]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
Merge branch 'for-4.4/lightnvm' into for-next
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 bio->bi_error = -EIO;
311         if (done) {
312                 bio_endio(bio);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio)
362 {
363         int uptodate = !bio->bi_error;
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369         slot = r10_bio->read_slot;
370         dev = r10_bio->devs[slot].devnum;
371         rdev = r10_bio->devs[slot].rdev;
372         /*
373          * this branch is our 'one mirror IO has finished' event handler:
374          */
375         update_head_pos(slot, r10_bio);
376
377         if (uptodate) {
378                 /*
379                  * Set R10BIO_Uptodate in our master bio, so that
380                  * we will return a good error code to the higher
381                  * levels even if IO on some other mirrored buffer fails.
382                  *
383                  * The 'master' represents the composite IO operation to
384                  * user-side. So if something waits for IO, then it will
385                  * wait for the 'master' bio.
386                  */
387                 set_bit(R10BIO_Uptodate, &r10_bio->state);
388         } else {
389                 /* If all other devices that store this block have
390                  * failed, we want to return the error upwards rather
391                  * than fail the last device.  Here we redefine
392                  * "uptodate" to mean "Don't want to retry"
393                  */
394                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395                              rdev->raid_disk))
396                         uptodate = 1;
397         }
398         if (uptodate) {
399                 raid_end_bio_io(r10_bio);
400                 rdev_dec_pending(rdev, conf->mddev);
401         } else {
402                 /*
403                  * oops, read error - keep the refcount on the rdev
404                  */
405                 char b[BDEVNAME_SIZE];
406                 printk_ratelimited(KERN_ERR
407                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
408                                    mdname(conf->mddev),
409                                    bdevname(rdev->bdev, b),
410                                    (unsigned long long)r10_bio->sector);
411                 set_bit(R10BIO_ReadError, &r10_bio->state);
412                 reschedule_retry(r10_bio);
413         }
414 }
415
416 static void close_write(struct r10bio *r10_bio)
417 {
418         /* clear the bitmap if all writes complete successfully */
419         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420                         r10_bio->sectors,
421                         !test_bit(R10BIO_Degraded, &r10_bio->state),
422                         0);
423         md_write_end(r10_bio->mddev);
424 }
425
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428         if (atomic_dec_and_test(&r10_bio->remaining)) {
429                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
430                         reschedule_retry(r10_bio);
431                 else {
432                         close_write(r10_bio);
433                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434                                 reschedule_retry(r10_bio);
435                         else
436                                 raid_end_bio_io(r10_bio);
437                 }
438         }
439 }
440
441 static void raid10_end_write_request(struct bio *bio)
442 {
443         struct r10bio *r10_bio = bio->bi_private;
444         int dev;
445         int dec_rdev = 1;
446         struct r10conf *conf = r10_bio->mddev->private;
447         int slot, repl;
448         struct md_rdev *rdev = NULL;
449
450         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
451
452         if (repl)
453                 rdev = conf->mirrors[dev].replacement;
454         if (!rdev) {
455                 smp_rmb();
456                 repl = 0;
457                 rdev = conf->mirrors[dev].rdev;
458         }
459         /*
460          * this branch is our 'one mirror IO has finished' event handler:
461          */
462         if (bio->bi_error) {
463                 if (repl)
464                         /* Never record new bad blocks to replacement,
465                          * just fail it.
466                          */
467                         md_error(rdev->mddev, rdev);
468                 else {
469                         set_bit(WriteErrorSeen, &rdev->flags);
470                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
471                                 set_bit(MD_RECOVERY_NEEDED,
472                                         &rdev->mddev->recovery);
473                         set_bit(R10BIO_WriteError, &r10_bio->state);
474                         dec_rdev = 0;
475                 }
476         } else {
477                 /*
478                  * Set R10BIO_Uptodate in our master bio, so that
479                  * we will return a good error code for to the higher
480                  * levels even if IO on some other mirrored buffer fails.
481                  *
482                  * The 'master' represents the composite IO operation to
483                  * user-side. So if something waits for IO, then it will
484                  * wait for the 'master' bio.
485                  */
486                 sector_t first_bad;
487                 int bad_sectors;
488
489                 /*
490                  * Do not set R10BIO_Uptodate if the current device is
491                  * rebuilding or Faulty. This is because we cannot use
492                  * such device for properly reading the data back (we could
493                  * potentially use it, if the current write would have felt
494                  * before rdev->recovery_offset, but for simplicity we don't
495                  * check this here.
496                  */
497                 if (test_bit(In_sync, &rdev->flags) &&
498                     !test_bit(Faulty, &rdev->flags))
499                         set_bit(R10BIO_Uptodate, &r10_bio->state);
500
501                 /* Maybe we can clear some bad blocks. */
502                 if (is_badblock(rdev,
503                                 r10_bio->devs[slot].addr,
504                                 r10_bio->sectors,
505                                 &first_bad, &bad_sectors)) {
506                         bio_put(bio);
507                         if (repl)
508                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
509                         else
510                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
511                         dec_rdev = 0;
512                         set_bit(R10BIO_MadeGood, &r10_bio->state);
513                 }
514         }
515
516         /*
517          *
518          * Let's see if all mirrored write operations have finished
519          * already.
520          */
521         one_write_done(r10_bio);
522         if (dec_rdev)
523                 rdev_dec_pending(rdev, conf->mddev);
524 }
525
526 /*
527  * RAID10 layout manager
528  * As well as the chunksize and raid_disks count, there are two
529  * parameters: near_copies and far_copies.
530  * near_copies * far_copies must be <= raid_disks.
531  * Normally one of these will be 1.
532  * If both are 1, we get raid0.
533  * If near_copies == raid_disks, we get raid1.
534  *
535  * Chunks are laid out in raid0 style with near_copies copies of the
536  * first chunk, followed by near_copies copies of the next chunk and
537  * so on.
538  * If far_copies > 1, then after 1/far_copies of the array has been assigned
539  * as described above, we start again with a device offset of near_copies.
540  * So we effectively have another copy of the whole array further down all
541  * the drives, but with blocks on different drives.
542  * With this layout, and block is never stored twice on the one device.
543  *
544  * raid10_find_phys finds the sector offset of a given virtual sector
545  * on each device that it is on.
546  *
547  * raid10_find_virt does the reverse mapping, from a device and a
548  * sector offset to a virtual address
549  */
550
551 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
552 {
553         int n,f;
554         sector_t sector;
555         sector_t chunk;
556         sector_t stripe;
557         int dev;
558         int slot = 0;
559         int last_far_set_start, last_far_set_size;
560
561         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
562         last_far_set_start *= geo->far_set_size;
563
564         last_far_set_size = geo->far_set_size;
565         last_far_set_size += (geo->raid_disks % geo->far_set_size);
566
567         /* now calculate first sector/dev */
568         chunk = r10bio->sector >> geo->chunk_shift;
569         sector = r10bio->sector & geo->chunk_mask;
570
571         chunk *= geo->near_copies;
572         stripe = chunk;
573         dev = sector_div(stripe, geo->raid_disks);
574         if (geo->far_offset)
575                 stripe *= geo->far_copies;
576
577         sector += stripe << geo->chunk_shift;
578
579         /* and calculate all the others */
580         for (n = 0; n < geo->near_copies; n++) {
581                 int d = dev;
582                 int set;
583                 sector_t s = sector;
584                 r10bio->devs[slot].devnum = d;
585                 r10bio->devs[slot].addr = s;
586                 slot++;
587
588                 for (f = 1; f < geo->far_copies; f++) {
589                         set = d / geo->far_set_size;
590                         d += geo->near_copies;
591
592                         if ((geo->raid_disks % geo->far_set_size) &&
593                             (d > last_far_set_start)) {
594                                 d -= last_far_set_start;
595                                 d %= last_far_set_size;
596                                 d += last_far_set_start;
597                         } else {
598                                 d %= geo->far_set_size;
599                                 d += geo->far_set_size * set;
600                         }
601                         s += geo->stride;
602                         r10bio->devs[slot].devnum = d;
603                         r10bio->devs[slot].addr = s;
604                         slot++;
605                 }
606                 dev++;
607                 if (dev >= geo->raid_disks) {
608                         dev = 0;
609                         sector += (geo->chunk_mask + 1);
610                 }
611         }
612 }
613
614 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
615 {
616         struct geom *geo = &conf->geo;
617
618         if (conf->reshape_progress != MaxSector &&
619             ((r10bio->sector >= conf->reshape_progress) !=
620              conf->mddev->reshape_backwards)) {
621                 set_bit(R10BIO_Previous, &r10bio->state);
622                 geo = &conf->prev;
623         } else
624                 clear_bit(R10BIO_Previous, &r10bio->state);
625
626         __raid10_find_phys(geo, r10bio);
627 }
628
629 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
630 {
631         sector_t offset, chunk, vchunk;
632         /* Never use conf->prev as this is only called during resync
633          * or recovery, so reshape isn't happening
634          */
635         struct geom *geo = &conf->geo;
636         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
637         int far_set_size = geo->far_set_size;
638         int last_far_set_start;
639
640         if (geo->raid_disks % geo->far_set_size) {
641                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
642                 last_far_set_start *= geo->far_set_size;
643
644                 if (dev >= last_far_set_start) {
645                         far_set_size = geo->far_set_size;
646                         far_set_size += (geo->raid_disks % geo->far_set_size);
647                         far_set_start = last_far_set_start;
648                 }
649         }
650
651         offset = sector & geo->chunk_mask;
652         if (geo->far_offset) {
653                 int fc;
654                 chunk = sector >> geo->chunk_shift;
655                 fc = sector_div(chunk, geo->far_copies);
656                 dev -= fc * geo->near_copies;
657                 if (dev < far_set_start)
658                         dev += far_set_size;
659         } else {
660                 while (sector >= geo->stride) {
661                         sector -= geo->stride;
662                         if (dev < (geo->near_copies + far_set_start))
663                                 dev += far_set_size - geo->near_copies;
664                         else
665                                 dev -= geo->near_copies;
666                 }
667                 chunk = sector >> geo->chunk_shift;
668         }
669         vchunk = chunk * geo->raid_disks + dev;
670         sector_div(vchunk, geo->near_copies);
671         return (vchunk << geo->chunk_shift) + offset;
672 }
673
674 /*
675  * This routine returns the disk from which the requested read should
676  * be done. There is a per-array 'next expected sequential IO' sector
677  * number - if this matches on the next IO then we use the last disk.
678  * There is also a per-disk 'last know head position' sector that is
679  * maintained from IRQ contexts, both the normal and the resync IO
680  * completion handlers update this position correctly. If there is no
681  * perfect sequential match then we pick the disk whose head is closest.
682  *
683  * If there are 2 mirrors in the same 2 devices, performance degrades
684  * because position is mirror, not device based.
685  *
686  * The rdev for the device selected will have nr_pending incremented.
687  */
688
689 /*
690  * FIXME: possibly should rethink readbalancing and do it differently
691  * depending on near_copies / far_copies geometry.
692  */
693 static struct md_rdev *read_balance(struct r10conf *conf,
694                                     struct r10bio *r10_bio,
695                                     int *max_sectors)
696 {
697         const sector_t this_sector = r10_bio->sector;
698         int disk, slot;
699         int sectors = r10_bio->sectors;
700         int best_good_sectors;
701         sector_t new_distance, best_dist;
702         struct md_rdev *best_rdev, *rdev = NULL;
703         int do_balance;
704         int best_slot;
705         struct geom *geo = &conf->geo;
706
707         raid10_find_phys(conf, r10_bio);
708         rcu_read_lock();
709 retry:
710         sectors = r10_bio->sectors;
711         best_slot = -1;
712         best_rdev = NULL;
713         best_dist = MaxSector;
714         best_good_sectors = 0;
715         do_balance = 1;
716         /*
717          * Check if we can balance. We can balance on the whole
718          * device if no resync is going on (recovery is ok), or below
719          * the resync window. We take the first readable disk when
720          * above the resync window.
721          */
722         if (conf->mddev->recovery_cp < MaxSector
723             && (this_sector + sectors >= conf->next_resync))
724                 do_balance = 0;
725
726         for (slot = 0; slot < conf->copies ; slot++) {
727                 sector_t first_bad;
728                 int bad_sectors;
729                 sector_t dev_sector;
730
731                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
732                         continue;
733                 disk = r10_bio->devs[slot].devnum;
734                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
735                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
738                 if (rdev == NULL ||
739                     test_bit(Faulty, &rdev->flags))
740                         continue;
741                 if (!test_bit(In_sync, &rdev->flags) &&
742                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743                         continue;
744
745                 dev_sector = r10_bio->devs[slot].addr;
746                 if (is_badblock(rdev, dev_sector, sectors,
747                                 &first_bad, &bad_sectors)) {
748                         if (best_dist < MaxSector)
749                                 /* Already have a better slot */
750                                 continue;
751                         if (first_bad <= dev_sector) {
752                                 /* Cannot read here.  If this is the
753                                  * 'primary' device, then we must not read
754                                  * beyond 'bad_sectors' from another device.
755                                  */
756                                 bad_sectors -= (dev_sector - first_bad);
757                                 if (!do_balance && sectors > bad_sectors)
758                                         sectors = bad_sectors;
759                                 if (best_good_sectors > sectors)
760                                         best_good_sectors = sectors;
761                         } else {
762                                 sector_t good_sectors =
763                                         first_bad - dev_sector;
764                                 if (good_sectors > best_good_sectors) {
765                                         best_good_sectors = good_sectors;
766                                         best_slot = slot;
767                                         best_rdev = rdev;
768                                 }
769                                 if (!do_balance)
770                                         /* Must read from here */
771                                         break;
772                         }
773                         continue;
774                 } else
775                         best_good_sectors = sectors;
776
777                 if (!do_balance)
778                         break;
779
780                 /* This optimisation is debatable, and completely destroys
781                  * sequential read speed for 'far copies' arrays.  So only
782                  * keep it for 'near' arrays, and review those later.
783                  */
784                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785                         break;
786
787                 /* for far > 1 always use the lowest address */
788                 if (geo->far_copies > 1)
789                         new_distance = r10_bio->devs[slot].addr;
790                 else
791                         new_distance = abs(r10_bio->devs[slot].addr -
792                                            conf->mirrors[disk].head_position);
793                 if (new_distance < best_dist) {
794                         best_dist = new_distance;
795                         best_slot = slot;
796                         best_rdev = rdev;
797                 }
798         }
799         if (slot >= conf->copies) {
800                 slot = best_slot;
801                 rdev = best_rdev;
802         }
803
804         if (slot >= 0) {
805                 atomic_inc(&rdev->nr_pending);
806                 if (test_bit(Faulty, &rdev->flags)) {
807                         /* Cannot risk returning a device that failed
808                          * before we inc'ed nr_pending
809                          */
810                         rdev_dec_pending(rdev, conf->mddev);
811                         goto retry;
812                 }
813                 r10_bio->read_slot = slot;
814         } else
815                 rdev = NULL;
816         rcu_read_unlock();
817         *max_sectors = best_good_sectors;
818
819         return rdev;
820 }
821
822 static int raid10_congested(struct mddev *mddev, int bits)
823 {
824         struct r10conf *conf = mddev->private;
825         int i, ret = 0;
826
827         if ((bits & (1 << WB_async_congested)) &&
828             conf->pending_count >= max_queued_requests)
829                 return 1;
830
831         rcu_read_lock();
832         for (i = 0;
833              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
834                      && ret == 0;
835              i++) {
836                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
837                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
838                         struct request_queue *q = bdev_get_queue(rdev->bdev);
839
840                         ret |= bdi_congested(&q->backing_dev_info, bits);
841                 }
842         }
843         rcu_read_unlock();
844         return ret;
845 }
846
847 static void flush_pending_writes(struct r10conf *conf)
848 {
849         /* Any writes that have been queued but are awaiting
850          * bitmap updates get flushed here.
851          */
852         spin_lock_irq(&conf->device_lock);
853
854         if (conf->pending_bio_list.head) {
855                 struct bio *bio;
856                 bio = bio_list_get(&conf->pending_bio_list);
857                 conf->pending_count = 0;
858                 spin_unlock_irq(&conf->device_lock);
859                 /* flush any pending bitmap writes to disk
860                  * before proceeding w/ I/O */
861                 bitmap_unplug(conf->mddev->bitmap);
862                 wake_up(&conf->wait_barrier);
863
864                 while (bio) { /* submit pending writes */
865                         struct bio *next = bio->bi_next;
866                         bio->bi_next = NULL;
867                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
868                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
869                                 /* Just ignore it */
870                                 bio_endio(bio);
871                         else
872                                 generic_make_request(bio);
873                         bio = next;
874                 }
875         } else
876                 spin_unlock_irq(&conf->device_lock);
877 }
878
879 /* Barriers....
880  * Sometimes we need to suspend IO while we do something else,
881  * either some resync/recovery, or reconfigure the array.
882  * To do this we raise a 'barrier'.
883  * The 'barrier' is a counter that can be raised multiple times
884  * to count how many activities are happening which preclude
885  * normal IO.
886  * We can only raise the barrier if there is no pending IO.
887  * i.e. if nr_pending == 0.
888  * We choose only to raise the barrier if no-one is waiting for the
889  * barrier to go down.  This means that as soon as an IO request
890  * is ready, no other operations which require a barrier will start
891  * until the IO request has had a chance.
892  *
893  * So: regular IO calls 'wait_barrier'.  When that returns there
894  *    is no backgroup IO happening,  It must arrange to call
895  *    allow_barrier when it has finished its IO.
896  * backgroup IO calls must call raise_barrier.  Once that returns
897  *    there is no normal IO happeing.  It must arrange to call
898  *    lower_barrier when the particular background IO completes.
899  */
900
901 static void raise_barrier(struct r10conf *conf, int force)
902 {
903         BUG_ON(force && !conf->barrier);
904         spin_lock_irq(&conf->resync_lock);
905
906         /* Wait until no block IO is waiting (unless 'force') */
907         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
908                             conf->resync_lock);
909
910         /* block any new IO from starting */
911         conf->barrier++;
912
913         /* Now wait for all pending IO to complete */
914         wait_event_lock_irq(conf->wait_barrier,
915                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
916                             conf->resync_lock);
917
918         spin_unlock_irq(&conf->resync_lock);
919 }
920
921 static void lower_barrier(struct r10conf *conf)
922 {
923         unsigned long flags;
924         spin_lock_irqsave(&conf->resync_lock, flags);
925         conf->barrier--;
926         spin_unlock_irqrestore(&conf->resync_lock, flags);
927         wake_up(&conf->wait_barrier);
928 }
929
930 static void wait_barrier(struct r10conf *conf)
931 {
932         spin_lock_irq(&conf->resync_lock);
933         if (conf->barrier) {
934                 conf->nr_waiting++;
935                 /* Wait for the barrier to drop.
936                  * However if there are already pending
937                  * requests (preventing the barrier from
938                  * rising completely), and the
939                  * pre-process bio queue isn't empty,
940                  * then don't wait, as we need to empty
941                  * that queue to get the nr_pending
942                  * count down.
943                  */
944                 wait_event_lock_irq(conf->wait_barrier,
945                                     !conf->barrier ||
946                                     (conf->nr_pending &&
947                                      current->bio_list &&
948                                      !bio_list_empty(current->bio_list)),
949                                     conf->resync_lock);
950                 conf->nr_waiting--;
951         }
952         conf->nr_pending++;
953         spin_unlock_irq(&conf->resync_lock);
954 }
955
956 static void allow_barrier(struct r10conf *conf)
957 {
958         unsigned long flags;
959         spin_lock_irqsave(&conf->resync_lock, flags);
960         conf->nr_pending--;
961         spin_unlock_irqrestore(&conf->resync_lock, flags);
962         wake_up(&conf->wait_barrier);
963 }
964
965 static void freeze_array(struct r10conf *conf, int extra)
966 {
967         /* stop syncio and normal IO and wait for everything to
968          * go quiet.
969          * We increment barrier and nr_waiting, and then
970          * wait until nr_pending match nr_queued+extra
971          * This is called in the context of one normal IO request
972          * that has failed. Thus any sync request that might be pending
973          * will be blocked by nr_pending, and we need to wait for
974          * pending IO requests to complete or be queued for re-try.
975          * Thus the number queued (nr_queued) plus this request (extra)
976          * must match the number of pending IOs (nr_pending) before
977          * we continue.
978          */
979         spin_lock_irq(&conf->resync_lock);
980         conf->barrier++;
981         conf->nr_waiting++;
982         wait_event_lock_irq_cmd(conf->wait_barrier,
983                                 conf->nr_pending == conf->nr_queued+extra,
984                                 conf->resync_lock,
985                                 flush_pending_writes(conf));
986
987         spin_unlock_irq(&conf->resync_lock);
988 }
989
990 static void unfreeze_array(struct r10conf *conf)
991 {
992         /* reverse the effect of the freeze */
993         spin_lock_irq(&conf->resync_lock);
994         conf->barrier--;
995         conf->nr_waiting--;
996         wake_up(&conf->wait_barrier);
997         spin_unlock_irq(&conf->resync_lock);
998 }
999
1000 static sector_t choose_data_offset(struct r10bio *r10_bio,
1001                                    struct md_rdev *rdev)
1002 {
1003         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1004             test_bit(R10BIO_Previous, &r10_bio->state))
1005                 return rdev->data_offset;
1006         else
1007                 return rdev->new_data_offset;
1008 }
1009
1010 struct raid10_plug_cb {
1011         struct blk_plug_cb      cb;
1012         struct bio_list         pending;
1013         int                     pending_cnt;
1014 };
1015
1016 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1017 {
1018         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1019                                                    cb);
1020         struct mddev *mddev = plug->cb.data;
1021         struct r10conf *conf = mddev->private;
1022         struct bio *bio;
1023
1024         if (from_schedule || current->bio_list) {
1025                 spin_lock_irq(&conf->device_lock);
1026                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1027                 conf->pending_count += plug->pending_cnt;
1028                 spin_unlock_irq(&conf->device_lock);
1029                 wake_up(&conf->wait_barrier);
1030                 md_wakeup_thread(mddev->thread);
1031                 kfree(plug);
1032                 return;
1033         }
1034
1035         /* we aren't scheduling, so we can do the write-out directly. */
1036         bio = bio_list_get(&plug->pending);
1037         bitmap_unplug(mddev->bitmap);
1038         wake_up(&conf->wait_barrier);
1039
1040         while (bio) { /* submit pending writes */
1041                 struct bio *next = bio->bi_next;
1042                 bio->bi_next = NULL;
1043                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1044                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1045                         /* Just ignore it */
1046                         bio_endio(bio);
1047                 else
1048                         generic_make_request(bio);
1049                 bio = next;
1050         }
1051         kfree(plug);
1052 }
1053
1054 static void __make_request(struct mddev *mddev, struct bio *bio)
1055 {
1056         struct r10conf *conf = mddev->private;
1057         struct r10bio *r10_bio;
1058         struct bio *read_bio;
1059         int i;
1060         const int rw = bio_data_dir(bio);
1061         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1062         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1063         const unsigned long do_discard = (bio->bi_rw
1064                                           & (REQ_DISCARD | REQ_SECURE));
1065         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1066         unsigned long flags;
1067         struct md_rdev *blocked_rdev;
1068         struct blk_plug_cb *cb;
1069         struct raid10_plug_cb *plug = NULL;
1070         int sectors_handled;
1071         int max_sectors;
1072         int sectors;
1073
1074         /*
1075          * Register the new request and wait if the reconstruction
1076          * thread has put up a bar for new requests.
1077          * Continue immediately if no resync is active currently.
1078          */
1079         wait_barrier(conf);
1080
1081         sectors = bio_sectors(bio);
1082         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1083             bio->bi_iter.bi_sector < conf->reshape_progress &&
1084             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1085                 /* IO spans the reshape position.  Need to wait for
1086                  * reshape to pass
1087                  */
1088                 allow_barrier(conf);
1089                 wait_event(conf->wait_barrier,
1090                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1091                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1092                            sectors);
1093                 wait_barrier(conf);
1094         }
1095         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1096             bio_data_dir(bio) == WRITE &&
1097             (mddev->reshape_backwards
1098              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1099                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1100              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1101                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1102                 /* Need to update reshape_position in metadata */
1103                 mddev->reshape_position = conf->reshape_progress;
1104                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1105                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1106                 md_wakeup_thread(mddev->thread);
1107                 wait_event(mddev->sb_wait,
1108                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1109
1110                 conf->reshape_safe = mddev->reshape_position;
1111         }
1112
1113         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1114
1115         r10_bio->master_bio = bio;
1116         r10_bio->sectors = sectors;
1117
1118         r10_bio->mddev = mddev;
1119         r10_bio->sector = bio->bi_iter.bi_sector;
1120         r10_bio->state = 0;
1121
1122         /* We might need to issue multiple reads to different
1123          * devices if there are bad blocks around, so we keep
1124          * track of the number of reads in bio->bi_phys_segments.
1125          * If this is 0, there is only one r10_bio and no locking
1126          * will be needed when the request completes.  If it is
1127          * non-zero, then it is the number of not-completed requests.
1128          */
1129         bio->bi_phys_segments = 0;
1130         bio_clear_flag(bio, BIO_SEG_VALID);
1131
1132         if (rw == READ) {
1133                 /*
1134                  * read balancing logic:
1135                  */
1136                 struct md_rdev *rdev;
1137                 int slot;
1138
1139 read_again:
1140                 rdev = read_balance(conf, r10_bio, &max_sectors);
1141                 if (!rdev) {
1142                         raid_end_bio_io(r10_bio);
1143                         return;
1144                 }
1145                 slot = r10_bio->read_slot;
1146
1147                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1148                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1149                          max_sectors);
1150
1151                 r10_bio->devs[slot].bio = read_bio;
1152                 r10_bio->devs[slot].rdev = rdev;
1153
1154                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1155                         choose_data_offset(r10_bio, rdev);
1156                 read_bio->bi_bdev = rdev->bdev;
1157                 read_bio->bi_end_io = raid10_end_read_request;
1158                 read_bio->bi_rw = READ | do_sync;
1159                 read_bio->bi_private = r10_bio;
1160
1161                 if (max_sectors < r10_bio->sectors) {
1162                         /* Could not read all from this device, so we will
1163                          * need another r10_bio.
1164                          */
1165                         sectors_handled = (r10_bio->sector + max_sectors
1166                                            - bio->bi_iter.bi_sector);
1167                         r10_bio->sectors = max_sectors;
1168                         spin_lock_irq(&conf->device_lock);
1169                         if (bio->bi_phys_segments == 0)
1170                                 bio->bi_phys_segments = 2;
1171                         else
1172                                 bio->bi_phys_segments++;
1173                         spin_unlock_irq(&conf->device_lock);
1174                         /* Cannot call generic_make_request directly
1175                          * as that will be queued in __generic_make_request
1176                          * and subsequent mempool_alloc might block
1177                          * waiting for it.  so hand bio over to raid10d.
1178                          */
1179                         reschedule_retry(r10_bio);
1180
1181                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1182
1183                         r10_bio->master_bio = bio;
1184                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1185                         r10_bio->state = 0;
1186                         r10_bio->mddev = mddev;
1187                         r10_bio->sector = bio->bi_iter.bi_sector +
1188                                 sectors_handled;
1189                         goto read_again;
1190                 } else
1191                         generic_make_request(read_bio);
1192                 return;
1193         }
1194
1195         /*
1196          * WRITE:
1197          */
1198         if (conf->pending_count >= max_queued_requests) {
1199                 md_wakeup_thread(mddev->thread);
1200                 wait_event(conf->wait_barrier,
1201                            conf->pending_count < max_queued_requests);
1202         }
1203         /* first select target devices under rcu_lock and
1204          * inc refcount on their rdev.  Record them by setting
1205          * bios[x] to bio
1206          * If there are known/acknowledged bad blocks on any device
1207          * on which we have seen a write error, we want to avoid
1208          * writing to those blocks.  This potentially requires several
1209          * writes to write around the bad blocks.  Each set of writes
1210          * gets its own r10_bio with a set of bios attached.  The number
1211          * of r10_bios is recored in bio->bi_phys_segments just as with
1212          * the read case.
1213          */
1214
1215         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1216         raid10_find_phys(conf, r10_bio);
1217 retry_write:
1218         blocked_rdev = NULL;
1219         rcu_read_lock();
1220         max_sectors = r10_bio->sectors;
1221
1222         for (i = 0;  i < conf->copies; i++) {
1223                 int d = r10_bio->devs[i].devnum;
1224                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1225                 struct md_rdev *rrdev = rcu_dereference(
1226                         conf->mirrors[d].replacement);
1227                 if (rdev == rrdev)
1228                         rrdev = NULL;
1229                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1230                         atomic_inc(&rdev->nr_pending);
1231                         blocked_rdev = rdev;
1232                         break;
1233                 }
1234                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1235                         atomic_inc(&rrdev->nr_pending);
1236                         blocked_rdev = rrdev;
1237                         break;
1238                 }
1239                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1240                         rdev = NULL;
1241                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1242                         rrdev = NULL;
1243
1244                 r10_bio->devs[i].bio = NULL;
1245                 r10_bio->devs[i].repl_bio = NULL;
1246
1247                 if (!rdev && !rrdev) {
1248                         set_bit(R10BIO_Degraded, &r10_bio->state);
1249                         continue;
1250                 }
1251                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1252                         sector_t first_bad;
1253                         sector_t dev_sector = r10_bio->devs[i].addr;
1254                         int bad_sectors;
1255                         int is_bad;
1256
1257                         is_bad = is_badblock(rdev, dev_sector,
1258                                              max_sectors,
1259                                              &first_bad, &bad_sectors);
1260                         if (is_bad < 0) {
1261                                 /* Mustn't write here until the bad block
1262                                  * is acknowledged
1263                                  */
1264                                 atomic_inc(&rdev->nr_pending);
1265                                 set_bit(BlockedBadBlocks, &rdev->flags);
1266                                 blocked_rdev = rdev;
1267                                 break;
1268                         }
1269                         if (is_bad && first_bad <= dev_sector) {
1270                                 /* Cannot write here at all */
1271                                 bad_sectors -= (dev_sector - first_bad);
1272                                 if (bad_sectors < max_sectors)
1273                                         /* Mustn't write more than bad_sectors
1274                                          * to other devices yet
1275                                          */
1276                                         max_sectors = bad_sectors;
1277                                 /* We don't set R10BIO_Degraded as that
1278                                  * only applies if the disk is missing,
1279                                  * so it might be re-added, and we want to
1280                                  * know to recover this chunk.
1281                                  * In this case the device is here, and the
1282                                  * fact that this chunk is not in-sync is
1283                                  * recorded in the bad block log.
1284                                  */
1285                                 continue;
1286                         }
1287                         if (is_bad) {
1288                                 int good_sectors = first_bad - dev_sector;
1289                                 if (good_sectors < max_sectors)
1290                                         max_sectors = good_sectors;
1291                         }
1292                 }
1293                 if (rdev) {
1294                         r10_bio->devs[i].bio = bio;
1295                         atomic_inc(&rdev->nr_pending);
1296                 }
1297                 if (rrdev) {
1298                         r10_bio->devs[i].repl_bio = bio;
1299                         atomic_inc(&rrdev->nr_pending);
1300                 }
1301         }
1302         rcu_read_unlock();
1303
1304         if (unlikely(blocked_rdev)) {
1305                 /* Have to wait for this device to get unblocked, then retry */
1306                 int j;
1307                 int d;
1308
1309                 for (j = 0; j < i; j++) {
1310                         if (r10_bio->devs[j].bio) {
1311                                 d = r10_bio->devs[j].devnum;
1312                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1313                         }
1314                         if (r10_bio->devs[j].repl_bio) {
1315                                 struct md_rdev *rdev;
1316                                 d = r10_bio->devs[j].devnum;
1317                                 rdev = conf->mirrors[d].replacement;
1318                                 if (!rdev) {
1319                                         /* Race with remove_disk */
1320                                         smp_mb();
1321                                         rdev = conf->mirrors[d].rdev;
1322                                 }
1323                                 rdev_dec_pending(rdev, mddev);
1324                         }
1325                 }
1326                 allow_barrier(conf);
1327                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1328                 wait_barrier(conf);
1329                 goto retry_write;
1330         }
1331
1332         if (max_sectors < r10_bio->sectors) {
1333                 /* We are splitting this into multiple parts, so
1334                  * we need to prepare for allocating another r10_bio.
1335                  */
1336                 r10_bio->sectors = max_sectors;
1337                 spin_lock_irq(&conf->device_lock);
1338                 if (bio->bi_phys_segments == 0)
1339                         bio->bi_phys_segments = 2;
1340                 else
1341                         bio->bi_phys_segments++;
1342                 spin_unlock_irq(&conf->device_lock);
1343         }
1344         sectors_handled = r10_bio->sector + max_sectors -
1345                 bio->bi_iter.bi_sector;
1346
1347         atomic_set(&r10_bio->remaining, 1);
1348         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1349
1350         for (i = 0; i < conf->copies; i++) {
1351                 struct bio *mbio;
1352                 int d = r10_bio->devs[i].devnum;
1353                 if (r10_bio->devs[i].bio) {
1354                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1355                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1356                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1357                                  max_sectors);
1358                         r10_bio->devs[i].bio = mbio;
1359
1360                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1361                                            choose_data_offset(r10_bio,
1362                                                               rdev));
1363                         mbio->bi_bdev = rdev->bdev;
1364                         mbio->bi_end_io = raid10_end_write_request;
1365                         mbio->bi_rw =
1366                                 WRITE | do_sync | do_fua | do_discard | do_same;
1367                         mbio->bi_private = r10_bio;
1368
1369                         atomic_inc(&r10_bio->remaining);
1370
1371                         cb = blk_check_plugged(raid10_unplug, mddev,
1372                                                sizeof(*plug));
1373                         if (cb)
1374                                 plug = container_of(cb, struct raid10_plug_cb,
1375                                                     cb);
1376                         else
1377                                 plug = NULL;
1378                         spin_lock_irqsave(&conf->device_lock, flags);
1379                         if (plug) {
1380                                 bio_list_add(&plug->pending, mbio);
1381                                 plug->pending_cnt++;
1382                         } else {
1383                                 bio_list_add(&conf->pending_bio_list, mbio);
1384                                 conf->pending_count++;
1385                         }
1386                         spin_unlock_irqrestore(&conf->device_lock, flags);
1387                         if (!plug)
1388                                 md_wakeup_thread(mddev->thread);
1389                 }
1390
1391                 if (r10_bio->devs[i].repl_bio) {
1392                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1393                         if (rdev == NULL) {
1394                                 /* Replacement just got moved to main 'rdev' */
1395                                 smp_mb();
1396                                 rdev = conf->mirrors[d].rdev;
1397                         }
1398                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1399                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1400                                  max_sectors);
1401                         r10_bio->devs[i].repl_bio = mbio;
1402
1403                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1404                                            choose_data_offset(
1405                                                    r10_bio, rdev));
1406                         mbio->bi_bdev = rdev->bdev;
1407                         mbio->bi_end_io = raid10_end_write_request;
1408                         mbio->bi_rw =
1409                                 WRITE | do_sync | do_fua | do_discard | do_same;
1410                         mbio->bi_private = r10_bio;
1411
1412                         atomic_inc(&r10_bio->remaining);
1413                         spin_lock_irqsave(&conf->device_lock, flags);
1414                         bio_list_add(&conf->pending_bio_list, mbio);
1415                         conf->pending_count++;
1416                         spin_unlock_irqrestore(&conf->device_lock, flags);
1417                         if (!mddev_check_plugged(mddev))
1418                                 md_wakeup_thread(mddev->thread);
1419                 }
1420         }
1421
1422         /* Don't remove the bias on 'remaining' (one_write_done) until
1423          * after checking if we need to go around again.
1424          */
1425
1426         if (sectors_handled < bio_sectors(bio)) {
1427                 one_write_done(r10_bio);
1428                 /* We need another r10_bio.  It has already been counted
1429                  * in bio->bi_phys_segments.
1430                  */
1431                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1432
1433                 r10_bio->master_bio = bio;
1434                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1435
1436                 r10_bio->mddev = mddev;
1437                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1438                 r10_bio->state = 0;
1439                 goto retry_write;
1440         }
1441         one_write_done(r10_bio);
1442 }
1443
1444 static void make_request(struct mddev *mddev, struct bio *bio)
1445 {
1446         struct r10conf *conf = mddev->private;
1447         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1448         int chunk_sects = chunk_mask + 1;
1449
1450         struct bio *split;
1451
1452         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1453                 md_flush_request(mddev, bio);
1454                 return;
1455         }
1456
1457         md_write_start(mddev, bio);
1458
1459         do {
1460
1461                 /*
1462                  * If this request crosses a chunk boundary, we need to split
1463                  * it.
1464                  */
1465                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1466                              bio_sectors(bio) > chunk_sects
1467                              && (conf->geo.near_copies < conf->geo.raid_disks
1468                                  || conf->prev.near_copies <
1469                                  conf->prev.raid_disks))) {
1470                         split = bio_split(bio, chunk_sects -
1471                                           (bio->bi_iter.bi_sector &
1472                                            (chunk_sects - 1)),
1473                                           GFP_NOIO, fs_bio_set);
1474                         bio_chain(split, bio);
1475                 } else {
1476                         split = bio;
1477                 }
1478
1479                 __make_request(mddev, split);
1480         } while (split != bio);
1481
1482         /* In case raid10d snuck in to freeze_array */
1483         wake_up(&conf->wait_barrier);
1484 }
1485
1486 static void status(struct seq_file *seq, struct mddev *mddev)
1487 {
1488         struct r10conf *conf = mddev->private;
1489         int i;
1490
1491         if (conf->geo.near_copies < conf->geo.raid_disks)
1492                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1493         if (conf->geo.near_copies > 1)
1494                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1495         if (conf->geo.far_copies > 1) {
1496                 if (conf->geo.far_offset)
1497                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1498                 else
1499                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1500         }
1501         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1502                                         conf->geo.raid_disks - mddev->degraded);
1503         for (i = 0; i < conf->geo.raid_disks; i++)
1504                 seq_printf(seq, "%s",
1505                               conf->mirrors[i].rdev &&
1506                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1507         seq_printf(seq, "]");
1508 }
1509
1510 /* check if there are enough drives for
1511  * every block to appear on atleast one.
1512  * Don't consider the device numbered 'ignore'
1513  * as we might be about to remove it.
1514  */
1515 static int _enough(struct r10conf *conf, int previous, int ignore)
1516 {
1517         int first = 0;
1518         int has_enough = 0;
1519         int disks, ncopies;
1520         if (previous) {
1521                 disks = conf->prev.raid_disks;
1522                 ncopies = conf->prev.near_copies;
1523         } else {
1524                 disks = conf->geo.raid_disks;
1525                 ncopies = conf->geo.near_copies;
1526         }
1527
1528         rcu_read_lock();
1529         do {
1530                 int n = conf->copies;
1531                 int cnt = 0;
1532                 int this = first;
1533                 while (n--) {
1534                         struct md_rdev *rdev;
1535                         if (this != ignore &&
1536                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1537                             test_bit(In_sync, &rdev->flags))
1538                                 cnt++;
1539                         this = (this+1) % disks;
1540                 }
1541                 if (cnt == 0)
1542                         goto out;
1543                 first = (first + ncopies) % disks;
1544         } while (first != 0);
1545         has_enough = 1;
1546 out:
1547         rcu_read_unlock();
1548         return has_enough;
1549 }
1550
1551 static int enough(struct r10conf *conf, int ignore)
1552 {
1553         /* when calling 'enough', both 'prev' and 'geo' must
1554          * be stable.
1555          * This is ensured if ->reconfig_mutex or ->device_lock
1556          * is held.
1557          */
1558         return _enough(conf, 0, ignore) &&
1559                 _enough(conf, 1, ignore);
1560 }
1561
1562 static void error(struct mddev *mddev, struct md_rdev *rdev)
1563 {
1564         char b[BDEVNAME_SIZE];
1565         struct r10conf *conf = mddev->private;
1566         unsigned long flags;
1567
1568         /*
1569          * If it is not operational, then we have already marked it as dead
1570          * else if it is the last working disks, ignore the error, let the
1571          * next level up know.
1572          * else mark the drive as failed
1573          */
1574         spin_lock_irqsave(&conf->device_lock, flags);
1575         if (test_bit(In_sync, &rdev->flags)
1576             && !enough(conf, rdev->raid_disk)) {
1577                 /*
1578                  * Don't fail the drive, just return an IO error.
1579                  */
1580                 spin_unlock_irqrestore(&conf->device_lock, flags);
1581                 return;
1582         }
1583         if (test_and_clear_bit(In_sync, &rdev->flags))
1584                 mddev->degraded++;
1585         /*
1586          * If recovery is running, make sure it aborts.
1587          */
1588         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1589         set_bit(Blocked, &rdev->flags);
1590         set_bit(Faulty, &rdev->flags);
1591         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1592         set_bit(MD_CHANGE_PENDING, &mddev->flags);
1593         spin_unlock_irqrestore(&conf->device_lock, flags);
1594         printk(KERN_ALERT
1595                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1596                "md/raid10:%s: Operation continuing on %d devices.\n",
1597                mdname(mddev), bdevname(rdev->bdev, b),
1598                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1599 }
1600
1601 static void print_conf(struct r10conf *conf)
1602 {
1603         int i;
1604         struct raid10_info *tmp;
1605
1606         printk(KERN_DEBUG "RAID10 conf printout:\n");
1607         if (!conf) {
1608                 printk(KERN_DEBUG "(!conf)\n");
1609                 return;
1610         }
1611         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1612                 conf->geo.raid_disks);
1613
1614         for (i = 0; i < conf->geo.raid_disks; i++) {
1615                 char b[BDEVNAME_SIZE];
1616                 tmp = conf->mirrors + i;
1617                 if (tmp->rdev)
1618                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1619                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1620                                 !test_bit(Faulty, &tmp->rdev->flags),
1621                                 bdevname(tmp->rdev->bdev,b));
1622         }
1623 }
1624
1625 static void close_sync(struct r10conf *conf)
1626 {
1627         wait_barrier(conf);
1628         allow_barrier(conf);
1629
1630         mempool_destroy(conf->r10buf_pool);
1631         conf->r10buf_pool = NULL;
1632 }
1633
1634 static int raid10_spare_active(struct mddev *mddev)
1635 {
1636         int i;
1637         struct r10conf *conf = mddev->private;
1638         struct raid10_info *tmp;
1639         int count = 0;
1640         unsigned long flags;
1641
1642         /*
1643          * Find all non-in_sync disks within the RAID10 configuration
1644          * and mark them in_sync
1645          */
1646         for (i = 0; i < conf->geo.raid_disks; i++) {
1647                 tmp = conf->mirrors + i;
1648                 if (tmp->replacement
1649                     && tmp->replacement->recovery_offset == MaxSector
1650                     && !test_bit(Faulty, &tmp->replacement->flags)
1651                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1652                         /* Replacement has just become active */
1653                         if (!tmp->rdev
1654                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1655                                 count++;
1656                         if (tmp->rdev) {
1657                                 /* Replaced device not technically faulty,
1658                                  * but we need to be sure it gets removed
1659                                  * and never re-added.
1660                                  */
1661                                 set_bit(Faulty, &tmp->rdev->flags);
1662                                 sysfs_notify_dirent_safe(
1663                                         tmp->rdev->sysfs_state);
1664                         }
1665                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1666                 } else if (tmp->rdev
1667                            && tmp->rdev->recovery_offset == MaxSector
1668                            && !test_bit(Faulty, &tmp->rdev->flags)
1669                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1670                         count++;
1671                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1672                 }
1673         }
1674         spin_lock_irqsave(&conf->device_lock, flags);
1675         mddev->degraded -= count;
1676         spin_unlock_irqrestore(&conf->device_lock, flags);
1677
1678         print_conf(conf);
1679         return count;
1680 }
1681
1682 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684         struct r10conf *conf = mddev->private;
1685         int err = -EEXIST;
1686         int mirror;
1687         int first = 0;
1688         int last = conf->geo.raid_disks - 1;
1689
1690         if (mddev->recovery_cp < MaxSector)
1691                 /* only hot-add to in-sync arrays, as recovery is
1692                  * very different from resync
1693                  */
1694                 return -EBUSY;
1695         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1696                 return -EINVAL;
1697
1698         if (rdev->raid_disk >= 0)
1699                 first = last = rdev->raid_disk;
1700
1701         if (rdev->saved_raid_disk >= first &&
1702             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703                 mirror = rdev->saved_raid_disk;
1704         else
1705                 mirror = first;
1706         for ( ; mirror <= last ; mirror++) {
1707                 struct raid10_info *p = &conf->mirrors[mirror];
1708                 if (p->recovery_disabled == mddev->recovery_disabled)
1709                         continue;
1710                 if (p->rdev) {
1711                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712                             p->replacement != NULL)
1713                                 continue;
1714                         clear_bit(In_sync, &rdev->flags);
1715                         set_bit(Replacement, &rdev->flags);
1716                         rdev->raid_disk = mirror;
1717                         err = 0;
1718                         if (mddev->gendisk)
1719                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1720                                                   rdev->data_offset << 9);
1721                         conf->fullsync = 1;
1722                         rcu_assign_pointer(p->replacement, rdev);
1723                         break;
1724                 }
1725
1726                 if (mddev->gendisk)
1727                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1728                                           rdev->data_offset << 9);
1729
1730                 p->head_position = 0;
1731                 p->recovery_disabled = mddev->recovery_disabled - 1;
1732                 rdev->raid_disk = mirror;
1733                 err = 0;
1734                 if (rdev->saved_raid_disk != mirror)
1735                         conf->fullsync = 1;
1736                 rcu_assign_pointer(p->rdev, rdev);
1737                 break;
1738         }
1739         mddev_suspend(mddev);
1740         md_integrity_add_rdev(rdev, mddev);
1741         mddev_resume(mddev);
1742         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1743                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1744
1745         print_conf(conf);
1746         return err;
1747 }
1748
1749 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1750 {
1751         struct r10conf *conf = mddev->private;
1752         int err = 0;
1753         int number = rdev->raid_disk;
1754         struct md_rdev **rdevp;
1755         struct raid10_info *p = conf->mirrors + number;
1756
1757         print_conf(conf);
1758         if (rdev == p->rdev)
1759                 rdevp = &p->rdev;
1760         else if (rdev == p->replacement)
1761                 rdevp = &p->replacement;
1762         else
1763                 return 0;
1764
1765         if (test_bit(In_sync, &rdev->flags) ||
1766             atomic_read(&rdev->nr_pending)) {
1767                 err = -EBUSY;
1768                 goto abort;
1769         }
1770         /* Only remove faulty devices if recovery
1771          * is not possible.
1772          */
1773         if (!test_bit(Faulty, &rdev->flags) &&
1774             mddev->recovery_disabled != p->recovery_disabled &&
1775             (!p->replacement || p->replacement == rdev) &&
1776             number < conf->geo.raid_disks &&
1777             enough(conf, -1)) {
1778                 err = -EBUSY;
1779                 goto abort;
1780         }
1781         *rdevp = NULL;
1782         synchronize_rcu();
1783         if (atomic_read(&rdev->nr_pending)) {
1784                 /* lost the race, try later */
1785                 err = -EBUSY;
1786                 *rdevp = rdev;
1787                 goto abort;
1788         } else if (p->replacement) {
1789                 /* We must have just cleared 'rdev' */
1790                 p->rdev = p->replacement;
1791                 clear_bit(Replacement, &p->replacement->flags);
1792                 smp_mb(); /* Make sure other CPUs may see both as identical
1793                            * but will never see neither -- if they are careful.
1794                            */
1795                 p->replacement = NULL;
1796                 clear_bit(WantReplacement, &rdev->flags);
1797         } else
1798                 /* We might have just remove the Replacement as faulty
1799                  * Clear the flag just in case
1800                  */
1801                 clear_bit(WantReplacement, &rdev->flags);
1802
1803         err = md_integrity_register(mddev);
1804
1805 abort:
1806
1807         print_conf(conf);
1808         return err;
1809 }
1810
1811 static void end_sync_read(struct bio *bio)
1812 {
1813         struct r10bio *r10_bio = bio->bi_private;
1814         struct r10conf *conf = r10_bio->mddev->private;
1815         int d;
1816
1817         if (bio == r10_bio->master_bio) {
1818                 /* this is a reshape read */
1819                 d = r10_bio->read_slot; /* really the read dev */
1820         } else
1821                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1822
1823         if (!bio->bi_error)
1824                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1825         else
1826                 /* The write handler will notice the lack of
1827                  * R10BIO_Uptodate and record any errors etc
1828                  */
1829                 atomic_add(r10_bio->sectors,
1830                            &conf->mirrors[d].rdev->corrected_errors);
1831
1832         /* for reconstruct, we always reschedule after a read.
1833          * for resync, only after all reads
1834          */
1835         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1836         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1837             atomic_dec_and_test(&r10_bio->remaining)) {
1838                 /* we have read all the blocks,
1839                  * do the comparison in process context in raid10d
1840                  */
1841                 reschedule_retry(r10_bio);
1842         }
1843 }
1844
1845 static void end_sync_request(struct r10bio *r10_bio)
1846 {
1847         struct mddev *mddev = r10_bio->mddev;
1848
1849         while (atomic_dec_and_test(&r10_bio->remaining)) {
1850                 if (r10_bio->master_bio == NULL) {
1851                         /* the primary of several recovery bios */
1852                         sector_t s = r10_bio->sectors;
1853                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1854                             test_bit(R10BIO_WriteError, &r10_bio->state))
1855                                 reschedule_retry(r10_bio);
1856                         else
1857                                 put_buf(r10_bio);
1858                         md_done_sync(mddev, s, 1);
1859                         break;
1860                 } else {
1861                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1862                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1863                             test_bit(R10BIO_WriteError, &r10_bio->state))
1864                                 reschedule_retry(r10_bio);
1865                         else
1866                                 put_buf(r10_bio);
1867                         r10_bio = r10_bio2;
1868                 }
1869         }
1870 }
1871
1872 static void end_sync_write(struct bio *bio)
1873 {
1874         struct r10bio *r10_bio = bio->bi_private;
1875         struct mddev *mddev = r10_bio->mddev;
1876         struct r10conf *conf = mddev->private;
1877         int d;
1878         sector_t first_bad;
1879         int bad_sectors;
1880         int slot;
1881         int repl;
1882         struct md_rdev *rdev = NULL;
1883
1884         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1885         if (repl)
1886                 rdev = conf->mirrors[d].replacement;
1887         else
1888                 rdev = conf->mirrors[d].rdev;
1889
1890         if (bio->bi_error) {
1891                 if (repl)
1892                         md_error(mddev, rdev);
1893                 else {
1894                         set_bit(WriteErrorSeen, &rdev->flags);
1895                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1896                                 set_bit(MD_RECOVERY_NEEDED,
1897                                         &rdev->mddev->recovery);
1898                         set_bit(R10BIO_WriteError, &r10_bio->state);
1899                 }
1900         } else if (is_badblock(rdev,
1901                              r10_bio->devs[slot].addr,
1902                              r10_bio->sectors,
1903                              &first_bad, &bad_sectors))
1904                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1905
1906         rdev_dec_pending(rdev, mddev);
1907
1908         end_sync_request(r10_bio);
1909 }
1910
1911 /*
1912  * Note: sync and recover and handled very differently for raid10
1913  * This code is for resync.
1914  * For resync, we read through virtual addresses and read all blocks.
1915  * If there is any error, we schedule a write.  The lowest numbered
1916  * drive is authoritative.
1917  * However requests come for physical address, so we need to map.
1918  * For every physical address there are raid_disks/copies virtual addresses,
1919  * which is always are least one, but is not necessarly an integer.
1920  * This means that a physical address can span multiple chunks, so we may
1921  * have to submit multiple io requests for a single sync request.
1922  */
1923 /*
1924  * We check if all blocks are in-sync and only write to blocks that
1925  * aren't in sync
1926  */
1927 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1928 {
1929         struct r10conf *conf = mddev->private;
1930         int i, first;
1931         struct bio *tbio, *fbio;
1932         int vcnt;
1933
1934         atomic_set(&r10_bio->remaining, 1);
1935
1936         /* find the first device with a block */
1937         for (i=0; i<conf->copies; i++)
1938                 if (!r10_bio->devs[i].bio->bi_error)
1939                         break;
1940
1941         if (i == conf->copies)
1942                 goto done;
1943
1944         first = i;
1945         fbio = r10_bio->devs[i].bio;
1946
1947         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1948         /* now find blocks with errors */
1949         for (i=0 ; i < conf->copies ; i++) {
1950                 int  j, d;
1951
1952                 tbio = r10_bio->devs[i].bio;
1953
1954                 if (tbio->bi_end_io != end_sync_read)
1955                         continue;
1956                 if (i == first)
1957                         continue;
1958                 if (!r10_bio->devs[i].bio->bi_error) {
1959                         /* We know that the bi_io_vec layout is the same for
1960                          * both 'first' and 'i', so we just compare them.
1961                          * All vec entries are PAGE_SIZE;
1962                          */
1963                         int sectors = r10_bio->sectors;
1964                         for (j = 0; j < vcnt; j++) {
1965                                 int len = PAGE_SIZE;
1966                                 if (sectors < (len / 512))
1967                                         len = sectors * 512;
1968                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1969                                            page_address(tbio->bi_io_vec[j].bv_page),
1970                                            len))
1971                                         break;
1972                                 sectors -= len/512;
1973                         }
1974                         if (j == vcnt)
1975                                 continue;
1976                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1977                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1978                                 /* Don't fix anything. */
1979                                 continue;
1980                 }
1981                 /* Ok, we need to write this bio, either to correct an
1982                  * inconsistency or to correct an unreadable block.
1983                  * First we need to fixup bv_offset, bv_len and
1984                  * bi_vecs, as the read request might have corrupted these
1985                  */
1986                 bio_reset(tbio);
1987
1988                 tbio->bi_vcnt = vcnt;
1989                 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1990                 tbio->bi_rw = WRITE;
1991                 tbio->bi_private = r10_bio;
1992                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1993                 tbio->bi_end_io = end_sync_write;
1994
1995                 bio_copy_data(tbio, fbio);
1996
1997                 d = r10_bio->devs[i].devnum;
1998                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1999                 atomic_inc(&r10_bio->remaining);
2000                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2001
2002                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2003                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2004                 generic_make_request(tbio);
2005         }
2006
2007         /* Now write out to any replacement devices
2008          * that are active
2009          */
2010         for (i = 0; i < conf->copies; i++) {
2011                 int d;
2012
2013                 tbio = r10_bio->devs[i].repl_bio;
2014                 if (!tbio || !tbio->bi_end_io)
2015                         continue;
2016                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2017                     && r10_bio->devs[i].bio != fbio)
2018                         bio_copy_data(tbio, fbio);
2019                 d = r10_bio->devs[i].devnum;
2020                 atomic_inc(&r10_bio->remaining);
2021                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2022                              bio_sectors(tbio));
2023                 generic_make_request(tbio);
2024         }
2025
2026 done:
2027         if (atomic_dec_and_test(&r10_bio->remaining)) {
2028                 md_done_sync(mddev, r10_bio->sectors, 1);
2029                 put_buf(r10_bio);
2030         }
2031 }
2032
2033 /*
2034  * Now for the recovery code.
2035  * Recovery happens across physical sectors.
2036  * We recover all non-is_sync drives by finding the virtual address of
2037  * each, and then choose a working drive that also has that virt address.
2038  * There is a separate r10_bio for each non-in_sync drive.
2039  * Only the first two slots are in use. The first for reading,
2040  * The second for writing.
2041  *
2042  */
2043 static void fix_recovery_read_error(struct r10bio *r10_bio)
2044 {
2045         /* We got a read error during recovery.
2046          * We repeat the read in smaller page-sized sections.
2047          * If a read succeeds, write it to the new device or record
2048          * a bad block if we cannot.
2049          * If a read fails, record a bad block on both old and
2050          * new devices.
2051          */
2052         struct mddev *mddev = r10_bio->mddev;
2053         struct r10conf *conf = mddev->private;
2054         struct bio *bio = r10_bio->devs[0].bio;
2055         sector_t sect = 0;
2056         int sectors = r10_bio->sectors;
2057         int idx = 0;
2058         int dr = r10_bio->devs[0].devnum;
2059         int dw = r10_bio->devs[1].devnum;
2060
2061         while (sectors) {
2062                 int s = sectors;
2063                 struct md_rdev *rdev;
2064                 sector_t addr;
2065                 int ok;
2066
2067                 if (s > (PAGE_SIZE>>9))
2068                         s = PAGE_SIZE >> 9;
2069
2070                 rdev = conf->mirrors[dr].rdev;
2071                 addr = r10_bio->devs[0].addr + sect,
2072                 ok = sync_page_io(rdev,
2073                                   addr,
2074                                   s << 9,
2075                                   bio->bi_io_vec[idx].bv_page,
2076                                   READ, false);
2077                 if (ok) {
2078                         rdev = conf->mirrors[dw].rdev;
2079                         addr = r10_bio->devs[1].addr + sect;
2080                         ok = sync_page_io(rdev,
2081                                           addr,
2082                                           s << 9,
2083                                           bio->bi_io_vec[idx].bv_page,
2084                                           WRITE, false);
2085                         if (!ok) {
2086                                 set_bit(WriteErrorSeen, &rdev->flags);
2087                                 if (!test_and_set_bit(WantReplacement,
2088                                                       &rdev->flags))
2089                                         set_bit(MD_RECOVERY_NEEDED,
2090                                                 &rdev->mddev->recovery);
2091                         }
2092                 }
2093                 if (!ok) {
2094                         /* We don't worry if we cannot set a bad block -
2095                          * it really is bad so there is no loss in not
2096                          * recording it yet
2097                          */
2098                         rdev_set_badblocks(rdev, addr, s, 0);
2099
2100                         if (rdev != conf->mirrors[dw].rdev) {
2101                                 /* need bad block on destination too */
2102                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2103                                 addr = r10_bio->devs[1].addr + sect;
2104                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2105                                 if (!ok) {
2106                                         /* just abort the recovery */
2107                                         printk(KERN_NOTICE
2108                                                "md/raid10:%s: recovery aborted"
2109                                                " due to read error\n",
2110                                                mdname(mddev));
2111
2112                                         conf->mirrors[dw].recovery_disabled
2113                                                 = mddev->recovery_disabled;
2114                                         set_bit(MD_RECOVERY_INTR,
2115                                                 &mddev->recovery);
2116                                         break;
2117                                 }
2118                         }
2119                 }
2120
2121                 sectors -= s;
2122                 sect += s;
2123                 idx++;
2124         }
2125 }
2126
2127 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2128 {
2129         struct r10conf *conf = mddev->private;
2130         int d;
2131         struct bio *wbio, *wbio2;
2132
2133         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2134                 fix_recovery_read_error(r10_bio);
2135                 end_sync_request(r10_bio);
2136                 return;
2137         }
2138
2139         /*
2140          * share the pages with the first bio
2141          * and submit the write request
2142          */
2143         d = r10_bio->devs[1].devnum;
2144         wbio = r10_bio->devs[1].bio;
2145         wbio2 = r10_bio->devs[1].repl_bio;
2146         /* Need to test wbio2->bi_end_io before we call
2147          * generic_make_request as if the former is NULL,
2148          * the latter is free to free wbio2.
2149          */
2150         if (wbio2 && !wbio2->bi_end_io)
2151                 wbio2 = NULL;
2152         if (wbio->bi_end_io) {
2153                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2154                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2155                 generic_make_request(wbio);
2156         }
2157         if (wbio2) {
2158                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2159                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2160                              bio_sectors(wbio2));
2161                 generic_make_request(wbio2);
2162         }
2163 }
2164
2165 /*
2166  * Used by fix_read_error() to decay the per rdev read_errors.
2167  * We halve the read error count for every hour that has elapsed
2168  * since the last recorded read error.
2169  *
2170  */
2171 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2172 {
2173         struct timespec cur_time_mon;
2174         unsigned long hours_since_last;
2175         unsigned int read_errors = atomic_read(&rdev->read_errors);
2176
2177         ktime_get_ts(&cur_time_mon);
2178
2179         if (rdev->last_read_error.tv_sec == 0 &&
2180             rdev->last_read_error.tv_nsec == 0) {
2181                 /* first time we've seen a read error */
2182                 rdev->last_read_error = cur_time_mon;
2183                 return;
2184         }
2185
2186         hours_since_last = (cur_time_mon.tv_sec -
2187                             rdev->last_read_error.tv_sec) / 3600;
2188
2189         rdev->last_read_error = cur_time_mon;
2190
2191         /*
2192          * if hours_since_last is > the number of bits in read_errors
2193          * just set read errors to 0. We do this to avoid
2194          * overflowing the shift of read_errors by hours_since_last.
2195          */
2196         if (hours_since_last >= 8 * sizeof(read_errors))
2197                 atomic_set(&rdev->read_errors, 0);
2198         else
2199                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2200 }
2201
2202 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2203                             int sectors, struct page *page, int rw)
2204 {
2205         sector_t first_bad;
2206         int bad_sectors;
2207
2208         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2209             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2210                 return -1;
2211         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2212                 /* success */
2213                 return 1;
2214         if (rw == WRITE) {
2215                 set_bit(WriteErrorSeen, &rdev->flags);
2216                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2217                         set_bit(MD_RECOVERY_NEEDED,
2218                                 &rdev->mddev->recovery);
2219         }
2220         /* need to record an error - either for the block or the device */
2221         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2222                 md_error(rdev->mddev, rdev);
2223         return 0;
2224 }
2225
2226 /*
2227  * This is a kernel thread which:
2228  *
2229  *      1.      Retries failed read operations on working mirrors.
2230  *      2.      Updates the raid superblock when problems encounter.
2231  *      3.      Performs writes following reads for array synchronising.
2232  */
2233
2234 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2235 {
2236         int sect = 0; /* Offset from r10_bio->sector */
2237         int sectors = r10_bio->sectors;
2238         struct md_rdev*rdev;
2239         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2240         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2241
2242         /* still own a reference to this rdev, so it cannot
2243          * have been cleared recently.
2244          */
2245         rdev = conf->mirrors[d].rdev;
2246
2247         if (test_bit(Faulty, &rdev->flags))
2248                 /* drive has already been failed, just ignore any
2249                    more fix_read_error() attempts */
2250                 return;
2251
2252         check_decay_read_errors(mddev, rdev);
2253         atomic_inc(&rdev->read_errors);
2254         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2255                 char b[BDEVNAME_SIZE];
2256                 bdevname(rdev->bdev, b);
2257
2258                 printk(KERN_NOTICE
2259                        "md/raid10:%s: %s: Raid device exceeded "
2260                        "read_error threshold [cur %d:max %d]\n",
2261                        mdname(mddev), b,
2262                        atomic_read(&rdev->read_errors), max_read_errors);
2263                 printk(KERN_NOTICE
2264                        "md/raid10:%s: %s: Failing raid device\n",
2265                        mdname(mddev), b);
2266                 md_error(mddev, conf->mirrors[d].rdev);
2267                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2268                 return;
2269         }
2270
2271         while(sectors) {
2272                 int s = sectors;
2273                 int sl = r10_bio->read_slot;
2274                 int success = 0;
2275                 int start;
2276
2277                 if (s > (PAGE_SIZE>>9))
2278                         s = PAGE_SIZE >> 9;
2279
2280                 rcu_read_lock();
2281                 do {
2282                         sector_t first_bad;
2283                         int bad_sectors;
2284
2285                         d = r10_bio->devs[sl].devnum;
2286                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2287                         if (rdev &&
2288                             test_bit(In_sync, &rdev->flags) &&
2289                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2290                                         &first_bad, &bad_sectors) == 0) {
2291                                 atomic_inc(&rdev->nr_pending);
2292                                 rcu_read_unlock();
2293                                 success = sync_page_io(rdev,
2294                                                        r10_bio->devs[sl].addr +
2295                                                        sect,
2296                                                        s<<9,
2297                                                        conf->tmppage, READ, false);
2298                                 rdev_dec_pending(rdev, mddev);
2299                                 rcu_read_lock();
2300                                 if (success)
2301                                         break;
2302                         }
2303                         sl++;
2304                         if (sl == conf->copies)
2305                                 sl = 0;
2306                 } while (!success && sl != r10_bio->read_slot);
2307                 rcu_read_unlock();
2308
2309                 if (!success) {
2310                         /* Cannot read from anywhere, just mark the block
2311                          * as bad on the first device to discourage future
2312                          * reads.
2313                          */
2314                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2315                         rdev = conf->mirrors[dn].rdev;
2316
2317                         if (!rdev_set_badblocks(
2318                                     rdev,
2319                                     r10_bio->devs[r10_bio->read_slot].addr
2320                                     + sect,
2321                                     s, 0)) {
2322                                 md_error(mddev, rdev);
2323                                 r10_bio->devs[r10_bio->read_slot].bio
2324                                         = IO_BLOCKED;
2325                         }
2326                         break;
2327                 }
2328
2329                 start = sl;
2330                 /* write it back and re-read */
2331                 rcu_read_lock();
2332                 while (sl != r10_bio->read_slot) {
2333                         char b[BDEVNAME_SIZE];
2334
2335                         if (sl==0)
2336                                 sl = conf->copies;
2337                         sl--;
2338                         d = r10_bio->devs[sl].devnum;
2339                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2340                         if (!rdev ||
2341                             !test_bit(In_sync, &rdev->flags))
2342                                 continue;
2343
2344                         atomic_inc(&rdev->nr_pending);
2345                         rcu_read_unlock();
2346                         if (r10_sync_page_io(rdev,
2347                                              r10_bio->devs[sl].addr +
2348                                              sect,
2349                                              s, conf->tmppage, WRITE)
2350                             == 0) {
2351                                 /* Well, this device is dead */
2352                                 printk(KERN_NOTICE
2353                                        "md/raid10:%s: read correction "
2354                                        "write failed"
2355                                        " (%d sectors at %llu on %s)\n",
2356                                        mdname(mddev), s,
2357                                        (unsigned long long)(
2358                                                sect +
2359                                                choose_data_offset(r10_bio,
2360                                                                   rdev)),
2361                                        bdevname(rdev->bdev, b));
2362                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2363                                        "drive\n",
2364                                        mdname(mddev),
2365                                        bdevname(rdev->bdev, b));
2366                         }
2367                         rdev_dec_pending(rdev, mddev);
2368                         rcu_read_lock();
2369                 }
2370                 sl = start;
2371                 while (sl != r10_bio->read_slot) {
2372                         char b[BDEVNAME_SIZE];
2373
2374                         if (sl==0)
2375                                 sl = conf->copies;
2376                         sl--;
2377                         d = r10_bio->devs[sl].devnum;
2378                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2379                         if (!rdev ||
2380                             !test_bit(In_sync, &rdev->flags))
2381                                 continue;
2382
2383                         atomic_inc(&rdev->nr_pending);
2384                         rcu_read_unlock();
2385                         switch (r10_sync_page_io(rdev,
2386                                              r10_bio->devs[sl].addr +
2387                                              sect,
2388                                              s, conf->tmppage,
2389                                                  READ)) {
2390                         case 0:
2391                                 /* Well, this device is dead */
2392                                 printk(KERN_NOTICE
2393                                        "md/raid10:%s: unable to read back "
2394                                        "corrected sectors"
2395                                        " (%d sectors at %llu on %s)\n",
2396                                        mdname(mddev), s,
2397                                        (unsigned long long)(
2398                                                sect +
2399                                                choose_data_offset(r10_bio, rdev)),
2400                                        bdevname(rdev->bdev, b));
2401                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2402                                        "drive\n",
2403                                        mdname(mddev),
2404                                        bdevname(rdev->bdev, b));
2405                                 break;
2406                         case 1:
2407                                 printk(KERN_INFO
2408                                        "md/raid10:%s: read error corrected"
2409                                        " (%d sectors at %llu on %s)\n",
2410                                        mdname(mddev), s,
2411                                        (unsigned long long)(
2412                                                sect +
2413                                                choose_data_offset(r10_bio, rdev)),
2414                                        bdevname(rdev->bdev, b));
2415                                 atomic_add(s, &rdev->corrected_errors);
2416                         }
2417
2418                         rdev_dec_pending(rdev, mddev);
2419                         rcu_read_lock();
2420                 }
2421                 rcu_read_unlock();
2422
2423                 sectors -= s;
2424                 sect += s;
2425         }
2426 }
2427
2428 static int narrow_write_error(struct r10bio *r10_bio, int i)
2429 {
2430         struct bio *bio = r10_bio->master_bio;
2431         struct mddev *mddev = r10_bio->mddev;
2432         struct r10conf *conf = mddev->private;
2433         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2434         /* bio has the data to be written to slot 'i' where
2435          * we just recently had a write error.
2436          * We repeatedly clone the bio and trim down to one block,
2437          * then try the write.  Where the write fails we record
2438          * a bad block.
2439          * It is conceivable that the bio doesn't exactly align with
2440          * blocks.  We must handle this.
2441          *
2442          * We currently own a reference to the rdev.
2443          */
2444
2445         int block_sectors;
2446         sector_t sector;
2447         int sectors;
2448         int sect_to_write = r10_bio->sectors;
2449         int ok = 1;
2450
2451         if (rdev->badblocks.shift < 0)
2452                 return 0;
2453
2454         block_sectors = roundup(1 << rdev->badblocks.shift,
2455                                 bdev_logical_block_size(rdev->bdev) >> 9);
2456         sector = r10_bio->sector;
2457         sectors = ((r10_bio->sector + block_sectors)
2458                    & ~(sector_t)(block_sectors - 1))
2459                 - sector;
2460
2461         while (sect_to_write) {
2462                 struct bio *wbio;
2463                 if (sectors > sect_to_write)
2464                         sectors = sect_to_write;
2465                 /* Write at 'sector' for 'sectors' */
2466                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2467                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2468                 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2469                                    choose_data_offset(r10_bio, rdev) +
2470                                    (sector - r10_bio->sector));
2471                 wbio->bi_bdev = rdev->bdev;
2472                 if (submit_bio_wait(WRITE, wbio) == 0)
2473                         /* Failure! */
2474                         ok = rdev_set_badblocks(rdev, sector,
2475                                                 sectors, 0)
2476                                 && ok;
2477
2478                 bio_put(wbio);
2479                 sect_to_write -= sectors;
2480                 sector += sectors;
2481                 sectors = block_sectors;
2482         }
2483         return ok;
2484 }
2485
2486 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2487 {
2488         int slot = r10_bio->read_slot;
2489         struct bio *bio;
2490         struct r10conf *conf = mddev->private;
2491         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2492         char b[BDEVNAME_SIZE];
2493         unsigned long do_sync;
2494         int max_sectors;
2495
2496         /* we got a read error. Maybe the drive is bad.  Maybe just
2497          * the block and we can fix it.
2498          * We freeze all other IO, and try reading the block from
2499          * other devices.  When we find one, we re-write
2500          * and check it that fixes the read error.
2501          * This is all done synchronously while the array is
2502          * frozen.
2503          */
2504         bio = r10_bio->devs[slot].bio;
2505         bdevname(bio->bi_bdev, b);
2506         bio_put(bio);
2507         r10_bio->devs[slot].bio = NULL;
2508
2509         if (mddev->ro == 0) {
2510                 freeze_array(conf, 1);
2511                 fix_read_error(conf, mddev, r10_bio);
2512                 unfreeze_array(conf);
2513         } else
2514                 r10_bio->devs[slot].bio = IO_BLOCKED;
2515
2516         rdev_dec_pending(rdev, mddev);
2517
2518 read_more:
2519         rdev = read_balance(conf, r10_bio, &max_sectors);
2520         if (rdev == NULL) {
2521                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2522                        " read error for block %llu\n",
2523                        mdname(mddev), b,
2524                        (unsigned long long)r10_bio->sector);
2525                 raid_end_bio_io(r10_bio);
2526                 return;
2527         }
2528
2529         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2530         slot = r10_bio->read_slot;
2531         printk_ratelimited(
2532                 KERN_ERR
2533                 "md/raid10:%s: %s: redirecting "
2534                 "sector %llu to another mirror\n",
2535                 mdname(mddev),
2536                 bdevname(rdev->bdev, b),
2537                 (unsigned long long)r10_bio->sector);
2538         bio = bio_clone_mddev(r10_bio->master_bio,
2539                               GFP_NOIO, mddev);
2540         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2541         r10_bio->devs[slot].bio = bio;
2542         r10_bio->devs[slot].rdev = rdev;
2543         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2544                 + choose_data_offset(r10_bio, rdev);
2545         bio->bi_bdev = rdev->bdev;
2546         bio->bi_rw = READ | do_sync;
2547         bio->bi_private = r10_bio;
2548         bio->bi_end_io = raid10_end_read_request;
2549         if (max_sectors < r10_bio->sectors) {
2550                 /* Drat - have to split this up more */
2551                 struct bio *mbio = r10_bio->master_bio;
2552                 int sectors_handled =
2553                         r10_bio->sector + max_sectors
2554                         - mbio->bi_iter.bi_sector;
2555                 r10_bio->sectors = max_sectors;
2556                 spin_lock_irq(&conf->device_lock);
2557                 if (mbio->bi_phys_segments == 0)
2558                         mbio->bi_phys_segments = 2;
2559                 else
2560                         mbio->bi_phys_segments++;
2561                 spin_unlock_irq(&conf->device_lock);
2562                 generic_make_request(bio);
2563
2564                 r10_bio = mempool_alloc(conf->r10bio_pool,
2565                                         GFP_NOIO);
2566                 r10_bio->master_bio = mbio;
2567                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2568                 r10_bio->state = 0;
2569                 set_bit(R10BIO_ReadError,
2570                         &r10_bio->state);
2571                 r10_bio->mddev = mddev;
2572                 r10_bio->sector = mbio->bi_iter.bi_sector
2573                         + sectors_handled;
2574
2575                 goto read_more;
2576         } else
2577                 generic_make_request(bio);
2578 }
2579
2580 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2581 {
2582         /* Some sort of write request has finished and it
2583          * succeeded in writing where we thought there was a
2584          * bad block.  So forget the bad block.
2585          * Or possibly if failed and we need to record
2586          * a bad block.
2587          */
2588         int m;
2589         struct md_rdev *rdev;
2590
2591         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2592             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2593                 for (m = 0; m < conf->copies; m++) {
2594                         int dev = r10_bio->devs[m].devnum;
2595                         rdev = conf->mirrors[dev].rdev;
2596                         if (r10_bio->devs[m].bio == NULL)
2597                                 continue;
2598                         if (!r10_bio->devs[m].bio->bi_error) {
2599                                 rdev_clear_badblocks(
2600                                         rdev,
2601                                         r10_bio->devs[m].addr,
2602                                         r10_bio->sectors, 0);
2603                         } else {
2604                                 if (!rdev_set_badblocks(
2605                                             rdev,
2606                                             r10_bio->devs[m].addr,
2607                                             r10_bio->sectors, 0))
2608                                         md_error(conf->mddev, rdev);
2609                         }
2610                         rdev = conf->mirrors[dev].replacement;
2611                         if (r10_bio->devs[m].repl_bio == NULL)
2612                                 continue;
2613
2614                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2615                                 rdev_clear_badblocks(
2616                                         rdev,
2617                                         r10_bio->devs[m].addr,
2618                                         r10_bio->sectors, 0);
2619                         } else {
2620                                 if (!rdev_set_badblocks(
2621                                             rdev,
2622                                             r10_bio->devs[m].addr,
2623                                             r10_bio->sectors, 0))
2624                                         md_error(conf->mddev, rdev);
2625                         }
2626                 }
2627                 put_buf(r10_bio);
2628         } else {
2629                 bool fail = false;
2630                 for (m = 0; m < conf->copies; m++) {
2631                         int dev = r10_bio->devs[m].devnum;
2632                         struct bio *bio = r10_bio->devs[m].bio;
2633                         rdev = conf->mirrors[dev].rdev;
2634                         if (bio == IO_MADE_GOOD) {
2635                                 rdev_clear_badblocks(
2636                                         rdev,
2637                                         r10_bio->devs[m].addr,
2638                                         r10_bio->sectors, 0);
2639                                 rdev_dec_pending(rdev, conf->mddev);
2640                         } else if (bio != NULL && bio->bi_error) {
2641                                 fail = true;
2642                                 if (!narrow_write_error(r10_bio, m)) {
2643                                         md_error(conf->mddev, rdev);
2644                                         set_bit(R10BIO_Degraded,
2645                                                 &r10_bio->state);
2646                                 }
2647                                 rdev_dec_pending(rdev, conf->mddev);
2648                         }
2649                         bio = r10_bio->devs[m].repl_bio;
2650                         rdev = conf->mirrors[dev].replacement;
2651                         if (rdev && bio == IO_MADE_GOOD) {
2652                                 rdev_clear_badblocks(
2653                                         rdev,
2654                                         r10_bio->devs[m].addr,
2655                                         r10_bio->sectors, 0);
2656                                 rdev_dec_pending(rdev, conf->mddev);
2657                         }
2658                 }
2659                 if (test_bit(R10BIO_WriteError,
2660                              &r10_bio->state))
2661                         close_write(r10_bio);
2662                 if (fail) {
2663                         spin_lock_irq(&conf->device_lock);
2664                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2665                         spin_unlock_irq(&conf->device_lock);
2666                         md_wakeup_thread(conf->mddev->thread);
2667                 } else
2668                         raid_end_bio_io(r10_bio);
2669         }
2670 }
2671
2672 static void raid10d(struct md_thread *thread)
2673 {
2674         struct mddev *mddev = thread->mddev;
2675         struct r10bio *r10_bio;
2676         unsigned long flags;
2677         struct r10conf *conf = mddev->private;
2678         struct list_head *head = &conf->retry_list;
2679         struct blk_plug plug;
2680
2681         md_check_recovery(mddev);
2682
2683         if (!list_empty_careful(&conf->bio_end_io_list) &&
2684             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2685                 LIST_HEAD(tmp);
2686                 spin_lock_irqsave(&conf->device_lock, flags);
2687                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2688                         list_add(&tmp, &conf->bio_end_io_list);
2689                         list_del_init(&conf->bio_end_io_list);
2690                 }
2691                 spin_unlock_irqrestore(&conf->device_lock, flags);
2692                 while (!list_empty(&tmp)) {
2693                         r10_bio = list_first_entry(&conf->bio_end_io_list,
2694                                                   struct r10bio, retry_list);
2695                         list_del(&r10_bio->retry_list);
2696                         raid_end_bio_io(r10_bio);
2697                 }
2698         }
2699
2700         blk_start_plug(&plug);
2701         for (;;) {
2702
2703                 flush_pending_writes(conf);
2704
2705                 spin_lock_irqsave(&conf->device_lock, flags);
2706                 if (list_empty(head)) {
2707                         spin_unlock_irqrestore(&conf->device_lock, flags);
2708                         break;
2709                 }
2710                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2711                 list_del(head->prev);
2712                 conf->nr_queued--;
2713                 spin_unlock_irqrestore(&conf->device_lock, flags);
2714
2715                 mddev = r10_bio->mddev;
2716                 conf = mddev->private;
2717                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2718                     test_bit(R10BIO_WriteError, &r10_bio->state))
2719                         handle_write_completed(conf, r10_bio);
2720                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2721                         reshape_request_write(mddev, r10_bio);
2722                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2723                         sync_request_write(mddev, r10_bio);
2724                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2725                         recovery_request_write(mddev, r10_bio);
2726                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2727                         handle_read_error(mddev, r10_bio);
2728                 else {
2729                         /* just a partial read to be scheduled from a
2730                          * separate context
2731                          */
2732                         int slot = r10_bio->read_slot;
2733                         generic_make_request(r10_bio->devs[slot].bio);
2734                 }
2735
2736                 cond_resched();
2737                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2738                         md_check_recovery(mddev);
2739         }
2740         blk_finish_plug(&plug);
2741 }
2742
2743 static int init_resync(struct r10conf *conf)
2744 {
2745         int buffs;
2746         int i;
2747
2748         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2749         BUG_ON(conf->r10buf_pool);
2750         conf->have_replacement = 0;
2751         for (i = 0; i < conf->geo.raid_disks; i++)
2752                 if (conf->mirrors[i].replacement)
2753                         conf->have_replacement = 1;
2754         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2755         if (!conf->r10buf_pool)
2756                 return -ENOMEM;
2757         conf->next_resync = 0;
2758         return 0;
2759 }
2760
2761 /*
2762  * perform a "sync" on one "block"
2763  *
2764  * We need to make sure that no normal I/O request - particularly write
2765  * requests - conflict with active sync requests.
2766  *
2767  * This is achieved by tracking pending requests and a 'barrier' concept
2768  * that can be installed to exclude normal IO requests.
2769  *
2770  * Resync and recovery are handled very differently.
2771  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2772  *
2773  * For resync, we iterate over virtual addresses, read all copies,
2774  * and update if there are differences.  If only one copy is live,
2775  * skip it.
2776  * For recovery, we iterate over physical addresses, read a good
2777  * value for each non-in_sync drive, and over-write.
2778  *
2779  * So, for recovery we may have several outstanding complex requests for a
2780  * given address, one for each out-of-sync device.  We model this by allocating
2781  * a number of r10_bio structures, one for each out-of-sync device.
2782  * As we setup these structures, we collect all bio's together into a list
2783  * which we then process collectively to add pages, and then process again
2784  * to pass to generic_make_request.
2785  *
2786  * The r10_bio structures are linked using a borrowed master_bio pointer.
2787  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2788  * has its remaining count decremented to 0, the whole complex operation
2789  * is complete.
2790  *
2791  */
2792
2793 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2794                              int *skipped)
2795 {
2796         struct r10conf *conf = mddev->private;
2797         struct r10bio *r10_bio;
2798         struct bio *biolist = NULL, *bio;
2799         sector_t max_sector, nr_sectors;
2800         int i;
2801         int max_sync;
2802         sector_t sync_blocks;
2803         sector_t sectors_skipped = 0;
2804         int chunks_skipped = 0;
2805         sector_t chunk_mask = conf->geo.chunk_mask;
2806
2807         if (!conf->r10buf_pool)
2808                 if (init_resync(conf))
2809                         return 0;
2810
2811         /*
2812          * Allow skipping a full rebuild for incremental assembly
2813          * of a clean array, like RAID1 does.
2814          */
2815         if (mddev->bitmap == NULL &&
2816             mddev->recovery_cp == MaxSector &&
2817             mddev->reshape_position == MaxSector &&
2818             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2819             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2820             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2821             conf->fullsync == 0) {
2822                 *skipped = 1;
2823                 return mddev->dev_sectors - sector_nr;
2824         }
2825
2826  skipped:
2827         max_sector = mddev->dev_sectors;
2828         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2829             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2830                 max_sector = mddev->resync_max_sectors;
2831         if (sector_nr >= max_sector) {
2832                 /* If we aborted, we need to abort the
2833                  * sync on the 'current' bitmap chucks (there can
2834                  * be several when recovering multiple devices).
2835                  * as we may have started syncing it but not finished.
2836                  * We can find the current address in
2837                  * mddev->curr_resync, but for recovery,
2838                  * we need to convert that to several
2839                  * virtual addresses.
2840                  */
2841                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2842                         end_reshape(conf);
2843                         close_sync(conf);
2844                         return 0;
2845                 }
2846
2847                 if (mddev->curr_resync < max_sector) { /* aborted */
2848                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2849                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2850                                                 &sync_blocks, 1);
2851                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2852                                 sector_t sect =
2853                                         raid10_find_virt(conf, mddev->curr_resync, i);
2854                                 bitmap_end_sync(mddev->bitmap, sect,
2855                                                 &sync_blocks, 1);
2856                         }
2857                 } else {
2858                         /* completed sync */
2859                         if ((!mddev->bitmap || conf->fullsync)
2860                             && conf->have_replacement
2861                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2862                                 /* Completed a full sync so the replacements
2863                                  * are now fully recovered.
2864                                  */
2865                                 for (i = 0; i < conf->geo.raid_disks; i++)
2866                                         if (conf->mirrors[i].replacement)
2867                                                 conf->mirrors[i].replacement
2868                                                         ->recovery_offset
2869                                                         = MaxSector;
2870                         }
2871                         conf->fullsync = 0;
2872                 }
2873                 bitmap_close_sync(mddev->bitmap);
2874                 close_sync(conf);
2875                 *skipped = 1;
2876                 return sectors_skipped;
2877         }
2878
2879         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2880                 return reshape_request(mddev, sector_nr, skipped);
2881
2882         if (chunks_skipped >= conf->geo.raid_disks) {
2883                 /* if there has been nothing to do on any drive,
2884                  * then there is nothing to do at all..
2885                  */
2886                 *skipped = 1;
2887                 return (max_sector - sector_nr) + sectors_skipped;
2888         }
2889
2890         if (max_sector > mddev->resync_max)
2891                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2892
2893         /* make sure whole request will fit in a chunk - if chunks
2894          * are meaningful
2895          */
2896         if (conf->geo.near_copies < conf->geo.raid_disks &&
2897             max_sector > (sector_nr | chunk_mask))
2898                 max_sector = (sector_nr | chunk_mask) + 1;
2899
2900         /* Again, very different code for resync and recovery.
2901          * Both must result in an r10bio with a list of bios that
2902          * have bi_end_io, bi_sector, bi_bdev set,
2903          * and bi_private set to the r10bio.
2904          * For recovery, we may actually create several r10bios
2905          * with 2 bios in each, that correspond to the bios in the main one.
2906          * In this case, the subordinate r10bios link back through a
2907          * borrowed master_bio pointer, and the counter in the master
2908          * includes a ref from each subordinate.
2909          */
2910         /* First, we decide what to do and set ->bi_end_io
2911          * To end_sync_read if we want to read, and
2912          * end_sync_write if we will want to write.
2913          */
2914
2915         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2916         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2917                 /* recovery... the complicated one */
2918                 int j;
2919                 r10_bio = NULL;
2920
2921                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2922                         int still_degraded;
2923                         struct r10bio *rb2;
2924                         sector_t sect;
2925                         int must_sync;
2926                         int any_working;
2927                         struct raid10_info *mirror = &conf->mirrors[i];
2928
2929                         if ((mirror->rdev == NULL ||
2930                              test_bit(In_sync, &mirror->rdev->flags))
2931                             &&
2932                             (mirror->replacement == NULL ||
2933                              test_bit(Faulty,
2934                                       &mirror->replacement->flags)))
2935                                 continue;
2936
2937                         still_degraded = 0;
2938                         /* want to reconstruct this device */
2939                         rb2 = r10_bio;
2940                         sect = raid10_find_virt(conf, sector_nr, i);
2941                         if (sect >= mddev->resync_max_sectors) {
2942                                 /* last stripe is not complete - don't
2943                                  * try to recover this sector.
2944                                  */
2945                                 continue;
2946                         }
2947                         /* Unless we are doing a full sync, or a replacement
2948                          * we only need to recover the block if it is set in
2949                          * the bitmap
2950                          */
2951                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2952                                                       &sync_blocks, 1);
2953                         if (sync_blocks < max_sync)
2954                                 max_sync = sync_blocks;
2955                         if (!must_sync &&
2956                             mirror->replacement == NULL &&
2957                             !conf->fullsync) {
2958                                 /* yep, skip the sync_blocks here, but don't assume
2959                                  * that there will never be anything to do here
2960                                  */
2961                                 chunks_skipped = -1;
2962                                 continue;
2963                         }
2964
2965                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2966                         r10_bio->state = 0;
2967                         raise_barrier(conf, rb2 != NULL);
2968                         atomic_set(&r10_bio->remaining, 0);
2969
2970                         r10_bio->master_bio = (struct bio*)rb2;
2971                         if (rb2)
2972                                 atomic_inc(&rb2->remaining);
2973                         r10_bio->mddev = mddev;
2974                         set_bit(R10BIO_IsRecover, &r10_bio->state);
2975                         r10_bio->sector = sect;
2976
2977                         raid10_find_phys(conf, r10_bio);
2978
2979                         /* Need to check if the array will still be
2980                          * degraded
2981                          */
2982                         for (j = 0; j < conf->geo.raid_disks; j++)
2983                                 if (conf->mirrors[j].rdev == NULL ||
2984                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2985                                         still_degraded = 1;
2986                                         break;
2987                                 }
2988
2989                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2990                                                       &sync_blocks, still_degraded);
2991
2992                         any_working = 0;
2993                         for (j=0; j<conf->copies;j++) {
2994                                 int k;
2995                                 int d = r10_bio->devs[j].devnum;
2996                                 sector_t from_addr, to_addr;
2997                                 struct md_rdev *rdev;
2998                                 sector_t sector, first_bad;
2999                                 int bad_sectors;
3000                                 if (!conf->mirrors[d].rdev ||
3001                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3002                                         continue;
3003                                 /* This is where we read from */
3004                                 any_working = 1;
3005                                 rdev = conf->mirrors[d].rdev;
3006                                 sector = r10_bio->devs[j].addr;
3007
3008                                 if (is_badblock(rdev, sector, max_sync,
3009                                                 &first_bad, &bad_sectors)) {
3010                                         if (first_bad > sector)
3011                                                 max_sync = first_bad - sector;
3012                                         else {
3013                                                 bad_sectors -= (sector
3014                                                                 - first_bad);
3015                                                 if (max_sync > bad_sectors)
3016                                                         max_sync = bad_sectors;
3017                                                 continue;
3018                                         }
3019                                 }
3020                                 bio = r10_bio->devs[0].bio;
3021                                 bio_reset(bio);
3022                                 bio->bi_next = biolist;
3023                                 biolist = bio;
3024                                 bio->bi_private = r10_bio;
3025                                 bio->bi_end_io = end_sync_read;
3026                                 bio->bi_rw = READ;
3027                                 from_addr = r10_bio->devs[j].addr;
3028                                 bio->bi_iter.bi_sector = from_addr +
3029                                         rdev->data_offset;
3030                                 bio->bi_bdev = rdev->bdev;
3031                                 atomic_inc(&rdev->nr_pending);
3032                                 /* and we write to 'i' (if not in_sync) */
3033
3034                                 for (k=0; k<conf->copies; k++)
3035                                         if (r10_bio->devs[k].devnum == i)
3036                                                 break;
3037                                 BUG_ON(k == conf->copies);
3038                                 to_addr = r10_bio->devs[k].addr;
3039                                 r10_bio->devs[0].devnum = d;
3040                                 r10_bio->devs[0].addr = from_addr;
3041                                 r10_bio->devs[1].devnum = i;
3042                                 r10_bio->devs[1].addr = to_addr;
3043
3044                                 rdev = mirror->rdev;
3045                                 if (!test_bit(In_sync, &rdev->flags)) {
3046                                         bio = r10_bio->devs[1].bio;
3047                                         bio_reset(bio);
3048                                         bio->bi_next = biolist;
3049                                         biolist = bio;
3050                                         bio->bi_private = r10_bio;
3051                                         bio->bi_end_io = end_sync_write;
3052                                         bio->bi_rw = WRITE;
3053                                         bio->bi_iter.bi_sector = to_addr
3054                                                 + rdev->data_offset;
3055                                         bio->bi_bdev = rdev->bdev;
3056                                         atomic_inc(&r10_bio->remaining);
3057                                 } else
3058                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3059
3060                                 /* and maybe write to replacement */
3061                                 bio = r10_bio->devs[1].repl_bio;
3062                                 if (bio)
3063                                         bio->bi_end_io = NULL;
3064                                 rdev = mirror->replacement;
3065                                 /* Note: if rdev != NULL, then bio
3066                                  * cannot be NULL as r10buf_pool_alloc will
3067                                  * have allocated it.
3068                                  * So the second test here is pointless.
3069                                  * But it keeps semantic-checkers happy, and
3070                                  * this comment keeps human reviewers
3071                                  * happy.
3072                                  */
3073                                 if (rdev == NULL || bio == NULL ||
3074                                     test_bit(Faulty, &rdev->flags))
3075                                         break;
3076                                 bio_reset(bio);
3077                                 bio->bi_next = biolist;
3078                                 biolist = bio;
3079                                 bio->bi_private = r10_bio;
3080                                 bio->bi_end_io = end_sync_write;
3081                                 bio->bi_rw = WRITE;
3082                                 bio->bi_iter.bi_sector = to_addr +
3083                                         rdev->data_offset;
3084                                 bio->bi_bdev = rdev->bdev;
3085                                 atomic_inc(&r10_bio->remaining);
3086                                 break;
3087                         }
3088                         if (j == conf->copies) {
3089                                 /* Cannot recover, so abort the recovery or
3090                                  * record a bad block */
3091                                 if (any_working) {
3092                                         /* problem is that there are bad blocks
3093                                          * on other device(s)
3094                                          */
3095                                         int k;
3096                                         for (k = 0; k < conf->copies; k++)
3097                                                 if (r10_bio->devs[k].devnum == i)
3098                                                         break;
3099                                         if (!test_bit(In_sync,
3100                                                       &mirror->rdev->flags)
3101                                             && !rdev_set_badblocks(
3102                                                     mirror->rdev,
3103                                                     r10_bio->devs[k].addr,
3104                                                     max_sync, 0))
3105                                                 any_working = 0;
3106                                         if (mirror->replacement &&
3107                                             !rdev_set_badblocks(
3108                                                     mirror->replacement,
3109                                                     r10_bio->devs[k].addr,
3110                                                     max_sync, 0))
3111                                                 any_working = 0;
3112                                 }
3113                                 if (!any_working)  {
3114                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3115                                                               &mddev->recovery))
3116                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3117                                                        "working devices for recovery.\n",
3118                                                        mdname(mddev));
3119                                         mirror->recovery_disabled
3120                                                 = mddev->recovery_disabled;
3121                                 }
3122                                 put_buf(r10_bio);
3123                                 if (rb2)
3124                                         atomic_dec(&rb2->remaining);
3125                                 r10_bio = rb2;
3126                                 break;
3127                         }
3128                 }
3129                 if (biolist == NULL) {
3130                         while (r10_bio) {
3131                                 struct r10bio *rb2 = r10_bio;
3132                                 r10_bio = (struct r10bio*) rb2->master_bio;
3133                                 rb2->master_bio = NULL;
3134                                 put_buf(rb2);
3135                         }
3136                         goto giveup;
3137                 }
3138         } else {
3139                 /* resync. Schedule a read for every block at this virt offset */
3140                 int count = 0;
3141
3142                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3143
3144                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3145                                        &sync_blocks, mddev->degraded) &&
3146                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3147                                                  &mddev->recovery)) {
3148                         /* We can skip this block */
3149                         *skipped = 1;
3150                         return sync_blocks + sectors_skipped;
3151                 }
3152                 if (sync_blocks < max_sync)
3153                         max_sync = sync_blocks;
3154                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3155                 r10_bio->state = 0;
3156
3157                 r10_bio->mddev = mddev;
3158                 atomic_set(&r10_bio->remaining, 0);
3159                 raise_barrier(conf, 0);
3160                 conf->next_resync = sector_nr;
3161
3162                 r10_bio->master_bio = NULL;
3163                 r10_bio->sector = sector_nr;
3164                 set_bit(R10BIO_IsSync, &r10_bio->state);
3165                 raid10_find_phys(conf, r10_bio);
3166                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3167
3168                 for (i = 0; i < conf->copies; i++) {
3169                         int d = r10_bio->devs[i].devnum;
3170                         sector_t first_bad, sector;
3171                         int bad_sectors;
3172
3173                         if (r10_bio->devs[i].repl_bio)
3174                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3175
3176                         bio = r10_bio->devs[i].bio;
3177                         bio_reset(bio);
3178                         bio->bi_error = -EIO;
3179                         if (conf->mirrors[d].rdev == NULL ||
3180                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3181                                 continue;
3182                         sector = r10_bio->devs[i].addr;
3183                         if (is_badblock(conf->mirrors[d].rdev,
3184                                         sector, max_sync,
3185                                         &first_bad, &bad_sectors)) {
3186                                 if (first_bad > sector)
3187                                         max_sync = first_bad - sector;
3188                                 else {
3189                                         bad_sectors -= (sector - first_bad);
3190                                         if (max_sync > bad_sectors)
3191                                                 max_sync = bad_sectors;
3192                                         continue;
3193                                 }
3194                         }
3195                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3196                         atomic_inc(&r10_bio->remaining);
3197                         bio->bi_next = biolist;
3198                         biolist = bio;
3199                         bio->bi_private = r10_bio;
3200                         bio->bi_end_io = end_sync_read;
3201                         bio->bi_rw = READ;
3202                         bio->bi_iter.bi_sector = sector +
3203                                 conf->mirrors[d].rdev->data_offset;
3204                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3205                         count++;
3206
3207                         if (conf->mirrors[d].replacement == NULL ||
3208                             test_bit(Faulty,
3209                                      &conf->mirrors[d].replacement->flags))
3210                                 continue;
3211
3212                         /* Need to set up for writing to the replacement */
3213                         bio = r10_bio->devs[i].repl_bio;
3214                         bio_reset(bio);
3215                         bio->bi_error = -EIO;
3216
3217                         sector = r10_bio->devs[i].addr;
3218                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3219                         bio->bi_next = biolist;
3220                         biolist = bio;
3221                         bio->bi_private = r10_bio;
3222                         bio->bi_end_io = end_sync_write;
3223                         bio->bi_rw = WRITE;
3224                         bio->bi_iter.bi_sector = sector +
3225                                 conf->mirrors[d].replacement->data_offset;
3226                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3227                         count++;
3228                 }
3229
3230                 if (count < 2) {
3231                         for (i=0; i<conf->copies; i++) {
3232                                 int d = r10_bio->devs[i].devnum;
3233                                 if (r10_bio->devs[i].bio->bi_end_io)
3234                                         rdev_dec_pending(conf->mirrors[d].rdev,
3235                                                          mddev);
3236                                 if (r10_bio->devs[i].repl_bio &&
3237                                     r10_bio->devs[i].repl_bio->bi_end_io)
3238                                         rdev_dec_pending(
3239                                                 conf->mirrors[d].replacement,
3240                                                 mddev);
3241                         }
3242                         put_buf(r10_bio);
3243                         biolist = NULL;
3244                         goto giveup;
3245                 }
3246         }
3247
3248         nr_sectors = 0;
3249         if (sector_nr + max_sync < max_sector)
3250                 max_sector = sector_nr + max_sync;
3251         do {
3252                 struct page *page;
3253                 int len = PAGE_SIZE;
3254                 if (sector_nr + (len>>9) > max_sector)
3255                         len = (max_sector - sector_nr) << 9;
3256                 if (len == 0)
3257                         break;
3258                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3259                         struct bio *bio2;
3260                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3261                         if (bio_add_page(bio, page, len, 0))
3262                                 continue;
3263
3264                         /* stop here */
3265                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3266                         for (bio2 = biolist;
3267                              bio2 && bio2 != bio;
3268                              bio2 = bio2->bi_next) {
3269                                 /* remove last page from this bio */
3270                                 bio2->bi_vcnt--;
3271                                 bio2->bi_iter.bi_size -= len;
3272                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3273                         }
3274                         goto bio_full;
3275                 }
3276                 nr_sectors += len>>9;
3277                 sector_nr += len>>9;
3278         } while (biolist->bi_vcnt < RESYNC_PAGES);
3279  bio_full:
3280         r10_bio->sectors = nr_sectors;
3281
3282         while (biolist) {
3283                 bio = biolist;
3284                 biolist = biolist->bi_next;
3285
3286                 bio->bi_next = NULL;
3287                 r10_bio = bio->bi_private;
3288                 r10_bio->sectors = nr_sectors;
3289
3290                 if (bio->bi_end_io == end_sync_read) {
3291                         md_sync_acct(bio->bi_bdev, nr_sectors);
3292                         bio->bi_error = 0;
3293                         generic_make_request(bio);
3294                 }
3295         }
3296
3297         if (sectors_skipped)
3298                 /* pretend they weren't skipped, it makes
3299                  * no important difference in this case
3300                  */
3301                 md_done_sync(mddev, sectors_skipped, 1);
3302
3303         return sectors_skipped + nr_sectors;
3304  giveup:
3305         /* There is nowhere to write, so all non-sync
3306          * drives must be failed or in resync, all drives
3307          * have a bad block, so try the next chunk...
3308          */
3309         if (sector_nr + max_sync < max_sector)
3310                 max_sector = sector_nr + max_sync;
3311
3312         sectors_skipped += (max_sector - sector_nr);
3313         chunks_skipped ++;
3314         sector_nr = max_sector;
3315         goto skipped;
3316 }
3317
3318 static sector_t
3319 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3320 {
3321         sector_t size;
3322         struct r10conf *conf = mddev->private;
3323
3324         if (!raid_disks)
3325                 raid_disks = min(conf->geo.raid_disks,
3326                                  conf->prev.raid_disks);
3327         if (!sectors)
3328                 sectors = conf->dev_sectors;
3329
3330         size = sectors >> conf->geo.chunk_shift;
3331         sector_div(size, conf->geo.far_copies);
3332         size = size * raid_disks;
3333         sector_div(size, conf->geo.near_copies);
3334
3335         return size << conf->geo.chunk_shift;
3336 }
3337
3338 static void calc_sectors(struct r10conf *conf, sector_t size)
3339 {
3340         /* Calculate the number of sectors-per-device that will
3341          * actually be used, and set conf->dev_sectors and
3342          * conf->stride
3343          */
3344
3345         size = size >> conf->geo.chunk_shift;
3346         sector_div(size, conf->geo.far_copies);
3347         size = size * conf->geo.raid_disks;
3348         sector_div(size, conf->geo.near_copies);
3349         /* 'size' is now the number of chunks in the array */
3350         /* calculate "used chunks per device" */
3351         size = size * conf->copies;
3352
3353         /* We need to round up when dividing by raid_disks to
3354          * get the stride size.
3355          */
3356         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3357
3358         conf->dev_sectors = size << conf->geo.chunk_shift;
3359
3360         if (conf->geo.far_offset)
3361                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3362         else {
3363                 sector_div(size, conf->geo.far_copies);
3364                 conf->geo.stride = size << conf->geo.chunk_shift;
3365         }
3366 }
3367
3368 enum geo_type {geo_new, geo_old, geo_start};
3369 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3370 {
3371         int nc, fc, fo;
3372         int layout, chunk, disks;
3373         switch (new) {
3374         case geo_old:
3375                 layout = mddev->layout;
3376                 chunk = mddev->chunk_sectors;
3377                 disks = mddev->raid_disks - mddev->delta_disks;
3378                 break;
3379         case geo_new:
3380                 layout = mddev->new_layout;
3381                 chunk = mddev->new_chunk_sectors;
3382                 disks = mddev->raid_disks;
3383                 break;
3384         default: /* avoid 'may be unused' warnings */
3385         case geo_start: /* new when starting reshape - raid_disks not
3386                          * updated yet. */
3387                 layout = mddev->new_layout;
3388                 chunk = mddev->new_chunk_sectors;
3389                 disks = mddev->raid_disks + mddev->delta_disks;
3390                 break;
3391         }
3392         if (layout >> 18)
3393                 return -1;
3394         if (chunk < (PAGE_SIZE >> 9) ||
3395             !is_power_of_2(chunk))
3396                 return -2;
3397         nc = layout & 255;
3398         fc = (layout >> 8) & 255;
3399         fo = layout & (1<<16);
3400         geo->raid_disks = disks;
3401         geo->near_copies = nc;
3402         geo->far_copies = fc;
3403         geo->far_offset = fo;
3404         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3405         geo->chunk_mask = chunk - 1;
3406         geo->chunk_shift = ffz(~chunk);
3407         return nc*fc;
3408 }
3409
3410 static struct r10conf *setup_conf(struct mddev *mddev)
3411 {
3412         struct r10conf *conf = NULL;
3413         int err = -EINVAL;
3414         struct geom geo;
3415         int copies;
3416
3417         copies = setup_geo(&geo, mddev, geo_new);
3418
3419         if (copies == -2) {
3420                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3421                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3422                        mdname(mddev), PAGE_SIZE);
3423                 goto out;
3424         }
3425
3426         if (copies < 2 || copies > mddev->raid_disks) {
3427                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3428                        mdname(mddev), mddev->new_layout);
3429                 goto out;
3430         }
3431
3432         err = -ENOMEM;
3433         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3434         if (!conf)
3435                 goto out;
3436
3437         /* FIXME calc properly */
3438         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3439                                                             max(0,-mddev->delta_disks)),
3440                                 GFP_KERNEL);
3441         if (!conf->mirrors)
3442                 goto out;
3443
3444         conf->tmppage = alloc_page(GFP_KERNEL);
3445         if (!conf->tmppage)
3446                 goto out;
3447
3448         conf->geo = geo;
3449         conf->copies = copies;
3450         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3451                                            r10bio_pool_free, conf);
3452         if (!conf->r10bio_pool)
3453                 goto out;
3454
3455         calc_sectors(conf, mddev->dev_sectors);
3456         if (mddev->reshape_position == MaxSector) {
3457                 conf->prev = conf->geo;
3458                 conf->reshape_progress = MaxSector;
3459         } else {
3460                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3461                         err = -EINVAL;
3462                         goto out;
3463                 }
3464                 conf->reshape_progress = mddev->reshape_position;
3465                 if (conf->prev.far_offset)
3466                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3467                 else
3468                         /* far_copies must be 1 */
3469                         conf->prev.stride = conf->dev_sectors;
3470         }
3471         conf->reshape_safe = conf->reshape_progress;
3472         spin_lock_init(&conf->device_lock);
3473         INIT_LIST_HEAD(&conf->retry_list);
3474         INIT_LIST_HEAD(&conf->bio_end_io_list);
3475
3476         spin_lock_init(&conf->resync_lock);
3477         init_waitqueue_head(&conf->wait_barrier);
3478
3479         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3480         if (!conf->thread)
3481                 goto out;
3482
3483         conf->mddev = mddev;
3484         return conf;
3485
3486  out:
3487         if (err == -ENOMEM)
3488                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3489                        mdname(mddev));
3490         if (conf) {
3491                 mempool_destroy(conf->r10bio_pool);
3492                 kfree(conf->mirrors);
3493                 safe_put_page(conf->tmppage);
3494                 kfree(conf);
3495         }
3496         return ERR_PTR(err);
3497 }
3498
3499 static int run(struct mddev *mddev)
3500 {
3501         struct r10conf *conf;
3502         int i, disk_idx, chunk_size;
3503         struct raid10_info *disk;
3504         struct md_rdev *rdev;
3505         sector_t size;
3506         sector_t min_offset_diff = 0;
3507         int first = 1;
3508         bool discard_supported = false;
3509
3510         if (mddev->private == NULL) {
3511                 conf = setup_conf(mddev);
3512                 if (IS_ERR(conf))
3513                         return PTR_ERR(conf);
3514                 mddev->private = conf;
3515         }
3516         conf = mddev->private;
3517         if (!conf)
3518                 goto out;
3519
3520         mddev->thread = conf->thread;
3521         conf->thread = NULL;
3522
3523         chunk_size = mddev->chunk_sectors << 9;
3524         if (mddev->queue) {
3525                 blk_queue_max_discard_sectors(mddev->queue,
3526                                               mddev->chunk_sectors);
3527                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3528                 blk_queue_io_min(mddev->queue, chunk_size);
3529                 if (conf->geo.raid_disks % conf->geo.near_copies)
3530                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3531                 else
3532                         blk_queue_io_opt(mddev->queue, chunk_size *
3533                                          (conf->geo.raid_disks / conf->geo.near_copies));
3534         }
3535
3536         rdev_for_each(rdev, mddev) {
3537                 long long diff;
3538                 struct request_queue *q;
3539
3540                 disk_idx = rdev->raid_disk;
3541                 if (disk_idx < 0)
3542                         continue;
3543                 if (disk_idx >= conf->geo.raid_disks &&
3544                     disk_idx >= conf->prev.raid_disks)
3545                         continue;
3546                 disk = conf->mirrors + disk_idx;
3547
3548                 if (test_bit(Replacement, &rdev->flags)) {
3549                         if (disk->replacement)
3550                                 goto out_free_conf;
3551                         disk->replacement = rdev;
3552                 } else {
3553                         if (disk->rdev)
3554                                 goto out_free_conf;
3555                         disk->rdev = rdev;
3556                 }
3557                 q = bdev_get_queue(rdev->bdev);
3558                 diff = (rdev->new_data_offset - rdev->data_offset);
3559                 if (!mddev->reshape_backwards)
3560                         diff = -diff;
3561                 if (diff < 0)
3562                         diff = 0;
3563                 if (first || diff < min_offset_diff)
3564                         min_offset_diff = diff;
3565
3566                 if (mddev->gendisk)
3567                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3568                                           rdev->data_offset << 9);
3569
3570                 disk->head_position = 0;
3571
3572                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3573                         discard_supported = true;
3574         }
3575
3576         if (mddev->queue) {
3577                 if (discard_supported)
3578                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3579                                                 mddev->queue);
3580                 else
3581                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3582                                                   mddev->queue);
3583         }
3584         /* need to check that every block has at least one working mirror */
3585         if (!enough(conf, -1)) {
3586                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3587                        mdname(mddev));
3588                 goto out_free_conf;
3589         }
3590
3591         if (conf->reshape_progress != MaxSector) {
3592                 /* must ensure that shape change is supported */
3593                 if (conf->geo.far_copies != 1 &&
3594                     conf->geo.far_offset == 0)
3595                         goto out_free_conf;
3596                 if (conf->prev.far_copies != 1 &&
3597                     conf->prev.far_offset == 0)
3598                         goto out_free_conf;
3599         }
3600
3601         mddev->degraded = 0;
3602         for (i = 0;
3603              i < conf->geo.raid_disks
3604                      || i < conf->prev.raid_disks;
3605              i++) {
3606
3607                 disk = conf->mirrors + i;
3608
3609                 if (!disk->rdev && disk->replacement) {
3610                         /* The replacement is all we have - use it */
3611                         disk->rdev = disk->replacement;
3612                         disk->replacement = NULL;
3613                         clear_bit(Replacement, &disk->rdev->flags);
3614                 }
3615
3616                 if (!disk->rdev ||
3617                     !test_bit(In_sync, &disk->rdev->flags)) {
3618                         disk->head_position = 0;
3619                         mddev->degraded++;
3620                         if (disk->rdev &&
3621                             disk->rdev->saved_raid_disk < 0)
3622                                 conf->fullsync = 1;
3623                 }
3624                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3625         }
3626
3627         if (mddev->recovery_cp != MaxSector)
3628                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3629                        " -- starting background reconstruction\n",
3630                        mdname(mddev));
3631         printk(KERN_INFO
3632                 "md/raid10:%s: active with %d out of %d devices\n",
3633                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3634                 conf->geo.raid_disks);
3635         /*
3636          * Ok, everything is just fine now
3637          */
3638         mddev->dev_sectors = conf->dev_sectors;
3639         size = raid10_size(mddev, 0, 0);
3640         md_set_array_sectors(mddev, size);
3641         mddev->resync_max_sectors = size;
3642
3643         if (mddev->queue) {
3644                 int stripe = conf->geo.raid_disks *
3645                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3646
3647                 /* Calculate max read-ahead size.
3648                  * We need to readahead at least twice a whole stripe....
3649                  * maybe...
3650                  */
3651                 stripe /= conf->geo.near_copies;
3652                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3653                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3654         }
3655
3656         if (md_integrity_register(mddev))
3657                 goto out_free_conf;
3658
3659         if (conf->reshape_progress != MaxSector) {
3660                 unsigned long before_length, after_length;
3661
3662                 before_length = ((1 << conf->prev.chunk_shift) *
3663                                  conf->prev.far_copies);
3664                 after_length = ((1 << conf->geo.chunk_shift) *
3665                                 conf->geo.far_copies);
3666
3667                 if (max(before_length, after_length) > min_offset_diff) {
3668                         /* This cannot work */
3669                         printk("md/raid10: offset difference not enough to continue reshape\n");
3670                         goto out_free_conf;
3671                 }
3672                 conf->offset_diff = min_offset_diff;
3673
3674                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3675                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3676                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3677                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3678                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3679                                                         "reshape");
3680         }
3681
3682         return 0;
3683
3684 out_free_conf:
3685         md_unregister_thread(&mddev->thread);
3686         mempool_destroy(conf->r10bio_pool);
3687         safe_put_page(conf->tmppage);
3688         kfree(conf->mirrors);
3689         kfree(conf);
3690         mddev->private = NULL;
3691 out:
3692         return -EIO;
3693 }
3694
3695 static void raid10_free(struct mddev *mddev, void *priv)
3696 {
3697         struct r10conf *conf = priv;
3698
3699         mempool_destroy(conf->r10bio_pool);
3700         safe_put_page(conf->tmppage);
3701         kfree(conf->mirrors);
3702         kfree(conf->mirrors_old);
3703         kfree(conf->mirrors_new);
3704         kfree(conf);
3705 }
3706
3707 static void raid10_quiesce(struct mddev *mddev, int state)
3708 {
3709         struct r10conf *conf = mddev->private;
3710
3711         switch(state) {
3712         case 1:
3713                 raise_barrier(conf, 0);
3714                 break;
3715         case 0:
3716                 lower_barrier(conf);
3717                 break;
3718         }
3719 }
3720
3721 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3722 {
3723         /* Resize of 'far' arrays is not supported.
3724          * For 'near' and 'offset' arrays we can set the
3725          * number of sectors used to be an appropriate multiple
3726          * of the chunk size.
3727          * For 'offset', this is far_copies*chunksize.
3728          * For 'near' the multiplier is the LCM of
3729          * near_copies and raid_disks.
3730          * So if far_copies > 1 && !far_offset, fail.
3731          * Else find LCM(raid_disks, near_copy)*far_copies and
3732          * multiply by chunk_size.  Then round to this number.
3733          * This is mostly done by raid10_size()
3734          */
3735         struct r10conf *conf = mddev->private;
3736         sector_t oldsize, size;
3737
3738         if (mddev->reshape_position != MaxSector)
3739                 return -EBUSY;
3740
3741         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3742                 return -EINVAL;
3743
3744         oldsize = raid10_size(mddev, 0, 0);
3745         size = raid10_size(mddev, sectors, 0);
3746         if (mddev->external_size &&
3747             mddev->array_sectors > size)
3748                 return -EINVAL;
3749         if (mddev->bitmap) {
3750                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3751                 if (ret)
3752                         return ret;
3753         }
3754         md_set_array_sectors(mddev, size);
3755         set_capacity(mddev->gendisk, mddev->array_sectors);
3756         revalidate_disk(mddev->gendisk);
3757         if (sectors > mddev->dev_sectors &&
3758             mddev->recovery_cp > oldsize) {
3759                 mddev->recovery_cp = oldsize;
3760                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3761         }
3762         calc_sectors(conf, sectors);
3763         mddev->dev_sectors = conf->dev_sectors;
3764         mddev->resync_max_sectors = size;
3765         return 0;
3766 }
3767
3768 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3769 {
3770         struct md_rdev *rdev;
3771         struct r10conf *conf;
3772
3773         if (mddev->degraded > 0) {
3774                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3775                        mdname(mddev));
3776                 return ERR_PTR(-EINVAL);
3777         }
3778         sector_div(size, devs);
3779
3780         /* Set new parameters */
3781         mddev->new_level = 10;
3782         /* new layout: far_copies = 1, near_copies = 2 */
3783         mddev->new_layout = (1<<8) + 2;
3784         mddev->new_chunk_sectors = mddev->chunk_sectors;
3785         mddev->delta_disks = mddev->raid_disks;
3786         mddev->raid_disks *= 2;
3787         /* make sure it will be not marked as dirty */
3788         mddev->recovery_cp = MaxSector;
3789         mddev->dev_sectors = size;
3790
3791         conf = setup_conf(mddev);
3792         if (!IS_ERR(conf)) {
3793                 rdev_for_each(rdev, mddev)
3794                         if (rdev->raid_disk >= 0) {
3795                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3796                                 rdev->sectors = size;
3797                         }
3798                 conf->barrier = 1;
3799         }
3800
3801         return conf;
3802 }
3803
3804 static void *raid10_takeover(struct mddev *mddev)
3805 {
3806         struct r0conf *raid0_conf;
3807
3808         /* raid10 can take over:
3809          *  raid0 - providing it has only two drives
3810          */
3811         if (mddev->level == 0) {
3812                 /* for raid0 takeover only one zone is supported */
3813                 raid0_conf = mddev->private;
3814                 if (raid0_conf->nr_strip_zones > 1) {
3815                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3816                                " with more than one zone.\n",
3817                                mdname(mddev));
3818                         return ERR_PTR(-EINVAL);
3819                 }
3820                 return raid10_takeover_raid0(mddev,
3821                         raid0_conf->strip_zone->zone_end,
3822                         raid0_conf->strip_zone->nb_dev);
3823         }
3824         return ERR_PTR(-EINVAL);
3825 }
3826
3827 static int raid10_check_reshape(struct mddev *mddev)
3828 {
3829         /* Called when there is a request to change
3830          * - layout (to ->new_layout)
3831          * - chunk size (to ->new_chunk_sectors)
3832          * - raid_disks (by delta_disks)
3833          * or when trying to restart a reshape that was ongoing.
3834          *
3835          * We need to validate the request and possibly allocate
3836          * space if that might be an issue later.
3837          *
3838          * Currently we reject any reshape of a 'far' mode array,
3839          * allow chunk size to change if new is generally acceptable,
3840          * allow raid_disks to increase, and allow
3841          * a switch between 'near' mode and 'offset' mode.
3842          */
3843         struct r10conf *conf = mddev->private;
3844         struct geom geo;
3845
3846         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3847                 return -EINVAL;
3848
3849         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3850                 /* mustn't change number of copies */
3851                 return -EINVAL;
3852         if (geo.far_copies > 1 && !geo.far_offset)
3853                 /* Cannot switch to 'far' mode */
3854                 return -EINVAL;
3855
3856         if (mddev->array_sectors & geo.chunk_mask)
3857                         /* not factor of array size */
3858                         return -EINVAL;
3859
3860         if (!enough(conf, -1))
3861                 return -EINVAL;
3862
3863         kfree(conf->mirrors_new);
3864         conf->mirrors_new = NULL;
3865         if (mddev->delta_disks > 0) {
3866                 /* allocate new 'mirrors' list */
3867                 conf->mirrors_new = kzalloc(
3868                         sizeof(struct raid10_info)
3869                         *(mddev->raid_disks +
3870                           mddev->delta_disks),
3871                         GFP_KERNEL);
3872                 if (!conf->mirrors_new)
3873                         return -ENOMEM;
3874         }
3875         return 0;
3876 }
3877
3878 /*
3879  * Need to check if array has failed when deciding whether to:
3880  *  - start an array
3881  *  - remove non-faulty devices
3882  *  - add a spare
3883  *  - allow a reshape
3884  * This determination is simple when no reshape is happening.
3885  * However if there is a reshape, we need to carefully check
3886  * both the before and after sections.
3887  * This is because some failed devices may only affect one
3888  * of the two sections, and some non-in_sync devices may
3889  * be insync in the section most affected by failed devices.
3890  */
3891 static int calc_degraded(struct r10conf *conf)
3892 {
3893         int degraded, degraded2;
3894         int i;
3895
3896         rcu_read_lock();
3897         degraded = 0;
3898         /* 'prev' section first */
3899         for (i = 0; i < conf->prev.raid_disks; i++) {
3900                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3901                 if (!rdev || test_bit(Faulty, &rdev->flags))
3902                         degraded++;
3903                 else if (!test_bit(In_sync, &rdev->flags))
3904                         /* When we can reduce the number of devices in
3905                          * an array, this might not contribute to
3906                          * 'degraded'.  It does now.
3907                          */
3908                         degraded++;
3909         }
3910         rcu_read_unlock();
3911         if (conf->geo.raid_disks == conf->prev.raid_disks)
3912                 return degraded;
3913         rcu_read_lock();
3914         degraded2 = 0;
3915         for (i = 0; i < conf->geo.raid_disks; i++) {
3916                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3917                 if (!rdev || test_bit(Faulty, &rdev->flags))
3918                         degraded2++;
3919                 else if (!test_bit(In_sync, &rdev->flags)) {
3920                         /* If reshape is increasing the number of devices,
3921                          * this section has already been recovered, so
3922                          * it doesn't contribute to degraded.
3923                          * else it does.
3924                          */
3925                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
3926                                 degraded2++;
3927                 }
3928         }
3929         rcu_read_unlock();
3930         if (degraded2 > degraded)
3931                 return degraded2;
3932         return degraded;
3933 }
3934
3935 static int raid10_start_reshape(struct mddev *mddev)
3936 {
3937         /* A 'reshape' has been requested. This commits
3938          * the various 'new' fields and sets MD_RECOVER_RESHAPE
3939          * This also checks if there are enough spares and adds them
3940          * to the array.
3941          * We currently require enough spares to make the final
3942          * array non-degraded.  We also require that the difference
3943          * between old and new data_offset - on each device - is
3944          * enough that we never risk over-writing.
3945          */
3946
3947         unsigned long before_length, after_length;
3948         sector_t min_offset_diff = 0;
3949         int first = 1;
3950         struct geom new;
3951         struct r10conf *conf = mddev->private;
3952         struct md_rdev *rdev;
3953         int spares = 0;
3954         int ret;
3955
3956         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3957                 return -EBUSY;
3958
3959         if (setup_geo(&new, mddev, geo_start) != conf->copies)
3960                 return -EINVAL;
3961
3962         before_length = ((1 << conf->prev.chunk_shift) *
3963                          conf->prev.far_copies);
3964         after_length = ((1 << conf->geo.chunk_shift) *
3965                         conf->geo.far_copies);
3966
3967         rdev_for_each(rdev, mddev) {
3968                 if (!test_bit(In_sync, &rdev->flags)
3969                     && !test_bit(Faulty, &rdev->flags))
3970                         spares++;
3971                 if (rdev->raid_disk >= 0) {
3972                         long long diff = (rdev->new_data_offset
3973                                           - rdev->data_offset);
3974                         if (!mddev->reshape_backwards)
3975                                 diff = -diff;
3976                         if (diff < 0)
3977                                 diff = 0;
3978                         if (first || diff < min_offset_diff)
3979                                 min_offset_diff = diff;
3980                 }
3981         }
3982
3983         if (max(before_length, after_length) > min_offset_diff)
3984                 return -EINVAL;
3985
3986         if (spares < mddev->delta_disks)
3987                 return -EINVAL;
3988
3989         conf->offset_diff = min_offset_diff;
3990         spin_lock_irq(&conf->device_lock);
3991         if (conf->mirrors_new) {
3992                 memcpy(conf->mirrors_new, conf->mirrors,
3993                        sizeof(struct raid10_info)*conf->prev.raid_disks);
3994                 smp_mb();
3995                 kfree(conf->mirrors_old);
3996                 conf->mirrors_old = conf->mirrors;
3997                 conf->mirrors = conf->mirrors_new;
3998                 conf->mirrors_new = NULL;
3999         }
4000         setup_geo(&conf->geo, mddev, geo_start);
4001         smp_mb();
4002         if (mddev->reshape_backwards) {
4003                 sector_t size = raid10_size(mddev, 0, 0);
4004                 if (size < mddev->array_sectors) {
4005                         spin_unlock_irq(&conf->device_lock);
4006                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4007                                mdname(mddev));
4008                         return -EINVAL;
4009                 }
4010                 mddev->resync_max_sectors = size;
4011                 conf->reshape_progress = size;
4012         } else
4013                 conf->reshape_progress = 0;
4014         conf->reshape_safe = conf->reshape_progress;
4015         spin_unlock_irq(&conf->device_lock);
4016
4017         if (mddev->delta_disks && mddev->bitmap) {
4018                 ret = bitmap_resize(mddev->bitmap,
4019                                     raid10_size(mddev, 0,
4020                                                 conf->geo.raid_disks),
4021                                     0, 0);
4022                 if (ret)
4023                         goto abort;
4024         }
4025         if (mddev->delta_disks > 0) {
4026                 rdev_for_each(rdev, mddev)
4027                         if (rdev->raid_disk < 0 &&
4028                             !test_bit(Faulty, &rdev->flags)) {
4029                                 if (raid10_add_disk(mddev, rdev) == 0) {
4030                                         if (rdev->raid_disk >=
4031                                             conf->prev.raid_disks)
4032                                                 set_bit(In_sync, &rdev->flags);
4033                                         else
4034                                                 rdev->recovery_offset = 0;
4035
4036                                         if (sysfs_link_rdev(mddev, rdev))
4037                                                 /* Failure here  is OK */;
4038                                 }
4039                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4040                                    && !test_bit(Faulty, &rdev->flags)) {
4041                                 /* This is a spare that was manually added */
4042                                 set_bit(In_sync, &rdev->flags);
4043                         }
4044         }
4045         /* When a reshape changes the number of devices,
4046          * ->degraded is measured against the larger of the
4047          * pre and  post numbers.
4048          */
4049         spin_lock_irq(&conf->device_lock);
4050         mddev->degraded = calc_degraded(conf);
4051         spin_unlock_irq(&conf->device_lock);
4052         mddev->raid_disks = conf->geo.raid_disks;
4053         mddev->reshape_position = conf->reshape_progress;
4054         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4055
4056         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4057         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4058         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4059         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4060         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4061
4062         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4063                                                 "reshape");
4064         if (!mddev->sync_thread) {
4065                 ret = -EAGAIN;
4066                 goto abort;
4067         }
4068         conf->reshape_checkpoint = jiffies;
4069         md_wakeup_thread(mddev->sync_thread);
4070         md_new_event(mddev);
4071         return 0;
4072
4073 abort:
4074         mddev->recovery = 0;
4075         spin_lock_irq(&conf->device_lock);
4076         conf->geo = conf->prev;
4077         mddev->raid_disks = conf->geo.raid_disks;
4078         rdev_for_each(rdev, mddev)
4079                 rdev->new_data_offset = rdev->data_offset;
4080         smp_wmb();
4081         conf->reshape_progress = MaxSector;
4082         conf->reshape_safe = MaxSector;
4083         mddev->reshape_position = MaxSector;
4084         spin_unlock_irq(&conf->device_lock);
4085         return ret;
4086 }
4087
4088 /* Calculate the last device-address that could contain
4089  * any block from the chunk that includes the array-address 's'
4090  * and report the next address.
4091  * i.e. the address returned will be chunk-aligned and after
4092  * any data that is in the chunk containing 's'.
4093  */
4094 static sector_t last_dev_address(sector_t s, struct geom *geo)
4095 {
4096         s = (s | geo->chunk_mask) + 1;
4097         s >>= geo->chunk_shift;
4098         s *= geo->near_copies;
4099         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4100         s *= geo->far_copies;
4101         s <<= geo->chunk_shift;
4102         return s;
4103 }
4104
4105 /* Calculate the first device-address that could contain
4106  * any block from the chunk that includes the array-address 's'.
4107  * This too will be the start of a chunk
4108  */
4109 static sector_t first_dev_address(sector_t s, struct geom *geo)
4110 {
4111         s >>= geo->chunk_shift;
4112         s *= geo->near_copies;
4113         sector_div(s, geo->raid_disks);
4114         s *= geo->far_copies;
4115         s <<= geo->chunk_shift;
4116         return s;
4117 }
4118
4119 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4120                                 int *skipped)
4121 {
4122         /* We simply copy at most one chunk (smallest of old and new)
4123          * at a time, possibly less if that exceeds RESYNC_PAGES,
4124          * or we hit a bad block or something.
4125          * This might mean we pause for normal IO in the middle of
4126          * a chunk, but that is not a problem as mddev->reshape_position
4127          * can record any location.
4128          *
4129          * If we will want to write to a location that isn't
4130          * yet recorded as 'safe' (i.e. in metadata on disk) then
4131          * we need to flush all reshape requests and update the metadata.
4132          *
4133          * When reshaping forwards (e.g. to more devices), we interpret
4134          * 'safe' as the earliest block which might not have been copied
4135          * down yet.  We divide this by previous stripe size and multiply
4136          * by previous stripe length to get lowest device offset that we
4137          * cannot write to yet.
4138          * We interpret 'sector_nr' as an address that we want to write to.
4139          * From this we use last_device_address() to find where we might
4140          * write to, and first_device_address on the  'safe' position.
4141          * If this 'next' write position is after the 'safe' position,
4142          * we must update the metadata to increase the 'safe' position.
4143          *
4144          * When reshaping backwards, we round in the opposite direction
4145          * and perform the reverse test:  next write position must not be
4146          * less than current safe position.
4147          *
4148          * In all this the minimum difference in data offsets
4149          * (conf->offset_diff - always positive) allows a bit of slack,
4150          * so next can be after 'safe', but not by more than offset_diff
4151          *
4152          * We need to prepare all the bios here before we start any IO
4153          * to ensure the size we choose is acceptable to all devices.
4154          * The means one for each copy for write-out and an extra one for
4155          * read-in.
4156          * We store the read-in bio in ->master_bio and the others in
4157          * ->devs[x].bio and ->devs[x].repl_bio.
4158          */
4159         struct r10conf *conf = mddev->private;
4160         struct r10bio *r10_bio;
4161         sector_t next, safe, last;
4162         int max_sectors;
4163         int nr_sectors;
4164         int s;
4165         struct md_rdev *rdev;
4166         int need_flush = 0;
4167         struct bio *blist;
4168         struct bio *bio, *read_bio;
4169         int sectors_done = 0;
4170
4171         if (sector_nr == 0) {
4172                 /* If restarting in the middle, skip the initial sectors */
4173                 if (mddev->reshape_backwards &&
4174                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4175                         sector_nr = (raid10_size(mddev, 0, 0)
4176                                      - conf->reshape_progress);
4177                 } else if (!mddev->reshape_backwards &&
4178                            conf->reshape_progress > 0)
4179                         sector_nr = conf->reshape_progress;
4180                 if (sector_nr) {
4181                         mddev->curr_resync_completed = sector_nr;
4182                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4183                         *skipped = 1;
4184                         return sector_nr;
4185                 }
4186         }
4187
4188         /* We don't use sector_nr to track where we are up to
4189          * as that doesn't work well for ->reshape_backwards.
4190          * So just use ->reshape_progress.
4191          */
4192         if (mddev->reshape_backwards) {
4193                 /* 'next' is the earliest device address that we might
4194                  * write to for this chunk in the new layout
4195                  */
4196                 next = first_dev_address(conf->reshape_progress - 1,
4197                                          &conf->geo);
4198
4199                 /* 'safe' is the last device address that we might read from
4200                  * in the old layout after a restart
4201                  */
4202                 safe = last_dev_address(conf->reshape_safe - 1,
4203                                         &conf->prev);
4204
4205                 if (next + conf->offset_diff < safe)
4206                         need_flush = 1;
4207
4208                 last = conf->reshape_progress - 1;
4209                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4210                                                & conf->prev.chunk_mask);
4211                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4212                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4213         } else {
4214                 /* 'next' is after the last device address that we
4215                  * might write to for this chunk in the new layout
4216                  */
4217                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4218
4219                 /* 'safe' is the earliest device address that we might
4220                  * read from in the old layout after a restart
4221                  */
4222                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4223
4224                 /* Need to update metadata if 'next' might be beyond 'safe'
4225                  * as that would possibly corrupt data
4226                  */
4227                 if (next > safe + conf->offset_diff)
4228                         need_flush = 1;
4229
4230                 sector_nr = conf->reshape_progress;
4231                 last  = sector_nr | (conf->geo.chunk_mask
4232                                      & conf->prev.chunk_mask);
4233
4234                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4235                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4236         }
4237
4238         if (need_flush ||
4239             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4240                 /* Need to update reshape_position in metadata */
4241                 wait_barrier(conf);
4242                 mddev->reshape_position = conf->reshape_progress;
4243                 if (mddev->reshape_backwards)
4244                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4245                                 - conf->reshape_progress;
4246                 else
4247                         mddev->curr_resync_completed = conf->reshape_progress;
4248                 conf->reshape_checkpoint = jiffies;
4249                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4250                 md_wakeup_thread(mddev->thread);
4251                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4252                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4253                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4254                         allow_barrier(conf);
4255                         return sectors_done;
4256                 }
4257                 conf->reshape_safe = mddev->reshape_position;
4258                 allow_barrier(conf);
4259         }
4260
4261 read_more:
4262         /* Now schedule reads for blocks from sector_nr to last */
4263         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4264         r10_bio->state = 0;
4265         raise_barrier(conf, sectors_done != 0);
4266         atomic_set(&r10_bio->remaining, 0);
4267         r10_bio->mddev = mddev;
4268         r10_bio->sector = sector_nr;
4269         set_bit(R10BIO_IsReshape, &r10_bio->state);
4270         r10_bio->sectors = last - sector_nr + 1;
4271         rdev = read_balance(conf, r10_bio, &max_sectors);
4272         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4273
4274         if (!rdev) {
4275                 /* Cannot read from here, so need to record bad blocks
4276                  * on all the target devices.
4277                  */
4278                 // FIXME
4279                 mempool_free(r10_bio, conf->r10buf_pool);
4280                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4281                 return sectors_done;
4282         }
4283
4284         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4285
4286         read_bio->bi_bdev = rdev->bdev;
4287         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4288                                + rdev->data_offset);
4289         read_bio->bi_private = r10_bio;
4290         read_bio->bi_end_io = end_sync_read;
4291         read_bio->bi_rw = READ;
4292         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4293         read_bio->bi_error = 0;
4294         read_bio->bi_vcnt = 0;
4295         read_bio->bi_iter.bi_size = 0;
4296         r10_bio->master_bio = read_bio;
4297         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4298
4299         /* Now find the locations in the new layout */
4300         __raid10_find_phys(&conf->geo, r10_bio);
4301
4302         blist = read_bio;
4303         read_bio->bi_next = NULL;
4304
4305         for (s = 0; s < conf->copies*2; s++) {
4306                 struct bio *b;
4307                 int d = r10_bio->devs[s/2].devnum;
4308                 struct md_rdev *rdev2;
4309                 if (s&1) {
4310                         rdev2 = conf->mirrors[d].replacement;
4311                         b = r10_bio->devs[s/2].repl_bio;
4312                 } else {
4313                         rdev2 = conf->mirrors[d].rdev;
4314                         b = r10_bio->devs[s/2].bio;
4315                 }
4316                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4317                         continue;
4318
4319                 bio_reset(b);
4320                 b->bi_bdev = rdev2->bdev;
4321                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4322                         rdev2->new_data_offset;
4323                 b->bi_private = r10_bio;
4324                 b->bi_end_io = end_reshape_write;
4325                 b->bi_rw = WRITE;
4326                 b->bi_next = blist;
4327                 blist = b;
4328         }
4329
4330         /* Now add as many pages as possible to all of these bios. */
4331
4332         nr_sectors = 0;
4333         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4334                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4335                 int len = (max_sectors - s) << 9;
4336                 if (len > PAGE_SIZE)
4337                         len = PAGE_SIZE;
4338                 for (bio = blist; bio ; bio = bio->bi_next) {
4339                         struct bio *bio2;
4340                         if (bio_add_page(bio, page, len, 0))
4341                                 continue;
4342
4343                         /* Didn't fit, must stop */
4344                         for (bio2 = blist;
4345                              bio2 && bio2 != bio;
4346                              bio2 = bio2->bi_next) {
4347                                 /* Remove last page from this bio */
4348                                 bio2->bi_vcnt--;
4349                                 bio2->bi_iter.bi_size -= len;
4350                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4351                         }
4352                         goto bio_full;
4353                 }
4354                 sector_nr += len >> 9;
4355                 nr_sectors += len >> 9;
4356         }
4357 bio_full:
4358         r10_bio->sectors = nr_sectors;
4359
4360         /* Now submit the read */
4361         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4362         atomic_inc(&r10_bio->remaining);
4363         read_bio->bi_next = NULL;
4364         generic_make_request(read_bio);
4365         sector_nr += nr_sectors;
4366         sectors_done += nr_sectors;
4367         if (sector_nr <= last)
4368                 goto read_more;
4369
4370         /* Now that we have done the whole section we can
4371          * update reshape_progress
4372          */
4373         if (mddev->reshape_backwards)
4374                 conf->reshape_progress -= sectors_done;
4375         else
4376                 conf->reshape_progress += sectors_done;
4377
4378         return sectors_done;
4379 }
4380
4381 static void end_reshape_request(struct r10bio *r10_bio);
4382 static int handle_reshape_read_error(struct mddev *mddev,
4383                                      struct r10bio *r10_bio);
4384 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4385 {
4386         /* Reshape read completed.  Hopefully we have a block
4387          * to write out.
4388          * If we got a read error then we do sync 1-page reads from
4389          * elsewhere until we find the data - or give up.
4390          */
4391         struct r10conf *conf = mddev->private;
4392         int s;
4393
4394         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4395                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4396                         /* Reshape has been aborted */
4397                         md_done_sync(mddev, r10_bio->sectors, 0);
4398                         return;
4399                 }
4400
4401         /* We definitely have the data in the pages, schedule the
4402          * writes.
4403          */
4404         atomic_set(&r10_bio->remaining, 1);
4405         for (s = 0; s < conf->copies*2; s++) {
4406                 struct bio *b;
4407                 int d = r10_bio->devs[s/2].devnum;
4408                 struct md_rdev *rdev;
4409                 if (s&1) {
4410                         rdev = conf->mirrors[d].replacement;
4411                         b = r10_bio->devs[s/2].repl_bio;
4412                 } else {
4413                         rdev = conf->mirrors[d].rdev;
4414                         b = r10_bio->devs[s/2].bio;
4415                 }
4416                 if (!rdev || test_bit(Faulty, &rdev->flags))
4417                         continue;
4418                 atomic_inc(&rdev->nr_pending);
4419                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4420                 atomic_inc(&r10_bio->remaining);
4421                 b->bi_next = NULL;
4422                 generic_make_request(b);
4423         }
4424         end_reshape_request(r10_bio);
4425 }
4426
4427 static void end_reshape(struct r10conf *conf)
4428 {
4429         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4430                 return;
4431
4432         spin_lock_irq(&conf->device_lock);
4433         conf->prev = conf->geo;
4434         md_finish_reshape(conf->mddev);
4435         smp_wmb();
4436         conf->reshape_progress = MaxSector;
4437         conf->reshape_safe = MaxSector;
4438         spin_unlock_irq(&conf->device_lock);
4439
4440         /* read-ahead size must cover two whole stripes, which is
4441          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4442          */
4443         if (conf->mddev->queue) {
4444                 int stripe = conf->geo.raid_disks *
4445                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4446                 stripe /= conf->geo.near_copies;
4447                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4448                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4449         }
4450         conf->fullsync = 0;
4451 }
4452
4453 static int handle_reshape_read_error(struct mddev *mddev,
4454                                      struct r10bio *r10_bio)
4455 {
4456         /* Use sync reads to get the blocks from somewhere else */
4457         int sectors = r10_bio->sectors;
4458         struct r10conf *conf = mddev->private;
4459         struct {
4460                 struct r10bio r10_bio;
4461                 struct r10dev devs[conf->copies];
4462         } on_stack;
4463         struct r10bio *r10b = &on_stack.r10_bio;
4464         int slot = 0;
4465         int idx = 0;
4466         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4467
4468         r10b->sector = r10_bio->sector;
4469         __raid10_find_phys(&conf->prev, r10b);
4470
4471         while (sectors) {
4472                 int s = sectors;
4473                 int success = 0;
4474                 int first_slot = slot;
4475
4476                 if (s > (PAGE_SIZE >> 9))
4477                         s = PAGE_SIZE >> 9;
4478
4479                 while (!success) {
4480                         int d = r10b->devs[slot].devnum;
4481                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4482                         sector_t addr;
4483                         if (rdev == NULL ||
4484                             test_bit(Faulty, &rdev->flags) ||
4485                             !test_bit(In_sync, &rdev->flags))
4486                                 goto failed;
4487
4488                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4489                         success = sync_page_io(rdev,
4490                                                addr,
4491                                                s << 9,
4492                                                bvec[idx].bv_page,
4493                                                READ, false);
4494                         if (success)
4495                                 break;
4496                 failed:
4497                         slot++;
4498                         if (slot >= conf->copies)
4499                                 slot = 0;
4500                         if (slot == first_slot)
4501                                 break;
4502                 }
4503                 if (!success) {
4504                         /* couldn't read this block, must give up */
4505                         set_bit(MD_RECOVERY_INTR,
4506                                 &mddev->recovery);
4507                         return -EIO;
4508                 }
4509                 sectors -= s;
4510                 idx++;
4511         }
4512         return 0;
4513 }
4514
4515 static void end_reshape_write(struct bio *bio)
4516 {
4517         struct r10bio *r10_bio = bio->bi_private;
4518         struct mddev *mddev = r10_bio->mddev;
4519         struct r10conf *conf = mddev->private;
4520         int d;
4521         int slot;
4522         int repl;
4523         struct md_rdev *rdev = NULL;
4524
4525         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4526         if (repl)
4527                 rdev = conf->mirrors[d].replacement;
4528         if (!rdev) {
4529                 smp_mb();
4530                 rdev = conf->mirrors[d].rdev;
4531         }
4532
4533         if (bio->bi_error) {
4534                 /* FIXME should record badblock */
4535                 md_error(mddev, rdev);
4536         }
4537
4538         rdev_dec_pending(rdev, mddev);
4539         end_reshape_request(r10_bio);
4540 }
4541
4542 static void end_reshape_request(struct r10bio *r10_bio)
4543 {
4544         if (!atomic_dec_and_test(&r10_bio->remaining))
4545                 return;
4546         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4547         bio_put(r10_bio->master_bio);
4548         put_buf(r10_bio);
4549 }
4550
4551 static void raid10_finish_reshape(struct mddev *mddev)
4552 {
4553         struct r10conf *conf = mddev->private;
4554
4555         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4556                 return;
4557
4558         if (mddev->delta_disks > 0) {
4559                 sector_t size = raid10_size(mddev, 0, 0);
4560                 md_set_array_sectors(mddev, size);
4561                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4562                         mddev->recovery_cp = mddev->resync_max_sectors;
4563                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4564                 }
4565                 mddev->resync_max_sectors = size;
4566                 set_capacity(mddev->gendisk, mddev->array_sectors);
4567                 revalidate_disk(mddev->gendisk);
4568         } else {
4569                 int d;
4570                 for (d = conf->geo.raid_disks ;
4571                      d < conf->geo.raid_disks - mddev->delta_disks;
4572                      d++) {
4573                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4574                         if (rdev)
4575                                 clear_bit(In_sync, &rdev->flags);
4576                         rdev = conf->mirrors[d].replacement;
4577                         if (rdev)
4578                                 clear_bit(In_sync, &rdev->flags);
4579                 }
4580         }
4581         mddev->layout = mddev->new_layout;
4582         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4583         mddev->reshape_position = MaxSector;
4584         mddev->delta_disks = 0;
4585         mddev->reshape_backwards = 0;
4586 }
4587
4588 static struct md_personality raid10_personality =
4589 {
4590         .name           = "raid10",
4591         .level          = 10,
4592         .owner          = THIS_MODULE,
4593         .make_request   = make_request,
4594         .run            = run,
4595         .free           = raid10_free,
4596         .status         = status,
4597         .error_handler  = error,
4598         .hot_add_disk   = raid10_add_disk,
4599         .hot_remove_disk= raid10_remove_disk,
4600         .spare_active   = raid10_spare_active,
4601         .sync_request   = sync_request,
4602         .quiesce        = raid10_quiesce,
4603         .size           = raid10_size,
4604         .resize         = raid10_resize,
4605         .takeover       = raid10_takeover,
4606         .check_reshape  = raid10_check_reshape,
4607         .start_reshape  = raid10_start_reshape,
4608         .finish_reshape = raid10_finish_reshape,
4609         .congested      = raid10_congested,
4610 };
4611
4612 static int __init raid_init(void)
4613 {
4614         return register_md_personality(&raid10_personality);
4615 }
4616
4617 static void raid_exit(void)
4618 {
4619         unregister_md_personality(&raid10_personality);
4620 }
4621
4622 module_init(raid_init);
4623 module_exit(raid_exit);
4624 MODULE_LICENSE("GPL");
4625 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4626 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4627 MODULE_ALIAS("md-raid10");
4628 MODULE_ALIAS("md-level-10");
4629
4630 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);