]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/md.c
Merge remote-tracking branch 'md/for-next'
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213         atomic_inc(&md_event_count);
214         wake_up(&md_event_waiters);
215 }
216
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)                                     \
232                                                                         \
233         for (({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = all_mddevs.next;                                 \
235                 _mddev = NULL;});                                       \
236              ({ if (_tmp != &all_mddevs)                                \
237                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238                 spin_unlock(&all_mddevs_lock);                          \
239                 if (_mddev) mddev_put(_mddev);                          \
240                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
241                 _tmp != &all_mddevs;});                                 \
242              ({ spin_lock(&all_mddevs_lock);                            \
243                 _tmp = _tmp->next;})                                    \
244                 )
245
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255         const int rw = bio_data_dir(bio);
256         struct mddev *mddev = q->queuedata;
257         unsigned int sectors;
258         int cpu;
259
260         blk_queue_split(q, &bio, q->bio_split);
261
262         if (mddev == NULL || mddev->pers == NULL
263             || !mddev->ready) {
264                 bio_io_error(bio);
265                 return;
266         }
267         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268                 if (bio_sectors(bio) != 0)
269                         bio->bi_error = -EROFS;
270                 bio_endio(bio);
271                 return;
272         }
273         smp_rmb(); /* Ensure implications of  'active' are visible */
274         rcu_read_lock();
275         if (mddev->suspended) {
276                 DEFINE_WAIT(__wait);
277                 for (;;) {
278                         prepare_to_wait(&mddev->sb_wait, &__wait,
279                                         TASK_UNINTERRUPTIBLE);
280                         if (!mddev->suspended)
281                                 break;
282                         rcu_read_unlock();
283                         schedule();
284                         rcu_read_lock();
285                 }
286                 finish_wait(&mddev->sb_wait, &__wait);
287         }
288         atomic_inc(&mddev->active_io);
289         rcu_read_unlock();
290
291         /*
292          * save the sectors now since our bio can
293          * go away inside make_request
294          */
295         sectors = bio_sectors(bio);
296         mddev->pers->make_request(mddev, bio);
297
298         cpu = part_stat_lock();
299         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301         part_stat_unlock();
302
303         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304                 wake_up(&mddev->sb_wait);
305 }
306
307 /* mddev_suspend makes sure no new requests are submitted
308  * to the device, and that any requests that have been submitted
309  * are completely handled.
310  * Once mddev_detach() is called and completes, the module will be
311  * completely unused.
312  */
313 void mddev_suspend(struct mddev *mddev)
314 {
315         BUG_ON(mddev->suspended);
316         mddev->suspended = 1;
317         synchronize_rcu();
318         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
319         mddev->pers->quiesce(mddev, 1);
320
321         del_timer_sync(&mddev->safemode_timer);
322 }
323 EXPORT_SYMBOL_GPL(mddev_suspend);
324
325 void mddev_resume(struct mddev *mddev)
326 {
327         mddev->suspended = 0;
328         wake_up(&mddev->sb_wait);
329         mddev->pers->quiesce(mddev, 0);
330
331         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
332         md_wakeup_thread(mddev->thread);
333         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
334 }
335 EXPORT_SYMBOL_GPL(mddev_resume);
336
337 int mddev_congested(struct mddev *mddev, int bits)
338 {
339         struct md_personality *pers = mddev->pers;
340         int ret = 0;
341
342         rcu_read_lock();
343         if (mddev->suspended)
344                 ret = 1;
345         else if (pers && pers->congested)
346                 ret = pers->congested(mddev, bits);
347         rcu_read_unlock();
348         return ret;
349 }
350 EXPORT_SYMBOL_GPL(mddev_congested);
351 static int md_congested(void *data, int bits)
352 {
353         struct mddev *mddev = data;
354         return mddev_congested(mddev, bits);
355 }
356
357 /*
358  * Generic flush handling for md
359  */
360
361 static void md_end_flush(struct bio *bio)
362 {
363         struct md_rdev *rdev = bio->bi_private;
364         struct mddev *mddev = rdev->mddev;
365
366         rdev_dec_pending(rdev, mddev);
367
368         if (atomic_dec_and_test(&mddev->flush_pending)) {
369                 /* The pre-request flush has finished */
370                 queue_work(md_wq, &mddev->flush_work);
371         }
372         bio_put(bio);
373 }
374
375 static void md_submit_flush_data(struct work_struct *ws);
376
377 static void submit_flushes(struct work_struct *ws)
378 {
379         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
380         struct md_rdev *rdev;
381
382         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
383         atomic_set(&mddev->flush_pending, 1);
384         rcu_read_lock();
385         rdev_for_each_rcu(rdev, mddev)
386                 if (rdev->raid_disk >= 0 &&
387                     !test_bit(Faulty, &rdev->flags)) {
388                         /* Take two references, one is dropped
389                          * when request finishes, one after
390                          * we reclaim rcu_read_lock
391                          */
392                         struct bio *bi;
393                         atomic_inc(&rdev->nr_pending);
394                         atomic_inc(&rdev->nr_pending);
395                         rcu_read_unlock();
396                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
397                         bi->bi_end_io = md_end_flush;
398                         bi->bi_private = rdev;
399                         bi->bi_bdev = rdev->bdev;
400                         atomic_inc(&mddev->flush_pending);
401                         submit_bio(WRITE_FLUSH, bi);
402                         rcu_read_lock();
403                         rdev_dec_pending(rdev, mddev);
404                 }
405         rcu_read_unlock();
406         if (atomic_dec_and_test(&mddev->flush_pending))
407                 queue_work(md_wq, &mddev->flush_work);
408 }
409
410 static void md_submit_flush_data(struct work_struct *ws)
411 {
412         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
413         struct bio *bio = mddev->flush_bio;
414
415         if (bio->bi_iter.bi_size == 0)
416                 /* an empty barrier - all done */
417                 bio_endio(bio);
418         else {
419                 bio->bi_rw &= ~REQ_FLUSH;
420                 mddev->pers->make_request(mddev, bio);
421         }
422
423         mddev->flush_bio = NULL;
424         wake_up(&mddev->sb_wait);
425 }
426
427 void md_flush_request(struct mddev *mddev, struct bio *bio)
428 {
429         spin_lock_irq(&mddev->lock);
430         wait_event_lock_irq(mddev->sb_wait,
431                             !mddev->flush_bio,
432                             mddev->lock);
433         mddev->flush_bio = bio;
434         spin_unlock_irq(&mddev->lock);
435
436         INIT_WORK(&mddev->flush_work, submit_flushes);
437         queue_work(md_wq, &mddev->flush_work);
438 }
439 EXPORT_SYMBOL(md_flush_request);
440
441 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
442 {
443         struct mddev *mddev = cb->data;
444         md_wakeup_thread(mddev->thread);
445         kfree(cb);
446 }
447 EXPORT_SYMBOL(md_unplug);
448
449 static inline struct mddev *mddev_get(struct mddev *mddev)
450 {
451         atomic_inc(&mddev->active);
452         return mddev;
453 }
454
455 static void mddev_delayed_delete(struct work_struct *ws);
456
457 static void mddev_put(struct mddev *mddev)
458 {
459         struct bio_set *bs = NULL;
460
461         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
462                 return;
463         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
464             mddev->ctime == 0 && !mddev->hold_active) {
465                 /* Array is not configured at all, and not held active,
466                  * so destroy it */
467                 list_del_init(&mddev->all_mddevs);
468                 bs = mddev->bio_set;
469                 mddev->bio_set = NULL;
470                 if (mddev->gendisk) {
471                         /* We did a probe so need to clean up.  Call
472                          * queue_work inside the spinlock so that
473                          * flush_workqueue() after mddev_find will
474                          * succeed in waiting for the work to be done.
475                          */
476                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
477                         queue_work(md_misc_wq, &mddev->del_work);
478                 } else
479                         kfree(mddev);
480         }
481         spin_unlock(&all_mddevs_lock);
482         if (bs)
483                 bioset_free(bs);
484 }
485
486 static void md_safemode_timeout(unsigned long data);
487
488 void mddev_init(struct mddev *mddev)
489 {
490         mutex_init(&mddev->open_mutex);
491         mutex_init(&mddev->reconfig_mutex);
492         mutex_init(&mddev->bitmap_info.mutex);
493         INIT_LIST_HEAD(&mddev->disks);
494         INIT_LIST_HEAD(&mddev->all_mddevs);
495         setup_timer(&mddev->safemode_timer, md_safemode_timeout,
496                     (unsigned long) mddev);
497         atomic_set(&mddev->active, 1);
498         atomic_set(&mddev->openers, 0);
499         atomic_set(&mddev->active_io, 0);
500         spin_lock_init(&mddev->lock);
501         atomic_set(&mddev->flush_pending, 0);
502         init_waitqueue_head(&mddev->sb_wait);
503         init_waitqueue_head(&mddev->recovery_wait);
504         mddev->reshape_position = MaxSector;
505         mddev->reshape_backwards = 0;
506         mddev->last_sync_action = "none";
507         mddev->resync_min = 0;
508         mddev->resync_max = MaxSector;
509         mddev->level = LEVEL_NONE;
510 }
511 EXPORT_SYMBOL_GPL(mddev_init);
512
513 static struct mddev *mddev_find(dev_t unit)
514 {
515         struct mddev *mddev, *new = NULL;
516
517         if (unit && MAJOR(unit) != MD_MAJOR)
518                 unit &= ~((1<<MdpMinorShift)-1);
519
520  retry:
521         spin_lock(&all_mddevs_lock);
522
523         if (unit) {
524                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
525                         if (mddev->unit == unit) {
526                                 mddev_get(mddev);
527                                 spin_unlock(&all_mddevs_lock);
528                                 kfree(new);
529                                 return mddev;
530                         }
531
532                 if (new) {
533                         list_add(&new->all_mddevs, &all_mddevs);
534                         spin_unlock(&all_mddevs_lock);
535                         new->hold_active = UNTIL_IOCTL;
536                         return new;
537                 }
538         } else if (new) {
539                 /* find an unused unit number */
540                 static int next_minor = 512;
541                 int start = next_minor;
542                 int is_free = 0;
543                 int dev = 0;
544                 while (!is_free) {
545                         dev = MKDEV(MD_MAJOR, next_minor);
546                         next_minor++;
547                         if (next_minor > MINORMASK)
548                                 next_minor = 0;
549                         if (next_minor == start) {
550                                 /* Oh dear, all in use. */
551                                 spin_unlock(&all_mddevs_lock);
552                                 kfree(new);
553                                 return NULL;
554                         }
555
556                         is_free = 1;
557                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
558                                 if (mddev->unit == dev) {
559                                         is_free = 0;
560                                         break;
561                                 }
562                 }
563                 new->unit = dev;
564                 new->md_minor = MINOR(dev);
565                 new->hold_active = UNTIL_STOP;
566                 list_add(&new->all_mddevs, &all_mddevs);
567                 spin_unlock(&all_mddevs_lock);
568                 return new;
569         }
570         spin_unlock(&all_mddevs_lock);
571
572         new = kzalloc(sizeof(*new), GFP_KERNEL);
573         if (!new)
574                 return NULL;
575
576         new->unit = unit;
577         if (MAJOR(unit) == MD_MAJOR)
578                 new->md_minor = MINOR(unit);
579         else
580                 new->md_minor = MINOR(unit) >> MdpMinorShift;
581
582         mddev_init(new);
583
584         goto retry;
585 }
586
587 static struct attribute_group md_redundancy_group;
588
589 void mddev_unlock(struct mddev *mddev)
590 {
591         if (mddev->to_remove) {
592                 /* These cannot be removed under reconfig_mutex as
593                  * an access to the files will try to take reconfig_mutex
594                  * while holding the file unremovable, which leads to
595                  * a deadlock.
596                  * So hold set sysfs_active while the remove in happeing,
597                  * and anything else which might set ->to_remove or my
598                  * otherwise change the sysfs namespace will fail with
599                  * -EBUSY if sysfs_active is still set.
600                  * We set sysfs_active under reconfig_mutex and elsewhere
601                  * test it under the same mutex to ensure its correct value
602                  * is seen.
603                  */
604                 struct attribute_group *to_remove = mddev->to_remove;
605                 mddev->to_remove = NULL;
606                 mddev->sysfs_active = 1;
607                 mutex_unlock(&mddev->reconfig_mutex);
608
609                 if (mddev->kobj.sd) {
610                         if (to_remove != &md_redundancy_group)
611                                 sysfs_remove_group(&mddev->kobj, to_remove);
612                         if (mddev->pers == NULL ||
613                             mddev->pers->sync_request == NULL) {
614                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
615                                 if (mddev->sysfs_action)
616                                         sysfs_put(mddev->sysfs_action);
617                                 mddev->sysfs_action = NULL;
618                         }
619                 }
620                 mddev->sysfs_active = 0;
621         } else
622                 mutex_unlock(&mddev->reconfig_mutex);
623
624         /* As we've dropped the mutex we need a spinlock to
625          * make sure the thread doesn't disappear
626          */
627         spin_lock(&pers_lock);
628         md_wakeup_thread(mddev->thread);
629         spin_unlock(&pers_lock);
630 }
631 EXPORT_SYMBOL_GPL(mddev_unlock);
632
633 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
634 {
635         struct md_rdev *rdev;
636
637         rdev_for_each_rcu(rdev, mddev)
638                 if (rdev->desc_nr == nr)
639                         return rdev;
640
641         return NULL;
642 }
643 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
644
645 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
646 {
647         struct md_rdev *rdev;
648
649         rdev_for_each(rdev, mddev)
650                 if (rdev->bdev->bd_dev == dev)
651                         return rdev;
652
653         return NULL;
654 }
655
656 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
657 {
658         struct md_rdev *rdev;
659
660         rdev_for_each_rcu(rdev, mddev)
661                 if (rdev->bdev->bd_dev == dev)
662                         return rdev;
663
664         return NULL;
665 }
666
667 static struct md_personality *find_pers(int level, char *clevel)
668 {
669         struct md_personality *pers;
670         list_for_each_entry(pers, &pers_list, list) {
671                 if (level != LEVEL_NONE && pers->level == level)
672                         return pers;
673                 if (strcmp(pers->name, clevel)==0)
674                         return pers;
675         }
676         return NULL;
677 }
678
679 /* return the offset of the super block in 512byte sectors */
680 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
681 {
682         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
683         return MD_NEW_SIZE_SECTORS(num_sectors);
684 }
685
686 static int alloc_disk_sb(struct md_rdev *rdev)
687 {
688         rdev->sb_page = alloc_page(GFP_KERNEL);
689         if (!rdev->sb_page) {
690                 printk(KERN_ALERT "md: out of memory.\n");
691                 return -ENOMEM;
692         }
693
694         return 0;
695 }
696
697 void md_rdev_clear(struct md_rdev *rdev)
698 {
699         if (rdev->sb_page) {
700                 put_page(rdev->sb_page);
701                 rdev->sb_loaded = 0;
702                 rdev->sb_page = NULL;
703                 rdev->sb_start = 0;
704                 rdev->sectors = 0;
705         }
706         if (rdev->bb_page) {
707                 put_page(rdev->bb_page);
708                 rdev->bb_page = NULL;
709         }
710         kfree(rdev->badblocks.page);
711         rdev->badblocks.page = NULL;
712 }
713 EXPORT_SYMBOL_GPL(md_rdev_clear);
714
715 static void super_written(struct bio *bio)
716 {
717         struct md_rdev *rdev = bio->bi_private;
718         struct mddev *mddev = rdev->mddev;
719
720         if (bio->bi_error) {
721                 printk("md: super_written gets error=%d\n", bio->bi_error);
722                 md_error(mddev, rdev);
723         }
724
725         if (atomic_dec_and_test(&mddev->pending_writes))
726                 wake_up(&mddev->sb_wait);
727         bio_put(bio);
728 }
729
730 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
731                    sector_t sector, int size, struct page *page)
732 {
733         /* write first size bytes of page to sector of rdev
734          * Increment mddev->pending_writes before returning
735          * and decrement it on completion, waking up sb_wait
736          * if zero is reached.
737          * If an error occurred, call md_error
738          */
739         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
740
741         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
742         bio->bi_iter.bi_sector = sector;
743         bio_add_page(bio, page, size, 0);
744         bio->bi_private = rdev;
745         bio->bi_end_io = super_written;
746
747         atomic_inc(&mddev->pending_writes);
748         submit_bio(WRITE_FLUSH_FUA, bio);
749 }
750
751 void md_super_wait(struct mddev *mddev)
752 {
753         /* wait for all superblock writes that were scheduled to complete */
754         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
755 }
756
757 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
758                  struct page *page, int rw, bool metadata_op)
759 {
760         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
761         int ret;
762
763         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
764                 rdev->meta_bdev : rdev->bdev;
765         if (metadata_op)
766                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
767         else if (rdev->mddev->reshape_position != MaxSector &&
768                  (rdev->mddev->reshape_backwards ==
769                   (sector >= rdev->mddev->reshape_position)))
770                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
771         else
772                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
773         bio_add_page(bio, page, size, 0);
774         submit_bio_wait(rw, bio);
775
776         ret = !bio->bi_error;
777         bio_put(bio);
778         return ret;
779 }
780 EXPORT_SYMBOL_GPL(sync_page_io);
781
782 static int read_disk_sb(struct md_rdev *rdev, int size)
783 {
784         char b[BDEVNAME_SIZE];
785
786         if (rdev->sb_loaded)
787                 return 0;
788
789         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
790                 goto fail;
791         rdev->sb_loaded = 1;
792         return 0;
793
794 fail:
795         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
796                 bdevname(rdev->bdev,b));
797         return -EINVAL;
798 }
799
800 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
801 {
802         return  sb1->set_uuid0 == sb2->set_uuid0 &&
803                 sb1->set_uuid1 == sb2->set_uuid1 &&
804                 sb1->set_uuid2 == sb2->set_uuid2 &&
805                 sb1->set_uuid3 == sb2->set_uuid3;
806 }
807
808 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
809 {
810         int ret;
811         mdp_super_t *tmp1, *tmp2;
812
813         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
814         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
815
816         if (!tmp1 || !tmp2) {
817                 ret = 0;
818                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
819                 goto abort;
820         }
821
822         *tmp1 = *sb1;
823         *tmp2 = *sb2;
824
825         /*
826          * nr_disks is not constant
827          */
828         tmp1->nr_disks = 0;
829         tmp2->nr_disks = 0;
830
831         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
832 abort:
833         kfree(tmp1);
834         kfree(tmp2);
835         return ret;
836 }
837
838 static u32 md_csum_fold(u32 csum)
839 {
840         csum = (csum & 0xffff) + (csum >> 16);
841         return (csum & 0xffff) + (csum >> 16);
842 }
843
844 static unsigned int calc_sb_csum(mdp_super_t *sb)
845 {
846         u64 newcsum = 0;
847         u32 *sb32 = (u32*)sb;
848         int i;
849         unsigned int disk_csum, csum;
850
851         disk_csum = sb->sb_csum;
852         sb->sb_csum = 0;
853
854         for (i = 0; i < MD_SB_BYTES/4 ; i++)
855                 newcsum += sb32[i];
856         csum = (newcsum & 0xffffffff) + (newcsum>>32);
857
858 #ifdef CONFIG_ALPHA
859         /* This used to use csum_partial, which was wrong for several
860          * reasons including that different results are returned on
861          * different architectures.  It isn't critical that we get exactly
862          * the same return value as before (we always csum_fold before
863          * testing, and that removes any differences).  However as we
864          * know that csum_partial always returned a 16bit value on
865          * alphas, do a fold to maximise conformity to previous behaviour.
866          */
867         sb->sb_csum = md_csum_fold(disk_csum);
868 #else
869         sb->sb_csum = disk_csum;
870 #endif
871         return csum;
872 }
873
874 /*
875  * Handle superblock details.
876  * We want to be able to handle multiple superblock formats
877  * so we have a common interface to them all, and an array of
878  * different handlers.
879  * We rely on user-space to write the initial superblock, and support
880  * reading and updating of superblocks.
881  * Interface methods are:
882  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
883  *      loads and validates a superblock on dev.
884  *      if refdev != NULL, compare superblocks on both devices
885  *    Return:
886  *      0 - dev has a superblock that is compatible with refdev
887  *      1 - dev has a superblock that is compatible and newer than refdev
888  *          so dev should be used as the refdev in future
889  *     -EINVAL superblock incompatible or invalid
890  *     -othererror e.g. -EIO
891  *
892  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
893  *      Verify that dev is acceptable into mddev.
894  *       The first time, mddev->raid_disks will be 0, and data from
895  *       dev should be merged in.  Subsequent calls check that dev
896  *       is new enough.  Return 0 or -EINVAL
897  *
898  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
899  *     Update the superblock for rdev with data in mddev
900  *     This does not write to disc.
901  *
902  */
903
904 struct super_type  {
905         char                *name;
906         struct module       *owner;
907         int                 (*load_super)(struct md_rdev *rdev,
908                                           struct md_rdev *refdev,
909                                           int minor_version);
910         int                 (*validate_super)(struct mddev *mddev,
911                                               struct md_rdev *rdev);
912         void                (*sync_super)(struct mddev *mddev,
913                                           struct md_rdev *rdev);
914         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
915                                                 sector_t num_sectors);
916         int                 (*allow_new_offset)(struct md_rdev *rdev,
917                                                 unsigned long long new_offset);
918 };
919
920 /*
921  * Check that the given mddev has no bitmap.
922  *
923  * This function is called from the run method of all personalities that do not
924  * support bitmaps. It prints an error message and returns non-zero if mddev
925  * has a bitmap. Otherwise, it returns 0.
926  *
927  */
928 int md_check_no_bitmap(struct mddev *mddev)
929 {
930         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
931                 return 0;
932         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
933                 mdname(mddev), mddev->pers->name);
934         return 1;
935 }
936 EXPORT_SYMBOL(md_check_no_bitmap);
937
938 /*
939  * load_super for 0.90.0
940  */
941 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
942 {
943         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
944         mdp_super_t *sb;
945         int ret;
946
947         /*
948          * Calculate the position of the superblock (512byte sectors),
949          * it's at the end of the disk.
950          *
951          * It also happens to be a multiple of 4Kb.
952          */
953         rdev->sb_start = calc_dev_sboffset(rdev);
954
955         ret = read_disk_sb(rdev, MD_SB_BYTES);
956         if (ret) return ret;
957
958         ret = -EINVAL;
959
960         bdevname(rdev->bdev, b);
961         sb = page_address(rdev->sb_page);
962
963         if (sb->md_magic != MD_SB_MAGIC) {
964                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
965                        b);
966                 goto abort;
967         }
968
969         if (sb->major_version != 0 ||
970             sb->minor_version < 90 ||
971             sb->minor_version > 91) {
972                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
973                         sb->major_version, sb->minor_version,
974                         b);
975                 goto abort;
976         }
977
978         if (sb->raid_disks <= 0)
979                 goto abort;
980
981         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
982                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
983                         b);
984                 goto abort;
985         }
986
987         rdev->preferred_minor = sb->md_minor;
988         rdev->data_offset = 0;
989         rdev->new_data_offset = 0;
990         rdev->sb_size = MD_SB_BYTES;
991         rdev->badblocks.shift = -1;
992
993         if (sb->level == LEVEL_MULTIPATH)
994                 rdev->desc_nr = -1;
995         else
996                 rdev->desc_nr = sb->this_disk.number;
997
998         if (!refdev) {
999                 ret = 1;
1000         } else {
1001                 __u64 ev1, ev2;
1002                 mdp_super_t *refsb = page_address(refdev->sb_page);
1003                 if (!uuid_equal(refsb, sb)) {
1004                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1005                                 b, bdevname(refdev->bdev,b2));
1006                         goto abort;
1007                 }
1008                 if (!sb_equal(refsb, sb)) {
1009                         printk(KERN_WARNING "md: %s has same UUID"
1010                                " but different superblock to %s\n",
1011                                b, bdevname(refdev->bdev, b2));
1012                         goto abort;
1013                 }
1014                 ev1 = md_event(sb);
1015                 ev2 = md_event(refsb);
1016                 if (ev1 > ev2)
1017                         ret = 1;
1018                 else
1019                         ret = 0;
1020         }
1021         rdev->sectors = rdev->sb_start;
1022         /* Limit to 4TB as metadata cannot record more than that.
1023          * (not needed for Linear and RAID0 as metadata doesn't
1024          * record this size)
1025          */
1026         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1027                 rdev->sectors = (2ULL << 32) - 2;
1028
1029         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030                 /* "this cannot possibly happen" ... */
1031                 ret = -EINVAL;
1032
1033  abort:
1034         return ret;
1035 }
1036
1037 /*
1038  * validate_super for 0.90.0
1039  */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042         mdp_disk_t *desc;
1043         mdp_super_t *sb = page_address(rdev->sb_page);
1044         __u64 ev1 = md_event(sb);
1045
1046         rdev->raid_disk = -1;
1047         clear_bit(Faulty, &rdev->flags);
1048         clear_bit(In_sync, &rdev->flags);
1049         clear_bit(Bitmap_sync, &rdev->flags);
1050         clear_bit(WriteMostly, &rdev->flags);
1051
1052         if (mddev->raid_disks == 0) {
1053                 mddev->major_version = 0;
1054                 mddev->minor_version = sb->minor_version;
1055                 mddev->patch_version = sb->patch_version;
1056                 mddev->external = 0;
1057                 mddev->chunk_sectors = sb->chunk_size >> 9;
1058                 mddev->ctime = sb->ctime;
1059                 mddev->utime = sb->utime;
1060                 mddev->level = sb->level;
1061                 mddev->clevel[0] = 0;
1062                 mddev->layout = sb->layout;
1063                 mddev->raid_disks = sb->raid_disks;
1064                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065                 mddev->events = ev1;
1066                 mddev->bitmap_info.offset = 0;
1067                 mddev->bitmap_info.space = 0;
1068                 /* bitmap can use 60 K after the 4K superblocks */
1069                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071                 mddev->reshape_backwards = 0;
1072
1073                 if (mddev->minor_version >= 91) {
1074                         mddev->reshape_position = sb->reshape_position;
1075                         mddev->delta_disks = sb->delta_disks;
1076                         mddev->new_level = sb->new_level;
1077                         mddev->new_layout = sb->new_layout;
1078                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079                         if (mddev->delta_disks < 0)
1080                                 mddev->reshape_backwards = 1;
1081                 } else {
1082                         mddev->reshape_position = MaxSector;
1083                         mddev->delta_disks = 0;
1084                         mddev->new_level = mddev->level;
1085                         mddev->new_layout = mddev->layout;
1086                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1087                 }
1088
1089                 if (sb->state & (1<<MD_SB_CLEAN))
1090                         mddev->recovery_cp = MaxSector;
1091                 else {
1092                         if (sb->events_hi == sb->cp_events_hi &&
1093                                 sb->events_lo == sb->cp_events_lo) {
1094                                 mddev->recovery_cp = sb->recovery_cp;
1095                         } else
1096                                 mddev->recovery_cp = 0;
1097                 }
1098
1099                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103
1104                 mddev->max_disks = MD_SB_DISKS;
1105
1106                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107                     mddev->bitmap_info.file == NULL) {
1108                         mddev->bitmap_info.offset =
1109                                 mddev->bitmap_info.default_offset;
1110                         mddev->bitmap_info.space =
1111                                 mddev->bitmap_info.default_space;
1112                 }
1113
1114         } else if (mddev->pers == NULL) {
1115                 /* Insist on good event counter while assembling, except
1116                  * for spares (which don't need an event count) */
1117                 ++ev1;
1118                 if (sb->disks[rdev->desc_nr].state & (
1119                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120                         if (ev1 < mddev->events)
1121                                 return -EINVAL;
1122         } else if (mddev->bitmap) {
1123                 /* if adding to array with a bitmap, then we can accept an
1124                  * older device ... but not too old.
1125                  */
1126                 if (ev1 < mddev->bitmap->events_cleared)
1127                         return 0;
1128                 if (ev1 < mddev->events)
1129                         set_bit(Bitmap_sync, &rdev->flags);
1130         } else {
1131                 if (ev1 < mddev->events)
1132                         /* just a hot-add of a new device, leave raid_disk at -1 */
1133                         return 0;
1134         }
1135
1136         if (mddev->level != LEVEL_MULTIPATH) {
1137                 desc = sb->disks + rdev->desc_nr;
1138
1139                 if (desc->state & (1<<MD_DISK_FAULTY))
1140                         set_bit(Faulty, &rdev->flags);
1141                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142                             desc->raid_disk < mddev->raid_disks */) {
1143                         set_bit(In_sync, &rdev->flags);
1144                         rdev->raid_disk = desc->raid_disk;
1145                         rdev->saved_raid_disk = desc->raid_disk;
1146                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147                         /* active but not in sync implies recovery up to
1148                          * reshape position.  We don't know exactly where
1149                          * that is, so set to zero for now */
1150                         if (mddev->minor_version >= 91) {
1151                                 rdev->recovery_offset = 0;
1152                                 rdev->raid_disk = desc->raid_disk;
1153                         }
1154                 }
1155                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156                         set_bit(WriteMostly, &rdev->flags);
1157         } else /* MULTIPATH are always insync */
1158                 set_bit(In_sync, &rdev->flags);
1159         return 0;
1160 }
1161
1162 /*
1163  * sync_super for 0.90.0
1164  */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167         mdp_super_t *sb;
1168         struct md_rdev *rdev2;
1169         int next_spare = mddev->raid_disks;
1170
1171         /* make rdev->sb match mddev data..
1172          *
1173          * 1/ zero out disks
1174          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175          * 3/ any empty disks < next_spare become removed
1176          *
1177          * disks[0] gets initialised to REMOVED because
1178          * we cannot be sure from other fields if it has
1179          * been initialised or not.
1180          */
1181         int i;
1182         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183
1184         rdev->sb_size = MD_SB_BYTES;
1185
1186         sb = page_address(rdev->sb_page);
1187
1188         memset(sb, 0, sizeof(*sb));
1189
1190         sb->md_magic = MD_SB_MAGIC;
1191         sb->major_version = mddev->major_version;
1192         sb->patch_version = mddev->patch_version;
1193         sb->gvalid_words  = 0; /* ignored */
1194         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198
1199         sb->ctime = mddev->ctime;
1200         sb->level = mddev->level;
1201         sb->size = mddev->dev_sectors / 2;
1202         sb->raid_disks = mddev->raid_disks;
1203         sb->md_minor = mddev->md_minor;
1204         sb->not_persistent = 0;
1205         sb->utime = mddev->utime;
1206         sb->state = 0;
1207         sb->events_hi = (mddev->events>>32);
1208         sb->events_lo = (u32)mddev->events;
1209
1210         if (mddev->reshape_position == MaxSector)
1211                 sb->minor_version = 90;
1212         else {
1213                 sb->minor_version = 91;
1214                 sb->reshape_position = mddev->reshape_position;
1215                 sb->new_level = mddev->new_level;
1216                 sb->delta_disks = mddev->delta_disks;
1217                 sb->new_layout = mddev->new_layout;
1218                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1219         }
1220         mddev->minor_version = sb->minor_version;
1221         if (mddev->in_sync)
1222         {
1223                 sb->recovery_cp = mddev->recovery_cp;
1224                 sb->cp_events_hi = (mddev->events>>32);
1225                 sb->cp_events_lo = (u32)mddev->events;
1226                 if (mddev->recovery_cp == MaxSector)
1227                         sb->state = (1<< MD_SB_CLEAN);
1228         } else
1229                 sb->recovery_cp = 0;
1230
1231         sb->layout = mddev->layout;
1232         sb->chunk_size = mddev->chunk_sectors << 9;
1233
1234         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236
1237         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238         rdev_for_each(rdev2, mddev) {
1239                 mdp_disk_t *d;
1240                 int desc_nr;
1241                 int is_active = test_bit(In_sync, &rdev2->flags);
1242
1243                 if (rdev2->raid_disk >= 0 &&
1244                     sb->minor_version >= 91)
1245                         /* we have nowhere to store the recovery_offset,
1246                          * but if it is not below the reshape_position,
1247                          * we can piggy-back on that.
1248                          */
1249                         is_active = 1;
1250                 if (rdev2->raid_disk < 0 ||
1251                     test_bit(Faulty, &rdev2->flags))
1252                         is_active = 0;
1253                 if (is_active)
1254                         desc_nr = rdev2->raid_disk;
1255                 else
1256                         desc_nr = next_spare++;
1257                 rdev2->desc_nr = desc_nr;
1258                 d = &sb->disks[rdev2->desc_nr];
1259                 nr_disks++;
1260                 d->number = rdev2->desc_nr;
1261                 d->major = MAJOR(rdev2->bdev->bd_dev);
1262                 d->minor = MINOR(rdev2->bdev->bd_dev);
1263                 if (is_active)
1264                         d->raid_disk = rdev2->raid_disk;
1265                 else
1266                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1267                 if (test_bit(Faulty, &rdev2->flags))
1268                         d->state = (1<<MD_DISK_FAULTY);
1269                 else if (is_active) {
1270                         d->state = (1<<MD_DISK_ACTIVE);
1271                         if (test_bit(In_sync, &rdev2->flags))
1272                                 d->state |= (1<<MD_DISK_SYNC);
1273                         active++;
1274                         working++;
1275                 } else {
1276                         d->state = 0;
1277                         spare++;
1278                         working++;
1279                 }
1280                 if (test_bit(WriteMostly, &rdev2->flags))
1281                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282         }
1283         /* now set the "removed" and "faulty" bits on any missing devices */
1284         for (i=0 ; i < mddev->raid_disks ; i++) {
1285                 mdp_disk_t *d = &sb->disks[i];
1286                 if (d->state == 0 && d->number == 0) {
1287                         d->number = i;
1288                         d->raid_disk = i;
1289                         d->state = (1<<MD_DISK_REMOVED);
1290                         d->state |= (1<<MD_DISK_FAULTY);
1291                         failed++;
1292                 }
1293         }
1294         sb->nr_disks = nr_disks;
1295         sb->active_disks = active;
1296         sb->working_disks = working;
1297         sb->failed_disks = failed;
1298         sb->spare_disks = spare;
1299
1300         sb->this_disk = sb->disks[rdev->desc_nr];
1301         sb->sb_csum = calc_sb_csum(sb);
1302 }
1303
1304 /*
1305  * rdev_size_change for 0.90.0
1306  */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311                 return 0; /* component must fit device */
1312         if (rdev->mddev->bitmap_info.offset)
1313                 return 0; /* can't move bitmap */
1314         rdev->sb_start = calc_dev_sboffset(rdev);
1315         if (!num_sectors || num_sectors > rdev->sb_start)
1316                 num_sectors = rdev->sb_start;
1317         /* Limit to 4TB as metadata cannot record more than that.
1318          * 4TB == 2^32 KB, or 2*2^32 sectors.
1319          */
1320         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1321                 num_sectors = (2ULL << 32) - 2;
1322         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1323                        rdev->sb_page);
1324         md_super_wait(rdev->mddev);
1325         return num_sectors;
1326 }
1327
1328 static int
1329 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1330 {
1331         /* non-zero offset changes not possible with v0.90 */
1332         return new_offset == 0;
1333 }
1334
1335 /*
1336  * version 1 superblock
1337  */
1338
1339 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1340 {
1341         __le32 disk_csum;
1342         u32 csum;
1343         unsigned long long newcsum;
1344         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1345         __le32 *isuper = (__le32*)sb;
1346
1347         disk_csum = sb->sb_csum;
1348         sb->sb_csum = 0;
1349         newcsum = 0;
1350         for (; size >= 4; size -= 4)
1351                 newcsum += le32_to_cpu(*isuper++);
1352
1353         if (size == 2)
1354                 newcsum += le16_to_cpu(*(__le16*) isuper);
1355
1356         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1357         sb->sb_csum = disk_csum;
1358         return cpu_to_le32(csum);
1359 }
1360
1361 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1362                             int acknowledged);
1363 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1364 {
1365         struct mdp_superblock_1 *sb;
1366         int ret;
1367         sector_t sb_start;
1368         sector_t sectors;
1369         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1370         int bmask;
1371
1372         /*
1373          * Calculate the position of the superblock in 512byte sectors.
1374          * It is always aligned to a 4K boundary and
1375          * depeding on minor_version, it can be:
1376          * 0: At least 8K, but less than 12K, from end of device
1377          * 1: At start of device
1378          * 2: 4K from start of device.
1379          */
1380         switch(minor_version) {
1381         case 0:
1382                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1383                 sb_start -= 8*2;
1384                 sb_start &= ~(sector_t)(4*2-1);
1385                 break;
1386         case 1:
1387                 sb_start = 0;
1388                 break;
1389         case 2:
1390                 sb_start = 8;
1391                 break;
1392         default:
1393                 return -EINVAL;
1394         }
1395         rdev->sb_start = sb_start;
1396
1397         /* superblock is rarely larger than 1K, but it can be larger,
1398          * and it is safe to read 4k, so we do that
1399          */
1400         ret = read_disk_sb(rdev, 4096);
1401         if (ret) return ret;
1402
1403         sb = page_address(rdev->sb_page);
1404
1405         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406             sb->major_version != cpu_to_le32(1) ||
1407             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410                 return -EINVAL;
1411
1412         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413                 printk("md: invalid superblock checksum on %s\n",
1414                         bdevname(rdev->bdev,b));
1415                 return -EINVAL;
1416         }
1417         if (le64_to_cpu(sb->data_size) < 10) {
1418                 printk("md: data_size too small on %s\n",
1419                        bdevname(rdev->bdev,b));
1420                 return -EINVAL;
1421         }
1422         if (sb->pad0 ||
1423             sb->pad3[0] ||
1424             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1425                 /* Some padding is non-zero, might be a new feature */
1426                 return -EINVAL;
1427
1428         rdev->preferred_minor = 0xffff;
1429         rdev->data_offset = le64_to_cpu(sb->data_offset);
1430         rdev->new_data_offset = rdev->data_offset;
1431         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1432             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1433                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1434         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1435
1436         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1437         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1438         if (rdev->sb_size & bmask)
1439                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1440
1441         if (minor_version
1442             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1443                 return -EINVAL;
1444         if (minor_version
1445             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1446                 return -EINVAL;
1447
1448         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1449                 rdev->desc_nr = -1;
1450         else
1451                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1452
1453         if (!rdev->bb_page) {
1454                 rdev->bb_page = alloc_page(GFP_KERNEL);
1455                 if (!rdev->bb_page)
1456                         return -ENOMEM;
1457         }
1458         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1459             rdev->badblocks.count == 0) {
1460                 /* need to load the bad block list.
1461                  * Currently we limit it to one page.
1462                  */
1463                 s32 offset;
1464                 sector_t bb_sector;
1465                 u64 *bbp;
1466                 int i;
1467                 int sectors = le16_to_cpu(sb->bblog_size);
1468                 if (sectors > (PAGE_SIZE / 512))
1469                         return -EINVAL;
1470                 offset = le32_to_cpu(sb->bblog_offset);
1471                 if (offset == 0)
1472                         return -EINVAL;
1473                 bb_sector = (long long)offset;
1474                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1475                                   rdev->bb_page, READ, true))
1476                         return -EIO;
1477                 bbp = (u64 *)page_address(rdev->bb_page);
1478                 rdev->badblocks.shift = sb->bblog_shift;
1479                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1480                         u64 bb = le64_to_cpu(*bbp);
1481                         int count = bb & (0x3ff);
1482                         u64 sector = bb >> 10;
1483                         sector <<= sb->bblog_shift;
1484                         count <<= sb->bblog_shift;
1485                         if (bb + 1 == 0)
1486                                 break;
1487                         if (md_set_badblocks(&rdev->badblocks,
1488                                              sector, count, 1) == 0)
1489                                 return -EINVAL;
1490                 }
1491         } else if (sb->bblog_offset != 0)
1492                 rdev->badblocks.shift = 0;
1493
1494         if (!refdev) {
1495                 ret = 1;
1496         } else {
1497                 __u64 ev1, ev2;
1498                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1499
1500                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1501                     sb->level != refsb->level ||
1502                     sb->layout != refsb->layout ||
1503                     sb->chunksize != refsb->chunksize) {
1504                         printk(KERN_WARNING "md: %s has strangely different"
1505                                 " superblock to %s\n",
1506                                 bdevname(rdev->bdev,b),
1507                                 bdevname(refdev->bdev,b2));
1508                         return -EINVAL;
1509                 }
1510                 ev1 = le64_to_cpu(sb->events);
1511                 ev2 = le64_to_cpu(refsb->events);
1512
1513                 if (ev1 > ev2)
1514                         ret = 1;
1515                 else
1516                         ret = 0;
1517         }
1518         if (minor_version) {
1519                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1520                 sectors -= rdev->data_offset;
1521         } else
1522                 sectors = rdev->sb_start;
1523         if (sectors < le64_to_cpu(sb->data_size))
1524                 return -EINVAL;
1525         rdev->sectors = le64_to_cpu(sb->data_size);
1526         return ret;
1527 }
1528
1529 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1532         __u64 ev1 = le64_to_cpu(sb->events);
1533
1534         rdev->raid_disk = -1;
1535         clear_bit(Faulty, &rdev->flags);
1536         clear_bit(In_sync, &rdev->flags);
1537         clear_bit(Bitmap_sync, &rdev->flags);
1538         clear_bit(WriteMostly, &rdev->flags);
1539
1540         if (mddev->raid_disks == 0) {
1541                 mddev->major_version = 1;
1542                 mddev->patch_version = 0;
1543                 mddev->external = 0;
1544                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1545                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1546                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1547                 mddev->level = le32_to_cpu(sb->level);
1548                 mddev->clevel[0] = 0;
1549                 mddev->layout = le32_to_cpu(sb->layout);
1550                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1551                 mddev->dev_sectors = le64_to_cpu(sb->size);
1552                 mddev->events = ev1;
1553                 mddev->bitmap_info.offset = 0;
1554                 mddev->bitmap_info.space = 0;
1555                 /* Default location for bitmap is 1K after superblock
1556                  * using 3K - total of 4K
1557                  */
1558                 mddev->bitmap_info.default_offset = 1024 >> 9;
1559                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1560                 mddev->reshape_backwards = 0;
1561
1562                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1563                 memcpy(mddev->uuid, sb->set_uuid, 16);
1564
1565                 mddev->max_disks =  (4096-256)/2;
1566
1567                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1568                     mddev->bitmap_info.file == NULL) {
1569                         mddev->bitmap_info.offset =
1570                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1571                         /* Metadata doesn't record how much space is available.
1572                          * For 1.0, we assume we can use up to the superblock
1573                          * if before, else to 4K beyond superblock.
1574                          * For others, assume no change is possible.
1575                          */
1576                         if (mddev->minor_version > 0)
1577                                 mddev->bitmap_info.space = 0;
1578                         else if (mddev->bitmap_info.offset > 0)
1579                                 mddev->bitmap_info.space =
1580                                         8 - mddev->bitmap_info.offset;
1581                         else
1582                                 mddev->bitmap_info.space =
1583                                         -mddev->bitmap_info.offset;
1584                 }
1585
1586                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1587                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1588                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1589                         mddev->new_level = le32_to_cpu(sb->new_level);
1590                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1591                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1592                         if (mddev->delta_disks < 0 ||
1593                             (mddev->delta_disks == 0 &&
1594                              (le32_to_cpu(sb->feature_map)
1595                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1596                                 mddev->reshape_backwards = 1;
1597                 } else {
1598                         mddev->reshape_position = MaxSector;
1599                         mddev->delta_disks = 0;
1600                         mddev->new_level = mddev->level;
1601                         mddev->new_layout = mddev->layout;
1602                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1603                 }
1604
1605         } else if (mddev->pers == NULL) {
1606                 /* Insist of good event counter while assembling, except for
1607                  * spares (which don't need an event count) */
1608                 ++ev1;
1609                 if (rdev->desc_nr >= 0 &&
1610                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1611                     (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1612                      le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1613                         if (ev1 < mddev->events)
1614                                 return -EINVAL;
1615         } else if (mddev->bitmap) {
1616                 /* If adding to array with a bitmap, then we can accept an
1617                  * older device, but not too old.
1618                  */
1619                 if (ev1 < mddev->bitmap->events_cleared)
1620                         return 0;
1621                 if (ev1 < mddev->events)
1622                         set_bit(Bitmap_sync, &rdev->flags);
1623         } else {
1624                 if (ev1 < mddev->events)
1625                         /* just a hot-add of a new device, leave raid_disk at -1 */
1626                         return 0;
1627         }
1628         if (mddev->level != LEVEL_MULTIPATH) {
1629                 int role;
1630                 if (rdev->desc_nr < 0 ||
1631                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1632                         role = MD_DISK_ROLE_SPARE;
1633                         rdev->desc_nr = -1;
1634                 } else
1635                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1636                 switch(role) {
1637                 case MD_DISK_ROLE_SPARE: /* spare */
1638                         break;
1639                 case MD_DISK_ROLE_FAULTY: /* faulty */
1640                         set_bit(Faulty, &rdev->flags);
1641                         break;
1642                 case MD_DISK_ROLE_JOURNAL: /* journal device */
1643                         if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1644                                 /* journal device without journal feature */
1645                                 printk(KERN_WARNING
1646                                   "md: journal device provided without journal feature, ignoring the device\n");
1647                                 return -EINVAL;
1648                         }
1649                         set_bit(Journal, &rdev->flags);
1650                         rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1651                         if (mddev->recovery_cp == MaxSector)
1652                                 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1653                         rdev->raid_disk = mddev->raid_disks;
1654                         break;
1655                 default:
1656                         rdev->saved_raid_disk = role;
1657                         if ((le32_to_cpu(sb->feature_map) &
1658                              MD_FEATURE_RECOVERY_OFFSET)) {
1659                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1660                                 if (!(le32_to_cpu(sb->feature_map) &
1661                                       MD_FEATURE_RECOVERY_BITMAP))
1662                                         rdev->saved_raid_disk = -1;
1663                         } else
1664                                 set_bit(In_sync, &rdev->flags);
1665                         rdev->raid_disk = role;
1666                         break;
1667                 }
1668                 if (sb->devflags & WriteMostly1)
1669                         set_bit(WriteMostly, &rdev->flags);
1670                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1671                         set_bit(Replacement, &rdev->flags);
1672                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1673                         set_bit(MD_HAS_JOURNAL, &mddev->flags);
1674         } else /* MULTIPATH are always insync */
1675                 set_bit(In_sync, &rdev->flags);
1676
1677         return 0;
1678 }
1679
1680 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682         struct mdp_superblock_1 *sb;
1683         struct md_rdev *rdev2;
1684         int max_dev, i;
1685         /* make rdev->sb match mddev and rdev data. */
1686
1687         sb = page_address(rdev->sb_page);
1688
1689         sb->feature_map = 0;
1690         sb->pad0 = 0;
1691         sb->recovery_offset = cpu_to_le64(0);
1692         memset(sb->pad3, 0, sizeof(sb->pad3));
1693
1694         sb->utime = cpu_to_le64((__u64)mddev->utime);
1695         sb->events = cpu_to_le64(mddev->events);
1696         if (mddev->in_sync)
1697                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1698         else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1699                 sb->resync_offset = cpu_to_le64(MaxSector);
1700         else
1701                 sb->resync_offset = cpu_to_le64(0);
1702
1703         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704
1705         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706         sb->size = cpu_to_le64(mddev->dev_sectors);
1707         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708         sb->level = cpu_to_le32(mddev->level);
1709         sb->layout = cpu_to_le32(mddev->layout);
1710
1711         if (test_bit(WriteMostly, &rdev->flags))
1712                 sb->devflags |= WriteMostly1;
1713         else
1714                 sb->devflags &= ~WriteMostly1;
1715         sb->data_offset = cpu_to_le64(rdev->data_offset);
1716         sb->data_size = cpu_to_le64(rdev->sectors);
1717
1718         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721         }
1722
1723         if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1724             !test_bit(In_sync, &rdev->flags)) {
1725                 sb->feature_map |=
1726                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727                 sb->recovery_offset =
1728                         cpu_to_le64(rdev->recovery_offset);
1729                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730                         sb->feature_map |=
1731                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732         }
1733         /* Note: recovery_offset and journal_tail share space  */
1734         if (test_bit(Journal, &rdev->flags))
1735                 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1736         if (test_bit(Replacement, &rdev->flags))
1737                 sb->feature_map |=
1738                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1739
1740         if (mddev->reshape_position != MaxSector) {
1741                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1742                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1743                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1744                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1745                 sb->new_level = cpu_to_le32(mddev->new_level);
1746                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1747                 if (mddev->delta_disks == 0 &&
1748                     mddev->reshape_backwards)
1749                         sb->feature_map
1750                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1751                 if (rdev->new_data_offset != rdev->data_offset) {
1752                         sb->feature_map
1753                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1754                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1755                                                              - rdev->data_offset));
1756                 }
1757         }
1758
1759         if (mddev_is_clustered(mddev))
1760                 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1761
1762         if (rdev->badblocks.count == 0)
1763                 /* Nothing to do for bad blocks*/ ;
1764         else if (sb->bblog_offset == 0)
1765                 /* Cannot record bad blocks on this device */
1766                 md_error(mddev, rdev);
1767         else {
1768                 struct badblocks *bb = &rdev->badblocks;
1769                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1770                 u64 *p = bb->page;
1771                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1772                 if (bb->changed) {
1773                         unsigned seq;
1774
1775 retry:
1776                         seq = read_seqbegin(&bb->lock);
1777
1778                         memset(bbp, 0xff, PAGE_SIZE);
1779
1780                         for (i = 0 ; i < bb->count ; i++) {
1781                                 u64 internal_bb = p[i];
1782                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1783                                                 | BB_LEN(internal_bb));
1784                                 bbp[i] = cpu_to_le64(store_bb);
1785                         }
1786                         bb->changed = 0;
1787                         if (read_seqretry(&bb->lock, seq))
1788                                 goto retry;
1789
1790                         bb->sector = (rdev->sb_start +
1791                                       (int)le32_to_cpu(sb->bblog_offset));
1792                         bb->size = le16_to_cpu(sb->bblog_size);
1793                 }
1794         }
1795
1796         max_dev = 0;
1797         rdev_for_each(rdev2, mddev)
1798                 if (rdev2->desc_nr+1 > max_dev)
1799                         max_dev = rdev2->desc_nr+1;
1800
1801         if (max_dev > le32_to_cpu(sb->max_dev)) {
1802                 int bmask;
1803                 sb->max_dev = cpu_to_le32(max_dev);
1804                 rdev->sb_size = max_dev * 2 + 256;
1805                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1806                 if (rdev->sb_size & bmask)
1807                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1808         } else
1809                 max_dev = le32_to_cpu(sb->max_dev);
1810
1811         for (i=0; i<max_dev;i++)
1812                 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1813
1814         if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1815                 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1816
1817         rdev_for_each(rdev2, mddev) {
1818                 i = rdev2->desc_nr;
1819                 if (test_bit(Faulty, &rdev2->flags))
1820                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1821                 else if (test_bit(In_sync, &rdev2->flags))
1822                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1823                 else if (test_bit(Journal, &rdev2->flags))
1824                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1825                 else if (rdev2->raid_disk >= 0)
1826                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1827                 else
1828                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1829         }
1830
1831         sb->sb_csum = calc_sb_1_csum(sb);
1832 }
1833
1834 static unsigned long long
1835 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1836 {
1837         struct mdp_superblock_1 *sb;
1838         sector_t max_sectors;
1839         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1840                 return 0; /* component must fit device */
1841         if (rdev->data_offset != rdev->new_data_offset)
1842                 return 0; /* too confusing */
1843         if (rdev->sb_start < rdev->data_offset) {
1844                 /* minor versions 1 and 2; superblock before data */
1845                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1846                 max_sectors -= rdev->data_offset;
1847                 if (!num_sectors || num_sectors > max_sectors)
1848                         num_sectors = max_sectors;
1849         } else if (rdev->mddev->bitmap_info.offset) {
1850                 /* minor version 0 with bitmap we can't move */
1851                 return 0;
1852         } else {
1853                 /* minor version 0; superblock after data */
1854                 sector_t sb_start;
1855                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1856                 sb_start &= ~(sector_t)(4*2 - 1);
1857                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1858                 if (!num_sectors || num_sectors > max_sectors)
1859                         num_sectors = max_sectors;
1860                 rdev->sb_start = sb_start;
1861         }
1862         sb = page_address(rdev->sb_page);
1863         sb->data_size = cpu_to_le64(num_sectors);
1864         sb->super_offset = rdev->sb_start;
1865         sb->sb_csum = calc_sb_1_csum(sb);
1866         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1867                        rdev->sb_page);
1868         md_super_wait(rdev->mddev);
1869         return num_sectors;
1870
1871 }
1872
1873 static int
1874 super_1_allow_new_offset(struct md_rdev *rdev,
1875                          unsigned long long new_offset)
1876 {
1877         /* All necessary checks on new >= old have been done */
1878         struct bitmap *bitmap;
1879         if (new_offset >= rdev->data_offset)
1880                 return 1;
1881
1882         /* with 1.0 metadata, there is no metadata to tread on
1883          * so we can always move back */
1884         if (rdev->mddev->minor_version == 0)
1885                 return 1;
1886
1887         /* otherwise we must be sure not to step on
1888          * any metadata, so stay:
1889          * 36K beyond start of superblock
1890          * beyond end of badblocks
1891          * beyond write-intent bitmap
1892          */
1893         if (rdev->sb_start + (32+4)*2 > new_offset)
1894                 return 0;
1895         bitmap = rdev->mddev->bitmap;
1896         if (bitmap && !rdev->mddev->bitmap_info.file &&
1897             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1898             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1899                 return 0;
1900         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1901                 return 0;
1902
1903         return 1;
1904 }
1905
1906 static struct super_type super_types[] = {
1907         [0] = {
1908                 .name   = "0.90.0",
1909                 .owner  = THIS_MODULE,
1910                 .load_super         = super_90_load,
1911                 .validate_super     = super_90_validate,
1912                 .sync_super         = super_90_sync,
1913                 .rdev_size_change   = super_90_rdev_size_change,
1914                 .allow_new_offset   = super_90_allow_new_offset,
1915         },
1916         [1] = {
1917                 .name   = "md-1",
1918                 .owner  = THIS_MODULE,
1919                 .load_super         = super_1_load,
1920                 .validate_super     = super_1_validate,
1921                 .sync_super         = super_1_sync,
1922                 .rdev_size_change   = super_1_rdev_size_change,
1923                 .allow_new_offset   = super_1_allow_new_offset,
1924         },
1925 };
1926
1927 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1928 {
1929         if (mddev->sync_super) {
1930                 mddev->sync_super(mddev, rdev);
1931                 return;
1932         }
1933
1934         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1935
1936         super_types[mddev->major_version].sync_super(mddev, rdev);
1937 }
1938
1939 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1940 {
1941         struct md_rdev *rdev, *rdev2;
1942
1943         rcu_read_lock();
1944         rdev_for_each_rcu(rdev, mddev1) {
1945                 if (test_bit(Faulty, &rdev->flags) ||
1946                     test_bit(Journal, &rdev->flags) ||
1947                     rdev->raid_disk == -1)
1948                         continue;
1949                 rdev_for_each_rcu(rdev2, mddev2) {
1950                         if (test_bit(Faulty, &rdev2->flags) ||
1951                             test_bit(Journal, &rdev2->flags) ||
1952                             rdev2->raid_disk == -1)
1953                                 continue;
1954                         if (rdev->bdev->bd_contains ==
1955                             rdev2->bdev->bd_contains) {
1956                                 rcu_read_unlock();
1957                                 return 1;
1958                         }
1959                 }
1960         }
1961         rcu_read_unlock();
1962         return 0;
1963 }
1964
1965 static LIST_HEAD(pending_raid_disks);
1966
1967 /*
1968  * Try to register data integrity profile for an mddev
1969  *
1970  * This is called when an array is started and after a disk has been kicked
1971  * from the array. It only succeeds if all working and active component devices
1972  * are integrity capable with matching profiles.
1973  */
1974 int md_integrity_register(struct mddev *mddev)
1975 {
1976         struct md_rdev *rdev, *reference = NULL;
1977
1978         if (list_empty(&mddev->disks))
1979                 return 0; /* nothing to do */
1980         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1981                 return 0; /* shouldn't register, or already is */
1982         rdev_for_each(rdev, mddev) {
1983                 /* skip spares and non-functional disks */
1984                 if (test_bit(Faulty, &rdev->flags))
1985                         continue;
1986                 if (rdev->raid_disk < 0)
1987                         continue;
1988                 if (!reference) {
1989                         /* Use the first rdev as the reference */
1990                         reference = rdev;
1991                         continue;
1992                 }
1993                 /* does this rdev's profile match the reference profile? */
1994                 if (blk_integrity_compare(reference->bdev->bd_disk,
1995                                 rdev->bdev->bd_disk) < 0)
1996                         return -EINVAL;
1997         }
1998         if (!reference || !bdev_get_integrity(reference->bdev))
1999                 return 0;
2000         /*
2001          * All component devices are integrity capable and have matching
2002          * profiles, register the common profile for the md device.
2003          */
2004         blk_integrity_register(mddev->gendisk,
2005                                bdev_get_integrity(reference->bdev));
2006
2007         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2008         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2009                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2010                        mdname(mddev));
2011                 return -EINVAL;
2012         }
2013         return 0;
2014 }
2015 EXPORT_SYMBOL(md_integrity_register);
2016
2017 /* Disable data integrity if non-capable/non-matching disk is being added */
2018 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2019 {
2020         struct blk_integrity *bi_rdev;
2021         struct blk_integrity *bi_mddev;
2022
2023         if (!mddev->gendisk)
2024                 return;
2025
2026         bi_rdev = bdev_get_integrity(rdev->bdev);
2027         bi_mddev = blk_get_integrity(mddev->gendisk);
2028
2029         if (!bi_mddev) /* nothing to do */
2030                 return;
2031         if (rdev->raid_disk < 0) /* skip spares */
2032                 return;
2033         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2034                                              rdev->bdev->bd_disk) >= 0)
2035                 return;
2036         WARN_ON_ONCE(!mddev->suspended);
2037         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2038         blk_integrity_unregister(mddev->gendisk);
2039 }
2040 EXPORT_SYMBOL(md_integrity_add_rdev);
2041
2042 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2043 {
2044         char b[BDEVNAME_SIZE];
2045         struct kobject *ko;
2046         int err;
2047
2048         /* prevent duplicates */
2049         if (find_rdev(mddev, rdev->bdev->bd_dev))
2050                 return -EEXIST;
2051
2052         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2053         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2054                         rdev->sectors < mddev->dev_sectors)) {
2055                 if (mddev->pers) {
2056                         /* Cannot change size, so fail
2057                          * If mddev->level <= 0, then we don't care
2058                          * about aligning sizes (e.g. linear)
2059                          */
2060                         if (mddev->level > 0)
2061                                 return -ENOSPC;
2062                 } else
2063                         mddev->dev_sectors = rdev->sectors;
2064         }
2065
2066         /* Verify rdev->desc_nr is unique.
2067          * If it is -1, assign a free number, else
2068          * check number is not in use
2069          */
2070         rcu_read_lock();
2071         if (rdev->desc_nr < 0) {
2072                 int choice = 0;
2073                 if (mddev->pers)
2074                         choice = mddev->raid_disks;
2075                 while (md_find_rdev_nr_rcu(mddev, choice))
2076                         choice++;
2077                 rdev->desc_nr = choice;
2078         } else {
2079                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2080                         rcu_read_unlock();
2081                         return -EBUSY;
2082                 }
2083         }
2084         rcu_read_unlock();
2085         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2086                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2087                        mdname(mddev), mddev->max_disks);
2088                 return -EBUSY;
2089         }
2090         bdevname(rdev->bdev,b);
2091         strreplace(b, '/', '!');
2092
2093         rdev->mddev = mddev;
2094         printk(KERN_INFO "md: bind<%s>\n", b);
2095
2096         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2097                 goto fail;
2098
2099         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2100         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2101                 /* failure here is OK */;
2102         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2103
2104         list_add_rcu(&rdev->same_set, &mddev->disks);
2105         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2106
2107         /* May as well allow recovery to be retried once */
2108         mddev->recovery_disabled++;
2109
2110         return 0;
2111
2112  fail:
2113         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2114                b, mdname(mddev));
2115         return err;
2116 }
2117
2118 static void md_delayed_delete(struct work_struct *ws)
2119 {
2120         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2121         kobject_del(&rdev->kobj);
2122         kobject_put(&rdev->kobj);
2123 }
2124
2125 static void unbind_rdev_from_array(struct md_rdev *rdev)
2126 {
2127         char b[BDEVNAME_SIZE];
2128
2129         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2130         list_del_rcu(&rdev->same_set);
2131         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2132         rdev->mddev = NULL;
2133         sysfs_remove_link(&rdev->kobj, "block");
2134         sysfs_put(rdev->sysfs_state);
2135         rdev->sysfs_state = NULL;
2136         rdev->badblocks.count = 0;
2137         /* We need to delay this, otherwise we can deadlock when
2138          * writing to 'remove' to "dev/state".  We also need
2139          * to delay it due to rcu usage.
2140          */
2141         synchronize_rcu();
2142         INIT_WORK(&rdev->del_work, md_delayed_delete);
2143         kobject_get(&rdev->kobj);
2144         queue_work(md_misc_wq, &rdev->del_work);
2145 }
2146
2147 /*
2148  * prevent the device from being mounted, repartitioned or
2149  * otherwise reused by a RAID array (or any other kernel
2150  * subsystem), by bd_claiming the device.
2151  */
2152 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2153 {
2154         int err = 0;
2155         struct block_device *bdev;
2156         char b[BDEVNAME_SIZE];
2157
2158         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2159                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2160         if (IS_ERR(bdev)) {
2161                 printk(KERN_ERR "md: could not open %s.\n",
2162                         __bdevname(dev, b));
2163                 return PTR_ERR(bdev);
2164         }
2165         rdev->bdev = bdev;
2166         return err;
2167 }
2168
2169 static void unlock_rdev(struct md_rdev *rdev)
2170 {
2171         struct block_device *bdev = rdev->bdev;
2172         rdev->bdev = NULL;
2173         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2174 }
2175
2176 void md_autodetect_dev(dev_t dev);
2177
2178 static void export_rdev(struct md_rdev *rdev)
2179 {
2180         char b[BDEVNAME_SIZE];
2181
2182         printk(KERN_INFO "md: export_rdev(%s)\n",
2183                 bdevname(rdev->bdev,b));
2184         md_rdev_clear(rdev);
2185 #ifndef MODULE
2186         if (test_bit(AutoDetected, &rdev->flags))
2187                 md_autodetect_dev(rdev->bdev->bd_dev);
2188 #endif
2189         unlock_rdev(rdev);
2190         kobject_put(&rdev->kobj);
2191 }
2192
2193 void md_kick_rdev_from_array(struct md_rdev *rdev)
2194 {
2195         unbind_rdev_from_array(rdev);
2196         export_rdev(rdev);
2197 }
2198 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2199
2200 static void export_array(struct mddev *mddev)
2201 {
2202         struct md_rdev *rdev;
2203
2204         while (!list_empty(&mddev->disks)) {
2205                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2206                                         same_set);
2207                 md_kick_rdev_from_array(rdev);
2208         }
2209         mddev->raid_disks = 0;
2210         mddev->major_version = 0;
2211 }
2212
2213 static void sync_sbs(struct mddev *mddev, int nospares)
2214 {
2215         /* Update each superblock (in-memory image), but
2216          * if we are allowed to, skip spares which already
2217          * have the right event counter, or have one earlier
2218          * (which would mean they aren't being marked as dirty
2219          * with the rest of the array)
2220          */
2221         struct md_rdev *rdev;
2222         rdev_for_each(rdev, mddev) {
2223                 if (rdev->sb_events == mddev->events ||
2224                     (nospares &&
2225                      rdev->raid_disk < 0 &&
2226                      rdev->sb_events+1 == mddev->events)) {
2227                         /* Don't update this superblock */
2228                         rdev->sb_loaded = 2;
2229                 } else {
2230                         sync_super(mddev, rdev);
2231                         rdev->sb_loaded = 1;
2232                 }
2233         }
2234 }
2235
2236 static bool does_sb_need_changing(struct mddev *mddev)
2237 {
2238         struct md_rdev *rdev;
2239         struct mdp_superblock_1 *sb;
2240         int role;
2241
2242         /* Find a good rdev */
2243         rdev_for_each(rdev, mddev)
2244                 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2245                         break;
2246
2247         /* No good device found. */
2248         if (!rdev)
2249                 return false;
2250
2251         sb = page_address(rdev->sb_page);
2252         /* Check if a device has become faulty or a spare become active */
2253         rdev_for_each(rdev, mddev) {
2254                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2255                 /* Device activated? */
2256                 if (role == 0xffff && rdev->raid_disk >=0 &&
2257                     !test_bit(Faulty, &rdev->flags))
2258                         return true;
2259                 /* Device turned faulty? */
2260                 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2261                         return true;
2262         }
2263
2264         /* Check if any mddev parameters have changed */
2265         if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2266             (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2267             (mddev->layout != le64_to_cpu(sb->layout)) ||
2268             (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2269             (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2270                 return true;
2271
2272         return false;
2273 }
2274
2275 void md_update_sb(struct mddev *mddev, int force_change)
2276 {
2277         struct md_rdev *rdev;
2278         int sync_req;
2279         int nospares = 0;
2280         int any_badblocks_changed = 0;
2281         int ret = -1;
2282
2283         if (mddev->ro) {
2284                 if (force_change)
2285                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2286                 return;
2287         }
2288
2289         if (mddev_is_clustered(mddev)) {
2290                 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2291                         force_change = 1;
2292                 ret = md_cluster_ops->metadata_update_start(mddev);
2293                 /* Has someone else has updated the sb */
2294                 if (!does_sb_need_changing(mddev)) {
2295                         if (ret == 0)
2296                                 md_cluster_ops->metadata_update_cancel(mddev);
2297                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2298                         return;
2299                 }
2300         }
2301 repeat:
2302         /* First make sure individual recovery_offsets are correct */
2303         rdev_for_each(rdev, mddev) {
2304                 if (rdev->raid_disk >= 0 &&
2305                     mddev->delta_disks >= 0 &&
2306                     !test_bit(Journal, &rdev->flags) &&
2307                     !test_bit(In_sync, &rdev->flags) &&
2308                     mddev->curr_resync_completed > rdev->recovery_offset)
2309                                 rdev->recovery_offset = mddev->curr_resync_completed;
2310
2311         }
2312         if (!mddev->persistent) {
2313                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2314                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2315                 if (!mddev->external) {
2316                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2317                         rdev_for_each(rdev, mddev) {
2318                                 if (rdev->badblocks.changed) {
2319                                         rdev->badblocks.changed = 0;
2320                                         md_ack_all_badblocks(&rdev->badblocks);
2321                                         md_error(mddev, rdev);
2322                                 }
2323                                 clear_bit(Blocked, &rdev->flags);
2324                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2325                                 wake_up(&rdev->blocked_wait);
2326                         }
2327                 }
2328                 wake_up(&mddev->sb_wait);
2329                 return;
2330         }
2331
2332         spin_lock(&mddev->lock);
2333
2334         mddev->utime = get_seconds();
2335
2336         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2337                 force_change = 1;
2338         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2339                 /* just a clean<-> dirty transition, possibly leave spares alone,
2340                  * though if events isn't the right even/odd, we will have to do
2341                  * spares after all
2342                  */
2343                 nospares = 1;
2344         if (force_change)
2345                 nospares = 0;
2346         if (mddev->degraded)
2347                 /* If the array is degraded, then skipping spares is both
2348                  * dangerous and fairly pointless.
2349                  * Dangerous because a device that was removed from the array
2350                  * might have a event_count that still looks up-to-date,
2351                  * so it can be re-added without a resync.
2352                  * Pointless because if there are any spares to skip,
2353                  * then a recovery will happen and soon that array won't
2354                  * be degraded any more and the spare can go back to sleep then.
2355                  */
2356                 nospares = 0;
2357
2358         sync_req = mddev->in_sync;
2359
2360         /* If this is just a dirty<->clean transition, and the array is clean
2361          * and 'events' is odd, we can roll back to the previous clean state */
2362         if (nospares
2363             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2364             && mddev->can_decrease_events
2365             && mddev->events != 1) {
2366                 mddev->events--;
2367                 mddev->can_decrease_events = 0;
2368         } else {
2369                 /* otherwise we have to go forward and ... */
2370                 mddev->events ++;
2371                 mddev->can_decrease_events = nospares;
2372         }
2373
2374         /*
2375          * This 64-bit counter should never wrap.
2376          * Either we are in around ~1 trillion A.C., assuming
2377          * 1 reboot per second, or we have a bug...
2378          */
2379         WARN_ON(mddev->events == 0);
2380
2381         rdev_for_each(rdev, mddev) {
2382                 if (rdev->badblocks.changed)
2383                         any_badblocks_changed++;
2384                 if (test_bit(Faulty, &rdev->flags))
2385                         set_bit(FaultRecorded, &rdev->flags);
2386         }
2387
2388         sync_sbs(mddev, nospares);
2389         spin_unlock(&mddev->lock);
2390
2391         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2392                  mdname(mddev), mddev->in_sync);
2393
2394         bitmap_update_sb(mddev->bitmap);
2395         rdev_for_each(rdev, mddev) {
2396                 char b[BDEVNAME_SIZE];
2397
2398                 if (rdev->sb_loaded != 1)
2399                         continue; /* no noise on spare devices */
2400
2401                 if (!test_bit(Faulty, &rdev->flags)) {
2402                         md_super_write(mddev,rdev,
2403                                        rdev->sb_start, rdev->sb_size,
2404                                        rdev->sb_page);
2405                         pr_debug("md: (write) %s's sb offset: %llu\n",
2406                                  bdevname(rdev->bdev, b),
2407                                  (unsigned long long)rdev->sb_start);
2408                         rdev->sb_events = mddev->events;
2409                         if (rdev->badblocks.size) {
2410                                 md_super_write(mddev, rdev,
2411                                                rdev->badblocks.sector,
2412                                                rdev->badblocks.size << 9,
2413                                                rdev->bb_page);
2414                                 rdev->badblocks.size = 0;
2415                         }
2416
2417                 } else
2418                         pr_debug("md: %s (skipping faulty)\n",
2419                                  bdevname(rdev->bdev, b));
2420
2421                 if (mddev->level == LEVEL_MULTIPATH)
2422                         /* only need to write one superblock... */
2423                         break;
2424         }
2425         md_super_wait(mddev);
2426         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2427
2428         spin_lock(&mddev->lock);
2429         if (mddev->in_sync != sync_req ||
2430             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2431                 /* have to write it out again */
2432                 spin_unlock(&mddev->lock);
2433                 goto repeat;
2434         }
2435         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2436         spin_unlock(&mddev->lock);
2437         wake_up(&mddev->sb_wait);
2438         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2439                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2440
2441         rdev_for_each(rdev, mddev) {
2442                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2443                         clear_bit(Blocked, &rdev->flags);
2444
2445                 if (any_badblocks_changed)
2446                         md_ack_all_badblocks(&rdev->badblocks);
2447                 clear_bit(BlockedBadBlocks, &rdev->flags);
2448                 wake_up(&rdev->blocked_wait);
2449         }
2450
2451         if (mddev_is_clustered(mddev) && ret == 0)
2452                 md_cluster_ops->metadata_update_finish(mddev);
2453 }
2454 EXPORT_SYMBOL(md_update_sb);
2455
2456 static int add_bound_rdev(struct md_rdev *rdev)
2457 {
2458         struct mddev *mddev = rdev->mddev;
2459         int err = 0;
2460
2461         if (!mddev->pers->hot_remove_disk) {
2462                 /* If there is hot_add_disk but no hot_remove_disk
2463                  * then added disks for geometry changes,
2464                  * and should be added immediately.
2465                  */
2466                 super_types[mddev->major_version].
2467                         validate_super(mddev, rdev);
2468                 err = mddev->pers->hot_add_disk(mddev, rdev);
2469                 if (err) {
2470                         unbind_rdev_from_array(rdev);
2471                         export_rdev(rdev);
2472                         return err;
2473                 }
2474         }
2475         sysfs_notify_dirent_safe(rdev->sysfs_state);
2476
2477         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2478         if (mddev->degraded)
2479                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2480         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2481         md_new_event(mddev);
2482         md_wakeup_thread(mddev->thread);
2483         return 0;
2484 }
2485
2486 /* words written to sysfs files may, or may not, be \n terminated.
2487  * We want to accept with case. For this we use cmd_match.
2488  */
2489 static int cmd_match(const char *cmd, const char *str)
2490 {
2491         /* See if cmd, written into a sysfs file, matches
2492          * str.  They must either be the same, or cmd can
2493          * have a trailing newline
2494          */
2495         while (*cmd && *str && *cmd == *str) {
2496                 cmd++;
2497                 str++;
2498         }
2499         if (*cmd == '\n')
2500                 cmd++;
2501         if (*str || *cmd)
2502                 return 0;
2503         return 1;
2504 }
2505
2506 struct rdev_sysfs_entry {
2507         struct attribute attr;
2508         ssize_t (*show)(struct md_rdev *, char *);
2509         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2510 };
2511
2512 static ssize_t
2513 state_show(struct md_rdev *rdev, char *page)
2514 {
2515         char *sep = "";
2516         size_t len = 0;
2517         unsigned long flags = ACCESS_ONCE(rdev->flags);
2518
2519         if (test_bit(Faulty, &flags) ||
2520             rdev->badblocks.unacked_exist) {
2521                 len+= sprintf(page+len, "%sfaulty",sep);
2522                 sep = ",";
2523         }
2524         if (test_bit(In_sync, &flags)) {
2525                 len += sprintf(page+len, "%sin_sync",sep);
2526                 sep = ",";
2527         }
2528         if (test_bit(Journal, &flags)) {
2529                 len += sprintf(page+len, "%sjournal",sep);
2530                 sep = ",";
2531         }
2532         if (test_bit(WriteMostly, &flags)) {
2533                 len += sprintf(page+len, "%swrite_mostly",sep);
2534                 sep = ",";
2535         }
2536         if (test_bit(Blocked, &flags) ||
2537             (rdev->badblocks.unacked_exist
2538              && !test_bit(Faulty, &flags))) {
2539                 len += sprintf(page+len, "%sblocked", sep);
2540                 sep = ",";
2541         }
2542         if (!test_bit(Faulty, &flags) &&
2543             !test_bit(Journal, &flags) &&
2544             !test_bit(In_sync, &flags)) {
2545                 len += sprintf(page+len, "%sspare", sep);
2546                 sep = ",";
2547         }
2548         if (test_bit(WriteErrorSeen, &flags)) {
2549                 len += sprintf(page+len, "%swrite_error", sep);
2550                 sep = ",";
2551         }
2552         if (test_bit(WantReplacement, &flags)) {
2553                 len += sprintf(page+len, "%swant_replacement", sep);
2554                 sep = ",";
2555         }
2556         if (test_bit(Replacement, &flags)) {
2557                 len += sprintf(page+len, "%sreplacement", sep);
2558                 sep = ",";
2559         }
2560
2561         return len+sprintf(page+len, "\n");
2562 }
2563
2564 static ssize_t
2565 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2566 {
2567         /* can write
2568          *  faulty  - simulates an error
2569          *  remove  - disconnects the device
2570          *  writemostly - sets write_mostly
2571          *  -writemostly - clears write_mostly
2572          *  blocked - sets the Blocked flags
2573          *  -blocked - clears the Blocked and possibly simulates an error
2574          *  insync - sets Insync providing device isn't active
2575          *  -insync - clear Insync for a device with a slot assigned,
2576          *            so that it gets rebuilt based on bitmap
2577          *  write_error - sets WriteErrorSeen
2578          *  -write_error - clears WriteErrorSeen
2579          */
2580         int err = -EINVAL;
2581         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2582                 md_error(rdev->mddev, rdev);
2583                 if (test_bit(Faulty, &rdev->flags))
2584                         err = 0;
2585                 else
2586                         err = -EBUSY;
2587         } else if (cmd_match(buf, "remove")) {
2588                 if (rdev->raid_disk >= 0)
2589                         err = -EBUSY;
2590                 else {
2591                         struct mddev *mddev = rdev->mddev;
2592                         err = 0;
2593                         if (mddev_is_clustered(mddev))
2594                                 err = md_cluster_ops->remove_disk(mddev, rdev);
2595
2596                         if (err == 0) {
2597                                 md_kick_rdev_from_array(rdev);
2598                                 if (mddev->pers)
2599                                         md_update_sb(mddev, 1);
2600                                 md_new_event(mddev);
2601                         }
2602                 }
2603         } else if (cmd_match(buf, "writemostly")) {
2604                 set_bit(WriteMostly, &rdev->flags);
2605                 err = 0;
2606         } else if (cmd_match(buf, "-writemostly")) {
2607                 clear_bit(WriteMostly, &rdev->flags);
2608                 err = 0;
2609         } else if (cmd_match(buf, "blocked")) {
2610                 set_bit(Blocked, &rdev->flags);
2611                 err = 0;
2612         } else if (cmd_match(buf, "-blocked")) {
2613                 if (!test_bit(Faulty, &rdev->flags) &&
2614                     rdev->badblocks.unacked_exist) {
2615                         /* metadata handler doesn't understand badblocks,
2616                          * so we need to fail the device
2617                          */
2618                         md_error(rdev->mddev, rdev);
2619                 }
2620                 clear_bit(Blocked, &rdev->flags);
2621                 clear_bit(BlockedBadBlocks, &rdev->flags);
2622                 wake_up(&rdev->blocked_wait);
2623                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2624                 md_wakeup_thread(rdev->mddev->thread);
2625
2626                 err = 0;
2627         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2628                 set_bit(In_sync, &rdev->flags);
2629                 err = 0;
2630         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2631                    !test_bit(Journal, &rdev->flags)) {
2632                 if (rdev->mddev->pers == NULL) {
2633                         clear_bit(In_sync, &rdev->flags);
2634                         rdev->saved_raid_disk = rdev->raid_disk;
2635                         rdev->raid_disk = -1;
2636                         err = 0;
2637                 }
2638         } else if (cmd_match(buf, "write_error")) {
2639                 set_bit(WriteErrorSeen, &rdev->flags);
2640                 err = 0;
2641         } else if (cmd_match(buf, "-write_error")) {
2642                 clear_bit(WriteErrorSeen, &rdev->flags);
2643                 err = 0;
2644         } else if (cmd_match(buf, "want_replacement")) {
2645                 /* Any non-spare device that is not a replacement can
2646                  * become want_replacement at any time, but we then need to
2647                  * check if recovery is needed.
2648                  */
2649                 if (rdev->raid_disk >= 0 &&
2650                     !test_bit(Journal, &rdev->flags) &&
2651                     !test_bit(Replacement, &rdev->flags))
2652                         set_bit(WantReplacement, &rdev->flags);
2653                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2654                 md_wakeup_thread(rdev->mddev->thread);
2655                 err = 0;
2656         } else if (cmd_match(buf, "-want_replacement")) {
2657                 /* Clearing 'want_replacement' is always allowed.
2658                  * Once replacements starts it is too late though.
2659                  */
2660                 err = 0;
2661                 clear_bit(WantReplacement, &rdev->flags);
2662         } else if (cmd_match(buf, "replacement")) {
2663                 /* Can only set a device as a replacement when array has not
2664                  * yet been started.  Once running, replacement is automatic
2665                  * from spares, or by assigning 'slot'.
2666                  */
2667                 if (rdev->mddev->pers)
2668                         err = -EBUSY;
2669                 else {
2670                         set_bit(Replacement, &rdev->flags);
2671                         err = 0;
2672                 }
2673         } else if (cmd_match(buf, "-replacement")) {
2674                 /* Similarly, can only clear Replacement before start */
2675                 if (rdev->mddev->pers)
2676                         err = -EBUSY;
2677                 else {
2678                         clear_bit(Replacement, &rdev->flags);
2679                         err = 0;
2680                 }
2681         } else if (cmd_match(buf, "re-add")) {
2682                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2683                         /* clear_bit is performed _after_ all the devices
2684                          * have their local Faulty bit cleared. If any writes
2685                          * happen in the meantime in the local node, they
2686                          * will land in the local bitmap, which will be synced
2687                          * by this node eventually
2688                          */
2689                         if (!mddev_is_clustered(rdev->mddev) ||
2690                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2691                                 clear_bit(Faulty, &rdev->flags);
2692                                 err = add_bound_rdev(rdev);
2693                         }
2694                 } else
2695                         err = -EBUSY;
2696         }
2697         if (!err)
2698                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2699         return err ? err : len;
2700 }
2701 static struct rdev_sysfs_entry rdev_state =
2702 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2703
2704 static ssize_t
2705 errors_show(struct md_rdev *rdev, char *page)
2706 {
2707         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2708 }
2709
2710 static ssize_t
2711 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2712 {
2713         unsigned int n;
2714         int rv;
2715
2716         rv = kstrtouint(buf, 10, &n);
2717         if (rv < 0)
2718                 return rv;
2719         atomic_set(&rdev->corrected_errors, n);
2720         return len;
2721 }
2722 static struct rdev_sysfs_entry rdev_errors =
2723 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2724
2725 static ssize_t
2726 slot_show(struct md_rdev *rdev, char *page)
2727 {
2728         if (test_bit(Journal, &rdev->flags))
2729                 return sprintf(page, "journal\n");
2730         else if (rdev->raid_disk < 0)
2731                 return sprintf(page, "none\n");
2732         else
2733                 return sprintf(page, "%d\n", rdev->raid_disk);
2734 }
2735
2736 static ssize_t
2737 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2738 {
2739         int slot;
2740         int err;
2741
2742         if (test_bit(Journal, &rdev->flags))
2743                 return -EBUSY;
2744         if (strncmp(buf, "none", 4)==0)
2745                 slot = -1;
2746         else {
2747                 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2748                 if (err < 0)
2749                         return err;
2750         }
2751         if (rdev->mddev->pers && slot == -1) {
2752                 /* Setting 'slot' on an active array requires also
2753                  * updating the 'rd%d' link, and communicating
2754                  * with the personality with ->hot_*_disk.
2755                  * For now we only support removing
2756                  * failed/spare devices.  This normally happens automatically,
2757                  * but not when the metadata is externally managed.
2758                  */
2759                 if (rdev->raid_disk == -1)
2760                         return -EEXIST;
2761                 /* personality does all needed checks */
2762                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2763                         return -EINVAL;
2764                 clear_bit(Blocked, &rdev->flags);
2765                 remove_and_add_spares(rdev->mddev, rdev);
2766                 if (rdev->raid_disk >= 0)
2767                         return -EBUSY;
2768                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2769                 md_wakeup_thread(rdev->mddev->thread);
2770         } else if (rdev->mddev->pers) {
2771                 /* Activating a spare .. or possibly reactivating
2772                  * if we ever get bitmaps working here.
2773                  */
2774
2775                 if (rdev->raid_disk != -1)
2776                         return -EBUSY;
2777
2778                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2779                         return -EBUSY;
2780
2781                 if (rdev->mddev->pers->hot_add_disk == NULL)
2782                         return -EINVAL;
2783
2784                 if (slot >= rdev->mddev->raid_disks &&
2785                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2786                         return -ENOSPC;
2787
2788                 rdev->raid_disk = slot;
2789                 if (test_bit(In_sync, &rdev->flags))
2790                         rdev->saved_raid_disk = slot;
2791                 else
2792                         rdev->saved_raid_disk = -1;
2793                 clear_bit(In_sync, &rdev->flags);
2794                 clear_bit(Bitmap_sync, &rdev->flags);
2795                 remove_and_add_spares(rdev->mddev, rdev);
2796                 if (rdev->raid_disk == -1)
2797                         return -EBUSY;
2798                 /* don't wakeup anyone, leave that to userspace. */
2799         } else {
2800                 if (slot >= rdev->mddev->raid_disks &&
2801                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2802                         return -ENOSPC;
2803                 rdev->raid_disk = slot;
2804                 /* assume it is working */
2805                 clear_bit(Faulty, &rdev->flags);
2806                 clear_bit(WriteMostly, &rdev->flags);
2807                 set_bit(In_sync, &rdev->flags);
2808                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2809         }
2810         return len;
2811 }
2812
2813 static struct rdev_sysfs_entry rdev_slot =
2814 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2815
2816 static ssize_t
2817 offset_show(struct md_rdev *rdev, char *page)
2818 {
2819         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2820 }
2821
2822 static ssize_t
2823 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2824 {
2825         unsigned long long offset;
2826         if (kstrtoull(buf, 10, &offset) < 0)
2827                 return -EINVAL;
2828         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2829                 return -EBUSY;
2830         if (rdev->sectors && rdev->mddev->external)
2831                 /* Must set offset before size, so overlap checks
2832                  * can be sane */
2833                 return -EBUSY;
2834         rdev->data_offset = offset;
2835         rdev->new_data_offset = offset;
2836         return len;
2837 }
2838
2839 static struct rdev_sysfs_entry rdev_offset =
2840 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2841
2842 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2843 {
2844         return sprintf(page, "%llu\n",
2845                        (unsigned long long)rdev->new_data_offset);
2846 }
2847
2848 static ssize_t new_offset_store(struct md_rdev *rdev,
2849                                 const char *buf, size_t len)
2850 {
2851         unsigned long long new_offset;
2852         struct mddev *mddev = rdev->mddev;
2853
2854         if (kstrtoull(buf, 10, &new_offset) < 0)
2855                 return -EINVAL;
2856
2857         if (mddev->sync_thread ||
2858             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2859                 return -EBUSY;
2860         if (new_offset == rdev->data_offset)
2861                 /* reset is always permitted */
2862                 ;
2863         else if (new_offset > rdev->data_offset) {
2864                 /* must not push array size beyond rdev_sectors */
2865                 if (new_offset - rdev->data_offset
2866                     + mddev->dev_sectors > rdev->sectors)
2867                                 return -E2BIG;
2868         }
2869         /* Metadata worries about other space details. */
2870
2871         /* decreasing the offset is inconsistent with a backwards
2872          * reshape.
2873          */
2874         if (new_offset < rdev->data_offset &&
2875             mddev->reshape_backwards)
2876                 return -EINVAL;
2877         /* Increasing offset is inconsistent with forwards
2878          * reshape.  reshape_direction should be set to
2879          * 'backwards' first.
2880          */
2881         if (new_offset > rdev->data_offset &&
2882             !mddev->reshape_backwards)
2883                 return -EINVAL;
2884
2885         if (mddev->pers && mddev->persistent &&
2886             !super_types[mddev->major_version]
2887             .allow_new_offset(rdev, new_offset))
2888                 return -E2BIG;
2889         rdev->new_data_offset = new_offset;
2890         if (new_offset > rdev->data_offset)
2891                 mddev->reshape_backwards = 1;
2892         else if (new_offset < rdev->data_offset)
2893                 mddev->reshape_backwards = 0;
2894
2895         return len;
2896 }
2897 static struct rdev_sysfs_entry rdev_new_offset =
2898 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2899
2900 static ssize_t
2901 rdev_size_show(struct md_rdev *rdev, char *page)
2902 {
2903         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2904 }
2905
2906 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2907 {
2908         /* check if two start/length pairs overlap */
2909         if (s1+l1 <= s2)
2910                 return 0;
2911         if (s2+l2 <= s1)
2912                 return 0;
2913         return 1;
2914 }
2915
2916 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2917 {
2918         unsigned long long blocks;
2919         sector_t new;
2920
2921         if (kstrtoull(buf, 10, &blocks) < 0)
2922                 return -EINVAL;
2923
2924         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2925                 return -EINVAL; /* sector conversion overflow */
2926
2927         new = blocks * 2;
2928         if (new != blocks * 2)
2929                 return -EINVAL; /* unsigned long long to sector_t overflow */
2930
2931         *sectors = new;
2932         return 0;
2933 }
2934
2935 static ssize_t
2936 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2937 {
2938         struct mddev *my_mddev = rdev->mddev;
2939         sector_t oldsectors = rdev->sectors;
2940         sector_t sectors;
2941
2942         if (test_bit(Journal, &rdev->flags))
2943                 return -EBUSY;
2944         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2945                 return -EINVAL;
2946         if (rdev->data_offset != rdev->new_data_offset)
2947                 return -EINVAL; /* too confusing */
2948         if (my_mddev->pers && rdev->raid_disk >= 0) {
2949                 if (my_mddev->persistent) {
2950                         sectors = super_types[my_mddev->major_version].
2951                                 rdev_size_change(rdev, sectors);
2952                         if (!sectors)
2953                                 return -EBUSY;
2954                 } else if (!sectors)
2955                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2956                                 rdev->data_offset;
2957                 if (!my_mddev->pers->resize)
2958                         /* Cannot change size for RAID0 or Linear etc */
2959                         return -EINVAL;
2960         }
2961         if (sectors < my_mddev->dev_sectors)
2962                 return -EINVAL; /* component must fit device */
2963
2964         rdev->sectors = sectors;
2965         if (sectors > oldsectors && my_mddev->external) {
2966                 /* Need to check that all other rdevs with the same
2967                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2968                  * the rdev lists safely.
2969                  * This check does not provide a hard guarantee, it
2970                  * just helps avoid dangerous mistakes.
2971                  */
2972                 struct mddev *mddev;
2973                 int overlap = 0;
2974                 struct list_head *tmp;
2975
2976                 rcu_read_lock();
2977                 for_each_mddev(mddev, tmp) {
2978                         struct md_rdev *rdev2;
2979
2980                         rdev_for_each(rdev2, mddev)
2981                                 if (rdev->bdev == rdev2->bdev &&
2982                                     rdev != rdev2 &&
2983                                     overlaps(rdev->data_offset, rdev->sectors,
2984                                              rdev2->data_offset,
2985                                              rdev2->sectors)) {
2986                                         overlap = 1;
2987                                         break;
2988                                 }
2989                         if (overlap) {
2990                                 mddev_put(mddev);
2991                                 break;
2992                         }
2993                 }
2994                 rcu_read_unlock();
2995                 if (overlap) {
2996                         /* Someone else could have slipped in a size
2997                          * change here, but doing so is just silly.
2998                          * We put oldsectors back because we *know* it is
2999                          * safe, and trust userspace not to race with
3000                          * itself
3001                          */
3002                         rdev->sectors = oldsectors;
3003                         return -EBUSY;
3004                 }
3005         }
3006         return len;
3007 }
3008
3009 static struct rdev_sysfs_entry rdev_size =
3010 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3011
3012 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3013 {
3014         unsigned long long recovery_start = rdev->recovery_offset;
3015
3016         if (test_bit(In_sync, &rdev->flags) ||
3017             recovery_start == MaxSector)
3018                 return sprintf(page, "none\n");
3019
3020         return sprintf(page, "%llu\n", recovery_start);
3021 }
3022
3023 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3024 {
3025         unsigned long long recovery_start;
3026
3027         if (cmd_match(buf, "none"))
3028                 recovery_start = MaxSector;
3029         else if (kstrtoull(buf, 10, &recovery_start))
3030                 return -EINVAL;
3031
3032         if (rdev->mddev->pers &&
3033             rdev->raid_disk >= 0)
3034                 return -EBUSY;
3035
3036         rdev->recovery_offset = recovery_start;
3037         if (recovery_start == MaxSector)
3038                 set_bit(In_sync, &rdev->flags);
3039         else
3040                 clear_bit(In_sync, &rdev->flags);
3041         return len;
3042 }
3043
3044 static struct rdev_sysfs_entry rdev_recovery_start =
3045 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3046
3047 static ssize_t
3048 badblocks_show(struct badblocks *bb, char *page, int unack);
3049 static ssize_t
3050 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3051
3052 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3053 {
3054         return badblocks_show(&rdev->badblocks, page, 0);
3055 }
3056 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3057 {
3058         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3059         /* Maybe that ack was all we needed */
3060         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3061                 wake_up(&rdev->blocked_wait);
3062         return rv;
3063 }
3064 static struct rdev_sysfs_entry rdev_bad_blocks =
3065 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3066
3067 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3068 {
3069         return badblocks_show(&rdev->badblocks, page, 1);
3070 }
3071 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3072 {
3073         return badblocks_store(&rdev->badblocks, page, len, 1);
3074 }
3075 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3076 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3077
3078 static struct attribute *rdev_default_attrs[] = {
3079         &rdev_state.attr,
3080         &rdev_errors.attr,
3081         &rdev_slot.attr,
3082         &rdev_offset.attr,
3083         &rdev_new_offset.attr,
3084         &rdev_size.attr,
3085         &rdev_recovery_start.attr,
3086         &rdev_bad_blocks.attr,
3087         &rdev_unack_bad_blocks.attr,
3088         NULL,
3089 };
3090 static ssize_t
3091 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3092 {
3093         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3094         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3095
3096         if (!entry->show)
3097                 return -EIO;
3098         if (!rdev->mddev)
3099                 return -EBUSY;
3100         return entry->show(rdev, page);
3101 }
3102
3103 static ssize_t
3104 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3105               const char *page, size_t length)
3106 {
3107         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3108         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3109         ssize_t rv;
3110         struct mddev *mddev = rdev->mddev;
3111
3112         if (!entry->store)
3113                 return -EIO;
3114         if (!capable(CAP_SYS_ADMIN))
3115                 return -EACCES;
3116         rv = mddev ? mddev_lock(mddev): -EBUSY;
3117         if (!rv) {
3118                 if (rdev->mddev == NULL)
3119                         rv = -EBUSY;
3120                 else
3121                         rv = entry->store(rdev, page, length);
3122                 mddev_unlock(mddev);
3123         }
3124         return rv;
3125 }
3126
3127 static void rdev_free(struct kobject *ko)
3128 {
3129         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3130         kfree(rdev);
3131 }
3132 static const struct sysfs_ops rdev_sysfs_ops = {
3133         .show           = rdev_attr_show,
3134         .store          = rdev_attr_store,
3135 };
3136 static struct kobj_type rdev_ktype = {
3137         .release        = rdev_free,
3138         .sysfs_ops      = &rdev_sysfs_ops,
3139         .default_attrs  = rdev_default_attrs,
3140 };
3141
3142 int md_rdev_init(struct md_rdev *rdev)
3143 {
3144         rdev->desc_nr = -1;
3145         rdev->saved_raid_disk = -1;
3146         rdev->raid_disk = -1;
3147         rdev->flags = 0;
3148         rdev->data_offset = 0;
3149         rdev->new_data_offset = 0;
3150         rdev->sb_events = 0;
3151         rdev->last_read_error.tv_sec  = 0;
3152         rdev->last_read_error.tv_nsec = 0;
3153         rdev->sb_loaded = 0;
3154         rdev->bb_page = NULL;
3155         atomic_set(&rdev->nr_pending, 0);
3156         atomic_set(&rdev->read_errors, 0);
3157         atomic_set(&rdev->corrected_errors, 0);
3158
3159         INIT_LIST_HEAD(&rdev->same_set);
3160         init_waitqueue_head(&rdev->blocked_wait);
3161
3162         /* Add space to store bad block list.
3163          * This reserves the space even on arrays where it cannot
3164          * be used - I wonder if that matters
3165          */
3166         rdev->badblocks.count = 0;
3167         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3168         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3169         seqlock_init(&rdev->badblocks.lock);
3170         if (rdev->badblocks.page == NULL)
3171                 return -ENOMEM;
3172
3173         return 0;
3174 }
3175 EXPORT_SYMBOL_GPL(md_rdev_init);
3176 /*
3177  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3178  *
3179  * mark the device faulty if:
3180  *
3181  *   - the device is nonexistent (zero size)
3182  *   - the device has no valid superblock
3183  *
3184  * a faulty rdev _never_ has rdev->sb set.
3185  */
3186 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3187 {
3188         char b[BDEVNAME_SIZE];
3189         int err;
3190         struct md_rdev *rdev;
3191         sector_t size;
3192
3193         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3194         if (!rdev) {
3195                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3196                 return ERR_PTR(-ENOMEM);
3197         }
3198
3199         err = md_rdev_init(rdev);
3200         if (err)
3201                 goto abort_free;
3202         err = alloc_disk_sb(rdev);
3203         if (err)
3204                 goto abort_free;
3205
3206         err = lock_rdev(rdev, newdev, super_format == -2);
3207         if (err)
3208                 goto abort_free;
3209
3210         kobject_init(&rdev->kobj, &rdev_ktype);
3211
3212         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3213         if (!size) {
3214                 printk(KERN_WARNING
3215                         "md: %s has zero or unknown size, marking faulty!\n",
3216                         bdevname(rdev->bdev,b));
3217                 err = -EINVAL;
3218                 goto abort_free;
3219         }
3220
3221         if (super_format >= 0) {
3222                 err = super_types[super_format].
3223                         load_super(rdev, NULL, super_minor);
3224                 if (err == -EINVAL) {
3225                         printk(KERN_WARNING
3226                                 "md: %s does not have a valid v%d.%d "
3227                                "superblock, not importing!\n",
3228                                 bdevname(rdev->bdev,b),
3229                                super_format, super_minor);
3230                         goto abort_free;
3231                 }
3232                 if (err < 0) {
3233                         printk(KERN_WARNING
3234                                 "md: could not read %s's sb, not importing!\n",
3235                                 bdevname(rdev->bdev,b));
3236                         goto abort_free;
3237                 }
3238         }
3239
3240         return rdev;
3241
3242 abort_free:
3243         if (rdev->bdev)
3244                 unlock_rdev(rdev);
3245         md_rdev_clear(rdev);
3246         kfree(rdev);
3247         return ERR_PTR(err);
3248 }
3249
3250 /*
3251  * Check a full RAID array for plausibility
3252  */
3253
3254 static void analyze_sbs(struct mddev *mddev)
3255 {
3256         int i;
3257         struct md_rdev *rdev, *freshest, *tmp;
3258         char b[BDEVNAME_SIZE];
3259
3260         freshest = NULL;
3261         rdev_for_each_safe(rdev, tmp, mddev)
3262                 switch (super_types[mddev->major_version].
3263                         load_super(rdev, freshest, mddev->minor_version)) {
3264                 case 1:
3265                         freshest = rdev;
3266                         break;
3267                 case 0:
3268                         break;
3269                 default:
3270                         printk( KERN_ERR \
3271                                 "md: fatal superblock inconsistency in %s"
3272                                 " -- removing from array\n",
3273                                 bdevname(rdev->bdev,b));
3274                         md_kick_rdev_from_array(rdev);
3275                 }
3276
3277         super_types[mddev->major_version].
3278                 validate_super(mddev, freshest);
3279
3280         i = 0;
3281         rdev_for_each_safe(rdev, tmp, mddev) {
3282                 if (mddev->max_disks &&
3283                     (rdev->desc_nr >= mddev->max_disks ||
3284                      i > mddev->max_disks)) {
3285                         printk(KERN_WARNING
3286                                "md: %s: %s: only %d devices permitted\n",
3287                                mdname(mddev), bdevname(rdev->bdev, b),
3288                                mddev->max_disks);
3289                         md_kick_rdev_from_array(rdev);
3290                         continue;
3291                 }
3292                 if (rdev != freshest) {
3293                         if (super_types[mddev->major_version].
3294                             validate_super(mddev, rdev)) {
3295                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3296                                         " from array!\n",
3297                                         bdevname(rdev->bdev,b));
3298                                 md_kick_rdev_from_array(rdev);
3299                                 continue;
3300                         }
3301                 }
3302                 if (mddev->level == LEVEL_MULTIPATH) {
3303                         rdev->desc_nr = i++;
3304                         rdev->raid_disk = rdev->desc_nr;
3305                         set_bit(In_sync, &rdev->flags);
3306                 } else if (rdev->raid_disk >=
3307                             (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3308                            !test_bit(Journal, &rdev->flags)) {
3309                         rdev->raid_disk = -1;
3310                         clear_bit(In_sync, &rdev->flags);
3311                 }
3312         }
3313 }
3314
3315 /* Read a fixed-point number.
3316  * Numbers in sysfs attributes should be in "standard" units where
3317  * possible, so time should be in seconds.
3318  * However we internally use a a much smaller unit such as
3319  * milliseconds or jiffies.
3320  * This function takes a decimal number with a possible fractional
3321  * component, and produces an integer which is the result of
3322  * multiplying that number by 10^'scale'.
3323  * all without any floating-point arithmetic.
3324  */
3325 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3326 {
3327         unsigned long result = 0;
3328         long decimals = -1;
3329         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3330                 if (*cp == '.')
3331                         decimals = 0;
3332                 else if (decimals < scale) {
3333                         unsigned int value;
3334                         value = *cp - '0';
3335                         result = result * 10 + value;
3336                         if (decimals >= 0)
3337                                 decimals++;
3338                 }
3339                 cp++;
3340         }
3341         if (*cp == '\n')
3342                 cp++;
3343         if (*cp)
3344                 return -EINVAL;
3345         if (decimals < 0)
3346                 decimals = 0;
3347         while (decimals < scale) {
3348                 result *= 10;
3349                 decimals ++;
3350         }
3351         *res = result;
3352         return 0;
3353 }
3354
3355 static ssize_t
3356 safe_delay_show(struct mddev *mddev, char *page)
3357 {
3358         int msec = (mddev->safemode_delay*1000)/HZ;
3359         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3360 }
3361 static ssize_t
3362 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3363 {
3364         unsigned long msec;
3365
3366         if (mddev_is_clustered(mddev)) {
3367                 pr_info("md: Safemode is disabled for clustered mode\n");
3368                 return -EINVAL;
3369         }
3370
3371         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3372                 return -EINVAL;
3373         if (msec == 0)
3374                 mddev->safemode_delay = 0;
3375         else {
3376                 unsigned long old_delay = mddev->safemode_delay;
3377                 unsigned long new_delay = (msec*HZ)/1000;
3378
3379                 if (new_delay == 0)
3380                         new_delay = 1;
3381                 mddev->safemode_delay = new_delay;
3382                 if (new_delay < old_delay || old_delay == 0)
3383                         mod_timer(&mddev->safemode_timer, jiffies+1);
3384         }
3385         return len;
3386 }
3387 static struct md_sysfs_entry md_safe_delay =
3388 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3389
3390 static ssize_t
3391 level_show(struct mddev *mddev, char *page)
3392 {
3393         struct md_personality *p;
3394         int ret;
3395         spin_lock(&mddev->lock);
3396         p = mddev->pers;
3397         if (p)
3398                 ret = sprintf(page, "%s\n", p->name);
3399         else if (mddev->clevel[0])
3400                 ret = sprintf(page, "%s\n", mddev->clevel);
3401         else if (mddev->level != LEVEL_NONE)
3402                 ret = sprintf(page, "%d\n", mddev->level);
3403         else
3404                 ret = 0;
3405         spin_unlock(&mddev->lock);
3406         return ret;
3407 }
3408
3409 static ssize_t
3410 level_store(struct mddev *mddev, const char *buf, size_t len)
3411 {
3412         char clevel[16];
3413         ssize_t rv;
3414         size_t slen = len;
3415         struct md_personality *pers, *oldpers;
3416         long level;
3417         void *priv, *oldpriv;
3418         struct md_rdev *rdev;
3419
3420         if (slen == 0 || slen >= sizeof(clevel))
3421                 return -EINVAL;
3422
3423         rv = mddev_lock(mddev);
3424         if (rv)
3425                 return rv;
3426
3427         if (mddev->pers == NULL) {
3428                 strncpy(mddev->clevel, buf, slen);
3429                 if (mddev->clevel[slen-1] == '\n')
3430                         slen--;
3431                 mddev->clevel[slen] = 0;
3432                 mddev->level = LEVEL_NONE;
3433                 rv = len;
3434                 goto out_unlock;
3435         }
3436         rv = -EROFS;
3437         if (mddev->ro)
3438                 goto out_unlock;
3439
3440         /* request to change the personality.  Need to ensure:
3441          *  - array is not engaged in resync/recovery/reshape
3442          *  - old personality can be suspended
3443          *  - new personality will access other array.
3444          */
3445
3446         rv = -EBUSY;
3447         if (mddev->sync_thread ||
3448             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3449             mddev->reshape_position != MaxSector ||
3450             mddev->sysfs_active)
3451                 goto out_unlock;
3452
3453         rv = -EINVAL;
3454         if (!mddev->pers->quiesce) {
3455                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3456                        mdname(mddev), mddev->pers->name);
3457                 goto out_unlock;
3458         }
3459
3460         /* Now find the new personality */
3461         strncpy(clevel, buf, slen);
3462         if (clevel[slen-1] == '\n')
3463                 slen--;
3464         clevel[slen] = 0;
3465         if (kstrtol(clevel, 10, &level))
3466                 level = LEVEL_NONE;
3467
3468         if (request_module("md-%s", clevel) != 0)
3469                 request_module("md-level-%s", clevel);
3470         spin_lock(&pers_lock);
3471         pers = find_pers(level, clevel);
3472         if (!pers || !try_module_get(pers->owner)) {
3473                 spin_unlock(&pers_lock);
3474                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3475                 rv = -EINVAL;
3476                 goto out_unlock;
3477         }
3478         spin_unlock(&pers_lock);
3479
3480         if (pers == mddev->pers) {
3481                 /* Nothing to do! */
3482                 module_put(pers->owner);
3483                 rv = len;
3484                 goto out_unlock;
3485         }
3486         if (!pers->takeover) {
3487                 module_put(pers->owner);
3488                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3489                        mdname(mddev), clevel);
3490                 rv = -EINVAL;
3491                 goto out_unlock;
3492         }
3493
3494         rdev_for_each(rdev, mddev)
3495                 rdev->new_raid_disk = rdev->raid_disk;
3496
3497         /* ->takeover must set new_* and/or delta_disks
3498          * if it succeeds, and may set them when it fails.
3499          */
3500         priv = pers->takeover(mddev);
3501         if (IS_ERR(priv)) {
3502                 mddev->new_level = mddev->level;
3503                 mddev->new_layout = mddev->layout;
3504                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3505                 mddev->raid_disks -= mddev->delta_disks;
3506                 mddev->delta_disks = 0;
3507                 mddev->reshape_backwards = 0;
3508                 module_put(pers->owner);
3509                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3510                        mdname(mddev), clevel);
3511                 rv = PTR_ERR(priv);
3512                 goto out_unlock;
3513         }
3514
3515         /* Looks like we have a winner */
3516         mddev_suspend(mddev);
3517         mddev_detach(mddev);
3518
3519         spin_lock(&mddev->lock);
3520         oldpers = mddev->pers;
3521         oldpriv = mddev->private;
3522         mddev->pers = pers;
3523         mddev->private = priv;
3524         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3525         mddev->level = mddev->new_level;
3526         mddev->layout = mddev->new_layout;
3527         mddev->chunk_sectors = mddev->new_chunk_sectors;
3528         mddev->delta_disks = 0;
3529         mddev->reshape_backwards = 0;
3530         mddev->degraded = 0;
3531         spin_unlock(&mddev->lock);
3532
3533         if (oldpers->sync_request == NULL &&
3534             mddev->external) {
3535                 /* We are converting from a no-redundancy array
3536                  * to a redundancy array and metadata is managed
3537                  * externally so we need to be sure that writes
3538                  * won't block due to a need to transition
3539                  *      clean->dirty
3540                  * until external management is started.
3541                  */
3542                 mddev->in_sync = 0;
3543                 mddev->safemode_delay = 0;
3544                 mddev->safemode = 0;
3545         }
3546
3547         oldpers->free(mddev, oldpriv);
3548
3549         if (oldpers->sync_request == NULL &&
3550             pers->sync_request != NULL) {
3551                 /* need to add the md_redundancy_group */
3552                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3553                         printk(KERN_WARNING
3554                                "md: cannot register extra attributes for %s\n",
3555                                mdname(mddev));
3556                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3557         }
3558         if (oldpers->sync_request != NULL &&
3559             pers->sync_request == NULL) {
3560                 /* need to remove the md_redundancy_group */
3561                 if (mddev->to_remove == NULL)
3562                         mddev->to_remove = &md_redundancy_group;
3563         }
3564
3565         rdev_for_each(rdev, mddev) {
3566                 if (rdev->raid_disk < 0)
3567                         continue;
3568                 if (rdev->new_raid_disk >= mddev->raid_disks)
3569                         rdev->new_raid_disk = -1;
3570                 if (rdev->new_raid_disk == rdev->raid_disk)
3571                         continue;
3572                 sysfs_unlink_rdev(mddev, rdev);
3573         }
3574         rdev_for_each(rdev, mddev) {
3575                 if (rdev->raid_disk < 0)
3576                         continue;
3577                 if (rdev->new_raid_disk == rdev->raid_disk)
3578                         continue;
3579                 rdev->raid_disk = rdev->new_raid_disk;
3580                 if (rdev->raid_disk < 0)
3581                         clear_bit(In_sync, &rdev->flags);
3582                 else {
3583                         if (sysfs_link_rdev(mddev, rdev))
3584                                 printk(KERN_WARNING "md: cannot register rd%d"
3585                                        " for %s after level change\n",
3586                                        rdev->raid_disk, mdname(mddev));
3587                 }
3588         }
3589
3590         if (pers->sync_request == NULL) {
3591                 /* this is now an array without redundancy, so
3592                  * it must always be in_sync
3593                  */
3594                 mddev->in_sync = 1;
3595                 del_timer_sync(&mddev->safemode_timer);
3596         }
3597         blk_set_stacking_limits(&mddev->queue->limits);
3598         pers->run(mddev);
3599         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3600         mddev_resume(mddev);
3601         if (!mddev->thread)
3602                 md_update_sb(mddev, 1);
3603         sysfs_notify(&mddev->kobj, NULL, "level");
3604         md_new_event(mddev);
3605         rv = len;
3606 out_unlock:
3607         mddev_unlock(mddev);
3608         return rv;
3609 }
3610
3611 static struct md_sysfs_entry md_level =
3612 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3613
3614 static ssize_t
3615 layout_show(struct mddev *mddev, char *page)
3616 {
3617         /* just a number, not meaningful for all levels */
3618         if (mddev->reshape_position != MaxSector &&
3619             mddev->layout != mddev->new_layout)
3620                 return sprintf(page, "%d (%d)\n",
3621                                mddev->new_layout, mddev->layout);
3622         return sprintf(page, "%d\n", mddev->layout);
3623 }
3624
3625 static ssize_t
3626 layout_store(struct mddev *mddev, const char *buf, size_t len)
3627 {
3628         unsigned int n;
3629         int err;
3630
3631         err = kstrtouint(buf, 10, &n);
3632         if (err < 0)
3633                 return err;
3634         err = mddev_lock(mddev);
3635         if (err)
3636                 return err;
3637
3638         if (mddev->pers) {
3639                 if (mddev->pers->check_reshape == NULL)
3640                         err = -EBUSY;
3641                 else if (mddev->ro)
3642                         err = -EROFS;
3643                 else {
3644                         mddev->new_layout = n;
3645                         err = mddev->pers->check_reshape(mddev);
3646                         if (err)
3647                                 mddev->new_layout = mddev->layout;
3648                 }
3649         } else {
3650                 mddev->new_layout = n;
3651                 if (mddev->reshape_position == MaxSector)
3652                         mddev->layout = n;
3653         }
3654         mddev_unlock(mddev);
3655         return err ?: len;
3656 }
3657 static struct md_sysfs_entry md_layout =
3658 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3659
3660 static ssize_t
3661 raid_disks_show(struct mddev *mddev, char *page)
3662 {
3663         if (mddev->raid_disks == 0)
3664                 return 0;
3665         if (mddev->reshape_position != MaxSector &&
3666             mddev->delta_disks != 0)
3667                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3668                                mddev->raid_disks - mddev->delta_disks);
3669         return sprintf(page, "%d\n", mddev->raid_disks);
3670 }
3671
3672 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3673
3674 static ssize_t
3675 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3676 {
3677         unsigned int n;
3678         int err;
3679
3680         err = kstrtouint(buf, 10, &n);
3681         if (err < 0)
3682                 return err;
3683
3684         err = mddev_lock(mddev);
3685         if (err)
3686                 return err;
3687         if (mddev->pers)
3688                 err = update_raid_disks(mddev, n);
3689         else if (mddev->reshape_position != MaxSector) {
3690                 struct md_rdev *rdev;
3691                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3692
3693                 err = -EINVAL;
3694                 rdev_for_each(rdev, mddev) {
3695                         if (olddisks < n &&
3696                             rdev->data_offset < rdev->new_data_offset)
3697                                 goto out_unlock;
3698                         if (olddisks > n &&
3699                             rdev->data_offset > rdev->new_data_offset)
3700                                 goto out_unlock;
3701                 }
3702                 err = 0;
3703                 mddev->delta_disks = n - olddisks;
3704                 mddev->raid_disks = n;
3705                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3706         } else
3707                 mddev->raid_disks = n;
3708 out_unlock:
3709         mddev_unlock(mddev);
3710         return err ? err : len;
3711 }
3712 static struct md_sysfs_entry md_raid_disks =
3713 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3714
3715 static ssize_t
3716 chunk_size_show(struct mddev *mddev, char *page)
3717 {
3718         if (mddev->reshape_position != MaxSector &&
3719             mddev->chunk_sectors != mddev->new_chunk_sectors)
3720                 return sprintf(page, "%d (%d)\n",
3721                                mddev->new_chunk_sectors << 9,
3722                                mddev->chunk_sectors << 9);
3723         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3724 }
3725
3726 static ssize_t
3727 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3728 {
3729         unsigned long n;
3730         int err;
3731
3732         err = kstrtoul(buf, 10, &n);
3733         if (err < 0)
3734                 return err;
3735
3736         err = mddev_lock(mddev);
3737         if (err)
3738                 return err;
3739         if (mddev->pers) {
3740                 if (mddev->pers->check_reshape == NULL)
3741                         err = -EBUSY;
3742                 else if (mddev->ro)
3743                         err = -EROFS;
3744                 else {
3745                         mddev->new_chunk_sectors = n >> 9;
3746                         err = mddev->pers->check_reshape(mddev);
3747                         if (err)
3748                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3749                 }
3750         } else {
3751                 mddev->new_chunk_sectors = n >> 9;
3752                 if (mddev->reshape_position == MaxSector)
3753                         mddev->chunk_sectors = n >> 9;
3754         }
3755         mddev_unlock(mddev);
3756         return err ?: len;
3757 }
3758 static struct md_sysfs_entry md_chunk_size =
3759 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3760
3761 static ssize_t
3762 resync_start_show(struct mddev *mddev, char *page)
3763 {
3764         if (mddev->recovery_cp == MaxSector)
3765                 return sprintf(page, "none\n");
3766         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3767 }
3768
3769 static ssize_t
3770 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3771 {
3772         unsigned long long n;
3773         int err;
3774
3775         if (cmd_match(buf, "none"))
3776                 n = MaxSector;
3777         else {
3778                 err = kstrtoull(buf, 10, &n);
3779                 if (err < 0)
3780                         return err;
3781                 if (n != (sector_t)n)
3782                         return -EINVAL;
3783         }
3784
3785         err = mddev_lock(mddev);
3786         if (err)
3787                 return err;
3788         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3789                 err = -EBUSY;
3790
3791         if (!err) {
3792                 mddev->recovery_cp = n;
3793                 if (mddev->pers)
3794                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3795         }
3796         mddev_unlock(mddev);
3797         return err ?: len;
3798 }
3799 static struct md_sysfs_entry md_resync_start =
3800 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3801                 resync_start_show, resync_start_store);
3802
3803 /*
3804  * The array state can be:
3805  *
3806  * clear
3807  *     No devices, no size, no level
3808  *     Equivalent to STOP_ARRAY ioctl
3809  * inactive
3810  *     May have some settings, but array is not active
3811  *        all IO results in error
3812  *     When written, doesn't tear down array, but just stops it
3813  * suspended (not supported yet)
3814  *     All IO requests will block. The array can be reconfigured.
3815  *     Writing this, if accepted, will block until array is quiescent
3816  * readonly
3817  *     no resync can happen.  no superblocks get written.
3818  *     write requests fail
3819  * read-auto
3820  *     like readonly, but behaves like 'clean' on a write request.
3821  *
3822  * clean - no pending writes, but otherwise active.
3823  *     When written to inactive array, starts without resync
3824  *     If a write request arrives then
3825  *       if metadata is known, mark 'dirty' and switch to 'active'.
3826  *       if not known, block and switch to write-pending
3827  *     If written to an active array that has pending writes, then fails.
3828  * active
3829  *     fully active: IO and resync can be happening.
3830  *     When written to inactive array, starts with resync
3831  *
3832  * write-pending
3833  *     clean, but writes are blocked waiting for 'active' to be written.
3834  *
3835  * active-idle
3836  *     like active, but no writes have been seen for a while (100msec).
3837  *
3838  */
3839 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3840                    write_pending, active_idle, bad_word};
3841 static char *array_states[] = {
3842         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3843         "write-pending", "active-idle", NULL };
3844
3845 static int match_word(const char *word, char **list)
3846 {
3847         int n;
3848         for (n=0; list[n]; n++)
3849                 if (cmd_match(word, list[n]))
3850                         break;
3851         return n;
3852 }
3853
3854 static ssize_t
3855 array_state_show(struct mddev *mddev, char *page)
3856 {
3857         enum array_state st = inactive;
3858
3859         if (mddev->pers)
3860                 switch(mddev->ro) {
3861                 case 1:
3862                         st = readonly;
3863                         break;
3864                 case 2:
3865                         st = read_auto;
3866                         break;
3867                 case 0:
3868                         if (mddev->in_sync)
3869                                 st = clean;
3870                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3871                                 st = write_pending;
3872                         else if (mddev->safemode)
3873                                 st = active_idle;
3874                         else
3875                                 st = active;
3876                 }
3877         else {
3878                 if (list_empty(&mddev->disks) &&
3879                     mddev->raid_disks == 0 &&
3880                     mddev->dev_sectors == 0)
3881                         st = clear;
3882                 else
3883                         st = inactive;
3884         }
3885         return sprintf(page, "%s\n", array_states[st]);
3886 }
3887
3888 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3889 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3890 static int do_md_run(struct mddev *mddev);
3891 static int restart_array(struct mddev *mddev);
3892
3893 static ssize_t
3894 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3895 {
3896         int err;
3897         enum array_state st = match_word(buf, array_states);
3898
3899         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3900                 /* don't take reconfig_mutex when toggling between
3901                  * clean and active
3902                  */
3903                 spin_lock(&mddev->lock);
3904                 if (st == active) {
3905                         restart_array(mddev);
3906                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3907                         wake_up(&mddev->sb_wait);
3908                         err = 0;
3909                 } else /* st == clean */ {
3910                         restart_array(mddev);
3911                         if (atomic_read(&mddev->writes_pending) == 0) {
3912                                 if (mddev->in_sync == 0) {
3913                                         mddev->in_sync = 1;
3914                                         if (mddev->safemode == 1)
3915                                                 mddev->safemode = 0;
3916                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3917                                 }
3918                                 err = 0;
3919                         } else
3920                                 err = -EBUSY;
3921                 }
3922                 spin_unlock(&mddev->lock);
3923                 return err ?: len;
3924         }
3925         err = mddev_lock(mddev);
3926         if (err)
3927                 return err;
3928         err = -EINVAL;
3929         switch(st) {
3930         case bad_word:
3931                 break;
3932         case clear:
3933                 /* stopping an active array */
3934                 err = do_md_stop(mddev, 0, NULL);
3935                 break;
3936         case inactive:
3937                 /* stopping an active array */
3938                 if (mddev->pers)
3939                         err = do_md_stop(mddev, 2, NULL);
3940                 else
3941                         err = 0; /* already inactive */
3942                 break;
3943         case suspended:
3944                 break; /* not supported yet */
3945         case readonly:
3946                 if (mddev->pers)
3947                         err = md_set_readonly(mddev, NULL);
3948                 else {
3949                         mddev->ro = 1;
3950                         set_disk_ro(mddev->gendisk, 1);
3951                         err = do_md_run(mddev);
3952                 }
3953                 break;
3954         case read_auto:
3955                 if (mddev->pers) {
3956                         if (mddev->ro == 0)
3957                                 err = md_set_readonly(mddev, NULL);
3958                         else if (mddev->ro == 1)
3959                                 err = restart_array(mddev);
3960                         if (err == 0) {
3961                                 mddev->ro = 2;
3962                                 set_disk_ro(mddev->gendisk, 0);
3963                         }
3964                 } else {
3965                         mddev->ro = 2;
3966                         err = do_md_run(mddev);
3967                 }
3968                 break;
3969         case clean:
3970                 if (mddev->pers) {
3971                         err = restart_array(mddev);
3972                         if (err)
3973                                 break;
3974                         spin_lock(&mddev->lock);
3975                         if (atomic_read(&mddev->writes_pending) == 0) {
3976                                 if (mddev->in_sync == 0) {
3977                                         mddev->in_sync = 1;
3978                                         if (mddev->safemode == 1)
3979                                                 mddev->safemode = 0;
3980                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3981                                 }
3982                                 err = 0;
3983                         } else
3984                                 err = -EBUSY;
3985                         spin_unlock(&mddev->lock);
3986                 } else
3987                         err = -EINVAL;
3988                 break;
3989         case active:
3990                 if (mddev->pers) {
3991                         err = restart_array(mddev);
3992                         if (err)
3993                                 break;
3994                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3995                         wake_up(&mddev->sb_wait);
3996                         err = 0;
3997                 } else {
3998                         mddev->ro = 0;
3999                         set_disk_ro(mddev->gendisk, 0);
4000                         err = do_md_run(mddev);
4001                 }
4002                 break;
4003         case write_pending:
4004         case active_idle:
4005                 /* these cannot be set */
4006                 break;
4007         }
4008
4009         if (!err) {
4010                 if (mddev->hold_active == UNTIL_IOCTL)
4011                         mddev->hold_active = 0;
4012                 sysfs_notify_dirent_safe(mddev->sysfs_state);
4013         }
4014         mddev_unlock(mddev);
4015         return err ?: len;
4016 }
4017 static struct md_sysfs_entry md_array_state =
4018 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4019
4020 static ssize_t
4021 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4022         return sprintf(page, "%d\n",
4023                        atomic_read(&mddev->max_corr_read_errors));
4024 }
4025
4026 static ssize_t
4027 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4028 {
4029         unsigned int n;
4030         int rv;
4031
4032         rv = kstrtouint(buf, 10, &n);
4033         if (rv < 0)
4034                 return rv;
4035         atomic_set(&mddev->max_corr_read_errors, n);
4036         return len;
4037 }
4038
4039 static struct md_sysfs_entry max_corr_read_errors =
4040 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4041         max_corrected_read_errors_store);
4042
4043 static ssize_t
4044 null_show(struct mddev *mddev, char *page)
4045 {
4046         return -EINVAL;
4047 }
4048
4049 static ssize_t
4050 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4051 {
4052         /* buf must be %d:%d\n? giving major and minor numbers */
4053         /* The new device is added to the array.
4054          * If the array has a persistent superblock, we read the
4055          * superblock to initialise info and check validity.
4056          * Otherwise, only checking done is that in bind_rdev_to_array,
4057          * which mainly checks size.
4058          */
4059         char *e;
4060         int major = simple_strtoul(buf, &e, 10);
4061         int minor;
4062         dev_t dev;
4063         struct md_rdev *rdev;
4064         int err;
4065
4066         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4067                 return -EINVAL;
4068         minor = simple_strtoul(e+1, &e, 10);
4069         if (*e && *e != '\n')
4070                 return -EINVAL;
4071         dev = MKDEV(major, minor);
4072         if (major != MAJOR(dev) ||
4073             minor != MINOR(dev))
4074                 return -EOVERFLOW;
4075
4076         flush_workqueue(md_misc_wq);
4077
4078         err = mddev_lock(mddev);
4079         if (err)
4080                 return err;
4081         if (mddev->persistent) {
4082                 rdev = md_import_device(dev, mddev->major_version,
4083                                         mddev->minor_version);
4084                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4085                         struct md_rdev *rdev0
4086                                 = list_entry(mddev->disks.next,
4087                                              struct md_rdev, same_set);
4088                         err = super_types[mddev->major_version]
4089                                 .load_super(rdev, rdev0, mddev->minor_version);
4090                         if (err < 0)
4091                                 goto out;
4092                 }
4093         } else if (mddev->external)
4094                 rdev = md_import_device(dev, -2, -1);
4095         else
4096                 rdev = md_import_device(dev, -1, -1);
4097
4098         if (IS_ERR(rdev)) {
4099                 mddev_unlock(mddev);
4100                 return PTR_ERR(rdev);
4101         }
4102         err = bind_rdev_to_array(rdev, mddev);
4103  out:
4104         if (err)
4105                 export_rdev(rdev);
4106         mddev_unlock(mddev);
4107         return err ? err : len;
4108 }
4109
4110 static struct md_sysfs_entry md_new_device =
4111 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4112
4113 static ssize_t
4114 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4115 {
4116         char *end;
4117         unsigned long chunk, end_chunk;
4118         int err;
4119
4120         err = mddev_lock(mddev);
4121         if (err)
4122                 return err;
4123         if (!mddev->bitmap)
4124                 goto out;
4125         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4126         while (*buf) {
4127                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4128                 if (buf == end) break;
4129                 if (*end == '-') { /* range */
4130                         buf = end + 1;
4131                         end_chunk = simple_strtoul(buf, &end, 0);
4132                         if (buf == end) break;
4133                 }
4134                 if (*end && !isspace(*end)) break;
4135                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4136                 buf = skip_spaces(end);
4137         }
4138         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4139 out:
4140         mddev_unlock(mddev);
4141         return len;
4142 }
4143
4144 static struct md_sysfs_entry md_bitmap =
4145 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4146
4147 static ssize_t
4148 size_show(struct mddev *mddev, char *page)
4149 {
4150         return sprintf(page, "%llu\n",
4151                 (unsigned long long)mddev->dev_sectors / 2);
4152 }
4153
4154 static int update_size(struct mddev *mddev, sector_t num_sectors);
4155
4156 static ssize_t
4157 size_store(struct mddev *mddev, const char *buf, size_t len)
4158 {
4159         /* If array is inactive, we can reduce the component size, but
4160          * not increase it (except from 0).
4161          * If array is active, we can try an on-line resize
4162          */
4163         sector_t sectors;
4164         int err = strict_blocks_to_sectors(buf, &sectors);
4165
4166         if (err < 0)
4167                 return err;
4168         err = mddev_lock(mddev);
4169         if (err)
4170                 return err;
4171         if (mddev->pers) {
4172                 err = update_size(mddev, sectors);
4173                 md_update_sb(mddev, 1);
4174         } else {
4175                 if (mddev->dev_sectors == 0 ||
4176                     mddev->dev_sectors > sectors)
4177                         mddev->dev_sectors = sectors;
4178                 else
4179                         err = -ENOSPC;
4180         }
4181         mddev_unlock(mddev);
4182         return err ? err : len;
4183 }
4184
4185 static struct md_sysfs_entry md_size =
4186 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4187
4188 /* Metadata version.
4189  * This is one of
4190  *   'none' for arrays with no metadata (good luck...)
4191  *   'external' for arrays with externally managed metadata,
4192  * or N.M for internally known formats
4193  */
4194 static ssize_t
4195 metadata_show(struct mddev *mddev, char *page)
4196 {
4197         if (mddev->persistent)
4198                 return sprintf(page, "%d.%d\n",
4199                                mddev->major_version, mddev->minor_version);
4200         else if (mddev->external)
4201                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4202         else
4203                 return sprintf(page, "none\n");
4204 }
4205
4206 static ssize_t
4207 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4208 {
4209         int major, minor;
4210         char *e;
4211         int err;
4212         /* Changing the details of 'external' metadata is
4213          * always permitted.  Otherwise there must be
4214          * no devices attached to the array.
4215          */
4216
4217         err = mddev_lock(mddev);
4218         if (err)
4219                 return err;
4220         err = -EBUSY;
4221         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4222                 ;
4223         else if (!list_empty(&mddev->disks))
4224                 goto out_unlock;
4225
4226         err = 0;
4227         if (cmd_match(buf, "none")) {
4228                 mddev->persistent = 0;
4229                 mddev->external = 0;
4230                 mddev->major_version = 0;
4231                 mddev->minor_version = 90;
4232                 goto out_unlock;
4233         }
4234         if (strncmp(buf, "external:", 9) == 0) {
4235                 size_t namelen = len-9;
4236                 if (namelen >= sizeof(mddev->metadata_type))
4237                         namelen = sizeof(mddev->metadata_type)-1;
4238                 strncpy(mddev->metadata_type, buf+9, namelen);
4239                 mddev->metadata_type[namelen] = 0;
4240                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4241                         mddev->metadata_type[--namelen] = 0;
4242                 mddev->persistent = 0;
4243                 mddev->external = 1;
4244                 mddev->major_version = 0;
4245                 mddev->minor_version = 90;
4246                 goto out_unlock;
4247         }
4248         major = simple_strtoul(buf, &e, 10);
4249         err = -EINVAL;
4250         if (e==buf || *e != '.')
4251                 goto out_unlock;
4252         buf = e+1;
4253         minor = simple_strtoul(buf, &e, 10);
4254         if (e==buf || (*e && *e != '\n') )
4255                 goto out_unlock;
4256         err = -ENOENT;
4257         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4258                 goto out_unlock;
4259         mddev->major_version = major;
4260         mddev->minor_version = minor;
4261         mddev->persistent = 1;
4262         mddev->external = 0;
4263         err = 0;
4264 out_unlock:
4265         mddev_unlock(mddev);
4266         return err ?: len;
4267 }
4268
4269 static struct md_sysfs_entry md_metadata =
4270 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4271
4272 static ssize_t
4273 action_show(struct mddev *mddev, char *page)
4274 {
4275         char *type = "idle";
4276         unsigned long recovery = mddev->recovery;
4277         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4278                 type = "frozen";
4279         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4280             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4281                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4282                         type = "reshape";
4283                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4284                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4285                                 type = "resync";
4286                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4287                                 type = "check";
4288                         else
4289                                 type = "repair";
4290                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4291                         type = "recover";
4292                 else if (mddev->reshape_position != MaxSector)
4293                         type = "reshape";
4294         }
4295         return sprintf(page, "%s\n", type);
4296 }
4297
4298 static ssize_t
4299 action_store(struct mddev *mddev, const char *page, size_t len)
4300 {
4301         if (!mddev->pers || !mddev->pers->sync_request)
4302                 return -EINVAL;
4303
4304
4305         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4306                 if (cmd_match(page, "frozen"))
4307                         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4308                 else
4309                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4310                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4311                     mddev_lock(mddev) == 0) {
4312                         flush_workqueue(md_misc_wq);
4313                         if (mddev->sync_thread) {
4314                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4315                                 md_reap_sync_thread(mddev);
4316                         }
4317                         mddev_unlock(mddev);
4318                 }
4319         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4320                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4321                 return -EBUSY;
4322         else if (cmd_match(page, "resync"))
4323                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4324         else if (cmd_match(page, "recover")) {
4325                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4327         } else if (cmd_match(page, "reshape")) {
4328                 int err;
4329                 if (mddev->pers->start_reshape == NULL)
4330                         return -EINVAL;
4331                 err = mddev_lock(mddev);
4332                 if (!err) {
4333                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4334                         err = mddev->pers->start_reshape(mddev);
4335                         mddev_unlock(mddev);
4336                 }
4337                 if (err)
4338                         return err;
4339                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4340         } else {
4341                 if (cmd_match(page, "check"))
4342                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4343                 else if (!cmd_match(page, "repair"))
4344                         return -EINVAL;
4345                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4346                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4347                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4348         }
4349         if (mddev->ro == 2) {
4350                 /* A write to sync_action is enough to justify
4351                  * canceling read-auto mode
4352                  */
4353                 mddev->ro = 0;
4354                 md_wakeup_thread(mddev->sync_thread);
4355         }
4356         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4357         md_wakeup_thread(mddev->thread);
4358         sysfs_notify_dirent_safe(mddev->sysfs_action);
4359         return len;
4360 }
4361
4362 static struct md_sysfs_entry md_scan_mode =
4363 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4364
4365 static ssize_t
4366 last_sync_action_show(struct mddev *mddev, char *page)
4367 {
4368         return sprintf(page, "%s\n", mddev->last_sync_action);
4369 }
4370
4371 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4372
4373 static ssize_t
4374 mismatch_cnt_show(struct mddev *mddev, char *page)
4375 {
4376         return sprintf(page, "%llu\n",
4377                        (unsigned long long)
4378                        atomic64_read(&mddev->resync_mismatches));
4379 }
4380
4381 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4382
4383 static ssize_t
4384 sync_min_show(struct mddev *mddev, char *page)
4385 {
4386         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4387                        mddev->sync_speed_min ? "local": "system");
4388 }
4389
4390 static ssize_t
4391 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4392 {
4393         unsigned int min;
4394         int rv;
4395
4396         if (strncmp(buf, "system", 6)==0) {
4397                 min = 0;
4398         } else {
4399                 rv = kstrtouint(buf, 10, &min);
4400                 if (rv < 0)
4401                         return rv;
4402                 if (min == 0)
4403                         return -EINVAL;
4404         }
4405         mddev->sync_speed_min = min;
4406         return len;
4407 }
4408
4409 static struct md_sysfs_entry md_sync_min =
4410 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4411
4412 static ssize_t
4413 sync_max_show(struct mddev *mddev, char *page)
4414 {
4415         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4416                        mddev->sync_speed_max ? "local": "system");
4417 }
4418
4419 static ssize_t
4420 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4421 {
4422         unsigned int max;
4423         int rv;
4424
4425         if (strncmp(buf, "system", 6)==0) {
4426                 max = 0;
4427         } else {
4428                 rv = kstrtouint(buf, 10, &max);
4429                 if (rv < 0)
4430                         return rv;
4431                 if (max == 0)
4432                         return -EINVAL;
4433         }
4434         mddev->sync_speed_max = max;
4435         return len;
4436 }
4437
4438 static struct md_sysfs_entry md_sync_max =
4439 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4440
4441 static ssize_t
4442 degraded_show(struct mddev *mddev, char *page)
4443 {
4444         return sprintf(page, "%d\n", mddev->degraded);
4445 }
4446 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4447
4448 static ssize_t
4449 sync_force_parallel_show(struct mddev *mddev, char *page)
4450 {
4451         return sprintf(page, "%d\n", mddev->parallel_resync);
4452 }
4453
4454 static ssize_t
4455 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4456 {
4457         long n;
4458
4459         if (kstrtol(buf, 10, &n))
4460                 return -EINVAL;
4461
4462         if (n != 0 && n != 1)
4463                 return -EINVAL;
4464
4465         mddev->parallel_resync = n;
4466
4467         if (mddev->sync_thread)
4468                 wake_up(&resync_wait);
4469
4470         return len;
4471 }
4472
4473 /* force parallel resync, even with shared block devices */
4474 static struct md_sysfs_entry md_sync_force_parallel =
4475 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4476        sync_force_parallel_show, sync_force_parallel_store);
4477
4478 static ssize_t
4479 sync_speed_show(struct mddev *mddev, char *page)
4480 {
4481         unsigned long resync, dt, db;
4482         if (mddev->curr_resync == 0)
4483                 return sprintf(page, "none\n");
4484         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4485         dt = (jiffies - mddev->resync_mark) / HZ;
4486         if (!dt) dt++;
4487         db = resync - mddev->resync_mark_cnt;
4488         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4489 }
4490
4491 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4492
4493 static ssize_t
4494 sync_completed_show(struct mddev *mddev, char *page)
4495 {
4496         unsigned long long max_sectors, resync;
4497
4498         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4499                 return sprintf(page, "none\n");
4500
4501         if (mddev->curr_resync == 1 ||
4502             mddev->curr_resync == 2)
4503                 return sprintf(page, "delayed\n");
4504
4505         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4506             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4507                 max_sectors = mddev->resync_max_sectors;
4508         else
4509                 max_sectors = mddev->dev_sectors;
4510
4511         resync = mddev->curr_resync_completed;
4512         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4513 }
4514
4515 static struct md_sysfs_entry md_sync_completed =
4516         __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4517
4518 static ssize_t
4519 min_sync_show(struct mddev *mddev, char *page)
4520 {
4521         return sprintf(page, "%llu\n",
4522                        (unsigned long long)mddev->resync_min);
4523 }
4524 static ssize_t
4525 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4526 {
4527         unsigned long long min;
4528         int err;
4529
4530         if (kstrtoull(buf, 10, &min))
4531                 return -EINVAL;
4532
4533         spin_lock(&mddev->lock);
4534         err = -EINVAL;
4535         if (min > mddev->resync_max)
4536                 goto out_unlock;
4537
4538         err = -EBUSY;
4539         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4540                 goto out_unlock;
4541
4542         /* Round down to multiple of 4K for safety */
4543         mddev->resync_min = round_down(min, 8);
4544         err = 0;
4545
4546 out_unlock:
4547         spin_unlock(&mddev->lock);
4548         return err ?: len;
4549 }
4550
4551 static struct md_sysfs_entry md_min_sync =
4552 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4553
4554 static ssize_t
4555 max_sync_show(struct mddev *mddev, char *page)
4556 {
4557         if (mddev->resync_max == MaxSector)
4558                 return sprintf(page, "max\n");
4559         else
4560                 return sprintf(page, "%llu\n",
4561                                (unsigned long long)mddev->resync_max);
4562 }
4563 static ssize_t
4564 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4565 {
4566         int err;
4567         spin_lock(&mddev->lock);
4568         if (strncmp(buf, "max", 3) == 0)
4569                 mddev->resync_max = MaxSector;
4570         else {
4571                 unsigned long long max;
4572                 int chunk;
4573
4574                 err = -EINVAL;
4575                 if (kstrtoull(buf, 10, &max))
4576                         goto out_unlock;
4577                 if (max < mddev->resync_min)
4578                         goto out_unlock;
4579
4580                 err = -EBUSY;
4581                 if (max < mddev->resync_max &&
4582                     mddev->ro == 0 &&
4583                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4584                         goto out_unlock;
4585
4586                 /* Must be a multiple of chunk_size */
4587                 chunk = mddev->chunk_sectors;
4588                 if (chunk) {
4589                         sector_t temp = max;
4590
4591                         err = -EINVAL;
4592                         if (sector_div(temp, chunk))
4593                                 goto out_unlock;
4594                 }
4595                 mddev->resync_max = max;
4596         }
4597         wake_up(&mddev->recovery_wait);
4598         err = 0;
4599 out_unlock:
4600         spin_unlock(&mddev->lock);
4601         return err ?: len;
4602 }
4603
4604 static struct md_sysfs_entry md_max_sync =
4605 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4606
4607 static ssize_t
4608 suspend_lo_show(struct mddev *mddev, char *page)
4609 {
4610         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4611 }
4612
4613 static ssize_t
4614 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4615 {
4616         unsigned long long old, new;
4617         int err;
4618
4619         err = kstrtoull(buf, 10, &new);
4620         if (err < 0)
4621                 return err;
4622         if (new != (sector_t)new)
4623                 return -EINVAL;
4624
4625         err = mddev_lock(mddev);
4626         if (err)
4627                 return err;
4628         err = -EINVAL;
4629         if (mddev->pers == NULL ||
4630             mddev->pers->quiesce == NULL)
4631                 goto unlock;
4632         old = mddev->suspend_lo;
4633         mddev->suspend_lo = new;
4634         if (new >= old)
4635                 /* Shrinking suspended region */
4636                 mddev->pers->quiesce(mddev, 2);
4637         else {
4638                 /* Expanding suspended region - need to wait */
4639                 mddev->pers->quiesce(mddev, 1);
4640                 mddev->pers->quiesce(mddev, 0);
4641         }
4642         err = 0;
4643 unlock:
4644         mddev_unlock(mddev);
4645         return err ?: len;
4646 }
4647 static struct md_sysfs_entry md_suspend_lo =
4648 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4649
4650 static ssize_t
4651 suspend_hi_show(struct mddev *mddev, char *page)
4652 {
4653         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4654 }
4655
4656 static ssize_t
4657 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4658 {
4659         unsigned long long old, new;
4660         int err;
4661
4662         err = kstrtoull(buf, 10, &new);
4663         if (err < 0)
4664                 return err;
4665         if (new != (sector_t)new)
4666                 return -EINVAL;
4667
4668         err = mddev_lock(mddev);
4669         if (err)
4670                 return err;
4671         err = -EINVAL;
4672         if (mddev->pers == NULL ||
4673             mddev->pers->quiesce == NULL)
4674                 goto unlock;
4675         old = mddev->suspend_hi;
4676         mddev->suspend_hi = new;
4677         if (new <= old)
4678                 /* Shrinking suspended region */
4679                 mddev->pers->quiesce(mddev, 2);
4680         else {
4681                 /* Expanding suspended region - need to wait */
4682                 mddev->pers->quiesce(mddev, 1);
4683                 mddev->pers->quiesce(mddev, 0);
4684         }
4685         err = 0;
4686 unlock:
4687         mddev_unlock(mddev);
4688         return err ?: len;
4689 }
4690 static struct md_sysfs_entry md_suspend_hi =
4691 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4692
4693 static ssize_t
4694 reshape_position_show(struct mddev *mddev, char *page)
4695 {
4696         if (mddev->reshape_position != MaxSector)
4697                 return sprintf(page, "%llu\n",
4698                                (unsigned long long)mddev->reshape_position);
4699         strcpy(page, "none\n");
4700         return 5;
4701 }
4702
4703 static ssize_t
4704 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4705 {
4706         struct md_rdev *rdev;
4707         unsigned long long new;
4708         int err;
4709
4710         err = kstrtoull(buf, 10, &new);
4711         if (err < 0)
4712                 return err;
4713         if (new != (sector_t)new)
4714                 return -EINVAL;
4715         err = mddev_lock(mddev);
4716         if (err)
4717                 return err;
4718         err = -EBUSY;
4719         if (mddev->pers)
4720                 goto unlock;
4721         mddev->reshape_position = new;
4722         mddev->delta_disks = 0;
4723         mddev->reshape_backwards = 0;
4724         mddev->new_level = mddev->level;
4725         mddev->new_layout = mddev->layout;
4726         mddev->new_chunk_sectors = mddev->chunk_sectors;
4727         rdev_for_each(rdev, mddev)
4728                 rdev->new_data_offset = rdev->data_offset;
4729         err = 0;
4730 unlock:
4731         mddev_unlock(mddev);
4732         return err ?: len;
4733 }
4734
4735 static struct md_sysfs_entry md_reshape_position =
4736 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4737        reshape_position_store);
4738
4739 static ssize_t
4740 reshape_direction_show(struct mddev *mddev, char *page)
4741 {
4742         return sprintf(page, "%s\n",
4743                        mddev->reshape_backwards ? "backwards" : "forwards");
4744 }
4745
4746 static ssize_t
4747 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4748 {
4749         int backwards = 0;
4750         int err;
4751
4752         if (cmd_match(buf, "forwards"))
4753                 backwards = 0;
4754         else if (cmd_match(buf, "backwards"))
4755                 backwards = 1;
4756         else
4757                 return -EINVAL;
4758         if (mddev->reshape_backwards == backwards)
4759                 return len;
4760
4761         err = mddev_lock(mddev);
4762         if (err)
4763                 return err;
4764         /* check if we are allowed to change */
4765         if (mddev->delta_disks)
4766                 err = -EBUSY;
4767         else if (mddev->persistent &&
4768             mddev->major_version == 0)
4769                 err =  -EINVAL;
4770         else
4771                 mddev->reshape_backwards = backwards;
4772         mddev_unlock(mddev);
4773         return err ?: len;
4774 }
4775
4776 static struct md_sysfs_entry md_reshape_direction =
4777 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4778        reshape_direction_store);
4779
4780 static ssize_t
4781 array_size_show(struct mddev *mddev, char *page)
4782 {
4783         if (mddev->external_size)
4784                 return sprintf(page, "%llu\n",
4785                                (unsigned long long)mddev->array_sectors/2);
4786         else
4787                 return sprintf(page, "default\n");
4788 }
4789
4790 static ssize_t
4791 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4792 {
4793         sector_t sectors;
4794         int err;
4795
4796         err = mddev_lock(mddev);
4797         if (err)
4798                 return err;
4799
4800         if (strncmp(buf, "default", 7) == 0) {
4801                 if (mddev->pers)
4802                         sectors = mddev->pers->size(mddev, 0, 0);
4803                 else
4804                         sectors = mddev->array_sectors;
4805
4806                 mddev->external_size = 0;
4807         } else {
4808                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4809                         err = -EINVAL;
4810                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4811                         err = -E2BIG;
4812                 else
4813                         mddev->external_size = 1;
4814         }
4815
4816         if (!err) {
4817                 mddev->array_sectors = sectors;
4818                 if (mddev->pers) {
4819                         set_capacity(mddev->gendisk, mddev->array_sectors);
4820                         revalidate_disk(mddev->gendisk);
4821                 }
4822         }
4823         mddev_unlock(mddev);
4824         return err ?: len;
4825 }
4826
4827 static struct md_sysfs_entry md_array_size =
4828 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4829        array_size_store);
4830
4831 static struct attribute *md_default_attrs[] = {
4832         &md_level.attr,
4833         &md_layout.attr,
4834         &md_raid_disks.attr,
4835         &md_chunk_size.attr,
4836         &md_size.attr,
4837         &md_resync_start.attr,
4838         &md_metadata.attr,
4839         &md_new_device.attr,
4840         &md_safe_delay.attr,
4841         &md_array_state.attr,
4842         &md_reshape_position.attr,
4843         &md_reshape_direction.attr,
4844         &md_array_size.attr,
4845         &max_corr_read_errors.attr,
4846         NULL,
4847 };
4848
4849 static struct attribute *md_redundancy_attrs[] = {
4850         &md_scan_mode.attr,
4851         &md_last_scan_mode.attr,
4852         &md_mismatches.attr,
4853         &md_sync_min.attr,
4854         &md_sync_max.attr,
4855         &md_sync_speed.attr,
4856         &md_sync_force_parallel.attr,
4857         &md_sync_completed.attr,
4858         &md_min_sync.attr,
4859         &md_max_sync.attr,
4860         &md_suspend_lo.attr,
4861         &md_suspend_hi.attr,
4862         &md_bitmap.attr,
4863         &md_degraded.attr,
4864         NULL,
4865 };
4866 static struct attribute_group md_redundancy_group = {
4867         .name = NULL,
4868         .attrs = md_redundancy_attrs,
4869 };
4870
4871 static ssize_t
4872 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4873 {
4874         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4875         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4876         ssize_t rv;
4877
4878         if (!entry->show)
4879                 return -EIO;
4880         spin_lock(&all_mddevs_lock);
4881         if (list_empty(&mddev->all_mddevs)) {
4882                 spin_unlock(&all_mddevs_lock);
4883                 return -EBUSY;
4884         }
4885         mddev_get(mddev);
4886         spin_unlock(&all_mddevs_lock);
4887
4888         rv = entry->show(mddev, page);
4889         mddev_put(mddev);
4890         return rv;
4891 }
4892
4893 static ssize_t
4894 md_attr_store(struct kobject *kobj, struct attribute *attr,
4895               const char *page, size_t length)
4896 {
4897         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4898         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4899         ssize_t rv;
4900
4901         if (!entry->store)
4902                 return -EIO;
4903         if (!capable(CAP_SYS_ADMIN))
4904                 return -EACCES;
4905         spin_lock(&all_mddevs_lock);
4906         if (list_empty(&mddev->all_mddevs)) {
4907                 spin_unlock(&all_mddevs_lock);
4908                 return -EBUSY;
4909         }
4910         mddev_get(mddev);
4911         spin_unlock(&all_mddevs_lock);
4912         rv = entry->store(mddev, page, length);
4913         mddev_put(mddev);
4914         return rv;
4915 }
4916
4917 static void md_free(struct kobject *ko)
4918 {
4919         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4920
4921         if (mddev->sysfs_state)
4922                 sysfs_put(mddev->sysfs_state);
4923
4924         if (mddev->queue)
4925                 blk_cleanup_queue(mddev->queue);
4926         if (mddev->gendisk) {
4927                 del_gendisk(mddev->gendisk);
4928                 put_disk(mddev->gendisk);
4929         }
4930
4931         kfree(mddev);
4932 }
4933
4934 static const struct sysfs_ops md_sysfs_ops = {
4935         .show   = md_attr_show,
4936         .store  = md_attr_store,
4937 };
4938 static struct kobj_type md_ktype = {
4939         .release        = md_free,
4940         .sysfs_ops      = &md_sysfs_ops,
4941         .default_attrs  = md_default_attrs,
4942 };
4943
4944 int mdp_major = 0;
4945
4946 static void mddev_delayed_delete(struct work_struct *ws)
4947 {
4948         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4949
4950         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4951         kobject_del(&mddev->kobj);
4952         kobject_put(&mddev->kobj);
4953 }
4954
4955 static int md_alloc(dev_t dev, char *name)
4956 {
4957         static DEFINE_MUTEX(disks_mutex);
4958         struct mddev *mddev = mddev_find(dev);
4959         struct gendisk *disk;
4960         int partitioned;
4961         int shift;
4962         int unit;
4963         int error;
4964
4965         if (!mddev)
4966                 return -ENODEV;
4967
4968         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4969         shift = partitioned ? MdpMinorShift : 0;
4970         unit = MINOR(mddev->unit) >> shift;
4971
4972         /* wait for any previous instance of this device to be
4973          * completely removed (mddev_delayed_delete).
4974          */
4975         flush_workqueue(md_misc_wq);
4976
4977         mutex_lock(&disks_mutex);
4978         error = -EEXIST;
4979         if (mddev->gendisk)
4980                 goto abort;
4981
4982         if (name) {
4983                 /* Need to ensure that 'name' is not a duplicate.
4984                  */
4985                 struct mddev *mddev2;
4986                 spin_lock(&all_mddevs_lock);
4987
4988                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4989                         if (mddev2->gendisk &&
4990                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4991                                 spin_unlock(&all_mddevs_lock);
4992                                 goto abort;
4993                         }
4994                 spin_unlock(&all_mddevs_lock);
4995         }
4996
4997         error = -ENOMEM;
4998         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4999         if (!mddev->queue)
5000                 goto abort;
5001         mddev->queue->queuedata = mddev;
5002
5003         blk_queue_make_request(mddev->queue, md_make_request);
5004         blk_set_stacking_limits(&mddev->queue->limits);
5005
5006         disk = alloc_disk(1 << shift);
5007         if (!disk) {
5008                 blk_cleanup_queue(mddev->queue);
5009                 mddev->queue = NULL;
5010                 goto abort;
5011         }
5012         disk->major = MAJOR(mddev->unit);
5013         disk->first_minor = unit << shift;
5014         if (name)
5015                 strcpy(disk->disk_name, name);
5016         else if (partitioned)
5017                 sprintf(disk->disk_name, "md_d%d", unit);
5018         else
5019                 sprintf(disk->disk_name, "md%d", unit);
5020         disk->fops = &md_fops;
5021         disk->private_data = mddev;
5022         disk->queue = mddev->queue;
5023         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5024         /* Allow extended partitions.  This makes the
5025          * 'mdp' device redundant, but we can't really
5026          * remove it now.
5027          */
5028         disk->flags |= GENHD_FL_EXT_DEVT;
5029         mddev->gendisk = disk;
5030         /* As soon as we call add_disk(), another thread could get
5031          * through to md_open, so make sure it doesn't get too far
5032          */
5033         mutex_lock(&mddev->open_mutex);
5034         add_disk(disk);
5035
5036         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5037                                      &disk_to_dev(disk)->kobj, "%s", "md");
5038         if (error) {
5039                 /* This isn't possible, but as kobject_init_and_add is marked
5040                  * __must_check, we must do something with the result
5041                  */
5042                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5043                        disk->disk_name);
5044                 error = 0;
5045         }
5046         if (mddev->kobj.sd &&
5047             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5048                 printk(KERN_DEBUG "pointless warning\n");
5049         mutex_unlock(&mddev->open_mutex);
5050  abort:
5051         mutex_unlock(&disks_mutex);
5052         if (!error && mddev->kobj.sd) {
5053                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5054                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5055         }
5056         mddev_put(mddev);
5057         return error;
5058 }
5059
5060 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5061 {
5062         md_alloc(dev, NULL);
5063         return NULL;
5064 }
5065
5066 static int add_named_array(const char *val, struct kernel_param *kp)
5067 {
5068         /* val must be "md_*" where * is not all digits.
5069          * We allocate an array with a large free minor number, and
5070          * set the name to val.  val must not already be an active name.
5071          */
5072         int len = strlen(val);
5073         char buf[DISK_NAME_LEN];
5074
5075         while (len && val[len-1] == '\n')
5076                 len--;
5077         if (len >= DISK_NAME_LEN)
5078                 return -E2BIG;
5079         strlcpy(buf, val, len+1);
5080         if (strncmp(buf, "md_", 3) != 0)
5081                 return -EINVAL;
5082         return md_alloc(0, buf);
5083 }
5084
5085 static void md_safemode_timeout(unsigned long data)
5086 {
5087         struct mddev *mddev = (struct mddev *) data;
5088
5089         if (!atomic_read(&mddev->writes_pending)) {
5090                 mddev->safemode = 1;
5091                 if (mddev->external)
5092                         sysfs_notify_dirent_safe(mddev->sysfs_state);
5093         }
5094         md_wakeup_thread(mddev->thread);
5095 }
5096
5097 static int start_dirty_degraded;
5098
5099 int md_run(struct mddev *mddev)
5100 {
5101         int err;
5102         struct md_rdev *rdev;
5103         struct md_personality *pers;
5104
5105         if (list_empty(&mddev->disks))
5106                 /* cannot run an array with no devices.. */
5107                 return -EINVAL;
5108
5109         if (mddev->pers)
5110                 return -EBUSY;
5111         /* Cannot run until previous stop completes properly */
5112         if (mddev->sysfs_active)
5113                 return -EBUSY;
5114
5115         /*
5116          * Analyze all RAID superblock(s)
5117          */
5118         if (!mddev->raid_disks) {
5119                 if (!mddev->persistent)
5120                         return -EINVAL;
5121                 analyze_sbs(mddev);
5122         }
5123
5124         if (mddev->level != LEVEL_NONE)
5125                 request_module("md-level-%d", mddev->level);
5126         else if (mddev->clevel[0])
5127                 request_module("md-%s", mddev->clevel);
5128
5129         /*
5130          * Drop all container device buffers, from now on
5131          * the only valid external interface is through the md
5132          * device.
5133          */
5134         rdev_for_each(rdev, mddev) {
5135                 if (test_bit(Faulty, &rdev->flags))
5136                         continue;
5137                 sync_blockdev(rdev->bdev);
5138                 invalidate_bdev(rdev->bdev);
5139
5140                 /* perform some consistency tests on the device.
5141                  * We don't want the data to overlap the metadata,
5142                  * Internal Bitmap issues have been handled elsewhere.
5143                  */
5144                 if (rdev->meta_bdev) {
5145                         /* Nothing to check */;
5146                 } else if (rdev->data_offset < rdev->sb_start) {
5147                         if (mddev->dev_sectors &&
5148                             rdev->data_offset + mddev->dev_sectors
5149                             > rdev->sb_start) {
5150                                 printk("md: %s: data overlaps metadata\n",
5151                                        mdname(mddev));
5152                                 return -EINVAL;
5153                         }
5154                 } else {
5155                         if (rdev->sb_start + rdev->sb_size/512
5156                             > rdev->data_offset) {
5157                                 printk("md: %s: metadata overlaps data\n",
5158                                        mdname(mddev));
5159                                 return -EINVAL;
5160                         }
5161                 }
5162                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5163         }
5164
5165         if (mddev->bio_set == NULL)
5166                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5167
5168         spin_lock(&pers_lock);
5169         pers = find_pers(mddev->level, mddev->clevel);
5170         if (!pers || !try_module_get(pers->owner)) {
5171                 spin_unlock(&pers_lock);
5172                 if (mddev->level != LEVEL_NONE)
5173                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5174                                mddev->level);
5175                 else
5176                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5177                                mddev->clevel);
5178                 return -EINVAL;
5179         }
5180         spin_unlock(&pers_lock);
5181         if (mddev->level != pers->level) {
5182                 mddev->level = pers->level;
5183                 mddev->new_level = pers->level;
5184         }
5185         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5186
5187         if (mddev->reshape_position != MaxSector &&
5188             pers->start_reshape == NULL) {
5189                 /* This personality cannot handle reshaping... */
5190                 module_put(pers->owner);
5191                 return -EINVAL;
5192         }
5193
5194         if (pers->sync_request) {
5195                 /* Warn if this is a potentially silly
5196                  * configuration.
5197                  */
5198                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5199                 struct md_rdev *rdev2;
5200                 int warned = 0;
5201
5202                 rdev_for_each(rdev, mddev)
5203                         rdev_for_each(rdev2, mddev) {
5204                                 if (rdev < rdev2 &&
5205                                     rdev->bdev->bd_contains ==
5206                                     rdev2->bdev->bd_contains) {
5207                                         printk(KERN_WARNING
5208                                                "%s: WARNING: %s appears to be"
5209                                                " on the same physical disk as"
5210                                                " %s.\n",
5211                                                mdname(mddev),
5212                                                bdevname(rdev->bdev,b),
5213                                                bdevname(rdev2->bdev,b2));
5214                                         warned = 1;
5215                                 }
5216                         }
5217
5218                 if (warned)
5219                         printk(KERN_WARNING
5220                                "True protection against single-disk"
5221                                " failure might be compromised.\n");
5222         }
5223
5224         mddev->recovery = 0;
5225         /* may be over-ridden by personality */
5226         mddev->resync_max_sectors = mddev->dev_sectors;
5227
5228         mddev->ok_start_degraded = start_dirty_degraded;
5229
5230         if (start_readonly && mddev->ro == 0)
5231                 mddev->ro = 2; /* read-only, but switch on first write */
5232
5233         err = pers->run(mddev);
5234         if (err)
5235                 printk(KERN_ERR "md: pers->run() failed ...\n");
5236         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5237                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5238                           " but 'external_size' not in effect?\n", __func__);
5239                 printk(KERN_ERR
5240                        "md: invalid array_size %llu > default size %llu\n",
5241                        (unsigned long long)mddev->array_sectors / 2,
5242                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5243                 err = -EINVAL;
5244         }
5245         if (err == 0 && pers->sync_request &&
5246             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5247                 struct bitmap *bitmap;
5248
5249                 bitmap = bitmap_create(mddev, -1);
5250                 if (IS_ERR(bitmap)) {
5251                         err = PTR_ERR(bitmap);
5252                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5253                                mdname(mddev), err);
5254                 } else
5255                         mddev->bitmap = bitmap;
5256
5257         }
5258         if (err) {
5259                 mddev_detach(mddev);
5260                 if (mddev->private)
5261                         pers->free(mddev, mddev->private);
5262                 mddev->private = NULL;
5263                 module_put(pers->owner);
5264                 bitmap_destroy(mddev);
5265                 return err;
5266         }
5267         if (mddev->queue) {
5268                 mddev->queue->backing_dev_info.congested_data = mddev;
5269                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5270         }
5271         if (pers->sync_request) {
5272                 if (mddev->kobj.sd &&
5273                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5274                         printk(KERN_WARNING
5275                                "md: cannot register extra attributes for %s\n",
5276                                mdname(mddev));
5277                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5278         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5279                 mddev->ro = 0;
5280
5281         atomic_set(&mddev->writes_pending,0);
5282         atomic_set(&mddev->max_corr_read_errors,
5283                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5284         mddev->safemode = 0;
5285         if (mddev_is_clustered(mddev))
5286                 mddev->safemode_delay = 0;
5287         else
5288                 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5289         mddev->in_sync = 1;
5290         smp_wmb();
5291         spin_lock(&mddev->lock);
5292         mddev->pers = pers;
5293         mddev->ready = 1;
5294         spin_unlock(&mddev->lock);
5295         rdev_for_each(rdev, mddev)
5296                 if (rdev->raid_disk >= 0)
5297                         if (sysfs_link_rdev(mddev, rdev))
5298                                 /* failure here is OK */;
5299
5300         if (mddev->degraded && !mddev->ro)
5301                 /* This ensures that recovering status is reported immediately
5302                  * via sysfs - until a lack of spares is confirmed.
5303                  */
5304                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5305         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5306
5307         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5308                 md_update_sb(mddev, 0);
5309
5310         md_new_event(mddev);
5311         sysfs_notify_dirent_safe(mddev->sysfs_state);
5312         sysfs_notify_dirent_safe(mddev->sysfs_action);
5313         sysfs_notify(&mddev->kobj, NULL, "degraded");
5314         return 0;
5315 }
5316 EXPORT_SYMBOL_GPL(md_run);
5317
5318 static int do_md_run(struct mddev *mddev)
5319 {
5320         int err;
5321
5322         err = md_run(mddev);
5323         if (err)
5324                 goto out;
5325         err = bitmap_load(mddev);
5326         if (err) {
5327                 bitmap_destroy(mddev);
5328                 goto out;
5329         }
5330
5331         if (mddev_is_clustered(mddev))
5332                 md_allow_write(mddev);
5333
5334         md_wakeup_thread(mddev->thread);
5335         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5336
5337         set_capacity(mddev->gendisk, mddev->array_sectors);
5338         revalidate_disk(mddev->gendisk);
5339         mddev->changed = 1;
5340         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5341 out:
5342         return err;
5343 }
5344
5345 static int restart_array(struct mddev *mddev)
5346 {
5347         struct gendisk *disk = mddev->gendisk;
5348
5349         /* Complain if it has no devices */
5350         if (list_empty(&mddev->disks))
5351                 return -ENXIO;
5352         if (!mddev->pers)
5353                 return -EINVAL;
5354         if (!mddev->ro)
5355                 return -EBUSY;
5356         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5357                 struct md_rdev *rdev;
5358                 bool has_journal = false;
5359
5360                 rcu_read_lock();
5361                 rdev_for_each_rcu(rdev, mddev) {
5362                         if (test_bit(Journal, &rdev->flags) &&
5363                             !test_bit(Faulty, &rdev->flags)) {
5364                                 has_journal = true;
5365                                 break;
5366                         }
5367                 }
5368                 rcu_read_unlock();
5369
5370                 /* Don't restart rw with journal missing/faulty */
5371                 if (!has_journal)
5372                         return -EINVAL;
5373         }
5374
5375         mddev->safemode = 0;
5376         mddev->ro = 0;
5377         set_disk_ro(disk, 0);
5378         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5379                 mdname(mddev));
5380         /* Kick recovery or resync if necessary */
5381         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5382         md_wakeup_thread(mddev->thread);
5383         md_wakeup_thread(mddev->sync_thread);
5384         sysfs_notify_dirent_safe(mddev->sysfs_state);
5385         return 0;
5386 }
5387
5388 static void md_clean(struct mddev *mddev)
5389 {
5390         mddev->array_sectors = 0;
5391         mddev->external_size = 0;
5392         mddev->dev_sectors = 0;
5393         mddev->raid_disks = 0;
5394         mddev->recovery_cp = 0;
5395         mddev->resync_min = 0;
5396         mddev->resync_max = MaxSector;
5397         mddev->reshape_position = MaxSector;
5398         mddev->external = 0;
5399         mddev->persistent = 0;
5400         mddev->level = LEVEL_NONE;
5401         mddev->clevel[0] = 0;
5402         mddev->flags = 0;
5403         mddev->ro = 0;
5404         mddev->metadata_type[0] = 0;
5405         mddev->chunk_sectors = 0;
5406         mddev->ctime = mddev->utime = 0;
5407         mddev->layout = 0;
5408         mddev->max_disks = 0;
5409         mddev->events = 0;
5410         mddev->can_decrease_events = 0;
5411         mddev->delta_disks = 0;
5412         mddev->reshape_backwards = 0;
5413         mddev->new_level = LEVEL_NONE;
5414         mddev->new_layout = 0;
5415         mddev->new_chunk_sectors = 0;
5416         mddev->curr_resync = 0;
5417         atomic64_set(&mddev->resync_mismatches, 0);
5418         mddev->suspend_lo = mddev->suspend_hi = 0;
5419         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5420         mddev->recovery = 0;
5421         mddev->in_sync = 0;
5422         mddev->changed = 0;
5423         mddev->degraded = 0;
5424         mddev->safemode = 0;
5425         mddev->private = NULL;
5426         mddev->bitmap_info.offset = 0;
5427         mddev->bitmap_info.default_offset = 0;
5428         mddev->bitmap_info.default_space = 0;
5429         mddev->bitmap_info.chunksize = 0;
5430         mddev->bitmap_info.daemon_sleep = 0;
5431         mddev->bitmap_info.max_write_behind = 0;
5432 }
5433
5434 static void __md_stop_writes(struct mddev *mddev)
5435 {
5436         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5437         flush_workqueue(md_misc_wq);
5438         if (mddev->sync_thread) {
5439                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5440                 md_reap_sync_thread(mddev);
5441         }
5442
5443         del_timer_sync(&mddev->safemode_timer);
5444
5445         bitmap_flush(mddev);
5446         md_super_wait(mddev);
5447
5448         if (mddev->ro == 0 &&
5449             ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5450              (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5451                 /* mark array as shutdown cleanly */
5452                 if (!mddev_is_clustered(mddev))
5453                         mddev->in_sync = 1;
5454                 md_update_sb(mddev, 1);
5455         }
5456 }
5457
5458 void md_stop_writes(struct mddev *mddev)
5459 {
5460         mddev_lock_nointr(mddev);
5461         __md_stop_writes(mddev);
5462         mddev_unlock(mddev);
5463 }
5464 EXPORT_SYMBOL_GPL(md_stop_writes);
5465
5466 static void mddev_detach(struct mddev *mddev)
5467 {
5468         struct bitmap *bitmap = mddev->bitmap;
5469         /* wait for behind writes to complete */
5470         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5471                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5472                        mdname(mddev));
5473                 /* need to kick something here to make sure I/O goes? */
5474                 wait_event(bitmap->behind_wait,
5475                            atomic_read(&bitmap->behind_writes) == 0);
5476         }
5477         if (mddev->pers && mddev->pers->quiesce) {
5478                 mddev->pers->quiesce(mddev, 1);
5479                 mddev->pers->quiesce(mddev, 0);
5480         }
5481         md_unregister_thread(&mddev->thread);
5482         if (mddev->queue)
5483                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5484 }
5485
5486 static void __md_stop(struct mddev *mddev)
5487 {
5488         struct md_personality *pers = mddev->pers;
5489         mddev_detach(mddev);
5490         /* Ensure ->event_work is done */
5491         flush_workqueue(md_misc_wq);
5492         spin_lock(&mddev->lock);
5493         mddev->ready = 0;
5494         mddev->pers = NULL;
5495         spin_unlock(&mddev->lock);
5496         pers->free(mddev, mddev->private);
5497         mddev->private = NULL;
5498         if (pers->sync_request && mddev->to_remove == NULL)
5499                 mddev->to_remove = &md_redundancy_group;
5500         module_put(pers->owner);
5501         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5502 }
5503
5504 void md_stop(struct mddev *mddev)
5505 {
5506         /* stop the array and free an attached data structures.
5507          * This is called from dm-raid
5508          */
5509         __md_stop(mddev);
5510         bitmap_destroy(mddev);
5511         if (mddev->bio_set)
5512                 bioset_free(mddev->bio_set);
5513 }
5514
5515 EXPORT_SYMBOL_GPL(md_stop);
5516
5517 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5518 {
5519         int err = 0;
5520         int did_freeze = 0;
5521
5522         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5523                 did_freeze = 1;
5524                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5525                 md_wakeup_thread(mddev->thread);
5526         }
5527         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5528                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5529         if (mddev->sync_thread)
5530                 /* Thread might be blocked waiting for metadata update
5531                  * which will now never happen */
5532                 wake_up_process(mddev->sync_thread->tsk);
5533
5534         if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5535                 return -EBUSY;
5536         mddev_unlock(mddev);
5537         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5538                                           &mddev->recovery));
5539         wait_event(mddev->sb_wait,
5540                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5541         mddev_lock_nointr(mddev);
5542
5543         mutex_lock(&mddev->open_mutex);
5544         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5545             mddev->sync_thread ||
5546             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5547             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5548                 printk("md: %s still in use.\n",mdname(mddev));
5549                 if (did_freeze) {
5550                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5551                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5552                         md_wakeup_thread(mddev->thread);
5553                 }
5554                 err = -EBUSY;
5555                 goto out;
5556         }
5557         if (mddev->pers) {
5558                 __md_stop_writes(mddev);
5559
5560                 err  = -ENXIO;
5561                 if (mddev->ro==1)
5562                         goto out;
5563                 mddev->ro = 1;
5564                 set_disk_ro(mddev->gendisk, 1);
5565                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5566                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5567                 md_wakeup_thread(mddev->thread);
5568                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5569                 err = 0;
5570         }
5571 out:
5572         mutex_unlock(&mddev->open_mutex);
5573         return err;
5574 }
5575
5576 /* mode:
5577  *   0 - completely stop and dis-assemble array
5578  *   2 - stop but do not disassemble array
5579  */
5580 static int do_md_stop(struct mddev *mddev, int mode,
5581                       struct block_device *bdev)
5582 {
5583         struct gendisk *disk = mddev->gendisk;
5584         struct md_rdev *rdev;
5585         int did_freeze = 0;
5586
5587         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5588                 did_freeze = 1;
5589                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5590                 md_wakeup_thread(mddev->thread);
5591         }
5592         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5593                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5594         if (mddev->sync_thread)
5595                 /* Thread might be blocked waiting for metadata update
5596                  * which will now never happen */
5597                 wake_up_process(mddev->sync_thread->tsk);
5598
5599         mddev_unlock(mddev);
5600         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5601                                  !test_bit(MD_RECOVERY_RUNNING,
5602                                            &mddev->recovery)));
5603         mddev_lock_nointr(mddev);
5604
5605         mutex_lock(&mddev->open_mutex);
5606         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5607             mddev->sysfs_active ||
5608             mddev->sync_thread ||
5609             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5610             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5611                 printk("md: %s still in use.\n",mdname(mddev));
5612                 mutex_unlock(&mddev->open_mutex);
5613                 if (did_freeze) {
5614                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5615                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5616                         md_wakeup_thread(mddev->thread);
5617                 }
5618                 return -EBUSY;
5619         }
5620         if (mddev->pers) {
5621                 if (mddev->ro)
5622                         set_disk_ro(disk, 0);
5623
5624                 __md_stop_writes(mddev);
5625                 __md_stop(mddev);
5626                 mddev->queue->backing_dev_info.congested_fn = NULL;
5627
5628                 /* tell userspace to handle 'inactive' */
5629                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5630
5631                 rdev_for_each(rdev, mddev)
5632                         if (rdev->raid_disk >= 0)
5633                                 sysfs_unlink_rdev(mddev, rdev);
5634
5635                 set_capacity(disk, 0);
5636                 mutex_unlock(&mddev->open_mutex);
5637                 mddev->changed = 1;
5638                 revalidate_disk(disk);
5639
5640                 if (mddev->ro)
5641                         mddev->ro = 0;
5642         } else
5643                 mutex_unlock(&mddev->open_mutex);
5644         /*
5645          * Free resources if final stop
5646          */
5647         if (mode == 0) {
5648                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5649
5650                 bitmap_destroy(mddev);
5651                 if (mddev->bitmap_info.file) {
5652                         struct file *f = mddev->bitmap_info.file;
5653                         spin_lock(&mddev->lock);
5654                         mddev->bitmap_info.file = NULL;
5655                         spin_unlock(&mddev->lock);
5656                         fput(f);
5657                 }
5658                 mddev->bitmap_info.offset = 0;
5659
5660                 export_array(mddev);
5661
5662                 md_clean(mddev);
5663                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5664                 if (mddev->hold_active == UNTIL_STOP)
5665                         mddev->hold_active = 0;
5666         }
5667         md_new_event(mddev);
5668         sysfs_notify_dirent_safe(mddev->sysfs_state);
5669         return 0;
5670 }
5671
5672 #ifndef MODULE
5673 static void autorun_array(struct mddev *mddev)
5674 {
5675         struct md_rdev *rdev;
5676         int err;
5677
5678         if (list_empty(&mddev->disks))
5679                 return;
5680
5681         printk(KERN_INFO "md: running: ");
5682
5683         rdev_for_each(rdev, mddev) {
5684                 char b[BDEVNAME_SIZE];
5685                 printk("<%s>", bdevname(rdev->bdev,b));
5686         }
5687         printk("\n");
5688
5689         err = do_md_run(mddev);
5690         if (err) {
5691                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5692                 do_md_stop(mddev, 0, NULL);
5693         }
5694 }
5695
5696 /*
5697  * lets try to run arrays based on all disks that have arrived
5698  * until now. (those are in pending_raid_disks)
5699  *
5700  * the method: pick the first pending disk, collect all disks with
5701  * the same UUID, remove all from the pending list and put them into
5702  * the 'same_array' list. Then order this list based on superblock
5703  * update time (freshest comes first), kick out 'old' disks and
5704  * compare superblocks. If everything's fine then run it.
5705  *
5706  * If "unit" is allocated, then bump its reference count
5707  */
5708 static void autorun_devices(int part)
5709 {
5710         struct md_rdev *rdev0, *rdev, *tmp;
5711         struct mddev *mddev;
5712         char b[BDEVNAME_SIZE];
5713
5714         printk(KERN_INFO "md: autorun ...\n");
5715         while (!list_empty(&pending_raid_disks)) {
5716                 int unit;
5717                 dev_t dev;
5718                 LIST_HEAD(candidates);
5719                 rdev0 = list_entry(pending_raid_disks.next,
5720                                          struct md_rdev, same_set);
5721
5722                 printk(KERN_INFO "md: considering %s ...\n",
5723                         bdevname(rdev0->bdev,b));
5724                 INIT_LIST_HEAD(&candidates);
5725                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5726                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5727                                 printk(KERN_INFO "md:  adding %s ...\n",
5728                                         bdevname(rdev->bdev,b));
5729                                 list_move(&rdev->same_set, &candidates);
5730                         }
5731                 /*
5732                  * now we have a set of devices, with all of them having
5733                  * mostly sane superblocks. It's time to allocate the
5734                  * mddev.
5735                  */
5736                 if (part) {
5737                         dev = MKDEV(mdp_major,
5738                                     rdev0->preferred_minor << MdpMinorShift);
5739                         unit = MINOR(dev) >> MdpMinorShift;
5740                 } else {
5741                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5742                         unit = MINOR(dev);
5743                 }
5744                 if (rdev0->preferred_minor != unit) {
5745                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5746                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5747                         break;
5748                 }
5749
5750                 md_probe(dev, NULL, NULL);
5751                 mddev = mddev_find(dev);
5752                 if (!mddev || !mddev->gendisk) {
5753                         if (mddev)
5754                                 mddev_put(mddev);
5755                         printk(KERN_ERR
5756                                 "md: cannot allocate memory for md drive.\n");
5757                         break;
5758                 }
5759                 if (mddev_lock(mddev))
5760                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5761                                mdname(mddev));
5762                 else if (mddev->raid_disks || mddev->major_version
5763                          || !list_empty(&mddev->disks)) {
5764                         printk(KERN_WARNING
5765                                 "md: %s already running, cannot run %s\n",
5766                                 mdname(mddev), bdevname(rdev0->bdev,b));
5767                         mddev_unlock(mddev);
5768                 } else {
5769                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5770                         mddev->persistent = 1;
5771                         rdev_for_each_list(rdev, tmp, &candidates) {
5772                                 list_del_init(&rdev->same_set);
5773                                 if (bind_rdev_to_array(rdev, mddev))
5774                                         export_rdev(rdev);
5775                         }
5776                         autorun_array(mddev);
5777                         mddev_unlock(mddev);
5778                 }
5779                 /* on success, candidates will be empty, on error
5780                  * it won't...
5781                  */
5782                 rdev_for_each_list(rdev, tmp, &candidates) {
5783                         list_del_init(&rdev->same_set);
5784                         export_rdev(rdev);
5785                 }
5786                 mddev_put(mddev);
5787         }
5788         printk(KERN_INFO "md: ... autorun DONE.\n");
5789 }
5790 #endif /* !MODULE */
5791
5792 static int get_version(void __user *arg)
5793 {
5794         mdu_version_t ver;
5795
5796         ver.major = MD_MAJOR_VERSION;
5797         ver.minor = MD_MINOR_VERSION;
5798         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5799
5800         if (copy_to_user(arg, &ver, sizeof(ver)))
5801                 return -EFAULT;
5802
5803         return 0;
5804 }
5805
5806 static int get_array_info(struct mddev *mddev, void __user *arg)
5807 {
5808         mdu_array_info_t info;
5809         int nr,working,insync,failed,spare;
5810         struct md_rdev *rdev;
5811
5812         nr = working = insync = failed = spare = 0;
5813         rcu_read_lock();
5814         rdev_for_each_rcu(rdev, mddev) {
5815                 nr++;
5816                 if (test_bit(Faulty, &rdev->flags))
5817                         failed++;
5818                 else {
5819                         working++;
5820                         if (test_bit(In_sync, &rdev->flags))
5821                                 insync++;
5822                         else
5823                                 spare++;
5824                 }
5825         }
5826         rcu_read_unlock();
5827
5828         info.major_version = mddev->major_version;
5829         info.minor_version = mddev->minor_version;
5830         info.patch_version = MD_PATCHLEVEL_VERSION;
5831         info.ctime         = mddev->ctime;
5832         info.level         = mddev->level;
5833         info.size          = mddev->dev_sectors / 2;
5834         if (info.size != mddev->dev_sectors / 2) /* overflow */
5835                 info.size = -1;
5836         info.nr_disks      = nr;
5837         info.raid_disks    = mddev->raid_disks;
5838         info.md_minor      = mddev->md_minor;
5839         info.not_persistent= !mddev->persistent;
5840
5841         info.utime         = mddev->utime;
5842         info.state         = 0;
5843         if (mddev->in_sync)
5844                 info.state = (1<<MD_SB_CLEAN);
5845         if (mddev->bitmap && mddev->bitmap_info.offset)
5846                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5847         if (mddev_is_clustered(mddev))
5848                 info.state |= (1<<MD_SB_CLUSTERED);
5849         info.active_disks  = insync;
5850         info.working_disks = working;
5851         info.failed_disks  = failed;
5852         info.spare_disks   = spare;
5853
5854         info.layout        = mddev->layout;
5855         info.chunk_size    = mddev->chunk_sectors << 9;
5856
5857         if (copy_to_user(arg, &info, sizeof(info)))
5858                 return -EFAULT;
5859
5860         return 0;
5861 }
5862
5863 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5864 {
5865         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5866         char *ptr;
5867         int err;
5868
5869         file = kzalloc(sizeof(*file), GFP_NOIO);
5870         if (!file)
5871                 return -ENOMEM;
5872
5873         err = 0;
5874         spin_lock(&mddev->lock);
5875         /* bitmap enabled */
5876         if (mddev->bitmap_info.file) {
5877                 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5878                                 sizeof(file->pathname));
5879                 if (IS_ERR(ptr))
5880                         err = PTR_ERR(ptr);
5881                 else
5882                         memmove(file->pathname, ptr,
5883                                 sizeof(file->pathname)-(ptr-file->pathname));
5884         }
5885         spin_unlock(&mddev->lock);
5886
5887         if (err == 0 &&
5888             copy_to_user(arg, file, sizeof(*file)))
5889                 err = -EFAULT;
5890
5891         kfree(file);
5892         return err;
5893 }
5894
5895 static int get_disk_info(struct mddev *mddev, void __user * arg)
5896 {
5897         mdu_disk_info_t info;
5898         struct md_rdev *rdev;
5899
5900         if (copy_from_user(&info, arg, sizeof(info)))
5901                 return -EFAULT;
5902
5903         rcu_read_lock();
5904         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5905         if (rdev) {
5906                 info.major = MAJOR(rdev->bdev->bd_dev);
5907                 info.minor = MINOR(rdev->bdev->bd_dev);
5908                 info.raid_disk = rdev->raid_disk;
5909                 info.state = 0;
5910                 if (test_bit(Faulty, &rdev->flags))
5911                         info.state |= (1<<MD_DISK_FAULTY);
5912                 else if (test_bit(In_sync, &rdev->flags)) {
5913                         info.state |= (1<<MD_DISK_ACTIVE);
5914                         info.state |= (1<<MD_DISK_SYNC);
5915                 }
5916                 if (test_bit(Journal, &rdev->flags))
5917                         info.state |= (1<<MD_DISK_JOURNAL);
5918                 if (test_bit(WriteMostly, &rdev->flags))
5919                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5920         } else {
5921                 info.major = info.minor = 0;
5922                 info.raid_disk = -1;
5923                 info.state = (1<<MD_DISK_REMOVED);
5924         }
5925         rcu_read_unlock();
5926
5927         if (copy_to_user(arg, &info, sizeof(info)))
5928                 return -EFAULT;
5929
5930         return 0;
5931 }
5932
5933 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5934 {
5935         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5936         struct md_rdev *rdev;
5937         dev_t dev = MKDEV(info->major,info->minor);
5938
5939         if (mddev_is_clustered(mddev) &&
5940                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5941                 pr_err("%s: Cannot add to clustered mddev.\n",
5942                                mdname(mddev));
5943                 return -EINVAL;
5944         }
5945
5946         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5947                 return -EOVERFLOW;
5948
5949         if (!mddev->raid_disks) {
5950                 int err;
5951                 /* expecting a device which has a superblock */
5952                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5953                 if (IS_ERR(rdev)) {
5954                         printk(KERN_WARNING
5955                                 "md: md_import_device returned %ld\n",
5956                                 PTR_ERR(rdev));
5957                         return PTR_ERR(rdev);
5958                 }
5959                 if (!list_empty(&mddev->disks)) {
5960                         struct md_rdev *rdev0
5961                                 = list_entry(mddev->disks.next,
5962                                              struct md_rdev, same_set);
5963                         err = super_types[mddev->major_version]
5964                                 .load_super(rdev, rdev0, mddev->minor_version);
5965                         if (err < 0) {
5966                                 printk(KERN_WARNING
5967                                         "md: %s has different UUID to %s\n",
5968                                         bdevname(rdev->bdev,b),
5969                                         bdevname(rdev0->bdev,b2));
5970                                 export_rdev(rdev);
5971                                 return -EINVAL;
5972                         }
5973                 }
5974                 err = bind_rdev_to_array(rdev, mddev);
5975                 if (err)
5976                         export_rdev(rdev);
5977                 return err;
5978         }
5979
5980         /*
5981          * add_new_disk can be used once the array is assembled
5982          * to add "hot spares".  They must already have a superblock
5983          * written
5984          */
5985         if (mddev->pers) {
5986                 int err;
5987                 if (!mddev->pers->hot_add_disk) {
5988                         printk(KERN_WARNING
5989                                 "%s: personality does not support diskops!\n",
5990                                mdname(mddev));
5991                         return -EINVAL;
5992                 }
5993                 if (mddev->persistent)
5994                         rdev = md_import_device(dev, mddev->major_version,
5995                                                 mddev->minor_version);
5996                 else
5997                         rdev = md_import_device(dev, -1, -1);
5998                 if (IS_ERR(rdev)) {
5999                         printk(KERN_WARNING
6000                                 "md: md_import_device returned %ld\n",
6001                                 PTR_ERR(rdev));
6002                         return PTR_ERR(rdev);
6003                 }
6004                 /* set saved_raid_disk if appropriate */
6005                 if (!mddev->persistent) {
6006                         if (info->state & (1<<MD_DISK_SYNC)  &&
6007                             info->raid_disk < mddev->raid_disks) {
6008                                 rdev->raid_disk = info->raid_disk;
6009                                 set_bit(In_sync, &rdev->flags);
6010                                 clear_bit(Bitmap_sync, &rdev->flags);
6011                         } else
6012                                 rdev->raid_disk = -1;
6013                         rdev->saved_raid_disk = rdev->raid_disk;
6014                 } else
6015                         super_types[mddev->major_version].
6016                                 validate_super(mddev, rdev);
6017                 if ((info->state & (1<<MD_DISK_SYNC)) &&
6018                      rdev->raid_disk != info->raid_disk) {
6019                         /* This was a hot-add request, but events doesn't
6020                          * match, so reject it.
6021                          */
6022                         export_rdev(rdev);
6023                         return -EINVAL;
6024                 }
6025
6026                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6027                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6028                         set_bit(WriteMostly, &rdev->flags);
6029                 else
6030                         clear_bit(WriteMostly, &rdev->flags);
6031
6032                 if (info->state & (1<<MD_DISK_JOURNAL))
6033                         set_bit(Journal, &rdev->flags);
6034                 /*
6035                  * check whether the device shows up in other nodes
6036                  */
6037                 if (mddev_is_clustered(mddev)) {
6038                         if (info->state & (1 << MD_DISK_CANDIDATE))
6039                                 set_bit(Candidate, &rdev->flags);
6040                         else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6041                                 /* --add initiated by this node */
6042                                 err = md_cluster_ops->add_new_disk(mddev, rdev);
6043                                 if (err) {
6044                                         export_rdev(rdev);
6045                                         return err;
6046                                 }
6047                         }
6048                 }
6049
6050                 rdev->raid_disk = -1;
6051                 err = bind_rdev_to_array(rdev, mddev);
6052
6053                 if (err)
6054                         export_rdev(rdev);
6055
6056                 if (mddev_is_clustered(mddev)) {
6057                         if (info->state & (1 << MD_DISK_CANDIDATE))
6058                                 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6059                         else {
6060                                 if (err)
6061                                         md_cluster_ops->add_new_disk_cancel(mddev);
6062                                 else
6063                                         err = add_bound_rdev(rdev);
6064                         }
6065
6066                 } else if (!err)
6067                         err = add_bound_rdev(rdev);
6068
6069                 return err;
6070         }
6071
6072         /* otherwise, add_new_disk is only allowed
6073          * for major_version==0 superblocks
6074          */
6075         if (mddev->major_version != 0) {
6076                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6077                        mdname(mddev));
6078                 return -EINVAL;
6079         }
6080
6081         if (!(info->state & (1<<MD_DISK_FAULTY))) {
6082                 int err;
6083                 rdev = md_import_device(dev, -1, 0);
6084                 if (IS_ERR(rdev)) {
6085                         printk(KERN_WARNING
6086                                 "md: error, md_import_device() returned %ld\n",
6087                                 PTR_ERR(rdev));
6088                         return PTR_ERR(rdev);
6089                 }
6090                 rdev->desc_nr = info->number;
6091                 if (info->raid_disk < mddev->raid_disks)
6092                         rdev->raid_disk = info->raid_disk;
6093                 else
6094                         rdev->raid_disk = -1;
6095
6096                 if (rdev->raid_disk < mddev->raid_disks)
6097                         if (info->state & (1<<MD_DISK_SYNC))
6098                                 set_bit(In_sync, &rdev->flags);
6099
6100                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6101                         set_bit(WriteMostly, &rdev->flags);
6102
6103                 if (!mddev->persistent) {
6104                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
6105                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6106                 } else
6107                         rdev->sb_start = calc_dev_sboffset(rdev);
6108                 rdev->sectors = rdev->sb_start;
6109
6110                 err = bind_rdev_to_array(rdev, mddev);
6111                 if (err) {
6112                         export_rdev(rdev);
6113                         return err;
6114                 }
6115         }
6116
6117         return 0;
6118 }
6119
6120 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6121 {
6122         char b[BDEVNAME_SIZE];
6123         struct md_rdev *rdev;
6124         int ret = -1;
6125
6126         rdev = find_rdev(mddev, dev);
6127         if (!rdev)
6128                 return -ENXIO;
6129
6130         if (mddev_is_clustered(mddev))
6131                 ret = md_cluster_ops->metadata_update_start(mddev);
6132
6133         if (rdev->raid_disk < 0)
6134                 goto kick_rdev;
6135
6136         clear_bit(Blocked, &rdev->flags);
6137         remove_and_add_spares(mddev, rdev);
6138
6139         if (rdev->raid_disk >= 0)
6140                 goto busy;
6141
6142 kick_rdev:
6143         if (mddev_is_clustered(mddev) && ret == 0)
6144                 md_cluster_ops->remove_disk(mddev, rdev);
6145
6146         md_kick_rdev_from_array(rdev);
6147         md_update_sb(mddev, 1);
6148         md_new_event(mddev);
6149
6150         return 0;
6151 busy:
6152         if (mddev_is_clustered(mddev) && ret == 0)
6153                 md_cluster_ops->metadata_update_cancel(mddev);
6154
6155         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6156                 bdevname(rdev->bdev,b), mdname(mddev));
6157         return -EBUSY;
6158 }
6159
6160 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6161 {
6162         char b[BDEVNAME_SIZE];
6163         int err;
6164         struct md_rdev *rdev;
6165
6166         if (!mddev->pers)
6167                 return -ENODEV;
6168
6169         if (mddev->major_version != 0) {
6170                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6171                         " version-0 superblocks.\n",
6172                         mdname(mddev));
6173                 return -EINVAL;
6174         }
6175         if (!mddev->pers->hot_add_disk) {
6176                 printk(KERN_WARNING
6177                         "%s: personality does not support diskops!\n",
6178                         mdname(mddev));
6179                 return -EINVAL;
6180         }
6181
6182         rdev = md_import_device(dev, -1, 0);
6183         if (IS_ERR(rdev)) {
6184                 printk(KERN_WARNING
6185                         "md: error, md_import_device() returned %ld\n",
6186                         PTR_ERR(rdev));
6187                 return -EINVAL;
6188         }
6189
6190         if (mddev->persistent)
6191                 rdev->sb_start = calc_dev_sboffset(rdev);
6192         else
6193                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6194
6195         rdev->sectors = rdev->sb_start;
6196
6197         if (test_bit(Faulty, &rdev->flags)) {
6198                 printk(KERN_WARNING
6199                         "md: can not hot-add faulty %s disk to %s!\n",
6200                         bdevname(rdev->bdev,b), mdname(mddev));
6201                 err = -EINVAL;
6202                 goto abort_export;
6203         }
6204
6205         clear_bit(In_sync, &rdev->flags);
6206         rdev->desc_nr = -1;
6207         rdev->saved_raid_disk = -1;
6208         err = bind_rdev_to_array(rdev, mddev);
6209         if (err)
6210                 goto abort_export;
6211
6212         /*
6213          * The rest should better be atomic, we can have disk failures
6214          * noticed in interrupt contexts ...
6215          */
6216
6217         rdev->raid_disk = -1;
6218
6219         md_update_sb(mddev, 1);
6220         /*
6221          * Kick recovery, maybe this spare has to be added to the
6222          * array immediately.
6223          */
6224         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6225         md_wakeup_thread(mddev->thread);
6226         md_new_event(mddev);
6227         return 0;
6228
6229 abort_export:
6230         export_rdev(rdev);
6231         return err;
6232 }
6233
6234 static int set_bitmap_file(struct mddev *mddev, int fd)
6235 {
6236         int err = 0;
6237
6238         if (mddev->pers) {
6239                 if (!mddev->pers->quiesce || !mddev->thread)
6240                         return -EBUSY;
6241                 if (mddev->recovery || mddev->sync_thread)
6242                         return -EBUSY;
6243                 /* we should be able to change the bitmap.. */
6244         }
6245
6246         if (fd >= 0) {
6247                 struct inode *inode;
6248                 struct file *f;
6249
6250                 if (mddev->bitmap || mddev->bitmap_info.file)
6251                         return -EEXIST; /* cannot add when bitmap is present */
6252                 f = fget(fd);
6253
6254                 if (f == NULL) {
6255                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6256                                mdname(mddev));
6257                         return -EBADF;
6258                 }
6259
6260                 inode = f->f_mapping->host;
6261                 if (!S_ISREG(inode->i_mode)) {
6262                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6263                                mdname(mddev));
6264                         err = -EBADF;
6265                 } else if (!(f->f_mode & FMODE_WRITE)) {
6266                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6267                                mdname(mddev));
6268                         err = -EBADF;
6269                 } else if (atomic_read(&inode->i_writecount) != 1) {
6270                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6271                                mdname(mddev));
6272                         err = -EBUSY;
6273                 }
6274                 if (err) {
6275                         fput(f);
6276                         return err;
6277                 }
6278                 mddev->bitmap_info.file = f;
6279                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6280         } else if (mddev->bitmap == NULL)
6281                 return -ENOENT; /* cannot remove what isn't there */
6282         err = 0;
6283         if (mddev->pers) {
6284                 mddev->pers->quiesce(mddev, 1);
6285                 if (fd >= 0) {
6286                         struct bitmap *bitmap;
6287
6288                         bitmap = bitmap_create(mddev, -1);
6289                         if (!IS_ERR(bitmap)) {
6290                                 mddev->bitmap = bitmap;
6291                                 err = bitmap_load(mddev);
6292                         } else
6293                                 err = PTR_ERR(bitmap);
6294                 }
6295                 if (fd < 0 || err) {
6296                         bitmap_destroy(mddev);
6297                         fd = -1; /* make sure to put the file */
6298                 }
6299                 mddev->pers->quiesce(mddev, 0);
6300         }
6301         if (fd < 0) {
6302                 struct file *f = mddev->bitmap_info.file;
6303                 if (f) {
6304                         spin_lock(&mddev->lock);
6305                         mddev->bitmap_info.file = NULL;
6306                         spin_unlock(&mddev->lock);
6307                         fput(f);
6308                 }
6309         }
6310
6311         return err;
6312 }
6313
6314 /*
6315  * set_array_info is used two different ways
6316  * The original usage is when creating a new array.
6317  * In this usage, raid_disks is > 0 and it together with
6318  *  level, size, not_persistent,layout,chunksize determine the
6319  *  shape of the array.
6320  *  This will always create an array with a type-0.90.0 superblock.
6321  * The newer usage is when assembling an array.
6322  *  In this case raid_disks will be 0, and the major_version field is
6323  *  use to determine which style super-blocks are to be found on the devices.
6324  *  The minor and patch _version numbers are also kept incase the
6325  *  super_block handler wishes to interpret them.
6326  */
6327 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6328 {
6329
6330         if (info->raid_disks == 0) {
6331                 /* just setting version number for superblock loading */
6332                 if (info->major_version < 0 ||
6333                     info->major_version >= ARRAY_SIZE(super_types) ||
6334                     super_types[info->major_version].name == NULL) {
6335                         /* maybe try to auto-load a module? */
6336                         printk(KERN_INFO
6337                                 "md: superblock version %d not known\n",
6338                                 info->major_version);
6339                         return -EINVAL;
6340                 }
6341                 mddev->major_version = info->major_version;
6342                 mddev->minor_version = info->minor_version;
6343                 mddev->patch_version = info->patch_version;
6344                 mddev->persistent = !info->not_persistent;
6345                 /* ensure mddev_put doesn't delete this now that there
6346                  * is some minimal configuration.
6347                  */
6348                 mddev->ctime         = get_seconds();
6349                 return 0;
6350         }
6351         mddev->major_version = MD_MAJOR_VERSION;
6352         mddev->minor_version = MD_MINOR_VERSION;
6353         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6354         mddev->ctime         = get_seconds();
6355
6356         mddev->level         = info->level;
6357         mddev->clevel[0]     = 0;
6358         mddev->dev_sectors   = 2 * (sector_t)info->size;
6359         mddev->raid_disks    = info->raid_disks;
6360         /* don't set md_minor, it is determined by which /dev/md* was
6361          * openned
6362          */
6363         if (info->state & (1<<MD_SB_CLEAN))
6364                 mddev->recovery_cp = MaxSector;
6365         else
6366                 mddev->recovery_cp = 0;
6367         mddev->persistent    = ! info->not_persistent;
6368         mddev->external      = 0;
6369
6370         mddev->layout        = info->layout;
6371         mddev->chunk_sectors = info->chunk_size >> 9;
6372
6373         mddev->max_disks     = MD_SB_DISKS;
6374
6375         if (mddev->persistent)
6376                 mddev->flags         = 0;
6377         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6378
6379         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6380         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6381         mddev->bitmap_info.offset = 0;
6382
6383         mddev->reshape_position = MaxSector;
6384
6385         /*
6386          * Generate a 128 bit UUID
6387          */
6388         get_random_bytes(mddev->uuid, 16);
6389
6390         mddev->new_level = mddev->level;
6391         mddev->new_chunk_sectors = mddev->chunk_sectors;
6392         mddev->new_layout = mddev->layout;
6393         mddev->delta_disks = 0;
6394         mddev->reshape_backwards = 0;
6395
6396         return 0;
6397 }
6398
6399 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6400 {
6401         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6402
6403         if (mddev->external_size)
6404                 return;
6405
6406         mddev->array_sectors = array_sectors;
6407 }
6408 EXPORT_SYMBOL(md_set_array_sectors);
6409
6410 static int update_size(struct mddev *mddev, sector_t num_sectors)
6411 {
6412         struct md_rdev *rdev;
6413         int rv;
6414         int fit = (num_sectors == 0);
6415
6416         if (mddev->pers->resize == NULL)
6417                 return -EINVAL;
6418         /* The "num_sectors" is the number of sectors of each device that
6419          * is used.  This can only make sense for arrays with redundancy.
6420          * linear and raid0 always use whatever space is available. We can only
6421          * consider changing this number if no resync or reconstruction is
6422          * happening, and if the new size is acceptable. It must fit before the
6423          * sb_start or, if that is <data_offset, it must fit before the size
6424          * of each device.  If num_sectors is zero, we find the largest size
6425          * that fits.
6426          */
6427         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6428             mddev->sync_thread)
6429                 return -EBUSY;
6430         if (mddev->ro)
6431                 return -EROFS;
6432
6433         rdev_for_each(rdev, mddev) {
6434                 sector_t avail = rdev->sectors;
6435
6436                 if (fit && (num_sectors == 0 || num_sectors > avail))
6437                         num_sectors = avail;
6438                 if (avail < num_sectors)
6439                         return -ENOSPC;
6440         }
6441         rv = mddev->pers->resize(mddev, num_sectors);
6442         if (!rv)
6443                 revalidate_disk(mddev->gendisk);
6444         return rv;
6445 }
6446
6447 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6448 {
6449         int rv;
6450         struct md_rdev *rdev;
6451         /* change the number of raid disks */
6452         if (mddev->pers->check_reshape == NULL)
6453                 return -EINVAL;
6454         if (mddev->ro)
6455                 return -EROFS;
6456         if (raid_disks <= 0 ||
6457             (mddev->max_disks && raid_disks >= mddev->max_disks))
6458                 return -EINVAL;
6459         if (mddev->sync_thread ||
6460             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6461             mddev->reshape_position != MaxSector)
6462                 return -EBUSY;
6463
6464         rdev_for_each(rdev, mddev) {
6465                 if (mddev->raid_disks < raid_disks &&
6466                     rdev->data_offset < rdev->new_data_offset)
6467                         return -EINVAL;
6468                 if (mddev->raid_disks > raid_disks &&
6469                     rdev->data_offset > rdev->new_data_offset)
6470                         return -EINVAL;
6471         }
6472
6473         mddev->delta_disks = raid_disks - mddev->raid_disks;
6474         if (mddev->delta_disks < 0)
6475                 mddev->reshape_backwards = 1;
6476         else if (mddev->delta_disks > 0)
6477                 mddev->reshape_backwards = 0;
6478
6479         rv = mddev->pers->check_reshape(mddev);
6480         if (rv < 0) {
6481                 mddev->delta_disks = 0;
6482                 mddev->reshape_backwards = 0;
6483         }
6484         return rv;
6485 }
6486
6487 /*
6488  * update_array_info is used to change the configuration of an
6489  * on-line array.
6490  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6491  * fields in the info are checked against the array.
6492  * Any differences that cannot be handled will cause an error.
6493  * Normally, only one change can be managed at a time.
6494  */
6495 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6496 {
6497         int rv = 0;
6498         int cnt = 0;
6499         int state = 0;
6500
6501         /* calculate expected state,ignoring low bits */
6502         if (mddev->bitmap && mddev->bitmap_info.offset)
6503                 state |= (1 << MD_SB_BITMAP_PRESENT);
6504
6505         if (mddev->major_version != info->major_version ||
6506             mddev->minor_version != info->minor_version ||
6507 /*          mddev->patch_version != info->patch_version || */
6508             mddev->ctime         != info->ctime         ||
6509             mddev->level         != info->level         ||
6510 /*          mddev->layout        != info->layout        || */
6511             mddev->persistent    != !info->not_persistent ||
6512             mddev->chunk_sectors != info->chunk_size >> 9 ||
6513             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6514             ((state^info->state) & 0xfffffe00)
6515                 )
6516                 return -EINVAL;
6517         /* Check there is only one change */
6518         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6519                 cnt++;
6520         if (mddev->raid_disks != info->raid_disks)
6521                 cnt++;
6522         if (mddev->layout != info->layout)
6523                 cnt++;
6524         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6525                 cnt++;
6526         if (cnt == 0)
6527                 return 0;
6528         if (cnt > 1)
6529                 return -EINVAL;
6530
6531         if (mddev->layout != info->layout) {
6532                 /* Change layout
6533                  * we don't need to do anything at the md level, the
6534                  * personality will take care of it all.
6535                  */
6536                 if (mddev->pers->check_reshape == NULL)
6537                         return -EINVAL;
6538                 else {
6539                         mddev->new_layout = info->layout;
6540                         rv = mddev->pers->check_reshape(mddev);
6541                         if (rv)
6542                                 mddev->new_layout = mddev->layout;
6543                         return rv;
6544                 }
6545         }
6546         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6547                 rv = update_size(mddev, (sector_t)info->size * 2);
6548
6549         if (mddev->raid_disks    != info->raid_disks)
6550                 rv = update_raid_disks(mddev, info->raid_disks);
6551
6552         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6553                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6554                         rv = -EINVAL;
6555                         goto err;
6556                 }
6557                 if (mddev->recovery || mddev->sync_thread) {
6558                         rv = -EBUSY;
6559                         goto err;
6560                 }
6561                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6562                         struct bitmap *bitmap;
6563                         /* add the bitmap */
6564                         if (mddev->bitmap) {
6565                                 rv = -EEXIST;
6566                                 goto err;
6567                         }
6568                         if (mddev->bitmap_info.default_offset == 0) {
6569                                 rv = -EINVAL;
6570                                 goto err;
6571                         }
6572                         mddev->bitmap_info.offset =
6573                                 mddev->bitmap_info.default_offset;
6574                         mddev->bitmap_info.space =
6575                                 mddev->bitmap_info.default_space;
6576                         mddev->pers->quiesce(mddev, 1);
6577                         bitmap = bitmap_create(mddev, -1);
6578                         if (!IS_ERR(bitmap)) {
6579                                 mddev->bitmap = bitmap;
6580                                 rv = bitmap_load(mddev);
6581                         } else
6582                                 rv = PTR_ERR(bitmap);
6583                         if (rv)
6584                                 bitmap_destroy(mddev);
6585                         mddev->pers->quiesce(mddev, 0);
6586                 } else {
6587                         /* remove the bitmap */
6588                         if (!mddev->bitmap) {
6589                                 rv = -ENOENT;
6590                                 goto err;
6591                         }
6592                         if (mddev->bitmap->storage.file) {
6593                                 rv = -EINVAL;
6594                                 goto err;
6595                         }
6596                         mddev->pers->quiesce(mddev, 1);
6597                         bitmap_destroy(mddev);
6598                         mddev->pers->quiesce(mddev, 0);
6599                         mddev->bitmap_info.offset = 0;
6600                 }
6601         }
6602         md_update_sb(mddev, 1);
6603         return rv;
6604 err:
6605         return rv;
6606 }
6607
6608 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6609 {
6610         struct md_rdev *rdev;
6611         int err = 0;
6612
6613         if (mddev->pers == NULL)
6614                 return -ENODEV;
6615
6616         rcu_read_lock();
6617         rdev = find_rdev_rcu(mddev, dev);
6618         if (!rdev)
6619                 err =  -ENODEV;
6620         else {
6621                 md_error(mddev, rdev);
6622                 if (!test_bit(Faulty, &rdev->flags))
6623                         err = -EBUSY;
6624         }
6625         rcu_read_unlock();
6626         return err;
6627 }
6628
6629 /*
6630  * We have a problem here : there is no easy way to give a CHS
6631  * virtual geometry. We currently pretend that we have a 2 heads
6632  * 4 sectors (with a BIG number of cylinders...). This drives
6633  * dosfs just mad... ;-)
6634  */
6635 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6636 {
6637         struct mddev *mddev = bdev->bd_disk->private_data;
6638
6639         geo->heads = 2;
6640         geo->sectors = 4;
6641         geo->cylinders = mddev->array_sectors / 8;
6642         return 0;
6643 }
6644
6645 static inline bool md_ioctl_valid(unsigned int cmd)
6646 {
6647         switch (cmd) {
6648         case ADD_NEW_DISK:
6649         case BLKROSET:
6650         case GET_ARRAY_INFO:
6651         case GET_BITMAP_FILE:
6652         case GET_DISK_INFO:
6653         case HOT_ADD_DISK:
6654         case HOT_REMOVE_DISK:
6655         case RAID_AUTORUN:
6656         case RAID_VERSION:
6657         case RESTART_ARRAY_RW:
6658         case RUN_ARRAY:
6659         case SET_ARRAY_INFO:
6660         case SET_BITMAP_FILE:
6661         case SET_DISK_FAULTY:
6662         case STOP_ARRAY:
6663         case STOP_ARRAY_RO:
6664         case CLUSTERED_DISK_NACK:
6665                 return true;
6666         default:
6667                 return false;
6668         }
6669 }
6670
6671 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6672                         unsigned int cmd, unsigned long arg)
6673 {
6674         int err = 0;
6675         void __user *argp = (void __user *)arg;
6676         struct mddev *mddev = NULL;
6677         int ro;
6678
6679         if (!md_ioctl_valid(cmd))
6680                 return -ENOTTY;
6681
6682         switch (cmd) {
6683         case RAID_VERSION:
6684         case GET_ARRAY_INFO:
6685         case GET_DISK_INFO:
6686                 break;
6687         default:
6688                 if (!capable(CAP_SYS_ADMIN))
6689                         return -EACCES;
6690         }
6691
6692         /*
6693          * Commands dealing with the RAID driver but not any
6694          * particular array:
6695          */
6696         switch (cmd) {
6697         case RAID_VERSION:
6698                 err = get_version(argp);
6699                 goto out;
6700
6701 #ifndef MODULE
6702         case RAID_AUTORUN:
6703                 err = 0;
6704                 autostart_arrays(arg);
6705                 goto out;
6706 #endif
6707         default:;
6708         }
6709
6710         /*
6711          * Commands creating/starting a new array:
6712          */
6713
6714         mddev = bdev->bd_disk->private_data;
6715
6716         if (!mddev) {
6717                 BUG();
6718                 goto out;
6719         }
6720
6721         /* Some actions do not requires the mutex */
6722         switch (cmd) {
6723         case GET_ARRAY_INFO:
6724                 if (!mddev->raid_disks && !mddev->external)
6725                         err = -ENODEV;
6726                 else
6727                         err = get_array_info(mddev, argp);
6728                 goto out;
6729
6730         case GET_DISK_INFO:
6731                 if (!mddev->raid_disks && !mddev->external)
6732                         err = -ENODEV;
6733                 else
6734                         err = get_disk_info(mddev, argp);
6735                 goto out;
6736
6737         case SET_DISK_FAULTY:
6738                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6739                 goto out;
6740
6741         case GET_BITMAP_FILE:
6742                 err = get_bitmap_file(mddev, argp);
6743                 goto out;
6744
6745         }
6746
6747         if (cmd == ADD_NEW_DISK)
6748                 /* need to ensure md_delayed_delete() has completed */
6749                 flush_workqueue(md_misc_wq);
6750
6751         if (cmd == HOT_REMOVE_DISK)
6752                 /* need to ensure recovery thread has run */
6753                 wait_event_interruptible_timeout(mddev->sb_wait,
6754                                                  !test_bit(MD_RECOVERY_NEEDED,
6755                                                            &mddev->flags),
6756                                                  msecs_to_jiffies(5000));
6757         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6758                 /* Need to flush page cache, and ensure no-one else opens
6759                  * and writes
6760                  */
6761                 mutex_lock(&mddev->open_mutex);
6762                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6763                         mutex_unlock(&mddev->open_mutex);
6764                         err = -EBUSY;
6765                         goto out;
6766                 }
6767                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6768                 mutex_unlock(&mddev->open_mutex);
6769                 sync_blockdev(bdev);
6770         }
6771         err = mddev_lock(mddev);
6772         if (err) {
6773                 printk(KERN_INFO
6774                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6775                         err, cmd);
6776                 goto out;
6777         }
6778
6779         if (cmd == SET_ARRAY_INFO) {
6780                 mdu_array_info_t info;
6781                 if (!arg)
6782                         memset(&info, 0, sizeof(info));
6783                 else if (copy_from_user(&info, argp, sizeof(info))) {
6784                         err = -EFAULT;
6785                         goto unlock;
6786                 }
6787                 if (mddev->pers) {
6788                         err = update_array_info(mddev, &info);
6789                         if (err) {
6790                                 printk(KERN_WARNING "md: couldn't update"
6791                                        " array info. %d\n", err);
6792                                 goto unlock;
6793                         }
6794                         goto unlock;
6795                 }
6796                 if (!list_empty(&mddev->disks)) {
6797                         printk(KERN_WARNING
6798                                "md: array %s already has disks!\n",
6799                                mdname(mddev));
6800                         err = -EBUSY;
6801                         goto unlock;
6802                 }
6803                 if (mddev->raid_disks) {
6804                         printk(KERN_WARNING
6805                                "md: array %s already initialised!\n",
6806                                mdname(mddev));
6807                         err = -EBUSY;
6808                         goto unlock;
6809                 }
6810                 err = set_array_info(mddev, &info);
6811                 if (err) {
6812                         printk(KERN_WARNING "md: couldn't set"
6813                                " array info. %d\n", err);
6814                         goto unlock;
6815                 }
6816                 goto unlock;
6817         }
6818
6819         /*
6820          * Commands querying/configuring an existing array:
6821          */
6822         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6823          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6824         if ((!mddev->raid_disks && !mddev->external)
6825             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6826             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6827             && cmd != GET_BITMAP_FILE) {
6828                 err = -ENODEV;
6829                 goto unlock;
6830         }
6831
6832         /*
6833          * Commands even a read-only array can execute:
6834          */
6835         switch (cmd) {
6836         case RESTART_ARRAY_RW:
6837                 err = restart_array(mddev);
6838                 goto unlock;
6839
6840         case STOP_ARRAY:
6841                 err = do_md_stop(mddev, 0, bdev);
6842                 goto unlock;
6843
6844         case STOP_ARRAY_RO:
6845                 err = md_set_readonly(mddev, bdev);
6846                 goto unlock;
6847
6848         case HOT_REMOVE_DISK:
6849                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6850                 goto unlock;
6851
6852         case ADD_NEW_DISK:
6853                 /* We can support ADD_NEW_DISK on read-only arrays
6854                  * on if we are re-adding a preexisting device.
6855                  * So require mddev->pers and MD_DISK_SYNC.
6856                  */
6857                 if (mddev->pers) {
6858                         mdu_disk_info_t info;
6859                         if (copy_from_user(&info, argp, sizeof(info)))
6860                                 err = -EFAULT;
6861                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6862                                 /* Need to clear read-only for this */
6863                                 break;
6864                         else
6865                                 err = add_new_disk(mddev, &info);
6866                         goto unlock;
6867                 }
6868                 break;
6869
6870         case BLKROSET:
6871                 if (get_user(ro, (int __user *)(arg))) {
6872                         err = -EFAULT;
6873                         goto unlock;
6874                 }
6875                 err = -EINVAL;
6876
6877                 /* if the bdev is going readonly the value of mddev->ro
6878                  * does not matter, no writes are coming
6879                  */
6880                 if (ro)
6881                         goto unlock;
6882
6883                 /* are we are already prepared for writes? */
6884                 if (mddev->ro != 1)
6885                         goto unlock;
6886
6887                 /* transitioning to readauto need only happen for
6888                  * arrays that call md_write_start
6889                  */
6890                 if (mddev->pers) {
6891                         err = restart_array(mddev);
6892                         if (err == 0) {
6893                                 mddev->ro = 2;
6894                                 set_disk_ro(mddev->gendisk, 0);
6895                         }
6896                 }
6897                 goto unlock;
6898         }
6899
6900         /*
6901          * The remaining ioctls are changing the state of the
6902          * superblock, so we do not allow them on read-only arrays.
6903          */
6904         if (mddev->ro && mddev->pers) {
6905                 if (mddev->ro == 2) {
6906                         mddev->ro = 0;
6907                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6908                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6909                         /* mddev_unlock will wake thread */
6910                         /* If a device failed while we were read-only, we
6911                          * need to make sure the metadata is updated now.
6912                          */
6913                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6914                                 mddev_unlock(mddev);
6915                                 wait_event(mddev->sb_wait,
6916                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6917                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6918                                 mddev_lock_nointr(mddev);
6919                         }
6920                 } else {
6921                         err = -EROFS;
6922                         goto unlock;
6923                 }
6924         }
6925
6926         switch (cmd) {
6927         case ADD_NEW_DISK:
6928         {
6929                 mdu_disk_info_t info;
6930                 if (copy_from_user(&info, argp, sizeof(info)))
6931                         err = -EFAULT;
6932                 else
6933                         err = add_new_disk(mddev, &info);
6934                 goto unlock;
6935         }
6936
6937         case CLUSTERED_DISK_NACK:
6938                 if (mddev_is_clustered(mddev))
6939                         md_cluster_ops->new_disk_ack(mddev, false);
6940                 else
6941                         err = -EINVAL;
6942                 goto unlock;
6943
6944         case HOT_ADD_DISK:
6945                 err = hot_add_disk(mddev, new_decode_dev(arg));
6946                 goto unlock;
6947
6948         case RUN_ARRAY:
6949                 err = do_md_run(mddev);
6950                 goto unlock;
6951
6952         case SET_BITMAP_FILE:
6953                 err = set_bitmap_file(mddev, (int)arg);
6954                 goto unlock;
6955
6956         default:
6957                 err = -EINVAL;
6958                 goto unlock;
6959         }
6960
6961 unlock:
6962         if (mddev->hold_active == UNTIL_IOCTL &&
6963             err != -EINVAL)
6964                 mddev->hold_active = 0;
6965         mddev_unlock(mddev);
6966 out:
6967         return err;
6968 }
6969 #ifdef CONFIG_COMPAT
6970 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6971                     unsigned int cmd, unsigned long arg)
6972 {
6973         switch (cmd) {
6974         case HOT_REMOVE_DISK:
6975         case HOT_ADD_DISK:
6976         case SET_DISK_FAULTY:
6977         case SET_BITMAP_FILE:
6978                 /* These take in integer arg, do not convert */
6979                 break;
6980         default:
6981                 arg = (unsigned long)compat_ptr(arg);
6982                 break;
6983         }
6984
6985         return md_ioctl(bdev, mode, cmd, arg);
6986 }
6987 #endif /* CONFIG_COMPAT */
6988
6989 static int md_open(struct block_device *bdev, fmode_t mode)
6990 {
6991         /*
6992          * Succeed if we can lock the mddev, which confirms that
6993          * it isn't being stopped right now.
6994          */
6995         struct mddev *mddev = mddev_find(bdev->bd_dev);
6996         int err;
6997
6998         if (!mddev)
6999                 return -ENODEV;
7000
7001         if (mddev->gendisk != bdev->bd_disk) {
7002                 /* we are racing with mddev_put which is discarding this
7003                  * bd_disk.
7004                  */
7005                 mddev_put(mddev);
7006                 /* Wait until bdev->bd_disk is definitely gone */
7007                 flush_workqueue(md_misc_wq);
7008                 /* Then retry the open from the top */
7009                 return -ERESTARTSYS;
7010         }
7011         BUG_ON(mddev != bdev->bd_disk->private_data);
7012
7013         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7014                 goto out;
7015
7016         err = 0;
7017         atomic_inc(&mddev->openers);
7018         clear_bit(MD_STILL_CLOSED, &mddev->flags);
7019         mutex_unlock(&mddev->open_mutex);
7020
7021         check_disk_change(bdev);
7022  out:
7023         return err;
7024 }
7025
7026 static void md_release(struct gendisk *disk, fmode_t mode)
7027 {
7028         struct mddev *mddev = disk->private_data;
7029
7030         BUG_ON(!mddev);
7031         atomic_dec(&mddev->openers);
7032         mddev_put(mddev);
7033 }
7034
7035 static int md_media_changed(struct gendisk *disk)
7036 {
7037         struct mddev *mddev = disk->private_data;
7038
7039         return mddev->changed;
7040 }
7041
7042 static int md_revalidate(struct gendisk *disk)
7043 {
7044         struct mddev *mddev = disk->private_data;
7045
7046         mddev->changed = 0;
7047         return 0;
7048 }
7049 static const struct block_device_operations md_fops =
7050 {
7051         .owner          = THIS_MODULE,
7052         .open           = md_open,
7053         .release        = md_release,
7054         .ioctl          = md_ioctl,
7055 #ifdef CONFIG_COMPAT
7056         .compat_ioctl   = md_compat_ioctl,
7057 #endif
7058         .getgeo         = md_getgeo,
7059         .media_changed  = md_media_changed,
7060         .revalidate_disk= md_revalidate,
7061 };
7062
7063 static int md_thread(void *arg)
7064 {
7065         struct md_thread *thread = arg;
7066
7067         /*
7068          * md_thread is a 'system-thread', it's priority should be very
7069          * high. We avoid resource deadlocks individually in each
7070          * raid personality. (RAID5 does preallocation) We also use RR and
7071          * the very same RT priority as kswapd, thus we will never get
7072          * into a priority inversion deadlock.
7073          *
7074          * we definitely have to have equal or higher priority than
7075          * bdflush, otherwise bdflush will deadlock if there are too
7076          * many dirty RAID5 blocks.
7077          */
7078
7079         allow_signal(SIGKILL);
7080         while (!kthread_should_stop()) {
7081
7082                 /* We need to wait INTERRUPTIBLE so that
7083                  * we don't add to the load-average.
7084                  * That means we need to be sure no signals are
7085                  * pending
7086                  */
7087                 if (signal_pending(current))
7088                         flush_signals(current);
7089
7090                 wait_event_interruptible_timeout
7091                         (thread->wqueue,
7092                          test_bit(THREAD_WAKEUP, &thread->flags)
7093                          || kthread_should_stop(),
7094                          thread->timeout);
7095
7096                 clear_bit(THREAD_WAKEUP, &thread->flags);
7097                 if (!kthread_should_stop())
7098                         thread->run(thread);
7099         }
7100
7101         return 0;
7102 }
7103
7104 void md_wakeup_thread(struct md_thread *thread)
7105 {
7106         if (thread) {
7107                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7108                 set_bit(THREAD_WAKEUP, &thread->flags);
7109                 wake_up(&thread->wqueue);
7110         }
7111 }
7112 EXPORT_SYMBOL(md_wakeup_thread);
7113
7114 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7115                 struct mddev *mddev, const char *name)
7116 {
7117         struct md_thread *thread;
7118
7119         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7120         if (!thread)
7121                 return NULL;
7122
7123         init_waitqueue_head(&thread->wqueue);
7124
7125         thread->run = run;
7126         thread->mddev = mddev;
7127         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7128         thread->tsk = kthread_run(md_thread, thread,
7129                                   "%s_%s",
7130                                   mdname(thread->mddev),
7131                                   name);
7132         if (IS_ERR(thread->tsk)) {
7133                 kfree(thread);
7134                 return NULL;
7135         }
7136         return thread;
7137 }
7138 EXPORT_SYMBOL(md_register_thread);
7139
7140 void md_unregister_thread(struct md_thread **threadp)
7141 {
7142         struct md_thread *thread = *threadp;
7143         if (!thread)
7144                 return;
7145         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7146         /* Locking ensures that mddev_unlock does not wake_up a
7147          * non-existent thread
7148          */
7149         spin_lock(&pers_lock);
7150         *threadp = NULL;
7151         spin_unlock(&pers_lock);
7152
7153         kthread_stop(thread->tsk);
7154         kfree(thread);
7155 }
7156 EXPORT_SYMBOL(md_unregister_thread);
7157
7158 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7159 {
7160         if (!rdev || test_bit(Faulty, &rdev->flags))
7161                 return;
7162
7163         if (!mddev->pers || !mddev->pers->error_handler)
7164                 return;
7165         mddev->pers->error_handler(mddev,rdev);
7166         if (mddev->degraded)
7167                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7168         sysfs_notify_dirent_safe(rdev->sysfs_state);
7169         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7170         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7171         md_wakeup_thread(mddev->thread);
7172         if (mddev->event_work.func)
7173                 queue_work(md_misc_wq, &mddev->event_work);
7174         md_new_event_inintr(mddev);
7175 }
7176 EXPORT_SYMBOL(md_error);
7177
7178 /* seq_file implementation /proc/mdstat */
7179
7180 static void status_unused(struct seq_file *seq)
7181 {
7182         int i = 0;
7183         struct md_rdev *rdev;
7184
7185         seq_printf(seq, "unused devices: ");
7186
7187         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7188                 char b[BDEVNAME_SIZE];
7189                 i++;
7190                 seq_printf(seq, "%s ",
7191                               bdevname(rdev->bdev,b));
7192         }
7193         if (!i)
7194                 seq_printf(seq, "<none>");
7195
7196         seq_printf(seq, "\n");
7197 }
7198
7199 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7200 {
7201         sector_t max_sectors, resync, res;
7202         unsigned long dt, db;
7203         sector_t rt;
7204         int scale;
7205         unsigned int per_milli;
7206
7207         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7208             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7209                 max_sectors = mddev->resync_max_sectors;
7210         else
7211                 max_sectors = mddev->dev_sectors;
7212
7213         resync = mddev->curr_resync;
7214         if (resync <= 3) {
7215                 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7216                         /* Still cleaning up */
7217                         resync = max_sectors;
7218         } else
7219                 resync -= atomic_read(&mddev->recovery_active);
7220
7221         if (resync == 0) {
7222                 if (mddev->recovery_cp < MaxSector) {
7223                         seq_printf(seq, "\tresync=PENDING");
7224                         return 1;
7225                 }
7226                 return 0;
7227         }
7228         if (resync < 3) {
7229                 seq_printf(seq, "\tresync=DELAYED");
7230                 return 1;
7231         }
7232
7233         WARN_ON(max_sectors == 0);
7234         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7235          * in a sector_t, and (max_sectors>>scale) will fit in a
7236          * u32, as those are the requirements for sector_div.
7237          * Thus 'scale' must be at least 10
7238          */
7239         scale = 10;
7240         if (sizeof(sector_t) > sizeof(unsigned long)) {
7241                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7242                         scale++;
7243         }
7244         res = (resync>>scale)*1000;
7245         sector_div(res, (u32)((max_sectors>>scale)+1));
7246
7247         per_milli = res;
7248         {
7249                 int i, x = per_milli/50, y = 20-x;
7250                 seq_printf(seq, "[");
7251                 for (i = 0; i < x; i++)
7252                         seq_printf(seq, "=");
7253                 seq_printf(seq, ">");
7254                 for (i = 0; i < y; i++)
7255                         seq_printf(seq, ".");
7256                 seq_printf(seq, "] ");
7257         }
7258         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7259                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7260                     "reshape" :
7261                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7262                      "check" :
7263                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7264                       "resync" : "recovery"))),
7265                    per_milli/10, per_milli % 10,
7266                    (unsigned long long) resync/2,
7267                    (unsigned long long) max_sectors/2);
7268
7269         /*
7270          * dt: time from mark until now
7271          * db: blocks written from mark until now
7272          * rt: remaining time
7273          *
7274          * rt is a sector_t, so could be 32bit or 64bit.
7275          * So we divide before multiply in case it is 32bit and close
7276          * to the limit.
7277          * We scale the divisor (db) by 32 to avoid losing precision
7278          * near the end of resync when the number of remaining sectors
7279          * is close to 'db'.
7280          * We then divide rt by 32 after multiplying by db to compensate.
7281          * The '+1' avoids division by zero if db is very small.
7282          */
7283         dt = ((jiffies - mddev->resync_mark) / HZ);
7284         if (!dt) dt++;
7285         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7286                 - mddev->resync_mark_cnt;
7287
7288         rt = max_sectors - resync;    /* number of remaining sectors */
7289         sector_div(rt, db/32+1);
7290         rt *= dt;
7291         rt >>= 5;
7292
7293         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7294                    ((unsigned long)rt % 60)/6);
7295
7296         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7297         return 1;
7298 }
7299
7300 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7301 {
7302         struct list_head *tmp;
7303         loff_t l = *pos;
7304         struct mddev *mddev;
7305
7306         if (l >= 0x10000)
7307                 return NULL;
7308         if (!l--)
7309                 /* header */
7310                 return (void*)1;
7311
7312         spin_lock(&all_mddevs_lock);
7313         list_for_each(tmp,&all_mddevs)
7314                 if (!l--) {
7315                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7316                         mddev_get(mddev);
7317                         spin_unlock(&all_mddevs_lock);
7318                         return mddev;
7319                 }
7320         spin_unlock(&all_mddevs_lock);
7321         if (!l--)
7322                 return (void*)2;/* tail */
7323         return NULL;
7324 }
7325
7326 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7327 {
7328         struct list_head *tmp;
7329         struct mddev *next_mddev, *mddev = v;
7330
7331         ++*pos;
7332         if (v == (void*)2)
7333                 return NULL;
7334
7335         spin_lock(&all_mddevs_lock);
7336         if (v == (void*)1)
7337                 tmp = all_mddevs.next;
7338         else
7339                 tmp = mddev->all_mddevs.next;
7340         if (tmp != &all_mddevs)
7341                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7342         else {
7343                 next_mddev = (void*)2;
7344                 *pos = 0x10000;
7345         }
7346         spin_unlock(&all_mddevs_lock);
7347
7348         if (v != (void*)1)
7349                 mddev_put(mddev);
7350         return next_mddev;
7351
7352 }
7353
7354 static void md_seq_stop(struct seq_file *seq, void *v)
7355 {
7356         struct mddev *mddev = v;
7357
7358         if (mddev && v != (void*)1 && v != (void*)2)
7359                 mddev_put(mddev);
7360 }
7361
7362 static int md_seq_show(struct seq_file *seq, void *v)
7363 {
7364         struct mddev *mddev = v;
7365         sector_t sectors;
7366         struct md_rdev *rdev;
7367
7368         if (v == (void*)1) {
7369                 struct md_personality *pers;
7370                 seq_printf(seq, "Personalities : ");
7371                 spin_lock(&pers_lock);
7372                 list_for_each_entry(pers, &pers_list, list)
7373                         seq_printf(seq, "[%s] ", pers->name);
7374
7375                 spin_unlock(&pers_lock);
7376                 seq_printf(seq, "\n");
7377                 seq->poll_event = atomic_read(&md_event_count);
7378                 return 0;
7379         }
7380         if (v == (void*)2) {
7381                 status_unused(seq);
7382                 return 0;
7383         }
7384
7385         spin_lock(&mddev->lock);
7386         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7387                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7388                                                 mddev->pers ? "" : "in");
7389                 if (mddev->pers) {
7390                         if (mddev->ro==1)
7391                                 seq_printf(seq, " (read-only)");
7392                         if (mddev->ro==2)
7393                                 seq_printf(seq, " (auto-read-only)");
7394                         seq_printf(seq, " %s", mddev->pers->name);
7395                 }
7396
7397                 sectors = 0;
7398                 rcu_read_lock();
7399                 rdev_for_each_rcu(rdev, mddev) {
7400                         char b[BDEVNAME_SIZE];
7401                         seq_printf(seq, " %s[%d]",
7402                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7403                         if (test_bit(WriteMostly, &rdev->flags))
7404                                 seq_printf(seq, "(W)");
7405                         if (test_bit(Journal, &rdev->flags))
7406                                 seq_printf(seq, "(J)");
7407                         if (test_bit(Faulty, &rdev->flags)) {
7408                                 seq_printf(seq, "(F)");
7409                                 continue;
7410                         }
7411                         if (rdev->raid_disk < 0)
7412                                 seq_printf(seq, "(S)"); /* spare */
7413                         if (test_bit(Replacement, &rdev->flags))
7414                                 seq_printf(seq, "(R)");
7415                         sectors += rdev->sectors;
7416                 }
7417                 rcu_read_unlock();
7418
7419                 if (!list_empty(&mddev->disks)) {
7420                         if (mddev->pers)
7421                                 seq_printf(seq, "\n      %llu blocks",
7422                                            (unsigned long long)
7423                                            mddev->array_sectors / 2);
7424                         else
7425                                 seq_printf(seq, "\n      %llu blocks",
7426                                            (unsigned long long)sectors / 2);
7427                 }
7428                 if (mddev->persistent) {
7429                         if (mddev->major_version != 0 ||
7430                             mddev->minor_version != 90) {
7431                                 seq_printf(seq," super %d.%d",
7432                                            mddev->major_version,
7433                                            mddev->minor_version);
7434                         }
7435                 } else if (mddev->external)
7436                         seq_printf(seq, " super external:%s",
7437                                    mddev->metadata_type);
7438                 else
7439                         seq_printf(seq, " super non-persistent");
7440
7441                 if (mddev->pers) {
7442                         mddev->pers->status(seq, mddev);
7443                         seq_printf(seq, "\n      ");
7444                         if (mddev->pers->sync_request) {
7445                                 if (status_resync(seq, mddev))
7446                                         seq_printf(seq, "\n      ");
7447                         }
7448                 } else
7449                         seq_printf(seq, "\n       ");
7450
7451                 bitmap_status(seq, mddev->bitmap);
7452
7453                 seq_printf(seq, "\n");
7454         }
7455         spin_unlock(&mddev->lock);
7456
7457         return 0;
7458 }
7459
7460 static const struct seq_operations md_seq_ops = {
7461         .start  = md_seq_start,
7462         .next   = md_seq_next,
7463         .stop   = md_seq_stop,
7464         .show   = md_seq_show,
7465 };
7466
7467 static int md_seq_open(struct inode *inode, struct file *file)
7468 {
7469         struct seq_file *seq;
7470         int error;
7471
7472         error = seq_open(file, &md_seq_ops);
7473         if (error)
7474                 return error;
7475
7476         seq = file->private_data;
7477         seq->poll_event = atomic_read(&md_event_count);
7478         return error;
7479 }
7480
7481 static int md_unloading;
7482 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7483 {
7484         struct seq_file *seq = filp->private_data;
7485         int mask;
7486
7487         if (md_unloading)
7488                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7489         poll_wait(filp, &md_event_waiters, wait);
7490
7491         /* always allow read */
7492         mask = POLLIN | POLLRDNORM;
7493
7494         if (seq->poll_event != atomic_read(&md_event_count))
7495                 mask |= POLLERR | POLLPRI;
7496         return mask;
7497 }
7498
7499 static const struct file_operations md_seq_fops = {
7500         .owner          = THIS_MODULE,
7501         .open           = md_seq_open,
7502         .read           = seq_read,
7503         .llseek         = seq_lseek,
7504         .release        = seq_release_private,
7505         .poll           = mdstat_poll,
7506 };
7507
7508 int register_md_personality(struct md_personality *p)
7509 {
7510         printk(KERN_INFO "md: %s personality registered for level %d\n",
7511                                                 p->name, p->level);
7512         spin_lock(&pers_lock);
7513         list_add_tail(&p->list, &pers_list);
7514         spin_unlock(&pers_lock);
7515         return 0;
7516 }
7517 EXPORT_SYMBOL(register_md_personality);
7518
7519 int unregister_md_personality(struct md_personality *p)
7520 {
7521         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7522         spin_lock(&pers_lock);
7523         list_del_init(&p->list);
7524         spin_unlock(&pers_lock);
7525         return 0;
7526 }
7527 EXPORT_SYMBOL(unregister_md_personality);
7528
7529 int register_md_cluster_operations(struct md_cluster_operations *ops,
7530                                    struct module *module)
7531 {
7532         int ret = 0;
7533         spin_lock(&pers_lock);
7534         if (md_cluster_ops != NULL)
7535                 ret = -EALREADY;
7536         else {
7537                 md_cluster_ops = ops;
7538                 md_cluster_mod = module;
7539         }
7540         spin_unlock(&pers_lock);
7541         return ret;
7542 }
7543 EXPORT_SYMBOL(register_md_cluster_operations);
7544
7545 int unregister_md_cluster_operations(void)
7546 {
7547         spin_lock(&pers_lock);
7548         md_cluster_ops = NULL;
7549         spin_unlock(&pers_lock);
7550         return 0;
7551 }
7552 EXPORT_SYMBOL(unregister_md_cluster_operations);
7553
7554 int md_setup_cluster(struct mddev *mddev, int nodes)
7555 {
7556         int err;
7557
7558         err = request_module("md-cluster");
7559         if (err) {
7560                 pr_err("md-cluster module not found.\n");
7561                 return -ENOENT;
7562         }
7563
7564         spin_lock(&pers_lock);
7565         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7566                 spin_unlock(&pers_lock);
7567                 return -ENOENT;
7568         }
7569         spin_unlock(&pers_lock);
7570
7571         return md_cluster_ops->join(mddev, nodes);
7572 }
7573
7574 void md_cluster_stop(struct mddev *mddev)
7575 {
7576         if (!md_cluster_ops)
7577                 return;
7578         md_cluster_ops->leave(mddev);
7579         module_put(md_cluster_mod);
7580 }
7581
7582 static int is_mddev_idle(struct mddev *mddev, int init)
7583 {
7584         struct md_rdev *rdev;
7585         int idle;
7586         int curr_events;
7587
7588         idle = 1;
7589         rcu_read_lock();
7590         rdev_for_each_rcu(rdev, mddev) {
7591                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7592                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7593                               (int)part_stat_read(&disk->part0, sectors[1]) -
7594                               atomic_read(&disk->sync_io);
7595                 /* sync IO will cause sync_io to increase before the disk_stats
7596                  * as sync_io is counted when a request starts, and
7597                  * disk_stats is counted when it completes.
7598                  * So resync activity will cause curr_events to be smaller than
7599                  * when there was no such activity.
7600                  * non-sync IO will cause disk_stat to increase without
7601                  * increasing sync_io so curr_events will (eventually)
7602                  * be larger than it was before.  Once it becomes
7603                  * substantially larger, the test below will cause
7604                  * the array to appear non-idle, and resync will slow
7605                  * down.
7606                  * If there is a lot of outstanding resync activity when
7607                  * we set last_event to curr_events, then all that activity
7608                  * completing might cause the array to appear non-idle
7609                  * and resync will be slowed down even though there might
7610                  * not have been non-resync activity.  This will only
7611                  * happen once though.  'last_events' will soon reflect
7612                  * the state where there is little or no outstanding
7613                  * resync requests, and further resync activity will
7614                  * always make curr_events less than last_events.
7615                  *
7616                  */
7617                 if (init || curr_events - rdev->last_events > 64) {
7618                         rdev->last_events = curr_events;
7619                         idle = 0;
7620                 }
7621         }
7622         rcu_read_unlock();
7623         return idle;
7624 }
7625
7626 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7627 {
7628         /* another "blocks" (512byte) blocks have been synced */
7629         atomic_sub(blocks, &mddev->recovery_active);
7630         wake_up(&mddev->recovery_wait);
7631         if (!ok) {
7632                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7633                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7634                 md_wakeup_thread(mddev->thread);
7635                 // stop recovery, signal do_sync ....
7636         }
7637 }
7638 EXPORT_SYMBOL(md_done_sync);
7639
7640 /* md_write_start(mddev, bi)
7641  * If we need to update some array metadata (e.g. 'active' flag
7642  * in superblock) before writing, schedule a superblock update
7643  * and wait for it to complete.
7644  */
7645 void md_write_start(struct mddev *mddev, struct bio *bi)
7646 {
7647         int did_change = 0;
7648         if (bio_data_dir(bi) != WRITE)
7649                 return;
7650
7651         BUG_ON(mddev->ro == 1);
7652         if (mddev->ro == 2) {
7653                 /* need to switch to read/write */
7654                 mddev->ro = 0;
7655                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7656                 md_wakeup_thread(mddev->thread);
7657                 md_wakeup_thread(mddev->sync_thread);
7658                 did_change = 1;
7659         }
7660         atomic_inc(&mddev->writes_pending);
7661         if (mddev->safemode == 1)
7662                 mddev->safemode = 0;
7663         if (mddev->in_sync) {
7664                 spin_lock(&mddev->lock);
7665                 if (mddev->in_sync) {
7666                         mddev->in_sync = 0;
7667                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7668                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7669                         md_wakeup_thread(mddev->thread);
7670                         did_change = 1;
7671                 }
7672                 spin_unlock(&mddev->lock);
7673         }
7674         if (did_change)
7675                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7676         wait_event(mddev->sb_wait,
7677                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7678 }
7679 EXPORT_SYMBOL(md_write_start);
7680
7681 void md_write_end(struct mddev *mddev)
7682 {
7683         if (atomic_dec_and_test(&mddev->writes_pending)) {
7684                 if (mddev->safemode == 2)
7685                         md_wakeup_thread(mddev->thread);
7686                 else if (mddev->safemode_delay)
7687                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7688         }
7689 }
7690 EXPORT_SYMBOL(md_write_end);
7691
7692 /* md_allow_write(mddev)
7693  * Calling this ensures that the array is marked 'active' so that writes
7694  * may proceed without blocking.  It is important to call this before
7695  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7696  * Must be called with mddev_lock held.
7697  *
7698  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7699  * is dropped, so return -EAGAIN after notifying userspace.
7700  */
7701 int md_allow_write(struct mddev *mddev)
7702 {
7703         if (!mddev->pers)
7704                 return 0;
7705         if (mddev->ro)
7706                 return 0;
7707         if (!mddev->pers->sync_request)
7708                 return 0;
7709
7710         spin_lock(&mddev->lock);
7711         if (mddev->in_sync) {
7712                 mddev->in_sync = 0;
7713                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7714                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7715                 if (mddev->safemode_delay &&
7716                     mddev->safemode == 0)
7717                         mddev->safemode = 1;
7718                 spin_unlock(&mddev->lock);
7719                 md_update_sb(mddev, 0);
7720                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7721         } else
7722                 spin_unlock(&mddev->lock);
7723
7724         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7725                 return -EAGAIN;
7726         else
7727                 return 0;
7728 }
7729 EXPORT_SYMBOL_GPL(md_allow_write);
7730
7731 #define SYNC_MARKS      10
7732 #define SYNC_MARK_STEP  (3*HZ)
7733 #define UPDATE_FREQUENCY (5*60*HZ)
7734 void md_do_sync(struct md_thread *thread)
7735 {
7736         struct mddev *mddev = thread->mddev;
7737         struct mddev *mddev2;
7738         unsigned int currspeed = 0,
7739                  window;
7740         sector_t max_sectors,j, io_sectors, recovery_done;
7741         unsigned long mark[SYNC_MARKS];
7742         unsigned long update_time;
7743         sector_t mark_cnt[SYNC_MARKS];
7744         int last_mark,m;
7745         struct list_head *tmp;
7746         sector_t last_check;
7747         int skipped = 0;
7748         struct md_rdev *rdev;
7749         char *desc, *action = NULL;
7750         struct blk_plug plug;
7751         bool cluster_resync_finished = false;
7752
7753         /* just incase thread restarts... */
7754         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7755                 return;
7756         if (mddev->ro) {/* never try to sync a read-only array */
7757                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7758                 return;
7759         }
7760
7761         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7762                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7763                         desc = "data-check";
7764                         action = "check";
7765                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7766                         desc = "requested-resync";
7767                         action = "repair";
7768                 } else
7769                         desc = "resync";
7770         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7771                 desc = "reshape";
7772         else
7773                 desc = "recovery";
7774
7775         mddev->last_sync_action = action ?: desc;
7776
7777         /* we overload curr_resync somewhat here.
7778          * 0 == not engaged in resync at all
7779          * 2 == checking that there is no conflict with another sync
7780          * 1 == like 2, but have yielded to allow conflicting resync to
7781          *              commense
7782          * other == active in resync - this many blocks
7783          *
7784          * Before starting a resync we must have set curr_resync to
7785          * 2, and then checked that every "conflicting" array has curr_resync
7786          * less than ours.  When we find one that is the same or higher
7787          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7788          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7789          * This will mean we have to start checking from the beginning again.
7790          *
7791          */
7792
7793         do {
7794                 mddev->curr_resync = 2;
7795
7796         try_again:
7797                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7798                         goto skip;
7799                 for_each_mddev(mddev2, tmp) {
7800                         if (mddev2 == mddev)
7801                                 continue;
7802                         if (!mddev->parallel_resync
7803                         &&  mddev2->curr_resync
7804                         &&  match_mddev_units(mddev, mddev2)) {
7805                                 DEFINE_WAIT(wq);
7806                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7807                                         /* arbitrarily yield */
7808                                         mddev->curr_resync = 1;
7809                                         wake_up(&resync_wait);
7810                                 }
7811                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7812                                         /* no need to wait here, we can wait the next
7813                                          * time 'round when curr_resync == 2
7814                                          */
7815                                         continue;
7816                                 /* We need to wait 'interruptible' so as not to
7817                                  * contribute to the load average, and not to
7818                                  * be caught by 'softlockup'
7819                                  */
7820                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7821                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7822                                     mddev2->curr_resync >= mddev->curr_resync) {
7823                                         printk(KERN_INFO "md: delaying %s of %s"
7824                                                " until %s has finished (they"
7825                                                " share one or more physical units)\n",
7826                                                desc, mdname(mddev), mdname(mddev2));
7827                                         mddev_put(mddev2);
7828                                         if (signal_pending(current))
7829                                                 flush_signals(current);
7830                                         schedule();
7831                                         finish_wait(&resync_wait, &wq);
7832                                         goto try_again;
7833                                 }
7834                                 finish_wait(&resync_wait, &wq);
7835                         }
7836                 }
7837         } while (mddev->curr_resync < 2);
7838
7839         j = 0;
7840         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7841                 /* resync follows the size requested by the personality,
7842                  * which defaults to physical size, but can be virtual size
7843                  */
7844                 max_sectors = mddev->resync_max_sectors;
7845                 atomic64_set(&mddev->resync_mismatches, 0);
7846                 /* we don't use the checkpoint if there's a bitmap */
7847                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7848                         j = mddev->resync_min;
7849                 else if (!mddev->bitmap)
7850                         j = mddev->recovery_cp;
7851
7852         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7853                 max_sectors = mddev->resync_max_sectors;
7854         else {
7855                 /* recovery follows the physical size of devices */
7856                 max_sectors = mddev->dev_sectors;
7857                 j = MaxSector;
7858                 rcu_read_lock();
7859                 rdev_for_each_rcu(rdev, mddev)
7860                         if (rdev->raid_disk >= 0 &&
7861                             !test_bit(Journal, &rdev->flags) &&
7862                             !test_bit(Faulty, &rdev->flags) &&
7863                             !test_bit(In_sync, &rdev->flags) &&
7864                             rdev->recovery_offset < j)
7865                                 j = rdev->recovery_offset;
7866                 rcu_read_unlock();
7867
7868                 /* If there is a bitmap, we need to make sure all
7869                  * writes that started before we added a spare
7870                  * complete before we start doing a recovery.
7871                  * Otherwise the write might complete and (via
7872                  * bitmap_endwrite) set a bit in the bitmap after the
7873                  * recovery has checked that bit and skipped that
7874                  * region.
7875                  */
7876                 if (mddev->bitmap) {
7877                         mddev->pers->quiesce(mddev, 1);
7878                         mddev->pers->quiesce(mddev, 0);
7879                 }
7880         }
7881
7882         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7883         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7884                 " %d KB/sec/disk.\n", speed_min(mddev));
7885         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7886                "(but not more than %d KB/sec) for %s.\n",
7887                speed_max(mddev), desc);
7888
7889         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7890
7891         io_sectors = 0;
7892         for (m = 0; m < SYNC_MARKS; m++) {
7893                 mark[m] = jiffies;
7894                 mark_cnt[m] = io_sectors;
7895         }
7896         last_mark = 0;
7897         mddev->resync_mark = mark[last_mark];
7898         mddev->resync_mark_cnt = mark_cnt[last_mark];
7899
7900         /*
7901          * Tune reconstruction:
7902          */
7903         window = 32*(PAGE_SIZE/512);
7904         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7905                 window/2, (unsigned long long)max_sectors/2);
7906
7907         atomic_set(&mddev->recovery_active, 0);
7908         last_check = 0;
7909
7910         if (j>2) {
7911                 printk(KERN_INFO
7912                        "md: resuming %s of %s from checkpoint.\n",
7913                        desc, mdname(mddev));
7914                 mddev->curr_resync = j;
7915         } else
7916                 mddev->curr_resync = 3; /* no longer delayed */
7917         mddev->curr_resync_completed = j;
7918         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7919         md_new_event(mddev);
7920         update_time = jiffies;
7921
7922         blk_start_plug(&plug);
7923         while (j < max_sectors) {
7924                 sector_t sectors;
7925
7926                 skipped = 0;
7927
7928                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7929                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7930                       (mddev->curr_resync - mddev->curr_resync_completed)
7931                       > (max_sectors >> 4)) ||
7932                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7933                      (j - mddev->curr_resync_completed)*2
7934                      >= mddev->resync_max - mddev->curr_resync_completed ||
7935                      mddev->curr_resync_completed > mddev->resync_max
7936                             )) {
7937                         /* time to update curr_resync_completed */
7938                         wait_event(mddev->recovery_wait,
7939                                    atomic_read(&mddev->recovery_active) == 0);
7940                         mddev->curr_resync_completed = j;
7941                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7942                             j > mddev->recovery_cp)
7943                                 mddev->recovery_cp = j;
7944                         update_time = jiffies;
7945                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7946                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7947                 }
7948
7949                 while (j >= mddev->resync_max &&
7950                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7951                         /* As this condition is controlled by user-space,
7952                          * we can block indefinitely, so use '_interruptible'
7953                          * to avoid triggering warnings.
7954                          */
7955                         flush_signals(current); /* just in case */
7956                         wait_event_interruptible(mddev->recovery_wait,
7957                                                  mddev->resync_max > j
7958                                                  || test_bit(MD_RECOVERY_INTR,
7959                                                              &mddev->recovery));
7960                 }
7961
7962                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7963                         break;
7964
7965                 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7966                 if (sectors == 0) {
7967                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7968                         break;
7969                 }
7970
7971                 if (!skipped) { /* actual IO requested */
7972                         io_sectors += sectors;
7973                         atomic_add(sectors, &mddev->recovery_active);
7974                 }
7975
7976                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7977                         break;
7978
7979                 j += sectors;
7980                 if (j > max_sectors)
7981                         /* when skipping, extra large numbers can be returned. */
7982                         j = max_sectors;
7983                 if (j > 2)
7984                         mddev->curr_resync = j;
7985                 mddev->curr_mark_cnt = io_sectors;
7986                 if (last_check == 0)
7987                         /* this is the earliest that rebuild will be
7988                          * visible in /proc/mdstat
7989                          */
7990                         md_new_event(mddev);
7991
7992                 if (last_check + window > io_sectors || j == max_sectors)
7993                         continue;
7994
7995                 last_check = io_sectors;
7996         repeat:
7997                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7998                         /* step marks */
7999                         int next = (last_mark+1) % SYNC_MARKS;
8000
8001                         mddev->resync_mark = mark[next];
8002                         mddev->resync_mark_cnt = mark_cnt[next];
8003                         mark[next] = jiffies;
8004                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8005                         last_mark = next;
8006                 }
8007
8008                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8009                         break;
8010
8011                 /*
8012                  * this loop exits only if either when we are slower than
8013                  * the 'hard' speed limit, or the system was IO-idle for
8014                  * a jiffy.
8015                  * the system might be non-idle CPU-wise, but we only care
8016                  * about not overloading the IO subsystem. (things like an
8017                  * e2fsck being done on the RAID array should execute fast)
8018                  */
8019                 cond_resched();
8020
8021                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8022                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8023                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
8024
8025                 if (currspeed > speed_min(mddev)) {
8026                         if (currspeed > speed_max(mddev)) {
8027                                 msleep(500);
8028                                 goto repeat;
8029                         }
8030                         if (!is_mddev_idle(mddev, 0)) {
8031                                 /*
8032                                  * Give other IO more of a chance.
8033                                  * The faster the devices, the less we wait.
8034                                  */
8035                                 wait_event(mddev->recovery_wait,
8036                                            !atomic_read(&mddev->recovery_active));
8037                         }
8038                 }
8039         }
8040         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8041                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8042                ? "interrupted" : "done");
8043         /*
8044          * this also signals 'finished resyncing' to md_stop
8045          */
8046         blk_finish_plug(&plug);
8047         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8048
8049         if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8050             !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8051             mddev->curr_resync > 2) {
8052                 mddev->curr_resync_completed = mddev->curr_resync;
8053                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8054         }
8055         /* tell personality and other nodes that we are finished */
8056         if (mddev_is_clustered(mddev)) {
8057                 md_cluster_ops->resync_finish(mddev);
8058                 cluster_resync_finished = true;
8059         }
8060         mddev->pers->sync_request(mddev, max_sectors, &skipped);
8061
8062         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8063             mddev->curr_resync > 2) {
8064                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8065                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8066                                 if (mddev->curr_resync >= mddev->recovery_cp) {
8067                                         printk(KERN_INFO
8068                                                "md: checkpointing %s of %s.\n",
8069                                                desc, mdname(mddev));
8070                                         if (test_bit(MD_RECOVERY_ERROR,
8071                                                 &mddev->recovery))
8072                                                 mddev->recovery_cp =
8073                                                         mddev->curr_resync_completed;
8074                                         else
8075                                                 mddev->recovery_cp =
8076                                                         mddev->curr_resync;
8077                                 }
8078                         } else
8079                                 mddev->recovery_cp = MaxSector;
8080                 } else {
8081                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8082                                 mddev->curr_resync = MaxSector;
8083                         rcu_read_lock();
8084                         rdev_for_each_rcu(rdev, mddev)
8085                                 if (rdev->raid_disk >= 0 &&
8086                                     mddev->delta_disks >= 0 &&
8087                                     !test_bit(Journal, &rdev->flags) &&
8088                                     !test_bit(Faulty, &rdev->flags) &&
8089                                     !test_bit(In_sync, &rdev->flags) &&
8090                                     rdev->recovery_offset < mddev->curr_resync)
8091                                         rdev->recovery_offset = mddev->curr_resync;
8092                         rcu_read_unlock();
8093                 }
8094         }
8095  skip:
8096         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8097
8098         if (mddev_is_clustered(mddev) &&
8099             test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8100             !cluster_resync_finished)
8101                 md_cluster_ops->resync_finish(mddev);
8102
8103         spin_lock(&mddev->lock);
8104         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8105                 /* We completed so min/max setting can be forgotten if used. */
8106                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8107                         mddev->resync_min = 0;
8108                 mddev->resync_max = MaxSector;
8109         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8110                 mddev->resync_min = mddev->curr_resync_completed;
8111         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8112         mddev->curr_resync = 0;
8113         spin_unlock(&mddev->lock);
8114
8115         wake_up(&resync_wait);
8116         md_wakeup_thread(mddev->thread);
8117         return;
8118 }
8119 EXPORT_SYMBOL_GPL(md_do_sync);
8120
8121 static int remove_and_add_spares(struct mddev *mddev,
8122                                  struct md_rdev *this)
8123 {
8124         struct md_rdev *rdev;
8125         int spares = 0;
8126         int removed = 0;
8127
8128         rdev_for_each(rdev, mddev)
8129                 if ((this == NULL || rdev == this) &&
8130                     rdev->raid_disk >= 0 &&
8131                     !test_bit(Blocked, &rdev->flags) &&
8132                     (test_bit(Faulty, &rdev->flags) ||
8133                      (!test_bit(In_sync, &rdev->flags) &&
8134                       !test_bit(Journal, &rdev->flags))) &&
8135                     atomic_read(&rdev->nr_pending)==0) {
8136                         if (mddev->pers->hot_remove_disk(
8137                                     mddev, rdev) == 0) {
8138                                 sysfs_unlink_rdev(mddev, rdev);
8139                                 rdev->raid_disk = -1;
8140                                 removed++;
8141                         }
8142                 }
8143         if (removed && mddev->kobj.sd)
8144                 sysfs_notify(&mddev->kobj, NULL, "degraded");
8145
8146         if (this && removed)
8147                 goto no_add;
8148
8149         rdev_for_each(rdev, mddev) {
8150                 if (this && this != rdev)
8151                         continue;
8152                 if (test_bit(Candidate, &rdev->flags))
8153                         continue;
8154                 if (rdev->raid_disk >= 0 &&
8155                     !test_bit(In_sync, &rdev->flags) &&
8156                     !test_bit(Journal, &rdev->flags) &&
8157                     !test_bit(Faulty, &rdev->flags))
8158                         spares++;
8159                 if (rdev->raid_disk >= 0)
8160                         continue;
8161                 if (test_bit(Faulty, &rdev->flags))
8162                         continue;
8163                 if (test_bit(Journal, &rdev->flags))
8164                         continue;
8165                 if (mddev->ro &&
8166                     ! (rdev->saved_raid_disk >= 0 &&
8167                        !test_bit(Bitmap_sync, &rdev->flags)))
8168                         continue;
8169
8170                 rdev->recovery_offset = 0;
8171                 if (mddev->pers->
8172                     hot_add_disk(mddev, rdev) == 0) {
8173                         if (sysfs_link_rdev(mddev, rdev))
8174                                 /* failure here is OK */;
8175                         spares++;
8176                         md_new_event(mddev);
8177                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8178                 }
8179         }
8180 no_add:
8181         if (removed)
8182                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8183         return spares;
8184 }
8185
8186 static void md_start_sync(struct work_struct *ws)
8187 {
8188         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8189         int ret = 0;
8190
8191         if (mddev_is_clustered(mddev)) {
8192                 ret = md_cluster_ops->resync_start(mddev);
8193                 if (ret) {
8194                         mddev->sync_thread = NULL;
8195                         goto out;
8196                 }
8197         }
8198
8199         mddev->sync_thread = md_register_thread(md_do_sync,
8200                                                 mddev,
8201                                                 "resync");
8202 out:
8203         if (!mddev->sync_thread) {
8204                 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8205                         printk(KERN_ERR "%s: could not start resync"
8206                                " thread...\n",
8207                                mdname(mddev));
8208                 /* leave the spares where they are, it shouldn't hurt */
8209                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8210                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8211                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8212                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8213                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8214                 wake_up(&resync_wait);
8215                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8216                                        &mddev->recovery))
8217                         if (mddev->sysfs_action)
8218                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8219         } else
8220                 md_wakeup_thread(mddev->sync_thread);
8221         sysfs_notify_dirent_safe(mddev->sysfs_action);
8222         md_new_event(mddev);
8223 }
8224
8225 /*
8226  * This routine is regularly called by all per-raid-array threads to
8227  * deal with generic issues like resync and super-block update.
8228  * Raid personalities that don't have a thread (linear/raid0) do not
8229  * need this as they never do any recovery or update the superblock.
8230  *
8231  * It does not do any resync itself, but rather "forks" off other threads
8232  * to do that as needed.
8233  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8234  * "->recovery" and create a thread at ->sync_thread.
8235  * When the thread finishes it sets MD_RECOVERY_DONE
8236  * and wakeups up this thread which will reap the thread and finish up.
8237  * This thread also removes any faulty devices (with nr_pending == 0).
8238  *
8239  * The overall approach is:
8240  *  1/ if the superblock needs updating, update it.
8241  *  2/ If a recovery thread is running, don't do anything else.
8242  *  3/ If recovery has finished, clean up, possibly marking spares active.
8243  *  4/ If there are any faulty devices, remove them.
8244  *  5/ If array is degraded, try to add spares devices
8245  *  6/ If array has spares or is not in-sync, start a resync thread.
8246  */
8247 void md_check_recovery(struct mddev *mddev)
8248 {
8249         if (mddev->suspended)
8250                 return;
8251
8252         if (mddev->bitmap)
8253                 bitmap_daemon_work(mddev);
8254
8255         if (signal_pending(current)) {
8256                 if (mddev->pers->sync_request && !mddev->external) {
8257                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8258                                mdname(mddev));
8259                         mddev->safemode = 2;
8260                 }
8261                 flush_signals(current);
8262         }
8263
8264         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8265                 return;
8266         if ( ! (
8267                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8268                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8269                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8270                 (mddev->external == 0 && mddev->safemode == 1) ||
8271                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8272                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8273                 ))
8274                 return;
8275
8276         if (mddev_trylock(mddev)) {
8277                 int spares = 0;
8278
8279                 if (mddev->ro) {
8280                         struct md_rdev *rdev;
8281                         if (!mddev->external && mddev->in_sync)
8282                                 /* 'Blocked' flag not needed as failed devices
8283                                  * will be recorded if array switched to read/write.
8284                                  * Leaving it set will prevent the device
8285                                  * from being removed.
8286                                  */
8287                                 rdev_for_each(rdev, mddev)
8288                                         clear_bit(Blocked, &rdev->flags);
8289                         /* On a read-only array we can:
8290                          * - remove failed devices
8291                          * - add already-in_sync devices if the array itself
8292                          *   is in-sync.
8293                          * As we only add devices that are already in-sync,
8294                          * we can activate the spares immediately.
8295                          */
8296                         remove_and_add_spares(mddev, NULL);
8297                         /* There is no thread, but we need to call
8298                          * ->spare_active and clear saved_raid_disk
8299                          */
8300                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8301                         md_reap_sync_thread(mddev);
8302                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8303                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8304                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8305                         goto unlock;
8306                 }
8307
8308                 if (!mddev->external) {
8309                         int did_change = 0;
8310                         spin_lock(&mddev->lock);
8311                         if (mddev->safemode &&
8312                             !atomic_read(&mddev->writes_pending) &&
8313                             !mddev->in_sync &&
8314                             mddev->recovery_cp == MaxSector) {
8315                                 mddev->in_sync = 1;
8316                                 did_change = 1;
8317                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8318                         }
8319                         if (mddev->safemode == 1)
8320                                 mddev->safemode = 0;
8321                         spin_unlock(&mddev->lock);
8322                         if (did_change)
8323                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8324                 }
8325
8326                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8327                         md_update_sb(mddev, 0);
8328
8329                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8330                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8331                         /* resync/recovery still happening */
8332                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8333                         goto unlock;
8334                 }
8335                 if (mddev->sync_thread) {
8336                         md_reap_sync_thread(mddev);
8337                         goto unlock;
8338                 }
8339                 /* Set RUNNING before clearing NEEDED to avoid
8340                  * any transients in the value of "sync_action".
8341                  */
8342                 mddev->curr_resync_completed = 0;
8343                 spin_lock(&mddev->lock);
8344                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8345                 spin_unlock(&mddev->lock);
8346                 /* Clear some bits that don't mean anything, but
8347                  * might be left set
8348                  */
8349                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8350                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8351
8352                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8353                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8354                         goto not_running;
8355                 /* no recovery is running.
8356                  * remove any failed drives, then
8357                  * add spares if possible.
8358                  * Spares are also removed and re-added, to allow
8359                  * the personality to fail the re-add.
8360                  */
8361
8362                 if (mddev->reshape_position != MaxSector) {
8363                         if (mddev->pers->check_reshape == NULL ||
8364                             mddev->pers->check_reshape(mddev) != 0)
8365                                 /* Cannot proceed */
8366                                 goto not_running;
8367                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8368                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8369                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8370                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8371                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8372                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8373                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8374                 } else if (mddev->recovery_cp < MaxSector) {
8375                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8376                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8377                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8378                         /* nothing to be done ... */
8379                         goto not_running;
8380
8381                 if (mddev->pers->sync_request) {
8382                         if (spares) {
8383                                 /* We are adding a device or devices to an array
8384                                  * which has the bitmap stored on all devices.
8385                                  * So make sure all bitmap pages get written
8386                                  */
8387                                 bitmap_write_all(mddev->bitmap);
8388                         }
8389                         INIT_WORK(&mddev->del_work, md_start_sync);
8390                         queue_work(md_misc_wq, &mddev->del_work);
8391                         goto unlock;
8392                 }
8393         not_running:
8394                 if (!mddev->sync_thread) {
8395                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8396                         wake_up(&resync_wait);
8397                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8398                                                &mddev->recovery))
8399                                 if (mddev->sysfs_action)
8400                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8401                 }
8402         unlock:
8403                 wake_up(&mddev->sb_wait);
8404                 mddev_unlock(mddev);
8405         }
8406 }
8407 EXPORT_SYMBOL(md_check_recovery);
8408
8409 void md_reap_sync_thread(struct mddev *mddev)
8410 {
8411         struct md_rdev *rdev;
8412
8413         /* resync has finished, collect result */
8414         md_unregister_thread(&mddev->sync_thread);
8415         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8416             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8417                 /* success...*/
8418                 /* activate any spares */
8419                 if (mddev->pers->spare_active(mddev)) {
8420                         sysfs_notify(&mddev->kobj, NULL,
8421                                      "degraded");
8422                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8423                 }
8424         }
8425         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8426             mddev->pers->finish_reshape)
8427                 mddev->pers->finish_reshape(mddev);
8428
8429         /* If array is no-longer degraded, then any saved_raid_disk
8430          * information must be scrapped.
8431          */
8432         if (!mddev->degraded)
8433                 rdev_for_each(rdev, mddev)
8434                         rdev->saved_raid_disk = -1;
8435
8436         md_update_sb(mddev, 1);
8437         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8438         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8439         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8440         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8441         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8442         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8443         wake_up(&resync_wait);
8444         /* flag recovery needed just to double check */
8445         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8446         sysfs_notify_dirent_safe(mddev->sysfs_action);
8447         md_new_event(mddev);
8448         if (mddev->event_work.func)
8449                 queue_work(md_misc_wq, &mddev->event_work);
8450 }
8451 EXPORT_SYMBOL(md_reap_sync_thread);
8452
8453 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8454 {
8455         sysfs_notify_dirent_safe(rdev->sysfs_state);
8456         wait_event_timeout(rdev->blocked_wait,
8457                            !test_bit(Blocked, &rdev->flags) &&
8458                            !test_bit(BlockedBadBlocks, &rdev->flags),
8459                            msecs_to_jiffies(5000));
8460         rdev_dec_pending(rdev, mddev);
8461 }
8462 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8463
8464 void md_finish_reshape(struct mddev *mddev)
8465 {
8466         /* called be personality module when reshape completes. */
8467         struct md_rdev *rdev;
8468
8469         rdev_for_each(rdev, mddev) {
8470                 if (rdev->data_offset > rdev->new_data_offset)
8471                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8472                 else
8473                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8474                 rdev->data_offset = rdev->new_data_offset;
8475         }
8476 }
8477 EXPORT_SYMBOL(md_finish_reshape);
8478
8479 /* Bad block management.
8480  * We can record which blocks on each device are 'bad' and so just
8481  * fail those blocks, or that stripe, rather than the whole device.
8482  * Entries in the bad-block table are 64bits wide.  This comprises:
8483  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8484  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8485  *  A 'shift' can be set so that larger blocks are tracked and
8486  *  consequently larger devices can be covered.
8487  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8488  *
8489  * Locking of the bad-block table uses a seqlock so md_is_badblock
8490  * might need to retry if it is very unlucky.
8491  * We will sometimes want to check for bad blocks in a bi_end_io function,
8492  * so we use the write_seqlock_irq variant.
8493  *
8494  * When looking for a bad block we specify a range and want to
8495  * know if any block in the range is bad.  So we binary-search
8496  * to the last range that starts at-or-before the given endpoint,
8497  * (or "before the sector after the target range")
8498  * then see if it ends after the given start.
8499  * We return
8500  *  0 if there are no known bad blocks in the range
8501  *  1 if there are known bad block which are all acknowledged
8502  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8503  * plus the start/length of the first bad section we overlap.
8504  */
8505 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8506                    sector_t *first_bad, int *bad_sectors)
8507 {
8508         int hi;
8509         int lo;
8510         u64 *p = bb->page;
8511         int rv;
8512         sector_t target = s + sectors;
8513         unsigned seq;
8514
8515         if (bb->shift > 0) {
8516                 /* round the start down, and the end up */
8517                 s >>= bb->shift;
8518                 target += (1<<bb->shift) - 1;
8519                 target >>= bb->shift;
8520                 sectors = target - s;
8521         }
8522         /* 'target' is now the first block after the bad range */
8523
8524 retry:
8525         seq = read_seqbegin(&bb->lock);
8526         lo = 0;
8527         rv = 0;
8528         hi = bb->count;
8529
8530         /* Binary search between lo and hi for 'target'
8531          * i.e. for the last range that starts before 'target'
8532          */
8533         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8534          * are known not to be the last range before target.
8535          * VARIANT: hi-lo is the number of possible
8536          * ranges, and decreases until it reaches 1
8537          */
8538         while (hi - lo > 1) {
8539                 int mid = (lo + hi) / 2;
8540                 sector_t a = BB_OFFSET(p[mid]);
8541                 if (a < target)
8542                         /* This could still be the one, earlier ranges
8543                          * could not. */
8544                         lo = mid;
8545                 else
8546                         /* This and later ranges are definitely out. */
8547                         hi = mid;
8548         }
8549         /* 'lo' might be the last that started before target, but 'hi' isn't */
8550         if (hi > lo) {
8551                 /* need to check all range that end after 's' to see if
8552                  * any are unacknowledged.
8553                  */
8554                 while (lo >= 0 &&
8555                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8556                         if (BB_OFFSET(p[lo]) < target) {
8557                                 /* starts before the end, and finishes after
8558                                  * the start, so they must overlap
8559                                  */
8560                                 if (rv != -1 && BB_ACK(p[lo]))
8561                                         rv = 1;
8562                                 else
8563                                         rv = -1;
8564                                 *first_bad = BB_OFFSET(p[lo]);
8565                                 *bad_sectors = BB_LEN(p[lo]);
8566                         }
8567                         lo--;
8568                 }
8569         }
8570
8571         if (read_seqretry(&bb->lock, seq))
8572                 goto retry;
8573
8574         return rv;
8575 }
8576 EXPORT_SYMBOL_GPL(md_is_badblock);
8577
8578 /*
8579  * Add a range of bad blocks to the table.
8580  * This might extend the table, or might contract it
8581  * if two adjacent ranges can be merged.
8582  * We binary-search to find the 'insertion' point, then
8583  * decide how best to handle it.
8584  */
8585 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8586                             int acknowledged)
8587 {
8588         u64 *p;
8589         int lo, hi;
8590         int rv = 1;
8591         unsigned long flags;
8592
8593         if (bb->shift < 0)
8594                 /* badblocks are disabled */
8595                 return 0;
8596
8597         if (bb->shift) {
8598                 /* round the start down, and the end up */
8599                 sector_t next = s + sectors;
8600                 s >>= bb->shift;
8601                 next += (1<<bb->shift) - 1;
8602                 next >>= bb->shift;
8603                 sectors = next - s;
8604         }
8605
8606         write_seqlock_irqsave(&bb->lock, flags);
8607
8608         p = bb->page;
8609         lo = 0;
8610         hi = bb->count;
8611         /* Find the last range that starts at-or-before 's' */
8612         while (hi - lo > 1) {
8613                 int mid = (lo + hi) / 2;
8614                 sector_t a = BB_OFFSET(p[mid]);
8615                 if (a <= s)
8616                         lo = mid;
8617                 else
8618                         hi = mid;
8619         }
8620         if (hi > lo && BB_OFFSET(p[lo]) > s)
8621                 hi = lo;
8622
8623         if (hi > lo) {
8624                 /* we found a range that might merge with the start
8625                  * of our new range
8626                  */
8627                 sector_t a = BB_OFFSET(p[lo]);
8628                 sector_t e = a + BB_LEN(p[lo]);
8629                 int ack = BB_ACK(p[lo]);
8630                 if (e >= s) {
8631                         /* Yes, we can merge with a previous range */
8632                         if (s == a && s + sectors >= e)
8633                                 /* new range covers old */
8634                                 ack = acknowledged;
8635                         else
8636                                 ack = ack && acknowledged;
8637
8638                         if (e < s + sectors)
8639                                 e = s + sectors;
8640                         if (e - a <= BB_MAX_LEN) {
8641                                 p[lo] = BB_MAKE(a, e-a, ack);
8642                                 s = e;
8643                         } else {
8644                                 /* does not all fit in one range,
8645                                  * make p[lo] maximal
8646                                  */
8647                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8648                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8649                                 s = a + BB_MAX_LEN;
8650                         }
8651                         sectors = e - s;
8652                 }
8653         }
8654         if (sectors && hi < bb->count) {
8655                 /* 'hi' points to the first range that starts after 's'.
8656                  * Maybe we can merge with the start of that range */
8657                 sector_t a = BB_OFFSET(p[hi]);
8658                 sector_t e = a + BB_LEN(p[hi]);
8659                 int ack = BB_ACK(p[hi]);
8660                 if (a <= s + sectors) {
8661                         /* merging is possible */
8662                         if (e <= s + sectors) {
8663                                 /* full overlap */
8664                                 e = s + sectors;
8665                                 ack = acknowledged;
8666                         } else
8667                                 ack = ack && acknowledged;
8668
8669                         a = s;
8670                         if (e - a <= BB_MAX_LEN) {
8671                                 p[hi] = BB_MAKE(a, e-a, ack);
8672                                 s = e;
8673                         } else {
8674                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8675                                 s = a + BB_MAX_LEN;
8676                         }
8677                         sectors = e - s;
8678                         lo = hi;
8679                         hi++;
8680                 }
8681         }
8682         if (sectors == 0 && hi < bb->count) {
8683                 /* we might be able to combine lo and hi */
8684                 /* Note: 's' is at the end of 'lo' */
8685                 sector_t a = BB_OFFSET(p[hi]);
8686                 int lolen = BB_LEN(p[lo]);
8687                 int hilen = BB_LEN(p[hi]);
8688                 int newlen = lolen + hilen - (s - a);
8689                 if (s >= a && newlen < BB_MAX_LEN) {
8690                         /* yes, we can combine them */
8691                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8692                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8693                         memmove(p + hi, p + hi + 1,
8694                                 (bb->count - hi - 1) * 8);
8695                         bb->count--;
8696                 }
8697         }
8698         while (sectors) {
8699                 /* didn't merge (it all).
8700                  * Need to add a range just before 'hi' */
8701                 if (bb->count >= MD_MAX_BADBLOCKS) {
8702                         /* No room for more */
8703                         rv = 0;
8704                         break;
8705                 } else {
8706                         int this_sectors = sectors;
8707                         memmove(p + hi + 1, p + hi,
8708                                 (bb->count - hi) * 8);
8709                         bb->count++;
8710
8711                         if (this_sectors > BB_MAX_LEN)
8712                                 this_sectors = BB_MAX_LEN;
8713                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8714                         sectors -= this_sectors;
8715                         s += this_sectors;
8716                 }
8717         }
8718
8719         bb->changed = 1;
8720         if (!acknowledged)
8721                 bb->unacked_exist = 1;
8722         write_sequnlock_irqrestore(&bb->lock, flags);
8723
8724         return rv;
8725 }
8726
8727 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8728                        int is_new)
8729 {
8730         int rv;
8731         if (is_new)
8732                 s += rdev->new_data_offset;
8733         else
8734                 s += rdev->data_offset;
8735         rv = md_set_badblocks(&rdev->badblocks,
8736                               s, sectors, 0);
8737         if (rv) {
8738                 /* Make sure they get written out promptly */
8739                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8740                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8741                 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8742                 md_wakeup_thread(rdev->mddev->thread);
8743         }
8744         return rv;
8745 }
8746 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8747
8748 /*
8749  * Remove a range of bad blocks from the table.
8750  * This may involve extending the table if we spilt a region,
8751  * but it must not fail.  So if the table becomes full, we just
8752  * drop the remove request.
8753  */
8754 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8755 {
8756         u64 *p;
8757         int lo, hi;
8758         sector_t target = s + sectors;
8759         int rv = 0;
8760
8761         if (bb->shift > 0) {
8762                 /* When clearing we round the start up and the end down.
8763                  * This should not matter as the shift should align with
8764                  * the block size and no rounding should ever be needed.
8765                  * However it is better the think a block is bad when it
8766                  * isn't than to think a block is not bad when it is.
8767                  */
8768                 s += (1<<bb->shift) - 1;
8769                 s >>= bb->shift;
8770                 target >>= bb->shift;
8771                 sectors = target - s;
8772         }
8773
8774         write_seqlock_irq(&bb->lock);
8775
8776         p = bb->page;
8777         lo = 0;
8778         hi = bb->count;
8779         /* Find the last range that starts before 'target' */
8780         while (hi - lo > 1) {
8781                 int mid = (lo + hi) / 2;
8782                 sector_t a = BB_OFFSET(p[mid]);
8783                 if (a < target)
8784                         lo = mid;
8785                 else
8786                         hi = mid;
8787         }
8788         if (hi > lo) {
8789                 /* p[lo] is the last range that could overlap the
8790                  * current range.  Earlier ranges could also overlap,
8791                  * but only this one can overlap the end of the range.
8792                  */
8793                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8794                         /* Partial overlap, leave the tail of this range */
8795                         int ack = BB_ACK(p[lo]);
8796                         sector_t a = BB_OFFSET(p[lo]);
8797                         sector_t end = a + BB_LEN(p[lo]);
8798
8799                         if (a < s) {
8800                                 /* we need to split this range */
8801                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8802                                         rv = -ENOSPC;
8803                                         goto out;
8804                                 }
8805                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8806                                 bb->count++;
8807                                 p[lo] = BB_MAKE(a, s-a, ack);
8808                                 lo++;
8809                         }
8810                         p[lo] = BB_MAKE(target, end - target, ack);
8811                         /* there is no longer an overlap */
8812                         hi = lo;
8813                         lo--;
8814                 }
8815                 while (lo >= 0 &&
8816                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8817                         /* This range does overlap */
8818                         if (BB_OFFSET(p[lo]) < s) {
8819                                 /* Keep the early parts of this range. */
8820                                 int ack = BB_ACK(p[lo]);
8821                                 sector_t start = BB_OFFSET(p[lo]);
8822                                 p[lo] = BB_MAKE(start, s - start, ack);
8823                                 /* now low doesn't overlap, so.. */
8824                                 break;
8825                         }
8826                         lo--;
8827                 }
8828                 /* 'lo' is strictly before, 'hi' is strictly after,
8829                  * anything between needs to be discarded
8830                  */
8831                 if (hi - lo > 1) {
8832                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8833                         bb->count -= (hi - lo - 1);
8834                 }
8835         }
8836
8837         bb->changed = 1;
8838 out:
8839         write_sequnlock_irq(&bb->lock);
8840         return rv;
8841 }
8842
8843 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8844                          int is_new)
8845 {
8846         if (is_new)
8847                 s += rdev->new_data_offset;
8848         else
8849                 s += rdev->data_offset;
8850         return md_clear_badblocks(&rdev->badblocks,
8851                                   s, sectors);
8852 }
8853 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8854
8855 /*
8856  * Acknowledge all bad blocks in a list.
8857  * This only succeeds if ->changed is clear.  It is used by
8858  * in-kernel metadata updates
8859  */
8860 void md_ack_all_badblocks(struct badblocks *bb)
8861 {
8862         if (bb->page == NULL || bb->changed)
8863                 /* no point even trying */
8864                 return;
8865         write_seqlock_irq(&bb->lock);
8866
8867         if (bb->changed == 0 && bb->unacked_exist) {
8868                 u64 *p = bb->page;
8869                 int i;
8870                 for (i = 0; i < bb->count ; i++) {
8871                         if (!BB_ACK(p[i])) {
8872                                 sector_t start = BB_OFFSET(p[i]);
8873                                 int len = BB_LEN(p[i]);
8874                                 p[i] = BB_MAKE(start, len, 1);
8875                         }
8876                 }
8877                 bb->unacked_exist = 0;
8878         }
8879         write_sequnlock_irq(&bb->lock);
8880 }
8881 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8882
8883 /* sysfs access to bad-blocks list.
8884  * We present two files.
8885  * 'bad-blocks' lists sector numbers and lengths of ranges that
8886  *    are recorded as bad.  The list is truncated to fit within
8887  *    the one-page limit of sysfs.
8888  *    Writing "sector length" to this file adds an acknowledged
8889  *    bad block list.
8890  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8891  *    been acknowledged.  Writing to this file adds bad blocks
8892  *    without acknowledging them.  This is largely for testing.
8893  */
8894
8895 static ssize_t
8896 badblocks_show(struct badblocks *bb, char *page, int unack)
8897 {
8898         size_t len;
8899         int i;
8900         u64 *p = bb->page;
8901         unsigned seq;
8902
8903         if (bb->shift < 0)
8904                 return 0;
8905
8906 retry:
8907         seq = read_seqbegin(&bb->lock);
8908
8909         len = 0;
8910         i = 0;
8911
8912         while (len < PAGE_SIZE && i < bb->count) {
8913                 sector_t s = BB_OFFSET(p[i]);
8914                 unsigned int length = BB_LEN(p[i]);
8915                 int ack = BB_ACK(p[i]);
8916                 i++;
8917
8918                 if (unack && ack)
8919                         continue;
8920
8921                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8922                                 (unsigned long long)s << bb->shift,
8923                                 length << bb->shift);
8924         }
8925         if (unack && len == 0)
8926                 bb->unacked_exist = 0;
8927
8928         if (read_seqretry(&bb->lock, seq))
8929                 goto retry;
8930
8931         return len;
8932 }
8933
8934 #define DO_DEBUG 1
8935
8936 static ssize_t
8937 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8938 {
8939         unsigned long long sector;
8940         int length;
8941         char newline;
8942 #ifdef DO_DEBUG
8943         /* Allow clearing via sysfs *only* for testing/debugging.
8944          * Normally only a successful write may clear a badblock
8945          */
8946         int clear = 0;
8947         if (page[0] == '-') {
8948                 clear = 1;
8949                 page++;
8950         }
8951 #endif /* DO_DEBUG */
8952
8953         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8954         case 3:
8955                 if (newline != '\n')
8956                         return -EINVAL;
8957         case 2:
8958                 if (length <= 0)
8959                         return -EINVAL;
8960                 break;
8961         default:
8962                 return -EINVAL;
8963         }
8964
8965 #ifdef DO_DEBUG
8966         if (clear) {
8967                 md_clear_badblocks(bb, sector, length);
8968                 return len;
8969         }
8970 #endif /* DO_DEBUG */
8971         if (md_set_badblocks(bb, sector, length, !unack))
8972                 return len;
8973         else
8974                 return -ENOSPC;
8975 }
8976
8977 static int md_notify_reboot(struct notifier_block *this,
8978                             unsigned long code, void *x)
8979 {
8980         struct list_head *tmp;
8981         struct mddev *mddev;
8982         int need_delay = 0;
8983
8984         for_each_mddev(mddev, tmp) {
8985                 if (mddev_trylock(mddev)) {
8986                         if (mddev->pers)
8987                                 __md_stop_writes(mddev);
8988                         if (mddev->persistent)
8989                                 mddev->safemode = 2;
8990                         mddev_unlock(mddev);
8991                 }
8992                 need_delay = 1;
8993         }
8994         /*
8995          * certain more exotic SCSI devices are known to be
8996          * volatile wrt too early system reboots. While the
8997          * right place to handle this issue is the given
8998          * driver, we do want to have a safe RAID driver ...
8999          */
9000         if (need_delay)
9001                 mdelay(1000*1);
9002
9003         return NOTIFY_DONE;
9004 }
9005
9006 static struct notifier_block md_notifier = {
9007         .notifier_call  = md_notify_reboot,
9008         .next           = NULL,
9009         .priority       = INT_MAX, /* before any real devices */
9010 };
9011
9012 static void md_geninit(void)
9013 {
9014         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9015
9016         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9017 }
9018
9019 static int __init md_init(void)
9020 {
9021         int ret = -ENOMEM;
9022
9023         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9024         if (!md_wq)
9025                 goto err_wq;
9026
9027         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9028         if (!md_misc_wq)
9029                 goto err_misc_wq;
9030
9031         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9032                 goto err_md;
9033
9034         if ((ret = register_blkdev(0, "mdp")) < 0)
9035                 goto err_mdp;
9036         mdp_major = ret;
9037
9038         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9039                             md_probe, NULL, NULL);
9040         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9041                             md_probe, NULL, NULL);
9042
9043         register_reboot_notifier(&md_notifier);
9044         raid_table_header = register_sysctl_table(raid_root_table);
9045
9046         md_geninit();
9047         return 0;
9048
9049 err_mdp:
9050         unregister_blkdev(MD_MAJOR, "md");
9051 err_md:
9052         destroy_workqueue(md_misc_wq);
9053 err_misc_wq:
9054         destroy_workqueue(md_wq);
9055 err_wq:
9056         return ret;
9057 }
9058
9059 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9060 {
9061         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9062         struct md_rdev *rdev2;
9063         int role, ret;
9064         char b[BDEVNAME_SIZE];
9065
9066         /* Check for change of roles in the active devices */
9067         rdev_for_each(rdev2, mddev) {
9068                 if (test_bit(Faulty, &rdev2->flags))
9069                         continue;
9070
9071                 /* Check if the roles changed */
9072                 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9073
9074                 if (test_bit(Candidate, &rdev2->flags)) {
9075                         if (role == 0xfffe) {
9076                                 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9077                                 md_kick_rdev_from_array(rdev2);
9078                                 continue;
9079                         }
9080                         else
9081                                 clear_bit(Candidate, &rdev2->flags);
9082                 }
9083
9084                 if (role != rdev2->raid_disk) {
9085                         /* got activated */
9086                         if (rdev2->raid_disk == -1 && role != 0xffff) {
9087                                 rdev2->saved_raid_disk = role;
9088                                 ret = remove_and_add_spares(mddev, rdev2);
9089                                 pr_info("Activated spare: %s\n",
9090                                                 bdevname(rdev2->bdev,b));
9091                                 continue;
9092                         }
9093                         /* device faulty
9094                          * We just want to do the minimum to mark the disk
9095                          * as faulty. The recovery is performed by the
9096                          * one who initiated the error.
9097                          */
9098                         if ((role == 0xfffe) || (role == 0xfffd)) {
9099                                 md_error(mddev, rdev2);
9100                                 clear_bit(Blocked, &rdev2->flags);
9101                         }
9102                 }
9103         }
9104
9105         if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9106                 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9107
9108         /* Finally set the event to be up to date */
9109         mddev->events = le64_to_cpu(sb->events);
9110 }
9111
9112 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9113 {
9114         int err;
9115         struct page *swapout = rdev->sb_page;
9116         struct mdp_superblock_1 *sb;
9117
9118         /* Store the sb page of the rdev in the swapout temporary
9119          * variable in case we err in the future
9120          */
9121         rdev->sb_page = NULL;
9122         alloc_disk_sb(rdev);
9123         ClearPageUptodate(rdev->sb_page);
9124         rdev->sb_loaded = 0;
9125         err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9126
9127         if (err < 0) {
9128                 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9129                                 __func__, __LINE__, rdev->desc_nr, err);
9130                 put_page(rdev->sb_page);
9131                 rdev->sb_page = swapout;
9132                 rdev->sb_loaded = 1;
9133                 return err;
9134         }
9135
9136         sb = page_address(rdev->sb_page);
9137         /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9138          * is not set
9139          */
9140
9141         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9142                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9143
9144         /* The other node finished recovery, call spare_active to set
9145          * device In_sync and mddev->degraded
9146          */
9147         if (rdev->recovery_offset == MaxSector &&
9148             !test_bit(In_sync, &rdev->flags) &&
9149             mddev->pers->spare_active(mddev))
9150                 sysfs_notify(&mddev->kobj, NULL, "degraded");
9151
9152         put_page(swapout);
9153         return 0;
9154 }
9155
9156 void md_reload_sb(struct mddev *mddev, int nr)
9157 {
9158         struct md_rdev *rdev;
9159         int err;
9160
9161         /* Find the rdev */
9162         rdev_for_each_rcu(rdev, mddev) {
9163                 if (rdev->desc_nr == nr)
9164                         break;
9165         }
9166
9167         if (!rdev || rdev->desc_nr != nr) {
9168                 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9169                 return;
9170         }
9171
9172         err = read_rdev(mddev, rdev);
9173         if (err < 0)
9174                 return;
9175
9176         check_sb_changes(mddev, rdev);
9177
9178         /* Read all rdev's to update recovery_offset */
9179         rdev_for_each_rcu(rdev, mddev)
9180                 read_rdev(mddev, rdev);
9181 }
9182 EXPORT_SYMBOL(md_reload_sb);
9183
9184 #ifndef MODULE
9185
9186 /*
9187  * Searches all registered partitions for autorun RAID arrays
9188  * at boot time.
9189  */
9190
9191 static LIST_HEAD(all_detected_devices);
9192 struct detected_devices_node {
9193         struct list_head list;
9194         dev_t dev;
9195 };
9196
9197 void md_autodetect_dev(dev_t dev)
9198 {
9199         struct detected_devices_node *node_detected_dev;
9200
9201         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9202         if (node_detected_dev) {
9203                 node_detected_dev->dev = dev;
9204                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9205         } else {
9206                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9207                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9208         }
9209 }
9210
9211 static void autostart_arrays(int part)
9212 {
9213         struct md_rdev *rdev;
9214         struct detected_devices_node *node_detected_dev;
9215         dev_t dev;
9216         int i_scanned, i_passed;
9217
9218         i_scanned = 0;
9219         i_passed = 0;
9220
9221         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9222
9223         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9224                 i_scanned++;
9225                 node_detected_dev = list_entry(all_detected_devices.next,
9226                                         struct detected_devices_node, list);
9227                 list_del(&node_detected_dev->list);
9228                 dev = node_detected_dev->dev;
9229                 kfree(node_detected_dev);
9230                 rdev = md_import_device(dev,0, 90);
9231                 if (IS_ERR(rdev))
9232                         continue;
9233
9234                 if (test_bit(Faulty, &rdev->flags))
9235                         continue;
9236
9237                 set_bit(AutoDetected, &rdev->flags);
9238                 list_add(&rdev->same_set, &pending_raid_disks);
9239                 i_passed++;
9240         }
9241
9242         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9243                                                 i_scanned, i_passed);
9244
9245         autorun_devices(part);
9246 }
9247
9248 #endif /* !MODULE */
9249
9250 static __exit void md_exit(void)
9251 {
9252         struct mddev *mddev;
9253         struct list_head *tmp;
9254         int delay = 1;
9255
9256         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9257         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9258
9259         unregister_blkdev(MD_MAJOR,"md");
9260         unregister_blkdev(mdp_major, "mdp");
9261         unregister_reboot_notifier(&md_notifier);
9262         unregister_sysctl_table(raid_table_header);
9263
9264         /* We cannot unload the modules while some process is
9265          * waiting for us in select() or poll() - wake them up
9266          */
9267         md_unloading = 1;
9268         while (waitqueue_active(&md_event_waiters)) {
9269                 /* not safe to leave yet */
9270                 wake_up(&md_event_waiters);
9271                 msleep(delay);
9272                 delay += delay;
9273         }
9274         remove_proc_entry("mdstat", NULL);
9275
9276         for_each_mddev(mddev, tmp) {
9277                 export_array(mddev);
9278                 mddev->hold_active = 0;
9279         }
9280         destroy_workqueue(md_misc_wq);
9281         destroy_workqueue(md_wq);
9282 }
9283
9284 subsys_initcall(md_init);
9285 module_exit(md_exit)
9286
9287 static int get_ro(char *buffer, struct kernel_param *kp)
9288 {
9289         return sprintf(buffer, "%d", start_readonly);
9290 }
9291 static int set_ro(const char *val, struct kernel_param *kp)
9292 {
9293         return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9294 }
9295
9296 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9297 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9298 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9299
9300 MODULE_LICENSE("GPL");
9301 MODULE_DESCRIPTION("MD RAID framework");
9302 MODULE_ALIAS("md");
9303 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);