]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
drm/i915: Rename ring flush functions
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37  * 965+ support PIPE_CONTROL commands, which provide finer grained control
38  * over cache flushing.
39  */
40 struct pipe_control {
41         struct drm_i915_gem_object *obj;
42         volatile u32 *cpu_page;
43         u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49         if (space < 0)
50                 space += ring->size;
51         return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         struct pipe_control *pc = ring->private;
179         u32 scratch_addr = pc->gtt_offset + 128;
180         int ret;
181
182
183         ret = intel_ring_begin(ring, 6);
184         if (ret)
185                 return ret;
186
187         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
190         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191         intel_ring_emit(ring, 0); /* low dword */
192         intel_ring_emit(ring, 0); /* high dword */
193         intel_ring_emit(ring, MI_NOOP);
194         intel_ring_advance(ring);
195
196         ret = intel_ring_begin(ring, 6);
197         if (ret)
198                 return ret;
199
200         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, 0);
205         intel_ring_emit(ring, MI_NOOP);
206         intel_ring_advance(ring);
207
208         return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213                          u32 invalidate_domains, u32 flush_domains)
214 {
215         u32 flags = 0;
216         struct pipe_control *pc = ring->private;
217         u32 scratch_addr = pc->gtt_offset + 128;
218         int ret;
219
220         /* Force SNB workarounds for PIPE_CONTROL flushes */
221         ret = intel_emit_post_sync_nonzero_flush(ring);
222         if (ret)
223                 return ret;
224
225         /* Just flush everything.  Experiments have shown that reducing the
226          * number of bits based on the write domains has little performance
227          * impact.
228          */
229         if (flush_domains) {
230                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232                 /*
233                  * Ensure that any following seqno writes only happen
234                  * when the render cache is indeed flushed.
235                  */
236                 flags |= PIPE_CONTROL_CS_STALL;
237         }
238         if (invalidate_domains) {
239                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245                 /*
246                  * TLB invalidate requires a post-sync write.
247                  */
248                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249         }
250
251         ret = intel_ring_begin(ring, 4);
252         if (ret)
253                 return ret;
254
255         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256         intel_ring_emit(ring, flags);
257         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258         intel_ring_emit(ring, 0);
259         intel_ring_advance(ring);
260
261         return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267         int ret;
268
269         ret = intel_ring_begin(ring, 4);
270         if (ret)
271                 return ret;
272
273         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
276         intel_ring_emit(ring, 0);
277         intel_ring_emit(ring, 0);
278         intel_ring_advance(ring);
279
280         return 0;
281 }
282
283 static int
284 gen7_render_ring_flush(struct intel_ring_buffer *ring,
285                        u32 invalidate_domains, u32 flush_domains)
286 {
287         u32 flags = 0;
288         struct pipe_control *pc = ring->private;
289         u32 scratch_addr = pc->gtt_offset + 128;
290         int ret;
291
292         /*
293          * Ensure that any following seqno writes only happen when the render
294          * cache is indeed flushed.
295          *
296          * Workaround: 4th PIPE_CONTROL command (except the ones with only
297          * read-cache invalidate bits set) must have the CS_STALL bit set. We
298          * don't try to be clever and just set it unconditionally.
299          */
300         flags |= PIPE_CONTROL_CS_STALL;
301
302         /* Just flush everything.  Experiments have shown that reducing the
303          * number of bits based on the write domains has little performance
304          * impact.
305          */
306         if (flush_domains) {
307                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
308                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
309         }
310         if (invalidate_domains) {
311                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
312                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
313                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
314                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
315                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
316                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
317                 /*
318                  * TLB invalidate requires a post-sync write.
319                  */
320                 flags |= PIPE_CONTROL_QW_WRITE;
321                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
322
323                 /* Workaround: we must issue a pipe_control with CS-stall bit
324                  * set before a pipe_control command that has the state cache
325                  * invalidate bit set. */
326                 gen7_render_ring_cs_stall_wa(ring);
327         }
328
329         ret = intel_ring_begin(ring, 4);
330         if (ret)
331                 return ret;
332
333         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
334         intel_ring_emit(ring, flags);
335         intel_ring_emit(ring, scratch_addr);
336         intel_ring_emit(ring, 0);
337         intel_ring_advance(ring);
338
339         return 0;
340 }
341
342 static void ring_write_tail(struct intel_ring_buffer *ring,
343                             u32 value)
344 {
345         drm_i915_private_t *dev_priv = ring->dev->dev_private;
346         I915_WRITE_TAIL(ring, value);
347 }
348
349 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
350 {
351         drm_i915_private_t *dev_priv = ring->dev->dev_private;
352         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
353                         RING_ACTHD(ring->mmio_base) : ACTHD;
354
355         return I915_READ(acthd_reg);
356 }
357
358 static int init_ring_common(struct intel_ring_buffer *ring)
359 {
360         struct drm_device *dev = ring->dev;
361         drm_i915_private_t *dev_priv = dev->dev_private;
362         struct drm_i915_gem_object *obj = ring->obj;
363         int ret = 0;
364         u32 head;
365
366         if (HAS_FORCE_WAKE(dev))
367                 gen6_gt_force_wake_get(dev_priv);
368
369         /* Stop the ring if it's running. */
370         I915_WRITE_CTL(ring, 0);
371         I915_WRITE_HEAD(ring, 0);
372         ring->write_tail(ring, 0);
373
374         head = I915_READ_HEAD(ring) & HEAD_ADDR;
375
376         /* G45 ring initialization fails to reset head to zero */
377         if (head != 0) {
378                 DRM_DEBUG_KMS("%s head not reset to zero "
379                               "ctl %08x head %08x tail %08x start %08x\n",
380                               ring->name,
381                               I915_READ_CTL(ring),
382                               I915_READ_HEAD(ring),
383                               I915_READ_TAIL(ring),
384                               I915_READ_START(ring));
385
386                 I915_WRITE_HEAD(ring, 0);
387
388                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
389                         DRM_ERROR("failed to set %s head to zero "
390                                   "ctl %08x head %08x tail %08x start %08x\n",
391                                   ring->name,
392                                   I915_READ_CTL(ring),
393                                   I915_READ_HEAD(ring),
394                                   I915_READ_TAIL(ring),
395                                   I915_READ_START(ring));
396                 }
397         }
398
399         /* Initialize the ring. This must happen _after_ we've cleared the ring
400          * registers with the above sequence (the readback of the HEAD registers
401          * also enforces ordering), otherwise the hw might lose the new ring
402          * register values. */
403         I915_WRITE_START(ring, obj->gtt_offset);
404         I915_WRITE_CTL(ring,
405                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
406                         | RING_VALID);
407
408         /* If the head is still not zero, the ring is dead */
409         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
410                      I915_READ_START(ring) == obj->gtt_offset &&
411                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
412                 DRM_ERROR("%s initialization failed "
413                                 "ctl %08x head %08x tail %08x start %08x\n",
414                                 ring->name,
415                                 I915_READ_CTL(ring),
416                                 I915_READ_HEAD(ring),
417                                 I915_READ_TAIL(ring),
418                                 I915_READ_START(ring));
419                 ret = -EIO;
420                 goto out;
421         }
422
423         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
424                 i915_kernel_lost_context(ring->dev);
425         else {
426                 ring->head = I915_READ_HEAD(ring);
427                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
428                 ring->space = ring_space(ring);
429                 ring->last_retired_head = -1;
430         }
431
432 out:
433         if (HAS_FORCE_WAKE(dev))
434                 gen6_gt_force_wake_put(dev_priv);
435
436         return ret;
437 }
438
439 static int
440 init_pipe_control(struct intel_ring_buffer *ring)
441 {
442         struct pipe_control *pc;
443         struct drm_i915_gem_object *obj;
444         int ret;
445
446         if (ring->private)
447                 return 0;
448
449         pc = kmalloc(sizeof(*pc), GFP_KERNEL);
450         if (!pc)
451                 return -ENOMEM;
452
453         obj = i915_gem_alloc_object(ring->dev, 4096);
454         if (obj == NULL) {
455                 DRM_ERROR("Failed to allocate seqno page\n");
456                 ret = -ENOMEM;
457                 goto err;
458         }
459
460         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
461
462         ret = i915_gem_object_pin(obj, 4096, true, false);
463         if (ret)
464                 goto err_unref;
465
466         pc->gtt_offset = obj->gtt_offset;
467         pc->cpu_page = kmap(sg_page(obj->pages->sgl));
468         if (pc->cpu_page == NULL) {
469                 ret = -ENOMEM;
470                 goto err_unpin;
471         }
472
473         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
474                          ring->name, pc->gtt_offset);
475
476         pc->obj = obj;
477         ring->private = pc;
478         return 0;
479
480 err_unpin:
481         i915_gem_object_unpin(obj);
482 err_unref:
483         drm_gem_object_unreference(&obj->base);
484 err:
485         kfree(pc);
486         return ret;
487 }
488
489 static void
490 cleanup_pipe_control(struct intel_ring_buffer *ring)
491 {
492         struct pipe_control *pc = ring->private;
493         struct drm_i915_gem_object *obj;
494
495         if (!ring->private)
496                 return;
497
498         obj = pc->obj;
499
500         kunmap(sg_page(obj->pages->sgl));
501         i915_gem_object_unpin(obj);
502         drm_gem_object_unreference(&obj->base);
503
504         kfree(pc);
505         ring->private = NULL;
506 }
507
508 static int init_render_ring(struct intel_ring_buffer *ring)
509 {
510         struct drm_device *dev = ring->dev;
511         struct drm_i915_private *dev_priv = dev->dev_private;
512         int ret = init_ring_common(ring);
513
514         if (INTEL_INFO(dev)->gen > 3)
515                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
516
517         /* We need to disable the AsyncFlip performance optimisations in order
518          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
519          * programmed to '1' on all products.
520          *
521          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
522          */
523         if (INTEL_INFO(dev)->gen >= 6)
524                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
525
526         /* Required for the hardware to program scanline values for waiting */
527         if (INTEL_INFO(dev)->gen == 6)
528                 I915_WRITE(GFX_MODE,
529                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
530
531         if (IS_GEN7(dev))
532                 I915_WRITE(GFX_MODE_GEN7,
533                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
534                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
535
536         if (INTEL_INFO(dev)->gen >= 5) {
537                 ret = init_pipe_control(ring);
538                 if (ret)
539                         return ret;
540         }
541
542         if (IS_GEN6(dev)) {
543                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
544                  * "If this bit is set, STCunit will have LRA as replacement
545                  *  policy. [...] This bit must be reset.  LRA replacement
546                  *  policy is not supported."
547                  */
548                 I915_WRITE(CACHE_MODE_0,
549                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
550
551                 /* This is not explicitly set for GEN6, so read the register.
552                  * see intel_ring_mi_set_context() for why we care.
553                  * TODO: consider explicitly setting the bit for GEN5
554                  */
555                 ring->itlb_before_ctx_switch =
556                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
557         }
558
559         if (INTEL_INFO(dev)->gen >= 6)
560                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
561
562         if (HAS_L3_GPU_CACHE(dev))
563                 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
564
565         return ret;
566 }
567
568 static void render_ring_cleanup(struct intel_ring_buffer *ring)
569 {
570         struct drm_device *dev = ring->dev;
571
572         if (!ring->private)
573                 return;
574
575         if (HAS_BROKEN_CS_TLB(dev))
576                 drm_gem_object_unreference(to_gem_object(ring->private));
577
578         cleanup_pipe_control(ring);
579 }
580
581 static void
582 update_mboxes(struct intel_ring_buffer *ring,
583               u32 mmio_offset)
584 {
585 /* NB: In order to be able to do semaphore MBOX updates for varying number
586  * of rings, it's easiest if we round up each individual update to a
587  * multiple of 2 (since ring updates must always be a multiple of 2)
588  * even though the actual update only requires 3 dwords.
589  */
590 #define MBOX_UPDATE_DWORDS 4
591         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
592         intel_ring_emit(ring, mmio_offset);
593         intel_ring_emit(ring, ring->outstanding_lazy_request);
594         intel_ring_emit(ring, MI_NOOP);
595 }
596
597 /**
598  * gen6_add_request - Update the semaphore mailbox registers
599  * 
600  * @ring - ring that is adding a request
601  * @seqno - return seqno stuck into the ring
602  *
603  * Update the mailbox registers in the *other* rings with the current seqno.
604  * This acts like a signal in the canonical semaphore.
605  */
606 static int
607 gen6_add_request(struct intel_ring_buffer *ring)
608 {
609         struct drm_device *dev = ring->dev;
610         struct drm_i915_private *dev_priv = dev->dev_private;
611         struct intel_ring_buffer *useless;
612         int i, ret;
613
614         ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
615                                       MBOX_UPDATE_DWORDS) +
616                                       4);
617         if (ret)
618                 return ret;
619 #undef MBOX_UPDATE_DWORDS
620
621         for_each_ring(useless, dev_priv, i) {
622                 u32 mbox_reg = ring->signal_mbox[i];
623                 if (mbox_reg != GEN6_NOSYNC)
624                         update_mboxes(ring, mbox_reg);
625         }
626
627         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
628         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
629         intel_ring_emit(ring, ring->outstanding_lazy_request);
630         intel_ring_emit(ring, MI_USER_INTERRUPT);
631         intel_ring_advance(ring);
632
633         return 0;
634 }
635
636 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
637                                               u32 seqno)
638 {
639         struct drm_i915_private *dev_priv = dev->dev_private;
640         return dev_priv->last_seqno < seqno;
641 }
642
643 /**
644  * intel_ring_sync - sync the waiter to the signaller on seqno
645  *
646  * @waiter - ring that is waiting
647  * @signaller - ring which has, or will signal
648  * @seqno - seqno which the waiter will block on
649  */
650 static int
651 gen6_ring_sync(struct intel_ring_buffer *waiter,
652                struct intel_ring_buffer *signaller,
653                u32 seqno)
654 {
655         int ret;
656         u32 dw1 = MI_SEMAPHORE_MBOX |
657                   MI_SEMAPHORE_COMPARE |
658                   MI_SEMAPHORE_REGISTER;
659
660         /* Throughout all of the GEM code, seqno passed implies our current
661          * seqno is >= the last seqno executed. However for hardware the
662          * comparison is strictly greater than.
663          */
664         seqno -= 1;
665
666         WARN_ON(signaller->semaphore_register[waiter->id] ==
667                 MI_SEMAPHORE_SYNC_INVALID);
668
669         ret = intel_ring_begin(waiter, 4);
670         if (ret)
671                 return ret;
672
673         /* If seqno wrap happened, omit the wait with no-ops */
674         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
675                 intel_ring_emit(waiter,
676                                 dw1 |
677                                 signaller->semaphore_register[waiter->id]);
678                 intel_ring_emit(waiter, seqno);
679                 intel_ring_emit(waiter, 0);
680                 intel_ring_emit(waiter, MI_NOOP);
681         } else {
682                 intel_ring_emit(waiter, MI_NOOP);
683                 intel_ring_emit(waiter, MI_NOOP);
684                 intel_ring_emit(waiter, MI_NOOP);
685                 intel_ring_emit(waiter, MI_NOOP);
686         }
687         intel_ring_advance(waiter);
688
689         return 0;
690 }
691
692 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
693 do {                                                                    \
694         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
695                  PIPE_CONTROL_DEPTH_STALL);                             \
696         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
697         intel_ring_emit(ring__, 0);                                                     \
698         intel_ring_emit(ring__, 0);                                                     \
699 } while (0)
700
701 static int
702 pc_render_add_request(struct intel_ring_buffer *ring)
703 {
704         struct pipe_control *pc = ring->private;
705         u32 scratch_addr = pc->gtt_offset + 128;
706         int ret;
707
708         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
709          * incoherent with writes to memory, i.e. completely fubar,
710          * so we need to use PIPE_NOTIFY instead.
711          *
712          * However, we also need to workaround the qword write
713          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
714          * memory before requesting an interrupt.
715          */
716         ret = intel_ring_begin(ring, 32);
717         if (ret)
718                 return ret;
719
720         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
721                         PIPE_CONTROL_WRITE_FLUSH |
722                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
723         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
724         intel_ring_emit(ring, ring->outstanding_lazy_request);
725         intel_ring_emit(ring, 0);
726         PIPE_CONTROL_FLUSH(ring, scratch_addr);
727         scratch_addr += 128; /* write to separate cachelines */
728         PIPE_CONTROL_FLUSH(ring, scratch_addr);
729         scratch_addr += 128;
730         PIPE_CONTROL_FLUSH(ring, scratch_addr);
731         scratch_addr += 128;
732         PIPE_CONTROL_FLUSH(ring, scratch_addr);
733         scratch_addr += 128;
734         PIPE_CONTROL_FLUSH(ring, scratch_addr);
735         scratch_addr += 128;
736         PIPE_CONTROL_FLUSH(ring, scratch_addr);
737
738         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
739                         PIPE_CONTROL_WRITE_FLUSH |
740                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
741                         PIPE_CONTROL_NOTIFY);
742         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
743         intel_ring_emit(ring, ring->outstanding_lazy_request);
744         intel_ring_emit(ring, 0);
745         intel_ring_advance(ring);
746
747         return 0;
748 }
749
750 static u32
751 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
752 {
753         /* Workaround to force correct ordering between irq and seqno writes on
754          * ivb (and maybe also on snb) by reading from a CS register (like
755          * ACTHD) before reading the status page. */
756         if (!lazy_coherency)
757                 intel_ring_get_active_head(ring);
758         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
759 }
760
761 static u32
762 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
763 {
764         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
765 }
766
767 static void
768 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
769 {
770         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
771 }
772
773 static u32
774 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
775 {
776         struct pipe_control *pc = ring->private;
777         return pc->cpu_page[0];
778 }
779
780 static void
781 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
782 {
783         struct pipe_control *pc = ring->private;
784         pc->cpu_page[0] = seqno;
785 }
786
787 static bool
788 gen5_ring_get_irq(struct intel_ring_buffer *ring)
789 {
790         struct drm_device *dev = ring->dev;
791         drm_i915_private_t *dev_priv = dev->dev_private;
792         unsigned long flags;
793
794         if (!dev->irq_enabled)
795                 return false;
796
797         spin_lock_irqsave(&dev_priv->irq_lock, flags);
798         if (ring->irq_refcount++ == 0) {
799                 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
800                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
801                 POSTING_READ(GTIMR);
802         }
803         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
804
805         return true;
806 }
807
808 static void
809 gen5_ring_put_irq(struct intel_ring_buffer *ring)
810 {
811         struct drm_device *dev = ring->dev;
812         drm_i915_private_t *dev_priv = dev->dev_private;
813         unsigned long flags;
814
815         spin_lock_irqsave(&dev_priv->irq_lock, flags);
816         if (--ring->irq_refcount == 0) {
817                 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
818                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
819                 POSTING_READ(GTIMR);
820         }
821         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
822 }
823
824 static bool
825 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
826 {
827         struct drm_device *dev = ring->dev;
828         drm_i915_private_t *dev_priv = dev->dev_private;
829         unsigned long flags;
830
831         if (!dev->irq_enabled)
832                 return false;
833
834         spin_lock_irqsave(&dev_priv->irq_lock, flags);
835         if (ring->irq_refcount++ == 0) {
836                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
837                 I915_WRITE(IMR, dev_priv->irq_mask);
838                 POSTING_READ(IMR);
839         }
840         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
841
842         return true;
843 }
844
845 static void
846 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
847 {
848         struct drm_device *dev = ring->dev;
849         drm_i915_private_t *dev_priv = dev->dev_private;
850         unsigned long flags;
851
852         spin_lock_irqsave(&dev_priv->irq_lock, flags);
853         if (--ring->irq_refcount == 0) {
854                 dev_priv->irq_mask |= ring->irq_enable_mask;
855                 I915_WRITE(IMR, dev_priv->irq_mask);
856                 POSTING_READ(IMR);
857         }
858         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
859 }
860
861 static bool
862 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
863 {
864         struct drm_device *dev = ring->dev;
865         drm_i915_private_t *dev_priv = dev->dev_private;
866         unsigned long flags;
867
868         if (!dev->irq_enabled)
869                 return false;
870
871         spin_lock_irqsave(&dev_priv->irq_lock, flags);
872         if (ring->irq_refcount++ == 0) {
873                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
874                 I915_WRITE16(IMR, dev_priv->irq_mask);
875                 POSTING_READ16(IMR);
876         }
877         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
878
879         return true;
880 }
881
882 static void
883 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
884 {
885         struct drm_device *dev = ring->dev;
886         drm_i915_private_t *dev_priv = dev->dev_private;
887         unsigned long flags;
888
889         spin_lock_irqsave(&dev_priv->irq_lock, flags);
890         if (--ring->irq_refcount == 0) {
891                 dev_priv->irq_mask |= ring->irq_enable_mask;
892                 I915_WRITE16(IMR, dev_priv->irq_mask);
893                 POSTING_READ16(IMR);
894         }
895         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
896 }
897
898 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
899 {
900         struct drm_device *dev = ring->dev;
901         drm_i915_private_t *dev_priv = ring->dev->dev_private;
902         u32 mmio = 0;
903
904         /* The ring status page addresses are no longer next to the rest of
905          * the ring registers as of gen7.
906          */
907         if (IS_GEN7(dev)) {
908                 switch (ring->id) {
909                 case RCS:
910                         mmio = RENDER_HWS_PGA_GEN7;
911                         break;
912                 case BCS:
913                         mmio = BLT_HWS_PGA_GEN7;
914                         break;
915                 case VCS:
916                         mmio = BSD_HWS_PGA_GEN7;
917                         break;
918                 case VECS:
919                         BUG();
920                 }
921         } else if (IS_GEN6(ring->dev)) {
922                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
923         } else {
924                 mmio = RING_HWS_PGA(ring->mmio_base);
925         }
926
927         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
928         POSTING_READ(mmio);
929 }
930
931 static int
932 bsd_ring_flush(struct intel_ring_buffer *ring,
933                u32     invalidate_domains,
934                u32     flush_domains)
935 {
936         int ret;
937
938         ret = intel_ring_begin(ring, 2);
939         if (ret)
940                 return ret;
941
942         intel_ring_emit(ring, MI_FLUSH);
943         intel_ring_emit(ring, MI_NOOP);
944         intel_ring_advance(ring);
945         return 0;
946 }
947
948 static int
949 i9xx_add_request(struct intel_ring_buffer *ring)
950 {
951         int ret;
952
953         ret = intel_ring_begin(ring, 4);
954         if (ret)
955                 return ret;
956
957         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
958         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
959         intel_ring_emit(ring, ring->outstanding_lazy_request);
960         intel_ring_emit(ring, MI_USER_INTERRUPT);
961         intel_ring_advance(ring);
962
963         return 0;
964 }
965
966 static bool
967 gen6_ring_get_irq(struct intel_ring_buffer *ring)
968 {
969         struct drm_device *dev = ring->dev;
970         drm_i915_private_t *dev_priv = dev->dev_private;
971         unsigned long flags;
972
973         if (!dev->irq_enabled)
974                return false;
975
976         /* It looks like we need to prevent the gt from suspending while waiting
977          * for an notifiy irq, otherwise irqs seem to get lost on at least the
978          * blt/bsd rings on ivb. */
979         gen6_gt_force_wake_get(dev_priv);
980
981         spin_lock_irqsave(&dev_priv->irq_lock, flags);
982         if (ring->irq_refcount++ == 0) {
983                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
984                         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask |
985                                                 GEN6_RENDER_L3_PARITY_ERROR));
986                 else
987                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
988                 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
989                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
990                 POSTING_READ(GTIMR);
991         }
992         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
993
994         return true;
995 }
996
997 static void
998 gen6_ring_put_irq(struct intel_ring_buffer *ring)
999 {
1000         struct drm_device *dev = ring->dev;
1001         drm_i915_private_t *dev_priv = dev->dev_private;
1002         unsigned long flags;
1003
1004         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1005         if (--ring->irq_refcount == 0) {
1006                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1007                         I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
1008                 else
1009                         I915_WRITE_IMR(ring, ~0);
1010                 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
1011                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1012                 POSTING_READ(GTIMR);
1013         }
1014         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1015
1016         gen6_gt_force_wake_put(dev_priv);
1017 }
1018
1019 static int
1020 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1021                          u32 offset, u32 length,
1022                          unsigned flags)
1023 {
1024         int ret;
1025
1026         ret = intel_ring_begin(ring, 2);
1027         if (ret)
1028                 return ret;
1029
1030         intel_ring_emit(ring,
1031                         MI_BATCH_BUFFER_START |
1032                         MI_BATCH_GTT |
1033                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1034         intel_ring_emit(ring, offset);
1035         intel_ring_advance(ring);
1036
1037         return 0;
1038 }
1039
1040 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1041 #define I830_BATCH_LIMIT (256*1024)
1042 static int
1043 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1044                                 u32 offset, u32 len,
1045                                 unsigned flags)
1046 {
1047         int ret;
1048
1049         if (flags & I915_DISPATCH_PINNED) {
1050                 ret = intel_ring_begin(ring, 4);
1051                 if (ret)
1052                         return ret;
1053
1054                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1055                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1056                 intel_ring_emit(ring, offset + len - 8);
1057                 intel_ring_emit(ring, MI_NOOP);
1058                 intel_ring_advance(ring);
1059         } else {
1060                 struct drm_i915_gem_object *obj = ring->private;
1061                 u32 cs_offset = obj->gtt_offset;
1062
1063                 if (len > I830_BATCH_LIMIT)
1064                         return -ENOSPC;
1065
1066                 ret = intel_ring_begin(ring, 9+3);
1067                 if (ret)
1068                         return ret;
1069                 /* Blit the batch (which has now all relocs applied) to the stable batch
1070                  * scratch bo area (so that the CS never stumbles over its tlb
1071                  * invalidation bug) ... */
1072                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1073                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1074                                 XY_SRC_COPY_BLT_WRITE_RGB);
1075                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1076                 intel_ring_emit(ring, 0);
1077                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1078                 intel_ring_emit(ring, cs_offset);
1079                 intel_ring_emit(ring, 0);
1080                 intel_ring_emit(ring, 4096);
1081                 intel_ring_emit(ring, offset);
1082                 intel_ring_emit(ring, MI_FLUSH);
1083
1084                 /* ... and execute it. */
1085                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1086                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1087                 intel_ring_emit(ring, cs_offset + len - 8);
1088                 intel_ring_advance(ring);
1089         }
1090
1091         return 0;
1092 }
1093
1094 static int
1095 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1096                          u32 offset, u32 len,
1097                          unsigned flags)
1098 {
1099         int ret;
1100
1101         ret = intel_ring_begin(ring, 2);
1102         if (ret)
1103                 return ret;
1104
1105         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1106         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1107         intel_ring_advance(ring);
1108
1109         return 0;
1110 }
1111
1112 static void cleanup_status_page(struct intel_ring_buffer *ring)
1113 {
1114         struct drm_i915_gem_object *obj;
1115
1116         obj = ring->status_page.obj;
1117         if (obj == NULL)
1118                 return;
1119
1120         kunmap(sg_page(obj->pages->sgl));
1121         i915_gem_object_unpin(obj);
1122         drm_gem_object_unreference(&obj->base);
1123         ring->status_page.obj = NULL;
1124 }
1125
1126 static int init_status_page(struct intel_ring_buffer *ring)
1127 {
1128         struct drm_device *dev = ring->dev;
1129         struct drm_i915_gem_object *obj;
1130         int ret;
1131
1132         obj = i915_gem_alloc_object(dev, 4096);
1133         if (obj == NULL) {
1134                 DRM_ERROR("Failed to allocate status page\n");
1135                 ret = -ENOMEM;
1136                 goto err;
1137         }
1138
1139         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1140
1141         ret = i915_gem_object_pin(obj, 4096, true, false);
1142         if (ret != 0) {
1143                 goto err_unref;
1144         }
1145
1146         ring->status_page.gfx_addr = obj->gtt_offset;
1147         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1148         if (ring->status_page.page_addr == NULL) {
1149                 ret = -ENOMEM;
1150                 goto err_unpin;
1151         }
1152         ring->status_page.obj = obj;
1153         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1154
1155         intel_ring_setup_status_page(ring);
1156         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1157                         ring->name, ring->status_page.gfx_addr);
1158
1159         return 0;
1160
1161 err_unpin:
1162         i915_gem_object_unpin(obj);
1163 err_unref:
1164         drm_gem_object_unreference(&obj->base);
1165 err:
1166         return ret;
1167 }
1168
1169 static int init_phys_hws_pga(struct intel_ring_buffer *ring)
1170 {
1171         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1172         u32 addr;
1173
1174         if (!dev_priv->status_page_dmah) {
1175                 dev_priv->status_page_dmah =
1176                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1177                 if (!dev_priv->status_page_dmah)
1178                         return -ENOMEM;
1179         }
1180
1181         addr = dev_priv->status_page_dmah->busaddr;
1182         if (INTEL_INFO(ring->dev)->gen >= 4)
1183                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
1184         I915_WRITE(HWS_PGA, addr);
1185
1186         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1187         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1188
1189         return 0;
1190 }
1191
1192 static int intel_init_ring_buffer(struct drm_device *dev,
1193                                   struct intel_ring_buffer *ring)
1194 {
1195         struct drm_i915_gem_object *obj;
1196         struct drm_i915_private *dev_priv = dev->dev_private;
1197         int ret;
1198
1199         ring->dev = dev;
1200         INIT_LIST_HEAD(&ring->active_list);
1201         INIT_LIST_HEAD(&ring->request_list);
1202         ring->size = 32 * PAGE_SIZE;
1203         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1204
1205         init_waitqueue_head(&ring->irq_queue);
1206
1207         if (I915_NEED_GFX_HWS(dev)) {
1208                 ret = init_status_page(ring);
1209                 if (ret)
1210                         return ret;
1211         } else {
1212                 BUG_ON(ring->id != RCS);
1213                 ret = init_phys_hws_pga(ring);
1214                 if (ret)
1215                         return ret;
1216         }
1217
1218         obj = NULL;
1219         if (!HAS_LLC(dev))
1220                 obj = i915_gem_object_create_stolen(dev, ring->size);
1221         if (obj == NULL)
1222                 obj = i915_gem_alloc_object(dev, ring->size);
1223         if (obj == NULL) {
1224                 DRM_ERROR("Failed to allocate ringbuffer\n");
1225                 ret = -ENOMEM;
1226                 goto err_hws;
1227         }
1228
1229         ring->obj = obj;
1230
1231         ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1232         if (ret)
1233                 goto err_unref;
1234
1235         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1236         if (ret)
1237                 goto err_unpin;
1238
1239         ring->virtual_start =
1240                 ioremap_wc(dev_priv->gtt.mappable_base + obj->gtt_offset,
1241                            ring->size);
1242         if (ring->virtual_start == NULL) {
1243                 DRM_ERROR("Failed to map ringbuffer.\n");
1244                 ret = -EINVAL;
1245                 goto err_unpin;
1246         }
1247
1248         ret = ring->init(ring);
1249         if (ret)
1250                 goto err_unmap;
1251
1252         /* Workaround an erratum on the i830 which causes a hang if
1253          * the TAIL pointer points to within the last 2 cachelines
1254          * of the buffer.
1255          */
1256         ring->effective_size = ring->size;
1257         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1258                 ring->effective_size -= 128;
1259
1260         return 0;
1261
1262 err_unmap:
1263         iounmap(ring->virtual_start);
1264 err_unpin:
1265         i915_gem_object_unpin(obj);
1266 err_unref:
1267         drm_gem_object_unreference(&obj->base);
1268         ring->obj = NULL;
1269 err_hws:
1270         cleanup_status_page(ring);
1271         return ret;
1272 }
1273
1274 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1275 {
1276         struct drm_i915_private *dev_priv;
1277         int ret;
1278
1279         if (ring->obj == NULL)
1280                 return;
1281
1282         /* Disable the ring buffer. The ring must be idle at this point */
1283         dev_priv = ring->dev->dev_private;
1284         ret = intel_ring_idle(ring);
1285         if (ret)
1286                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1287                           ring->name, ret);
1288
1289         I915_WRITE_CTL(ring, 0);
1290
1291         iounmap(ring->virtual_start);
1292
1293         i915_gem_object_unpin(ring->obj);
1294         drm_gem_object_unreference(&ring->obj->base);
1295         ring->obj = NULL;
1296
1297         if (ring->cleanup)
1298                 ring->cleanup(ring);
1299
1300         cleanup_status_page(ring);
1301 }
1302
1303 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1304 {
1305         int ret;
1306
1307         ret = i915_wait_seqno(ring, seqno);
1308         if (!ret)
1309                 i915_gem_retire_requests_ring(ring);
1310
1311         return ret;
1312 }
1313
1314 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1315 {
1316         struct drm_i915_gem_request *request;
1317         u32 seqno = 0;
1318         int ret;
1319
1320         i915_gem_retire_requests_ring(ring);
1321
1322         if (ring->last_retired_head != -1) {
1323                 ring->head = ring->last_retired_head;
1324                 ring->last_retired_head = -1;
1325                 ring->space = ring_space(ring);
1326                 if (ring->space >= n)
1327                         return 0;
1328         }
1329
1330         list_for_each_entry(request, &ring->request_list, list) {
1331                 int space;
1332
1333                 if (request->tail == -1)
1334                         continue;
1335
1336                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1337                 if (space < 0)
1338                         space += ring->size;
1339                 if (space >= n) {
1340                         seqno = request->seqno;
1341                         break;
1342                 }
1343
1344                 /* Consume this request in case we need more space than
1345                  * is available and so need to prevent a race between
1346                  * updating last_retired_head and direct reads of
1347                  * I915_RING_HEAD. It also provides a nice sanity check.
1348                  */
1349                 request->tail = -1;
1350         }
1351
1352         if (seqno == 0)
1353                 return -ENOSPC;
1354
1355         ret = intel_ring_wait_seqno(ring, seqno);
1356         if (ret)
1357                 return ret;
1358
1359         if (WARN_ON(ring->last_retired_head == -1))
1360                 return -ENOSPC;
1361
1362         ring->head = ring->last_retired_head;
1363         ring->last_retired_head = -1;
1364         ring->space = ring_space(ring);
1365         if (WARN_ON(ring->space < n))
1366                 return -ENOSPC;
1367
1368         return 0;
1369 }
1370
1371 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1372 {
1373         struct drm_device *dev = ring->dev;
1374         struct drm_i915_private *dev_priv = dev->dev_private;
1375         unsigned long end;
1376         int ret;
1377
1378         ret = intel_ring_wait_request(ring, n);
1379         if (ret != -ENOSPC)
1380                 return ret;
1381
1382         trace_i915_ring_wait_begin(ring);
1383         /* With GEM the hangcheck timer should kick us out of the loop,
1384          * leaving it early runs the risk of corrupting GEM state (due
1385          * to running on almost untested codepaths). But on resume
1386          * timers don't work yet, so prevent a complete hang in that
1387          * case by choosing an insanely large timeout. */
1388         end = jiffies + 60 * HZ;
1389
1390         do {
1391                 ring->head = I915_READ_HEAD(ring);
1392                 ring->space = ring_space(ring);
1393                 if (ring->space >= n) {
1394                         trace_i915_ring_wait_end(ring);
1395                         return 0;
1396                 }
1397
1398                 if (dev->primary->master) {
1399                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1400                         if (master_priv->sarea_priv)
1401                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1402                 }
1403
1404                 msleep(1);
1405
1406                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1407                                            dev_priv->mm.interruptible);
1408                 if (ret)
1409                         return ret;
1410         } while (!time_after(jiffies, end));
1411         trace_i915_ring_wait_end(ring);
1412         return -EBUSY;
1413 }
1414
1415 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1416 {
1417         uint32_t __iomem *virt;
1418         int rem = ring->size - ring->tail;
1419
1420         if (ring->space < rem) {
1421                 int ret = ring_wait_for_space(ring, rem);
1422                 if (ret)
1423                         return ret;
1424         }
1425
1426         virt = ring->virtual_start + ring->tail;
1427         rem /= 4;
1428         while (rem--)
1429                 iowrite32(MI_NOOP, virt++);
1430
1431         ring->tail = 0;
1432         ring->space = ring_space(ring);
1433
1434         return 0;
1435 }
1436
1437 int intel_ring_idle(struct intel_ring_buffer *ring)
1438 {
1439         u32 seqno;
1440         int ret;
1441
1442         /* We need to add any requests required to flush the objects and ring */
1443         if (ring->outstanding_lazy_request) {
1444                 ret = i915_add_request(ring, NULL, NULL);
1445                 if (ret)
1446                         return ret;
1447         }
1448
1449         /* Wait upon the last request to be completed */
1450         if (list_empty(&ring->request_list))
1451                 return 0;
1452
1453         seqno = list_entry(ring->request_list.prev,
1454                            struct drm_i915_gem_request,
1455                            list)->seqno;
1456
1457         return i915_wait_seqno(ring, seqno);
1458 }
1459
1460 static int
1461 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1462 {
1463         if (ring->outstanding_lazy_request)
1464                 return 0;
1465
1466         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1467 }
1468
1469 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1470                               int bytes)
1471 {
1472         int ret;
1473
1474         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1475                 ret = intel_wrap_ring_buffer(ring);
1476                 if (unlikely(ret))
1477                         return ret;
1478         }
1479
1480         if (unlikely(ring->space < bytes)) {
1481                 ret = ring_wait_for_space(ring, bytes);
1482                 if (unlikely(ret))
1483                         return ret;
1484         }
1485
1486         ring->space -= bytes;
1487         return 0;
1488 }
1489
1490 int intel_ring_begin(struct intel_ring_buffer *ring,
1491                      int num_dwords)
1492 {
1493         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1494         int ret;
1495
1496         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1497                                    dev_priv->mm.interruptible);
1498         if (ret)
1499                 return ret;
1500
1501         /* Preallocate the olr before touching the ring */
1502         ret = intel_ring_alloc_seqno(ring);
1503         if (ret)
1504                 return ret;
1505
1506         return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1507 }
1508
1509 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1510 {
1511         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1512
1513         BUG_ON(ring->outstanding_lazy_request);
1514
1515         if (INTEL_INFO(ring->dev)->gen >= 6) {
1516                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1517                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1518         }
1519
1520         ring->set_seqno(ring, seqno);
1521         ring->hangcheck.seqno = seqno;
1522 }
1523
1524 void intel_ring_advance(struct intel_ring_buffer *ring)
1525 {
1526         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1527
1528         ring->tail &= ring->size - 1;
1529         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1530                 return;
1531         ring->write_tail(ring, ring->tail);
1532 }
1533
1534
1535 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1536                                      u32 value)
1537 {
1538         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1539
1540        /* Every tail move must follow the sequence below */
1541
1542         /* Disable notification that the ring is IDLE. The GT
1543          * will then assume that it is busy and bring it out of rc6.
1544          */
1545         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1546                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1547
1548         /* Clear the context id. Here be magic! */
1549         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1550
1551         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1552         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1553                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1554                      50))
1555                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1556
1557         /* Now that the ring is fully powered up, update the tail */
1558         I915_WRITE_TAIL(ring, value);
1559         POSTING_READ(RING_TAIL(ring->mmio_base));
1560
1561         /* Let the ring send IDLE messages to the GT again,
1562          * and so let it sleep to conserve power when idle.
1563          */
1564         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1565                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1566 }
1567
1568 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1569                                u32 invalidate, u32 flush)
1570 {
1571         uint32_t cmd;
1572         int ret;
1573
1574         ret = intel_ring_begin(ring, 4);
1575         if (ret)
1576                 return ret;
1577
1578         cmd = MI_FLUSH_DW;
1579         /*
1580          * Bspec vol 1c.5 - video engine command streamer:
1581          * "If ENABLED, all TLBs will be invalidated once the flush
1582          * operation is complete. This bit is only valid when the
1583          * Post-Sync Operation field is a value of 1h or 3h."
1584          */
1585         if (invalidate & I915_GEM_GPU_DOMAINS)
1586                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1587                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1588         intel_ring_emit(ring, cmd);
1589         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1590         intel_ring_emit(ring, 0);
1591         intel_ring_emit(ring, MI_NOOP);
1592         intel_ring_advance(ring);
1593         return 0;
1594 }
1595
1596 static int
1597 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1598                               u32 offset, u32 len,
1599                               unsigned flags)
1600 {
1601         int ret;
1602
1603         ret = intel_ring_begin(ring, 2);
1604         if (ret)
1605                 return ret;
1606
1607         intel_ring_emit(ring,
1608                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1609                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1610         /* bit0-7 is the length on GEN6+ */
1611         intel_ring_emit(ring, offset);
1612         intel_ring_advance(ring);
1613
1614         return 0;
1615 }
1616
1617 static int
1618 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1619                               u32 offset, u32 len,
1620                               unsigned flags)
1621 {
1622         int ret;
1623
1624         ret = intel_ring_begin(ring, 2);
1625         if (ret)
1626                 return ret;
1627
1628         intel_ring_emit(ring,
1629                         MI_BATCH_BUFFER_START |
1630                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1631         /* bit0-7 is the length on GEN6+ */
1632         intel_ring_emit(ring, offset);
1633         intel_ring_advance(ring);
1634
1635         return 0;
1636 }
1637
1638 /* Blitter support (SandyBridge+) */
1639
1640 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1641                            u32 invalidate, u32 flush)
1642 {
1643         uint32_t cmd;
1644         int ret;
1645
1646         ret = intel_ring_begin(ring, 4);
1647         if (ret)
1648                 return ret;
1649
1650         cmd = MI_FLUSH_DW;
1651         /*
1652          * Bspec vol 1c.3 - blitter engine command streamer:
1653          * "If ENABLED, all TLBs will be invalidated once the flush
1654          * operation is complete. This bit is only valid when the
1655          * Post-Sync Operation field is a value of 1h or 3h."
1656          */
1657         if (invalidate & I915_GEM_DOMAIN_RENDER)
1658                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1659                         MI_FLUSH_DW_OP_STOREDW;
1660         intel_ring_emit(ring, cmd);
1661         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1662         intel_ring_emit(ring, 0);
1663         intel_ring_emit(ring, MI_NOOP);
1664         intel_ring_advance(ring);
1665         return 0;
1666 }
1667
1668 int intel_init_render_ring_buffer(struct drm_device *dev)
1669 {
1670         drm_i915_private_t *dev_priv = dev->dev_private;
1671         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1672
1673         ring->name = "render ring";
1674         ring->id = RCS;
1675         ring->mmio_base = RENDER_RING_BASE;
1676
1677         if (INTEL_INFO(dev)->gen >= 6) {
1678                 ring->add_request = gen6_add_request;
1679                 ring->flush = gen7_render_ring_flush;
1680                 if (INTEL_INFO(dev)->gen == 6)
1681                         ring->flush = gen6_render_ring_flush;
1682                 ring->irq_get = gen6_ring_get_irq;
1683                 ring->irq_put = gen6_ring_put_irq;
1684                 ring->irq_enable_mask = GT_USER_INTERRUPT;
1685                 ring->get_seqno = gen6_ring_get_seqno;
1686                 ring->set_seqno = ring_set_seqno;
1687                 ring->sync_to = gen6_ring_sync;
1688                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1689                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1690                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1691                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1692                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1693                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1694                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1695                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1696         } else if (IS_GEN5(dev)) {
1697                 ring->add_request = pc_render_add_request;
1698                 ring->flush = gen4_render_ring_flush;
1699                 ring->get_seqno = pc_render_get_seqno;
1700                 ring->set_seqno = pc_render_set_seqno;
1701                 ring->irq_get = gen5_ring_get_irq;
1702                 ring->irq_put = gen5_ring_put_irq;
1703                 ring->irq_enable_mask = GT_USER_INTERRUPT | GT_PIPE_NOTIFY;
1704         } else {
1705                 ring->add_request = i9xx_add_request;
1706                 if (INTEL_INFO(dev)->gen < 4)
1707                         ring->flush = gen2_render_ring_flush;
1708                 else
1709                         ring->flush = gen4_render_ring_flush;
1710                 ring->get_seqno = ring_get_seqno;
1711                 ring->set_seqno = ring_set_seqno;
1712                 if (IS_GEN2(dev)) {
1713                         ring->irq_get = i8xx_ring_get_irq;
1714                         ring->irq_put = i8xx_ring_put_irq;
1715                 } else {
1716                         ring->irq_get = i9xx_ring_get_irq;
1717                         ring->irq_put = i9xx_ring_put_irq;
1718                 }
1719                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1720         }
1721         ring->write_tail = ring_write_tail;
1722         if (IS_HASWELL(dev))
1723                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1724         else if (INTEL_INFO(dev)->gen >= 6)
1725                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1726         else if (INTEL_INFO(dev)->gen >= 4)
1727                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1728         else if (IS_I830(dev) || IS_845G(dev))
1729                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1730         else
1731                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1732         ring->init = init_render_ring;
1733         ring->cleanup = render_ring_cleanup;
1734
1735         /* Workaround batchbuffer to combat CS tlb bug. */
1736         if (HAS_BROKEN_CS_TLB(dev)) {
1737                 struct drm_i915_gem_object *obj;
1738                 int ret;
1739
1740                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1741                 if (obj == NULL) {
1742                         DRM_ERROR("Failed to allocate batch bo\n");
1743                         return -ENOMEM;
1744                 }
1745
1746                 ret = i915_gem_object_pin(obj, 0, true, false);
1747                 if (ret != 0) {
1748                         drm_gem_object_unreference(&obj->base);
1749                         DRM_ERROR("Failed to ping batch bo\n");
1750                         return ret;
1751                 }
1752
1753                 ring->private = obj;
1754         }
1755
1756         return intel_init_ring_buffer(dev, ring);
1757 }
1758
1759 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1760 {
1761         drm_i915_private_t *dev_priv = dev->dev_private;
1762         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1763         int ret;
1764
1765         ring->name = "render ring";
1766         ring->id = RCS;
1767         ring->mmio_base = RENDER_RING_BASE;
1768
1769         if (INTEL_INFO(dev)->gen >= 6) {
1770                 /* non-kms not supported on gen6+ */
1771                 return -ENODEV;
1772         }
1773
1774         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1775          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1776          * the special gen5 functions. */
1777         ring->add_request = i9xx_add_request;
1778         if (INTEL_INFO(dev)->gen < 4)
1779                 ring->flush = gen2_render_ring_flush;
1780         else
1781                 ring->flush = gen4_render_ring_flush;
1782         ring->get_seqno = ring_get_seqno;
1783         ring->set_seqno = ring_set_seqno;
1784         if (IS_GEN2(dev)) {
1785                 ring->irq_get = i8xx_ring_get_irq;
1786                 ring->irq_put = i8xx_ring_put_irq;
1787         } else {
1788                 ring->irq_get = i9xx_ring_get_irq;
1789                 ring->irq_put = i9xx_ring_put_irq;
1790         }
1791         ring->irq_enable_mask = I915_USER_INTERRUPT;
1792         ring->write_tail = ring_write_tail;
1793         if (INTEL_INFO(dev)->gen >= 4)
1794                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1795         else if (IS_I830(dev) || IS_845G(dev))
1796                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1797         else
1798                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1799         ring->init = init_render_ring;
1800         ring->cleanup = render_ring_cleanup;
1801
1802         ring->dev = dev;
1803         INIT_LIST_HEAD(&ring->active_list);
1804         INIT_LIST_HEAD(&ring->request_list);
1805
1806         ring->size = size;
1807         ring->effective_size = ring->size;
1808         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1809                 ring->effective_size -= 128;
1810
1811         ring->virtual_start = ioremap_wc(start, size);
1812         if (ring->virtual_start == NULL) {
1813                 DRM_ERROR("can not ioremap virtual address for"
1814                           " ring buffer\n");
1815                 return -ENOMEM;
1816         }
1817
1818         if (!I915_NEED_GFX_HWS(dev)) {
1819                 ret = init_phys_hws_pga(ring);
1820                 if (ret)
1821                         return ret;
1822         }
1823
1824         return 0;
1825 }
1826
1827 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1828 {
1829         drm_i915_private_t *dev_priv = dev->dev_private;
1830         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1831
1832         ring->name = "bsd ring";
1833         ring->id = VCS;
1834
1835         ring->write_tail = ring_write_tail;
1836         if (IS_GEN6(dev) || IS_GEN7(dev)) {
1837                 ring->mmio_base = GEN6_BSD_RING_BASE;
1838                 /* gen6 bsd needs a special wa for tail updates */
1839                 if (IS_GEN6(dev))
1840                         ring->write_tail = gen6_bsd_ring_write_tail;
1841                 ring->flush = gen6_bsd_ring_flush;
1842                 ring->add_request = gen6_add_request;
1843                 ring->get_seqno = gen6_ring_get_seqno;
1844                 ring->set_seqno = ring_set_seqno;
1845                 ring->irq_enable_mask = GEN6_BSD_USER_INTERRUPT;
1846                 ring->irq_get = gen6_ring_get_irq;
1847                 ring->irq_put = gen6_ring_put_irq;
1848                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1849                 ring->sync_to = gen6_ring_sync;
1850                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1851                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1852                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1853                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1854                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
1855                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
1856                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
1857                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1858         } else {
1859                 ring->mmio_base = BSD_RING_BASE;
1860                 ring->flush = bsd_ring_flush;
1861                 ring->add_request = i9xx_add_request;
1862                 ring->get_seqno = ring_get_seqno;
1863                 ring->set_seqno = ring_set_seqno;
1864                 if (IS_GEN5(dev)) {
1865                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1866                         ring->irq_get = gen5_ring_get_irq;
1867                         ring->irq_put = gen5_ring_put_irq;
1868                 } else {
1869                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1870                         ring->irq_get = i9xx_ring_get_irq;
1871                         ring->irq_put = i9xx_ring_put_irq;
1872                 }
1873                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1874         }
1875         ring->init = init_ring_common;
1876
1877         return intel_init_ring_buffer(dev, ring);
1878 }
1879
1880 int intel_init_blt_ring_buffer(struct drm_device *dev)
1881 {
1882         drm_i915_private_t *dev_priv = dev->dev_private;
1883         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1884
1885         ring->name = "blitter ring";
1886         ring->id = BCS;
1887
1888         ring->mmio_base = BLT_RING_BASE;
1889         ring->write_tail = ring_write_tail;
1890         ring->flush = gen6_ring_flush;
1891         ring->add_request = gen6_add_request;
1892         ring->get_seqno = gen6_ring_get_seqno;
1893         ring->set_seqno = ring_set_seqno;
1894         ring->irq_enable_mask = GEN6_BLITTER_USER_INTERRUPT;
1895         ring->irq_get = gen6_ring_get_irq;
1896         ring->irq_put = gen6_ring_put_irq;
1897         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1898         ring->sync_to = gen6_ring_sync;
1899         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1900         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1901         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1902         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1903         ring->signal_mbox[RCS] = GEN6_RBSYNC;
1904         ring->signal_mbox[VCS] = GEN6_VBSYNC;
1905         ring->signal_mbox[BCS] = GEN6_NOSYNC;
1906         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
1907         ring->init = init_ring_common;
1908
1909         return intel_init_ring_buffer(dev, ring);
1910 }
1911
1912 int
1913 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1914 {
1915         int ret;
1916
1917         if (!ring->gpu_caches_dirty)
1918                 return 0;
1919
1920         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1921         if (ret)
1922                 return ret;
1923
1924         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
1925
1926         ring->gpu_caches_dirty = false;
1927         return 0;
1928 }
1929
1930 int
1931 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1932 {
1933         uint32_t flush_domains;
1934         int ret;
1935
1936         flush_domains = 0;
1937         if (ring->gpu_caches_dirty)
1938                 flush_domains = I915_GEM_GPU_DOMAINS;
1939
1940         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1941         if (ret)
1942                 return ret;
1943
1944         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1945
1946         ring->gpu_caches_dirty = false;
1947         return 0;
1948 }