]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
scsi_dh: don't try to load a device handler during async probing
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         unsigned long do_wakeup = 0;
344         int i = 0;
345         unsigned long flags;
346
347         if (hash == NR_STRIPE_HASH_LOCKS) {
348                 size = NR_STRIPE_HASH_LOCKS;
349                 hash = NR_STRIPE_HASH_LOCKS - 1;
350         } else
351                 size = 1;
352         while (size) {
353                 struct list_head *list = &temp_inactive_list[size - 1];
354
355                 /*
356                  * We don't hold any lock here yet, get_active_stripe() might
357                  * remove stripes from the list
358                  */
359                 if (!list_empty_careful(list)) {
360                         spin_lock_irqsave(conf->hash_locks + hash, flags);
361                         if (list_empty(conf->inactive_list + hash) &&
362                             !list_empty(list))
363                                 atomic_dec(&conf->empty_inactive_list_nr);
364                         list_splice_tail_init(list, conf->inactive_list + hash);
365                         do_wakeup |= 1 << hash;
366                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367                 }
368                 size--;
369                 hash--;
370         }
371
372         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373                 if (do_wakeup & (1 << i))
374                         wake_up(&conf->wait_for_stripe[i]);
375         }
376
377         if (do_wakeup) {
378                 if (atomic_read(&conf->active_stripes) == 0)
379                         wake_up(&conf->wait_for_quiescent);
380                 if (conf->retry_read_aligned)
381                         md_wakeup_thread(conf->mddev->thread);
382         }
383 }
384
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387                                struct list_head *temp_inactive_list)
388 {
389         struct stripe_head *sh;
390         int count = 0;
391         struct llist_node *head;
392
393         head = llist_del_all(&conf->released_stripes);
394         head = llist_reverse_order(head);
395         while (head) {
396                 int hash;
397
398                 sh = llist_entry(head, struct stripe_head, release_list);
399                 head = llist_next(head);
400                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401                 smp_mb();
402                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403                 /*
404                  * Don't worry the bit is set here, because if the bit is set
405                  * again, the count is always > 1. This is true for
406                  * STRIPE_ON_UNPLUG_LIST bit too.
407                  */
408                 hash = sh->hash_lock_index;
409                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
410                 count++;
411         }
412
413         return count;
414 }
415
416 static void release_stripe(struct stripe_head *sh)
417 {
418         struct r5conf *conf = sh->raid_conf;
419         unsigned long flags;
420         struct list_head list;
421         int hash;
422         bool wakeup;
423
424         /* Avoid release_list until the last reference.
425          */
426         if (atomic_add_unless(&sh->count, -1, 1))
427                 return;
428
429         if (unlikely(!conf->mddev->thread) ||
430                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431                 goto slow_path;
432         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433         if (wakeup)
434                 md_wakeup_thread(conf->mddev->thread);
435         return;
436 slow_path:
437         local_irq_save(flags);
438         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440                 INIT_LIST_HEAD(&list);
441                 hash = sh->hash_lock_index;
442                 do_release_stripe(conf, sh, &list);
443                 spin_unlock(&conf->device_lock);
444                 release_inactive_stripe_list(conf, &list, hash);
445         }
446         local_irq_restore(flags);
447 }
448
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451         pr_debug("remove_hash(), stripe %llu\n",
452                 (unsigned long long)sh->sector);
453
454         hlist_del_init(&sh->hash);
455 }
456
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459         struct hlist_head *hp = stripe_hash(conf, sh->sector);
460
461         pr_debug("insert_hash(), stripe %llu\n",
462                 (unsigned long long)sh->sector);
463
464         hlist_add_head(&sh->hash, hp);
465 }
466
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470         struct stripe_head *sh = NULL;
471         struct list_head *first;
472
473         if (list_empty(conf->inactive_list + hash))
474                 goto out;
475         first = (conf->inactive_list + hash)->next;
476         sh = list_entry(first, struct stripe_head, lru);
477         list_del_init(first);
478         remove_hash(sh);
479         atomic_inc(&conf->active_stripes);
480         BUG_ON(hash != sh->hash_lock_index);
481         if (list_empty(conf->inactive_list + hash))
482                 atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484         return sh;
485 }
486
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489         struct page *p;
490         int i;
491         int num = sh->raid_conf->pool_size;
492
493         for (i = 0; i < num ; i++) {
494                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495                 p = sh->dev[i].page;
496                 if (!p)
497                         continue;
498                 sh->dev[i].page = NULL;
499                 put_page(p);
500         }
501 }
502
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505         int i;
506         int num = sh->raid_conf->pool_size;
507
508         for (i = 0; i < num; i++) {
509                 struct page *page;
510
511                 if (!(page = alloc_page(gfp))) {
512                         return 1;
513                 }
514                 sh->dev[i].page = page;
515                 sh->dev[i].orig_page = page;
516         }
517         return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522                             struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526         struct r5conf *conf = sh->raid_conf;
527         int i, seq;
528
529         BUG_ON(atomic_read(&sh->count) != 0);
530         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531         BUG_ON(stripe_operations_active(sh));
532         BUG_ON(sh->batch_head);
533
534         pr_debug("init_stripe called, stripe %llu\n",
535                 (unsigned long long)sector);
536 retry:
537         seq = read_seqcount_begin(&conf->gen_lock);
538         sh->generation = conf->generation - previous;
539         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540         sh->sector = sector;
541         stripe_set_idx(sector, conf, previous, sh);
542         sh->state = 0;
543
544         for (i = sh->disks; i--; ) {
545                 struct r5dev *dev = &sh->dev[i];
546
547                 if (dev->toread || dev->read || dev->towrite || dev->written ||
548                     test_bit(R5_LOCKED, &dev->flags)) {
549                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550                                (unsigned long long)sh->sector, i, dev->toread,
551                                dev->read, dev->towrite, dev->written,
552                                test_bit(R5_LOCKED, &dev->flags));
553                         WARN_ON(1);
554                 }
555                 dev->flags = 0;
556                 raid5_build_block(sh, i, previous);
557         }
558         if (read_seqcount_retry(&conf->gen_lock, seq))
559                 goto retry;
560         sh->overwrite_disks = 0;
561         insert_hash(conf, sh);
562         sh->cpu = smp_processor_id();
563         set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567                                          short generation)
568 {
569         struct stripe_head *sh;
570
571         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573                 if (sh->sector == sector && sh->generation == generation)
574                         return sh;
575         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576         return NULL;
577 }
578
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594         int degraded, degraded2;
595         int i;
596
597         rcu_read_lock();
598         degraded = 0;
599         for (i = 0; i < conf->previous_raid_disks; i++) {
600                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601                 if (rdev && test_bit(Faulty, &rdev->flags))
602                         rdev = rcu_dereference(conf->disks[i].replacement);
603                 if (!rdev || test_bit(Faulty, &rdev->flags))
604                         degraded++;
605                 else if (test_bit(In_sync, &rdev->flags))
606                         ;
607                 else
608                         /* not in-sync or faulty.
609                          * If the reshape increases the number of devices,
610                          * this is being recovered by the reshape, so
611                          * this 'previous' section is not in_sync.
612                          * If the number of devices is being reduced however,
613                          * the device can only be part of the array if
614                          * we are reverting a reshape, so this section will
615                          * be in-sync.
616                          */
617                         if (conf->raid_disks >= conf->previous_raid_disks)
618                                 degraded++;
619         }
620         rcu_read_unlock();
621         if (conf->raid_disks == conf->previous_raid_disks)
622                 return degraded;
623         rcu_read_lock();
624         degraded2 = 0;
625         for (i = 0; i < conf->raid_disks; i++) {
626                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627                 if (rdev && test_bit(Faulty, &rdev->flags))
628                         rdev = rcu_dereference(conf->disks[i].replacement);
629                 if (!rdev || test_bit(Faulty, &rdev->flags))
630                         degraded2++;
631                 else if (test_bit(In_sync, &rdev->flags))
632                         ;
633                 else
634                         /* not in-sync or faulty.
635                          * If reshape increases the number of devices, this
636                          * section has already been recovered, else it
637                          * almost certainly hasn't.
638                          */
639                         if (conf->raid_disks <= conf->previous_raid_disks)
640                                 degraded2++;
641         }
642         rcu_read_unlock();
643         if (degraded2 > degraded)
644                 return degraded2;
645         return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650         int degraded;
651
652         if (conf->mddev->reshape_position == MaxSector)
653                 return conf->mddev->degraded > conf->max_degraded;
654
655         degraded = calc_degraded(conf);
656         if (degraded > conf->max_degraded)
657                 return 1;
658         return 0;
659 }
660
661 static struct stripe_head *
662 get_active_stripe(struct r5conf *conf, sector_t sector,
663                   int previous, int noblock, int noquiesce)
664 {
665         struct stripe_head *sh;
666         int hash = stripe_hash_locks_hash(sector);
667
668         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670         spin_lock_irq(conf->hash_locks + hash);
671
672         do {
673                 wait_event_lock_irq(conf->wait_for_quiescent,
674                                     conf->quiesce == 0 || noquiesce,
675                                     *(conf->hash_locks + hash));
676                 sh = __find_stripe(conf, sector, conf->generation - previous);
677                 if (!sh) {
678                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679                                 sh = get_free_stripe(conf, hash);
680                                 if (!sh && !test_bit(R5_DID_ALLOC,
681                                                      &conf->cache_state))
682                                         set_bit(R5_ALLOC_MORE,
683                                                 &conf->cache_state);
684                         }
685                         if (noblock && sh == NULL)
686                                 break;
687                         if (!sh) {
688                                 set_bit(R5_INACTIVE_BLOCKED,
689                                         &conf->cache_state);
690                                 wait_event_exclusive_cmd(
691                                         conf->wait_for_stripe[hash],
692                                         !list_empty(conf->inactive_list + hash) &&
693                                         (atomic_read(&conf->active_stripes)
694                                          < (conf->max_nr_stripes * 3 / 4)
695                                          || !test_bit(R5_INACTIVE_BLOCKED,
696                                                       &conf->cache_state)),
697                                         spin_unlock_irq(conf->hash_locks + hash),
698                                         spin_lock_irq(conf->hash_locks + hash));
699                                 clear_bit(R5_INACTIVE_BLOCKED,
700                                           &conf->cache_state);
701                         } else {
702                                 init_stripe(sh, sector, previous);
703                                 atomic_inc(&sh->count);
704                         }
705                 } else if (!atomic_inc_not_zero(&sh->count)) {
706                         spin_lock(&conf->device_lock);
707                         if (!atomic_read(&sh->count)) {
708                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
709                                         atomic_inc(&conf->active_stripes);
710                                 BUG_ON(list_empty(&sh->lru) &&
711                                        !test_bit(STRIPE_EXPANDING, &sh->state));
712                                 list_del_init(&sh->lru);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         if (!list_empty(conf->inactive_list + hash))
724                 wake_up(&conf->wait_for_stripe[hash]);
725
726         spin_unlock_irq(conf->hash_locks + hash);
727         return sh;
728 }
729
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738         local_irq_disable();
739         if (sh1 > sh2) {
740                 spin_lock(&sh2->stripe_lock);
741                 spin_lock_nested(&sh1->stripe_lock, 1);
742         } else {
743                 spin_lock(&sh1->stripe_lock);
744                 spin_lock_nested(&sh2->stripe_lock, 1);
745         }
746 }
747
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750         spin_unlock(&sh1->stripe_lock);
751         spin_unlock(&sh2->stripe_lock);
752         local_irq_enable();
753 }
754
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
759                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
760                 is_full_stripe_write(sh);
761 }
762
763 /* we only do back search */
764 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
765 {
766         struct stripe_head *head;
767         sector_t head_sector, tmp_sec;
768         int hash;
769         int dd_idx;
770
771         if (!stripe_can_batch(sh))
772                 return;
773         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774         tmp_sec = sh->sector;
775         if (!sector_div(tmp_sec, conf->chunk_sectors))
776                 return;
777         head_sector = sh->sector - STRIPE_SECTORS;
778
779         hash = stripe_hash_locks_hash(head_sector);
780         spin_lock_irq(conf->hash_locks + hash);
781         head = __find_stripe(conf, head_sector, conf->generation);
782         if (head && !atomic_inc_not_zero(&head->count)) {
783                 spin_lock(&conf->device_lock);
784                 if (!atomic_read(&head->count)) {
785                         if (!test_bit(STRIPE_HANDLE, &head->state))
786                                 atomic_inc(&conf->active_stripes);
787                         BUG_ON(list_empty(&head->lru) &&
788                                !test_bit(STRIPE_EXPANDING, &head->state));
789                         list_del_init(&head->lru);
790                         if (head->group) {
791                                 head->group->stripes_cnt--;
792                                 head->group = NULL;
793                         }
794                 }
795                 atomic_inc(&head->count);
796                 spin_unlock(&conf->device_lock);
797         }
798         spin_unlock_irq(conf->hash_locks + hash);
799
800         if (!head)
801                 return;
802         if (!stripe_can_batch(head))
803                 goto out;
804
805         lock_two_stripes(head, sh);
806         /* clear_batch_ready clear the flag */
807         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
808                 goto unlock_out;
809
810         if (sh->batch_head)
811                 goto unlock_out;
812
813         dd_idx = 0;
814         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
815                 dd_idx++;
816         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
817                 goto unlock_out;
818
819         if (head->batch_head) {
820                 spin_lock(&head->batch_head->batch_lock);
821                 /* This batch list is already running */
822                 if (!stripe_can_batch(head)) {
823                         spin_unlock(&head->batch_head->batch_lock);
824                         goto unlock_out;
825                 }
826
827                 /*
828                  * at this point, head's BATCH_READY could be cleared, but we
829                  * can still add the stripe to batch list
830                  */
831                 list_add(&sh->batch_list, &head->batch_list);
832                 spin_unlock(&head->batch_head->batch_lock);
833
834                 sh->batch_head = head->batch_head;
835         } else {
836                 head->batch_head = head;
837                 sh->batch_head = head->batch_head;
838                 spin_lock(&head->batch_lock);
839                 list_add_tail(&sh->batch_list, &head->batch_list);
840                 spin_unlock(&head->batch_lock);
841         }
842
843         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
844                 if (atomic_dec_return(&conf->preread_active_stripes)
845                     < IO_THRESHOLD)
846                         md_wakeup_thread(conf->mddev->thread);
847
848         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
849                 int seq = sh->bm_seq;
850                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
851                     sh->batch_head->bm_seq > seq)
852                         seq = sh->batch_head->bm_seq;
853                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
854                 sh->batch_head->bm_seq = seq;
855         }
856
857         atomic_inc(&sh->count);
858 unlock_out:
859         unlock_two_stripes(head, sh);
860 out:
861         release_stripe(head);
862 }
863
864 /* Determine if 'data_offset' or 'new_data_offset' should be used
865  * in this stripe_head.
866  */
867 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
868 {
869         sector_t progress = conf->reshape_progress;
870         /* Need a memory barrier to make sure we see the value
871          * of conf->generation, or ->data_offset that was set before
872          * reshape_progress was updated.
873          */
874         smp_rmb();
875         if (progress == MaxSector)
876                 return 0;
877         if (sh->generation == conf->generation - 1)
878                 return 0;
879         /* We are in a reshape, and this is a new-generation stripe,
880          * so use new_data_offset.
881          */
882         return 1;
883 }
884
885 static void
886 raid5_end_read_request(struct bio *bi);
887 static void
888 raid5_end_write_request(struct bio *bi);
889
890 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
891 {
892         struct r5conf *conf = sh->raid_conf;
893         int i, disks = sh->disks;
894         struct stripe_head *head_sh = sh;
895
896         might_sleep();
897
898         for (i = disks; i--; ) {
899                 int rw;
900                 int replace_only = 0;
901                 struct bio *bi, *rbi;
902                 struct md_rdev *rdev, *rrdev = NULL;
903
904                 sh = head_sh;
905                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
906                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
907                                 rw = WRITE_FUA;
908                         else
909                                 rw = WRITE;
910                         if (test_bit(R5_Discard, &sh->dev[i].flags))
911                                 rw |= REQ_DISCARD;
912                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
913                         rw = READ;
914                 else if (test_and_clear_bit(R5_WantReplace,
915                                             &sh->dev[i].flags)) {
916                         rw = WRITE;
917                         replace_only = 1;
918                 } else
919                         continue;
920                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
921                         rw |= REQ_SYNC;
922
923 again:
924                 bi = &sh->dev[i].req;
925                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
926
927                 rcu_read_lock();
928                 rrdev = rcu_dereference(conf->disks[i].replacement);
929                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
930                 rdev = rcu_dereference(conf->disks[i].rdev);
931                 if (!rdev) {
932                         rdev = rrdev;
933                         rrdev = NULL;
934                 }
935                 if (rw & WRITE) {
936                         if (replace_only)
937                                 rdev = NULL;
938                         if (rdev == rrdev)
939                                 /* We raced and saw duplicates */
940                                 rrdev = NULL;
941                 } else {
942                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
943                                 rdev = rrdev;
944                         rrdev = NULL;
945                 }
946
947                 if (rdev && test_bit(Faulty, &rdev->flags))
948                         rdev = NULL;
949                 if (rdev)
950                         atomic_inc(&rdev->nr_pending);
951                 if (rrdev && test_bit(Faulty, &rrdev->flags))
952                         rrdev = NULL;
953                 if (rrdev)
954                         atomic_inc(&rrdev->nr_pending);
955                 rcu_read_unlock();
956
957                 /* We have already checked bad blocks for reads.  Now
958                  * need to check for writes.  We never accept write errors
959                  * on the replacement, so we don't to check rrdev.
960                  */
961                 while ((rw & WRITE) && rdev &&
962                        test_bit(WriteErrorSeen, &rdev->flags)) {
963                         sector_t first_bad;
964                         int bad_sectors;
965                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
966                                               &first_bad, &bad_sectors);
967                         if (!bad)
968                                 break;
969
970                         if (bad < 0) {
971                                 set_bit(BlockedBadBlocks, &rdev->flags);
972                                 if (!conf->mddev->external &&
973                                     conf->mddev->flags) {
974                                         /* It is very unlikely, but we might
975                                          * still need to write out the
976                                          * bad block log - better give it
977                                          * a chance*/
978                                         md_check_recovery(conf->mddev);
979                                 }
980                                 /*
981                                  * Because md_wait_for_blocked_rdev
982                                  * will dec nr_pending, we must
983                                  * increment it first.
984                                  */
985                                 atomic_inc(&rdev->nr_pending);
986                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
987                         } else {
988                                 /* Acknowledged bad block - skip the write */
989                                 rdev_dec_pending(rdev, conf->mddev);
990                                 rdev = NULL;
991                         }
992                 }
993
994                 if (rdev) {
995                         if (s->syncing || s->expanding || s->expanded
996                             || s->replacing)
997                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
998
999                         set_bit(STRIPE_IO_STARTED, &sh->state);
1000
1001                         bio_reset(bi);
1002                         bi->bi_bdev = rdev->bdev;
1003                         bi->bi_rw = rw;
1004                         bi->bi_end_io = (rw & WRITE)
1005                                 ? raid5_end_write_request
1006                                 : raid5_end_read_request;
1007                         bi->bi_private = sh;
1008
1009                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1010                                 __func__, (unsigned long long)sh->sector,
1011                                 bi->bi_rw, i);
1012                         atomic_inc(&sh->count);
1013                         if (sh != head_sh)
1014                                 atomic_inc(&head_sh->count);
1015                         if (use_new_offset(conf, sh))
1016                                 bi->bi_iter.bi_sector = (sh->sector
1017                                                  + rdev->new_data_offset);
1018                         else
1019                                 bi->bi_iter.bi_sector = (sh->sector
1020                                                  + rdev->data_offset);
1021                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1022                                 bi->bi_rw |= REQ_NOMERGE;
1023
1024                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1025                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1026                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1027                         bi->bi_vcnt = 1;
1028                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1029                         bi->bi_io_vec[0].bv_offset = 0;
1030                         bi->bi_iter.bi_size = STRIPE_SIZE;
1031                         /*
1032                          * If this is discard request, set bi_vcnt 0. We don't
1033                          * want to confuse SCSI because SCSI will replace payload
1034                          */
1035                         if (rw & REQ_DISCARD)
1036                                 bi->bi_vcnt = 0;
1037                         if (rrdev)
1038                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1039
1040                         if (conf->mddev->gendisk)
1041                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1042                                                       bi, disk_devt(conf->mddev->gendisk),
1043                                                       sh->dev[i].sector);
1044                         generic_make_request(bi);
1045                 }
1046                 if (rrdev) {
1047                         if (s->syncing || s->expanding || s->expanded
1048                             || s->replacing)
1049                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1050
1051                         set_bit(STRIPE_IO_STARTED, &sh->state);
1052
1053                         bio_reset(rbi);
1054                         rbi->bi_bdev = rrdev->bdev;
1055                         rbi->bi_rw = rw;
1056                         BUG_ON(!(rw & WRITE));
1057                         rbi->bi_end_io = raid5_end_write_request;
1058                         rbi->bi_private = sh;
1059
1060                         pr_debug("%s: for %llu schedule op %ld on "
1061                                  "replacement disc %d\n",
1062                                 __func__, (unsigned long long)sh->sector,
1063                                 rbi->bi_rw, i);
1064                         atomic_inc(&sh->count);
1065                         if (sh != head_sh)
1066                                 atomic_inc(&head_sh->count);
1067                         if (use_new_offset(conf, sh))
1068                                 rbi->bi_iter.bi_sector = (sh->sector
1069                                                   + rrdev->new_data_offset);
1070                         else
1071                                 rbi->bi_iter.bi_sector = (sh->sector
1072                                                   + rrdev->data_offset);
1073                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1074                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1075                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1076                         rbi->bi_vcnt = 1;
1077                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1078                         rbi->bi_io_vec[0].bv_offset = 0;
1079                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1080                         /*
1081                          * If this is discard request, set bi_vcnt 0. We don't
1082                          * want to confuse SCSI because SCSI will replace payload
1083                          */
1084                         if (rw & REQ_DISCARD)
1085                                 rbi->bi_vcnt = 0;
1086                         if (conf->mddev->gendisk)
1087                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1088                                                       rbi, disk_devt(conf->mddev->gendisk),
1089                                                       sh->dev[i].sector);
1090                         generic_make_request(rbi);
1091                 }
1092                 if (!rdev && !rrdev) {
1093                         if (rw & WRITE)
1094                                 set_bit(STRIPE_DEGRADED, &sh->state);
1095                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1096                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1097                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1098                         set_bit(STRIPE_HANDLE, &sh->state);
1099                 }
1100
1101                 if (!head_sh->batch_head)
1102                         continue;
1103                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1104                                       batch_list);
1105                 if (sh != head_sh)
1106                         goto again;
1107         }
1108 }
1109
1110 static struct dma_async_tx_descriptor *
1111 async_copy_data(int frombio, struct bio *bio, struct page **page,
1112         sector_t sector, struct dma_async_tx_descriptor *tx,
1113         struct stripe_head *sh)
1114 {
1115         struct bio_vec bvl;
1116         struct bvec_iter iter;
1117         struct page *bio_page;
1118         int page_offset;
1119         struct async_submit_ctl submit;
1120         enum async_tx_flags flags = 0;
1121
1122         if (bio->bi_iter.bi_sector >= sector)
1123                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1124         else
1125                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1126
1127         if (frombio)
1128                 flags |= ASYNC_TX_FENCE;
1129         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1130
1131         bio_for_each_segment(bvl, bio, iter) {
1132                 int len = bvl.bv_len;
1133                 int clen;
1134                 int b_offset = 0;
1135
1136                 if (page_offset < 0) {
1137                         b_offset = -page_offset;
1138                         page_offset += b_offset;
1139                         len -= b_offset;
1140                 }
1141
1142                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1143                         clen = STRIPE_SIZE - page_offset;
1144                 else
1145                         clen = len;
1146
1147                 if (clen > 0) {
1148                         b_offset += bvl.bv_offset;
1149                         bio_page = bvl.bv_page;
1150                         if (frombio) {
1151                                 if (sh->raid_conf->skip_copy &&
1152                                     b_offset == 0 && page_offset == 0 &&
1153                                     clen == STRIPE_SIZE)
1154                                         *page = bio_page;
1155                                 else
1156                                         tx = async_memcpy(*page, bio_page, page_offset,
1157                                                   b_offset, clen, &submit);
1158                         } else
1159                                 tx = async_memcpy(bio_page, *page, b_offset,
1160                                                   page_offset, clen, &submit);
1161                 }
1162                 /* chain the operations */
1163                 submit.depend_tx = tx;
1164
1165                 if (clen < len) /* hit end of page */
1166                         break;
1167                 page_offset +=  len;
1168         }
1169
1170         return tx;
1171 }
1172
1173 static void ops_complete_biofill(void *stripe_head_ref)
1174 {
1175         struct stripe_head *sh = stripe_head_ref;
1176         struct bio_list return_bi = BIO_EMPTY_LIST;
1177         int i;
1178
1179         pr_debug("%s: stripe %llu\n", __func__,
1180                 (unsigned long long)sh->sector);
1181
1182         /* clear completed biofills */
1183         for (i = sh->disks; i--; ) {
1184                 struct r5dev *dev = &sh->dev[i];
1185
1186                 /* acknowledge completion of a biofill operation */
1187                 /* and check if we need to reply to a read request,
1188                  * new R5_Wantfill requests are held off until
1189                  * !STRIPE_BIOFILL_RUN
1190                  */
1191                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1192                         struct bio *rbi, *rbi2;
1193
1194                         BUG_ON(!dev->read);
1195                         rbi = dev->read;
1196                         dev->read = NULL;
1197                         while (rbi && rbi->bi_iter.bi_sector <
1198                                 dev->sector + STRIPE_SECTORS) {
1199                                 rbi2 = r5_next_bio(rbi, dev->sector);
1200                                 if (!raid5_dec_bi_active_stripes(rbi))
1201                                         bio_list_add(&return_bi, rbi);
1202                                 rbi = rbi2;
1203                         }
1204                 }
1205         }
1206         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1207
1208         return_io(&return_bi);
1209
1210         set_bit(STRIPE_HANDLE, &sh->state);
1211         release_stripe(sh);
1212 }
1213
1214 static void ops_run_biofill(struct stripe_head *sh)
1215 {
1216         struct dma_async_tx_descriptor *tx = NULL;
1217         struct async_submit_ctl submit;
1218         int i;
1219
1220         BUG_ON(sh->batch_head);
1221         pr_debug("%s: stripe %llu\n", __func__,
1222                 (unsigned long long)sh->sector);
1223
1224         for (i = sh->disks; i--; ) {
1225                 struct r5dev *dev = &sh->dev[i];
1226                 if (test_bit(R5_Wantfill, &dev->flags)) {
1227                         struct bio *rbi;
1228                         spin_lock_irq(&sh->stripe_lock);
1229                         dev->read = rbi = dev->toread;
1230                         dev->toread = NULL;
1231                         spin_unlock_irq(&sh->stripe_lock);
1232                         while (rbi && rbi->bi_iter.bi_sector <
1233                                 dev->sector + STRIPE_SECTORS) {
1234                                 tx = async_copy_data(0, rbi, &dev->page,
1235                                         dev->sector, tx, sh);
1236                                 rbi = r5_next_bio(rbi, dev->sector);
1237                         }
1238                 }
1239         }
1240
1241         atomic_inc(&sh->count);
1242         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1243         async_trigger_callback(&submit);
1244 }
1245
1246 static void mark_target_uptodate(struct stripe_head *sh, int target)
1247 {
1248         struct r5dev *tgt;
1249
1250         if (target < 0)
1251                 return;
1252
1253         tgt = &sh->dev[target];
1254         set_bit(R5_UPTODATE, &tgt->flags);
1255         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1256         clear_bit(R5_Wantcompute, &tgt->flags);
1257 }
1258
1259 static void ops_complete_compute(void *stripe_head_ref)
1260 {
1261         struct stripe_head *sh = stripe_head_ref;
1262
1263         pr_debug("%s: stripe %llu\n", __func__,
1264                 (unsigned long long)sh->sector);
1265
1266         /* mark the computed target(s) as uptodate */
1267         mark_target_uptodate(sh, sh->ops.target);
1268         mark_target_uptodate(sh, sh->ops.target2);
1269
1270         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1271         if (sh->check_state == check_state_compute_run)
1272                 sh->check_state = check_state_compute_result;
1273         set_bit(STRIPE_HANDLE, &sh->state);
1274         release_stripe(sh);
1275 }
1276
1277 /* return a pointer to the address conversion region of the scribble buffer */
1278 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1279                                  struct raid5_percpu *percpu, int i)
1280 {
1281         void *addr;
1282
1283         addr = flex_array_get(percpu->scribble, i);
1284         return addr + sizeof(struct page *) * (sh->disks + 2);
1285 }
1286
1287 /* return a pointer to the address conversion region of the scribble buffer */
1288 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1289 {
1290         void *addr;
1291
1292         addr = flex_array_get(percpu->scribble, i);
1293         return addr;
1294 }
1295
1296 static struct dma_async_tx_descriptor *
1297 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1298 {
1299         int disks = sh->disks;
1300         struct page **xor_srcs = to_addr_page(percpu, 0);
1301         int target = sh->ops.target;
1302         struct r5dev *tgt = &sh->dev[target];
1303         struct page *xor_dest = tgt->page;
1304         int count = 0;
1305         struct dma_async_tx_descriptor *tx;
1306         struct async_submit_ctl submit;
1307         int i;
1308
1309         BUG_ON(sh->batch_head);
1310
1311         pr_debug("%s: stripe %llu block: %d\n",
1312                 __func__, (unsigned long long)sh->sector, target);
1313         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1314
1315         for (i = disks; i--; )
1316                 if (i != target)
1317                         xor_srcs[count++] = sh->dev[i].page;
1318
1319         atomic_inc(&sh->count);
1320
1321         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1322                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1323         if (unlikely(count == 1))
1324                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325         else
1326                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327
1328         return tx;
1329 }
1330
1331 /* set_syndrome_sources - populate source buffers for gen_syndrome
1332  * @srcs - (struct page *) array of size sh->disks
1333  * @sh - stripe_head to parse
1334  *
1335  * Populates srcs in proper layout order for the stripe and returns the
1336  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1337  * destination buffer is recorded in srcs[count] and the Q destination
1338  * is recorded in srcs[count+1]].
1339  */
1340 static int set_syndrome_sources(struct page **srcs,
1341                                 struct stripe_head *sh,
1342                                 int srctype)
1343 {
1344         int disks = sh->disks;
1345         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1346         int d0_idx = raid6_d0(sh);
1347         int count;
1348         int i;
1349
1350         for (i = 0; i < disks; i++)
1351                 srcs[i] = NULL;
1352
1353         count = 0;
1354         i = d0_idx;
1355         do {
1356                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1357                 struct r5dev *dev = &sh->dev[i];
1358
1359                 if (i == sh->qd_idx || i == sh->pd_idx ||
1360                     (srctype == SYNDROME_SRC_ALL) ||
1361                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1362                      test_bit(R5_Wantdrain, &dev->flags)) ||
1363                     (srctype == SYNDROME_SRC_WRITTEN &&
1364                      dev->written))
1365                         srcs[slot] = sh->dev[i].page;
1366                 i = raid6_next_disk(i, disks);
1367         } while (i != d0_idx);
1368
1369         return syndrome_disks;
1370 }
1371
1372 static struct dma_async_tx_descriptor *
1373 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1374 {
1375         int disks = sh->disks;
1376         struct page **blocks = to_addr_page(percpu, 0);
1377         int target;
1378         int qd_idx = sh->qd_idx;
1379         struct dma_async_tx_descriptor *tx;
1380         struct async_submit_ctl submit;
1381         struct r5dev *tgt;
1382         struct page *dest;
1383         int i;
1384         int count;
1385
1386         BUG_ON(sh->batch_head);
1387         if (sh->ops.target < 0)
1388                 target = sh->ops.target2;
1389         else if (sh->ops.target2 < 0)
1390                 target = sh->ops.target;
1391         else
1392                 /* we should only have one valid target */
1393                 BUG();
1394         BUG_ON(target < 0);
1395         pr_debug("%s: stripe %llu block: %d\n",
1396                 __func__, (unsigned long long)sh->sector, target);
1397
1398         tgt = &sh->dev[target];
1399         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1400         dest = tgt->page;
1401
1402         atomic_inc(&sh->count);
1403
1404         if (target == qd_idx) {
1405                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1406                 blocks[count] = NULL; /* regenerating p is not necessary */
1407                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1408                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1409                                   ops_complete_compute, sh,
1410                                   to_addr_conv(sh, percpu, 0));
1411                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1412         } else {
1413                 /* Compute any data- or p-drive using XOR */
1414                 count = 0;
1415                 for (i = disks; i-- ; ) {
1416                         if (i == target || i == qd_idx)
1417                                 continue;
1418                         blocks[count++] = sh->dev[i].page;
1419                 }
1420
1421                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1422                                   NULL, ops_complete_compute, sh,
1423                                   to_addr_conv(sh, percpu, 0));
1424                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1425         }
1426
1427         return tx;
1428 }
1429
1430 static struct dma_async_tx_descriptor *
1431 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1432 {
1433         int i, count, disks = sh->disks;
1434         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1435         int d0_idx = raid6_d0(sh);
1436         int faila = -1, failb = -1;
1437         int target = sh->ops.target;
1438         int target2 = sh->ops.target2;
1439         struct r5dev *tgt = &sh->dev[target];
1440         struct r5dev *tgt2 = &sh->dev[target2];
1441         struct dma_async_tx_descriptor *tx;
1442         struct page **blocks = to_addr_page(percpu, 0);
1443         struct async_submit_ctl submit;
1444
1445         BUG_ON(sh->batch_head);
1446         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1447                  __func__, (unsigned long long)sh->sector, target, target2);
1448         BUG_ON(target < 0 || target2 < 0);
1449         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1450         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1451
1452         /* we need to open-code set_syndrome_sources to handle the
1453          * slot number conversion for 'faila' and 'failb'
1454          */
1455         for (i = 0; i < disks ; i++)
1456                 blocks[i] = NULL;
1457         count = 0;
1458         i = d0_idx;
1459         do {
1460                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1461
1462                 blocks[slot] = sh->dev[i].page;
1463
1464                 if (i == target)
1465                         faila = slot;
1466                 if (i == target2)
1467                         failb = slot;
1468                 i = raid6_next_disk(i, disks);
1469         } while (i != d0_idx);
1470
1471         BUG_ON(faila == failb);
1472         if (failb < faila)
1473                 swap(faila, failb);
1474         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1475                  __func__, (unsigned long long)sh->sector, faila, failb);
1476
1477         atomic_inc(&sh->count);
1478
1479         if (failb == syndrome_disks+1) {
1480                 /* Q disk is one of the missing disks */
1481                 if (faila == syndrome_disks) {
1482                         /* Missing P+Q, just recompute */
1483                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1484                                           ops_complete_compute, sh,
1485                                           to_addr_conv(sh, percpu, 0));
1486                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1487                                                   STRIPE_SIZE, &submit);
1488                 } else {
1489                         struct page *dest;
1490                         int data_target;
1491                         int qd_idx = sh->qd_idx;
1492
1493                         /* Missing D+Q: recompute D from P, then recompute Q */
1494                         if (target == qd_idx)
1495                                 data_target = target2;
1496                         else
1497                                 data_target = target;
1498
1499                         count = 0;
1500                         for (i = disks; i-- ; ) {
1501                                 if (i == data_target || i == qd_idx)
1502                                         continue;
1503                                 blocks[count++] = sh->dev[i].page;
1504                         }
1505                         dest = sh->dev[data_target].page;
1506                         init_async_submit(&submit,
1507                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1508                                           NULL, NULL, NULL,
1509                                           to_addr_conv(sh, percpu, 0));
1510                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1511                                        &submit);
1512
1513                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1514                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1515                                           ops_complete_compute, sh,
1516                                           to_addr_conv(sh, percpu, 0));
1517                         return async_gen_syndrome(blocks, 0, count+2,
1518                                                   STRIPE_SIZE, &submit);
1519                 }
1520         } else {
1521                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1522                                   ops_complete_compute, sh,
1523                                   to_addr_conv(sh, percpu, 0));
1524                 if (failb == syndrome_disks) {
1525                         /* We're missing D+P. */
1526                         return async_raid6_datap_recov(syndrome_disks+2,
1527                                                        STRIPE_SIZE, faila,
1528                                                        blocks, &submit);
1529                 } else {
1530                         /* We're missing D+D. */
1531                         return async_raid6_2data_recov(syndrome_disks+2,
1532                                                        STRIPE_SIZE, faila, failb,
1533                                                        blocks, &submit);
1534                 }
1535         }
1536 }
1537
1538 static void ops_complete_prexor(void *stripe_head_ref)
1539 {
1540         struct stripe_head *sh = stripe_head_ref;
1541
1542         pr_debug("%s: stripe %llu\n", __func__,
1543                 (unsigned long long)sh->sector);
1544 }
1545
1546 static struct dma_async_tx_descriptor *
1547 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1548                 struct dma_async_tx_descriptor *tx)
1549 {
1550         int disks = sh->disks;
1551         struct page **xor_srcs = to_addr_page(percpu, 0);
1552         int count = 0, pd_idx = sh->pd_idx, i;
1553         struct async_submit_ctl submit;
1554
1555         /* existing parity data subtracted */
1556         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1557
1558         BUG_ON(sh->batch_head);
1559         pr_debug("%s: stripe %llu\n", __func__,
1560                 (unsigned long long)sh->sector);
1561
1562         for (i = disks; i--; ) {
1563                 struct r5dev *dev = &sh->dev[i];
1564                 /* Only process blocks that are known to be uptodate */
1565                 if (test_bit(R5_Wantdrain, &dev->flags))
1566                         xor_srcs[count++] = dev->page;
1567         }
1568
1569         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1570                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1572
1573         return tx;
1574 }
1575
1576 static struct dma_async_tx_descriptor *
1577 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1578                 struct dma_async_tx_descriptor *tx)
1579 {
1580         struct page **blocks = to_addr_page(percpu, 0);
1581         int count;
1582         struct async_submit_ctl submit;
1583
1584         pr_debug("%s: stripe %llu\n", __func__,
1585                 (unsigned long long)sh->sector);
1586
1587         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1588
1589         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1590                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1591         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1592
1593         return tx;
1594 }
1595
1596 static struct dma_async_tx_descriptor *
1597 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1598 {
1599         int disks = sh->disks;
1600         int i;
1601         struct stripe_head *head_sh = sh;
1602
1603         pr_debug("%s: stripe %llu\n", __func__,
1604                 (unsigned long long)sh->sector);
1605
1606         for (i = disks; i--; ) {
1607                 struct r5dev *dev;
1608                 struct bio *chosen;
1609
1610                 sh = head_sh;
1611                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1612                         struct bio *wbi;
1613
1614 again:
1615                         dev = &sh->dev[i];
1616                         spin_lock_irq(&sh->stripe_lock);
1617                         chosen = dev->towrite;
1618                         dev->towrite = NULL;
1619                         sh->overwrite_disks = 0;
1620                         BUG_ON(dev->written);
1621                         wbi = dev->written = chosen;
1622                         spin_unlock_irq(&sh->stripe_lock);
1623                         WARN_ON(dev->page != dev->orig_page);
1624
1625                         while (wbi && wbi->bi_iter.bi_sector <
1626                                 dev->sector + STRIPE_SECTORS) {
1627                                 if (wbi->bi_rw & REQ_FUA)
1628                                         set_bit(R5_WantFUA, &dev->flags);
1629                                 if (wbi->bi_rw & REQ_SYNC)
1630                                         set_bit(R5_SyncIO, &dev->flags);
1631                                 if (wbi->bi_rw & REQ_DISCARD)
1632                                         set_bit(R5_Discard, &dev->flags);
1633                                 else {
1634                                         tx = async_copy_data(1, wbi, &dev->page,
1635                                                 dev->sector, tx, sh);
1636                                         if (dev->page != dev->orig_page) {
1637                                                 set_bit(R5_SkipCopy, &dev->flags);
1638                                                 clear_bit(R5_UPTODATE, &dev->flags);
1639                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1640                                         }
1641                                 }
1642                                 wbi = r5_next_bio(wbi, dev->sector);
1643                         }
1644
1645                         if (head_sh->batch_head) {
1646                                 sh = list_first_entry(&sh->batch_list,
1647                                                       struct stripe_head,
1648                                                       batch_list);
1649                                 if (sh == head_sh)
1650                                         continue;
1651                                 goto again;
1652                         }
1653                 }
1654         }
1655
1656         return tx;
1657 }
1658
1659 static void ops_complete_reconstruct(void *stripe_head_ref)
1660 {
1661         struct stripe_head *sh = stripe_head_ref;
1662         int disks = sh->disks;
1663         int pd_idx = sh->pd_idx;
1664         int qd_idx = sh->qd_idx;
1665         int i;
1666         bool fua = false, sync = false, discard = false;
1667
1668         pr_debug("%s: stripe %llu\n", __func__,
1669                 (unsigned long long)sh->sector);
1670
1671         for (i = disks; i--; ) {
1672                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1673                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1674                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1675         }
1676
1677         for (i = disks; i--; ) {
1678                 struct r5dev *dev = &sh->dev[i];
1679
1680                 if (dev->written || i == pd_idx || i == qd_idx) {
1681                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1682                                 set_bit(R5_UPTODATE, &dev->flags);
1683                         if (fua)
1684                                 set_bit(R5_WantFUA, &dev->flags);
1685                         if (sync)
1686                                 set_bit(R5_SyncIO, &dev->flags);
1687                 }
1688         }
1689
1690         if (sh->reconstruct_state == reconstruct_state_drain_run)
1691                 sh->reconstruct_state = reconstruct_state_drain_result;
1692         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1693                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1694         else {
1695                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1696                 sh->reconstruct_state = reconstruct_state_result;
1697         }
1698
1699         set_bit(STRIPE_HANDLE, &sh->state);
1700         release_stripe(sh);
1701 }
1702
1703 static void
1704 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1705                      struct dma_async_tx_descriptor *tx)
1706 {
1707         int disks = sh->disks;
1708         struct page **xor_srcs;
1709         struct async_submit_ctl submit;
1710         int count, pd_idx = sh->pd_idx, i;
1711         struct page *xor_dest;
1712         int prexor = 0;
1713         unsigned long flags;
1714         int j = 0;
1715         struct stripe_head *head_sh = sh;
1716         int last_stripe;
1717
1718         pr_debug("%s: stripe %llu\n", __func__,
1719                 (unsigned long long)sh->sector);
1720
1721         for (i = 0; i < sh->disks; i++) {
1722                 if (pd_idx == i)
1723                         continue;
1724                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1725                         break;
1726         }
1727         if (i >= sh->disks) {
1728                 atomic_inc(&sh->count);
1729                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1730                 ops_complete_reconstruct(sh);
1731                 return;
1732         }
1733 again:
1734         count = 0;
1735         xor_srcs = to_addr_page(percpu, j);
1736         /* check if prexor is active which means only process blocks
1737          * that are part of a read-modify-write (written)
1738          */
1739         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1740                 prexor = 1;
1741                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1742                 for (i = disks; i--; ) {
1743                         struct r5dev *dev = &sh->dev[i];
1744                         if (head_sh->dev[i].written)
1745                                 xor_srcs[count++] = dev->page;
1746                 }
1747         } else {
1748                 xor_dest = sh->dev[pd_idx].page;
1749                 for (i = disks; i--; ) {
1750                         struct r5dev *dev = &sh->dev[i];
1751                         if (i != pd_idx)
1752                                 xor_srcs[count++] = dev->page;
1753                 }
1754         }
1755
1756         /* 1/ if we prexor'd then the dest is reused as a source
1757          * 2/ if we did not prexor then we are redoing the parity
1758          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1759          * for the synchronous xor case
1760          */
1761         last_stripe = !head_sh->batch_head ||
1762                 list_first_entry(&sh->batch_list,
1763                                  struct stripe_head, batch_list) == head_sh;
1764         if (last_stripe) {
1765                 flags = ASYNC_TX_ACK |
1766                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1767
1768                 atomic_inc(&head_sh->count);
1769                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1770                                   to_addr_conv(sh, percpu, j));
1771         } else {
1772                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1773                 init_async_submit(&submit, flags, tx, NULL, NULL,
1774                                   to_addr_conv(sh, percpu, j));
1775         }
1776
1777         if (unlikely(count == 1))
1778                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1779         else
1780                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1781         if (!last_stripe) {
1782                 j++;
1783                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1784                                       batch_list);
1785                 goto again;
1786         }
1787 }
1788
1789 static void
1790 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1791                      struct dma_async_tx_descriptor *tx)
1792 {
1793         struct async_submit_ctl submit;
1794         struct page **blocks;
1795         int count, i, j = 0;
1796         struct stripe_head *head_sh = sh;
1797         int last_stripe;
1798         int synflags;
1799         unsigned long txflags;
1800
1801         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1802
1803         for (i = 0; i < sh->disks; i++) {
1804                 if (sh->pd_idx == i || sh->qd_idx == i)
1805                         continue;
1806                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1807                         break;
1808         }
1809         if (i >= sh->disks) {
1810                 atomic_inc(&sh->count);
1811                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1812                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1813                 ops_complete_reconstruct(sh);
1814                 return;
1815         }
1816
1817 again:
1818         blocks = to_addr_page(percpu, j);
1819
1820         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1821                 synflags = SYNDROME_SRC_WRITTEN;
1822                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1823         } else {
1824                 synflags = SYNDROME_SRC_ALL;
1825                 txflags = ASYNC_TX_ACK;
1826         }
1827
1828         count = set_syndrome_sources(blocks, sh, synflags);
1829         last_stripe = !head_sh->batch_head ||
1830                 list_first_entry(&sh->batch_list,
1831                                  struct stripe_head, batch_list) == head_sh;
1832
1833         if (last_stripe) {
1834                 atomic_inc(&head_sh->count);
1835                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1836                                   head_sh, to_addr_conv(sh, percpu, j));
1837         } else
1838                 init_async_submit(&submit, 0, tx, NULL, NULL,
1839                                   to_addr_conv(sh, percpu, j));
1840         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1841         if (!last_stripe) {
1842                 j++;
1843                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1844                                       batch_list);
1845                 goto again;
1846         }
1847 }
1848
1849 static void ops_complete_check(void *stripe_head_ref)
1850 {
1851         struct stripe_head *sh = stripe_head_ref;
1852
1853         pr_debug("%s: stripe %llu\n", __func__,
1854                 (unsigned long long)sh->sector);
1855
1856         sh->check_state = check_state_check_result;
1857         set_bit(STRIPE_HANDLE, &sh->state);
1858         release_stripe(sh);
1859 }
1860
1861 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1862 {
1863         int disks = sh->disks;
1864         int pd_idx = sh->pd_idx;
1865         int qd_idx = sh->qd_idx;
1866         struct page *xor_dest;
1867         struct page **xor_srcs = to_addr_page(percpu, 0);
1868         struct dma_async_tx_descriptor *tx;
1869         struct async_submit_ctl submit;
1870         int count;
1871         int i;
1872
1873         pr_debug("%s: stripe %llu\n", __func__,
1874                 (unsigned long long)sh->sector);
1875
1876         BUG_ON(sh->batch_head);
1877         count = 0;
1878         xor_dest = sh->dev[pd_idx].page;
1879         xor_srcs[count++] = xor_dest;
1880         for (i = disks; i--; ) {
1881                 if (i == pd_idx || i == qd_idx)
1882                         continue;
1883                 xor_srcs[count++] = sh->dev[i].page;
1884         }
1885
1886         init_async_submit(&submit, 0, NULL, NULL, NULL,
1887                           to_addr_conv(sh, percpu, 0));
1888         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1889                            &sh->ops.zero_sum_result, &submit);
1890
1891         atomic_inc(&sh->count);
1892         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1893         tx = async_trigger_callback(&submit);
1894 }
1895
1896 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1897 {
1898         struct page **srcs = to_addr_page(percpu, 0);
1899         struct async_submit_ctl submit;
1900         int count;
1901
1902         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1903                 (unsigned long long)sh->sector, checkp);
1904
1905         BUG_ON(sh->batch_head);
1906         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1907         if (!checkp)
1908                 srcs[count] = NULL;
1909
1910         atomic_inc(&sh->count);
1911         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1912                           sh, to_addr_conv(sh, percpu, 0));
1913         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1914                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1915 }
1916
1917 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1918 {
1919         int overlap_clear = 0, i, disks = sh->disks;
1920         struct dma_async_tx_descriptor *tx = NULL;
1921         struct r5conf *conf = sh->raid_conf;
1922         int level = conf->level;
1923         struct raid5_percpu *percpu;
1924         unsigned long cpu;
1925
1926         cpu = get_cpu();
1927         percpu = per_cpu_ptr(conf->percpu, cpu);
1928         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1929                 ops_run_biofill(sh);
1930                 overlap_clear++;
1931         }
1932
1933         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1934                 if (level < 6)
1935                         tx = ops_run_compute5(sh, percpu);
1936                 else {
1937                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1938                                 tx = ops_run_compute6_1(sh, percpu);
1939                         else
1940                                 tx = ops_run_compute6_2(sh, percpu);
1941                 }
1942                 /* terminate the chain if reconstruct is not set to be run */
1943                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1944                         async_tx_ack(tx);
1945         }
1946
1947         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1948                 if (level < 6)
1949                         tx = ops_run_prexor5(sh, percpu, tx);
1950                 else
1951                         tx = ops_run_prexor6(sh, percpu, tx);
1952         }
1953
1954         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1955                 tx = ops_run_biodrain(sh, tx);
1956                 overlap_clear++;
1957         }
1958
1959         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1960                 if (level < 6)
1961                         ops_run_reconstruct5(sh, percpu, tx);
1962                 else
1963                         ops_run_reconstruct6(sh, percpu, tx);
1964         }
1965
1966         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1967                 if (sh->check_state == check_state_run)
1968                         ops_run_check_p(sh, percpu);
1969                 else if (sh->check_state == check_state_run_q)
1970                         ops_run_check_pq(sh, percpu, 0);
1971                 else if (sh->check_state == check_state_run_pq)
1972                         ops_run_check_pq(sh, percpu, 1);
1973                 else
1974                         BUG();
1975         }
1976
1977         if (overlap_clear && !sh->batch_head)
1978                 for (i = disks; i--; ) {
1979                         struct r5dev *dev = &sh->dev[i];
1980                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1981                                 wake_up(&sh->raid_conf->wait_for_overlap);
1982                 }
1983         put_cpu();
1984 }
1985
1986 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1987 {
1988         struct stripe_head *sh;
1989
1990         sh = kmem_cache_zalloc(sc, gfp);
1991         if (sh) {
1992                 spin_lock_init(&sh->stripe_lock);
1993                 spin_lock_init(&sh->batch_lock);
1994                 INIT_LIST_HEAD(&sh->batch_list);
1995                 INIT_LIST_HEAD(&sh->lru);
1996                 atomic_set(&sh->count, 1);
1997         }
1998         return sh;
1999 }
2000 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2001 {
2002         struct stripe_head *sh;
2003
2004         sh = alloc_stripe(conf->slab_cache, gfp);
2005         if (!sh)
2006                 return 0;
2007
2008         sh->raid_conf = conf;
2009
2010         if (grow_buffers(sh, gfp)) {
2011                 shrink_buffers(sh);
2012                 kmem_cache_free(conf->slab_cache, sh);
2013                 return 0;
2014         }
2015         sh->hash_lock_index =
2016                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2017         /* we just created an active stripe so... */
2018         atomic_inc(&conf->active_stripes);
2019
2020         release_stripe(sh);
2021         conf->max_nr_stripes++;
2022         return 1;
2023 }
2024
2025 static int grow_stripes(struct r5conf *conf, int num)
2026 {
2027         struct kmem_cache *sc;
2028         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2029
2030         if (conf->mddev->gendisk)
2031                 sprintf(conf->cache_name[0],
2032                         "raid%d-%s", conf->level, mdname(conf->mddev));
2033         else
2034                 sprintf(conf->cache_name[0],
2035                         "raid%d-%p", conf->level, conf->mddev);
2036         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2037
2038         conf->active_name = 0;
2039         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2040                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2041                                0, 0, NULL);
2042         if (!sc)
2043                 return 1;
2044         conf->slab_cache = sc;
2045         conf->pool_size = devs;
2046         while (num--)
2047                 if (!grow_one_stripe(conf, GFP_KERNEL))
2048                         return 1;
2049
2050         return 0;
2051 }
2052
2053 /**
2054  * scribble_len - return the required size of the scribble region
2055  * @num - total number of disks in the array
2056  *
2057  * The size must be enough to contain:
2058  * 1/ a struct page pointer for each device in the array +2
2059  * 2/ room to convert each entry in (1) to its corresponding dma
2060  *    (dma_map_page()) or page (page_address()) address.
2061  *
2062  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2063  * calculate over all devices (not just the data blocks), using zeros in place
2064  * of the P and Q blocks.
2065  */
2066 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2067 {
2068         struct flex_array *ret;
2069         size_t len;
2070
2071         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2072         ret = flex_array_alloc(len, cnt, flags);
2073         if (!ret)
2074                 return NULL;
2075         /* always prealloc all elements, so no locking is required */
2076         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2077                 flex_array_free(ret);
2078                 return NULL;
2079         }
2080         return ret;
2081 }
2082
2083 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2084 {
2085         unsigned long cpu;
2086         int err = 0;
2087
2088         mddev_suspend(conf->mddev);
2089         get_online_cpus();
2090         for_each_present_cpu(cpu) {
2091                 struct raid5_percpu *percpu;
2092                 struct flex_array *scribble;
2093
2094                 percpu = per_cpu_ptr(conf->percpu, cpu);
2095                 scribble = scribble_alloc(new_disks,
2096                                           new_sectors / STRIPE_SECTORS,
2097                                           GFP_NOIO);
2098
2099                 if (scribble) {
2100                         flex_array_free(percpu->scribble);
2101                         percpu->scribble = scribble;
2102                 } else {
2103                         err = -ENOMEM;
2104                         break;
2105                 }
2106         }
2107         put_online_cpus();
2108         mddev_resume(conf->mddev);
2109         return err;
2110 }
2111
2112 static int resize_stripes(struct r5conf *conf, int newsize)
2113 {
2114         /* Make all the stripes able to hold 'newsize' devices.
2115          * New slots in each stripe get 'page' set to a new page.
2116          *
2117          * This happens in stages:
2118          * 1/ create a new kmem_cache and allocate the required number of
2119          *    stripe_heads.
2120          * 2/ gather all the old stripe_heads and transfer the pages across
2121          *    to the new stripe_heads.  This will have the side effect of
2122          *    freezing the array as once all stripe_heads have been collected,
2123          *    no IO will be possible.  Old stripe heads are freed once their
2124          *    pages have been transferred over, and the old kmem_cache is
2125          *    freed when all stripes are done.
2126          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2127          *    we simple return a failre status - no need to clean anything up.
2128          * 4/ allocate new pages for the new slots in the new stripe_heads.
2129          *    If this fails, we don't bother trying the shrink the
2130          *    stripe_heads down again, we just leave them as they are.
2131          *    As each stripe_head is processed the new one is released into
2132          *    active service.
2133          *
2134          * Once step2 is started, we cannot afford to wait for a write,
2135          * so we use GFP_NOIO allocations.
2136          */
2137         struct stripe_head *osh, *nsh;
2138         LIST_HEAD(newstripes);
2139         struct disk_info *ndisks;
2140         int err;
2141         struct kmem_cache *sc;
2142         int i;
2143         int hash, cnt;
2144
2145         if (newsize <= conf->pool_size)
2146                 return 0; /* never bother to shrink */
2147
2148         err = md_allow_write(conf->mddev);
2149         if (err)
2150                 return err;
2151
2152         /* Step 1 */
2153         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2154                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2155                                0, 0, NULL);
2156         if (!sc)
2157                 return -ENOMEM;
2158
2159         /* Need to ensure auto-resizing doesn't interfere */
2160         mutex_lock(&conf->cache_size_mutex);
2161
2162         for (i = conf->max_nr_stripes; i; i--) {
2163                 nsh = alloc_stripe(sc, GFP_KERNEL);
2164                 if (!nsh)
2165                         break;
2166
2167                 nsh->raid_conf = conf;
2168                 list_add(&nsh->lru, &newstripes);
2169         }
2170         if (i) {
2171                 /* didn't get enough, give up */
2172                 while (!list_empty(&newstripes)) {
2173                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2174                         list_del(&nsh->lru);
2175                         kmem_cache_free(sc, nsh);
2176                 }
2177                 kmem_cache_destroy(sc);
2178                 mutex_unlock(&conf->cache_size_mutex);
2179                 return -ENOMEM;
2180         }
2181         /* Step 2 - Must use GFP_NOIO now.
2182          * OK, we have enough stripes, start collecting inactive
2183          * stripes and copying them over
2184          */
2185         hash = 0;
2186         cnt = 0;
2187         list_for_each_entry(nsh, &newstripes, lru) {
2188                 lock_device_hash_lock(conf, hash);
2189                 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2190                                     !list_empty(conf->inactive_list + hash),
2191                                     unlock_device_hash_lock(conf, hash),
2192                                     lock_device_hash_lock(conf, hash));
2193                 osh = get_free_stripe(conf, hash);
2194                 unlock_device_hash_lock(conf, hash);
2195
2196                 for(i=0; i<conf->pool_size; i++) {
2197                         nsh->dev[i].page = osh->dev[i].page;
2198                         nsh->dev[i].orig_page = osh->dev[i].page;
2199                 }
2200                 nsh->hash_lock_index = hash;
2201                 kmem_cache_free(conf->slab_cache, osh);
2202                 cnt++;
2203                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2204                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2205                         hash++;
2206                         cnt = 0;
2207                 }
2208         }
2209         kmem_cache_destroy(conf->slab_cache);
2210
2211         /* Step 3.
2212          * At this point, we are holding all the stripes so the array
2213          * is completely stalled, so now is a good time to resize
2214          * conf->disks and the scribble region
2215          */
2216         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2217         if (ndisks) {
2218                 for (i=0; i<conf->raid_disks; i++)
2219                         ndisks[i] = conf->disks[i];
2220                 kfree(conf->disks);
2221                 conf->disks = ndisks;
2222         } else
2223                 err = -ENOMEM;
2224
2225         mutex_unlock(&conf->cache_size_mutex);
2226         /* Step 4, return new stripes to service */
2227         while(!list_empty(&newstripes)) {
2228                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2229                 list_del_init(&nsh->lru);
2230
2231                 for (i=conf->raid_disks; i < newsize; i++)
2232                         if (nsh->dev[i].page == NULL) {
2233                                 struct page *p = alloc_page(GFP_NOIO);
2234                                 nsh->dev[i].page = p;
2235                                 nsh->dev[i].orig_page = p;
2236                                 if (!p)
2237                                         err = -ENOMEM;
2238                         }
2239                 release_stripe(nsh);
2240         }
2241         /* critical section pass, GFP_NOIO no longer needed */
2242
2243         conf->slab_cache = sc;
2244         conf->active_name = 1-conf->active_name;
2245         if (!err)
2246                 conf->pool_size = newsize;
2247         return err;
2248 }
2249
2250 static int drop_one_stripe(struct r5conf *conf)
2251 {
2252         struct stripe_head *sh;
2253         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2254
2255         spin_lock_irq(conf->hash_locks + hash);
2256         sh = get_free_stripe(conf, hash);
2257         spin_unlock_irq(conf->hash_locks + hash);
2258         if (!sh)
2259                 return 0;
2260         BUG_ON(atomic_read(&sh->count));
2261         shrink_buffers(sh);
2262         kmem_cache_free(conf->slab_cache, sh);
2263         atomic_dec(&conf->active_stripes);
2264         conf->max_nr_stripes--;
2265         return 1;
2266 }
2267
2268 static void shrink_stripes(struct r5conf *conf)
2269 {
2270         while (conf->max_nr_stripes &&
2271                drop_one_stripe(conf))
2272                 ;
2273
2274         if (conf->slab_cache)
2275                 kmem_cache_destroy(conf->slab_cache);
2276         conf->slab_cache = NULL;
2277 }
2278
2279 static void raid5_end_read_request(struct bio * bi)
2280 {
2281         struct stripe_head *sh = bi->bi_private;
2282         struct r5conf *conf = sh->raid_conf;
2283         int disks = sh->disks, i;
2284         char b[BDEVNAME_SIZE];
2285         struct md_rdev *rdev = NULL;
2286         sector_t s;
2287
2288         for (i=0 ; i<disks; i++)
2289                 if (bi == &sh->dev[i].req)
2290                         break;
2291
2292         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2293                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2294                 bi->bi_error);
2295         if (i == disks) {
2296                 BUG();
2297                 return;
2298         }
2299         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2300                 /* If replacement finished while this request was outstanding,
2301                  * 'replacement' might be NULL already.
2302                  * In that case it moved down to 'rdev'.
2303                  * rdev is not removed until all requests are finished.
2304                  */
2305                 rdev = conf->disks[i].replacement;
2306         if (!rdev)
2307                 rdev = conf->disks[i].rdev;
2308
2309         if (use_new_offset(conf, sh))
2310                 s = sh->sector + rdev->new_data_offset;
2311         else
2312                 s = sh->sector + rdev->data_offset;
2313         if (!bi->bi_error) {
2314                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2315                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2316                         /* Note that this cannot happen on a
2317                          * replacement device.  We just fail those on
2318                          * any error
2319                          */
2320                         printk_ratelimited(
2321                                 KERN_INFO
2322                                 "md/raid:%s: read error corrected"
2323                                 " (%lu sectors at %llu on %s)\n",
2324                                 mdname(conf->mddev), STRIPE_SECTORS,
2325                                 (unsigned long long)s,
2326                                 bdevname(rdev->bdev, b));
2327                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2328                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2329                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2330                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2331                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2332
2333                 if (atomic_read(&rdev->read_errors))
2334                         atomic_set(&rdev->read_errors, 0);
2335         } else {
2336                 const char *bdn = bdevname(rdev->bdev, b);
2337                 int retry = 0;
2338                 int set_bad = 0;
2339
2340                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2341                 atomic_inc(&rdev->read_errors);
2342                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2343                         printk_ratelimited(
2344                                 KERN_WARNING
2345                                 "md/raid:%s: read error on replacement device "
2346                                 "(sector %llu on %s).\n",
2347                                 mdname(conf->mddev),
2348                                 (unsigned long long)s,
2349                                 bdn);
2350                 else if (conf->mddev->degraded >= conf->max_degraded) {
2351                         set_bad = 1;
2352                         printk_ratelimited(
2353                                 KERN_WARNING
2354                                 "md/raid:%s: read error not correctable "
2355                                 "(sector %llu on %s).\n",
2356                                 mdname(conf->mddev),
2357                                 (unsigned long long)s,
2358                                 bdn);
2359                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2360                         /* Oh, no!!! */
2361                         set_bad = 1;
2362                         printk_ratelimited(
2363                                 KERN_WARNING
2364                                 "md/raid:%s: read error NOT corrected!! "
2365                                 "(sector %llu on %s).\n",
2366                                 mdname(conf->mddev),
2367                                 (unsigned long long)s,
2368                                 bdn);
2369                 } else if (atomic_read(&rdev->read_errors)
2370                          > conf->max_nr_stripes)
2371                         printk(KERN_WARNING
2372                                "md/raid:%s: Too many read errors, failing device %s.\n",
2373                                mdname(conf->mddev), bdn);
2374                 else
2375                         retry = 1;
2376                 if (set_bad && test_bit(In_sync, &rdev->flags)
2377                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2378                         retry = 1;
2379                 if (retry)
2380                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2381                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2382                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2383                         } else
2384                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2385                 else {
2386                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2387                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2388                         if (!(set_bad
2389                               && test_bit(In_sync, &rdev->flags)
2390                               && rdev_set_badblocks(
2391                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2392                                 md_error(conf->mddev, rdev);
2393                 }
2394         }
2395         rdev_dec_pending(rdev, conf->mddev);
2396         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2397         set_bit(STRIPE_HANDLE, &sh->state);
2398         release_stripe(sh);
2399 }
2400
2401 static void raid5_end_write_request(struct bio *bi)
2402 {
2403         struct stripe_head *sh = bi->bi_private;
2404         struct r5conf *conf = sh->raid_conf;
2405         int disks = sh->disks, i;
2406         struct md_rdev *uninitialized_var(rdev);
2407         sector_t first_bad;
2408         int bad_sectors;
2409         int replacement = 0;
2410
2411         for (i = 0 ; i < disks; i++) {
2412                 if (bi == &sh->dev[i].req) {
2413                         rdev = conf->disks[i].rdev;
2414                         break;
2415                 }
2416                 if (bi == &sh->dev[i].rreq) {
2417                         rdev = conf->disks[i].replacement;
2418                         if (rdev)
2419                                 replacement = 1;
2420                         else
2421                                 /* rdev was removed and 'replacement'
2422                                  * replaced it.  rdev is not removed
2423                                  * until all requests are finished.
2424                                  */
2425                                 rdev = conf->disks[i].rdev;
2426                         break;
2427                 }
2428         }
2429         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2430                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2431                 bi->bi_error);
2432         if (i == disks) {
2433                 BUG();
2434                 return;
2435         }
2436
2437         if (replacement) {
2438                 if (bi->bi_error)
2439                         md_error(conf->mddev, rdev);
2440                 else if (is_badblock(rdev, sh->sector,
2441                                      STRIPE_SECTORS,
2442                                      &first_bad, &bad_sectors))
2443                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2444         } else {
2445                 if (bi->bi_error) {
2446                         set_bit(STRIPE_DEGRADED, &sh->state);
2447                         set_bit(WriteErrorSeen, &rdev->flags);
2448                         set_bit(R5_WriteError, &sh->dev[i].flags);
2449                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2450                                 set_bit(MD_RECOVERY_NEEDED,
2451                                         &rdev->mddev->recovery);
2452                 } else if (is_badblock(rdev, sh->sector,
2453                                        STRIPE_SECTORS,
2454                                        &first_bad, &bad_sectors)) {
2455                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2456                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2457                                 /* That was a successful write so make
2458                                  * sure it looks like we already did
2459                                  * a re-write.
2460                                  */
2461                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2462                 }
2463         }
2464         rdev_dec_pending(rdev, conf->mddev);
2465
2466         if (sh->batch_head && bi->bi_error && !replacement)
2467                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2468
2469         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2470                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2471         set_bit(STRIPE_HANDLE, &sh->state);
2472         release_stripe(sh);
2473
2474         if (sh->batch_head && sh != sh->batch_head)
2475                 release_stripe(sh->batch_head);
2476 }
2477
2478 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2479
2480 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2481 {
2482         struct r5dev *dev = &sh->dev[i];
2483
2484         bio_init(&dev->req);
2485         dev->req.bi_io_vec = &dev->vec;
2486         dev->req.bi_max_vecs = 1;
2487         dev->req.bi_private = sh;
2488
2489         bio_init(&dev->rreq);
2490         dev->rreq.bi_io_vec = &dev->rvec;
2491         dev->rreq.bi_max_vecs = 1;
2492         dev->rreq.bi_private = sh;
2493
2494         dev->flags = 0;
2495         dev->sector = compute_blocknr(sh, i, previous);
2496 }
2497
2498 static void error(struct mddev *mddev, struct md_rdev *rdev)
2499 {
2500         char b[BDEVNAME_SIZE];
2501         struct r5conf *conf = mddev->private;
2502         unsigned long flags;
2503         pr_debug("raid456: error called\n");
2504
2505         spin_lock_irqsave(&conf->device_lock, flags);
2506         clear_bit(In_sync, &rdev->flags);
2507         mddev->degraded = calc_degraded(conf);
2508         spin_unlock_irqrestore(&conf->device_lock, flags);
2509         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2510
2511         set_bit(Blocked, &rdev->flags);
2512         set_bit(Faulty, &rdev->flags);
2513         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2514         set_bit(MD_CHANGE_PENDING, &mddev->flags);
2515         printk(KERN_ALERT
2516                "md/raid:%s: Disk failure on %s, disabling device.\n"
2517                "md/raid:%s: Operation continuing on %d devices.\n",
2518                mdname(mddev),
2519                bdevname(rdev->bdev, b),
2520                mdname(mddev),
2521                conf->raid_disks - mddev->degraded);
2522 }
2523
2524 /*
2525  * Input: a 'big' sector number,
2526  * Output: index of the data and parity disk, and the sector # in them.
2527  */
2528 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2529                                      int previous, int *dd_idx,
2530                                      struct stripe_head *sh)
2531 {
2532         sector_t stripe, stripe2;
2533         sector_t chunk_number;
2534         unsigned int chunk_offset;
2535         int pd_idx, qd_idx;
2536         int ddf_layout = 0;
2537         sector_t new_sector;
2538         int algorithm = previous ? conf->prev_algo
2539                                  : conf->algorithm;
2540         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2541                                          : conf->chunk_sectors;
2542         int raid_disks = previous ? conf->previous_raid_disks
2543                                   : conf->raid_disks;
2544         int data_disks = raid_disks - conf->max_degraded;
2545
2546         /* First compute the information on this sector */
2547
2548         /*
2549          * Compute the chunk number and the sector offset inside the chunk
2550          */
2551         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2552         chunk_number = r_sector;
2553
2554         /*
2555          * Compute the stripe number
2556          */
2557         stripe = chunk_number;
2558         *dd_idx = sector_div(stripe, data_disks);
2559         stripe2 = stripe;
2560         /*
2561          * Select the parity disk based on the user selected algorithm.
2562          */
2563         pd_idx = qd_idx = -1;
2564         switch(conf->level) {
2565         case 4:
2566                 pd_idx = data_disks;
2567                 break;
2568         case 5:
2569                 switch (algorithm) {
2570                 case ALGORITHM_LEFT_ASYMMETRIC:
2571                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2572                         if (*dd_idx >= pd_idx)
2573                                 (*dd_idx)++;
2574                         break;
2575                 case ALGORITHM_RIGHT_ASYMMETRIC:
2576                         pd_idx = sector_div(stripe2, raid_disks);
2577                         if (*dd_idx >= pd_idx)
2578                                 (*dd_idx)++;
2579                         break;
2580                 case ALGORITHM_LEFT_SYMMETRIC:
2581                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2582                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2583                         break;
2584                 case ALGORITHM_RIGHT_SYMMETRIC:
2585                         pd_idx = sector_div(stripe2, raid_disks);
2586                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2587                         break;
2588                 case ALGORITHM_PARITY_0:
2589                         pd_idx = 0;
2590                         (*dd_idx)++;
2591                         break;
2592                 case ALGORITHM_PARITY_N:
2593                         pd_idx = data_disks;
2594                         break;
2595                 default:
2596                         BUG();
2597                 }
2598                 break;
2599         case 6:
2600
2601                 switch (algorithm) {
2602                 case ALGORITHM_LEFT_ASYMMETRIC:
2603                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2604                         qd_idx = pd_idx + 1;
2605                         if (pd_idx == raid_disks-1) {
2606                                 (*dd_idx)++;    /* Q D D D P */
2607                                 qd_idx = 0;
2608                         } else if (*dd_idx >= pd_idx)
2609                                 (*dd_idx) += 2; /* D D P Q D */
2610                         break;
2611                 case ALGORITHM_RIGHT_ASYMMETRIC:
2612                         pd_idx = sector_div(stripe2, raid_disks);
2613                         qd_idx = pd_idx + 1;
2614                         if (pd_idx == raid_disks-1) {
2615                                 (*dd_idx)++;    /* Q D D D P */
2616                                 qd_idx = 0;
2617                         } else if (*dd_idx >= pd_idx)
2618                                 (*dd_idx) += 2; /* D D P Q D */
2619                         break;
2620                 case ALGORITHM_LEFT_SYMMETRIC:
2621                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2622                         qd_idx = (pd_idx + 1) % raid_disks;
2623                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2624                         break;
2625                 case ALGORITHM_RIGHT_SYMMETRIC:
2626                         pd_idx = sector_div(stripe2, raid_disks);
2627                         qd_idx = (pd_idx + 1) % raid_disks;
2628                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2629                         break;
2630
2631                 case ALGORITHM_PARITY_0:
2632                         pd_idx = 0;
2633                         qd_idx = 1;
2634                         (*dd_idx) += 2;
2635                         break;
2636                 case ALGORITHM_PARITY_N:
2637                         pd_idx = data_disks;
2638                         qd_idx = data_disks + 1;
2639                         break;
2640
2641                 case ALGORITHM_ROTATING_ZERO_RESTART:
2642                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2643                          * of blocks for computing Q is different.
2644                          */
2645                         pd_idx = sector_div(stripe2, raid_disks);
2646                         qd_idx = pd_idx + 1;
2647                         if (pd_idx == raid_disks-1) {
2648                                 (*dd_idx)++;    /* Q D D D P */
2649                                 qd_idx = 0;
2650                         } else if (*dd_idx >= pd_idx)
2651                                 (*dd_idx) += 2; /* D D P Q D */
2652                         ddf_layout = 1;
2653                         break;
2654
2655                 case ALGORITHM_ROTATING_N_RESTART:
2656                         /* Same a left_asymmetric, by first stripe is
2657                          * D D D P Q  rather than
2658                          * Q D D D P
2659                          */
2660                         stripe2 += 1;
2661                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2662                         qd_idx = pd_idx + 1;
2663                         if (pd_idx == raid_disks-1) {
2664                                 (*dd_idx)++;    /* Q D D D P */
2665                                 qd_idx = 0;
2666                         } else if (*dd_idx >= pd_idx)
2667                                 (*dd_idx) += 2; /* D D P Q D */
2668                         ddf_layout = 1;
2669                         break;
2670
2671                 case ALGORITHM_ROTATING_N_CONTINUE:
2672                         /* Same as left_symmetric but Q is before P */
2673                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2674                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2675                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2676                         ddf_layout = 1;
2677                         break;
2678
2679                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2680                         /* RAID5 left_asymmetric, with Q on last device */
2681                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2682                         if (*dd_idx >= pd_idx)
2683                                 (*dd_idx)++;
2684                         qd_idx = raid_disks - 1;
2685                         break;
2686
2687                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2688                         pd_idx = sector_div(stripe2, raid_disks-1);
2689                         if (*dd_idx >= pd_idx)
2690                                 (*dd_idx)++;
2691                         qd_idx = raid_disks - 1;
2692                         break;
2693
2694                 case ALGORITHM_LEFT_SYMMETRIC_6:
2695                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2696                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2697                         qd_idx = raid_disks - 1;
2698                         break;
2699
2700                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2701                         pd_idx = sector_div(stripe2, raid_disks-1);
2702                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2703                         qd_idx = raid_disks - 1;
2704                         break;
2705
2706                 case ALGORITHM_PARITY_0_6:
2707                         pd_idx = 0;
2708                         (*dd_idx)++;
2709                         qd_idx = raid_disks - 1;
2710                         break;
2711
2712                 default:
2713                         BUG();
2714                 }
2715                 break;
2716         }
2717
2718         if (sh) {
2719                 sh->pd_idx = pd_idx;
2720                 sh->qd_idx = qd_idx;
2721                 sh->ddf_layout = ddf_layout;
2722         }
2723         /*
2724          * Finally, compute the new sector number
2725          */
2726         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2727         return new_sector;
2728 }
2729
2730 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2731 {
2732         struct r5conf *conf = sh->raid_conf;
2733         int raid_disks = sh->disks;
2734         int data_disks = raid_disks - conf->max_degraded;
2735         sector_t new_sector = sh->sector, check;
2736         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2737                                          : conf->chunk_sectors;
2738         int algorithm = previous ? conf->prev_algo
2739                                  : conf->algorithm;
2740         sector_t stripe;
2741         int chunk_offset;
2742         sector_t chunk_number;
2743         int dummy1, dd_idx = i;
2744         sector_t r_sector;
2745         struct stripe_head sh2;
2746
2747         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2748         stripe = new_sector;
2749
2750         if (i == sh->pd_idx)
2751                 return 0;
2752         switch(conf->level) {
2753         case 4: break;
2754         case 5:
2755                 switch (algorithm) {
2756                 case ALGORITHM_LEFT_ASYMMETRIC:
2757                 case ALGORITHM_RIGHT_ASYMMETRIC:
2758                         if (i > sh->pd_idx)
2759                                 i--;
2760                         break;
2761                 case ALGORITHM_LEFT_SYMMETRIC:
2762                 case ALGORITHM_RIGHT_SYMMETRIC:
2763                         if (i < sh->pd_idx)
2764                                 i += raid_disks;
2765                         i -= (sh->pd_idx + 1);
2766                         break;
2767                 case ALGORITHM_PARITY_0:
2768                         i -= 1;
2769                         break;
2770                 case ALGORITHM_PARITY_N:
2771                         break;
2772                 default:
2773                         BUG();
2774                 }
2775                 break;
2776         case 6:
2777                 if (i == sh->qd_idx)
2778                         return 0; /* It is the Q disk */
2779                 switch (algorithm) {
2780                 case ALGORITHM_LEFT_ASYMMETRIC:
2781                 case ALGORITHM_RIGHT_ASYMMETRIC:
2782                 case ALGORITHM_ROTATING_ZERO_RESTART:
2783                 case ALGORITHM_ROTATING_N_RESTART:
2784                         if (sh->pd_idx == raid_disks-1)
2785                                 i--;    /* Q D D D P */
2786                         else if (i > sh->pd_idx)
2787                                 i -= 2; /* D D P Q D */
2788                         break;
2789                 case ALGORITHM_LEFT_SYMMETRIC:
2790                 case ALGORITHM_RIGHT_SYMMETRIC:
2791                         if (sh->pd_idx == raid_disks-1)
2792                                 i--; /* Q D D D P */
2793                         else {
2794                                 /* D D P Q D */
2795                                 if (i < sh->pd_idx)
2796                                         i += raid_disks;
2797                                 i -= (sh->pd_idx + 2);
2798                         }
2799                         break;
2800                 case ALGORITHM_PARITY_0:
2801                         i -= 2;
2802                         break;
2803                 case ALGORITHM_PARITY_N:
2804                         break;
2805                 case ALGORITHM_ROTATING_N_CONTINUE:
2806                         /* Like left_symmetric, but P is before Q */
2807                         if (sh->pd_idx == 0)
2808                                 i--;    /* P D D D Q */
2809                         else {
2810                                 /* D D Q P D */
2811                                 if (i < sh->pd_idx)
2812                                         i += raid_disks;
2813                                 i -= (sh->pd_idx + 1);
2814                         }
2815                         break;
2816                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2817                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2818                         if (i > sh->pd_idx)
2819                                 i--;
2820                         break;
2821                 case ALGORITHM_LEFT_SYMMETRIC_6:
2822                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2823                         if (i < sh->pd_idx)
2824                                 i += data_disks + 1;
2825                         i -= (sh->pd_idx + 1);
2826                         break;
2827                 case ALGORITHM_PARITY_0_6:
2828                         i -= 1;
2829                         break;
2830                 default:
2831                         BUG();
2832                 }
2833                 break;
2834         }
2835
2836         chunk_number = stripe * data_disks + i;
2837         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2838
2839         check = raid5_compute_sector(conf, r_sector,
2840                                      previous, &dummy1, &sh2);
2841         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2842                 || sh2.qd_idx != sh->qd_idx) {
2843                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2844                        mdname(conf->mddev));
2845                 return 0;
2846         }
2847         return r_sector;
2848 }
2849
2850 static void
2851 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2852                          int rcw, int expand)
2853 {
2854         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2855         struct r5conf *conf = sh->raid_conf;
2856         int level = conf->level;
2857
2858         if (rcw) {
2859
2860                 for (i = disks; i--; ) {
2861                         struct r5dev *dev = &sh->dev[i];
2862
2863                         if (dev->towrite) {
2864                                 set_bit(R5_LOCKED, &dev->flags);
2865                                 set_bit(R5_Wantdrain, &dev->flags);
2866                                 if (!expand)
2867                                         clear_bit(R5_UPTODATE, &dev->flags);
2868                                 s->locked++;
2869                         }
2870                 }
2871                 /* if we are not expanding this is a proper write request, and
2872                  * there will be bios with new data to be drained into the
2873                  * stripe cache
2874                  */
2875                 if (!expand) {
2876                         if (!s->locked)
2877                                 /* False alarm, nothing to do */
2878                                 return;
2879                         sh->reconstruct_state = reconstruct_state_drain_run;
2880                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2881                 } else
2882                         sh->reconstruct_state = reconstruct_state_run;
2883
2884                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2885
2886                 if (s->locked + conf->max_degraded == disks)
2887                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2888                                 atomic_inc(&conf->pending_full_writes);
2889         } else {
2890                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2891                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2892                 BUG_ON(level == 6 &&
2893                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2894                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2895
2896                 for (i = disks; i--; ) {
2897                         struct r5dev *dev = &sh->dev[i];
2898                         if (i == pd_idx || i == qd_idx)
2899                                 continue;
2900
2901                         if (dev->towrite &&
2902                             (test_bit(R5_UPTODATE, &dev->flags) ||
2903                              test_bit(R5_Wantcompute, &dev->flags))) {
2904                                 set_bit(R5_Wantdrain, &dev->flags);
2905                                 set_bit(R5_LOCKED, &dev->flags);
2906                                 clear_bit(R5_UPTODATE, &dev->flags);
2907                                 s->locked++;
2908                         }
2909                 }
2910                 if (!s->locked)
2911                         /* False alarm - nothing to do */
2912                         return;
2913                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2914                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2915                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2916                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2917         }
2918
2919         /* keep the parity disk(s) locked while asynchronous operations
2920          * are in flight
2921          */
2922         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2923         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2924         s->locked++;
2925
2926         if (level == 6) {
2927                 int qd_idx = sh->qd_idx;
2928                 struct r5dev *dev = &sh->dev[qd_idx];
2929
2930                 set_bit(R5_LOCKED, &dev->flags);
2931                 clear_bit(R5_UPTODATE, &dev->flags);
2932                 s->locked++;
2933         }
2934
2935         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2936                 __func__, (unsigned long long)sh->sector,
2937                 s->locked, s->ops_request);
2938 }
2939
2940 /*
2941  * Each stripe/dev can have one or more bion attached.
2942  * toread/towrite point to the first in a chain.
2943  * The bi_next chain must be in order.
2944  */
2945 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2946                           int forwrite, int previous)
2947 {
2948         struct bio **bip;
2949         struct r5conf *conf = sh->raid_conf;
2950         int firstwrite=0;
2951
2952         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2953                 (unsigned long long)bi->bi_iter.bi_sector,
2954                 (unsigned long long)sh->sector);
2955
2956         /*
2957          * If several bio share a stripe. The bio bi_phys_segments acts as a
2958          * reference count to avoid race. The reference count should already be
2959          * increased before this function is called (for example, in
2960          * make_request()), so other bio sharing this stripe will not free the
2961          * stripe. If a stripe is owned by one stripe, the stripe lock will
2962          * protect it.
2963          */
2964         spin_lock_irq(&sh->stripe_lock);
2965         /* Don't allow new IO added to stripes in batch list */
2966         if (sh->batch_head)
2967                 goto overlap;
2968         if (forwrite) {
2969                 bip = &sh->dev[dd_idx].towrite;
2970                 if (*bip == NULL)
2971                         firstwrite = 1;
2972         } else
2973                 bip = &sh->dev[dd_idx].toread;
2974         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2975                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2976                         goto overlap;
2977                 bip = & (*bip)->bi_next;
2978         }
2979         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2980                 goto overlap;
2981
2982         if (!forwrite || previous)
2983                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2984
2985         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2986         if (*bip)
2987                 bi->bi_next = *bip;
2988         *bip = bi;
2989         raid5_inc_bi_active_stripes(bi);
2990
2991         if (forwrite) {
2992                 /* check if page is covered */
2993                 sector_t sector = sh->dev[dd_idx].sector;
2994                 for (bi=sh->dev[dd_idx].towrite;
2995                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2996                              bi && bi->bi_iter.bi_sector <= sector;
2997                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2998                         if (bio_end_sector(bi) >= sector)
2999                                 sector = bio_end_sector(bi);
3000                 }
3001                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3002                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3003                                 sh->overwrite_disks++;
3004         }
3005
3006         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3007                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3008                 (unsigned long long)sh->sector, dd_idx);
3009
3010         if (conf->mddev->bitmap && firstwrite) {
3011                 /* Cannot hold spinlock over bitmap_startwrite,
3012                  * but must ensure this isn't added to a batch until
3013                  * we have added to the bitmap and set bm_seq.
3014                  * So set STRIPE_BITMAP_PENDING to prevent
3015                  * batching.
3016                  * If multiple add_stripe_bio() calls race here they
3017                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3018                  * to complete "bitmap_startwrite" gets to set
3019                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3020                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3021                  * any more.
3022                  */
3023                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3024                 spin_unlock_irq(&sh->stripe_lock);
3025                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3026                                   STRIPE_SECTORS, 0);
3027                 spin_lock_irq(&sh->stripe_lock);
3028                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3029                 if (!sh->batch_head) {
3030                         sh->bm_seq = conf->seq_flush+1;
3031                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3032                 }
3033         }
3034         spin_unlock_irq(&sh->stripe_lock);
3035
3036         if (stripe_can_batch(sh))
3037                 stripe_add_to_batch_list(conf, sh);
3038         return 1;
3039
3040  overlap:
3041         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3042         spin_unlock_irq(&sh->stripe_lock);
3043         return 0;
3044 }
3045
3046 static void end_reshape(struct r5conf *conf);
3047
3048 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3049                             struct stripe_head *sh)
3050 {
3051         int sectors_per_chunk =
3052                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3053         int dd_idx;
3054         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3055         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3056
3057         raid5_compute_sector(conf,
3058                              stripe * (disks - conf->max_degraded)
3059                              *sectors_per_chunk + chunk_offset,
3060                              previous,
3061                              &dd_idx, sh);
3062 }
3063
3064 static void
3065 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3066                                 struct stripe_head_state *s, int disks,
3067                                 struct bio_list *return_bi)
3068 {
3069         int i;
3070         BUG_ON(sh->batch_head);
3071         for (i = disks; i--; ) {
3072                 struct bio *bi;
3073                 int bitmap_end = 0;
3074
3075                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3076                         struct md_rdev *rdev;
3077                         rcu_read_lock();
3078                         rdev = rcu_dereference(conf->disks[i].rdev);
3079                         if (rdev && test_bit(In_sync, &rdev->flags))
3080                                 atomic_inc(&rdev->nr_pending);
3081                         else
3082                                 rdev = NULL;
3083                         rcu_read_unlock();
3084                         if (rdev) {
3085                                 if (!rdev_set_badblocks(
3086                                             rdev,
3087                                             sh->sector,
3088                                             STRIPE_SECTORS, 0))
3089                                         md_error(conf->mddev, rdev);
3090                                 rdev_dec_pending(rdev, conf->mddev);
3091                         }
3092                 }
3093                 spin_lock_irq(&sh->stripe_lock);
3094                 /* fail all writes first */
3095                 bi = sh->dev[i].towrite;
3096                 sh->dev[i].towrite = NULL;
3097                 sh->overwrite_disks = 0;
3098                 spin_unlock_irq(&sh->stripe_lock);
3099                 if (bi)
3100                         bitmap_end = 1;
3101
3102                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3103                         wake_up(&conf->wait_for_overlap);
3104
3105                 while (bi && bi->bi_iter.bi_sector <
3106                         sh->dev[i].sector + STRIPE_SECTORS) {
3107                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3108
3109                         bi->bi_error = -EIO;
3110                         if (!raid5_dec_bi_active_stripes(bi)) {
3111                                 md_write_end(conf->mddev);
3112                                 bio_list_add(return_bi, bi);
3113                         }
3114                         bi = nextbi;
3115                 }
3116                 if (bitmap_end)
3117                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3118                                 STRIPE_SECTORS, 0, 0);
3119                 bitmap_end = 0;
3120                 /* and fail all 'written' */
3121                 bi = sh->dev[i].written;
3122                 sh->dev[i].written = NULL;
3123                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3124                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3125                         sh->dev[i].page = sh->dev[i].orig_page;
3126                 }
3127
3128                 if (bi) bitmap_end = 1;
3129                 while (bi && bi->bi_iter.bi_sector <
3130                        sh->dev[i].sector + STRIPE_SECTORS) {
3131                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3132
3133                         bi->bi_error = -EIO;
3134                         if (!raid5_dec_bi_active_stripes(bi)) {
3135                                 md_write_end(conf->mddev);
3136                                 bio_list_add(return_bi, bi);
3137                         }
3138                         bi = bi2;
3139                 }
3140
3141                 /* fail any reads if this device is non-operational and
3142                  * the data has not reached the cache yet.
3143                  */
3144                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3145                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3146                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3147                         spin_lock_irq(&sh->stripe_lock);
3148                         bi = sh->dev[i].toread;
3149                         sh->dev[i].toread = NULL;
3150                         spin_unlock_irq(&sh->stripe_lock);
3151                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3152                                 wake_up(&conf->wait_for_overlap);
3153                         while (bi && bi->bi_iter.bi_sector <
3154                                sh->dev[i].sector + STRIPE_SECTORS) {
3155                                 struct bio *nextbi =
3156                                         r5_next_bio(bi, sh->dev[i].sector);
3157
3158                                 bi->bi_error = -EIO;
3159                                 if (!raid5_dec_bi_active_stripes(bi))
3160                                         bio_list_add(return_bi, bi);
3161                                 bi = nextbi;
3162                         }
3163                 }
3164                 if (bitmap_end)
3165                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3166                                         STRIPE_SECTORS, 0, 0);
3167                 /* If we were in the middle of a write the parity block might
3168                  * still be locked - so just clear all R5_LOCKED flags
3169                  */
3170                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3171         }
3172
3173         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3174                 if (atomic_dec_and_test(&conf->pending_full_writes))
3175                         md_wakeup_thread(conf->mddev->thread);
3176 }
3177
3178 static void
3179 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3180                    struct stripe_head_state *s)
3181 {
3182         int abort = 0;
3183         int i;
3184
3185         BUG_ON(sh->batch_head);
3186         clear_bit(STRIPE_SYNCING, &sh->state);
3187         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3188                 wake_up(&conf->wait_for_overlap);
3189         s->syncing = 0;
3190         s->replacing = 0;
3191         /* There is nothing more to do for sync/check/repair.
3192          * Don't even need to abort as that is handled elsewhere
3193          * if needed, and not always wanted e.g. if there is a known
3194          * bad block here.
3195          * For recover/replace we need to record a bad block on all
3196          * non-sync devices, or abort the recovery
3197          */
3198         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3199                 /* During recovery devices cannot be removed, so
3200                  * locking and refcounting of rdevs is not needed
3201                  */
3202                 for (i = 0; i < conf->raid_disks; i++) {
3203                         struct md_rdev *rdev = conf->disks[i].rdev;
3204                         if (rdev
3205                             && !test_bit(Faulty, &rdev->flags)
3206                             && !test_bit(In_sync, &rdev->flags)
3207                             && !rdev_set_badblocks(rdev, sh->sector,
3208                                                    STRIPE_SECTORS, 0))
3209                                 abort = 1;
3210                         rdev = conf->disks[i].replacement;
3211                         if (rdev
3212                             && !test_bit(Faulty, &rdev->flags)
3213                             && !test_bit(In_sync, &rdev->flags)
3214                             && !rdev_set_badblocks(rdev, sh->sector,
3215                                                    STRIPE_SECTORS, 0))
3216                                 abort = 1;
3217                 }
3218                 if (abort)
3219                         conf->recovery_disabled =
3220                                 conf->mddev->recovery_disabled;
3221         }
3222         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3223 }
3224
3225 static int want_replace(struct stripe_head *sh, int disk_idx)
3226 {
3227         struct md_rdev *rdev;
3228         int rv = 0;
3229         /* Doing recovery so rcu locking not required */
3230         rdev = sh->raid_conf->disks[disk_idx].replacement;
3231         if (rdev
3232             && !test_bit(Faulty, &rdev->flags)
3233             && !test_bit(In_sync, &rdev->flags)
3234             && (rdev->recovery_offset <= sh->sector
3235                 || rdev->mddev->recovery_cp <= sh->sector))
3236                 rv = 1;
3237
3238         return rv;
3239 }
3240
3241 /* fetch_block - checks the given member device to see if its data needs
3242  * to be read or computed to satisfy a request.
3243  *
3244  * Returns 1 when no more member devices need to be checked, otherwise returns
3245  * 0 to tell the loop in handle_stripe_fill to continue
3246  */
3247
3248 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3249                            int disk_idx, int disks)
3250 {
3251         struct r5dev *dev = &sh->dev[disk_idx];
3252         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3253                                   &sh->dev[s->failed_num[1]] };
3254         int i;
3255
3256
3257         if (test_bit(R5_LOCKED, &dev->flags) ||
3258             test_bit(R5_UPTODATE, &dev->flags))
3259                 /* No point reading this as we already have it or have
3260                  * decided to get it.
3261                  */
3262                 return 0;
3263
3264         if (dev->toread ||
3265             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3266                 /* We need this block to directly satisfy a request */
3267                 return 1;
3268
3269         if (s->syncing || s->expanding ||
3270             (s->replacing && want_replace(sh, disk_idx)))
3271                 /* When syncing, or expanding we read everything.
3272                  * When replacing, we need the replaced block.
3273                  */
3274                 return 1;
3275
3276         if ((s->failed >= 1 && fdev[0]->toread) ||
3277             (s->failed >= 2 && fdev[1]->toread))
3278                 /* If we want to read from a failed device, then
3279                  * we need to actually read every other device.
3280                  */
3281                 return 1;
3282
3283         /* Sometimes neither read-modify-write nor reconstruct-write
3284          * cycles can work.  In those cases we read every block we
3285          * can.  Then the parity-update is certain to have enough to
3286          * work with.
3287          * This can only be a problem when we need to write something,
3288          * and some device has failed.  If either of those tests
3289          * fail we need look no further.
3290          */
3291         if (!s->failed || !s->to_write)
3292                 return 0;
3293
3294         if (test_bit(R5_Insync, &dev->flags) &&
3295             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3296                 /* Pre-reads at not permitted until after short delay
3297                  * to gather multiple requests.  However if this
3298                  * device is no Insync, the block could only be be computed
3299                  * and there is no need to delay that.
3300                  */
3301                 return 0;
3302
3303         for (i = 0; i < s->failed; i++) {
3304                 if (fdev[i]->towrite &&
3305                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3306                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3307                         /* If we have a partial write to a failed
3308                          * device, then we will need to reconstruct
3309                          * the content of that device, so all other
3310                          * devices must be read.
3311                          */
3312                         return 1;
3313         }
3314
3315         /* If we are forced to do a reconstruct-write, either because
3316          * the current RAID6 implementation only supports that, or
3317          * or because parity cannot be trusted and we are currently
3318          * recovering it, there is extra need to be careful.
3319          * If one of the devices that we would need to read, because
3320          * it is not being overwritten (and maybe not written at all)
3321          * is missing/faulty, then we need to read everything we can.
3322          */
3323         if (sh->raid_conf->level != 6 &&
3324             sh->sector < sh->raid_conf->mddev->recovery_cp)
3325                 /* reconstruct-write isn't being forced */
3326                 return 0;
3327         for (i = 0; i < s->failed; i++) {
3328                 if (s->failed_num[i] != sh->pd_idx &&
3329                     s->failed_num[i] != sh->qd_idx &&
3330                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3331                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3332                         return 1;
3333         }
3334
3335         return 0;
3336 }
3337
3338 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3339                        int disk_idx, int disks)
3340 {
3341         struct r5dev *dev = &sh->dev[disk_idx];
3342
3343         /* is the data in this block needed, and can we get it? */
3344         if (need_this_block(sh, s, disk_idx, disks)) {
3345                 /* we would like to get this block, possibly by computing it,
3346                  * otherwise read it if the backing disk is insync
3347                  */
3348                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3349                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3350                 BUG_ON(sh->batch_head);
3351                 if ((s->uptodate == disks - 1) &&
3352                     (s->failed && (disk_idx == s->failed_num[0] ||
3353                                    disk_idx == s->failed_num[1]))) {
3354                         /* have disk failed, and we're requested to fetch it;
3355                          * do compute it
3356                          */
3357                         pr_debug("Computing stripe %llu block %d\n",
3358                                (unsigned long long)sh->sector, disk_idx);
3359                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3360                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3361                         set_bit(R5_Wantcompute, &dev->flags);
3362                         sh->ops.target = disk_idx;
3363                         sh->ops.target2 = -1; /* no 2nd target */
3364                         s->req_compute = 1;
3365                         /* Careful: from this point on 'uptodate' is in the eye
3366                          * of raid_run_ops which services 'compute' operations
3367                          * before writes. R5_Wantcompute flags a block that will
3368                          * be R5_UPTODATE by the time it is needed for a
3369                          * subsequent operation.
3370                          */
3371                         s->uptodate++;
3372                         return 1;
3373                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3374                         /* Computing 2-failure is *very* expensive; only
3375                          * do it if failed >= 2
3376                          */
3377                         int other;
3378                         for (other = disks; other--; ) {
3379                                 if (other == disk_idx)
3380                                         continue;
3381                                 if (!test_bit(R5_UPTODATE,
3382                                       &sh->dev[other].flags))
3383                                         break;
3384                         }
3385                         BUG_ON(other < 0);
3386                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3387                                (unsigned long long)sh->sector,
3388                                disk_idx, other);
3389                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3390                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3391                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3392                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3393                         sh->ops.target = disk_idx;
3394                         sh->ops.target2 = other;
3395                         s->uptodate += 2;
3396                         s->req_compute = 1;
3397                         return 1;
3398                 } else if (test_bit(R5_Insync, &dev->flags)) {
3399                         set_bit(R5_LOCKED, &dev->flags);
3400                         set_bit(R5_Wantread, &dev->flags);
3401                         s->locked++;
3402                         pr_debug("Reading block %d (sync=%d)\n",
3403                                 disk_idx, s->syncing);
3404                 }
3405         }
3406
3407         return 0;
3408 }
3409
3410 /**
3411  * handle_stripe_fill - read or compute data to satisfy pending requests.
3412  */
3413 static void handle_stripe_fill(struct stripe_head *sh,
3414                                struct stripe_head_state *s,
3415                                int disks)
3416 {
3417         int i;
3418
3419         /* look for blocks to read/compute, skip this if a compute
3420          * is already in flight, or if the stripe contents are in the
3421          * midst of changing due to a write
3422          */
3423         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3424             !sh->reconstruct_state)
3425                 for (i = disks; i--; )
3426                         if (fetch_block(sh, s, i, disks))
3427                                 break;
3428         set_bit(STRIPE_HANDLE, &sh->state);
3429 }
3430
3431 static void break_stripe_batch_list(struct stripe_head *head_sh,
3432                                     unsigned long handle_flags);
3433 /* handle_stripe_clean_event
3434  * any written block on an uptodate or failed drive can be returned.
3435  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3436  * never LOCKED, so we don't need to test 'failed' directly.
3437  */
3438 static void handle_stripe_clean_event(struct r5conf *conf,
3439         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3440 {
3441         int i;
3442         struct r5dev *dev;
3443         int discard_pending = 0;
3444         struct stripe_head *head_sh = sh;
3445         bool do_endio = false;
3446
3447         for (i = disks; i--; )
3448                 if (sh->dev[i].written) {
3449                         dev = &sh->dev[i];
3450                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3451                             (test_bit(R5_UPTODATE, &dev->flags) ||
3452                              test_bit(R5_Discard, &dev->flags) ||
3453                              test_bit(R5_SkipCopy, &dev->flags))) {
3454                                 /* We can return any write requests */
3455                                 struct bio *wbi, *wbi2;
3456                                 pr_debug("Return write for disc %d\n", i);
3457                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3458                                         clear_bit(R5_UPTODATE, &dev->flags);
3459                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3460                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3461                                 }
3462                                 do_endio = true;
3463
3464 returnbi:
3465                                 dev->page = dev->orig_page;
3466                                 wbi = dev->written;
3467                                 dev->written = NULL;
3468                                 while (wbi && wbi->bi_iter.bi_sector <
3469                                         dev->sector + STRIPE_SECTORS) {
3470                                         wbi2 = r5_next_bio(wbi, dev->sector);
3471                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3472                                                 md_write_end(conf->mddev);
3473                                                 bio_list_add(return_bi, wbi);
3474                                         }
3475                                         wbi = wbi2;
3476                                 }
3477                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3478                                                 STRIPE_SECTORS,
3479                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3480                                                 0);
3481                                 if (head_sh->batch_head) {
3482                                         sh = list_first_entry(&sh->batch_list,
3483                                                               struct stripe_head,
3484                                                               batch_list);
3485                                         if (sh != head_sh) {
3486                                                 dev = &sh->dev[i];
3487                                                 goto returnbi;
3488                                         }
3489                                 }
3490                                 sh = head_sh;
3491                                 dev = &sh->dev[i];
3492                         } else if (test_bit(R5_Discard, &dev->flags))
3493                                 discard_pending = 1;
3494                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3495                         WARN_ON(dev->page != dev->orig_page);
3496                 }
3497         if (!discard_pending &&
3498             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3499                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3500                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3501                 if (sh->qd_idx >= 0) {
3502                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3503                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3504                 }
3505                 /* now that discard is done we can proceed with any sync */
3506                 clear_bit(STRIPE_DISCARD, &sh->state);
3507                 /*
3508                  * SCSI discard will change some bio fields and the stripe has
3509                  * no updated data, so remove it from hash list and the stripe
3510                  * will be reinitialized
3511                  */
3512                 spin_lock_irq(&conf->device_lock);
3513 unhash:
3514                 remove_hash(sh);
3515                 if (head_sh->batch_head) {
3516                         sh = list_first_entry(&sh->batch_list,
3517                                               struct stripe_head, batch_list);
3518                         if (sh != head_sh)
3519                                         goto unhash;
3520                 }
3521                 spin_unlock_irq(&conf->device_lock);
3522                 sh = head_sh;
3523
3524                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3525                         set_bit(STRIPE_HANDLE, &sh->state);
3526
3527         }
3528
3529         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3530                 if (atomic_dec_and_test(&conf->pending_full_writes))
3531                         md_wakeup_thread(conf->mddev->thread);
3532
3533         if (head_sh->batch_head && do_endio)
3534                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3535 }
3536
3537 static void handle_stripe_dirtying(struct r5conf *conf,
3538                                    struct stripe_head *sh,
3539                                    struct stripe_head_state *s,
3540                                    int disks)
3541 {
3542         int rmw = 0, rcw = 0, i;
3543         sector_t recovery_cp = conf->mddev->recovery_cp;
3544
3545         /* Check whether resync is now happening or should start.
3546          * If yes, then the array is dirty (after unclean shutdown or
3547          * initial creation), so parity in some stripes might be inconsistent.
3548          * In this case, we need to always do reconstruct-write, to ensure
3549          * that in case of drive failure or read-error correction, we
3550          * generate correct data from the parity.
3551          */
3552         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3553             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3554              s->failed == 0)) {
3555                 /* Calculate the real rcw later - for now make it
3556                  * look like rcw is cheaper
3557                  */
3558                 rcw = 1; rmw = 2;
3559                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3560                          conf->rmw_level, (unsigned long long)recovery_cp,
3561                          (unsigned long long)sh->sector);
3562         } else for (i = disks; i--; ) {
3563                 /* would I have to read this buffer for read_modify_write */
3564                 struct r5dev *dev = &sh->dev[i];
3565                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3566                     !test_bit(R5_LOCKED, &dev->flags) &&
3567                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3568                       test_bit(R5_Wantcompute, &dev->flags))) {
3569                         if (test_bit(R5_Insync, &dev->flags))
3570                                 rmw++;
3571                         else
3572                                 rmw += 2*disks;  /* cannot read it */
3573                 }
3574                 /* Would I have to read this buffer for reconstruct_write */
3575                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3576                     i != sh->pd_idx && i != sh->qd_idx &&
3577                     !test_bit(R5_LOCKED, &dev->flags) &&
3578                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3579                     test_bit(R5_Wantcompute, &dev->flags))) {
3580                         if (test_bit(R5_Insync, &dev->flags))
3581                                 rcw++;
3582                         else
3583                                 rcw += 2*disks;
3584                 }
3585         }
3586         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3587                 (unsigned long long)sh->sector, rmw, rcw);
3588         set_bit(STRIPE_HANDLE, &sh->state);
3589         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3590                 /* prefer read-modify-write, but need to get some data */
3591                 if (conf->mddev->queue)
3592                         blk_add_trace_msg(conf->mddev->queue,
3593                                           "raid5 rmw %llu %d",
3594                                           (unsigned long long)sh->sector, rmw);
3595                 for (i = disks; i--; ) {
3596                         struct r5dev *dev = &sh->dev[i];
3597                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3598                             !test_bit(R5_LOCKED, &dev->flags) &&
3599                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3600                             test_bit(R5_Wantcompute, &dev->flags)) &&
3601                             test_bit(R5_Insync, &dev->flags)) {
3602                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3603                                              &sh->state)) {
3604                                         pr_debug("Read_old block %d for r-m-w\n",
3605                                                  i);
3606                                         set_bit(R5_LOCKED, &dev->flags);
3607                                         set_bit(R5_Wantread, &dev->flags);
3608                                         s->locked++;
3609                                 } else {
3610                                         set_bit(STRIPE_DELAYED, &sh->state);
3611                                         set_bit(STRIPE_HANDLE, &sh->state);
3612                                 }
3613                         }
3614                 }
3615         }
3616         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3617                 /* want reconstruct write, but need to get some data */
3618                 int qread =0;
3619                 rcw = 0;
3620                 for (i = disks; i--; ) {
3621                         struct r5dev *dev = &sh->dev[i];
3622                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3623                             i != sh->pd_idx && i != sh->qd_idx &&
3624                             !test_bit(R5_LOCKED, &dev->flags) &&
3625                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3626                               test_bit(R5_Wantcompute, &dev->flags))) {
3627                                 rcw++;
3628                                 if (test_bit(R5_Insync, &dev->flags) &&
3629                                     test_bit(STRIPE_PREREAD_ACTIVE,
3630                                              &sh->state)) {
3631                                         pr_debug("Read_old block "
3632                                                 "%d for Reconstruct\n", i);
3633                                         set_bit(R5_LOCKED, &dev->flags);
3634                                         set_bit(R5_Wantread, &dev->flags);
3635                                         s->locked++;
3636                                         qread++;
3637                                 } else {
3638                                         set_bit(STRIPE_DELAYED, &sh->state);
3639                                         set_bit(STRIPE_HANDLE, &sh->state);
3640                                 }
3641                         }
3642                 }
3643                 if (rcw && conf->mddev->queue)
3644                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3645                                           (unsigned long long)sh->sector,
3646                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3647         }
3648
3649         if (rcw > disks && rmw > disks &&
3650             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3651                 set_bit(STRIPE_DELAYED, &sh->state);
3652
3653         /* now if nothing is locked, and if we have enough data,
3654          * we can start a write request
3655          */
3656         /* since handle_stripe can be called at any time we need to handle the
3657          * case where a compute block operation has been submitted and then a
3658          * subsequent call wants to start a write request.  raid_run_ops only
3659          * handles the case where compute block and reconstruct are requested
3660          * simultaneously.  If this is not the case then new writes need to be
3661          * held off until the compute completes.
3662          */
3663         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3664             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3665             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3666                 schedule_reconstruction(sh, s, rcw == 0, 0);
3667 }
3668
3669 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3670                                 struct stripe_head_state *s, int disks)
3671 {
3672         struct r5dev *dev = NULL;
3673
3674         BUG_ON(sh->batch_head);
3675         set_bit(STRIPE_HANDLE, &sh->state);
3676
3677         switch (sh->check_state) {
3678         case check_state_idle:
3679                 /* start a new check operation if there are no failures */
3680                 if (s->failed == 0) {
3681                         BUG_ON(s->uptodate != disks);
3682                         sh->check_state = check_state_run;
3683                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3684                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3685                         s->uptodate--;
3686                         break;
3687                 }
3688                 dev = &sh->dev[s->failed_num[0]];
3689                 /* fall through */
3690         case check_state_compute_result:
3691                 sh->check_state = check_state_idle;
3692                 if (!dev)
3693                         dev = &sh->dev[sh->pd_idx];
3694
3695                 /* check that a write has not made the stripe insync */
3696                 if (test_bit(STRIPE_INSYNC, &sh->state))
3697                         break;
3698
3699                 /* either failed parity check, or recovery is happening */
3700                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3701                 BUG_ON(s->uptodate != disks);
3702
3703                 set_bit(R5_LOCKED, &dev->flags);
3704                 s->locked++;
3705                 set_bit(R5_Wantwrite, &dev->flags);
3706
3707                 clear_bit(STRIPE_DEGRADED, &sh->state);
3708                 set_bit(STRIPE_INSYNC, &sh->state);
3709                 break;
3710         case check_state_run:
3711                 break; /* we will be called again upon completion */
3712         case check_state_check_result:
3713                 sh->check_state = check_state_idle;
3714
3715                 /* if a failure occurred during the check operation, leave
3716                  * STRIPE_INSYNC not set and let the stripe be handled again
3717                  */
3718                 if (s->failed)
3719                         break;
3720
3721                 /* handle a successful check operation, if parity is correct
3722                  * we are done.  Otherwise update the mismatch count and repair
3723                  * parity if !MD_RECOVERY_CHECK
3724                  */
3725                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3726                         /* parity is correct (on disc,
3727                          * not in buffer any more)
3728                          */
3729                         set_bit(STRIPE_INSYNC, &sh->state);
3730                 else {
3731                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3732                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3733                                 /* don't try to repair!! */
3734                                 set_bit(STRIPE_INSYNC, &sh->state);
3735                         else {
3736                                 sh->check_state = check_state_compute_run;
3737                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3738                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3739                                 set_bit(R5_Wantcompute,
3740                                         &sh->dev[sh->pd_idx].flags);
3741                                 sh->ops.target = sh->pd_idx;
3742                                 sh->ops.target2 = -1;
3743                                 s->uptodate++;
3744                         }
3745                 }
3746                 break;
3747         case check_state_compute_run:
3748                 break;
3749         default:
3750                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3751                        __func__, sh->check_state,
3752                        (unsigned long long) sh->sector);
3753                 BUG();
3754         }
3755 }
3756
3757 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3758                                   struct stripe_head_state *s,
3759                                   int disks)
3760 {
3761         int pd_idx = sh->pd_idx;
3762         int qd_idx = sh->qd_idx;
3763         struct r5dev *dev;
3764
3765         BUG_ON(sh->batch_head);
3766         set_bit(STRIPE_HANDLE, &sh->state);
3767
3768         BUG_ON(s->failed > 2);
3769
3770         /* Want to check and possibly repair P and Q.
3771          * However there could be one 'failed' device, in which
3772          * case we can only check one of them, possibly using the
3773          * other to generate missing data
3774          */
3775
3776         switch (sh->check_state) {
3777         case check_state_idle:
3778                 /* start a new check operation if there are < 2 failures */
3779                 if (s->failed == s->q_failed) {
3780                         /* The only possible failed device holds Q, so it
3781                          * makes sense to check P (If anything else were failed,
3782                          * we would have used P to recreate it).
3783                          */
3784                         sh->check_state = check_state_run;
3785                 }
3786                 if (!s->q_failed && s->failed < 2) {
3787                         /* Q is not failed, and we didn't use it to generate
3788                          * anything, so it makes sense to check it
3789                          */
3790                         if (sh->check_state == check_state_run)
3791                                 sh->check_state = check_state_run_pq;
3792                         else
3793                                 sh->check_state = check_state_run_q;
3794                 }
3795
3796                 /* discard potentially stale zero_sum_result */
3797                 sh->ops.zero_sum_result = 0;
3798
3799                 if (sh->check_state == check_state_run) {
3800                         /* async_xor_zero_sum destroys the contents of P */
3801                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3802                         s->uptodate--;
3803                 }
3804                 if (sh->check_state >= check_state_run &&
3805                     sh->check_state <= check_state_run_pq) {
3806                         /* async_syndrome_zero_sum preserves P and Q, so
3807                          * no need to mark them !uptodate here
3808                          */
3809                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3810                         break;
3811                 }
3812
3813                 /* we have 2-disk failure */
3814                 BUG_ON(s->failed != 2);
3815                 /* fall through */
3816         case check_state_compute_result:
3817                 sh->check_state = check_state_idle;
3818
3819                 /* check that a write has not made the stripe insync */
3820                 if (test_bit(STRIPE_INSYNC, &sh->state))
3821                         break;
3822
3823                 /* now write out any block on a failed drive,
3824                  * or P or Q if they were recomputed
3825                  */
3826                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3827                 if (s->failed == 2) {
3828                         dev = &sh->dev[s->failed_num[1]];
3829                         s->locked++;
3830                         set_bit(R5_LOCKED, &dev->flags);
3831                         set_bit(R5_Wantwrite, &dev->flags);
3832                 }
3833                 if (s->failed >= 1) {
3834                         dev = &sh->dev[s->failed_num[0]];
3835                         s->locked++;
3836                         set_bit(R5_LOCKED, &dev->flags);
3837                         set_bit(R5_Wantwrite, &dev->flags);
3838                 }
3839                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3840                         dev = &sh->dev[pd_idx];
3841                         s->locked++;
3842                         set_bit(R5_LOCKED, &dev->flags);
3843                         set_bit(R5_Wantwrite, &dev->flags);
3844                 }
3845                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3846                         dev = &sh->dev[qd_idx];
3847                         s->locked++;
3848                         set_bit(R5_LOCKED, &dev->flags);
3849                         set_bit(R5_Wantwrite, &dev->flags);
3850                 }
3851                 clear_bit(STRIPE_DEGRADED, &sh->state);
3852
3853                 set_bit(STRIPE_INSYNC, &sh->state);
3854                 break;
3855         case check_state_run:
3856         case check_state_run_q:
3857         case check_state_run_pq:
3858                 break; /* we will be called again upon completion */
3859         case check_state_check_result:
3860                 sh->check_state = check_state_idle;
3861
3862                 /* handle a successful check operation, if parity is correct
3863                  * we are done.  Otherwise update the mismatch count and repair
3864                  * parity if !MD_RECOVERY_CHECK
3865                  */
3866                 if (sh->ops.zero_sum_result == 0) {
3867                         /* both parities are correct */
3868                         if (!s->failed)
3869                                 set_bit(STRIPE_INSYNC, &sh->state);
3870                         else {
3871                                 /* in contrast to the raid5 case we can validate
3872                                  * parity, but still have a failure to write
3873                                  * back
3874                                  */
3875                                 sh->check_state = check_state_compute_result;
3876                                 /* Returning at this point means that we may go
3877                                  * off and bring p and/or q uptodate again so
3878                                  * we make sure to check zero_sum_result again
3879                                  * to verify if p or q need writeback
3880                                  */
3881                         }
3882                 } else {
3883                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3884                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3885                                 /* don't try to repair!! */
3886                                 set_bit(STRIPE_INSYNC, &sh->state);
3887                         else {
3888                                 int *target = &sh->ops.target;
3889
3890                                 sh->ops.target = -1;
3891                                 sh->ops.target2 = -1;
3892                                 sh->check_state = check_state_compute_run;
3893                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3894                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3895                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3896                                         set_bit(R5_Wantcompute,
3897                                                 &sh->dev[pd_idx].flags);
3898                                         *target = pd_idx;
3899                                         target = &sh->ops.target2;
3900                                         s->uptodate++;
3901                                 }
3902                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3903                                         set_bit(R5_Wantcompute,
3904                                                 &sh->dev[qd_idx].flags);
3905                                         *target = qd_idx;
3906                                         s->uptodate++;
3907                                 }
3908                         }
3909                 }
3910                 break;
3911         case check_state_compute_run:
3912                 break;
3913         default:
3914                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3915                        __func__, sh->check_state,
3916                        (unsigned long long) sh->sector);
3917                 BUG();
3918         }
3919 }
3920
3921 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3922 {
3923         int i;
3924
3925         /* We have read all the blocks in this stripe and now we need to
3926          * copy some of them into a target stripe for expand.
3927          */
3928         struct dma_async_tx_descriptor *tx = NULL;
3929         BUG_ON(sh->batch_head);
3930         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3931         for (i = 0; i < sh->disks; i++)
3932                 if (i != sh->pd_idx && i != sh->qd_idx) {
3933                         int dd_idx, j;
3934                         struct stripe_head *sh2;
3935                         struct async_submit_ctl submit;
3936
3937                         sector_t bn = compute_blocknr(sh, i, 1);
3938                         sector_t s = raid5_compute_sector(conf, bn, 0,
3939                                                           &dd_idx, NULL);
3940                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3941                         if (sh2 == NULL)
3942                                 /* so far only the early blocks of this stripe
3943                                  * have been requested.  When later blocks
3944                                  * get requested, we will try again
3945                                  */
3946                                 continue;
3947                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3948                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3949                                 /* must have already done this block */
3950                                 release_stripe(sh2);
3951                                 continue;
3952                         }
3953
3954                         /* place all the copies on one channel */
3955                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3956                         tx = async_memcpy(sh2->dev[dd_idx].page,
3957                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3958                                           &submit);
3959
3960                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3961                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3962                         for (j = 0; j < conf->raid_disks; j++)
3963                                 if (j != sh2->pd_idx &&
3964                                     j != sh2->qd_idx &&
3965                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3966                                         break;
3967                         if (j == conf->raid_disks) {
3968                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3969                                 set_bit(STRIPE_HANDLE, &sh2->state);
3970                         }
3971                         release_stripe(sh2);
3972
3973                 }
3974         /* done submitting copies, wait for them to complete */
3975         async_tx_quiesce(&tx);
3976 }
3977
3978 /*
3979  * handle_stripe - do things to a stripe.
3980  *
3981  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3982  * state of various bits to see what needs to be done.
3983  * Possible results:
3984  *    return some read requests which now have data
3985  *    return some write requests which are safely on storage
3986  *    schedule a read on some buffers
3987  *    schedule a write of some buffers
3988  *    return confirmation of parity correctness
3989  *
3990  */
3991
3992 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3993 {
3994         struct r5conf *conf = sh->raid_conf;
3995         int disks = sh->disks;
3996         struct r5dev *dev;
3997         int i;
3998         int do_recovery = 0;
3999
4000         memset(s, 0, sizeof(*s));
4001
4002         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4003         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4004         s->failed_num[0] = -1;
4005         s->failed_num[1] = -1;
4006
4007         /* Now to look around and see what can be done */
4008         rcu_read_lock();
4009         for (i=disks; i--; ) {
4010                 struct md_rdev *rdev;
4011                 sector_t first_bad;
4012                 int bad_sectors;
4013                 int is_bad = 0;
4014
4015                 dev = &sh->dev[i];
4016
4017                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4018                          i, dev->flags,
4019                          dev->toread, dev->towrite, dev->written);
4020                 /* maybe we can reply to a read
4021                  *
4022                  * new wantfill requests are only permitted while
4023                  * ops_complete_biofill is guaranteed to be inactive
4024                  */
4025                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4026                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4027                         set_bit(R5_Wantfill, &dev->flags);
4028
4029                 /* now count some things */
4030                 if (test_bit(R5_LOCKED, &dev->flags))
4031                         s->locked++;
4032                 if (test_bit(R5_UPTODATE, &dev->flags))
4033                         s->uptodate++;
4034                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4035                         s->compute++;
4036                         BUG_ON(s->compute > 2);
4037                 }
4038
4039                 if (test_bit(R5_Wantfill, &dev->flags))
4040                         s->to_fill++;
4041                 else if (dev->toread)
4042                         s->to_read++;
4043                 if (dev->towrite) {
4044                         s->to_write++;
4045                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4046                                 s->non_overwrite++;
4047                 }
4048                 if (dev->written)
4049                         s->written++;
4050                 /* Prefer to use the replacement for reads, but only
4051                  * if it is recovered enough and has no bad blocks.
4052                  */
4053                 rdev = rcu_dereference(conf->disks[i].replacement);
4054                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4055                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4056                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4057                                  &first_bad, &bad_sectors))
4058                         set_bit(R5_ReadRepl, &dev->flags);
4059                 else {
4060                         if (rdev && !test_bit(Faulty, &rdev->flags))
4061                                 set_bit(R5_NeedReplace, &dev->flags);
4062                         else
4063                                 clear_bit(R5_NeedReplace, &dev->flags);
4064                         rdev = rcu_dereference(conf->disks[i].rdev);
4065                         clear_bit(R5_ReadRepl, &dev->flags);
4066                 }
4067                 if (rdev && test_bit(Faulty, &rdev->flags))
4068                         rdev = NULL;
4069                 if (rdev) {
4070                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4071                                              &first_bad, &bad_sectors);
4072                         if (s->blocked_rdev == NULL
4073                             && (test_bit(Blocked, &rdev->flags)
4074                                 || is_bad < 0)) {
4075                                 if (is_bad < 0)
4076                                         set_bit(BlockedBadBlocks,
4077                                                 &rdev->flags);
4078                                 s->blocked_rdev = rdev;
4079                                 atomic_inc(&rdev->nr_pending);
4080                         }
4081                 }
4082                 clear_bit(R5_Insync, &dev->flags);
4083                 if (!rdev)
4084                         /* Not in-sync */;
4085                 else if (is_bad) {
4086                         /* also not in-sync */
4087                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4088                             test_bit(R5_UPTODATE, &dev->flags)) {
4089                                 /* treat as in-sync, but with a read error
4090                                  * which we can now try to correct
4091                                  */
4092                                 set_bit(R5_Insync, &dev->flags);
4093                                 set_bit(R5_ReadError, &dev->flags);
4094                         }
4095                 } else if (test_bit(In_sync, &rdev->flags))
4096                         set_bit(R5_Insync, &dev->flags);
4097                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4098                         /* in sync if before recovery_offset */
4099                         set_bit(R5_Insync, &dev->flags);
4100                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4101                          test_bit(R5_Expanded, &dev->flags))
4102                         /* If we've reshaped into here, we assume it is Insync.
4103                          * We will shortly update recovery_offset to make
4104                          * it official.
4105                          */
4106                         set_bit(R5_Insync, &dev->flags);
4107
4108                 if (test_bit(R5_WriteError, &dev->flags)) {
4109                         /* This flag does not apply to '.replacement'
4110                          * only to .rdev, so make sure to check that*/
4111                         struct md_rdev *rdev2 = rcu_dereference(
4112                                 conf->disks[i].rdev);
4113                         if (rdev2 == rdev)
4114                                 clear_bit(R5_Insync, &dev->flags);
4115                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4116                                 s->handle_bad_blocks = 1;
4117                                 atomic_inc(&rdev2->nr_pending);
4118                         } else
4119                                 clear_bit(R5_WriteError, &dev->flags);
4120                 }
4121                 if (test_bit(R5_MadeGood, &dev->flags)) {
4122                         /* This flag does not apply to '.replacement'
4123                          * only to .rdev, so make sure to check that*/
4124                         struct md_rdev *rdev2 = rcu_dereference(
4125                                 conf->disks[i].rdev);
4126                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4127                                 s->handle_bad_blocks = 1;
4128                                 atomic_inc(&rdev2->nr_pending);
4129                         } else
4130                                 clear_bit(R5_MadeGood, &dev->flags);
4131                 }
4132                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4133                         struct md_rdev *rdev2 = rcu_dereference(
4134                                 conf->disks[i].replacement);
4135                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4136                                 s->handle_bad_blocks = 1;
4137                                 atomic_inc(&rdev2->nr_pending);
4138                         } else
4139                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4140                 }
4141                 if (!test_bit(R5_Insync, &dev->flags)) {
4142                         /* The ReadError flag will just be confusing now */
4143                         clear_bit(R5_ReadError, &dev->flags);
4144                         clear_bit(R5_ReWrite, &dev->flags);
4145                 }
4146                 if (test_bit(R5_ReadError, &dev->flags))
4147                         clear_bit(R5_Insync, &dev->flags);
4148                 if (!test_bit(R5_Insync, &dev->flags)) {
4149                         if (s->failed < 2)
4150                                 s->failed_num[s->failed] = i;
4151                         s->failed++;
4152                         if (rdev && !test_bit(Faulty, &rdev->flags))
4153                                 do_recovery = 1;
4154                 }
4155         }
4156         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4157                 /* If there is a failed device being replaced,
4158                  *     we must be recovering.
4159                  * else if we are after recovery_cp, we must be syncing
4160                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4161                  * else we can only be replacing
4162                  * sync and recovery both need to read all devices, and so
4163                  * use the same flag.
4164                  */
4165                 if (do_recovery ||
4166                     sh->sector >= conf->mddev->recovery_cp ||
4167                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4168                         s->syncing = 1;
4169                 else
4170                         s->replacing = 1;
4171         }
4172         rcu_read_unlock();
4173 }
4174
4175 static int clear_batch_ready(struct stripe_head *sh)
4176 {
4177         /* Return '1' if this is a member of batch, or
4178          * '0' if it is a lone stripe or a head which can now be
4179          * handled.
4180          */
4181         struct stripe_head *tmp;
4182         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4183                 return (sh->batch_head && sh->batch_head != sh);
4184         spin_lock(&sh->stripe_lock);
4185         if (!sh->batch_head) {
4186                 spin_unlock(&sh->stripe_lock);
4187                 return 0;
4188         }
4189
4190         /*
4191          * this stripe could be added to a batch list before we check
4192          * BATCH_READY, skips it
4193          */
4194         if (sh->batch_head != sh) {
4195                 spin_unlock(&sh->stripe_lock);
4196                 return 1;
4197         }
4198         spin_lock(&sh->batch_lock);
4199         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4200                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4201         spin_unlock(&sh->batch_lock);
4202         spin_unlock(&sh->stripe_lock);
4203
4204         /*
4205          * BATCH_READY is cleared, no new stripes can be added.
4206          * batch_list can be accessed without lock
4207          */
4208         return 0;
4209 }
4210
4211 static void break_stripe_batch_list(struct stripe_head *head_sh,
4212                                     unsigned long handle_flags)
4213 {
4214         struct stripe_head *sh, *next;
4215         int i;
4216         int do_wakeup = 0;
4217
4218         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4219
4220                 list_del_init(&sh->batch_list);
4221
4222                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4223                                           (1 << STRIPE_SYNCING) |
4224                                           (1 << STRIPE_REPLACED) |
4225                                           (1 << STRIPE_PREREAD_ACTIVE) |
4226                                           (1 << STRIPE_DELAYED) |
4227                                           (1 << STRIPE_BIT_DELAY) |
4228                                           (1 << STRIPE_FULL_WRITE) |
4229                                           (1 << STRIPE_BIOFILL_RUN) |
4230                                           (1 << STRIPE_COMPUTE_RUN)  |
4231                                           (1 << STRIPE_OPS_REQ_PENDING) |
4232                                           (1 << STRIPE_DISCARD) |
4233                                           (1 << STRIPE_BATCH_READY) |
4234                                           (1 << STRIPE_BATCH_ERR) |
4235                                           (1 << STRIPE_BITMAP_PENDING)));
4236                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4237                                               (1 << STRIPE_REPLACED)));
4238
4239                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4240                                             (1 << STRIPE_DEGRADED)),
4241                               head_sh->state & (1 << STRIPE_INSYNC));
4242
4243                 sh->check_state = head_sh->check_state;
4244                 sh->reconstruct_state = head_sh->reconstruct_state;
4245                 for (i = 0; i < sh->disks; i++) {
4246                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4247                                 do_wakeup = 1;
4248                         sh->dev[i].flags = head_sh->dev[i].flags &
4249                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4250                 }
4251                 spin_lock_irq(&sh->stripe_lock);
4252                 sh->batch_head = NULL;
4253                 spin_unlock_irq(&sh->stripe_lock);
4254                 if (handle_flags == 0 ||
4255                     sh->state & handle_flags)
4256                         set_bit(STRIPE_HANDLE, &sh->state);
4257                 release_stripe(sh);
4258         }
4259         spin_lock_irq(&head_sh->stripe_lock);
4260         head_sh->batch_head = NULL;
4261         spin_unlock_irq(&head_sh->stripe_lock);
4262         for (i = 0; i < head_sh->disks; i++)
4263                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4264                         do_wakeup = 1;
4265         if (head_sh->state & handle_flags)
4266                 set_bit(STRIPE_HANDLE, &head_sh->state);
4267
4268         if (do_wakeup)
4269                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4270 }
4271
4272 static void handle_stripe(struct stripe_head *sh)
4273 {
4274         struct stripe_head_state s;
4275         struct r5conf *conf = sh->raid_conf;
4276         int i;
4277         int prexor;
4278         int disks = sh->disks;
4279         struct r5dev *pdev, *qdev;
4280
4281         clear_bit(STRIPE_HANDLE, &sh->state);
4282         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4283                 /* already being handled, ensure it gets handled
4284                  * again when current action finishes */
4285                 set_bit(STRIPE_HANDLE, &sh->state);
4286                 return;
4287         }
4288
4289         if (clear_batch_ready(sh) ) {
4290                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4291                 return;
4292         }
4293
4294         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4295                 break_stripe_batch_list(sh, 0);
4296
4297         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4298                 spin_lock(&sh->stripe_lock);
4299                 /* Cannot process 'sync' concurrently with 'discard' */
4300                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4301                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4302                         set_bit(STRIPE_SYNCING, &sh->state);
4303                         clear_bit(STRIPE_INSYNC, &sh->state);
4304                         clear_bit(STRIPE_REPLACED, &sh->state);
4305                 }
4306                 spin_unlock(&sh->stripe_lock);
4307         }
4308         clear_bit(STRIPE_DELAYED, &sh->state);
4309
4310         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4311                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4312                (unsigned long long)sh->sector, sh->state,
4313                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4314                sh->check_state, sh->reconstruct_state);
4315
4316         analyse_stripe(sh, &s);
4317
4318         if (s.handle_bad_blocks) {
4319                 set_bit(STRIPE_HANDLE, &sh->state);
4320                 goto finish;
4321         }
4322
4323         if (unlikely(s.blocked_rdev)) {
4324                 if (s.syncing || s.expanding || s.expanded ||
4325                     s.replacing || s.to_write || s.written) {
4326                         set_bit(STRIPE_HANDLE, &sh->state);
4327                         goto finish;
4328                 }
4329                 /* There is nothing for the blocked_rdev to block */
4330                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4331                 s.blocked_rdev = NULL;
4332         }
4333
4334         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4335                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4336                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4337         }
4338
4339         pr_debug("locked=%d uptodate=%d to_read=%d"
4340                " to_write=%d failed=%d failed_num=%d,%d\n",
4341                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4342                s.failed_num[0], s.failed_num[1]);
4343         /* check if the array has lost more than max_degraded devices and,
4344          * if so, some requests might need to be failed.
4345          */
4346         if (s.failed > conf->max_degraded) {
4347                 sh->check_state = 0;
4348                 sh->reconstruct_state = 0;
4349                 break_stripe_batch_list(sh, 0);
4350                 if (s.to_read+s.to_write+s.written)
4351                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4352                 if (s.syncing + s.replacing)
4353                         handle_failed_sync(conf, sh, &s);
4354         }
4355
4356         /* Now we check to see if any write operations have recently
4357          * completed
4358          */
4359         prexor = 0;
4360         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4361                 prexor = 1;
4362         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4363             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4364                 sh->reconstruct_state = reconstruct_state_idle;
4365
4366                 /* All the 'written' buffers and the parity block are ready to
4367                  * be written back to disk
4368                  */
4369                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4370                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4371                 BUG_ON(sh->qd_idx >= 0 &&
4372                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4373                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4374                 for (i = disks; i--; ) {
4375                         struct r5dev *dev = &sh->dev[i];
4376                         if (test_bit(R5_LOCKED, &dev->flags) &&
4377                                 (i == sh->pd_idx || i == sh->qd_idx ||
4378                                  dev->written)) {
4379                                 pr_debug("Writing block %d\n", i);
4380                                 set_bit(R5_Wantwrite, &dev->flags);
4381                                 if (prexor)
4382                                         continue;
4383                                 if (s.failed > 1)
4384                                         continue;
4385                                 if (!test_bit(R5_Insync, &dev->flags) ||
4386                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4387                                      s.failed == 0))
4388                                         set_bit(STRIPE_INSYNC, &sh->state);
4389                         }
4390                 }
4391                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4392                         s.dec_preread_active = 1;
4393         }
4394
4395         /*
4396          * might be able to return some write requests if the parity blocks
4397          * are safe, or on a failed drive
4398          */
4399         pdev = &sh->dev[sh->pd_idx];
4400         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4401                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4402         qdev = &sh->dev[sh->qd_idx];
4403         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4404                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4405                 || conf->level < 6;
4406
4407         if (s.written &&
4408             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4409                              && !test_bit(R5_LOCKED, &pdev->flags)
4410                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4411                                  test_bit(R5_Discard, &pdev->flags))))) &&
4412             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4413                              && !test_bit(R5_LOCKED, &qdev->flags)
4414                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4415                                  test_bit(R5_Discard, &qdev->flags))))))
4416                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4417
4418         /* Now we might consider reading some blocks, either to check/generate
4419          * parity, or to satisfy requests
4420          * or to load a block that is being partially written.
4421          */
4422         if (s.to_read || s.non_overwrite
4423             || (conf->level == 6 && s.to_write && s.failed)
4424             || (s.syncing && (s.uptodate + s.compute < disks))
4425             || s.replacing
4426             || s.expanding)
4427                 handle_stripe_fill(sh, &s, disks);
4428
4429         /* Now to consider new write requests and what else, if anything
4430          * should be read.  We do not handle new writes when:
4431          * 1/ A 'write' operation (copy+xor) is already in flight.
4432          * 2/ A 'check' operation is in flight, as it may clobber the parity
4433          *    block.
4434          */
4435         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4436                 handle_stripe_dirtying(conf, sh, &s, disks);
4437
4438         /* maybe we need to check and possibly fix the parity for this stripe
4439          * Any reads will already have been scheduled, so we just see if enough
4440          * data is available.  The parity check is held off while parity
4441          * dependent operations are in flight.
4442          */
4443         if (sh->check_state ||
4444             (s.syncing && s.locked == 0 &&
4445              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4446              !test_bit(STRIPE_INSYNC, &sh->state))) {
4447                 if (conf->level == 6)
4448                         handle_parity_checks6(conf, sh, &s, disks);
4449                 else
4450                         handle_parity_checks5(conf, sh, &s, disks);
4451         }
4452
4453         if ((s.replacing || s.syncing) && s.locked == 0
4454             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4455             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4456                 /* Write out to replacement devices where possible */
4457                 for (i = 0; i < conf->raid_disks; i++)
4458                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4459                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4460                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4461                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4462                                 s.locked++;
4463                         }
4464                 if (s.replacing)
4465                         set_bit(STRIPE_INSYNC, &sh->state);
4466                 set_bit(STRIPE_REPLACED, &sh->state);
4467         }
4468         if ((s.syncing || s.replacing) && s.locked == 0 &&
4469             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4470             test_bit(STRIPE_INSYNC, &sh->state)) {
4471                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4472                 clear_bit(STRIPE_SYNCING, &sh->state);
4473                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4474                         wake_up(&conf->wait_for_overlap);
4475         }
4476
4477         /* If the failed drives are just a ReadError, then we might need
4478          * to progress the repair/check process
4479          */
4480         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4481                 for (i = 0; i < s.failed; i++) {
4482                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4483                         if (test_bit(R5_ReadError, &dev->flags)
4484                             && !test_bit(R5_LOCKED, &dev->flags)
4485                             && test_bit(R5_UPTODATE, &dev->flags)
4486                                 ) {
4487                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4488                                         set_bit(R5_Wantwrite, &dev->flags);
4489                                         set_bit(R5_ReWrite, &dev->flags);
4490                                         set_bit(R5_LOCKED, &dev->flags);
4491                                         s.locked++;
4492                                 } else {
4493                                         /* let's read it back */
4494                                         set_bit(R5_Wantread, &dev->flags);
4495                                         set_bit(R5_LOCKED, &dev->flags);
4496                                         s.locked++;
4497                                 }
4498                         }
4499                 }
4500
4501         /* Finish reconstruct operations initiated by the expansion process */
4502         if (sh->reconstruct_state == reconstruct_state_result) {
4503                 struct stripe_head *sh_src
4504                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4505                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4506                         /* sh cannot be written until sh_src has been read.
4507                          * so arrange for sh to be delayed a little
4508                          */
4509                         set_bit(STRIPE_DELAYED, &sh->state);
4510                         set_bit(STRIPE_HANDLE, &sh->state);
4511                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4512                                               &sh_src->state))
4513                                 atomic_inc(&conf->preread_active_stripes);
4514                         release_stripe(sh_src);
4515                         goto finish;
4516                 }
4517                 if (sh_src)
4518                         release_stripe(sh_src);
4519
4520                 sh->reconstruct_state = reconstruct_state_idle;
4521                 clear_bit(STRIPE_EXPANDING, &sh->state);
4522                 for (i = conf->raid_disks; i--; ) {
4523                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4524                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4525                         s.locked++;
4526                 }
4527         }
4528
4529         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4530             !sh->reconstruct_state) {
4531                 /* Need to write out all blocks after computing parity */
4532                 sh->disks = conf->raid_disks;
4533                 stripe_set_idx(sh->sector, conf, 0, sh);
4534                 schedule_reconstruction(sh, &s, 1, 1);
4535         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4536                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4537                 atomic_dec(&conf->reshape_stripes);
4538                 wake_up(&conf->wait_for_overlap);
4539                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4540         }
4541
4542         if (s.expanding && s.locked == 0 &&
4543             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4544                 handle_stripe_expansion(conf, sh);
4545
4546 finish:
4547         /* wait for this device to become unblocked */
4548         if (unlikely(s.blocked_rdev)) {
4549                 if (conf->mddev->external)
4550                         md_wait_for_blocked_rdev(s.blocked_rdev,
4551                                                  conf->mddev);
4552                 else
4553                         /* Internal metadata will immediately
4554                          * be written by raid5d, so we don't
4555                          * need to wait here.
4556                          */
4557                         rdev_dec_pending(s.blocked_rdev,
4558                                          conf->mddev);
4559         }
4560
4561         if (s.handle_bad_blocks)
4562                 for (i = disks; i--; ) {
4563                         struct md_rdev *rdev;
4564                         struct r5dev *dev = &sh->dev[i];
4565                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4566                                 /* We own a safe reference to the rdev */
4567                                 rdev = conf->disks[i].rdev;
4568                                 if (!rdev_set_badblocks(rdev, sh->sector,
4569                                                         STRIPE_SECTORS, 0))
4570                                         md_error(conf->mddev, rdev);
4571                                 rdev_dec_pending(rdev, conf->mddev);
4572                         }
4573                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4574                                 rdev = conf->disks[i].rdev;
4575                                 rdev_clear_badblocks(rdev, sh->sector,
4576                                                      STRIPE_SECTORS, 0);
4577                                 rdev_dec_pending(rdev, conf->mddev);
4578                         }
4579                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4580                                 rdev = conf->disks[i].replacement;
4581                                 if (!rdev)
4582                                         /* rdev have been moved down */
4583                                         rdev = conf->disks[i].rdev;
4584                                 rdev_clear_badblocks(rdev, sh->sector,
4585                                                      STRIPE_SECTORS, 0);
4586                                 rdev_dec_pending(rdev, conf->mddev);
4587                         }
4588                 }
4589
4590         if (s.ops_request)
4591                 raid_run_ops(sh, s.ops_request);
4592
4593         ops_run_io(sh, &s);
4594
4595         if (s.dec_preread_active) {
4596                 /* We delay this until after ops_run_io so that if make_request
4597                  * is waiting on a flush, it won't continue until the writes
4598                  * have actually been submitted.
4599                  */
4600                 atomic_dec(&conf->preread_active_stripes);
4601                 if (atomic_read(&conf->preread_active_stripes) <
4602                     IO_THRESHOLD)
4603                         md_wakeup_thread(conf->mddev->thread);
4604         }
4605
4606         if (!bio_list_empty(&s.return_bi)) {
4607                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4608                         spin_lock_irq(&conf->device_lock);
4609                         bio_list_merge(&conf->return_bi, &s.return_bi);
4610                         spin_unlock_irq(&conf->device_lock);
4611                         md_wakeup_thread(conf->mddev->thread);
4612                 } else
4613                         return_io(&s.return_bi);
4614         }
4615
4616         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4617 }
4618
4619 static void raid5_activate_delayed(struct r5conf *conf)
4620 {
4621         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4622                 while (!list_empty(&conf->delayed_list)) {
4623                         struct list_head *l = conf->delayed_list.next;
4624                         struct stripe_head *sh;
4625                         sh = list_entry(l, struct stripe_head, lru);
4626                         list_del_init(l);
4627                         clear_bit(STRIPE_DELAYED, &sh->state);
4628                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4629                                 atomic_inc(&conf->preread_active_stripes);
4630                         list_add_tail(&sh->lru, &conf->hold_list);
4631                         raid5_wakeup_stripe_thread(sh);
4632                 }
4633         }
4634 }
4635
4636 static void activate_bit_delay(struct r5conf *conf,
4637         struct list_head *temp_inactive_list)
4638 {
4639         /* device_lock is held */
4640         struct list_head head;
4641         list_add(&head, &conf->bitmap_list);
4642         list_del_init(&conf->bitmap_list);
4643         while (!list_empty(&head)) {
4644                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4645                 int hash;
4646                 list_del_init(&sh->lru);
4647                 atomic_inc(&sh->count);
4648                 hash = sh->hash_lock_index;
4649                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4650         }
4651 }
4652
4653 static int raid5_congested(struct mddev *mddev, int bits)
4654 {
4655         struct r5conf *conf = mddev->private;
4656
4657         /* No difference between reads and writes.  Just check
4658          * how busy the stripe_cache is
4659          */
4660
4661         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4662                 return 1;
4663         if (conf->quiesce)
4664                 return 1;
4665         if (atomic_read(&conf->empty_inactive_list_nr))
4666                 return 1;
4667
4668         return 0;
4669 }
4670
4671 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4672 {
4673         struct r5conf *conf = mddev->private;
4674         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4675         unsigned int chunk_sectors;
4676         unsigned int bio_sectors = bio_sectors(bio);
4677
4678         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4679         return  chunk_sectors >=
4680                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4681 }
4682
4683 /*
4684  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4685  *  later sampled by raid5d.
4686  */
4687 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4688 {
4689         unsigned long flags;
4690
4691         spin_lock_irqsave(&conf->device_lock, flags);
4692
4693         bi->bi_next = conf->retry_read_aligned_list;
4694         conf->retry_read_aligned_list = bi;
4695
4696         spin_unlock_irqrestore(&conf->device_lock, flags);
4697         md_wakeup_thread(conf->mddev->thread);
4698 }
4699
4700 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4701 {
4702         struct bio *bi;
4703
4704         bi = conf->retry_read_aligned;
4705         if (bi) {
4706                 conf->retry_read_aligned = NULL;
4707                 return bi;
4708         }
4709         bi = conf->retry_read_aligned_list;
4710         if(bi) {
4711                 conf->retry_read_aligned_list = bi->bi_next;
4712                 bi->bi_next = NULL;
4713                 /*
4714                  * this sets the active strip count to 1 and the processed
4715                  * strip count to zero (upper 8 bits)
4716                  */
4717                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4718         }
4719
4720         return bi;
4721 }
4722
4723 /*
4724  *  The "raid5_align_endio" should check if the read succeeded and if it
4725  *  did, call bio_endio on the original bio (having bio_put the new bio
4726  *  first).
4727  *  If the read failed..
4728  */
4729 static void raid5_align_endio(struct bio *bi)
4730 {
4731         struct bio* raid_bi  = bi->bi_private;
4732         struct mddev *mddev;
4733         struct r5conf *conf;
4734         struct md_rdev *rdev;
4735         int error = bi->bi_error;
4736
4737         bio_put(bi);
4738
4739         rdev = (void*)raid_bi->bi_next;
4740         raid_bi->bi_next = NULL;
4741         mddev = rdev->mddev;
4742         conf = mddev->private;
4743
4744         rdev_dec_pending(rdev, conf->mddev);
4745
4746         if (!error) {
4747                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4748                                          raid_bi, 0);
4749                 bio_endio(raid_bi);
4750                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4751                         wake_up(&conf->wait_for_quiescent);
4752                 return;
4753         }
4754
4755         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4756
4757         add_bio_to_retry(raid_bi, conf);
4758 }
4759
4760 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4761 {
4762         struct r5conf *conf = mddev->private;
4763         int dd_idx;
4764         struct bio* align_bi;
4765         struct md_rdev *rdev;
4766         sector_t end_sector;
4767
4768         if (!in_chunk_boundary(mddev, raid_bio)) {
4769                 pr_debug("%s: non aligned\n", __func__);
4770                 return 0;
4771         }
4772         /*
4773          * use bio_clone_mddev to make a copy of the bio
4774          */
4775         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4776         if (!align_bi)
4777                 return 0;
4778         /*
4779          *   set bi_end_io to a new function, and set bi_private to the
4780          *     original bio.
4781          */
4782         align_bi->bi_end_io  = raid5_align_endio;
4783         align_bi->bi_private = raid_bio;
4784         /*
4785          *      compute position
4786          */
4787         align_bi->bi_iter.bi_sector =
4788                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4789                                      0, &dd_idx, NULL);
4790
4791         end_sector = bio_end_sector(align_bi);
4792         rcu_read_lock();
4793         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4794         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4795             rdev->recovery_offset < end_sector) {
4796                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4797                 if (rdev &&
4798                     (test_bit(Faulty, &rdev->flags) ||
4799                     !(test_bit(In_sync, &rdev->flags) ||
4800                       rdev->recovery_offset >= end_sector)))
4801                         rdev = NULL;
4802         }
4803         if (rdev) {
4804                 sector_t first_bad;
4805                 int bad_sectors;
4806
4807                 atomic_inc(&rdev->nr_pending);
4808                 rcu_read_unlock();
4809                 raid_bio->bi_next = (void*)rdev;
4810                 align_bi->bi_bdev =  rdev->bdev;
4811                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4812
4813                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4814                                 bio_sectors(align_bi),
4815                                 &first_bad, &bad_sectors)) {
4816                         bio_put(align_bi);
4817                         rdev_dec_pending(rdev, mddev);
4818                         return 0;
4819                 }
4820
4821                 /* No reshape active, so we can trust rdev->data_offset */
4822                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4823
4824                 spin_lock_irq(&conf->device_lock);
4825                 wait_event_lock_irq(conf->wait_for_quiescent,
4826                                     conf->quiesce == 0,
4827                                     conf->device_lock);
4828                 atomic_inc(&conf->active_aligned_reads);
4829                 spin_unlock_irq(&conf->device_lock);
4830
4831                 if (mddev->gendisk)
4832                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4833                                               align_bi, disk_devt(mddev->gendisk),
4834                                               raid_bio->bi_iter.bi_sector);
4835                 generic_make_request(align_bi);
4836                 return 1;
4837         } else {
4838                 rcu_read_unlock();
4839                 bio_put(align_bi);
4840                 return 0;
4841         }
4842 }
4843
4844 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4845 {
4846         struct bio *split;
4847
4848         do {
4849                 sector_t sector = raid_bio->bi_iter.bi_sector;
4850                 unsigned chunk_sects = mddev->chunk_sectors;
4851                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4852
4853                 if (sectors < bio_sectors(raid_bio)) {
4854                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4855                         bio_chain(split, raid_bio);
4856                 } else
4857                         split = raid_bio;
4858
4859                 if (!raid5_read_one_chunk(mddev, split)) {
4860                         if (split != raid_bio)
4861                                 generic_make_request(raid_bio);
4862                         return split;
4863                 }
4864         } while (split != raid_bio);
4865
4866         return NULL;
4867 }
4868
4869 /* __get_priority_stripe - get the next stripe to process
4870  *
4871  * Full stripe writes are allowed to pass preread active stripes up until
4872  * the bypass_threshold is exceeded.  In general the bypass_count
4873  * increments when the handle_list is handled before the hold_list; however, it
4874  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4875  * stripe with in flight i/o.  The bypass_count will be reset when the
4876  * head of the hold_list has changed, i.e. the head was promoted to the
4877  * handle_list.
4878  */
4879 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4880 {
4881         struct stripe_head *sh = NULL, *tmp;
4882         struct list_head *handle_list = NULL;
4883         struct r5worker_group *wg = NULL;
4884
4885         if (conf->worker_cnt_per_group == 0) {
4886                 handle_list = &conf->handle_list;
4887         } else if (group != ANY_GROUP) {
4888                 handle_list = &conf->worker_groups[group].handle_list;
4889                 wg = &conf->worker_groups[group];
4890         } else {
4891                 int i;
4892                 for (i = 0; i < conf->group_cnt; i++) {
4893                         handle_list = &conf->worker_groups[i].handle_list;
4894                         wg = &conf->worker_groups[i];
4895                         if (!list_empty(handle_list))
4896                                 break;
4897                 }
4898         }
4899
4900         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4901                   __func__,
4902                   list_empty(handle_list) ? "empty" : "busy",
4903                   list_empty(&conf->hold_list) ? "empty" : "busy",
4904                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4905
4906         if (!list_empty(handle_list)) {
4907                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4908
4909                 if (list_empty(&conf->hold_list))
4910                         conf->bypass_count = 0;
4911                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4912                         if (conf->hold_list.next == conf->last_hold)
4913                                 conf->bypass_count++;
4914                         else {
4915                                 conf->last_hold = conf->hold_list.next;
4916                                 conf->bypass_count -= conf->bypass_threshold;
4917                                 if (conf->bypass_count < 0)
4918                                         conf->bypass_count = 0;
4919                         }
4920                 }
4921         } else if (!list_empty(&conf->hold_list) &&
4922                    ((conf->bypass_threshold &&
4923                      conf->bypass_count > conf->bypass_threshold) ||
4924                     atomic_read(&conf->pending_full_writes) == 0)) {
4925
4926                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4927                         if (conf->worker_cnt_per_group == 0 ||
4928                             group == ANY_GROUP ||
4929                             !cpu_online(tmp->cpu) ||
4930                             cpu_to_group(tmp->cpu) == group) {
4931                                 sh = tmp;
4932                                 break;
4933                         }
4934                 }
4935
4936                 if (sh) {
4937                         conf->bypass_count -= conf->bypass_threshold;
4938                         if (conf->bypass_count < 0)
4939                                 conf->bypass_count = 0;
4940                 }
4941                 wg = NULL;
4942         }
4943
4944         if (!sh)
4945                 return NULL;
4946
4947         if (wg) {
4948                 wg->stripes_cnt--;
4949                 sh->group = NULL;
4950         }
4951         list_del_init(&sh->lru);
4952         BUG_ON(atomic_inc_return(&sh->count) != 1);
4953         return sh;
4954 }
4955
4956 struct raid5_plug_cb {
4957         struct blk_plug_cb      cb;
4958         struct list_head        list;
4959         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4960 };
4961
4962 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4963 {
4964         struct raid5_plug_cb *cb = container_of(
4965                 blk_cb, struct raid5_plug_cb, cb);
4966         struct stripe_head *sh;
4967         struct mddev *mddev = cb->cb.data;
4968         struct r5conf *conf = mddev->private;
4969         int cnt = 0;
4970         int hash;
4971
4972         if (cb->list.next && !list_empty(&cb->list)) {
4973                 spin_lock_irq(&conf->device_lock);
4974                 while (!list_empty(&cb->list)) {
4975                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4976                         list_del_init(&sh->lru);
4977                         /*
4978                          * avoid race release_stripe_plug() sees
4979                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4980                          * is still in our list
4981                          */
4982                         smp_mb__before_atomic();
4983                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4984                         /*
4985                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4986                          * case, the count is always > 1 here
4987                          */
4988                         hash = sh->hash_lock_index;
4989                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4990                         cnt++;
4991                 }
4992                 spin_unlock_irq(&conf->device_lock);
4993         }
4994         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4995                                      NR_STRIPE_HASH_LOCKS);
4996         if (mddev->queue)
4997                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4998         kfree(cb);
4999 }
5000
5001 static void release_stripe_plug(struct mddev *mddev,
5002                                 struct stripe_head *sh)
5003 {
5004         struct blk_plug_cb *blk_cb = blk_check_plugged(
5005                 raid5_unplug, mddev,
5006                 sizeof(struct raid5_plug_cb));
5007         struct raid5_plug_cb *cb;
5008
5009         if (!blk_cb) {
5010                 release_stripe(sh);
5011                 return;
5012         }
5013
5014         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5015
5016         if (cb->list.next == NULL) {
5017                 int i;
5018                 INIT_LIST_HEAD(&cb->list);
5019                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5020                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5021         }
5022
5023         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5024                 list_add_tail(&sh->lru, &cb->list);
5025         else
5026                 release_stripe(sh);
5027 }
5028
5029 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5030 {
5031         struct r5conf *conf = mddev->private;
5032         sector_t logical_sector, last_sector;
5033         struct stripe_head *sh;
5034         int remaining;
5035         int stripe_sectors;
5036
5037         if (mddev->reshape_position != MaxSector)
5038                 /* Skip discard while reshape is happening */
5039                 return;
5040
5041         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5042         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5043
5044         bi->bi_next = NULL;
5045         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5046
5047         stripe_sectors = conf->chunk_sectors *
5048                 (conf->raid_disks - conf->max_degraded);
5049         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5050                                                stripe_sectors);
5051         sector_div(last_sector, stripe_sectors);
5052
5053         logical_sector *= conf->chunk_sectors;
5054         last_sector *= conf->chunk_sectors;
5055
5056         for (; logical_sector < last_sector;
5057              logical_sector += STRIPE_SECTORS) {
5058                 DEFINE_WAIT(w);
5059                 int d;
5060         again:
5061                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5062                 prepare_to_wait(&conf->wait_for_overlap, &w,
5063                                 TASK_UNINTERRUPTIBLE);
5064                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5065                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5066                         release_stripe(sh);
5067                         schedule();
5068                         goto again;
5069                 }
5070                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5071                 spin_lock_irq(&sh->stripe_lock);
5072                 for (d = 0; d < conf->raid_disks; d++) {
5073                         if (d == sh->pd_idx || d == sh->qd_idx)
5074                                 continue;
5075                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5076                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5077                                 spin_unlock_irq(&sh->stripe_lock);
5078                                 release_stripe(sh);
5079                                 schedule();
5080                                 goto again;
5081                         }
5082                 }
5083                 set_bit(STRIPE_DISCARD, &sh->state);
5084                 finish_wait(&conf->wait_for_overlap, &w);
5085                 sh->overwrite_disks = 0;
5086                 for (d = 0; d < conf->raid_disks; d++) {
5087                         if (d == sh->pd_idx || d == sh->qd_idx)
5088                                 continue;
5089                         sh->dev[d].towrite = bi;
5090                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5091                         raid5_inc_bi_active_stripes(bi);
5092                         sh->overwrite_disks++;
5093                 }
5094                 spin_unlock_irq(&sh->stripe_lock);
5095                 if (conf->mddev->bitmap) {
5096                         for (d = 0;
5097                              d < conf->raid_disks - conf->max_degraded;
5098                              d++)
5099                                 bitmap_startwrite(mddev->bitmap,
5100                                                   sh->sector,
5101                                                   STRIPE_SECTORS,
5102                                                   0);
5103                         sh->bm_seq = conf->seq_flush + 1;
5104                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5105                 }
5106
5107                 set_bit(STRIPE_HANDLE, &sh->state);
5108                 clear_bit(STRIPE_DELAYED, &sh->state);
5109                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5110                         atomic_inc(&conf->preread_active_stripes);
5111                 release_stripe_plug(mddev, sh);
5112         }
5113
5114         remaining = raid5_dec_bi_active_stripes(bi);
5115         if (remaining == 0) {
5116                 md_write_end(mddev);
5117                 bio_endio(bi);
5118         }
5119 }
5120
5121 static void make_request(struct mddev *mddev, struct bio * bi)
5122 {
5123         struct r5conf *conf = mddev->private;
5124         int dd_idx;
5125         sector_t new_sector;
5126         sector_t logical_sector, last_sector;
5127         struct stripe_head *sh;
5128         const int rw = bio_data_dir(bi);
5129         int remaining;
5130         DEFINE_WAIT(w);
5131         bool do_prepare;
5132
5133         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5134                 md_flush_request(mddev, bi);
5135                 return;
5136         }
5137
5138         md_write_start(mddev, bi);
5139
5140         /*
5141          * If array is degraded, better not do chunk aligned read because
5142          * later we might have to read it again in order to reconstruct
5143          * data on failed drives.
5144          */
5145         if (rw == READ && mddev->degraded == 0 &&
5146             mddev->reshape_position == MaxSector) {
5147                 bi = chunk_aligned_read(mddev, bi);
5148                 if (!bi)
5149                         return;
5150         }
5151
5152         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5153                 make_discard_request(mddev, bi);
5154                 return;
5155         }
5156
5157         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5158         last_sector = bio_end_sector(bi);
5159         bi->bi_next = NULL;
5160         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5161
5162         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5163         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5164                 int previous;
5165                 int seq;
5166
5167                 do_prepare = false;
5168         retry:
5169                 seq = read_seqcount_begin(&conf->gen_lock);
5170                 previous = 0;
5171                 if (do_prepare)
5172                         prepare_to_wait(&conf->wait_for_overlap, &w,
5173                                 TASK_UNINTERRUPTIBLE);
5174                 if (unlikely(conf->reshape_progress != MaxSector)) {
5175                         /* spinlock is needed as reshape_progress may be
5176                          * 64bit on a 32bit platform, and so it might be
5177                          * possible to see a half-updated value
5178                          * Of course reshape_progress could change after
5179                          * the lock is dropped, so once we get a reference
5180                          * to the stripe that we think it is, we will have
5181                          * to check again.
5182                          */
5183                         spin_lock_irq(&conf->device_lock);
5184                         if (mddev->reshape_backwards
5185                             ? logical_sector < conf->reshape_progress
5186                             : logical_sector >= conf->reshape_progress) {
5187                                 previous = 1;
5188                         } else {
5189                                 if (mddev->reshape_backwards
5190                                     ? logical_sector < conf->reshape_safe
5191                                     : logical_sector >= conf->reshape_safe) {
5192                                         spin_unlock_irq(&conf->device_lock);
5193                                         schedule();
5194                                         do_prepare = true;
5195                                         goto retry;
5196                                 }
5197                         }
5198                         spin_unlock_irq(&conf->device_lock);
5199                 }
5200
5201                 new_sector = raid5_compute_sector(conf, logical_sector,
5202                                                   previous,
5203                                                   &dd_idx, NULL);
5204                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5205                         (unsigned long long)new_sector,
5206                         (unsigned long long)logical_sector);
5207
5208                 sh = get_active_stripe(conf, new_sector, previous,
5209                                        (bi->bi_rw&RWA_MASK), 0);
5210                 if (sh) {
5211                         if (unlikely(previous)) {
5212                                 /* expansion might have moved on while waiting for a
5213                                  * stripe, so we must do the range check again.
5214                                  * Expansion could still move past after this
5215                                  * test, but as we are holding a reference to
5216                                  * 'sh', we know that if that happens,
5217                                  *  STRIPE_EXPANDING will get set and the expansion
5218                                  * won't proceed until we finish with the stripe.
5219                                  */
5220                                 int must_retry = 0;
5221                                 spin_lock_irq(&conf->device_lock);
5222                                 if (mddev->reshape_backwards
5223                                     ? logical_sector >= conf->reshape_progress
5224                                     : logical_sector < conf->reshape_progress)
5225                                         /* mismatch, need to try again */
5226                                         must_retry = 1;
5227                                 spin_unlock_irq(&conf->device_lock);
5228                                 if (must_retry) {
5229                                         release_stripe(sh);
5230                                         schedule();
5231                                         do_prepare = true;
5232                                         goto retry;
5233                                 }
5234                         }
5235                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5236                                 /* Might have got the wrong stripe_head
5237                                  * by accident
5238                                  */
5239                                 release_stripe(sh);
5240                                 goto retry;
5241                         }
5242
5243                         if (rw == WRITE &&
5244                             logical_sector >= mddev->suspend_lo &&
5245                             logical_sector < mddev->suspend_hi) {
5246                                 release_stripe(sh);
5247                                 /* As the suspend_* range is controlled by
5248                                  * userspace, we want an interruptible
5249                                  * wait.
5250                                  */
5251                                 flush_signals(current);
5252                                 prepare_to_wait(&conf->wait_for_overlap,
5253                                                 &w, TASK_INTERRUPTIBLE);
5254                                 if (logical_sector >= mddev->suspend_lo &&
5255                                     logical_sector < mddev->suspend_hi) {
5256                                         schedule();
5257                                         do_prepare = true;
5258                                 }
5259                                 goto retry;
5260                         }
5261
5262                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5263                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5264                                 /* Stripe is busy expanding or
5265                                  * add failed due to overlap.  Flush everything
5266                                  * and wait a while
5267                                  */
5268                                 md_wakeup_thread(mddev->thread);
5269                                 release_stripe(sh);
5270                                 schedule();
5271                                 do_prepare = true;
5272                                 goto retry;
5273                         }
5274                         set_bit(STRIPE_HANDLE, &sh->state);
5275                         clear_bit(STRIPE_DELAYED, &sh->state);
5276                         if ((!sh->batch_head || sh == sh->batch_head) &&
5277                             (bi->bi_rw & REQ_SYNC) &&
5278                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5279                                 atomic_inc(&conf->preread_active_stripes);
5280                         release_stripe_plug(mddev, sh);
5281                 } else {
5282                         /* cannot get stripe for read-ahead, just give-up */
5283                         bi->bi_error = -EIO;
5284                         break;
5285                 }
5286         }
5287         finish_wait(&conf->wait_for_overlap, &w);
5288
5289         remaining = raid5_dec_bi_active_stripes(bi);
5290         if (remaining == 0) {
5291
5292                 if ( rw == WRITE )
5293                         md_write_end(mddev);
5294
5295                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5296                                          bi, 0);
5297                 bio_endio(bi);
5298         }
5299 }
5300
5301 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5302
5303 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5304 {
5305         /* reshaping is quite different to recovery/resync so it is
5306          * handled quite separately ... here.
5307          *
5308          * On each call to sync_request, we gather one chunk worth of
5309          * destination stripes and flag them as expanding.
5310          * Then we find all the source stripes and request reads.
5311          * As the reads complete, handle_stripe will copy the data
5312          * into the destination stripe and release that stripe.
5313          */
5314         struct r5conf *conf = mddev->private;
5315         struct stripe_head *sh;
5316         sector_t first_sector, last_sector;
5317         int raid_disks = conf->previous_raid_disks;
5318         int data_disks = raid_disks - conf->max_degraded;
5319         int new_data_disks = conf->raid_disks - conf->max_degraded;
5320         int i;
5321         int dd_idx;
5322         sector_t writepos, readpos, safepos;
5323         sector_t stripe_addr;
5324         int reshape_sectors;
5325         struct list_head stripes;
5326         sector_t retn;
5327
5328         if (sector_nr == 0) {
5329                 /* If restarting in the middle, skip the initial sectors */
5330                 if (mddev->reshape_backwards &&
5331                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5332                         sector_nr = raid5_size(mddev, 0, 0)
5333                                 - conf->reshape_progress;
5334                 } else if (mddev->reshape_backwards &&
5335                            conf->reshape_progress == MaxSector) {
5336                         /* shouldn't happen, but just in case, finish up.*/
5337                         sector_nr = MaxSector;
5338                 } else if (!mddev->reshape_backwards &&
5339                            conf->reshape_progress > 0)
5340                         sector_nr = conf->reshape_progress;
5341                 sector_div(sector_nr, new_data_disks);
5342                 if (sector_nr) {
5343                         mddev->curr_resync_completed = sector_nr;
5344                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5345                         *skipped = 1;
5346                         retn = sector_nr;
5347                         goto finish;
5348                 }
5349         }
5350
5351         /* We need to process a full chunk at a time.
5352          * If old and new chunk sizes differ, we need to process the
5353          * largest of these
5354          */
5355
5356         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5357
5358         /* We update the metadata at least every 10 seconds, or when
5359          * the data about to be copied would over-write the source of
5360          * the data at the front of the range.  i.e. one new_stripe
5361          * along from reshape_progress new_maps to after where
5362          * reshape_safe old_maps to
5363          */
5364         writepos = conf->reshape_progress;
5365         sector_div(writepos, new_data_disks);
5366         readpos = conf->reshape_progress;
5367         sector_div(readpos, data_disks);
5368         safepos = conf->reshape_safe;
5369         sector_div(safepos, data_disks);
5370         if (mddev->reshape_backwards) {
5371                 BUG_ON(writepos < reshape_sectors);
5372                 writepos -= reshape_sectors;
5373                 readpos += reshape_sectors;
5374                 safepos += reshape_sectors;
5375         } else {
5376                 writepos += reshape_sectors;
5377                 /* readpos and safepos are worst-case calculations.
5378                  * A negative number is overly pessimistic, and causes
5379                  * obvious problems for unsigned storage.  So clip to 0.
5380                  */
5381                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5382                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5383         }
5384
5385         /* Having calculated the 'writepos' possibly use it
5386          * to set 'stripe_addr' which is where we will write to.
5387          */
5388         if (mddev->reshape_backwards) {
5389                 BUG_ON(conf->reshape_progress == 0);
5390                 stripe_addr = writepos;
5391                 BUG_ON((mddev->dev_sectors &
5392                         ~((sector_t)reshape_sectors - 1))
5393                        - reshape_sectors - stripe_addr
5394                        != sector_nr);
5395         } else {
5396                 BUG_ON(writepos != sector_nr + reshape_sectors);
5397                 stripe_addr = sector_nr;
5398         }
5399
5400         /* 'writepos' is the most advanced device address we might write.
5401          * 'readpos' is the least advanced device address we might read.
5402          * 'safepos' is the least address recorded in the metadata as having
5403          *     been reshaped.
5404          * If there is a min_offset_diff, these are adjusted either by
5405          * increasing the safepos/readpos if diff is negative, or
5406          * increasing writepos if diff is positive.
5407          * If 'readpos' is then behind 'writepos', there is no way that we can
5408          * ensure safety in the face of a crash - that must be done by userspace
5409          * making a backup of the data.  So in that case there is no particular
5410          * rush to update metadata.
5411          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5412          * update the metadata to advance 'safepos' to match 'readpos' so that
5413          * we can be safe in the event of a crash.
5414          * So we insist on updating metadata if safepos is behind writepos and
5415          * readpos is beyond writepos.
5416          * In any case, update the metadata every 10 seconds.
5417          * Maybe that number should be configurable, but I'm not sure it is
5418          * worth it.... maybe it could be a multiple of safemode_delay???
5419          */
5420         if (conf->min_offset_diff < 0) {
5421                 safepos += -conf->min_offset_diff;
5422                 readpos += -conf->min_offset_diff;
5423         } else
5424                 writepos += conf->min_offset_diff;
5425
5426         if ((mddev->reshape_backwards
5427              ? (safepos > writepos && readpos < writepos)
5428              : (safepos < writepos && readpos > writepos)) ||
5429             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5430                 /* Cannot proceed until we've updated the superblock... */
5431                 wait_event(conf->wait_for_overlap,
5432                            atomic_read(&conf->reshape_stripes)==0
5433                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5434                 if (atomic_read(&conf->reshape_stripes) != 0)
5435                         return 0;
5436                 mddev->reshape_position = conf->reshape_progress;
5437                 mddev->curr_resync_completed = sector_nr;
5438                 conf->reshape_checkpoint = jiffies;
5439                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5440                 md_wakeup_thread(mddev->thread);
5441                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5442                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5443                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5444                         return 0;
5445                 spin_lock_irq(&conf->device_lock);
5446                 conf->reshape_safe = mddev->reshape_position;
5447                 spin_unlock_irq(&conf->device_lock);
5448                 wake_up(&conf->wait_for_overlap);
5449                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5450         }
5451
5452         INIT_LIST_HEAD(&stripes);
5453         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5454                 int j;
5455                 int skipped_disk = 0;
5456                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5457                 set_bit(STRIPE_EXPANDING, &sh->state);
5458                 atomic_inc(&conf->reshape_stripes);
5459                 /* If any of this stripe is beyond the end of the old
5460                  * array, then we need to zero those blocks
5461                  */
5462                 for (j=sh->disks; j--;) {
5463                         sector_t s;
5464                         if (j == sh->pd_idx)
5465                                 continue;
5466                         if (conf->level == 6 &&
5467                             j == sh->qd_idx)
5468                                 continue;
5469                         s = compute_blocknr(sh, j, 0);
5470                         if (s < raid5_size(mddev, 0, 0)) {
5471                                 skipped_disk = 1;
5472                                 continue;
5473                         }
5474                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5475                         set_bit(R5_Expanded, &sh->dev[j].flags);
5476                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5477                 }
5478                 if (!skipped_disk) {
5479                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5480                         set_bit(STRIPE_HANDLE, &sh->state);
5481                 }
5482                 list_add(&sh->lru, &stripes);
5483         }
5484         spin_lock_irq(&conf->device_lock);
5485         if (mddev->reshape_backwards)
5486                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5487         else
5488                 conf->reshape_progress += reshape_sectors * new_data_disks;
5489         spin_unlock_irq(&conf->device_lock);
5490         /* Ok, those stripe are ready. We can start scheduling
5491          * reads on the source stripes.
5492          * The source stripes are determined by mapping the first and last
5493          * block on the destination stripes.
5494          */
5495         first_sector =
5496                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5497                                      1, &dd_idx, NULL);
5498         last_sector =
5499                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5500                                             * new_data_disks - 1),
5501                                      1, &dd_idx, NULL);
5502         if (last_sector >= mddev->dev_sectors)
5503                 last_sector = mddev->dev_sectors - 1;
5504         while (first_sector <= last_sector) {
5505                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5506                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5507                 set_bit(STRIPE_HANDLE, &sh->state);
5508                 release_stripe(sh);
5509                 first_sector += STRIPE_SECTORS;
5510         }
5511         /* Now that the sources are clearly marked, we can release
5512          * the destination stripes
5513          */
5514         while (!list_empty(&stripes)) {
5515                 sh = list_entry(stripes.next, struct stripe_head, lru);
5516                 list_del_init(&sh->lru);
5517                 release_stripe(sh);
5518         }
5519         /* If this takes us to the resync_max point where we have to pause,
5520          * then we need to write out the superblock.
5521          */
5522         sector_nr += reshape_sectors;
5523         retn = reshape_sectors;
5524 finish:
5525         if (mddev->curr_resync_completed > mddev->resync_max ||
5526             (sector_nr - mddev->curr_resync_completed) * 2
5527             >= mddev->resync_max - mddev->curr_resync_completed) {
5528                 /* Cannot proceed until we've updated the superblock... */
5529                 wait_event(conf->wait_for_overlap,
5530                            atomic_read(&conf->reshape_stripes) == 0
5531                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5532                 if (atomic_read(&conf->reshape_stripes) != 0)
5533                         goto ret;
5534                 mddev->reshape_position = conf->reshape_progress;
5535                 mddev->curr_resync_completed = sector_nr;
5536                 conf->reshape_checkpoint = jiffies;
5537                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5538                 md_wakeup_thread(mddev->thread);
5539                 wait_event(mddev->sb_wait,
5540                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5541                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5542                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5543                         goto ret;
5544                 spin_lock_irq(&conf->device_lock);
5545                 conf->reshape_safe = mddev->reshape_position;
5546                 spin_unlock_irq(&conf->device_lock);
5547                 wake_up(&conf->wait_for_overlap);
5548                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5549         }
5550 ret:
5551         return retn;
5552 }
5553
5554 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5555 {
5556         struct r5conf *conf = mddev->private;
5557         struct stripe_head *sh;
5558         sector_t max_sector = mddev->dev_sectors;
5559         sector_t sync_blocks;
5560         int still_degraded = 0;
5561         int i;
5562
5563         if (sector_nr >= max_sector) {
5564                 /* just being told to finish up .. nothing much to do */
5565
5566                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5567                         end_reshape(conf);
5568                         return 0;
5569                 }
5570
5571                 if (mddev->curr_resync < max_sector) /* aborted */
5572                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5573                                         &sync_blocks, 1);
5574                 else /* completed sync */
5575                         conf->fullsync = 0;
5576                 bitmap_close_sync(mddev->bitmap);
5577
5578                 return 0;
5579         }
5580
5581         /* Allow raid5_quiesce to complete */
5582         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5583
5584         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5585                 return reshape_request(mddev, sector_nr, skipped);
5586
5587         /* No need to check resync_max as we never do more than one
5588          * stripe, and as resync_max will always be on a chunk boundary,
5589          * if the check in md_do_sync didn't fire, there is no chance
5590          * of overstepping resync_max here
5591          */
5592
5593         /* if there is too many failed drives and we are trying
5594          * to resync, then assert that we are finished, because there is
5595          * nothing we can do.
5596          */
5597         if (mddev->degraded >= conf->max_degraded &&
5598             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5599                 sector_t rv = mddev->dev_sectors - sector_nr;
5600                 *skipped = 1;
5601                 return rv;
5602         }
5603         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5604             !conf->fullsync &&
5605             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5606             sync_blocks >= STRIPE_SECTORS) {
5607                 /* we can skip this block, and probably more */
5608                 sync_blocks /= STRIPE_SECTORS;
5609                 *skipped = 1;
5610                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5611         }
5612
5613         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5614
5615         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5616         if (sh == NULL) {
5617                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5618                 /* make sure we don't swamp the stripe cache if someone else
5619                  * is trying to get access
5620                  */
5621                 schedule_timeout_uninterruptible(1);
5622         }
5623         /* Need to check if array will still be degraded after recovery/resync
5624          * Note in case of > 1 drive failures it's possible we're rebuilding
5625          * one drive while leaving another faulty drive in array.
5626          */
5627         rcu_read_lock();
5628         for (i = 0; i < conf->raid_disks; i++) {
5629                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5630
5631                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5632                         still_degraded = 1;
5633         }
5634         rcu_read_unlock();
5635
5636         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5637
5638         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5639         set_bit(STRIPE_HANDLE, &sh->state);
5640
5641         release_stripe(sh);
5642
5643         return STRIPE_SECTORS;
5644 }
5645
5646 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5647 {
5648         /* We may not be able to submit a whole bio at once as there
5649          * may not be enough stripe_heads available.
5650          * We cannot pre-allocate enough stripe_heads as we may need
5651          * more than exist in the cache (if we allow ever large chunks).
5652          * So we do one stripe head at a time and record in
5653          * ->bi_hw_segments how many have been done.
5654          *
5655          * We *know* that this entire raid_bio is in one chunk, so
5656          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5657          */
5658         struct stripe_head *sh;
5659         int dd_idx;
5660         sector_t sector, logical_sector, last_sector;
5661         int scnt = 0;
5662         int remaining;
5663         int handled = 0;
5664
5665         logical_sector = raid_bio->bi_iter.bi_sector &
5666                 ~((sector_t)STRIPE_SECTORS-1);
5667         sector = raid5_compute_sector(conf, logical_sector,
5668                                       0, &dd_idx, NULL);
5669         last_sector = bio_end_sector(raid_bio);
5670
5671         for (; logical_sector < last_sector;
5672              logical_sector += STRIPE_SECTORS,
5673                      sector += STRIPE_SECTORS,
5674                      scnt++) {
5675
5676                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5677                         /* already done this stripe */
5678                         continue;
5679
5680                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5681
5682                 if (!sh) {
5683                         /* failed to get a stripe - must wait */
5684                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5685                         conf->retry_read_aligned = raid_bio;
5686                         return handled;
5687                 }
5688
5689                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5690                         release_stripe(sh);
5691                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5692                         conf->retry_read_aligned = raid_bio;
5693                         return handled;
5694                 }
5695
5696                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5697                 handle_stripe(sh);
5698                 release_stripe(sh);
5699                 handled++;
5700         }
5701         remaining = raid5_dec_bi_active_stripes(raid_bio);
5702         if (remaining == 0) {
5703                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5704                                          raid_bio, 0);
5705                 bio_endio(raid_bio);
5706         }
5707         if (atomic_dec_and_test(&conf->active_aligned_reads))
5708                 wake_up(&conf->wait_for_quiescent);
5709         return handled;
5710 }
5711
5712 static int handle_active_stripes(struct r5conf *conf, int group,
5713                                  struct r5worker *worker,
5714                                  struct list_head *temp_inactive_list)
5715 {
5716         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5717         int i, batch_size = 0, hash;
5718         bool release_inactive = false;
5719
5720         while (batch_size < MAX_STRIPE_BATCH &&
5721                         (sh = __get_priority_stripe(conf, group)) != NULL)
5722                 batch[batch_size++] = sh;
5723
5724         if (batch_size == 0) {
5725                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5726                         if (!list_empty(temp_inactive_list + i))
5727                                 break;
5728                 if (i == NR_STRIPE_HASH_LOCKS)
5729                         return batch_size;
5730                 release_inactive = true;
5731         }
5732         spin_unlock_irq(&conf->device_lock);
5733
5734         release_inactive_stripe_list(conf, temp_inactive_list,
5735                                      NR_STRIPE_HASH_LOCKS);
5736
5737         if (release_inactive) {
5738                 spin_lock_irq(&conf->device_lock);
5739                 return 0;
5740         }
5741
5742         for (i = 0; i < batch_size; i++)
5743                 handle_stripe(batch[i]);
5744
5745         cond_resched();
5746
5747         spin_lock_irq(&conf->device_lock);
5748         for (i = 0; i < batch_size; i++) {
5749                 hash = batch[i]->hash_lock_index;
5750                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5751         }
5752         return batch_size;
5753 }
5754
5755 static void raid5_do_work(struct work_struct *work)
5756 {
5757         struct r5worker *worker = container_of(work, struct r5worker, work);
5758         struct r5worker_group *group = worker->group;
5759         struct r5conf *conf = group->conf;
5760         int group_id = group - conf->worker_groups;
5761         int handled;
5762         struct blk_plug plug;
5763
5764         pr_debug("+++ raid5worker active\n");
5765
5766         blk_start_plug(&plug);
5767         handled = 0;
5768         spin_lock_irq(&conf->device_lock);
5769         while (1) {
5770                 int batch_size, released;
5771
5772                 released = release_stripe_list(conf, worker->temp_inactive_list);
5773
5774                 batch_size = handle_active_stripes(conf, group_id, worker,
5775                                                    worker->temp_inactive_list);
5776                 worker->working = false;
5777                 if (!batch_size && !released)
5778                         break;
5779                 handled += batch_size;
5780         }
5781         pr_debug("%d stripes handled\n", handled);
5782
5783         spin_unlock_irq(&conf->device_lock);
5784         blk_finish_plug(&plug);
5785
5786         pr_debug("--- raid5worker inactive\n");
5787 }
5788
5789 /*
5790  * This is our raid5 kernel thread.
5791  *
5792  * We scan the hash table for stripes which can be handled now.
5793  * During the scan, completed stripes are saved for us by the interrupt
5794  * handler, so that they will not have to wait for our next wakeup.
5795  */
5796 static void raid5d(struct md_thread *thread)
5797 {
5798         struct mddev *mddev = thread->mddev;
5799         struct r5conf *conf = mddev->private;
5800         int handled;
5801         struct blk_plug plug;
5802
5803         pr_debug("+++ raid5d active\n");
5804
5805         md_check_recovery(mddev);
5806
5807         if (!bio_list_empty(&conf->return_bi) &&
5808             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5809                 struct bio_list tmp = BIO_EMPTY_LIST;
5810                 spin_lock_irq(&conf->device_lock);
5811                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5812                         bio_list_merge(&tmp, &conf->return_bi);
5813                         bio_list_init(&conf->return_bi);
5814                 }
5815                 spin_unlock_irq(&conf->device_lock);
5816                 return_io(&tmp);
5817         }
5818
5819         blk_start_plug(&plug);
5820         handled = 0;
5821         spin_lock_irq(&conf->device_lock);
5822         while (1) {
5823                 struct bio *bio;
5824                 int batch_size, released;
5825
5826                 released = release_stripe_list(conf, conf->temp_inactive_list);
5827                 if (released)
5828                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5829
5830                 if (
5831                     !list_empty(&conf->bitmap_list)) {
5832                         /* Now is a good time to flush some bitmap updates */
5833                         conf->seq_flush++;
5834                         spin_unlock_irq(&conf->device_lock);
5835                         bitmap_unplug(mddev->bitmap);
5836                         spin_lock_irq(&conf->device_lock);
5837                         conf->seq_write = conf->seq_flush;
5838                         activate_bit_delay(conf, conf->temp_inactive_list);
5839                 }
5840                 raid5_activate_delayed(conf);
5841
5842                 while ((bio = remove_bio_from_retry(conf))) {
5843                         int ok;
5844                         spin_unlock_irq(&conf->device_lock);
5845                         ok = retry_aligned_read(conf, bio);
5846                         spin_lock_irq(&conf->device_lock);
5847                         if (!ok)
5848                                 break;
5849                         handled++;
5850                 }
5851
5852                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5853                                                    conf->temp_inactive_list);
5854                 if (!batch_size && !released)
5855                         break;
5856                 handled += batch_size;
5857
5858                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5859                         spin_unlock_irq(&conf->device_lock);
5860                         md_check_recovery(mddev);
5861                         spin_lock_irq(&conf->device_lock);
5862                 }
5863         }
5864         pr_debug("%d stripes handled\n", handled);
5865
5866         spin_unlock_irq(&conf->device_lock);
5867         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5868             mutex_trylock(&conf->cache_size_mutex)) {
5869                 grow_one_stripe(conf, __GFP_NOWARN);
5870                 /* Set flag even if allocation failed.  This helps
5871                  * slow down allocation requests when mem is short
5872                  */
5873                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5874                 mutex_unlock(&conf->cache_size_mutex);
5875         }
5876
5877         async_tx_issue_pending_all();
5878         blk_finish_plug(&plug);
5879
5880         pr_debug("--- raid5d inactive\n");
5881 }
5882
5883 static ssize_t
5884 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5885 {
5886         struct r5conf *conf;
5887         int ret = 0;
5888         spin_lock(&mddev->lock);
5889         conf = mddev->private;
5890         if (conf)
5891                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5892         spin_unlock(&mddev->lock);
5893         return ret;
5894 }
5895
5896 int
5897 raid5_set_cache_size(struct mddev *mddev, int size)
5898 {
5899         struct r5conf *conf = mddev->private;
5900         int err;
5901
5902         if (size <= 16 || size > 32768)
5903                 return -EINVAL;
5904
5905         conf->min_nr_stripes = size;
5906         mutex_lock(&conf->cache_size_mutex);
5907         while (size < conf->max_nr_stripes &&
5908                drop_one_stripe(conf))
5909                 ;
5910         mutex_unlock(&conf->cache_size_mutex);
5911
5912
5913         err = md_allow_write(mddev);
5914         if (err)
5915                 return err;
5916
5917         mutex_lock(&conf->cache_size_mutex);
5918         while (size > conf->max_nr_stripes)
5919                 if (!grow_one_stripe(conf, GFP_KERNEL))
5920                         break;
5921         mutex_unlock(&conf->cache_size_mutex);
5922
5923         return 0;
5924 }
5925 EXPORT_SYMBOL(raid5_set_cache_size);
5926
5927 static ssize_t
5928 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5929 {
5930         struct r5conf *conf;
5931         unsigned long new;
5932         int err;
5933
5934         if (len >= PAGE_SIZE)
5935                 return -EINVAL;
5936         if (kstrtoul(page, 10, &new))
5937                 return -EINVAL;
5938         err = mddev_lock(mddev);
5939         if (err)
5940                 return err;
5941         conf = mddev->private;
5942         if (!conf)
5943                 err = -ENODEV;
5944         else
5945                 err = raid5_set_cache_size(mddev, new);
5946         mddev_unlock(mddev);
5947
5948         return err ?: len;
5949 }
5950
5951 static struct md_sysfs_entry
5952 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5953                                 raid5_show_stripe_cache_size,
5954                                 raid5_store_stripe_cache_size);
5955
5956 static ssize_t
5957 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5958 {
5959         struct r5conf *conf = mddev->private;
5960         if (conf)
5961                 return sprintf(page, "%d\n", conf->rmw_level);
5962         else
5963                 return 0;
5964 }
5965
5966 static ssize_t
5967 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5968 {
5969         struct r5conf *conf = mddev->private;
5970         unsigned long new;
5971
5972         if (!conf)
5973                 return -ENODEV;
5974
5975         if (len >= PAGE_SIZE)
5976                 return -EINVAL;
5977
5978         if (kstrtoul(page, 10, &new))
5979                 return -EINVAL;
5980
5981         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5982                 return -EINVAL;
5983
5984         if (new != PARITY_DISABLE_RMW &&
5985             new != PARITY_ENABLE_RMW &&
5986             new != PARITY_PREFER_RMW)
5987                 return -EINVAL;
5988
5989         conf->rmw_level = new;
5990         return len;
5991 }
5992
5993 static struct md_sysfs_entry
5994 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5995                          raid5_show_rmw_level,
5996                          raid5_store_rmw_level);
5997
5998
5999 static ssize_t
6000 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6001 {
6002         struct r5conf *conf;
6003         int ret = 0;
6004         spin_lock(&mddev->lock);
6005         conf = mddev->private;
6006         if (conf)
6007                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6008         spin_unlock(&mddev->lock);
6009         return ret;
6010 }
6011
6012 static ssize_t
6013 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6014 {
6015         struct r5conf *conf;
6016         unsigned long new;
6017         int err;
6018
6019         if (len >= PAGE_SIZE)
6020                 return -EINVAL;
6021         if (kstrtoul(page, 10, &new))
6022                 return -EINVAL;
6023
6024         err = mddev_lock(mddev);
6025         if (err)
6026                 return err;
6027         conf = mddev->private;
6028         if (!conf)
6029                 err = -ENODEV;
6030         else if (new > conf->min_nr_stripes)
6031                 err = -EINVAL;
6032         else
6033                 conf->bypass_threshold = new;
6034         mddev_unlock(mddev);
6035         return err ?: len;
6036 }
6037
6038 static struct md_sysfs_entry
6039 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6040                                         S_IRUGO | S_IWUSR,
6041                                         raid5_show_preread_threshold,
6042                                         raid5_store_preread_threshold);
6043
6044 static ssize_t
6045 raid5_show_skip_copy(struct mddev *mddev, char *page)
6046 {
6047         struct r5conf *conf;
6048         int ret = 0;
6049         spin_lock(&mddev->lock);
6050         conf = mddev->private;
6051         if (conf)
6052                 ret = sprintf(page, "%d\n", conf->skip_copy);
6053         spin_unlock(&mddev->lock);
6054         return ret;
6055 }
6056
6057 static ssize_t
6058 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6059 {
6060         struct r5conf *conf;
6061         unsigned long new;
6062         int err;
6063
6064         if (len >= PAGE_SIZE)
6065                 return -EINVAL;
6066         if (kstrtoul(page, 10, &new))
6067                 return -EINVAL;
6068         new = !!new;
6069
6070         err = mddev_lock(mddev);
6071         if (err)
6072                 return err;
6073         conf = mddev->private;
6074         if (!conf)
6075                 err = -ENODEV;
6076         else if (new != conf->skip_copy) {
6077                 mddev_suspend(mddev);
6078                 conf->skip_copy = new;
6079                 if (new)
6080                         mddev->queue->backing_dev_info.capabilities |=
6081                                 BDI_CAP_STABLE_WRITES;
6082                 else
6083                         mddev->queue->backing_dev_info.capabilities &=
6084                                 ~BDI_CAP_STABLE_WRITES;
6085                 mddev_resume(mddev);
6086         }
6087         mddev_unlock(mddev);
6088         return err ?: len;
6089 }
6090
6091 static struct md_sysfs_entry
6092 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6093                                         raid5_show_skip_copy,
6094                                         raid5_store_skip_copy);
6095
6096 static ssize_t
6097 stripe_cache_active_show(struct mddev *mddev, char *page)
6098 {
6099         struct r5conf *conf = mddev->private;
6100         if (conf)
6101                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6102         else
6103                 return 0;
6104 }
6105
6106 static struct md_sysfs_entry
6107 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6108
6109 static ssize_t
6110 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6111 {
6112         struct r5conf *conf;
6113         int ret = 0;
6114         spin_lock(&mddev->lock);
6115         conf = mddev->private;
6116         if (conf)
6117                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6118         spin_unlock(&mddev->lock);
6119         return ret;
6120 }
6121
6122 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6123                                int *group_cnt,
6124                                int *worker_cnt_per_group,
6125                                struct r5worker_group **worker_groups);
6126 static ssize_t
6127 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6128 {
6129         struct r5conf *conf;
6130         unsigned long new;
6131         int err;
6132         struct r5worker_group *new_groups, *old_groups;
6133         int group_cnt, worker_cnt_per_group;
6134
6135         if (len >= PAGE_SIZE)
6136                 return -EINVAL;
6137         if (kstrtoul(page, 10, &new))
6138                 return -EINVAL;
6139
6140         err = mddev_lock(mddev);
6141         if (err)
6142                 return err;
6143         conf = mddev->private;
6144         if (!conf)
6145                 err = -ENODEV;
6146         else if (new != conf->worker_cnt_per_group) {
6147                 mddev_suspend(mddev);
6148
6149                 old_groups = conf->worker_groups;
6150                 if (old_groups)
6151                         flush_workqueue(raid5_wq);
6152
6153                 err = alloc_thread_groups(conf, new,
6154                                           &group_cnt, &worker_cnt_per_group,
6155                                           &new_groups);
6156                 if (!err) {
6157                         spin_lock_irq(&conf->device_lock);
6158                         conf->group_cnt = group_cnt;
6159                         conf->worker_cnt_per_group = worker_cnt_per_group;
6160                         conf->worker_groups = new_groups;
6161                         spin_unlock_irq(&conf->device_lock);
6162
6163                         if (old_groups)
6164                                 kfree(old_groups[0].workers);
6165                         kfree(old_groups);
6166                 }
6167                 mddev_resume(mddev);
6168         }
6169         mddev_unlock(mddev);
6170
6171         return err ?: len;
6172 }
6173
6174 static struct md_sysfs_entry
6175 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6176                                 raid5_show_group_thread_cnt,
6177                                 raid5_store_group_thread_cnt);
6178
6179 static struct attribute *raid5_attrs[] =  {
6180         &raid5_stripecache_size.attr,
6181         &raid5_stripecache_active.attr,
6182         &raid5_preread_bypass_threshold.attr,
6183         &raid5_group_thread_cnt.attr,
6184         &raid5_skip_copy.attr,
6185         &raid5_rmw_level.attr,
6186         NULL,
6187 };
6188 static struct attribute_group raid5_attrs_group = {
6189         .name = NULL,
6190         .attrs = raid5_attrs,
6191 };
6192
6193 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6194                                int *group_cnt,
6195                                int *worker_cnt_per_group,
6196                                struct r5worker_group **worker_groups)
6197 {
6198         int i, j, k;
6199         ssize_t size;
6200         struct r5worker *workers;
6201
6202         *worker_cnt_per_group = cnt;
6203         if (cnt == 0) {
6204                 *group_cnt = 0;
6205                 *worker_groups = NULL;
6206                 return 0;
6207         }
6208         *group_cnt = num_possible_nodes();
6209         size = sizeof(struct r5worker) * cnt;
6210         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6211         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6212                                 *group_cnt, GFP_NOIO);
6213         if (!*worker_groups || !workers) {
6214                 kfree(workers);
6215                 kfree(*worker_groups);
6216                 return -ENOMEM;
6217         }
6218
6219         for (i = 0; i < *group_cnt; i++) {
6220                 struct r5worker_group *group;
6221
6222                 group = &(*worker_groups)[i];
6223                 INIT_LIST_HEAD(&group->handle_list);
6224                 group->conf = conf;
6225                 group->workers = workers + i * cnt;
6226
6227                 for (j = 0; j < cnt; j++) {
6228                         struct r5worker *worker = group->workers + j;
6229                         worker->group = group;
6230                         INIT_WORK(&worker->work, raid5_do_work);
6231
6232                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6233                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6234                 }
6235         }
6236
6237         return 0;
6238 }
6239
6240 static void free_thread_groups(struct r5conf *conf)
6241 {
6242         if (conf->worker_groups)
6243                 kfree(conf->worker_groups[0].workers);
6244         kfree(conf->worker_groups);
6245         conf->worker_groups = NULL;
6246 }
6247
6248 static sector_t
6249 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6250 {
6251         struct r5conf *conf = mddev->private;
6252
6253         if (!sectors)
6254                 sectors = mddev->dev_sectors;
6255         if (!raid_disks)
6256                 /* size is defined by the smallest of previous and new size */
6257                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6258
6259         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6260         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6261         return sectors * (raid_disks - conf->max_degraded);
6262 }
6263
6264 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6265 {
6266         safe_put_page(percpu->spare_page);
6267         if (percpu->scribble)
6268                 flex_array_free(percpu->scribble);
6269         percpu->spare_page = NULL;
6270         percpu->scribble = NULL;
6271 }
6272
6273 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6274 {
6275         if (conf->level == 6 && !percpu->spare_page)
6276                 percpu->spare_page = alloc_page(GFP_KERNEL);
6277         if (!percpu->scribble)
6278                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6279                                                       conf->previous_raid_disks),
6280                                                   max(conf->chunk_sectors,
6281                                                       conf->prev_chunk_sectors)
6282                                                    / STRIPE_SECTORS,
6283                                                   GFP_KERNEL);
6284
6285         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6286                 free_scratch_buffer(conf, percpu);
6287                 return -ENOMEM;
6288         }
6289
6290         return 0;
6291 }
6292
6293 static void raid5_free_percpu(struct r5conf *conf)
6294 {
6295         unsigned long cpu;
6296
6297         if (!conf->percpu)
6298                 return;
6299
6300 #ifdef CONFIG_HOTPLUG_CPU
6301         unregister_cpu_notifier(&conf->cpu_notify);
6302 #endif
6303
6304         get_online_cpus();
6305         for_each_possible_cpu(cpu)
6306                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6307         put_online_cpus();
6308
6309         free_percpu(conf->percpu);
6310 }
6311
6312 static void free_conf(struct r5conf *conf)
6313 {
6314         if (conf->shrinker.seeks)
6315                 unregister_shrinker(&conf->shrinker);
6316         free_thread_groups(conf);
6317         shrink_stripes(conf);
6318         raid5_free_percpu(conf);
6319         kfree(conf->disks);
6320         kfree(conf->stripe_hashtbl);
6321         kfree(conf);
6322 }
6323
6324 #ifdef CONFIG_HOTPLUG_CPU
6325 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6326                               void *hcpu)
6327 {
6328         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6329         long cpu = (long)hcpu;
6330         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6331
6332         switch (action) {
6333         case CPU_UP_PREPARE:
6334         case CPU_UP_PREPARE_FROZEN:
6335                 if (alloc_scratch_buffer(conf, percpu)) {
6336                         pr_err("%s: failed memory allocation for cpu%ld\n",
6337                                __func__, cpu);
6338                         return notifier_from_errno(-ENOMEM);
6339                 }
6340                 break;
6341         case CPU_DEAD:
6342         case CPU_DEAD_FROZEN:
6343                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6344                 break;
6345         default:
6346                 break;
6347         }
6348         return NOTIFY_OK;
6349 }
6350 #endif
6351
6352 static int raid5_alloc_percpu(struct r5conf *conf)
6353 {
6354         unsigned long cpu;
6355         int err = 0;
6356
6357         conf->percpu = alloc_percpu(struct raid5_percpu);
6358         if (!conf->percpu)
6359                 return -ENOMEM;
6360
6361 #ifdef CONFIG_HOTPLUG_CPU
6362         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6363         conf->cpu_notify.priority = 0;
6364         err = register_cpu_notifier(&conf->cpu_notify);
6365         if (err)
6366                 return err;
6367 #endif
6368
6369         get_online_cpus();
6370         for_each_present_cpu(cpu) {
6371                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6372                 if (err) {
6373                         pr_err("%s: failed memory allocation for cpu%ld\n",
6374                                __func__, cpu);
6375                         break;
6376                 }
6377         }
6378         put_online_cpus();
6379
6380         return err;
6381 }
6382
6383 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6384                                       struct shrink_control *sc)
6385 {
6386         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6387         unsigned long ret = SHRINK_STOP;
6388
6389         if (mutex_trylock(&conf->cache_size_mutex)) {
6390                 ret= 0;
6391                 while (ret < sc->nr_to_scan &&
6392                        conf->max_nr_stripes > conf->min_nr_stripes) {
6393                         if (drop_one_stripe(conf) == 0) {
6394                                 ret = SHRINK_STOP;
6395                                 break;
6396                         }
6397                         ret++;
6398                 }
6399                 mutex_unlock(&conf->cache_size_mutex);
6400         }
6401         return ret;
6402 }
6403
6404 static unsigned long raid5_cache_count(struct shrinker *shrink,
6405                                        struct shrink_control *sc)
6406 {
6407         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6408
6409         if (conf->max_nr_stripes < conf->min_nr_stripes)
6410                 /* unlikely, but not impossible */
6411                 return 0;
6412         return conf->max_nr_stripes - conf->min_nr_stripes;
6413 }
6414
6415 static struct r5conf *setup_conf(struct mddev *mddev)
6416 {
6417         struct r5conf *conf;
6418         int raid_disk, memory, max_disks;
6419         struct md_rdev *rdev;
6420         struct disk_info *disk;
6421         char pers_name[6];
6422         int i;
6423         int group_cnt, worker_cnt_per_group;
6424         struct r5worker_group *new_group;
6425
6426         if (mddev->new_level != 5
6427             && mddev->new_level != 4
6428             && mddev->new_level != 6) {
6429                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6430                        mdname(mddev), mddev->new_level);
6431                 return ERR_PTR(-EIO);
6432         }
6433         if ((mddev->new_level == 5
6434              && !algorithm_valid_raid5(mddev->new_layout)) ||
6435             (mddev->new_level == 6
6436              && !algorithm_valid_raid6(mddev->new_layout))) {
6437                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6438                        mdname(mddev), mddev->new_layout);
6439                 return ERR_PTR(-EIO);
6440         }
6441         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6442                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6443                        mdname(mddev), mddev->raid_disks);
6444                 return ERR_PTR(-EINVAL);
6445         }
6446
6447         if (!mddev->new_chunk_sectors ||
6448             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6449             !is_power_of_2(mddev->new_chunk_sectors)) {
6450                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6451                        mdname(mddev), mddev->new_chunk_sectors << 9);
6452                 return ERR_PTR(-EINVAL);
6453         }
6454
6455         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6456         if (conf == NULL)
6457                 goto abort;
6458         /* Don't enable multi-threading by default*/
6459         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6460                                  &new_group)) {
6461                 conf->group_cnt = group_cnt;
6462                 conf->worker_cnt_per_group = worker_cnt_per_group;
6463                 conf->worker_groups = new_group;
6464         } else
6465                 goto abort;
6466         spin_lock_init(&conf->device_lock);
6467         seqcount_init(&conf->gen_lock);
6468         mutex_init(&conf->cache_size_mutex);
6469         init_waitqueue_head(&conf->wait_for_quiescent);
6470         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6471                 init_waitqueue_head(&conf->wait_for_stripe[i]);
6472         }
6473         init_waitqueue_head(&conf->wait_for_overlap);
6474         INIT_LIST_HEAD(&conf->handle_list);
6475         INIT_LIST_HEAD(&conf->hold_list);
6476         INIT_LIST_HEAD(&conf->delayed_list);
6477         INIT_LIST_HEAD(&conf->bitmap_list);
6478         bio_list_init(&conf->return_bi);
6479         init_llist_head(&conf->released_stripes);
6480         atomic_set(&conf->active_stripes, 0);
6481         atomic_set(&conf->preread_active_stripes, 0);
6482         atomic_set(&conf->active_aligned_reads, 0);
6483         conf->bypass_threshold = BYPASS_THRESHOLD;
6484         conf->recovery_disabled = mddev->recovery_disabled - 1;
6485
6486         conf->raid_disks = mddev->raid_disks;
6487         if (mddev->reshape_position == MaxSector)
6488                 conf->previous_raid_disks = mddev->raid_disks;
6489         else
6490                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6491         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6492
6493         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6494                               GFP_KERNEL);
6495         if (!conf->disks)
6496                 goto abort;
6497
6498         conf->mddev = mddev;
6499
6500         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6501                 goto abort;
6502
6503         /* We init hash_locks[0] separately to that it can be used
6504          * as the reference lock in the spin_lock_nest_lock() call
6505          * in lock_all_device_hash_locks_irq in order to convince
6506          * lockdep that we know what we are doing.
6507          */
6508         spin_lock_init(conf->hash_locks);
6509         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6510                 spin_lock_init(conf->hash_locks + i);
6511
6512         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6513                 INIT_LIST_HEAD(conf->inactive_list + i);
6514
6515         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6516                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6517
6518         conf->level = mddev->new_level;
6519         conf->chunk_sectors = mddev->new_chunk_sectors;
6520         if (raid5_alloc_percpu(conf) != 0)
6521                 goto abort;
6522
6523         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6524
6525         rdev_for_each(rdev, mddev) {
6526                 raid_disk = rdev->raid_disk;
6527                 if (raid_disk >= max_disks
6528                     || raid_disk < 0)
6529                         continue;
6530                 disk = conf->disks + raid_disk;
6531
6532                 if (test_bit(Replacement, &rdev->flags)) {
6533                         if (disk->replacement)
6534                                 goto abort;
6535                         disk->replacement = rdev;
6536                 } else {
6537                         if (disk->rdev)
6538                                 goto abort;
6539                         disk->rdev = rdev;
6540                 }
6541
6542                 if (test_bit(In_sync, &rdev->flags)) {
6543                         char b[BDEVNAME_SIZE];
6544                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6545                                " disk %d\n",
6546                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6547                 } else if (rdev->saved_raid_disk != raid_disk)
6548                         /* Cannot rely on bitmap to complete recovery */
6549                         conf->fullsync = 1;
6550         }
6551
6552         conf->level = mddev->new_level;
6553         if (conf->level == 6) {
6554                 conf->max_degraded = 2;
6555                 if (raid6_call.xor_syndrome)
6556                         conf->rmw_level = PARITY_ENABLE_RMW;
6557                 else
6558                         conf->rmw_level = PARITY_DISABLE_RMW;
6559         } else {
6560                 conf->max_degraded = 1;
6561                 conf->rmw_level = PARITY_ENABLE_RMW;
6562         }
6563         conf->algorithm = mddev->new_layout;
6564         conf->reshape_progress = mddev->reshape_position;
6565         if (conf->reshape_progress != MaxSector) {
6566                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6567                 conf->prev_algo = mddev->layout;
6568         } else {
6569                 conf->prev_chunk_sectors = conf->chunk_sectors;
6570                 conf->prev_algo = conf->algorithm;
6571         }
6572
6573         conf->min_nr_stripes = NR_STRIPES;
6574         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6575                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6576         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6577         if (grow_stripes(conf, conf->min_nr_stripes)) {
6578                 printk(KERN_ERR
6579                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6580                        mdname(mddev), memory);
6581                 goto abort;
6582         } else
6583                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6584                        mdname(mddev), memory);
6585         /*
6586          * Losing a stripe head costs more than the time to refill it,
6587          * it reduces the queue depth and so can hurt throughput.
6588          * So set it rather large, scaled by number of devices.
6589          */
6590         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6591         conf->shrinker.scan_objects = raid5_cache_scan;
6592         conf->shrinker.count_objects = raid5_cache_count;
6593         conf->shrinker.batch = 128;
6594         conf->shrinker.flags = 0;
6595         register_shrinker(&conf->shrinker);
6596
6597         sprintf(pers_name, "raid%d", mddev->new_level);
6598         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6599         if (!conf->thread) {
6600                 printk(KERN_ERR
6601                        "md/raid:%s: couldn't allocate thread.\n",
6602                        mdname(mddev));
6603                 goto abort;
6604         }
6605
6606         return conf;
6607
6608  abort:
6609         if (conf) {
6610                 free_conf(conf);
6611                 return ERR_PTR(-EIO);
6612         } else
6613                 return ERR_PTR(-ENOMEM);
6614 }
6615
6616 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6617 {
6618         switch (algo) {
6619         case ALGORITHM_PARITY_0:
6620                 if (raid_disk < max_degraded)
6621                         return 1;
6622                 break;
6623         case ALGORITHM_PARITY_N:
6624                 if (raid_disk >= raid_disks - max_degraded)
6625                         return 1;
6626                 break;
6627         case ALGORITHM_PARITY_0_6:
6628                 if (raid_disk == 0 ||
6629                     raid_disk == raid_disks - 1)
6630                         return 1;
6631                 break;
6632         case ALGORITHM_LEFT_ASYMMETRIC_6:
6633         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6634         case ALGORITHM_LEFT_SYMMETRIC_6:
6635         case ALGORITHM_RIGHT_SYMMETRIC_6:
6636                 if (raid_disk == raid_disks - 1)
6637                         return 1;
6638         }
6639         return 0;
6640 }
6641
6642 static int run(struct mddev *mddev)
6643 {
6644         struct r5conf *conf;
6645         int working_disks = 0;
6646         int dirty_parity_disks = 0;
6647         struct md_rdev *rdev;
6648         sector_t reshape_offset = 0;
6649         int i;
6650         long long min_offset_diff = 0;
6651         int first = 1;
6652
6653         if (mddev->recovery_cp != MaxSector)
6654                 printk(KERN_NOTICE "md/raid:%s: not clean"
6655                        " -- starting background reconstruction\n",
6656                        mdname(mddev));
6657
6658         rdev_for_each(rdev, mddev) {
6659                 long long diff;
6660                 if (rdev->raid_disk < 0)
6661                         continue;
6662                 diff = (rdev->new_data_offset - rdev->data_offset);
6663                 if (first) {
6664                         min_offset_diff = diff;
6665                         first = 0;
6666                 } else if (mddev->reshape_backwards &&
6667                          diff < min_offset_diff)
6668                         min_offset_diff = diff;
6669                 else if (!mddev->reshape_backwards &&
6670                          diff > min_offset_diff)
6671                         min_offset_diff = diff;
6672         }
6673
6674         if (mddev->reshape_position != MaxSector) {
6675                 /* Check that we can continue the reshape.
6676                  * Difficulties arise if the stripe we would write to
6677                  * next is at or after the stripe we would read from next.
6678                  * For a reshape that changes the number of devices, this
6679                  * is only possible for a very short time, and mdadm makes
6680                  * sure that time appears to have past before assembling
6681                  * the array.  So we fail if that time hasn't passed.
6682                  * For a reshape that keeps the number of devices the same
6683                  * mdadm must be monitoring the reshape can keeping the
6684                  * critical areas read-only and backed up.  It will start
6685                  * the array in read-only mode, so we check for that.
6686                  */
6687                 sector_t here_new, here_old;
6688                 int old_disks;
6689                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6690                 int chunk_sectors;
6691                 int new_data_disks;
6692
6693                 if (mddev->new_level != mddev->level) {
6694                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6695                                "required - aborting.\n",
6696                                mdname(mddev));
6697                         return -EINVAL;
6698                 }
6699                 old_disks = mddev->raid_disks - mddev->delta_disks;
6700                 /* reshape_position must be on a new-stripe boundary, and one
6701                  * further up in new geometry must map after here in old
6702                  * geometry.
6703                  * If the chunk sizes are different, then as we perform reshape
6704                  * in units of the largest of the two, reshape_position needs
6705                  * be a multiple of the largest chunk size times new data disks.
6706                  */
6707                 here_new = mddev->reshape_position;
6708                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6709                 new_data_disks = mddev->raid_disks - max_degraded;
6710                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6711                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6712                                "on a stripe boundary\n", mdname(mddev));
6713                         return -EINVAL;
6714                 }
6715                 reshape_offset = here_new * chunk_sectors;
6716                 /* here_new is the stripe we will write to */
6717                 here_old = mddev->reshape_position;
6718                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6719                 /* here_old is the first stripe that we might need to read
6720                  * from */
6721                 if (mddev->delta_disks == 0) {
6722                         /* We cannot be sure it is safe to start an in-place
6723                          * reshape.  It is only safe if user-space is monitoring
6724                          * and taking constant backups.
6725                          * mdadm always starts a situation like this in
6726                          * readonly mode so it can take control before
6727                          * allowing any writes.  So just check for that.
6728                          */
6729                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6730                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6731                                 /* not really in-place - so OK */;
6732                         else if (mddev->ro == 0) {
6733                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6734                                        "must be started in read-only mode "
6735                                        "- aborting\n",
6736                                        mdname(mddev));
6737                                 return -EINVAL;
6738                         }
6739                 } else if (mddev->reshape_backwards
6740                     ? (here_new * chunk_sectors + min_offset_diff <=
6741                        here_old * chunk_sectors)
6742                     : (here_new * chunk_sectors >=
6743                        here_old * chunk_sectors + (-min_offset_diff))) {
6744                         /* Reading from the same stripe as writing to - bad */
6745                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6746                                "auto-recovery - aborting.\n",
6747                                mdname(mddev));
6748                         return -EINVAL;
6749                 }
6750                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6751                        mdname(mddev));
6752                 /* OK, we should be able to continue; */
6753         } else {
6754                 BUG_ON(mddev->level != mddev->new_level);
6755                 BUG_ON(mddev->layout != mddev->new_layout);
6756                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6757                 BUG_ON(mddev->delta_disks != 0);
6758         }
6759
6760         if (mddev->private == NULL)
6761                 conf = setup_conf(mddev);
6762         else
6763                 conf = mddev->private;
6764
6765         if (IS_ERR(conf))
6766                 return PTR_ERR(conf);
6767
6768         conf->min_offset_diff = min_offset_diff;
6769         mddev->thread = conf->thread;
6770         conf->thread = NULL;
6771         mddev->private = conf;
6772
6773         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6774              i++) {
6775                 rdev = conf->disks[i].rdev;
6776                 if (!rdev && conf->disks[i].replacement) {
6777                         /* The replacement is all we have yet */
6778                         rdev = conf->disks[i].replacement;
6779                         conf->disks[i].replacement = NULL;
6780                         clear_bit(Replacement, &rdev->flags);
6781                         conf->disks[i].rdev = rdev;
6782                 }
6783                 if (!rdev)
6784                         continue;
6785                 if (conf->disks[i].replacement &&
6786                     conf->reshape_progress != MaxSector) {
6787                         /* replacements and reshape simply do not mix. */
6788                         printk(KERN_ERR "md: cannot handle concurrent "
6789                                "replacement and reshape.\n");
6790                         goto abort;
6791                 }
6792                 if (test_bit(In_sync, &rdev->flags)) {
6793                         working_disks++;
6794                         continue;
6795                 }
6796                 /* This disc is not fully in-sync.  However if it
6797                  * just stored parity (beyond the recovery_offset),
6798                  * when we don't need to be concerned about the
6799                  * array being dirty.
6800                  * When reshape goes 'backwards', we never have
6801                  * partially completed devices, so we only need
6802                  * to worry about reshape going forwards.
6803                  */
6804                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6805                 if (mddev->major_version == 0 &&
6806                     mddev->minor_version > 90)
6807                         rdev->recovery_offset = reshape_offset;
6808
6809                 if (rdev->recovery_offset < reshape_offset) {
6810                         /* We need to check old and new layout */
6811                         if (!only_parity(rdev->raid_disk,
6812                                          conf->algorithm,
6813                                          conf->raid_disks,
6814                                          conf->max_degraded))
6815                                 continue;
6816                 }
6817                 if (!only_parity(rdev->raid_disk,
6818                                  conf->prev_algo,
6819                                  conf->previous_raid_disks,
6820                                  conf->max_degraded))
6821                         continue;
6822                 dirty_parity_disks++;
6823         }
6824
6825         /*
6826          * 0 for a fully functional array, 1 or 2 for a degraded array.
6827          */
6828         mddev->degraded = calc_degraded(conf);
6829
6830         if (has_failed(conf)) {
6831                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6832                         " (%d/%d failed)\n",
6833                         mdname(mddev), mddev->degraded, conf->raid_disks);
6834                 goto abort;
6835         }
6836
6837         /* device size must be a multiple of chunk size */
6838         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6839         mddev->resync_max_sectors = mddev->dev_sectors;
6840
6841         if (mddev->degraded > dirty_parity_disks &&
6842             mddev->recovery_cp != MaxSector) {
6843                 if (mddev->ok_start_degraded)
6844                         printk(KERN_WARNING
6845                                "md/raid:%s: starting dirty degraded array"
6846                                " - data corruption possible.\n",
6847                                mdname(mddev));
6848                 else {
6849                         printk(KERN_ERR
6850                                "md/raid:%s: cannot start dirty degraded array.\n",
6851                                mdname(mddev));
6852                         goto abort;
6853                 }
6854         }
6855
6856         if (mddev->degraded == 0)
6857                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6858                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6859                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6860                        mddev->new_layout);
6861         else
6862                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6863                        " out of %d devices, algorithm %d\n",
6864                        mdname(mddev), conf->level,
6865                        mddev->raid_disks - mddev->degraded,
6866                        mddev->raid_disks, mddev->new_layout);
6867
6868         print_raid5_conf(conf);
6869
6870         if (conf->reshape_progress != MaxSector) {
6871                 conf->reshape_safe = conf->reshape_progress;
6872                 atomic_set(&conf->reshape_stripes, 0);
6873                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6874                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6875                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6876                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6877                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6878                                                         "reshape");
6879         }
6880
6881         /* Ok, everything is just fine now */
6882         if (mddev->to_remove == &raid5_attrs_group)
6883                 mddev->to_remove = NULL;
6884         else if (mddev->kobj.sd &&
6885             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6886                 printk(KERN_WARNING
6887                        "raid5: failed to create sysfs attributes for %s\n",
6888                        mdname(mddev));
6889         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6890
6891         if (mddev->queue) {
6892                 int chunk_size;
6893                 bool discard_supported = true;
6894                 /* read-ahead size must cover two whole stripes, which
6895                  * is 2 * (datadisks) * chunksize where 'n' is the
6896                  * number of raid devices
6897                  */
6898                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6899                 int stripe = data_disks *
6900                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6901                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6902                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6903
6904                 chunk_size = mddev->chunk_sectors << 9;
6905                 blk_queue_io_min(mddev->queue, chunk_size);
6906                 blk_queue_io_opt(mddev->queue, chunk_size *
6907                                  (conf->raid_disks - conf->max_degraded));
6908                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6909                 /*
6910                  * We can only discard a whole stripe. It doesn't make sense to
6911                  * discard data disk but write parity disk
6912                  */
6913                 stripe = stripe * PAGE_SIZE;
6914                 /* Round up to power of 2, as discard handling
6915                  * currently assumes that */
6916                 while ((stripe-1) & stripe)
6917                         stripe = (stripe | (stripe-1)) + 1;
6918                 mddev->queue->limits.discard_alignment = stripe;
6919                 mddev->queue->limits.discard_granularity = stripe;
6920                 /*
6921                  * unaligned part of discard request will be ignored, so can't
6922                  * guarantee discard_zeroes_data
6923                  */
6924                 mddev->queue->limits.discard_zeroes_data = 0;
6925
6926                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6927
6928                 rdev_for_each(rdev, mddev) {
6929                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6930                                           rdev->data_offset << 9);
6931                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6932                                           rdev->new_data_offset << 9);
6933                         /*
6934                          * discard_zeroes_data is required, otherwise data
6935                          * could be lost. Consider a scenario: discard a stripe
6936                          * (the stripe could be inconsistent if
6937                          * discard_zeroes_data is 0); write one disk of the
6938                          * stripe (the stripe could be inconsistent again
6939                          * depending on which disks are used to calculate
6940                          * parity); the disk is broken; The stripe data of this
6941                          * disk is lost.
6942                          */
6943                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6944                             !bdev_get_queue(rdev->bdev)->
6945                                                 limits.discard_zeroes_data)
6946                                 discard_supported = false;
6947                         /* Unfortunately, discard_zeroes_data is not currently
6948                          * a guarantee - just a hint.  So we only allow DISCARD
6949                          * if the sysadmin has confirmed that only safe devices
6950                          * are in use by setting a module parameter.
6951                          */
6952                         if (!devices_handle_discard_safely) {
6953                                 if (discard_supported) {
6954                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6955                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6956                                 }
6957                                 discard_supported = false;
6958                         }
6959                 }
6960
6961                 if (discard_supported &&
6962                    mddev->queue->limits.max_discard_sectors >= stripe &&
6963                    mddev->queue->limits.discard_granularity >= stripe)
6964                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6965                                                 mddev->queue);
6966                 else
6967                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6968                                                 mddev->queue);
6969         }
6970
6971         return 0;
6972 abort:
6973         md_unregister_thread(&mddev->thread);
6974         print_raid5_conf(conf);
6975         free_conf(conf);
6976         mddev->private = NULL;
6977         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6978         return -EIO;
6979 }
6980
6981 static void raid5_free(struct mddev *mddev, void *priv)
6982 {
6983         struct r5conf *conf = priv;
6984
6985         free_conf(conf);
6986         mddev->to_remove = &raid5_attrs_group;
6987 }
6988
6989 static void status(struct seq_file *seq, struct mddev *mddev)
6990 {
6991         struct r5conf *conf = mddev->private;
6992         int i;
6993
6994         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6995                 conf->chunk_sectors / 2, mddev->layout);
6996         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6997         for (i = 0; i < conf->raid_disks; i++)
6998                 seq_printf (seq, "%s",
6999                                conf->disks[i].rdev &&
7000                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7001         seq_printf (seq, "]");
7002 }
7003
7004 static void print_raid5_conf (struct r5conf *conf)
7005 {
7006         int i;
7007         struct disk_info *tmp;
7008
7009         printk(KERN_DEBUG "RAID conf printout:\n");
7010         if (!conf) {
7011                 printk("(conf==NULL)\n");
7012                 return;
7013         }
7014         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7015                conf->raid_disks,
7016                conf->raid_disks - conf->mddev->degraded);
7017
7018         for (i = 0; i < conf->raid_disks; i++) {
7019                 char b[BDEVNAME_SIZE];
7020                 tmp = conf->disks + i;
7021                 if (tmp->rdev)
7022                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7023                                i, !test_bit(Faulty, &tmp->rdev->flags),
7024                                bdevname(tmp->rdev->bdev, b));
7025         }
7026 }
7027
7028 static int raid5_spare_active(struct mddev *mddev)
7029 {
7030         int i;
7031         struct r5conf *conf = mddev->private;
7032         struct disk_info *tmp;
7033         int count = 0;
7034         unsigned long flags;
7035
7036         for (i = 0; i < conf->raid_disks; i++) {
7037                 tmp = conf->disks + i;
7038                 if (tmp->replacement
7039                     && tmp->replacement->recovery_offset == MaxSector
7040                     && !test_bit(Faulty, &tmp->replacement->flags)
7041                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7042                         /* Replacement has just become active. */
7043                         if (!tmp->rdev
7044                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7045                                 count++;
7046                         if (tmp->rdev) {
7047                                 /* Replaced device not technically faulty,
7048                                  * but we need to be sure it gets removed
7049                                  * and never re-added.
7050                                  */
7051                                 set_bit(Faulty, &tmp->rdev->flags);
7052                                 sysfs_notify_dirent_safe(
7053                                         tmp->rdev->sysfs_state);
7054                         }
7055                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7056                 } else if (tmp->rdev
7057                     && tmp->rdev->recovery_offset == MaxSector
7058                     && !test_bit(Faulty, &tmp->rdev->flags)
7059                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7060                         count++;
7061                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7062                 }
7063         }
7064         spin_lock_irqsave(&conf->device_lock, flags);
7065         mddev->degraded = calc_degraded(conf);
7066         spin_unlock_irqrestore(&conf->device_lock, flags);
7067         print_raid5_conf(conf);
7068         return count;
7069 }
7070
7071 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7072 {
7073         struct r5conf *conf = mddev->private;
7074         int err = 0;
7075         int number = rdev->raid_disk;
7076         struct md_rdev **rdevp;
7077         struct disk_info *p = conf->disks + number;
7078
7079         print_raid5_conf(conf);
7080         if (rdev == p->rdev)
7081                 rdevp = &p->rdev;
7082         else if (rdev == p->replacement)
7083                 rdevp = &p->replacement;
7084         else
7085                 return 0;
7086
7087         if (number >= conf->raid_disks &&
7088             conf->reshape_progress == MaxSector)
7089                 clear_bit(In_sync, &rdev->flags);
7090
7091         if (test_bit(In_sync, &rdev->flags) ||
7092             atomic_read(&rdev->nr_pending)) {
7093                 err = -EBUSY;
7094                 goto abort;
7095         }
7096         /* Only remove non-faulty devices if recovery
7097          * isn't possible.
7098          */
7099         if (!test_bit(Faulty, &rdev->flags) &&
7100             mddev->recovery_disabled != conf->recovery_disabled &&
7101             !has_failed(conf) &&
7102             (!p->replacement || p->replacement == rdev) &&
7103             number < conf->raid_disks) {
7104                 err = -EBUSY;
7105                 goto abort;
7106         }
7107         *rdevp = NULL;
7108         synchronize_rcu();
7109         if (atomic_read(&rdev->nr_pending)) {
7110                 /* lost the race, try later */
7111                 err = -EBUSY;
7112                 *rdevp = rdev;
7113         } else if (p->replacement) {
7114                 /* We must have just cleared 'rdev' */
7115                 p->rdev = p->replacement;
7116                 clear_bit(Replacement, &p->replacement->flags);
7117                 smp_mb(); /* Make sure other CPUs may see both as identical
7118                            * but will never see neither - if they are careful
7119                            */
7120                 p->replacement = NULL;
7121                 clear_bit(WantReplacement, &rdev->flags);
7122         } else
7123                 /* We might have just removed the Replacement as faulty-
7124                  * clear the bit just in case
7125                  */
7126                 clear_bit(WantReplacement, &rdev->flags);
7127 abort:
7128
7129         print_raid5_conf(conf);
7130         return err;
7131 }
7132
7133 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7134 {
7135         struct r5conf *conf = mddev->private;
7136         int err = -EEXIST;
7137         int disk;
7138         struct disk_info *p;
7139         int first = 0;
7140         int last = conf->raid_disks - 1;
7141
7142         if (mddev->recovery_disabled == conf->recovery_disabled)
7143                 return -EBUSY;
7144
7145         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7146                 /* no point adding a device */
7147                 return -EINVAL;
7148
7149         if (rdev->raid_disk >= 0)
7150                 first = last = rdev->raid_disk;
7151
7152         /*
7153          * find the disk ... but prefer rdev->saved_raid_disk
7154          * if possible.
7155          */
7156         if (rdev->saved_raid_disk >= 0 &&
7157             rdev->saved_raid_disk >= first &&
7158             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7159                 first = rdev->saved_raid_disk;
7160
7161         for (disk = first; disk <= last; disk++) {
7162                 p = conf->disks + disk;
7163                 if (p->rdev == NULL) {
7164                         clear_bit(In_sync, &rdev->flags);
7165                         rdev->raid_disk = disk;
7166                         err = 0;
7167                         if (rdev->saved_raid_disk != disk)
7168                                 conf->fullsync = 1;
7169                         rcu_assign_pointer(p->rdev, rdev);
7170                         goto out;
7171                 }
7172         }
7173         for (disk = first; disk <= last; disk++) {
7174                 p = conf->disks + disk;
7175                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7176                     p->replacement == NULL) {
7177                         clear_bit(In_sync, &rdev->flags);
7178                         set_bit(Replacement, &rdev->flags);
7179                         rdev->raid_disk = disk;
7180                         err = 0;
7181                         conf->fullsync = 1;
7182                         rcu_assign_pointer(p->replacement, rdev);
7183                         break;
7184                 }
7185         }
7186 out:
7187         print_raid5_conf(conf);
7188         return err;
7189 }
7190
7191 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7192 {
7193         /* no resync is happening, and there is enough space
7194          * on all devices, so we can resize.
7195          * We need to make sure resync covers any new space.
7196          * If the array is shrinking we should possibly wait until
7197          * any io in the removed space completes, but it hardly seems
7198          * worth it.
7199          */
7200         sector_t newsize;
7201         struct r5conf *conf = mddev->private;
7202
7203         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7204         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7205         if (mddev->external_size &&
7206             mddev->array_sectors > newsize)
7207                 return -EINVAL;
7208         if (mddev->bitmap) {
7209                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7210                 if (ret)
7211                         return ret;
7212         }
7213         md_set_array_sectors(mddev, newsize);
7214         set_capacity(mddev->gendisk, mddev->array_sectors);
7215         revalidate_disk(mddev->gendisk);
7216         if (sectors > mddev->dev_sectors &&
7217             mddev->recovery_cp > mddev->dev_sectors) {
7218                 mddev->recovery_cp = mddev->dev_sectors;
7219                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7220         }
7221         mddev->dev_sectors = sectors;
7222         mddev->resync_max_sectors = sectors;
7223         return 0;
7224 }
7225
7226 static int check_stripe_cache(struct mddev *mddev)
7227 {
7228         /* Can only proceed if there are plenty of stripe_heads.
7229          * We need a minimum of one full stripe,, and for sensible progress
7230          * it is best to have about 4 times that.
7231          * If we require 4 times, then the default 256 4K stripe_heads will
7232          * allow for chunk sizes up to 256K, which is probably OK.
7233          * If the chunk size is greater, user-space should request more
7234          * stripe_heads first.
7235          */
7236         struct r5conf *conf = mddev->private;
7237         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7238             > conf->min_nr_stripes ||
7239             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7240             > conf->min_nr_stripes) {
7241                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7242                        mdname(mddev),
7243                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7244                         / STRIPE_SIZE)*4);
7245                 return 0;
7246         }
7247         return 1;
7248 }
7249
7250 static int check_reshape(struct mddev *mddev)
7251 {
7252         struct r5conf *conf = mddev->private;
7253
7254         if (mddev->delta_disks == 0 &&
7255             mddev->new_layout == mddev->layout &&
7256             mddev->new_chunk_sectors == mddev->chunk_sectors)
7257                 return 0; /* nothing to do */
7258         if (has_failed(conf))
7259                 return -EINVAL;
7260         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7261                 /* We might be able to shrink, but the devices must
7262                  * be made bigger first.
7263                  * For raid6, 4 is the minimum size.
7264                  * Otherwise 2 is the minimum
7265                  */
7266                 int min = 2;
7267                 if (mddev->level == 6)
7268                         min = 4;
7269                 if (mddev->raid_disks + mddev->delta_disks < min)
7270                         return -EINVAL;
7271         }
7272
7273         if (!check_stripe_cache(mddev))
7274                 return -ENOSPC;
7275
7276         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7277             mddev->delta_disks > 0)
7278                 if (resize_chunks(conf,
7279                                   conf->previous_raid_disks
7280                                   + max(0, mddev->delta_disks),
7281                                   max(mddev->new_chunk_sectors,
7282                                       mddev->chunk_sectors)
7283                             ) < 0)
7284                         return -ENOMEM;
7285         return resize_stripes(conf, (conf->previous_raid_disks
7286                                      + mddev->delta_disks));
7287 }
7288
7289 static int raid5_start_reshape(struct mddev *mddev)
7290 {
7291         struct r5conf *conf = mddev->private;
7292         struct md_rdev *rdev;
7293         int spares = 0;
7294         unsigned long flags;
7295
7296         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7297                 return -EBUSY;
7298
7299         if (!check_stripe_cache(mddev))
7300                 return -ENOSPC;
7301
7302         if (has_failed(conf))
7303                 return -EINVAL;
7304
7305         rdev_for_each(rdev, mddev) {
7306                 if (!test_bit(In_sync, &rdev->flags)
7307                     && !test_bit(Faulty, &rdev->flags))
7308                         spares++;
7309         }
7310
7311         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7312                 /* Not enough devices even to make a degraded array
7313                  * of that size
7314                  */
7315                 return -EINVAL;
7316
7317         /* Refuse to reduce size of the array.  Any reductions in
7318          * array size must be through explicit setting of array_size
7319          * attribute.
7320          */
7321         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7322             < mddev->array_sectors) {
7323                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7324                        "before number of disks\n", mdname(mddev));
7325                 return -EINVAL;
7326         }
7327
7328         atomic_set(&conf->reshape_stripes, 0);
7329         spin_lock_irq(&conf->device_lock);
7330         write_seqcount_begin(&conf->gen_lock);
7331         conf->previous_raid_disks = conf->raid_disks;
7332         conf->raid_disks += mddev->delta_disks;
7333         conf->prev_chunk_sectors = conf->chunk_sectors;
7334         conf->chunk_sectors = mddev->new_chunk_sectors;
7335         conf->prev_algo = conf->algorithm;
7336         conf->algorithm = mddev->new_layout;
7337         conf->generation++;
7338         /* Code that selects data_offset needs to see the generation update
7339          * if reshape_progress has been set - so a memory barrier needed.
7340          */
7341         smp_mb();
7342         if (mddev->reshape_backwards)
7343                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7344         else
7345                 conf->reshape_progress = 0;
7346         conf->reshape_safe = conf->reshape_progress;
7347         write_seqcount_end(&conf->gen_lock);
7348         spin_unlock_irq(&conf->device_lock);
7349
7350         /* Now make sure any requests that proceeded on the assumption
7351          * the reshape wasn't running - like Discard or Read - have
7352          * completed.
7353          */
7354         mddev_suspend(mddev);
7355         mddev_resume(mddev);
7356
7357         /* Add some new drives, as many as will fit.
7358          * We know there are enough to make the newly sized array work.
7359          * Don't add devices if we are reducing the number of
7360          * devices in the array.  This is because it is not possible
7361          * to correctly record the "partially reconstructed" state of
7362          * such devices during the reshape and confusion could result.
7363          */
7364         if (mddev->delta_disks >= 0) {
7365                 rdev_for_each(rdev, mddev)
7366                         if (rdev->raid_disk < 0 &&
7367                             !test_bit(Faulty, &rdev->flags)) {
7368                                 if (raid5_add_disk(mddev, rdev) == 0) {
7369                                         if (rdev->raid_disk
7370                                             >= conf->previous_raid_disks)
7371                                                 set_bit(In_sync, &rdev->flags);
7372                                         else
7373                                                 rdev->recovery_offset = 0;
7374
7375                                         if (sysfs_link_rdev(mddev, rdev))
7376                                                 /* Failure here is OK */;
7377                                 }
7378                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7379                                    && !test_bit(Faulty, &rdev->flags)) {
7380                                 /* This is a spare that was manually added */
7381                                 set_bit(In_sync, &rdev->flags);
7382                         }
7383
7384                 /* When a reshape changes the number of devices,
7385                  * ->degraded is measured against the larger of the
7386                  * pre and post number of devices.
7387                  */
7388                 spin_lock_irqsave(&conf->device_lock, flags);
7389                 mddev->degraded = calc_degraded(conf);
7390                 spin_unlock_irqrestore(&conf->device_lock, flags);
7391         }
7392         mddev->raid_disks = conf->raid_disks;
7393         mddev->reshape_position = conf->reshape_progress;
7394         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7395
7396         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7397         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7398         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7399         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7400         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7401         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7402                                                 "reshape");
7403         if (!mddev->sync_thread) {
7404                 mddev->recovery = 0;
7405                 spin_lock_irq(&conf->device_lock);
7406                 write_seqcount_begin(&conf->gen_lock);
7407                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7408                 mddev->new_chunk_sectors =
7409                         conf->chunk_sectors = conf->prev_chunk_sectors;
7410                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7411                 rdev_for_each(rdev, mddev)
7412                         rdev->new_data_offset = rdev->data_offset;
7413                 smp_wmb();
7414                 conf->generation --;
7415                 conf->reshape_progress = MaxSector;
7416                 mddev->reshape_position = MaxSector;
7417                 write_seqcount_end(&conf->gen_lock);
7418                 spin_unlock_irq(&conf->device_lock);
7419                 return -EAGAIN;
7420         }
7421         conf->reshape_checkpoint = jiffies;
7422         md_wakeup_thread(mddev->sync_thread);
7423         md_new_event(mddev);
7424         return 0;
7425 }
7426
7427 /* This is called from the reshape thread and should make any
7428  * changes needed in 'conf'
7429  */
7430 static void end_reshape(struct r5conf *conf)
7431 {
7432
7433         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7434                 struct md_rdev *rdev;
7435
7436                 spin_lock_irq(&conf->device_lock);
7437                 conf->previous_raid_disks = conf->raid_disks;
7438                 rdev_for_each(rdev, conf->mddev)
7439                         rdev->data_offset = rdev->new_data_offset;
7440                 smp_wmb();
7441                 conf->reshape_progress = MaxSector;
7442                 conf->mddev->reshape_position = MaxSector;
7443                 spin_unlock_irq(&conf->device_lock);
7444                 wake_up(&conf->wait_for_overlap);
7445
7446                 /* read-ahead size must cover two whole stripes, which is
7447                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7448                  */
7449                 if (conf->mddev->queue) {
7450                         int data_disks = conf->raid_disks - conf->max_degraded;
7451                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7452                                                    / PAGE_SIZE);
7453                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7454                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7455                 }
7456         }
7457 }
7458
7459 /* This is called from the raid5d thread with mddev_lock held.
7460  * It makes config changes to the device.
7461  */
7462 static void raid5_finish_reshape(struct mddev *mddev)
7463 {
7464         struct r5conf *conf = mddev->private;
7465
7466         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7467
7468                 if (mddev->delta_disks > 0) {
7469                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7470                         set_capacity(mddev->gendisk, mddev->array_sectors);
7471                         revalidate_disk(mddev->gendisk);
7472                 } else {
7473                         int d;
7474                         spin_lock_irq(&conf->device_lock);
7475                         mddev->degraded = calc_degraded(conf);
7476                         spin_unlock_irq(&conf->device_lock);
7477                         for (d = conf->raid_disks ;
7478                              d < conf->raid_disks - mddev->delta_disks;
7479                              d++) {
7480                                 struct md_rdev *rdev = conf->disks[d].rdev;
7481                                 if (rdev)
7482                                         clear_bit(In_sync, &rdev->flags);
7483                                 rdev = conf->disks[d].replacement;
7484                                 if (rdev)
7485                                         clear_bit(In_sync, &rdev->flags);
7486                         }
7487                 }
7488                 mddev->layout = conf->algorithm;
7489                 mddev->chunk_sectors = conf->chunk_sectors;
7490                 mddev->reshape_position = MaxSector;
7491                 mddev->delta_disks = 0;
7492                 mddev->reshape_backwards = 0;
7493         }
7494 }
7495
7496 static void raid5_quiesce(struct mddev *mddev, int state)
7497 {
7498         struct r5conf *conf = mddev->private;
7499
7500         switch(state) {
7501         case 2: /* resume for a suspend */
7502                 wake_up(&conf->wait_for_overlap);
7503                 break;
7504
7505         case 1: /* stop all writes */
7506                 lock_all_device_hash_locks_irq(conf);
7507                 /* '2' tells resync/reshape to pause so that all
7508                  * active stripes can drain
7509                  */
7510                 conf->quiesce = 2;
7511                 wait_event_cmd(conf->wait_for_quiescent,
7512                                     atomic_read(&conf->active_stripes) == 0 &&
7513                                     atomic_read(&conf->active_aligned_reads) == 0,
7514                                     unlock_all_device_hash_locks_irq(conf),
7515                                     lock_all_device_hash_locks_irq(conf));
7516                 conf->quiesce = 1;
7517                 unlock_all_device_hash_locks_irq(conf);
7518                 /* allow reshape to continue */
7519                 wake_up(&conf->wait_for_overlap);
7520                 break;
7521
7522         case 0: /* re-enable writes */
7523                 lock_all_device_hash_locks_irq(conf);
7524                 conf->quiesce = 0;
7525                 wake_up(&conf->wait_for_quiescent);
7526                 wake_up(&conf->wait_for_overlap);
7527                 unlock_all_device_hash_locks_irq(conf);
7528                 break;
7529         }
7530 }
7531
7532 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7533 {
7534         struct r0conf *raid0_conf = mddev->private;
7535         sector_t sectors;
7536
7537         /* for raid0 takeover only one zone is supported */
7538         if (raid0_conf->nr_strip_zones > 1) {
7539                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7540                        mdname(mddev));
7541                 return ERR_PTR(-EINVAL);
7542         }
7543
7544         sectors = raid0_conf->strip_zone[0].zone_end;
7545         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7546         mddev->dev_sectors = sectors;
7547         mddev->new_level = level;
7548         mddev->new_layout = ALGORITHM_PARITY_N;
7549         mddev->new_chunk_sectors = mddev->chunk_sectors;
7550         mddev->raid_disks += 1;
7551         mddev->delta_disks = 1;
7552         /* make sure it will be not marked as dirty */
7553         mddev->recovery_cp = MaxSector;
7554
7555         return setup_conf(mddev);
7556 }
7557
7558 static void *raid5_takeover_raid1(struct mddev *mddev)
7559 {
7560         int chunksect;
7561
7562         if (mddev->raid_disks != 2 ||
7563             mddev->degraded > 1)
7564                 return ERR_PTR(-EINVAL);
7565
7566         /* Should check if there are write-behind devices? */
7567
7568         chunksect = 64*2; /* 64K by default */
7569
7570         /* The array must be an exact multiple of chunksize */
7571         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7572                 chunksect >>= 1;
7573
7574         if ((chunksect<<9) < STRIPE_SIZE)
7575                 /* array size does not allow a suitable chunk size */
7576                 return ERR_PTR(-EINVAL);
7577
7578         mddev->new_level = 5;
7579         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7580         mddev->new_chunk_sectors = chunksect;
7581
7582         return setup_conf(mddev);
7583 }
7584
7585 static void *raid5_takeover_raid6(struct mddev *mddev)
7586 {
7587         int new_layout;
7588
7589         switch (mddev->layout) {
7590         case ALGORITHM_LEFT_ASYMMETRIC_6:
7591                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7592                 break;
7593         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7594                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7595                 break;
7596         case ALGORITHM_LEFT_SYMMETRIC_6:
7597                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7598                 break;
7599         case ALGORITHM_RIGHT_SYMMETRIC_6:
7600                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7601                 break;
7602         case ALGORITHM_PARITY_0_6:
7603                 new_layout = ALGORITHM_PARITY_0;
7604                 break;
7605         case ALGORITHM_PARITY_N:
7606                 new_layout = ALGORITHM_PARITY_N;
7607                 break;
7608         default:
7609                 return ERR_PTR(-EINVAL);
7610         }
7611         mddev->new_level = 5;
7612         mddev->new_layout = new_layout;
7613         mddev->delta_disks = -1;
7614         mddev->raid_disks -= 1;
7615         return setup_conf(mddev);
7616 }
7617
7618 static int raid5_check_reshape(struct mddev *mddev)
7619 {
7620         /* For a 2-drive array, the layout and chunk size can be changed
7621          * immediately as not restriping is needed.
7622          * For larger arrays we record the new value - after validation
7623          * to be used by a reshape pass.
7624          */
7625         struct r5conf *conf = mddev->private;
7626         int new_chunk = mddev->new_chunk_sectors;
7627
7628         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7629                 return -EINVAL;
7630         if (new_chunk > 0) {
7631                 if (!is_power_of_2(new_chunk))
7632                         return -EINVAL;
7633                 if (new_chunk < (PAGE_SIZE>>9))
7634                         return -EINVAL;
7635                 if (mddev->array_sectors & (new_chunk-1))
7636                         /* not factor of array size */
7637                         return -EINVAL;
7638         }
7639
7640         /* They look valid */
7641
7642         if (mddev->raid_disks == 2) {
7643                 /* can make the change immediately */
7644                 if (mddev->new_layout >= 0) {
7645                         conf->algorithm = mddev->new_layout;
7646                         mddev->layout = mddev->new_layout;
7647                 }
7648                 if (new_chunk > 0) {
7649                         conf->chunk_sectors = new_chunk ;
7650                         mddev->chunk_sectors = new_chunk;
7651                 }
7652                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7653                 md_wakeup_thread(mddev->thread);
7654         }
7655         return check_reshape(mddev);
7656 }
7657
7658 static int raid6_check_reshape(struct mddev *mddev)
7659 {
7660         int new_chunk = mddev->new_chunk_sectors;
7661
7662         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7663                 return -EINVAL;
7664         if (new_chunk > 0) {
7665                 if (!is_power_of_2(new_chunk))
7666                         return -EINVAL;
7667                 if (new_chunk < (PAGE_SIZE >> 9))
7668                         return -EINVAL;
7669                 if (mddev->array_sectors & (new_chunk-1))
7670                         /* not factor of array size */
7671                         return -EINVAL;
7672         }
7673
7674         /* They look valid */
7675         return check_reshape(mddev);
7676 }
7677
7678 static void *raid5_takeover(struct mddev *mddev)
7679 {
7680         /* raid5 can take over:
7681          *  raid0 - if there is only one strip zone - make it a raid4 layout
7682          *  raid1 - if there are two drives.  We need to know the chunk size
7683          *  raid4 - trivial - just use a raid4 layout.
7684          *  raid6 - Providing it is a *_6 layout
7685          */
7686         if (mddev->level == 0)
7687                 return raid45_takeover_raid0(mddev, 5);
7688         if (mddev->level == 1)
7689                 return raid5_takeover_raid1(mddev);
7690         if (mddev->level == 4) {
7691                 mddev->new_layout = ALGORITHM_PARITY_N;
7692                 mddev->new_level = 5;
7693                 return setup_conf(mddev);
7694         }
7695         if (mddev->level == 6)
7696                 return raid5_takeover_raid6(mddev);
7697
7698         return ERR_PTR(-EINVAL);
7699 }
7700
7701 static void *raid4_takeover(struct mddev *mddev)
7702 {
7703         /* raid4 can take over:
7704          *  raid0 - if there is only one strip zone
7705          *  raid5 - if layout is right
7706          */
7707         if (mddev->level == 0)
7708                 return raid45_takeover_raid0(mddev, 4);
7709         if (mddev->level == 5 &&
7710             mddev->layout == ALGORITHM_PARITY_N) {
7711                 mddev->new_layout = 0;
7712                 mddev->new_level = 4;
7713                 return setup_conf(mddev);
7714         }
7715         return ERR_PTR(-EINVAL);
7716 }
7717
7718 static struct md_personality raid5_personality;
7719
7720 static void *raid6_takeover(struct mddev *mddev)
7721 {
7722         /* Currently can only take over a raid5.  We map the
7723          * personality to an equivalent raid6 personality
7724          * with the Q block at the end.
7725          */
7726         int new_layout;
7727
7728         if (mddev->pers != &raid5_personality)
7729                 return ERR_PTR(-EINVAL);
7730         if (mddev->degraded > 1)
7731                 return ERR_PTR(-EINVAL);
7732         if (mddev->raid_disks > 253)
7733                 return ERR_PTR(-EINVAL);
7734         if (mddev->raid_disks < 3)
7735                 return ERR_PTR(-EINVAL);
7736
7737         switch (mddev->layout) {
7738         case ALGORITHM_LEFT_ASYMMETRIC:
7739                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7740                 break;
7741         case ALGORITHM_RIGHT_ASYMMETRIC:
7742                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7743                 break;
7744         case ALGORITHM_LEFT_SYMMETRIC:
7745                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7746                 break;
7747         case ALGORITHM_RIGHT_SYMMETRIC:
7748                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7749                 break;
7750         case ALGORITHM_PARITY_0:
7751                 new_layout = ALGORITHM_PARITY_0_6;
7752                 break;
7753         case ALGORITHM_PARITY_N:
7754                 new_layout = ALGORITHM_PARITY_N;
7755                 break;
7756         default:
7757                 return ERR_PTR(-EINVAL);
7758         }
7759         mddev->new_level = 6;
7760         mddev->new_layout = new_layout;
7761         mddev->delta_disks = 1;
7762         mddev->raid_disks += 1;
7763         return setup_conf(mddev);
7764 }
7765
7766 static struct md_personality raid6_personality =
7767 {
7768         .name           = "raid6",
7769         .level          = 6,
7770         .owner          = THIS_MODULE,
7771         .make_request   = make_request,
7772         .run            = run,
7773         .free           = raid5_free,
7774         .status         = status,
7775         .error_handler  = error,
7776         .hot_add_disk   = raid5_add_disk,
7777         .hot_remove_disk= raid5_remove_disk,
7778         .spare_active   = raid5_spare_active,
7779         .sync_request   = sync_request,
7780         .resize         = raid5_resize,
7781         .size           = raid5_size,
7782         .check_reshape  = raid6_check_reshape,
7783         .start_reshape  = raid5_start_reshape,
7784         .finish_reshape = raid5_finish_reshape,
7785         .quiesce        = raid5_quiesce,
7786         .takeover       = raid6_takeover,
7787         .congested      = raid5_congested,
7788 };
7789 static struct md_personality raid5_personality =
7790 {
7791         .name           = "raid5",
7792         .level          = 5,
7793         .owner          = THIS_MODULE,
7794         .make_request   = make_request,
7795         .run            = run,
7796         .free           = raid5_free,
7797         .status         = status,
7798         .error_handler  = error,
7799         .hot_add_disk   = raid5_add_disk,
7800         .hot_remove_disk= raid5_remove_disk,
7801         .spare_active   = raid5_spare_active,
7802         .sync_request   = sync_request,
7803         .resize         = raid5_resize,
7804         .size           = raid5_size,
7805         .check_reshape  = raid5_check_reshape,
7806         .start_reshape  = raid5_start_reshape,
7807         .finish_reshape = raid5_finish_reshape,
7808         .quiesce        = raid5_quiesce,
7809         .takeover       = raid5_takeover,
7810         .congested      = raid5_congested,
7811 };
7812
7813 static struct md_personality raid4_personality =
7814 {
7815         .name           = "raid4",
7816         .level          = 4,
7817         .owner          = THIS_MODULE,
7818         .make_request   = make_request,
7819         .run            = run,
7820         .free           = raid5_free,
7821         .status         = status,
7822         .error_handler  = error,
7823         .hot_add_disk   = raid5_add_disk,
7824         .hot_remove_disk= raid5_remove_disk,
7825         .spare_active   = raid5_spare_active,
7826         .sync_request   = sync_request,
7827         .resize         = raid5_resize,
7828         .size           = raid5_size,
7829         .check_reshape  = raid5_check_reshape,
7830         .start_reshape  = raid5_start_reshape,
7831         .finish_reshape = raid5_finish_reshape,
7832         .quiesce        = raid5_quiesce,
7833         .takeover       = raid4_takeover,
7834         .congested      = raid5_congested,
7835 };
7836
7837 static int __init raid5_init(void)
7838 {
7839         raid5_wq = alloc_workqueue("raid5wq",
7840                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7841         if (!raid5_wq)
7842                 return -ENOMEM;
7843         register_md_personality(&raid6_personality);
7844         register_md_personality(&raid5_personality);
7845         register_md_personality(&raid4_personality);
7846         return 0;
7847 }
7848
7849 static void raid5_exit(void)
7850 {
7851         unregister_md_personality(&raid6_personality);
7852         unregister_md_personality(&raid5_personality);
7853         unregister_md_personality(&raid4_personality);
7854         destroy_workqueue(raid5_wq);
7855 }
7856
7857 module_init(raid5_init);
7858 module_exit(raid5_exit);
7859 MODULE_LICENSE("GPL");
7860 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7861 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7862 MODULE_ALIAS("md-raid5");
7863 MODULE_ALIAS("md-raid4");
7864 MODULE_ALIAS("md-level-5");
7865 MODULE_ALIAS("md-level-4");
7866 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7867 MODULE_ALIAS("md-raid6");
7868 MODULE_ALIAS("md-level-6");
7869
7870 /* This used to be two separate modules, they were: */
7871 MODULE_ALIAS("raid5");
7872 MODULE_ALIAS("raid6");