is tricky because of the requirements on
199  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200  * volume 2 part 1:
201  *
202  *     "1 of the following must also be set:
203  *      - Render Target Cache Flush Enable ([12] of DW1)
204  *      - Depth Cache Flush Enable ([0] of DW1)
205  *      - Stall at Pixel Scoreboard ([1] of DW1)
206  *      - Depth Stall ([13] of DW1)
207  *      - Post-Sync Operation ([13] of DW1)
208  *      - Notify Enable ([8] of DW1)"
209  *
210  * The cache flushes require the workaround flush that triggered this
211  * one, so we can't use it.  Depth stall would trigger the same.
212  * Post-sync nonzero is what triggered this second workaround, so we
213  * can't use that one either.  Notify enable is IRQs, which aren't
214  * really our business.  That leaves only stall at scoreboard.
215  */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219         struct intel_engine_cs *ring = req->ring;
220         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221         int ret;
222
223         ret = intel_ring_begin(req, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
230         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231         intel_ring_emit(ring, 0); /* low dword */
232         intel_ring_emit(ring, 0); /* high dword */
233         intel_ring_emit(ring, MI_NOOP);
234         intel_ring_advance(ring);
235
236         ret = intel_ring_begin(req, 6);
237         if (ret)
238                 return ret;
239
240         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243         intel_ring_emit(ring, 0);
244         intel_ring_emit(ring, 0);
245         intel_ring_emit(ring, MI_NOOP);
246         intel_ring_advance(ring);
247
248         return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253                        u32 invalidate_domains, u32 flush_domains)
254 {
255         struct intel_engine_cs *ring = req->ring;
256         u32 flags = 0;
257         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258         int ret;
259
260         /* Force SNB workarounds for PIPE_CONTROL flushes */
261         ret = intel_emit_post_sync_nonzero_flush(req);
262         if (ret)
263                 return ret;
264
265         /* Just flush everything.  Experiments have shown that reducing the
266          * number of bits based on the write domains has little performance
267          * impact.
268          */
269         if (flush_domains) {
270                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272                 /*
273                  * Ensure that any following seqno writes only happen
274                  * when the render cache is indeed flushed.
275                  */
276                 flags |= PIPE_CONTROL_CS_STALL;
277         }
278         if (invalidate_domains) {
279                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285                 /*
286                  * TLB invalidate requires a post-sync write.
287                  */
288                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289         }
290
291         ret = intel_ring_begin(req, 4);
292         if (ret)
293                 return ret;
294
295         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296         intel_ring_emit(ring, flags);
297         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298         intel_ring_emit(ring, 0);
299         intel_ring_advance(ring);
300
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307         struct intel_engine_cs *ring = req->ring;
308         int ret;
309
310         ret = intel_ring_begin(req, 4);
311         if (ret)
312                 return ret;
313
314         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
317         intel_ring_emit(ring, 0);
318         intel_ring_emit(ring, 0);
319         intel_ring_advance(ring);
320
321         return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326                        u32 invalidate_domains, u32 flush_domains)
327 {
328         struct intel_engine_cs *ring = req->ring;
329         u32 flags = 0;
330         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331         int ret;
332
333         /*
334          * Ensure that any following seqno writes only happen when the render
335          * cache is indeed flushed.
336          *
337          * Workaround: 4th PIPE_CONTROL command (except the ones with only
338          * read-cache invalidate bits set) must have the CS_STALL bit set. We
339          * don't try to be clever and just set it unconditionally.
340          */
341         flags |= PIPE_CONTROL_CS_STALL;
342
343         /* Just flush everything.  Experiments have shown that reducing the
344          * number of bits based on the write domains has little performance
345          * impact.
346          */
347         if (flush_domains) {
348                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
351         }
352         if (invalidate_domains) {
353                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
354                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
355                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
356                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
357                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
358                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
359                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
360                 /*
361                  * TLB invalidate requires a post-sync write.
362                  */
363                 flags |= PIPE_CONTROL_QW_WRITE;
364                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
365
366                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
367
368                 /* Workaround: we must issue a pipe_control with CS-stall bit
369                  * set before a pipe_control command that has the state cache
370                  * invalidate bit set. */
371                 gen7_render_ring_cs_stall_wa(req);
372         }
373
374         ret = intel_ring_begin(req, 4);
375         if (ret)
376                 return ret;
377
378         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
379         intel_ring_emit(ring, flags);
380         intel_ring_emit(ring, scratch_addr);
381         intel_ring_emit(ring, 0);
382         intel_ring_advance(ring);
383
384         return 0;
385 }
386
387 static int
388 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
389                        u32 flags, u32 scratch_addr)
390 {
391         struct intel_engine_cs *ring = req->ring;
392         int ret;
393
394         ret = intel_ring_begin(req, 6);
395         if (ret)
396                 return ret;
397
398         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
399         intel_ring_emit(ring, flags);
400         intel_ring_emit(ring, scratch_addr);
401         intel_ring_emit(ring, 0);
402         intel_ring_emit(ring, 0);
403         intel_ring_emit(ring, 0);
404         intel_ring_advance(ring);
405
406         return 0;
407 }
408
409 static int
410 gen8_render_ring_flush(struct drm_i915_gem_request *req,
411                        u32 invalidate_domains, u32 flush_domains)
412 {
413         u32 flags = 0;
414         u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
415         int ret;
416
417         flags |= PIPE_CONTROL_CS_STALL;
418
419         if (flush_domains) {
420                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
421                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
422                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
423         }
424         if (invalidate_domains) {
425                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
426                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
427                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
428                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
429                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
430                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
431                 flags |= PIPE_CONTROL_QW_WRITE;
432                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
433
434                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
435                 ret = gen8_emit_pipe_control(req,
436                                              PIPE_CONTROL_CS_STALL |
437                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
438                                              0);
439                 if (ret)
440                         return ret;
441         }
442
443         return gen8_emit_pipe_control(req, flags, scratch_addr);
444 }
445
446 static void ring_write_tail(struct intel_engine_cs *ring,
447                             u32 value)
448 {
449         struct drm_i915_private *dev_priv = ring->dev->dev_private;
450         I915_WRITE_TAIL(ring, value);
451 }
452
453 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
454 {
455         struct drm_i915_private *dev_priv = ring->dev->dev_private;
456         u64 acthd;
457
458         if (INTEL_INFO(ring->dev)->gen >= 8)
459                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
460                                          RING_ACTHD_UDW(ring->mmio_base));
461         else if (INTEL_INFO(ring->dev)->gen >= 4)
462                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
463         else
464                 acthd = I915_READ(ACTHD);
465
466         return acthd;
467 }
468
469 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
470 {
471         struct drm_i915_private *dev_priv = ring->dev->dev_private;
472         u32 addr;
473
474         addr = dev_priv->status_page_dmah->busaddr;
475         if (INTEL_INFO(ring->dev)->gen >= 4)
476                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
477         I915_WRITE(HWS_PGA, addr);
478 }
479
480 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
481 {
482         struct drm_device *dev = ring->dev;
483         struct drm_i915_private *dev_priv = ring->dev->dev_private;
484         u32 mmio = 0;
485
486         /* The ring status page addresses are no longer next to the rest of
487          * the ring registers as of gen7.
488          */
489         if (IS_GEN7(dev)) {
490                 switch (ring->id) {
491                 case RCS:
492                         mmio = RENDER_HWS_PGA_GEN7;
493                         break;
494                 case BCS:
495                         mmio = BLT_HWS_PGA_GEN7;
496                         break;
497                 /*
498                  * VCS2 actually doesn't exist on Gen7. Only shut up
499                  * gcc switch check warning
500                  */
501                 case VCS2:
502                 case VCS:
503                         mmio = BSD_HWS_PGA_GEN7;
504                         break;
505                 case VECS:
506                         mmio = VEBOX_HWS_PGA_GEN7;
507                         break;
508                 }
509         } else if (IS_GEN6(ring->dev)) {
510                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
511         } else {
512                 /* XXX: gen8 returns to sanity */
513                 mmio = RING_HWS_PGA(ring->mmio_base);
514         }
515
516         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
517         POSTING_READ(mmio);
518
519         /*
520          * Flush the TLB for this page
521          *
522          * FIXME: These two bits have disappeared on gen8, so a question
523          * arises: do we still need this and if so how should we go about
524          * invalidating the TLB?
525          */
526         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
527                 u32 reg = RING_INSTPM(ring->mmio_base);
528
529                 /* ring should be idle before issuing a sync flush*/
530                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
531
532                 I915_WRITE(reg,
533                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
534                                               INSTPM_SYNC_FLUSH));
535                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
536                              1000))
537                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
538                                   ring->name);
539         }
540 }
541
542 static bool stop_ring(struct intel_engine_cs *ring)
543 {
544         struct drm_i915_private *dev_priv = to_i915(ring->dev);
545
546         if (!IS_GEN2(ring->dev)) {
547                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
548                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
549                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
550                         /* Sometimes we observe that the idle flag is not
551                          * set even though the ring is empty. So double
552                          * check before giving up.
553                          */
554                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
555                                 return false;
556                 }
557         }
558
559         I915_WRITE_CTL(ring, 0);
560         I915_WRITE_HEAD(ring, 0);
561         ring->write_tail(ring, 0);
562
563         if (!IS_GEN2(ring->dev)) {
564                 (void)I915_READ_CTL(ring);
565                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
566         }
567
568         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
569 }
570
571 static int init_ring_common(struct intel_engine_cs *ring)
572 {
573         struct drm_device *dev = ring->dev;
574         struct drm_i915_private *dev_priv = dev->dev_private;
575         struct intel_ringbuffer *ringbuf = ring->buffer;
576         struct drm_i915_gem_object *obj = ringbuf->obj;
577         int ret = 0;
578
579         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
580
581         if (!stop_ring(ring)) {
582                 /* G45 ring initialization often fails to reset head to zero */
583                 DRM_DEBUG_KMS("%s head not reset to zero "
584                               "ctl %08x head %08x tail %08x start %08x\n",
585                               ring->name,
586                               I915_READ_CTL(ring),
587                               I915_READ_HEAD(ring),
588                               I915_READ_TAIL(ring),
589                               I915_READ_START(ring));
590
591                 if (!stop_ring(ring)) {
592                         DRM_ERROR("failed to set %s head to zero "
593                                   "ctl %08x head %08x tail %08x start %08x\n",
594                                   ring->name,
595                                   I915_READ_CTL(ring),
596                                   I915_READ_HEAD(ring),
597                                   I915_READ_TAIL(ring),
598                                   I915_READ_START(ring));
599                         ret = -EIO;
600                         goto out;
601                 }
602         }
603
604         if (I915_NEED_GFX_HWS(dev))
605                 intel_ring_setup_status_page(ring);
606         else
607                 ring_setup_phys_status_page(ring);
608
609         /* Enforce ordering by reading HEAD register back */
610         I915_READ_HEAD(ring);
611
612         /* Initialize the ring. This must happen _after_ we've cleared the ring
613          * registers with the above sequence (the readback of the HEAD registers
614          * also enforces ordering), otherwise the hw might lose the new ring
615          * register values. */
616         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
617
618         /* WaClearRingBufHeadRegAtInit:ctg,elk */
619         if (I915_READ_HEAD(ring))
620                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
621                           ring->name, I915_READ_HEAD(ring));
622         I915_WRITE_HEAD(ring, 0);
623         (void)I915_READ_HEAD(ring);
624
625         I915_WRITE_CTL(ring,
626                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
627                         | RING_VALID);
628
629         /* If the head is still not zero, the ring is dead */
630         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
631                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
632                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
633                 DRM_ERROR("%s initialization failed "
634                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
635                           ring->name,
636                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
637                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
638                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
639                 ret = -EIO;
640                 goto out;
641         }
642
643         ringbuf->last_retired_head = -1;
644         ringbuf->head = I915_READ_HEAD(ring);
645         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
646         intel_ring_update_space(ringbuf);
647
648         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
649
650 out:
651         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
652
653         return ret;
654 }
655
656 void
657 intel_fini_pipe_control(struct intel_engine_cs *ring)
658 {
659         struct drm_device *dev = ring->dev;
660
661         if (ring->scratch.obj == NULL)
662                 return;
663
664         if (INTEL_INFO(dev)->gen >= 5) {
665                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
666                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
667         }
668
669         drm_gem_object_unreference(&ring->scratch.obj->base);
670         ring->scratch.obj = NULL;
671 }
672
673 int
674 intel_init_pipe_control(struct intel_engine_cs *ring)
675 {
676         int ret;
677
678         WARN_ON(ring->scratch.obj);
679
680         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
681         if (ring->scratch.obj == NULL) {
682                 DRM_ERROR("Failed to allocate seqno page\n");
683                 ret = -ENOMEM;
684                 goto err;
685         }
686
687         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
688         if (ret)
689                 goto err_unref;
690
691         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
692         if (ret)
693                 goto err_unref;
694
695         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
696         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
697         if (ring->scratch.cpu_page == NULL) {
698                 ret = -ENOMEM;
699                 goto err_unpin;
700         }
701
702         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
703                          ring->name, ring->scratch.gtt_offset);
704         return 0;
705
706 err_unpin:
707         i915_gem_object_ggtt_unpin(ring->scratch.obj);
708 err_unref:
709         drm_gem_object_unreference(&ring->scratch.obj->base);
710 err:
711         return ret;
712 }
713
714 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
715 {
716         int ret, i;
717         struct intel_engine_cs *ring = req->ring;
718         struct drm_device *dev = ring->dev;
719         struct drm_i915_private *dev_priv = dev->dev_private;
720         struct i915_workarounds *w = &dev_priv->workarounds;
721
722         if (w->count == 0)
723                 return 0;
724
725         ring->gpu_caches_dirty = true;
726         ret = intel_ring_flush_all_caches(req);
727         if (ret)
728                 return ret;
729
730         ret = intel_ring_begin(req, (w->count * 2 + 2));
731         if (ret)
732                 return ret;
733
734         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
735         for (i = 0; i < w->count; i++) {
736                 intel_ring_emit(ring, w->reg[i].addr);
737                 intel_ring_emit(ring, w->reg[i].value);
738         }
739         intel_ring_emit(ring, MI_NOOP);
740
741         intel_ring_advance(ring);
742
743         ring->gpu_caches_dirty = true;
744         ret = intel_ring_flush_all_caches(req);
745         if (ret)
746                 return ret;
747
748         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
749
750         return 0;
751 }
752
753 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
754 {
755         int ret;
756
757         ret = intel_ring_workarounds_emit(req);
758         if (ret != 0)
759                 return ret;
760
761         ret = i915_gem_render_state_init(req);
762         if (ret)
763                 DRM_ERROR("init render state: %d\n", ret);
764
765         return ret;
766 }
767
768 static int wa_add(struct drm_i915_private *dev_priv,
769                   const u32 addr, const u32 mask, const u32 val)
770 {
771         const u32 idx = dev_priv->workarounds.count;
772
773         if (WARN_ON(idx >= I915_MAX_WA_REGS))
774                 return -ENOSPC;
775
776         dev_priv->workarounds.reg[idx].addr = addr;
777         dev_priv->workarounds.reg[idx].value = val;
778         dev_priv->workarounds.reg[idx].mask = mask;
779
780         dev_priv->workarounds.count++;
781
782         return 0;
783 }
784
785 #define WA_REG(addr, mask, val) do { \
786                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
787                 if (r) \
788                         return r; \
789         } while (0)
790
791 #define WA_SET_BIT_MASKED(addr, mask) \
792         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
793
794 #define WA_CLR_BIT_MASKED(addr, mask) \
795         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
796
797 #define WA_SET_FIELD_MASKED(addr, mask, value) \
798         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
799
800 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
801 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
802
803 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
804
805 static int gen8_init_workarounds(struct intel_engine_cs *ring)
806 {
807         struct drm_device *dev = ring->dev;
808         struct drm_i915_private *dev_priv = dev->dev_private;
809
810         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
811
812         /* WaDisableAsyncFlipPerfMode:bdw,chv */
813         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
814
815         /* WaDisablePartialInstShootdown:bdw,chv */
816         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
817                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
818
819         /* Use Force Non-Coherent whenever executing a 3D context. This is a
820          * workaround for for a possible hang in the unlikely event a TLB
821          * invalidation occurs during a PSD flush.
822          */
823         /* WaForceEnableNonCoherent:bdw,chv */
824         /* WaHdcDisableFetchWhenMasked:bdw,chv */
825         WA_SET_BIT_MASKED(HDC_CHICKEN0,
826                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
827                           HDC_FORCE_NON_COHERENT);
828
829         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
830          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
831          *  polygons in the same 8x4 pixel/sample area to be processed without
832          *  stalling waiting for the earlier ones to write to Hierarchical Z
833          *  buffer."
834          *
835          * This optimization is off by default for BDW and CHV; turn it on.
836          */
837         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
838
839         /* Wa4x4STCOptimizationDisable:bdw,chv */
840         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
841
842         /*
843          * BSpec recommends 8x4 when MSAA is used,
844          * however in practice 16x4 seems fastest.
845          *
846          * Note that PS/WM thread counts depend on the WIZ hashing
847          * disable bit, which we don't touch here, but it's good
848          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
849          */
850         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
851                             GEN6_WIZ_HASHING_MASK,
852                             GEN6_WIZ_HASHING_16x4);
853
854         return 0;
855 }
856
857 static int bdw_init_workarounds(struct intel_engine_cs *ring)
858 {
859         int ret;
860         struct drm_device *dev = ring->dev;
861         struct drm_i915_private *dev_priv = dev->dev_private;
862
863         ret = gen8_init_workarounds(ring);
864         if (ret)
865                 return ret;
866
867         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
868         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
869
870         /* WaDisableDopClockGating:bdw */
871         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
872                           DOP_CLOCK_GATING_DISABLE);
873
874         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
875                           GEN8_SAMPLER_POWER_BYPASS_DIS);
876
877         WA_SET_BIT_MASKED(HDC_CHICKEN0,
878                           /* WaForceContextSaveRestoreNonCoherent:bdw */
879                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
880                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
881                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
882
883         return 0;
884 }
885
886 static int chv_init_workarounds(struct intel_engine_cs *ring)
887 {
888         int ret;
889         struct drm_device *dev = ring->dev;
890         struct drm_i915_private *dev_priv = dev->dev_private;
891
892         ret = gen8_init_workarounds(ring);
893         if (ret)
894                 return ret;
895
896         /* WaDisableThreadStallDopClockGating:chv */
897         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
898
899         /* Improve HiZ throughput on CHV. */
900         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
901
902         return 0;
903 }
904
905 static int gen9_init_workarounds(struct intel_engine_cs *ring)
906 {
907         struct drm_device *dev = ring->dev;
908         struct drm_i915_private *dev_priv = dev->dev_private;
909         uint32_t tmp;
910
911         /* WaEnableLbsSlaRetryTimerDecrement:skl */
912         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
913                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
914
915         /* WaDisableKillLogic:bxt,skl */
916         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
917                    ECOCHK_DIS_TLB);
918
919         /* WaDisablePartialInstShootdown:skl,bxt */
920         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
921                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
922
923         /* Syncing dependencies between camera and graphics:skl,bxt */
924         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
925                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
926
927         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
928             INTEL_REVID(dev) == SKL_REVID_B0)) ||
929             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
930                 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
931                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
932                                   GEN9_DG_MIRROR_FIX_ENABLE);
933         }
934
935         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
936             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
937                 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
938                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
939                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
940                 /*
941                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
942                  * but we do that in per ctx batchbuffer as there is an issue
943                  * with this register not getting restored on ctx restore
944                  */
945         }
946
947         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
948             IS_BROXTON(dev)) {
949                 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
950                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
951                                   GEN9_ENABLE_YV12_BUGFIX);
952         }
953
954         /* Wa4x4STCOptimizationDisable:skl,bxt */
955         /* WaDisablePartialResolveInVc:skl,bxt */
956         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
957                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
958
959         /* WaCcsTlbPrefetchDisable:skl,bxt */
960         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
961                           GEN9_CCS_TLB_PREFETCH_ENABLE);
962
963         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
964         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
965             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
966                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
967                                   PIXEL_MASK_CAMMING_DISABLE);
968
969         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
970         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
971         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
972             (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
973                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
974         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
975
976         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
977         if (IS_SKYLAKE(dev) ||
978             (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
979                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
980                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
981         }
982
983         /* WaDisableSTUnitPowerOptimization:skl,bxt */
984         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
985
986         return 0;
987 }
988
989 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
990 {
991         struct drm_device *dev = ring->dev;
992         struct drm_i915_private *dev_priv = dev->dev_private;
993         u8 vals[3] = { 0, 0, 0 };
994         unsigned int i;
995
996         for (i = 0; i < 3; i++) {
997                 u8 ss;
998
999                 /*
1000                  * Only consider slices where one, and only one, subslice has 7
1001                  * EUs
1002                  */
1003                 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1004                         continue;
1005
1006                 /*
1007                  * subslice_7eu[i] != 0 (because of the check above) and
1008                  * ss_max == 4 (maximum number of subslices possible per slice)
1009                  *
1010                  * ->    0 <= ss <= 3;
1011                  */
1012                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1013                 vals[i] = 3 - ss;
1014         }
1015
1016         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1017                 return 0;
1018
1019         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1020         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1021                             GEN9_IZ_HASHING_MASK(2) |
1022                             GEN9_IZ_HASHING_MASK(1) |
1023                             GEN9_IZ_HASHING_MASK(0),
1024                             GEN9_IZ_HASHING(2, vals[2]) |
1025                             GEN9_IZ_HASHING(1, vals[1]) |
1026                             GEN9_IZ_HASHING(0, vals[0]));
1027
1028         return 0;
1029 }
1030
1031 static int skl_init_workarounds(struct intel_engine_cs *ring)
1032 {
1033         int ret;
1034         struct drm_device *dev = ring->dev;
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036
1037         ret = gen9_init_workarounds(ring);
1038         if (ret)
1039                 return ret;
1040
1041         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1042                 /* WaDisableHDCInvalidation:skl */
1043                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1044                            BDW_DISABLE_HDC_INVALIDATION);
1045
1046                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1047                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1048                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1049         }
1050
1051         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1052          * involving this register should also be added to WA batch as required.
1053          */
1054         if (INTEL_REVID(dev) <= SKL_REVID_E0)
1055                 /* WaDisableLSQCROPERFforOCL:skl */
1056                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1057                            GEN8_LQSC_RO_PERF_DIS);
1058
1059         /* WaEnableGapsTsvCreditFix:skl */
1060         if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
1061                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1062                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
1063         }
1064
1065         /* WaDisablePowerCompilerClockGating:skl */
1066         if (INTEL_REVID(dev) == SKL_REVID_B0)
1067                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1068                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1069
1070         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1071                 /*
1072                  *Use Force Non-Coherent whenever executing a 3D context. This
1073                  * is a workaround for a possible hang in the unlikely event
1074                  * a TLB invalidation occurs during a PSD flush.
1075                  */
1076                 /* WaForceEnableNonCoherent:skl */
1077                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1078                                   HDC_FORCE_NON_COHERENT);
1079         }
1080
1081         if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1082             INTEL_REVID(dev) == SKL_REVID_D0)
1083                 /* WaBarrierPerformanceFixDisable:skl */
1084                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1085                                   HDC_FENCE_DEST_SLM_DISABLE |
1086                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1087
1088         /* WaDisableSbeCacheDispatchPortSharing:skl */
1089         if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1090                 WA_SET_BIT_MASKED(
1091                         GEN7_HALF_SLICE_CHICKEN1,
1092                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1093         }
1094
1095         return skl_tune_iz_hashing(ring);
1096 }
1097
1098 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1099 {
1100         int ret;
1101         struct drm_device *dev = ring->dev;
1102         struct drm_i915_private *dev_priv = dev->dev_private;
1103
1104         ret = gen9_init_workarounds(ring);
1105         if (ret)
1106                 return ret;
1107
1108         /* WaStoreMultiplePTEenable:bxt */
1109         /* This is a requirement according to Hardware specification */
1110         if (INTEL_REVID(dev) == BXT_REVID_A0)
1111                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1112
1113         /* WaSetClckGatingDisableMedia:bxt */
1114         if (INTEL_REVID(dev) == BXT_REVID_A0) {
1115                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1116                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1117         }
1118
1119         /* WaDisableThreadStallDopClockGating:bxt */
1120         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1121                           STALL_DOP_GATING_DISABLE);
1122
1123         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1124         if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1125                 WA_SET_BIT_MASKED(
1126                         GEN7_HALF_SLICE_CHICKEN1,
1127                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1128         }
1129
1130         return 0;
1131 }
1132
1133 int init_workarounds_ring(struct intel_engine_cs *ring)
1134 {
1135         struct drm_device *dev = ring->dev;
1136         struct drm_i915_private *dev_priv = dev->dev_private;
1137
1138         WARN_ON(ring->id != RCS);
1139
1140         dev_priv->workarounds.count = 0;
1141
1142         if (IS_BROADWELL(dev))
1143                 return bdw_init_workarounds(ring);
1144
1145         if (IS_CHERRYVIEW(dev))
1146                 return chv_init_workarounds(ring);
1147
1148         if (IS_SKYLAKE(dev))
1149                 return skl_init_workarounds(ring);
1150
1151         if (IS_BROXTON(dev))
1152                 return bxt_init_workarounds(ring);
1153
1154         return 0;
1155 }
1156
1157 static int init_render_ring(struct intel_engine_cs *ring)
1158 {
1159         struct drm_device *dev = ring->dev;
1160         struct drm_i915_private *dev_priv = dev->dev_private;
1161         int ret = init_ring_common(ring);
1162         if (ret)
1163                 return ret;
1164
1165         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1166         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1167                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1168
1169         /* We need to disable the AsyncFlip performance optimisations in order
1170          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1171          * programmed to '1' on all products.
1172          *
1173          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1174          */
1175         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1176                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1177
1178         /* Required for the hardware to program scanline values for waiting */
1179         /* WaEnableFlushTlbInvalidationMode:snb */
1180         if (INTEL_INFO(dev)->gen == 6)
1181                 I915_WRITE(GFX_MODE,
1182                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1183
1184         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1185         if (IS_GEN7(dev))
1186                 I915_WRITE(GFX_MODE_GEN7,
1187                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1188                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1189
1190         if (IS_GEN6(dev)) {
1191                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1192                  * "If this bit is set, STCunit will have LRA as replacement
1193                  *  policy. [...] This bit must be reset.  LRA replacement
1194                  *  policy is not supported."
1195                  */
1196                 I915_WRITE(CACHE_MODE_0,
1197                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1198         }
1199
1200         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1201                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1202
1203         if (HAS_L3_DPF(dev))
1204                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1205
1206         return init_workarounds_ring(ring);
1207 }
1208
1209 static void render_ring_cleanup(struct intel_engine_cs *ring)
1210 {
1211         struct drm_device *dev = ring->dev;
1212         struct drm_i915_private *dev_priv = dev->dev_private;
1213
1214         if (dev_priv->semaphore_obj) {
1215                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1216                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1217                 dev_priv->semaphore_obj = NULL;
1218         }
1219
1220         intel_fini_pipe_control(ring);
1221 }
1222
1223 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1224                            unsigned int num_dwords)
1225 {
1226 #define MBOX_UPDATE_DWORDS 8
1227         struct intel_engine_cs *signaller = signaller_req->ring;
1228         struct drm_device *dev = signaller->dev;
1229         struct drm_i915_private *dev_priv = dev->dev_private;
1230         struct intel_engine_cs *waiter;
1231         int i, ret, num_rings;
1232
1233         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1234         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1235 #undef MBOX_UPDATE_DWORDS
1236
1237         ret = intel_ring_begin(signaller_req, num_dwords);
1238         if (ret)
1239                 return ret;
1240
1241         for_each_ring(waiter, dev_priv, i) {
1242                 u32 seqno;
1243                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1244                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1245                         continue;
1246
1247                 seqno = i915_gem_request_get_seqno(signaller_req);
1248                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1249                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1250                                            PIPE_CONTROL_QW_WRITE |
1251                                            PIPE_CONTROL_FLUSH_ENABLE);
1252                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1253                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1254                 intel_ring_emit(signaller, seqno);
1255                 intel_ring_emit(signaller, 0);
1256                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1257                                            MI_SEMAPHORE_TARGET(waiter->id));
1258                 intel_ring_emit(signaller, 0);
1259         }
1260
1261         return 0;
1262 }
1263
1264 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1265                            unsigned int num_dwords)
1266 {
1267 #define MBOX_UPDATE_DWORDS 6
1268         struct intel_engine_cs *signaller = signaller_req->ring;
1269         struct drm_device *dev = signaller->dev;
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         struct intel_engine_cs *waiter;
1272         int i, ret, num_rings;
1273
1274         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1275         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1276 #undef MBOX_UPDATE_DWORDS
1277
1278         ret = intel_ring_begin(signaller_req, num_dwords);
1279         if (ret)
1280                 return ret;
1281
1282         for_each_ring(waiter, dev_priv, i) {
1283                 u32 seqno;
1284                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1285                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1286                         continue;
1287
1288                 seqno = i915_gem_request_get_seqno(signaller_req);
1289                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1290                                            MI_FLUSH_DW_OP_STOREDW);
1291                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1292                                            MI_FLUSH_DW_USE_GTT);
1293                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1294                 intel_ring_emit(signaller, seqno);
1295                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1296                                            MI_SEMAPHORE_TARGET(waiter->id));
1297                 intel_ring_emit(signaller, 0);
1298         }
1299
1300         return 0;
1301 }
1302
1303 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1304                        unsigned int num_dwords)
1305 {
1306         struct intel_engine_cs *signaller = signaller_req->ring;
1307         struct drm_device *dev = signaller->dev;
1308         struct drm_i915_private *dev_priv = dev->dev_private;
1309         struct intel_engine_cs *useless;
1310         int i, ret, num_rings;
1311
1312 #define MBOX_UPDATE_DWORDS 3
1313         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1314         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1315 #undef MBOX_UPDATE_DWORDS
1316
1317         ret = intel_ring_begin(signaller_req, num_dwords);
1318         if (ret)
1319                 return ret;
1320
1321         for_each_ring(useless, dev_priv, i) {
1322                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1323                 if (mbox_reg != GEN6_NOSYNC) {
1324                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1325                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1326                         intel_ring_emit(signaller, mbox_reg);
1327                         intel_ring_emit(signaller, seqno);
1328                 }
1329         }
1330
1331         /* If num_dwords was rounded, make sure the tail pointer is correct */
1332         if (num_rings % 2 == 0)
1333                 intel_ring_emit(signaller, MI_NOOP);
1334
1335         return 0;
1336 }
1337
1338 /**
1339  * gen6_add_request - Update the semaphore mailbox registers
1340  *
1341  * @request - request to write to the ring
1342  *
1343  * Update the mailbox registers in the *other* rings with the current seqno.
1344  * This acts like a signal in the canonical semaphore.
1345  */
1346 static int
1347 gen6_add_request(struct drm_i915_gem_request *req)
1348 {
1349         struct intel_engine_cs *ring = req->ring;
1350         int ret;
1351
1352         if (ring->semaphore.signal)
1353                 ret = ring->semaphore.signal(req, 4);
1354         else
1355                 ret = intel_ring_begin(req, 4);
1356
1357         if (ret)
1358                 return ret;
1359
1360         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1361         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1362         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1363         intel_ring_emit(ring, MI_USER_INTERRUPT);
1364         __intel_ring_advance(ring);
1365
1366         return 0;
1367 }
1368
1369 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1370                                               u32 seqno)
1371 {
1372         struct drm_i915_private *dev_priv = dev->dev_private;
1373         return dev_priv->last_seqno < seqno;
1374 }
1375
1376 /**
1377  * intel_ring_sync - sync the waiter to the signaller on seqno
1378  *
1379  * @waiter - ring that is waiting
1380  * @signaller - ring which has, or will signal
1381  * @seqno - seqno which the waiter will block on
1382  */
1383
1384 static int
1385 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1386                struct intel_engine_cs *signaller,
1387                u32 seqno)
1388 {
1389         struct intel_engine_cs *waiter = waiter_req->ring;
1390         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1391         int ret;
1392
1393         ret = intel_ring_begin(waiter_req, 4);
1394         if (ret)
1395                 return ret;
1396
1397         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1398                                 MI_SEMAPHORE_GLOBAL_GTT |
1399                                 MI_SEMAPHORE_POLL |
1400                                 MI_SEMAPHORE_SAD_GTE_SDD);
1401         intel_ring_emit(waiter, seqno);
1402         intel_ring_emit(waiter,
1403                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1404         intel_ring_emit(waiter,
1405                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1406         intel_ring_advance(waiter);
1407         return 0;
1408 }
1409
1410 static int
1411 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1412                struct intel_engine_cs *signaller,
1413                u32 seqno)
1414 {
1415         struct intel_engine_cs *waiter = waiter_req->ring;
1416         u32 dw1 = MI_SEMAPHORE_MBOX |
1417                   MI_SEMAPHORE_COMPARE |
1418                   MI_SEMAPHORE_REGISTER;
1419         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1420         int ret;
1421
1422         /* Throughout all of the GEM code, seqno passed implies our current
1423          * seqno is >= the last seqno executed. However for hardware the
1424          * comparison is strictly greater than.
1425          */
1426         seqno -= 1;
1427
1428         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1429
1430         ret = intel_ring_begin(waiter_req, 4);
1431         if (ret)
1432                 return ret;
1433
1434         /* If seqno wrap happened, omit the wait with no-ops */
1435         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1436                 intel_ring_emit(waiter, dw1 | wait_mbox);
1437                 intel_ring_emit(waiter, seqno);
1438                 intel_ring_emit(waiter, 0);
1439                 intel_ring_emit(waiter, MI_NOOP);
1440         } else {
1441                 intel_ring_emit(waiter, MI_NOOP);
1442                 intel_ring_emit(waiter, MI_NOOP);
1443                 intel_ring_emit(waiter, MI_NOOP);
1444                 intel_ring_emit(waiter, MI_NOOP);
1445         }
1446         intel_ring_advance(waiter);
1447
1448         return 0;
1449 }
1450
1451 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1452 do {                                                                    \
1453         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1454                  PIPE_CONTROL_DEPTH_STALL);                             \
1455         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1456         intel_ring_emit(ring__, 0);                                                     \
1457         intel_ring_emit(ring__, 0);                                                     \
1458 } while (0)
1459
1460 static int
1461 pc_render_add_request(struct drm_i915_gem_request *req)
1462 {
1463         struct intel_engine_cs *ring = req->ring;
1464         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1465         int ret;
1466
1467         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1468          * incoherent with writes to memory, i.e. completely fubar,
1469          * so we need to use PIPE_NOTIFY instead.
1470          *
1471          * However, we also need to workaround the qword write
1472          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1473          * memory before requesting an interrupt.
1474          */
1475         ret = intel_ring_begin(req, 32);
1476         if (ret)
1477                 return ret;
1478
1479         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1480                         PIPE_CONTROL_WRITE_FLUSH |
1481                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1482         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1483         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1484         intel_ring_emit(ring, 0);
1485         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1486         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1487         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1488         scratch_addr += 2 * CACHELINE_BYTES;
1489         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1490         scratch_addr += 2 * CACHELINE_BYTES;
1491         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1492         scratch_addr += 2 * CACHELINE_BYTES;
1493         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1494         scratch_addr += 2 * CACHELINE_BYTES;
1495         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1496
1497         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1498                         PIPE_CONTROL_WRITE_FLUSH |
1499                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1500                         PIPE_CONTROL_NOTIFY);
1501         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1502         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1503         intel_ring_emit(ring, 0);
1504         __intel_ring_advance(ring);
1505
1506         return 0;
1507 }
1508
1509 static u32
1510 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1511 {
1512         /* Workaround to force correct ordering between irq and seqno writes on
1513          * ivb (and maybe also on snb) by reading from a CS register (like
1514          * ACTHD) before reading the status page. */
1515         if (!lazy_coherency) {
1516                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1517                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1518         }
1519
1520         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1521 }
1522
1523 static u32
1524 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1525 {
1526         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1527 }
1528
1529 static void
1530 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1531 {
1532         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1533 }
1534
1535 static u32
1536 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1537 {
1538         return ring->scratch.cpu_page[0];
1539 }
1540
1541 static void
1542 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1543 {
1544         ring->scratch.cpu_page[0] = seqno;
1545 }
1546
1547 static bool
1548 gen5_ring_get_irq(struct intel_engine_cs *ring)
1549 {
1550         struct drm_device *dev = ring->dev;
1551         struct drm_i915_private *dev_priv = dev->dev_private;
1552         unsigned long flags;
1553
1554         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1555                 return false;
1556
1557         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1558         if (ring->irq_refcount++ == 0)
1559                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1560         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1561
1562         return true;
1563 }
1564
1565 static void
1566 gen5_ring_put_irq(struct intel_engine_cs *ring)
1567 {
1568         struct drm_device *dev = ring->dev;
1569         struct drm_i915_private *dev_priv = dev->dev_private;
1570         unsigned long flags;
1571
1572         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1573         if (--ring->irq_refcount == 0)
1574                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1575         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1576 }
1577
1578 static bool
1579 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1580 {
1581         struct drm_device *dev = ring->dev;
1582         struct drm_i915_private *dev_priv = dev->dev_private;
1583         unsigned long flags;
1584
1585         if (!intel_irqs_enabled(dev_priv))
1586                 return false;
1587
1588         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1589         if (ring->irq_refcount++ == 0) {
1590                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1591                 I915_WRITE(IMR, dev_priv->irq_mask);
1592                 POSTING_READ(IMR);
1593         }
1594         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1595
1596         return true;
1597 }
1598
1599 static void
1600 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1601 {
1602         struct drm_device *dev = ring->dev;
1603         struct drm_i915_private *dev_priv = dev->dev_private;
1604         unsigned long flags;
1605
1606         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1607         if (--ring->irq_refcount == 0) {
1608                 dev_priv->irq_mask |= ring->irq_enable_mask;
1609                 I915_WRITE(IMR, dev_priv->irq_mask);
1610                 POSTING_READ(IMR);
1611         }
1612         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1613 }
1614
1615 static bool
1616 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1617 {
1618         struct drm_device *dev = ring->dev;
1619         struct drm_i915_private *dev_priv = dev->dev_private;
1620         unsigned long flags;
1621
1622         if (!intel_irqs_enabled(dev_priv))
1623                 return false;
1624
1625         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1626         if (ring->irq_refcount++ == 0) {
1627                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1628                 I915_WRITE16(IMR, dev_priv->irq_mask);
1629                 POSTING_READ16(IMR);
1630         }
1631         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1632
1633         return true;
1634 }
1635
1636 static void
1637 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1638 {
1639         struct drm_device *dev = ring->dev;
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         unsigned long flags;
1642
1643         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1644         if (--ring->irq_refcount == 0) {
1645                 dev_priv->irq_mask |= ring->irq_enable_mask;
1646                 I915_WRITE16(IMR, dev_priv->irq_mask);
1647                 POSTING_READ16(IMR);
1648         }
1649         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1650 }
1651
1652 static int
1653 bsd_ring_flush(struct drm_i915_gem_request *req,
1654                u32     invalidate_domains,
1655                u32     flush_domains)
1656 {
1657         struct intel_engine_cs *ring = req->ring;
1658         int ret;
1659
1660         ret = intel_ring_begin(req, 2);
1661         if (ret)
1662                 return ret;
1663
1664         intel_ring_emit(ring, MI_FLUSH);
1665         intel_ring_emit(ring, MI_NOOP);
1666         intel_ring_advance(ring);
1667         return 0;
1668 }
1669
1670 static int
1671 i9xx_add_request(struct drm_i915_gem_request *req)
1672 {
1673         struct intel_engine_cs *ring = req->ring;
1674         int ret;
1675
1676         ret = intel_ring_begin(req, 4);
1677         if (ret)
1678                 return ret;
1679
1680         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1681         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1682         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1683         intel_ring_emit(ring, MI_USER_INTERRUPT);
1684         __intel_ring_advance(ring);
1685
1686         return 0;
1687 }
1688
1689 static bool
1690 gen6_ring_get_irq(struct intel_engine_cs *ring)
1691 {
1692         struct drm_device *dev = ring->dev;
1693         struct drm_i915_private *dev_priv = dev->dev_private;
1694         unsigned long flags;
1695
1696         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1697                 return false;
1698
1699         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1700         if (ring->irq_refcount++ == 0) {
1701                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1702                         I915_WRITE_IMR(ring,
1703                                        ~(ring->irq_enable_mask |
1704                                          GT_PARITY_ERROR(dev)));
1705                 else
1706                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1707                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1708         }
1709         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1710
1711         return true;
1712 }
1713
1714 static void
1715 gen6_ring_put_irq(struct intel_engine_cs *ring)
1716 {
1717         struct drm_device *dev = ring->dev;
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719         unsigned long flags;
1720
1721         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1722         if (--ring->irq_refcount == 0) {
1723                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1724                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1725                 else
1726                         I915_WRITE_IMR(ring, ~0);
1727                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1728         }
1729         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1730 }
1731
1732 static bool
1733 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1734 {
1735         struct drm_device *dev = ring->dev;
1736         struct drm_i915_private *dev_priv = dev->dev_private;
1737         unsigned long flags;
1738
1739         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1740                 return false;
1741
1742         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1743         if (ring->irq_refcount++ == 0) {
1744                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1745                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1746         }
1747         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1748
1749         return true;
1750 }
1751
1752 static void
1753 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1754 {
1755         struct drm_device *dev = ring->dev;
1756         struct drm_i915_private *dev_priv = dev->dev_private;
1757         unsigned long flags;
1758
1759         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1760         if (--ring->irq_refcount == 0) {
1761                 I915_WRITE_IMR(ring, ~0);
1762                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1763         }
1764         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1765 }
1766
1767 static bool
1768 gen8_ring_get_irq(struct intel_engine_cs *ring)
1769 {
1770         struct drm_device *dev = ring->dev;
1771         struct drm_i915_private *dev_priv = dev->dev_private;
1772         unsigned long flags;
1773
1774         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1775                 return false;
1776
1777         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1778         if (ring->irq_refcount++ == 0) {
1779                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1780                         I915_WRITE_IMR(ring,
1781                                        ~(ring->irq_enable_mask |
1782                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1783                 } else {
1784                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1785                 }
1786                 POSTING_READ(RING_IMR(ring->mmio_base));
1787         }
1788         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1789
1790         return true;
1791 }
1792
1793 static void
1794 gen8_ring_put_irq(struct intel_engine_cs *ring)
1795 {
1796         struct drm_device *dev = ring->dev;
1797         struct drm_i915_private *dev_priv = dev->dev_private;
1798         unsigned long flags;
1799
1800         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1801         if (--ring->irq_refcount == 0) {
1802                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1803                         I915_WRITE_IMR(ring,
1804                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1805                 } else {
1806                         I915_WRITE_IMR(ring, ~0);
1807                 }
1808                 POSTING_READ(RING_IMR(ring->mmio_base));
1809         }
1810         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1811 }
1812
1813 static int
1814 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1815                          u64 offset, u32 length,
1816                          unsigned dispatch_flags)
1817 {
1818         struct intel_engine_cs *ring = req->ring;
1819         int ret;
1820
1821         ret = intel_ring_begin(req, 2);
1822         if (ret)
1823                 return ret;
1824
1825         intel_ring_emit(ring,
1826                         MI_BATCH_BUFFER_START |
1827                         MI_BATCH_GTT |
1828                         (dispatch_flags & I915_DISPATCH_SECURE ?
1829                          0 : MI_BATCH_NON_SECURE_I965));
1830         intel_ring_emit(ring, offset);
1831         intel_ring_advance(ring);
1832
1833         return 0;
1834 }
1835
1836 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1837 #define I830_BATCH_LIMIT (256*1024)
1838 #define I830_TLB_ENTRIES (2)
1839 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1840 static int
1841 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1842                          u64 offset, u32 len,
1843                          unsigned dispatch_flags)
1844 {
1845         struct intel_engine_cs *ring = req->ring;
1846         u32 cs_offset = ring->scratch.gtt_offset;
1847         int ret;
1848
1849         ret = intel_ring_begin(req, 6);
1850         if (ret)
1851                 return ret;
1852
1853         /* Evict the invalid PTE TLBs */
1854         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1855         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1856         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1857         intel_ring_emit(ring, cs_offset);
1858         intel_ring_emit(ring, 0xdeadbeef);
1859         intel_ring_emit(ring, MI_NOOP);
1860         intel_ring_advance(ring);
1861
1862         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1863                 if (len > I830_BATCH_LIMIT)
1864                         return -ENOSPC;
1865
1866                 ret = intel_ring_begin(req, 6 + 2);
1867                 if (ret)
1868                         return ret;
1869
1870                 /* Blit the batch (which has now all relocs applied) to the
1871                  * stable batch scratch bo area (so that the CS never
1872                  * stumbles over its tlb invalidation bug) ...
1873                  */
1874                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1875                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1876                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1877                 intel_ring_emit(ring, cs_offset);
1878                 intel_ring_emit(ring, 4096);
1879                 intel_ring_emit(ring, offset);
1880
1881                 intel_ring_emit(ring, MI_FLUSH);
1882                 intel_ring_emit(ring, MI_NOOP);
1883                 intel_ring_advance(ring);
1884
1885                 /* ... and execute it. */
1886                 offset = cs_offset;
1887         }
1888
1889         ret = intel_ring_begin(req, 4);
1890         if (ret)
1891                 return ret;
1892
1893         intel_ring_emit(ring, MI_BATCH_BUFFER);
1894         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1895                                         0 : MI_BATCH_NON_SECURE));
1896         intel_ring_emit(ring, offset + len - 8);
1897         intel_ring_emit(ring, MI_NOOP);
1898         intel_ring_advance(ring);
1899
1900         return 0;
1901 }
1902
1903 static int
1904 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1905                          u64 offset, u32 len,
1906                          unsigned dispatch_flags)
1907 {
1908         struct intel_engine_cs *ring = req->ring;
1909         int ret;
1910
1911         ret = intel_ring_begin(req, 2);
1912         if (ret)
1913                 return ret;
1914
1915         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1916         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1917                                         0 : MI_BATCH_NON_SECURE));
1918         intel_ring_advance(ring);
1919
1920         return 0;
1921 }
1922
1923 static void cleanup_status_page(struct intel_engine_cs *ring)
1924 {
1925         struct drm_i915_gem_object *obj;
1926
1927         obj = ring->status_page.obj;
1928         if (obj == NULL)
1929                 return;
1930
1931         kunmap(sg_page(obj->pages->sgl));
1932         i915_gem_object_ggtt_unpin(obj);
1933         drm_gem_object_unreference(&obj->base);
1934         ring->status_page.obj = NULL;
1935 }
1936
1937 static int init_status_page(struct intel_engine_cs *ring)
1938 {
1939         struct drm_i915_gem_object *obj;
1940
1941         if ((obj = ring->status_page.obj) == NULL) {
1942                 unsigned flags;
1943                 int ret;
1944
1945                 obj = i915_gem_alloc_object(ring->dev, 4096);
1946                 if (obj == NULL) {
1947                         DRM_ERROR("Failed to allocate status page\n");
1948                         return -ENOMEM;
1949                 }
1950
1951                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1952                 if (ret)
1953                         goto err_unref;
1954
1955                 flags = 0;
1956                 if (!HAS_LLC(ring->dev))
1957                         /* On g33, we cannot place HWS above 256MiB, so
1958                          * restrict its pinning to the low mappable arena.
1959                          * Though this restriction is not documented for
1960                          * gen4, gen5, or byt, they also behave similarly
1961                          * and hang if the HWS is placed at the top of the
1962                          * GTT. To generalise, it appears that all !llc
1963                          * platforms have issues with us placing the HWS
1964                          * above the mappable region (even though we never
1965                          * actualy map it).
1966                          */
1967                         flags |= PIN_MAPPABLE;
1968                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1969                 if (ret) {
1970 err_unref:
1971                         drm_gem_object_unreference(&obj->base);
1972                         return ret;
1973                 }
1974
1975                 ring->status_page.obj = obj;
1976         }
1977
1978         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1979         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1980         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1981
1982         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1983                         ring->name, ring->status_page.gfx_addr);
1984
1985         return 0;
1986 }
1987
1988 static int init_phys_status_page(struct intel_engine_cs *ring)
1989 {
1990         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1991
1992         if (!dev_priv->status_page_dmah) {
1993                 dev_priv->status_page_dmah =
1994                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1995                 if (!dev_priv->status_page_dmah)
1996                         return -ENOMEM;
1997         }
1998
1999         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2000         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2001
2002         return 0;
2003 }
2004
2005 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2006 {
2007         iounmap(ringbuf->virtual_start);
2008         ringbuf->virtual_start = NULL;
2009         i915_gem_object_ggtt_unpin(ringbuf->obj);
2010 }
2011
2012 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2013                                      struct intel_ringbuffer *ringbuf)
2014 {
2015         struct drm_i915_private *dev_priv = to_i915(dev);
2016         struct drm_i915_gem_object *obj = ringbuf->obj;
2017         int ret;
2018
2019         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2020         if (ret)
2021                 return ret;
2022
2023         ret = i915_gem_object_set_to_gtt_domain(obj, true);
2024         if (ret) {
2025                 i915_gem_object_ggtt_unpin(obj);
2026                 return ret;
2027         }
2028
2029         ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2030                         i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2031         if (ringbuf->virtual_start == NULL) {
2032                 i915_gem_object_ggtt_unpin(obj);
2033                 return -EINVAL;
2034         }
2035
2036         return 0;
2037 }
2038
2039 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2040 {
2041         drm_gem_object_unreference(&ringbuf->obj->base);
2042         ringbuf->obj = NULL;
2043 }
2044
2045 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2046                                       struct intel_ringbuffer *ringbuf)
2047 {
2048         struct drm_i915_gem_object *obj;
2049
2050         obj = NULL;
2051         if (!HAS_LLC(dev))
2052                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2053         if (obj == NULL)
2054                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2055         if (obj == NULL)
2056                 return -ENOMEM;
2057
2058         /* mark ring buffers as read-only from GPU side by default */
2059         obj->gt_ro = 1;
2060
2061         ringbuf->obj = obj;
2062
2063         return 0;
2064 }
2065
2066 struct intel_ringbuffer *
2067 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2068 {
2069         struct intel_ringbuffer *ring;
2070         int ret;
2071
2072         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2073         if (ring == NULL)
2074                 return ERR_PTR(-ENOMEM);
2075
2076         ring->ring = engine;
2077
2078         ring->size = size;
2079         /* Workaround an erratum on the i830 which causes a hang if
2080          * the TAIL pointer points to within the last 2 cachelines
2081          * of the buffer.
2082          */
2083         ring->effective_size = size;
2084         if (IS_I830(engine->dev) || IS_845G(engine->dev))
2085                 ring->effective_size -= 2 * CACHELINE_BYTES;
2086
2087         ring->last_retired_head = -1;
2088         intel_ring_update_space(ring);
2089
2090         ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2091         if (ret) {
2092                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2093                           engine->name, ret);
2094                 kfree(ring);
2095                 return ERR_PTR(ret);
2096         }
2097
2098         return ring;
2099 }
2100
2101 void
2102 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2103 {
2104         intel_destroy_ringbuffer_obj(ring);
2105         kfree(ring);
2106 }
2107
2108 static int intel_init_ring_buffer(struct drm_device *dev,
2109                                   struct intel_engine_cs *ring)
2110 {
2111         struct intel_ringbuffer *ringbuf;
2112         int ret;
2113
2114         WARN_ON(ring->buffer);
2115
2116         ring->dev = dev;
2117         INIT_LIST_HEAD(&ring->active_list);
2118         INIT_LIST_HEAD(&ring->request_list);
2119         INIT_LIST_HEAD(&ring->execlist_queue);
2120         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2121         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2122
2123         init_waitqueue_head(&ring->irq_queue);
2124
2125         ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2126         if (IS_ERR(ringbuf))
2127                 return PTR_ERR(ringbuf);
2128         ring->buffer = ringbuf;
2129
2130         if (I915_NEED_GFX_HWS(dev)) {
2131                 ret = init_status_page(ring);
2132                 if (ret)
2133                         goto error;
2134         } else {
2135                 BUG_ON(ring->id != RCS);
2136                 ret = init_phys_status_page(ring);
2137                 if (ret)
2138                         goto error;
2139         }
2140
2141         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2142         if (ret) {
2143                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2144                                 ring->name, ret);
2145                 intel_destroy_ringbuffer_obj(ringbuf);
2146                 goto error;
2147         }
2148
2149         ret = i915_cmd_parser_init_ring(ring);
2150         if (ret)
2151                 goto error;
2152
2153         return 0;
2154
2155 error:
2156         intel_ringbuffer_free(ringbuf);
2157         ring->buffer = NULL;
2158         return ret;
2159 }
2160
2161 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2162 {
2163         struct drm_i915_private *dev_priv;
2164
2165         if (!intel_ring_initialized(ring))
2166                 return;
2167
2168         dev_priv = to_i915(ring->dev);
2169
2170         intel_stop_ring_buffer(ring);
2171         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2172
2173         intel_unpin_ringbuffer_obj(ring->buffer);
2174         intel_ringbuffer_free(ring->buffer);
2175         ring->buffer = NULL;
2176
2177         if (ring->cleanup)
2178                 ring->cleanup(ring);
2179
2180         cleanup_status_page(ring);
2181
2182         i915_cmd_parser_fini_ring(ring);
2183         i915_gem_batch_pool_fini(&ring->batch_pool);
2184 }
2185
2186 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2187 {
2188         struct intel_ringbuffer *ringbuf = ring->buffer;
2189         struct drm_i915_gem_request *request;
2190         unsigned space;
2191         int ret;
2192
2193         if (intel_ring_space(ringbuf) >= n)
2194                 return 0;
2195
2196         /* The whole point of reserving space is to not wait! */
2197         WARN_ON(ringbuf->reserved_in_use);
2198
2199         list_for_each_entry(request, &ring->request_list, list) {
2200                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2201                                            ringbuf->size);
2202                 if (space >= n)
2203                         break;
2204         }
2205
2206         if (WARN_ON(&request->list == &ring->request_list))
2207                 return -ENOSPC;
2208
2209         ret = i915_wait_request(request);
2210         if (ret)
2211                 return ret;
2212
2213         ringbuf->space = space;
2214         return 0;
2215 }
2216
2217 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2218 {
2219         uint32_t __iomem *virt;
2220         int rem = ringbuf->size - ringbuf->tail;
2221
2222         virt = ringbuf->virtual_start + ringbuf->tail;
2223         rem /= 4;
2224         while (rem--)
2225                 iowrite32(MI_NOOP, virt++);
2226
2227         ringbuf->tail = 0;
2228         intel_ring_update_space(ringbuf);
2229 }
2230
2231 int intel_ring_idle(struct intel_engine_cs *ring)
2232 {
2233         struct drm_i915_gem_request *req;
2234
2235         /* Wait upon the last request to be completed */
2236         if (list_empty(&ring->request_list))
2237                 return 0;
2238
2239         req = list_entry(ring->request_list.prev,
2240                         struct drm_i915_gem_request,
2241                         list);
2242
2243         /* Make sure we do not trigger any retires */
2244         return __i915_wait_request(req,
2245                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2246                                    to_i915(ring->dev)->mm.interruptible,
2247                                    NULL, NULL);
2248 }
2249
2250 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2251 {
2252         request->ringbuf = request->ring->buffer;
2253         return 0;
2254 }
2255
2256 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2257 {
2258         /*
2259          * The first call merely notes the reserve request and is common for
2260          * all back ends. The subsequent localised _begin() call actually
2261          * ensures that the reservation is available. Without the begin, if
2262          * the request creator immediately submitted the request without
2263          * adding any commands to it then there might not actually be
2264          * sufficient room for the submission commands.
2265          */
2266         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2267
2268         return intel_ring_begin(request, 0);
2269 }
2270
2271 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2272 {
2273         WARN_ON(ringbuf->reserved_size);
2274         WARN_ON(ringbuf->reserved_in_use);
2275
2276         ringbuf->reserved_size = size;
2277 }
2278
2279 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2280 {
2281         WARN_ON(ringbuf->reserved_in_use);
2282
2283         ringbuf->reserved_size   = 0;
2284         ringbuf->reserved_in_use = false;
2285 }
2286
2287 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2288 {
2289         WARN_ON(ringbuf->reserved_in_use);
2290
2291         ringbuf->reserved_in_use = true;
2292         ringbuf->reserved_tail   = ringbuf->tail;
2293 }
2294
2295 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2296 {
2297         WARN_ON(!ringbuf->reserved_in_use);
2298         if (ringbuf->tail > ringbuf->reserved_tail) {
2299                 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2300                      "request reserved size too small: %d vs %d!\n",
2301                      ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2302         } else {
2303                 /*
2304                  * The ring was wrapped while the reserved space was in use.
2305                  * That means that some unknown amount of the ring tail was
2306                  * no-op filled and skipped. Thus simply adding the ring size
2307                  * to the tail and doing the above space check will not work.
2308                  * Rather than attempt to track how much tail was skipped,
2309                  * it is much simpler to say that also skipping the sanity
2310                  * check every once in a while is not a big issue.
2311                  */
2312         }
2313
2314         ringbuf->reserved_size   = 0;
2315         ringbuf->reserved_in_use = false;
2316 }
2317
2318 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2319 {
2320         struct intel_ringbuffer *ringbuf = ring->buffer;
2321         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2322         int remain_actual = ringbuf->size - ringbuf->tail;
2323         int ret, total_bytes, wait_bytes = 0;
2324         bool need_wrap = false;
2325
2326         if (ringbuf->reserved_in_use)
2327                 total_bytes = bytes;
2328         else
2329                 total_bytes = bytes + ringbuf->reserved_size;
2330
2331         if (unlikely(bytes > remain_usable)) {
2332                 /*
2333                  * Not enough space for the basic request. So need to flush
2334                  * out the remainder and then wait for base + reserved.
2335                  */
2336                 wait_bytes = remain_actual + total_bytes;
2337                 need_wrap = true;
2338         } else {
2339                 if (unlikely(total_bytes > remain_usable)) {
2340                         /*
2341                          * The base request will fit but the reserved space
2342                          * falls off the end. So only need to to wait for the
2343                          * reserved size after flushing out the remainder.
2344                          */
2345                         wait_bytes = remain_actual + ringbuf->reserved_size;
2346                         need_wrap = true;
2347                 } else if (total_bytes > ringbuf->space) {
2348                         /* No wrapping required, just waiting. */
2349                         wait_bytes = total_bytes;
2350                 }
2351         }
2352
2353         if (wait_bytes) {
2354                 ret = ring_wait_for_space(ring, wait_bytes);
2355                 if (unlikely(ret))
2356                         return ret;
2357
2358                 if (need_wrap)
2359                         __wrap_ring_buffer(ringbuf);
2360         }
2361
2362         return 0;
2363 }
2364
2365 int intel_ring_begin(struct drm_i915_gem_request *req,
2366                      int num_dwords)
2367 {
2368         struct intel_engine_cs *ring;
2369         struct drm_i915_private *dev_priv;
2370         int ret;
2371
2372         WARN_ON(req == NULL);
2373         ring = req->ring;
2374         dev_priv = ring->dev->dev_private;
2375
2376         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2377                                    dev_priv->mm.interruptible);
2378         if (ret)
2379                 return ret;
2380
2381         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2382         if (ret)
2383                 return ret;
2384
2385         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2386         return 0;
2387 }
2388
2389 /* Align the ring tail to a cacheline boundary */
2390 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2391 {
2392         struct intel_engine_cs *ring = req->ring;
2393         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2394         int ret;
2395
2396         if (num_dwords == 0)
2397                 return 0;
2398
2399         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2400         ret = intel_ring_begin(req, num_dwords);
2401         if (ret)
2402                 return ret;
2403
2404         while (num_dwords--)
2405                 intel_ring_emit(ring, MI_NOOP);
2406
2407         intel_ring_advance(ring);
2408
2409         return 0;
2410 }
2411
2412 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2413 {
2414         struct drm_device *dev = ring->dev;
2415         struct drm_i915_private *dev_priv = dev->dev_private;
2416
2417         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2418                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2419                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2420                 if (HAS_VEBOX(dev))
2421                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2422         }
2423
2424         ring->set_seqno(ring, seqno);
2425         ring->hangcheck.seqno = seqno;
2426 }
2427
2428 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2429                                      u32 value)
2430 {
2431         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2432
2433        /* Every tail move must follow the sequence below */
2434
2435         /* Disable notification that the ring is IDLE. The GT
2436          * will then assume that it is busy and bring it out of rc6.
2437          */
2438         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2439                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2440
2441         /* Clear the context id. Here be magic! */
2442         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2443
2444         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2445         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2446                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2447                      50))
2448                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2449
2450         /* Now that the ring is fully powered up, update the tail */
2451         I915_WRITE_TAIL(ring, value);
2452         POSTING_READ(RING_TAIL(ring->mmio_base));
2453
2454         /* Let the ring send IDLE messages to the GT again,
2455          * and so let it sleep to conserve power when idle.
2456          */
2457         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2458                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2459 }
2460
2461 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2462                                u32 invalidate, u32 flush)
2463 {
2464         struct intel_engine_cs *ring = req->ring;
2465         uint32_t cmd;
2466         int ret;
2467
2468         ret = intel_ring_begin(req, 4);
2469         if (ret)
2470                 return ret;
2471
2472         cmd = MI_FLUSH_DW;
2473         if (INTEL_INFO(ring->dev)->gen >= 8)
2474                 cmd += 1;
2475
2476         /* We always require a command barrier so that subsequent
2477          * commands, such as breadcrumb interrupts, are strictly ordered
2478          * wrt the contents of the write cache being flushed to memory
2479          * (and thus being coherent from the CPU).
2480          */
2481         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2482
2483         /*
2484          * Bspec vol 1c.5 - video engine command streamer:
2485          * "If ENABLED, all TLBs will be invalidated once the flush
2486          * operation is complete. This bit is only valid when the
2487          * Post-Sync Operation field is a value of 1h or 3h."
2488          */
2489         if (invalidate & I915_GEM_GPU_DOMAINS)
2490                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2491
2492         intel_ring_emit(ring, cmd);
2493         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2494         if (INTEL_INFO(ring->dev)->gen >= 8) {
2495                 intel_ring_emit(ring, 0); /* upper addr */
2496                 intel_ring_emit(ring, 0); /* value */
2497         } else  {
2498                 intel_ring_emit(ring, 0);
2499                 intel_ring_emit(ring, MI_NOOP);
2500         }
2501         intel_ring_advance(ring);
2502         return 0;
2503 }
2504
2505 static int
2506 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2507                               u64 offset, u32 len,
2508                               unsigned dispatch_flags)
2509 {
2510         struct intel_engine_cs *ring = req->ring;
2511         bool ppgtt = USES_PPGTT(ring->dev) &&
2512                         !(dispatch_flags & I915_DISPATCH_SECURE);
2513         int ret;
2514
2515         ret = intel_ring_begin(req, 4);
2516         if (ret)
2517                 return ret;
2518
2519         /* FIXME(BDW): Address space and security selectors. */
2520         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2521                         (dispatch_flags & I915_DISPATCH_RS ?
2522                          MI_BATCH_RESOURCE_STREAMER : 0));
2523         intel_ring_emit(ring, lower_32_bits(offset));
2524         intel_ring_emit(ring, upper_32_bits(offset));
2525         intel_ring_emit(ring, MI_NOOP);
2526         intel_ring_advance(ring);
2527
2528         return 0;
2529 }
2530
2531 static int
2532 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2533                              u64 offset, u32 len,
2534                              unsigned dispatch_flags)
2535 {
2536         struct intel_engine_cs *ring = req->ring;
2537         int ret;
2538
2539         ret = intel_ring_begin(req, 2);
2540         if (ret)
2541                 return ret;
2542
2543         intel_ring_emit(ring,
2544                         MI_BATCH_BUFFER_START |
2545                         (dispatch_flags & I915_DISPATCH_SECURE ?
2546                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2547                         (dispatch_flags & I915_DISPATCH_RS ?
2548                          MI_BATCH_RESOURCE_STREAMER : 0));
2549         /* bit0-7 is the length on GEN6+ */
2550         intel_ring_emit(ring, offset);
2551         intel_ring_advance(ring);
2552
2553         return 0;
2554 }
2555
2556 static int
2557 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2558                               u64 offset, u32 len,
2559                               unsigned dispatch_flags)
2560 {
2561         struct intel_engine_cs *ring = req->ring;
2562         int ret;
2563
2564         ret = intel_ring_begin(req, 2);
2565         if (ret)
2566                 return ret;
2567
2568         intel_ring_emit(ring,
2569                         MI_BATCH_BUFFER_START |
2570                         (dispatch_flags & I915_DISPATCH_SECURE ?
2571                          0 : MI_BATCH_NON_SECURE_I965));
2572         /* bit0-7 is the length on GEN6+ */
2573         intel_ring_emit(ring, offset);
2574         intel_ring_advance(ring);
2575
2576         return 0;
2577 }
2578
2579 /* Blitter support (SandyBridge+) */
2580
2581 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2582                            u32 invalidate, u32 flush)
2583 {
2584         struct intel_engine_cs *ring = req->ring;
2585         struct drm_device *dev = ring->dev;
2586         uint32_t cmd;
2587         int ret;
2588
2589         ret = intel_ring_begin(req, 4);
2590         if (ret)
2591                 return ret;
2592
2593         cmd = MI_FLUSH_DW;
2594         if (INTEL_INFO(dev)->gen >= 8)
2595                 cmd += 1;
2596
2597         /* We always require a command barrier so that subsequent
2598          * commands, such as breadcrumb interrupts, are strictly ordered
2599          * wrt the contents of the write cache being flushed to memory
2600          * (and thus being coherent from the CPU).
2601          */
2602         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2603
2604         /*
2605          * Bspec vol 1c.3 - blitter engine command streamer:
2606          * "If ENABLED, all TLBs will be invalidated once the flush
2607          * operation is complete. This bit is only valid when the
2608          * Post-Sync Operation field is a value of 1h or 3h."
2609          */
2610         if (invalidate & I915_GEM_DOMAIN_RENDER)
2611                 cmd |= MI_INVALIDATE_TLB;
2612         intel_ring_emit(ring, cmd);
2613         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2614         if (INTEL_INFO(dev)->gen >= 8) {
2615                 intel_ring_emit(ring, 0); /* upper addr */
2616                 intel_ring_emit(ring, 0); /* value */
2617         } else  {
2618                 intel_ring_emit(ring, 0);
2619                 intel_ring_emit(ring, MI_NOOP);
2620         }
2621         intel_ring_advance(ring);
2622
2623         return 0;
2624 }
2625
2626 int intel_init_render_ring_buffer(struct drm_device *dev)
2627 {
2628         struct drm_i915_private *dev_priv = dev->dev_private;
2629         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2630         struct drm_i915_gem_object *obj;
2631         int ret;
2632
2633         ring->name = "render ring";
2634         ring->id = RCS;
2635         ring->mmio_base = RENDER_RING_BASE;
2636
2637         if (INTEL_INFO(dev)->gen >= 8) {
2638                 if (i915_semaphore_is_enabled(dev)) {
2639                         obj = i915_gem_alloc_object(dev, 4096);
2640                         if (obj == NULL) {
2641                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2642                                 i915.semaphores = 0;
2643                         } else {
2644                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2645                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2646                                 if (ret != 0) {
2647                                         drm_gem_object_unreference(&obj->base);
2648                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2649                                         i915.semaphores = 0;
2650                                 } else
2651                                         dev_priv->semaphore_obj = obj;
2652                         }
2653                 }
2654
2655                 ring->init_context = intel_rcs_ctx_init;
2656                 ring->add_request = gen6_add_request;
2657                 ring->flush = gen8_render_ring_flush;
2658                 ring->irq_get = gen8_ring_get_irq;
2659                 ring->irq_put = gen8_ring_put_irq;
2660                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2661                 ring->get_seqno = gen6_ring_get_seqno;
2662                 ring->set_seqno = ring_set_seqno;
2663                 if (i915_semaphore_is_enabled(dev)) {
2664                         WARN_ON(!dev_priv->semaphore_obj);
2665                         ring->semaphore.sync_to = gen8_ring_sync;
2666                         ring->semaphore.signal = gen8_rcs_signal;
2667                         GEN8_RING_SEMAPHORE_INIT;
2668                 }
2669         } else if (INTEL_INFO(dev)->gen >= 6) {
2670                 ring->init_context = intel_rcs_ctx_init;
2671                 ring->add_request = gen6_add_request;
2672                 ring->flush = gen7_render_ring_flush;
2673                 if (INTEL_INFO(dev)->gen == 6)
2674                         ring->flush = gen6_render_ring_flush;
2675                 ring->irq_get = gen6_ring_get_irq;
2676                 ring->irq_put = gen6_ring_put_irq;
2677                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2678                 ring->get_seqno = gen6_ring_get_seqno;
2679                 ring->set_seqno = ring_set_seqno;
2680                 if (i915_semaphore_is_enabled(dev)) {
2681                         ring->semaphore.sync_to = gen6_ring_sync;
2682                         ring->semaphore.signal = gen6_signal;
2683                         /*
2684                          * The current semaphore is only applied on pre-gen8
2685                          * platform.  And there is no VCS2 ring on the pre-gen8
2686                          * platform. So the semaphore between RCS and VCS2 is
2687                          * initialized as INVALID.  Gen8 will initialize the
2688                          * sema between VCS2 and RCS later.
2689                          */
2690                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2691                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2692                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2693                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2694                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2695                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2696                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2697                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2698                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2699                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2700                 }
2701         } else if (IS_GEN5(dev)) {
2702                 ring->add_request = pc_render_add_request;
2703                 ring->flush = gen4_render_ring_flush;
2704                 ring->get_seqno = pc_render_get_seqno;
2705                 ring->set_seqno = pc_render_set_seqno;
2706                 ring->irq_get = gen5_ring_get_irq;
2707                 ring->irq_put = gen5_ring_put_irq;
2708                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2709                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2710         } else {
2711                 ring->add_request = i9xx_add_request;
2712                 if (INTEL_INFO(dev)->gen < 4)
2713                         ring->flush = gen2_render_ring_flush;
2714                 else
2715                         ring->flush = gen4_render_ring_flush;
2716                 ring->get_seqno = ring_get_seqno;
2717                 ring->set_seqno = ring_set_seqno;
2718                 if (IS_GEN2(dev)) {
2719                         ring->irq_get = i8xx_ring_get_irq;
2720                         ring->irq_put = i8xx_ring_put_irq;
2721                 } else {
2722                         ring->irq_get = i9xx_ring_get_irq;
2723                         ring->irq_put = i9xx_ring_put_irq;
2724                 }
2725                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2726         }
2727         ring->write_tail = ring_write_tail;
2728
2729         if (IS_HASWELL(dev))
2730                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2731         else if (IS_GEN8(dev))
2732                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2733         else if (INTEL_INFO(dev)->gen >= 6)
2734                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2735         else if (INTEL_INFO(dev)->gen >= 4)
2736                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2737         else if (IS_I830(dev) || IS_845G(dev))
2738                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2739         else
2740                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2741         ring->init_hw = init_render_ring;
2742         ring->cleanup = render_ring_cleanup;
2743
2744         /* Workaround batchbuffer to combat CS tlb bug. */
2745         if (HAS_BROKEN_CS_TLB(dev)) {
2746                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2747                 if (obj == NULL) {
2748                         DRM_ERROR("Failed to allocate batch bo\n");
2749                         return -ENOMEM;
2750                 }
2751
2752                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2753                 if (ret != 0) {
2754                         drm_gem_object_unreference(&obj->base);
2755                         DRM_ERROR("Failed to ping batch bo\n");
2756                         return ret;
2757                 }
2758
2759                 ring->scratch.obj = obj;
2760                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2761         }
2762
2763         ret = intel_init_ring_buffer(dev, ring);
2764         if (ret)
2765                 return ret;
2766
2767         if (INTEL_INFO(dev)->gen >= 5) {
2768                 ret = intel_init_pipe_control(ring);
2769                 if (ret)
2770                         return ret;
2771         }
2772
2773         return 0;
2774 }
2775
2776 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2777 {
2778         struct drm_i915_private *dev_priv = dev->dev_private;
2779         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2780
2781         ring->name = "bsd ring";
2782         ring->id = VCS;
2783
2784         ring->write_tail = ring_write_tail;
2785         if (INTEL_INFO(dev)->gen >= 6) {
2786                 ring->mmio_base = GEN6_BSD_RING_BASE;
2787                 /* gen6 bsd needs a special wa for tail updates */
2788                 if (IS_GEN6(dev))
2789                         ring->write_tail = gen6_bsd_ring_write_tail;
2790                 ring->flush = gen6_bsd_ring_flush;
2791                 ring->add_request = gen6_add_request;
2792                 ring->get_seqno = gen6_ring_get_seqno;
2793                 ring->set_seqno = ring_set_seqno;
2794                 if (INTEL_INFO(dev)->gen >= 8) {
2795                         ring->irq_enable_mask =
2796                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2797                         ring->irq_get = gen8_ring_get_irq;
2798                         ring->irq_put = gen8_ring_put_irq;
2799                         ring->dispatch_execbuffer =
2800                                 gen8_ring_dispatch_execbuffer;
2801                         if (i915_semaphore_is_enabled(dev)) {
2802                                 ring->semaphore.sync_to = gen8_ring_sync;
2803                                 ring->semaphore.signal = gen8_xcs_signal;
2804                                 GEN8_RING_SEMAPHORE_INIT;
2805                         }
2806                 } else {
2807                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2808                         ring->irq_get = gen6_ring_get_irq;
2809                         ring->irq_put = gen6_ring_put_irq;
2810                         ring->dispatch_execbuffer =
2811                                 gen6_ring_dispatch_execbuffer;
2812                         if (i915_semaphore_is_enabled(dev)) {
2813                                 ring->semaphore.sync_to = gen6_ring_sync;
2814                                 ring->semaphore.signal = gen6_signal;
2815                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2816                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2817                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2818                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2819                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2820                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2821                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2822                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2823                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2824                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2825                         }
2826                 }
2827         } else {
2828                 ring->mmio_base = BSD_RING_BASE;
2829                 ring->flush = bsd_ring_flush;
2830                 ring->add_request = i9xx_add_request;
2831                 ring->get_seqno = ring_get_seqno;
2832                 ring->set_seqno = ring_set_seqno;
2833                 if (IS_GEN5(dev)) {
2834                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2835                         ring->irq_get = gen5_ring_get_irq;
2836                         ring->irq_put = gen5_ring_put_irq;
2837                 } else {
2838                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2839                         ring->irq_get = i9xx_ring_get_irq;
2840                         ring->irq_put = i9xx_ring_put_irq;
2841                 }
2842                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2843         }
2844         ring->init_hw = init_ring_common;
2845
2846         return intel_init_ring_buffer(dev, ring);
2847 }
2848
2849 /**
2850  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2851  */
2852 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2853 {
2854         struct drm_i915_private *dev_priv = dev->dev_private;
2855         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2856
2857         ring->name = "bsd2 ring";
2858         ring->id = VCS2;
2859
2860         ring->write_tail = ring_write_tail;
2861         ring->mmio_base = GEN8_BSD2_RING_BASE;
2862         ring->flush = gen6_bsd_ring_flush;
2863         ring->add_request = gen6_add_request;
2864         ring->get_seqno = gen6_ring_get_seqno;
2865         ring->set_seqno = ring_set_seqno;
2866         ring->irq_enable_mask =
2867                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2868         ring->irq_get = gen8_ring_get_irq;
2869         ring->irq_put = gen8_ring_put_irq;
2870         ring->dispatch_execbuffer =
2871                         gen8_ring_dispatch_execbuffer;
2872         if (i915_semaphore_is_enabled(dev)) {
2873                 ring->semaphore.sync_to = gen8_ring_sync;
2874                 ring->semaphore.signal = gen8_xcs_signal;
2875                 GEN8_RING_SEMAPHORE_INIT;
2876         }
2877         ring->init_hw = init_ring_common;
2878
2879         return intel_init_ring_buffer(dev, ring);
2880 }
2881
2882 int intel_init_blt_ring_buffer(struct drm_device *dev)
2883 {
2884         struct drm_i915_private *dev_priv = dev->dev_private;
2885         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2886
2887         ring->name = "blitter ring";
2888         ring->id = BCS;
2889
2890         ring->mmio_base = BLT_RING_BASE;
2891         ring->write_tail = ring_write_tail;
2892         ring->flush = gen6_ring_flush;
2893         ring->add_request = gen6_add_request;
2894         ring->get_seqno = gen6_ring_get_seqno;
2895         ring->set_seqno = ring_set_seqno;
2896         if (INTEL_INFO(dev)->gen >= 8) {
2897                 ring->irq_enable_mask =
2898                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2899                 ring->irq_get = gen8_ring_get_irq;
2900                 ring->irq_put = gen8_ring_put_irq;
2901                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2902                 if (i915_semaphore_is_enabled(dev)) {
2903                         ring->semaphore.sync_to = gen8_ring_sync;
2904                         ring->semaphore.signal = gen8_xcs_signal;
2905                         GEN8_RING_SEMAPHORE_INIT;
2906                 }
2907         } else {
2908                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2909                 ring->irq_get = gen6_ring_get_irq;
2910                 ring->irq_put = gen6_ring_put_irq;
2911                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2912                 if (i915_semaphore_is_enabled(dev)) {
2913                         ring->semaphore.signal = gen6_signal;
2914                         ring->semaphore.sync_to = gen6_ring_sync;
2915                         /*
2916                          * The current semaphore is only applied on pre-gen8
2917                          * platform.  And there is no VCS2 ring on the pre-gen8
2918                          * platform. So the semaphore between BCS and VCS2 is
2919                          * initialized as INVALID.  Gen8 will initialize the
2920                          * sema between BCS and VCS2 later.
2921                          */
2922                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2923                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2924                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2925                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2926                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2927                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2928                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2929                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2930                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2931                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2932                 }
2933         }
2934         ring->init_hw = init_ring_common;
2935
2936         return intel_init_ring_buffer(dev, ring);
2937 }
2938
2939 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2940 {
2941         struct drm_i915_private *dev_priv = dev->dev_private;
2942         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2943
2944         ring->name = "video enhancement ring";
2945         ring->id = VECS;
2946
2947         ring->mmio_base = VEBOX_RING_BASE;
2948         ring->write_tail = ring_write_tail;
2949         ring->flush = gen6_ring_flush;
2950         ring->add_request = gen6_add_request;
2951         ring->get_seqno = gen6_ring_get_seqno;
2952         ring->set_seqno = ring_set_seqno;
2953
2954         if (INTEL_INFO(dev)->gen >= 8) {
2955                 ring->irq_enable_mask =
2956                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2957                 ring->irq_get = gen8_ring_get_irq;
2958                 ring->irq_put = gen8_ring_put_irq;
2959                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2960                 if (i915_semaphore_is_enabled(dev)) {
2961                         ring->semaphore.sync_to = gen8_ring_sync;
2962                         ring->semaphore.signal = gen8_xcs_signal;
2963                         GEN8_RING_SEMAPHORE_INIT;
2964                 }
2965         } else {
2966                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2967                 ring->irq_get = hsw_vebox_get_irq;
2968                 ring->irq_put = hsw_vebox_put_irq;
2969                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2970                 if (i915_semaphore_is_enabled(dev)) {
2971                         ring->semaphore.sync_to = gen6_ring_sync;
2972                         ring->semaphore.signal = gen6_signal;
2973                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2974                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2975                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2976                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2977                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2978                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2979                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2980                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2981                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2982                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2983                 }
2984         }
2985         ring->init_hw = init_ring_common;
2986
2987         return intel_init_ring_buffer(dev, ring);
2988 }
2989
2990 int
2991 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2992 {
2993         struct intel_engine_cs *ring = req->ring;
2994         int ret;
2995
2996         if (!ring->gpu_caches_dirty)
2997                 return 0;
2998
2999         ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3000         if (ret)
3001                 return ret;
3002
3003         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3004
3005         ring->gpu_caches_dirty = false;
3006         return 0;
3007 }
3008
3009 int
3010 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3011 {
3012         struct intel_engine_cs *ring = req->ring;
3013         uint32_t flush_domains;
3014         int ret;
3015
3016         flush_domains = 0;
3017         if (ring->gpu_caches_dirty)
3018                 flush_domains = I915_GEM_GPU_DOMAINS;
3019
3020         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3021         if (ret)
3022                 return ret;
3023
3024         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3025
3026         ring->gpu_caches_dirty = false;
3027         return 0;
3028 }
3029
3030 void
3031 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3032 {
3033         int ret;
3034
3035         if (!intel_ring_initialized(ring))
3036                 return;
3037
3038         ret = intel_ring_idle(ring);
3039         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3040                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3041                           ring->name, ret);
3042
3043         stop_ring(ring);
3044 }