]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
scsi_dh: don't try to load a device handler during async probing
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62
63 #include "bnx2x.h"
64 #include "bnx2x_init.h"
65 #include "bnx2x_init_ops.h"
66 #include "bnx2x_cmn.h"
67 #include "bnx2x_vfpf.h"
68 #include "bnx2x_dcb.h"
69 #include "bnx2x_sp.h"
70 #include <linux/firmware.h>
71 #include "bnx2x_fw_file_hdr.h"
72 /* FW files */
73 #define FW_FILE_VERSION                                 \
74         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
75         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
76         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
77         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
78 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
80 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
81
82 /* Time in jiffies before concluding the transmitter is hung */
83 #define TX_TIMEOUT              (5*HZ)
84
85 static char version[] =
86         "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
87         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
88
89 MODULE_AUTHOR("Eliezer Tamir");
90 MODULE_DESCRIPTION("QLogic "
91                    "BCM57710/57711/57711E/"
92                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
93                    "57840/57840_MF Driver");
94 MODULE_LICENSE("GPL");
95 MODULE_VERSION(DRV_MODULE_VERSION);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1);
97 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
98 MODULE_FIRMWARE(FW_FILE_NAME_E2);
99
100 int bnx2x_num_queues;
101 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
102 MODULE_PARM_DESC(num_queues,
103                  " Set number of queues (default is as a number of CPUs)");
104
105 static int disable_tpa;
106 module_param(disable_tpa, int, S_IRUGO);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109 static int int_mode;
110 module_param(int_mode, int, S_IRUGO);
111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112                                 "(1 INT#x; 2 MSI)");
113
114 static int dropless_fc;
115 module_param(dropless_fc, int, S_IRUGO);
116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
117
118 static int mrrs = -1;
119 module_param(mrrs, int, S_IRUGO);
120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
121
122 static int debug;
123 module_param(debug, int, S_IRUGO);
124 MODULE_PARM_DESC(debug, " Default debug msglevel");
125
126 static struct workqueue_struct *bnx2x_wq;
127 struct workqueue_struct *bnx2x_iov_wq;
128
129 struct bnx2x_mac_vals {
130         u32 xmac_addr;
131         u32 xmac_val;
132         u32 emac_addr;
133         u32 emac_val;
134         u32 umac_addr[2];
135         u32 umac_val[2];
136         u32 bmac_addr;
137         u32 bmac_val[2];
138 };
139
140 enum bnx2x_board_type {
141         BCM57710 = 0,
142         BCM57711,
143         BCM57711E,
144         BCM57712,
145         BCM57712_MF,
146         BCM57712_VF,
147         BCM57800,
148         BCM57800_MF,
149         BCM57800_VF,
150         BCM57810,
151         BCM57810_MF,
152         BCM57810_VF,
153         BCM57840_4_10,
154         BCM57840_2_20,
155         BCM57840_MF,
156         BCM57840_VF,
157         BCM57811,
158         BCM57811_MF,
159         BCM57840_O,
160         BCM57840_MFO,
161         BCM57811_VF
162 };
163
164 /* indexed by board_type, above */
165 static struct {
166         char *name;
167 } board_info[] = {
168         [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
169         [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
170         [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
171         [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
172         [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
173         [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
174         [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
175         [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
176         [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
177         [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
178         [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
179         [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
180         [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
181         [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
182         [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
183         [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
184         [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
185         [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
186         [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
187         [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
188         [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
189 };
190
191 #ifndef PCI_DEVICE_ID_NX2_57710
192 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711
195 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57711E
198 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712
201 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_MF
204 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57712_VF
207 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800
210 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_MF
213 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57800_VF
216 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810
219 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57810_MF
222 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57840_O
225 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57810_VF
228 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
231 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
234 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
237 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_MF
240 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57840_VF
243 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811
246 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_MF
249 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
250 #endif
251 #ifndef PCI_DEVICE_ID_NX2_57811_VF
252 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
253 #endif
254
255 static const struct pci_device_id bnx2x_pci_tbl[] = {
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
275         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
277         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
278         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
279         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
280         { 0 }
281 };
282
283 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
284
285 /* Global resources for unloading a previously loaded device */
286 #define BNX2X_PREV_WAIT_NEEDED 1
287 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
288 static LIST_HEAD(bnx2x_prev_list);
289
290 /* Forward declaration */
291 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
292 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
293 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
294
295 /****************************************************************************
296 * General service functions
297 ****************************************************************************/
298
299 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
300
301 static void __storm_memset_dma_mapping(struct bnx2x *bp,
302                                        u32 addr, dma_addr_t mapping)
303 {
304         REG_WR(bp,  addr, U64_LO(mapping));
305         REG_WR(bp,  addr + 4, U64_HI(mapping));
306 }
307
308 static void storm_memset_spq_addr(struct bnx2x *bp,
309                                   dma_addr_t mapping, u16 abs_fid)
310 {
311         u32 addr = XSEM_REG_FAST_MEMORY +
312                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
313
314         __storm_memset_dma_mapping(bp, addr, mapping);
315 }
316
317 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
318                                   u16 pf_id)
319 {
320         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
321                 pf_id);
322         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
323                 pf_id);
324         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
325                 pf_id);
326         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
327                 pf_id);
328 }
329
330 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
331                                  u8 enable)
332 {
333         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
334                 enable);
335         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
336                 enable);
337         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
338                 enable);
339         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
340                 enable);
341 }
342
343 static void storm_memset_eq_data(struct bnx2x *bp,
344                                  struct event_ring_data *eq_data,
345                                 u16 pfid)
346 {
347         size_t size = sizeof(struct event_ring_data);
348
349         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
350
351         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
352 }
353
354 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
355                                  u16 pfid)
356 {
357         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
358         REG_WR16(bp, addr, eq_prod);
359 }
360
361 /* used only at init
362  * locking is done by mcp
363  */
364 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
365 {
366         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
367         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
368         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
369                                PCICFG_VENDOR_ID_OFFSET);
370 }
371
372 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
373 {
374         u32 val;
375
376         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
377         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
378         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
379                                PCICFG_VENDOR_ID_OFFSET);
380
381         return val;
382 }
383
384 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
385 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
386 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
387 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
388 #define DMAE_DP_DST_NONE        "dst_addr [none]"
389
390 static void bnx2x_dp_dmae(struct bnx2x *bp,
391                           struct dmae_command *dmae, int msglvl)
392 {
393         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
394         int i;
395
396         switch (dmae->opcode & DMAE_COMMAND_DST) {
397         case DMAE_CMD_DST_PCI:
398                 if (src_type == DMAE_CMD_SRC_PCI)
399                         DP(msglvl, "DMAE: opcode 0x%08x\n"
400                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
401                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
402                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
403                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
404                            dmae->comp_addr_hi, dmae->comp_addr_lo,
405                            dmae->comp_val);
406                 else
407                         DP(msglvl, "DMAE: opcode 0x%08x\n"
408                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
409                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
410                            dmae->opcode, dmae->src_addr_lo >> 2,
411                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
412                            dmae->comp_addr_hi, dmae->comp_addr_lo,
413                            dmae->comp_val);
414                 break;
415         case DMAE_CMD_DST_GRC:
416                 if (src_type == DMAE_CMD_SRC_PCI)
417                         DP(msglvl, "DMAE: opcode 0x%08x\n"
418                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
419                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
420                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
421                            dmae->len, dmae->dst_addr_lo >> 2,
422                            dmae->comp_addr_hi, dmae->comp_addr_lo,
423                            dmae->comp_val);
424                 else
425                         DP(msglvl, "DMAE: opcode 0x%08x\n"
426                            "src [%08x], len [%d*4], dst [%08x]\n"
427                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
428                            dmae->opcode, dmae->src_addr_lo >> 2,
429                            dmae->len, dmae->dst_addr_lo >> 2,
430                            dmae->comp_addr_hi, dmae->comp_addr_lo,
431                            dmae->comp_val);
432                 break;
433         default:
434                 if (src_type == DMAE_CMD_SRC_PCI)
435                         DP(msglvl, "DMAE: opcode 0x%08x\n"
436                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
437                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
438                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
439                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
440                            dmae->comp_val);
441                 else
442                         DP(msglvl, "DMAE: opcode 0x%08x\n"
443                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
444                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
445                            dmae->opcode, dmae->src_addr_lo >> 2,
446                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
447                            dmae->comp_val);
448                 break;
449         }
450
451         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
452                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
453                    i, *(((u32 *)dmae) + i));
454 }
455
456 /* copy command into DMAE command memory and set DMAE command go */
457 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
458 {
459         u32 cmd_offset;
460         int i;
461
462         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
463         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
464                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
465         }
466         REG_WR(bp, dmae_reg_go_c[idx], 1);
467 }
468
469 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
470 {
471         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
472                            DMAE_CMD_C_ENABLE);
473 }
474
475 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
476 {
477         return opcode & ~DMAE_CMD_SRC_RESET;
478 }
479
480 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
481                              bool with_comp, u8 comp_type)
482 {
483         u32 opcode = 0;
484
485         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
486                    (dst_type << DMAE_COMMAND_DST_SHIFT));
487
488         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
489
490         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
491         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
492                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
493         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
494
495 #ifdef __BIG_ENDIAN
496         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
497 #else
498         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
499 #endif
500         if (with_comp)
501                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
502         return opcode;
503 }
504
505 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
506                                       struct dmae_command *dmae,
507                                       u8 src_type, u8 dst_type)
508 {
509         memset(dmae, 0, sizeof(struct dmae_command));
510
511         /* set the opcode */
512         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
513                                          true, DMAE_COMP_PCI);
514
515         /* fill in the completion parameters */
516         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
517         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
518         dmae->comp_val = DMAE_COMP_VAL;
519 }
520
521 /* issue a dmae command over the init-channel and wait for completion */
522 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
523                                u32 *comp)
524 {
525         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
526         int rc = 0;
527
528         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
529
530         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
531          * as long as this code is called both from syscall context and
532          * from ndo_set_rx_mode() flow that may be called from BH.
533          */
534
535         spin_lock_bh(&bp->dmae_lock);
536
537         /* reset completion */
538         *comp = 0;
539
540         /* post the command on the channel used for initializations */
541         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
542
543         /* wait for completion */
544         udelay(5);
545         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
546
547                 if (!cnt ||
548                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
549                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
550                         BNX2X_ERR("DMAE timeout!\n");
551                         rc = DMAE_TIMEOUT;
552                         goto unlock;
553                 }
554                 cnt--;
555                 udelay(50);
556         }
557         if (*comp & DMAE_PCI_ERR_FLAG) {
558                 BNX2X_ERR("DMAE PCI error!\n");
559                 rc = DMAE_PCI_ERROR;
560         }
561
562 unlock:
563
564         spin_unlock_bh(&bp->dmae_lock);
565
566         return rc;
567 }
568
569 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
570                       u32 len32)
571 {
572         int rc;
573         struct dmae_command dmae;
574
575         if (!bp->dmae_ready) {
576                 u32 *data = bnx2x_sp(bp, wb_data[0]);
577
578                 if (CHIP_IS_E1(bp))
579                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
580                 else
581                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
582                 return;
583         }
584
585         /* set opcode and fixed command fields */
586         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
587
588         /* fill in addresses and len */
589         dmae.src_addr_lo = U64_LO(dma_addr);
590         dmae.src_addr_hi = U64_HI(dma_addr);
591         dmae.dst_addr_lo = dst_addr >> 2;
592         dmae.dst_addr_hi = 0;
593         dmae.len = len32;
594
595         /* issue the command and wait for completion */
596         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
597         if (rc) {
598                 BNX2X_ERR("DMAE returned failure %d\n", rc);
599 #ifdef BNX2X_STOP_ON_ERROR
600                 bnx2x_panic();
601 #endif
602         }
603 }
604
605 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
606 {
607         int rc;
608         struct dmae_command dmae;
609
610         if (!bp->dmae_ready) {
611                 u32 *data = bnx2x_sp(bp, wb_data[0]);
612                 int i;
613
614                 if (CHIP_IS_E1(bp))
615                         for (i = 0; i < len32; i++)
616                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
617                 else
618                         for (i = 0; i < len32; i++)
619                                 data[i] = REG_RD(bp, src_addr + i*4);
620
621                 return;
622         }
623
624         /* set opcode and fixed command fields */
625         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
626
627         /* fill in addresses and len */
628         dmae.src_addr_lo = src_addr >> 2;
629         dmae.src_addr_hi = 0;
630         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
631         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
632         dmae.len = len32;
633
634         /* issue the command and wait for completion */
635         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
636         if (rc) {
637                 BNX2X_ERR("DMAE returned failure %d\n", rc);
638 #ifdef BNX2X_STOP_ON_ERROR
639                 bnx2x_panic();
640 #endif
641         }
642 }
643
644 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
645                                       u32 addr, u32 len)
646 {
647         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
648         int offset = 0;
649
650         while (len > dmae_wr_max) {
651                 bnx2x_write_dmae(bp, phys_addr + offset,
652                                  addr + offset, dmae_wr_max);
653                 offset += dmae_wr_max * 4;
654                 len -= dmae_wr_max;
655         }
656
657         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
658 }
659
660 enum storms {
661            XSTORM,
662            TSTORM,
663            CSTORM,
664            USTORM,
665            MAX_STORMS
666 };
667
668 #define STORMS_NUM 4
669 #define REGS_IN_ENTRY 4
670
671 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
672                                               enum storms storm,
673                                               int entry)
674 {
675         switch (storm) {
676         case XSTORM:
677                 return XSTORM_ASSERT_LIST_OFFSET(entry);
678         case TSTORM:
679                 return TSTORM_ASSERT_LIST_OFFSET(entry);
680         case CSTORM:
681                 return CSTORM_ASSERT_LIST_OFFSET(entry);
682         case USTORM:
683                 return USTORM_ASSERT_LIST_OFFSET(entry);
684         case MAX_STORMS:
685         default:
686                 BNX2X_ERR("unknown storm\n");
687         }
688         return -EINVAL;
689 }
690
691 static int bnx2x_mc_assert(struct bnx2x *bp)
692 {
693         char last_idx;
694         int i, j, rc = 0;
695         enum storms storm;
696         u32 regs[REGS_IN_ENTRY];
697         u32 bar_storm_intmem[STORMS_NUM] = {
698                 BAR_XSTRORM_INTMEM,
699                 BAR_TSTRORM_INTMEM,
700                 BAR_CSTRORM_INTMEM,
701                 BAR_USTRORM_INTMEM
702         };
703         u32 storm_assert_list_index[STORMS_NUM] = {
704                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
705                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
706                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
707                 USTORM_ASSERT_LIST_INDEX_OFFSET
708         };
709         char *storms_string[STORMS_NUM] = {
710                 "XSTORM",
711                 "TSTORM",
712                 "CSTORM",
713                 "USTORM"
714         };
715
716         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
717                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
718                                    storm_assert_list_index[storm]);
719                 if (last_idx)
720                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
721                                   storms_string[storm], last_idx);
722
723                 /* print the asserts */
724                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
725                         /* read a single assert entry */
726                         for (j = 0; j < REGS_IN_ENTRY; j++)
727                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
728                                           bnx2x_get_assert_list_entry(bp,
729                                                                       storm,
730                                                                       i) +
731                                           sizeof(u32) * j);
732
733                         /* log entry if it contains a valid assert */
734                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
735                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
736                                           storms_string[storm], i, regs[3],
737                                           regs[2], regs[1], regs[0]);
738                                 rc++;
739                         } else {
740                                 break;
741                         }
742                 }
743         }
744
745         BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
746                   CHIP_IS_E1(bp) ? "everest1" :
747                   CHIP_IS_E1H(bp) ? "everest1h" :
748                   CHIP_IS_E2(bp) ? "everest2" : "everest3",
749                   BCM_5710_FW_MAJOR_VERSION,
750                   BCM_5710_FW_MINOR_VERSION,
751                   BCM_5710_FW_REVISION_VERSION);
752
753         return rc;
754 }
755
756 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
757 #define SCRATCH_BUFFER_SIZE(bp) \
758         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
759
760 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
761 {
762         u32 addr, val;
763         u32 mark, offset;
764         __be32 data[9];
765         int word;
766         u32 trace_shmem_base;
767         if (BP_NOMCP(bp)) {
768                 BNX2X_ERR("NO MCP - can not dump\n");
769                 return;
770         }
771         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
772                 (bp->common.bc_ver & 0xff0000) >> 16,
773                 (bp->common.bc_ver & 0xff00) >> 8,
774                 (bp->common.bc_ver & 0xff));
775
776         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
777         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
778                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
779
780         if (BP_PATH(bp) == 0)
781                 trace_shmem_base = bp->common.shmem_base;
782         else
783                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
784
785         /* sanity */
786         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
787             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
788                                 SCRATCH_BUFFER_SIZE(bp)) {
789                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
790                           trace_shmem_base);
791                 return;
792         }
793
794         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
795
796         /* validate TRCB signature */
797         mark = REG_RD(bp, addr);
798         if (mark != MFW_TRACE_SIGNATURE) {
799                 BNX2X_ERR("Trace buffer signature is missing.");
800                 return ;
801         }
802
803         /* read cyclic buffer pointer */
804         addr += 4;
805         mark = REG_RD(bp, addr);
806         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
807         if (mark >= trace_shmem_base || mark < addr + 4) {
808                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
809                 return;
810         }
811         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
812
813         printk("%s", lvl);
814
815         /* dump buffer after the mark */
816         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
817                 for (word = 0; word < 8; word++)
818                         data[word] = htonl(REG_RD(bp, offset + 4*word));
819                 data[8] = 0x0;
820                 pr_cont("%s", (char *)data);
821         }
822
823         /* dump buffer before the mark */
824         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
825                 for (word = 0; word < 8; word++)
826                         data[word] = htonl(REG_RD(bp, offset + 4*word));
827                 data[8] = 0x0;
828                 pr_cont("%s", (char *)data);
829         }
830         printk("%s" "end of fw dump\n", lvl);
831 }
832
833 static void bnx2x_fw_dump(struct bnx2x *bp)
834 {
835         bnx2x_fw_dump_lvl(bp, KERN_ERR);
836 }
837
838 static void bnx2x_hc_int_disable(struct bnx2x *bp)
839 {
840         int port = BP_PORT(bp);
841         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
842         u32 val = REG_RD(bp, addr);
843
844         /* in E1 we must use only PCI configuration space to disable
845          * MSI/MSIX capability
846          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
847          */
848         if (CHIP_IS_E1(bp)) {
849                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
850                  * Use mask register to prevent from HC sending interrupts
851                  * after we exit the function
852                  */
853                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
854
855                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
856                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
857                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
858         } else
859                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
861                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
862                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
863
864         DP(NETIF_MSG_IFDOWN,
865            "write %x to HC %d (addr 0x%x)\n",
866            val, port, addr);
867
868         /* flush all outstanding writes */
869         mmiowb();
870
871         REG_WR(bp, addr, val);
872         if (REG_RD(bp, addr) != val)
873                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
874 }
875
876 static void bnx2x_igu_int_disable(struct bnx2x *bp)
877 {
878         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
879
880         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
881                  IGU_PF_CONF_INT_LINE_EN |
882                  IGU_PF_CONF_ATTN_BIT_EN);
883
884         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
885
886         /* flush all outstanding writes */
887         mmiowb();
888
889         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
890         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
891                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
892 }
893
894 static void bnx2x_int_disable(struct bnx2x *bp)
895 {
896         if (bp->common.int_block == INT_BLOCK_HC)
897                 bnx2x_hc_int_disable(bp);
898         else
899                 bnx2x_igu_int_disable(bp);
900 }
901
902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
903 {
904         int i;
905         u16 j;
906         struct hc_sp_status_block_data sp_sb_data;
907         int func = BP_FUNC(bp);
908 #ifdef BNX2X_STOP_ON_ERROR
909         u16 start = 0, end = 0;
910         u8 cos;
911 #endif
912         if (IS_PF(bp) && disable_int)
913                 bnx2x_int_disable(bp);
914
915         bp->stats_state = STATS_STATE_DISABLED;
916         bp->eth_stats.unrecoverable_error++;
917         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
918
919         BNX2X_ERR("begin crash dump -----------------\n");
920
921         /* Indices */
922         /* Common */
923         if (IS_PF(bp)) {
924                 struct host_sp_status_block *def_sb = bp->def_status_blk;
925                 int data_size, cstorm_offset;
926
927                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
928                           bp->def_idx, bp->def_att_idx, bp->attn_state,
929                           bp->spq_prod_idx, bp->stats_counter);
930                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
931                           def_sb->atten_status_block.attn_bits,
932                           def_sb->atten_status_block.attn_bits_ack,
933                           def_sb->atten_status_block.status_block_id,
934                           def_sb->atten_status_block.attn_bits_index);
935                 BNX2X_ERR("     def (");
936                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
937                         pr_cont("0x%x%s",
938                                 def_sb->sp_sb.index_values[i],
939                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
940
941                 data_size = sizeof(struct hc_sp_status_block_data) /
942                             sizeof(u32);
943                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
944                 for (i = 0; i < data_size; i++)
945                         *((u32 *)&sp_sb_data + i) =
946                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
947                                            i * sizeof(u32));
948
949                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
950                         sp_sb_data.igu_sb_id,
951                         sp_sb_data.igu_seg_id,
952                         sp_sb_data.p_func.pf_id,
953                         sp_sb_data.p_func.vnic_id,
954                         sp_sb_data.p_func.vf_id,
955                         sp_sb_data.p_func.vf_valid,
956                         sp_sb_data.state);
957         }
958
959         for_each_eth_queue(bp, i) {
960                 struct bnx2x_fastpath *fp = &bp->fp[i];
961                 int loop;
962                 struct hc_status_block_data_e2 sb_data_e2;
963                 struct hc_status_block_data_e1x sb_data_e1x;
964                 struct hc_status_block_sm  *hc_sm_p =
965                         CHIP_IS_E1x(bp) ?
966                         sb_data_e1x.common.state_machine :
967                         sb_data_e2.common.state_machine;
968                 struct hc_index_data *hc_index_p =
969                         CHIP_IS_E1x(bp) ?
970                         sb_data_e1x.index_data :
971                         sb_data_e2.index_data;
972                 u8 data_size, cos;
973                 u32 *sb_data_p;
974                 struct bnx2x_fp_txdata txdata;
975
976                 if (!bp->fp)
977                         break;
978
979                 if (!fp->rx_cons_sb)
980                         continue;
981
982                 /* Rx */
983                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
984                           i, fp->rx_bd_prod, fp->rx_bd_cons,
985                           fp->rx_comp_prod,
986                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
987                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
988                           fp->rx_sge_prod, fp->last_max_sge,
989                           le16_to_cpu(fp->fp_hc_idx));
990
991                 /* Tx */
992                 for_each_cos_in_tx_queue(fp, cos)
993                 {
994                         if (!fp->txdata_ptr[cos])
995                                 break;
996
997                         txdata = *fp->txdata_ptr[cos];
998
999                         if (!txdata.tx_cons_sb)
1000                                 continue;
1001
1002                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1003                                   i, txdata.tx_pkt_prod,
1004                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1005                                   txdata.tx_bd_cons,
1006                                   le16_to_cpu(*txdata.tx_cons_sb));
1007                 }
1008
1009                 loop = CHIP_IS_E1x(bp) ?
1010                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1011
1012                 /* host sb data */
1013
1014                 if (IS_FCOE_FP(fp))
1015                         continue;
1016
1017                 BNX2X_ERR("     run indexes (");
1018                 for (j = 0; j < HC_SB_MAX_SM; j++)
1019                         pr_cont("0x%x%s",
1020                                fp->sb_running_index[j],
1021                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1022
1023                 BNX2X_ERR("     indexes (");
1024                 for (j = 0; j < loop; j++)
1025                         pr_cont("0x%x%s",
1026                                fp->sb_index_values[j],
1027                                (j == loop - 1) ? ")" : " ");
1028
1029                 /* VF cannot access FW refelection for status block */
1030                 if (IS_VF(bp))
1031                         continue;
1032
1033                 /* fw sb data */
1034                 data_size = CHIP_IS_E1x(bp) ?
1035                         sizeof(struct hc_status_block_data_e1x) :
1036                         sizeof(struct hc_status_block_data_e2);
1037                 data_size /= sizeof(u32);
1038                 sb_data_p = CHIP_IS_E1x(bp) ?
1039                         (u32 *)&sb_data_e1x :
1040                         (u32 *)&sb_data_e2;
1041                 /* copy sb data in here */
1042                 for (j = 0; j < data_size; j++)
1043                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1044                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1045                                 j * sizeof(u32));
1046
1047                 if (!CHIP_IS_E1x(bp)) {
1048                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1049                                 sb_data_e2.common.p_func.pf_id,
1050                                 sb_data_e2.common.p_func.vf_id,
1051                                 sb_data_e2.common.p_func.vf_valid,
1052                                 sb_data_e2.common.p_func.vnic_id,
1053                                 sb_data_e2.common.same_igu_sb_1b,
1054                                 sb_data_e2.common.state);
1055                 } else {
1056                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1057                                 sb_data_e1x.common.p_func.pf_id,
1058                                 sb_data_e1x.common.p_func.vf_id,
1059                                 sb_data_e1x.common.p_func.vf_valid,
1060                                 sb_data_e1x.common.p_func.vnic_id,
1061                                 sb_data_e1x.common.same_igu_sb_1b,
1062                                 sb_data_e1x.common.state);
1063                 }
1064
1065                 /* SB_SMs data */
1066                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1067                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068                                 j, hc_sm_p[j].__flags,
1069                                 hc_sm_p[j].igu_sb_id,
1070                                 hc_sm_p[j].igu_seg_id,
1071                                 hc_sm_p[j].time_to_expire,
1072                                 hc_sm_p[j].timer_value);
1073                 }
1074
1075                 /* Indices data */
1076                 for (j = 0; j < loop; j++) {
1077                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1078                                hc_index_p[j].flags,
1079                                hc_index_p[j].timeout);
1080                 }
1081         }
1082
1083 #ifdef BNX2X_STOP_ON_ERROR
1084         if (IS_PF(bp)) {
1085                 /* event queue */
1086                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1087                 for (i = 0; i < NUM_EQ_DESC; i++) {
1088                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1089
1090                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091                                   i, bp->eq_ring[i].message.opcode,
1092                                   bp->eq_ring[i].message.error);
1093                         BNX2X_ERR("data: %x %x %x\n",
1094                                   data[0], data[1], data[2]);
1095                 }
1096         }
1097
1098         /* Rings */
1099         /* Rx */
1100         for_each_valid_rx_queue(bp, i) {
1101                 struct bnx2x_fastpath *fp = &bp->fp[i];
1102
1103                 if (!bp->fp)
1104                         break;
1105
1106                 if (!fp->rx_cons_sb)
1107                         continue;
1108
1109                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1110                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1111                 for (j = start; j != end; j = RX_BD(j + 1)) {
1112                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1113                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1114
1115                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1116                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1117                 }
1118
1119                 start = RX_SGE(fp->rx_sge_prod);
1120                 end = RX_SGE(fp->last_max_sge);
1121                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1122                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1123                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1124
1125                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1126                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1127                 }
1128
1129                 start = RCQ_BD(fp->rx_comp_cons - 10);
1130                 end = RCQ_BD(fp->rx_comp_cons + 503);
1131                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1132                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1133
1134                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1136                 }
1137         }
1138
1139         /* Tx */
1140         for_each_valid_tx_queue(bp, i) {
1141                 struct bnx2x_fastpath *fp = &bp->fp[i];
1142
1143                 if (!bp->fp)
1144                         break;
1145
1146                 for_each_cos_in_tx_queue(fp, cos) {
1147                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1148
1149                         if (!fp->txdata_ptr[cos])
1150                                 break;
1151
1152                         if (!txdata->tx_cons_sb)
1153                                 continue;
1154
1155                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1156                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1157                         for (j = start; j != end; j = TX_BD(j + 1)) {
1158                                 struct sw_tx_bd *sw_bd =
1159                                         &txdata->tx_buf_ring[j];
1160
1161                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162                                           i, cos, j, sw_bd->skb,
1163                                           sw_bd->first_bd);
1164                         }
1165
1166                         start = TX_BD(txdata->tx_bd_cons - 10);
1167                         end = TX_BD(txdata->tx_bd_cons + 254);
1168                         for (j = start; j != end; j = TX_BD(j + 1)) {
1169                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1170
1171                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172                                           i, cos, j, tx_bd[0], tx_bd[1],
1173                                           tx_bd[2], tx_bd[3]);
1174                         }
1175                 }
1176         }
1177 #endif
1178         if (IS_PF(bp)) {
1179                 bnx2x_fw_dump(bp);
1180                 bnx2x_mc_assert(bp);
1181         }
1182         BNX2X_ERR("end crash dump -----------------\n");
1183 }
1184
1185 /*
1186  * FLR Support for E2
1187  *
1188  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1189  * initialization.
1190  */
1191 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1192 #define FLR_WAIT_INTERVAL       50      /* usec */
1193 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1194
1195 struct pbf_pN_buf_regs {
1196         int pN;
1197         u32 init_crd;
1198         u32 crd;
1199         u32 crd_freed;
1200 };
1201
1202 struct pbf_pN_cmd_regs {
1203         int pN;
1204         u32 lines_occup;
1205         u32 lines_freed;
1206 };
1207
1208 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1209                                      struct pbf_pN_buf_regs *regs,
1210                                      u32 poll_count)
1211 {
1212         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1213         u32 cur_cnt = poll_count;
1214
1215         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1216         crd = crd_start = REG_RD(bp, regs->crd);
1217         init_crd = REG_RD(bp, regs->init_crd);
1218
1219         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1220         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1221         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1222
1223         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1224                (init_crd - crd_start))) {
1225                 if (cur_cnt--) {
1226                         udelay(FLR_WAIT_INTERVAL);
1227                         crd = REG_RD(bp, regs->crd);
1228                         crd_freed = REG_RD(bp, regs->crd_freed);
1229                 } else {
1230                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1231                            regs->pN);
1232                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1233                            regs->pN, crd);
1234                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1235                            regs->pN, crd_freed);
1236                         break;
1237                 }
1238         }
1239         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1240            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1241 }
1242
1243 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1244                                      struct pbf_pN_cmd_regs *regs,
1245                                      u32 poll_count)
1246 {
1247         u32 occup, to_free, freed, freed_start;
1248         u32 cur_cnt = poll_count;
1249
1250         occup = to_free = REG_RD(bp, regs->lines_occup);
1251         freed = freed_start = REG_RD(bp, regs->lines_freed);
1252
1253         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1254         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1255
1256         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1257                 if (cur_cnt--) {
1258                         udelay(FLR_WAIT_INTERVAL);
1259                         occup = REG_RD(bp, regs->lines_occup);
1260                         freed = REG_RD(bp, regs->lines_freed);
1261                 } else {
1262                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1263                            regs->pN);
1264                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1265                            regs->pN, occup);
1266                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1267                            regs->pN, freed);
1268                         break;
1269                 }
1270         }
1271         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1272            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1273 }
1274
1275 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1276                                     u32 expected, u32 poll_count)
1277 {
1278         u32 cur_cnt = poll_count;
1279         u32 val;
1280
1281         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1282                 udelay(FLR_WAIT_INTERVAL);
1283
1284         return val;
1285 }
1286
1287 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1288                                     char *msg, u32 poll_cnt)
1289 {
1290         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1291         if (val != 0) {
1292                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1293                 return 1;
1294         }
1295         return 0;
1296 }
1297
1298 /* Common routines with VF FLR cleanup */
1299 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1300 {
1301         /* adjust polling timeout */
1302         if (CHIP_REV_IS_EMUL(bp))
1303                 return FLR_POLL_CNT * 2000;
1304
1305         if (CHIP_REV_IS_FPGA(bp))
1306                 return FLR_POLL_CNT * 120;
1307
1308         return FLR_POLL_CNT;
1309 }
1310
1311 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1312 {
1313         struct pbf_pN_cmd_regs cmd_regs[] = {
1314                 {0, (CHIP_IS_E3B0(bp)) ?
1315                         PBF_REG_TQ_OCCUPANCY_Q0 :
1316                         PBF_REG_P0_TQ_OCCUPANCY,
1317                     (CHIP_IS_E3B0(bp)) ?
1318                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1319                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1320                 {1, (CHIP_IS_E3B0(bp)) ?
1321                         PBF_REG_TQ_OCCUPANCY_Q1 :
1322                         PBF_REG_P1_TQ_OCCUPANCY,
1323                     (CHIP_IS_E3B0(bp)) ?
1324                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1325                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1326                 {4, (CHIP_IS_E3B0(bp)) ?
1327                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1328                         PBF_REG_P4_TQ_OCCUPANCY,
1329                     (CHIP_IS_E3B0(bp)) ?
1330                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1331                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1332         };
1333
1334         struct pbf_pN_buf_regs buf_regs[] = {
1335                 {0, (CHIP_IS_E3B0(bp)) ?
1336                         PBF_REG_INIT_CRD_Q0 :
1337                         PBF_REG_P0_INIT_CRD ,
1338                     (CHIP_IS_E3B0(bp)) ?
1339                         PBF_REG_CREDIT_Q0 :
1340                         PBF_REG_P0_CREDIT,
1341                     (CHIP_IS_E3B0(bp)) ?
1342                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1343                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1344                 {1, (CHIP_IS_E3B0(bp)) ?
1345                         PBF_REG_INIT_CRD_Q1 :
1346                         PBF_REG_P1_INIT_CRD,
1347                     (CHIP_IS_E3B0(bp)) ?
1348                         PBF_REG_CREDIT_Q1 :
1349                         PBF_REG_P1_CREDIT,
1350                     (CHIP_IS_E3B0(bp)) ?
1351                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1352                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1353                 {4, (CHIP_IS_E3B0(bp)) ?
1354                         PBF_REG_INIT_CRD_LB_Q :
1355                         PBF_REG_P4_INIT_CRD,
1356                     (CHIP_IS_E3B0(bp)) ?
1357                         PBF_REG_CREDIT_LB_Q :
1358                         PBF_REG_P4_CREDIT,
1359                     (CHIP_IS_E3B0(bp)) ?
1360                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1361                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1362         };
1363
1364         int i;
1365
1366         /* Verify the command queues are flushed P0, P1, P4 */
1367         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1368                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1369
1370         /* Verify the transmission buffers are flushed P0, P1, P4 */
1371         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1372                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1373 }
1374
1375 #define OP_GEN_PARAM(param) \
1376         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1377
1378 #define OP_GEN_TYPE(type) \
1379         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1380
1381 #define OP_GEN_AGG_VECT(index) \
1382         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1383
1384 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1385 {
1386         u32 op_gen_command = 0;
1387         u32 comp_addr = BAR_CSTRORM_INTMEM +
1388                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1389         int ret = 0;
1390
1391         if (REG_RD(bp, comp_addr)) {
1392                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1393                 return 1;
1394         }
1395
1396         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1397         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1398         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1399         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1400
1401         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1402         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1403
1404         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1405                 BNX2X_ERR("FW final cleanup did not succeed\n");
1406                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1407                    (REG_RD(bp, comp_addr)));
1408                 bnx2x_panic();
1409                 return 1;
1410         }
1411         /* Zero completion for next FLR */
1412         REG_WR(bp, comp_addr, 0);
1413
1414         return ret;
1415 }
1416
1417 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1418 {
1419         u16 status;
1420
1421         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1422         return status & PCI_EXP_DEVSTA_TRPND;
1423 }
1424
1425 /* PF FLR specific routines
1426 */
1427 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1428 {
1429         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1430         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1431                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1432                         "CFC PF usage counter timed out",
1433                         poll_cnt))
1434                 return 1;
1435
1436         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1437         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1438                         DORQ_REG_PF_USAGE_CNT,
1439                         "DQ PF usage counter timed out",
1440                         poll_cnt))
1441                 return 1;
1442
1443         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1444         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1445                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1446                         "QM PF usage counter timed out",
1447                         poll_cnt))
1448                 return 1;
1449
1450         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1451         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1453                         "Timers VNIC usage counter timed out",
1454                         poll_cnt))
1455                 return 1;
1456         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1457                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1458                         "Timers NUM_SCANS usage counter timed out",
1459                         poll_cnt))
1460                 return 1;
1461
1462         /* Wait DMAE PF usage counter to zero */
1463         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1464                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1465                         "DMAE command register timed out",
1466                         poll_cnt))
1467                 return 1;
1468
1469         return 0;
1470 }
1471
1472 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1473 {
1474         u32 val;
1475
1476         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1477         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1478
1479         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1480         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1481
1482         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1483         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1484
1485         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1486         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1487
1488         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1489         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1490
1491         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1492         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1493
1494         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1495         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1496
1497         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1498         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1499            val);
1500 }
1501
1502 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1503 {
1504         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1505
1506         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1507
1508         /* Re-enable PF target read access */
1509         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1510
1511         /* Poll HW usage counters */
1512         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1513         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1514                 return -EBUSY;
1515
1516         /* Zero the igu 'trailing edge' and 'leading edge' */
1517
1518         /* Send the FW cleanup command */
1519         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1520                 return -EBUSY;
1521
1522         /* ATC cleanup */
1523
1524         /* Verify TX hw is flushed */
1525         bnx2x_tx_hw_flushed(bp, poll_cnt);
1526
1527         /* Wait 100ms (not adjusted according to platform) */
1528         msleep(100);
1529
1530         /* Verify no pending pci transactions */
1531         if (bnx2x_is_pcie_pending(bp->pdev))
1532                 BNX2X_ERR("PCIE Transactions still pending\n");
1533
1534         /* Debug */
1535         bnx2x_hw_enable_status(bp);
1536
1537         /*
1538          * Master enable - Due to WB DMAE writes performed before this
1539          * register is re-initialized as part of the regular function init
1540          */
1541         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1542
1543         return 0;
1544 }
1545
1546 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1547 {
1548         int port = BP_PORT(bp);
1549         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1550         u32 val = REG_RD(bp, addr);
1551         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1552         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1553         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1554
1555         if (msix) {
1556                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1557                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1558                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1559                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1560                 if (single_msix)
1561                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1562         } else if (msi) {
1563                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1564                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1565                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1566                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1567         } else {
1568                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1571                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1572
1573                 if (!CHIP_IS_E1(bp)) {
1574                         DP(NETIF_MSG_IFUP,
1575                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1576
1577                         REG_WR(bp, addr, val);
1578
1579                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1580                 }
1581         }
1582
1583         if (CHIP_IS_E1(bp))
1584                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1585
1586         DP(NETIF_MSG_IFUP,
1587            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1588            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589
1590         REG_WR(bp, addr, val);
1591         /*
1592          * Ensure that HC_CONFIG is written before leading/trailing edge config
1593          */
1594         mmiowb();
1595         barrier();
1596
1597         if (!CHIP_IS_E1(bp)) {
1598                 /* init leading/trailing edge */
1599                 if (IS_MF(bp)) {
1600                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1601                         if (bp->port.pmf)
1602                                 /* enable nig and gpio3 attention */
1603                                 val |= 0x1100;
1604                 } else
1605                         val = 0xffff;
1606
1607                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1608                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1609         }
1610
1611         /* Make sure that interrupts are indeed enabled from here on */
1612         mmiowb();
1613 }
1614
1615 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1616 {
1617         u32 val;
1618         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1619         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1620         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1621
1622         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1623
1624         if (msix) {
1625                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1626                          IGU_PF_CONF_SINGLE_ISR_EN);
1627                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1628                         IGU_PF_CONF_ATTN_BIT_EN);
1629
1630                 if (single_msix)
1631                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1632         } else if (msi) {
1633                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1634                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1635                         IGU_PF_CONF_ATTN_BIT_EN |
1636                         IGU_PF_CONF_SINGLE_ISR_EN);
1637         } else {
1638                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1639                 val |= (IGU_PF_CONF_INT_LINE_EN |
1640                         IGU_PF_CONF_ATTN_BIT_EN |
1641                         IGU_PF_CONF_SINGLE_ISR_EN);
1642         }
1643
1644         /* Clean previous status - need to configure igu prior to ack*/
1645         if ((!msix) || single_msix) {
1646                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1647                 bnx2x_ack_int(bp);
1648         }
1649
1650         val |= IGU_PF_CONF_FUNC_EN;
1651
1652         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1653            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1654
1655         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1656
1657         if (val & IGU_PF_CONF_INT_LINE_EN)
1658                 pci_intx(bp->pdev, true);
1659
1660         barrier();
1661
1662         /* init leading/trailing edge */
1663         if (IS_MF(bp)) {
1664                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1665                 if (bp->port.pmf)
1666                         /* enable nig and gpio3 attention */
1667                         val |= 0x1100;
1668         } else
1669                 val = 0xffff;
1670
1671         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1672         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1673
1674         /* Make sure that interrupts are indeed enabled from here on */
1675         mmiowb();
1676 }
1677
1678 void bnx2x_int_enable(struct bnx2x *bp)
1679 {
1680         if (bp->common.int_block == INT_BLOCK_HC)
1681                 bnx2x_hc_int_enable(bp);
1682         else
1683                 bnx2x_igu_int_enable(bp);
1684 }
1685
1686 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1687 {
1688         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1689         int i, offset;
1690
1691         if (disable_hw)
1692                 /* prevent the HW from sending interrupts */
1693                 bnx2x_int_disable(bp);
1694
1695         /* make sure all ISRs are done */
1696         if (msix) {
1697                 synchronize_irq(bp->msix_table[0].vector);
1698                 offset = 1;
1699                 if (CNIC_SUPPORT(bp))
1700                         offset++;
1701                 for_each_eth_queue(bp, i)
1702                         synchronize_irq(bp->msix_table[offset++].vector);
1703         } else
1704                 synchronize_irq(bp->pdev->irq);
1705
1706         /* make sure sp_task is not running */
1707         cancel_delayed_work(&bp->sp_task);
1708         cancel_delayed_work(&bp->period_task);
1709         flush_workqueue(bnx2x_wq);
1710 }
1711
1712 /* fast path */
1713
1714 /*
1715  * General service functions
1716  */
1717
1718 /* Return true if succeeded to acquire the lock */
1719 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1720 {
1721         u32 lock_status;
1722         u32 resource_bit = (1 << resource);
1723         int func = BP_FUNC(bp);
1724         u32 hw_lock_control_reg;
1725
1726         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1727            "Trying to take a lock on resource %d\n", resource);
1728
1729         /* Validating that the resource is within range */
1730         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1731                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1732                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1733                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1734                 return false;
1735         }
1736
1737         if (func <= 5)
1738                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1739         else
1740                 hw_lock_control_reg =
1741                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1742
1743         /* Try to acquire the lock */
1744         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1745         lock_status = REG_RD(bp, hw_lock_control_reg);
1746         if (lock_status & resource_bit)
1747                 return true;
1748
1749         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1750            "Failed to get a lock on resource %d\n", resource);
1751         return false;
1752 }
1753
1754 /**
1755  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1756  *
1757  * @bp: driver handle
1758  *
1759  * Returns the recovery leader resource id according to the engine this function
1760  * belongs to. Currently only only 2 engines is supported.
1761  */
1762 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1763 {
1764         if (BP_PATH(bp))
1765                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1766         else
1767                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1768 }
1769
1770 /**
1771  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1772  *
1773  * @bp: driver handle
1774  *
1775  * Tries to acquire a leader lock for current engine.
1776  */
1777 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1778 {
1779         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1780 }
1781
1782 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1783
1784 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1785 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1786 {
1787         /* Set the interrupt occurred bit for the sp-task to recognize it
1788          * must ack the interrupt and transition according to the IGU
1789          * state machine.
1790          */
1791         atomic_set(&bp->interrupt_occurred, 1);
1792
1793         /* The sp_task must execute only after this bit
1794          * is set, otherwise we will get out of sync and miss all
1795          * further interrupts. Hence, the barrier.
1796          */
1797         smp_wmb();
1798
1799         /* schedule sp_task to workqueue */
1800         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1801 }
1802
1803 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1804 {
1805         struct bnx2x *bp = fp->bp;
1806         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1807         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1808         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1809         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1810
1811         DP(BNX2X_MSG_SP,
1812            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1813            fp->index, cid, command, bp->state,
1814            rr_cqe->ramrod_cqe.ramrod_type);
1815
1816         /* If cid is within VF range, replace the slowpath object with the
1817          * one corresponding to this VF
1818          */
1819         if (cid >= BNX2X_FIRST_VF_CID  &&
1820             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1821                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1822
1823         switch (command) {
1824         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1825                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1826                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1827                 break;
1828
1829         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1830                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1831                 drv_cmd = BNX2X_Q_CMD_SETUP;
1832                 break;
1833
1834         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1835                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1836                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1837                 break;
1838
1839         case (RAMROD_CMD_ID_ETH_HALT):
1840                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1841                 drv_cmd = BNX2X_Q_CMD_HALT;
1842                 break;
1843
1844         case (RAMROD_CMD_ID_ETH_TERMINATE):
1845                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1846                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1847                 break;
1848
1849         case (RAMROD_CMD_ID_ETH_EMPTY):
1850                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1851                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1852                 break;
1853
1854         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1855                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1856                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1857                 break;
1858
1859         default:
1860                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1861                           command, fp->index);
1862                 return;
1863         }
1864
1865         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1866             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1867                 /* q_obj->complete_cmd() failure means that this was
1868                  * an unexpected completion.
1869                  *
1870                  * In this case we don't want to increase the bp->spq_left
1871                  * because apparently we haven't sent this command the first
1872                  * place.
1873                  */
1874 #ifdef BNX2X_STOP_ON_ERROR
1875                 bnx2x_panic();
1876 #else
1877                 return;
1878 #endif
1879
1880         smp_mb__before_atomic();
1881         atomic_inc(&bp->cq_spq_left);
1882         /* push the change in bp->spq_left and towards the memory */
1883         smp_mb__after_atomic();
1884
1885         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1886
1887         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1888             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1889                 /* if Q update ramrod is completed for last Q in AFEX vif set
1890                  * flow, then ACK MCP at the end
1891                  *
1892                  * mark pending ACK to MCP bit.
1893                  * prevent case that both bits are cleared.
1894                  * At the end of load/unload driver checks that
1895                  * sp_state is cleared, and this order prevents
1896                  * races
1897                  */
1898                 smp_mb__before_atomic();
1899                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1900                 wmb();
1901                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1902                 smp_mb__after_atomic();
1903
1904                 /* schedule the sp task as mcp ack is required */
1905                 bnx2x_schedule_sp_task(bp);
1906         }
1907
1908         return;
1909 }
1910
1911 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1912 {
1913         struct bnx2x *bp = netdev_priv(dev_instance);
1914         u16 status = bnx2x_ack_int(bp);
1915         u16 mask;
1916         int i;
1917         u8 cos;
1918
1919         /* Return here if interrupt is shared and it's not for us */
1920         if (unlikely(status == 0)) {
1921                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1922                 return IRQ_NONE;
1923         }
1924         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1925
1926 #ifdef BNX2X_STOP_ON_ERROR
1927         if (unlikely(bp->panic))
1928                 return IRQ_HANDLED;
1929 #endif
1930
1931         for_each_eth_queue(bp, i) {
1932                 struct bnx2x_fastpath *fp = &bp->fp[i];
1933
1934                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1935                 if (status & mask) {
1936                         /* Handle Rx or Tx according to SB id */
1937                         for_each_cos_in_tx_queue(fp, cos)
1938                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1939                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1940                         napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1941                         status &= ~mask;
1942                 }
1943         }
1944
1945         if (CNIC_SUPPORT(bp)) {
1946                 mask = 0x2;
1947                 if (status & (mask | 0x1)) {
1948                         struct cnic_ops *c_ops = NULL;
1949
1950                         rcu_read_lock();
1951                         c_ops = rcu_dereference(bp->cnic_ops);
1952                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1953                                       CNIC_DRV_STATE_HANDLES_IRQ))
1954                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1955                         rcu_read_unlock();
1956
1957                         status &= ~mask;
1958                 }
1959         }
1960
1961         if (unlikely(status & 0x1)) {
1962
1963                 /* schedule sp task to perform default status block work, ack
1964                  * attentions and enable interrupts.
1965                  */
1966                 bnx2x_schedule_sp_task(bp);
1967
1968                 status &= ~0x1;
1969                 if (!status)
1970                         return IRQ_HANDLED;
1971         }
1972
1973         if (unlikely(status))
1974                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1975                    status);
1976
1977         return IRQ_HANDLED;
1978 }
1979
1980 /* Link */
1981
1982 /*
1983  * General service functions
1984  */
1985
1986 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1987 {
1988         u32 lock_status;
1989         u32 resource_bit = (1 << resource);
1990         int func = BP_FUNC(bp);
1991         u32 hw_lock_control_reg;
1992         int cnt;
1993
1994         /* Validating that the resource is within range */
1995         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1996                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1997                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1998                 return -EINVAL;
1999         }
2000
2001         if (func <= 5) {
2002                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2003         } else {
2004                 hw_lock_control_reg =
2005                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2006         }
2007
2008         /* Validating that the resource is not already taken */
2009         lock_status = REG_RD(bp, hw_lock_control_reg);
2010         if (lock_status & resource_bit) {
2011                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2012                    lock_status, resource_bit);
2013                 return -EEXIST;
2014         }
2015
2016         /* Try for 5 second every 5ms */
2017         for (cnt = 0; cnt < 1000; cnt++) {
2018                 /* Try to acquire the lock */
2019                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2020                 lock_status = REG_RD(bp, hw_lock_control_reg);
2021                 if (lock_status & resource_bit)
2022                         return 0;
2023
2024                 usleep_range(5000, 10000);
2025         }
2026         BNX2X_ERR("Timeout\n");
2027         return -EAGAIN;
2028 }
2029
2030 int bnx2x_release_leader_lock(struct bnx2x *bp)
2031 {
2032         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2033 }
2034
2035 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2036 {
2037         u32 lock_status;
2038         u32 resource_bit = (1 << resource);
2039         int func = BP_FUNC(bp);
2040         u32 hw_lock_control_reg;
2041
2042         /* Validating that the resource is within range */
2043         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2044                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2045                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2046                 return -EINVAL;
2047         }
2048
2049         if (func <= 5) {
2050                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2051         } else {
2052                 hw_lock_control_reg =
2053                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2054         }
2055
2056         /* Validating that the resource is currently taken */
2057         lock_status = REG_RD(bp, hw_lock_control_reg);
2058         if (!(lock_status & resource_bit)) {
2059                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2060                           lock_status, resource_bit);
2061                 return -EFAULT;
2062         }
2063
2064         REG_WR(bp, hw_lock_control_reg, resource_bit);
2065         return 0;
2066 }
2067
2068 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2069 {
2070         /* The GPIO should be swapped if swap register is set and active */
2071         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2072                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2073         int gpio_shift = gpio_num +
2074                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2075         u32 gpio_mask = (1 << gpio_shift);
2076         u32 gpio_reg;
2077         int value;
2078
2079         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2080                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2081                 return -EINVAL;
2082         }
2083
2084         /* read GPIO value */
2085         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2086
2087         /* get the requested pin value */
2088         if ((gpio_reg & gpio_mask) == gpio_mask)
2089                 value = 1;
2090         else
2091                 value = 0;
2092
2093         return value;
2094 }
2095
2096 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2097 {
2098         /* The GPIO should be swapped if swap register is set and active */
2099         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2100                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2101         int gpio_shift = gpio_num +
2102                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2103         u32 gpio_mask = (1 << gpio_shift);
2104         u32 gpio_reg;
2105
2106         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2107                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2108                 return -EINVAL;
2109         }
2110
2111         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2112         /* read GPIO and mask except the float bits */
2113         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2114
2115         switch (mode) {
2116         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2117                 DP(NETIF_MSG_LINK,
2118                    "Set GPIO %d (shift %d) -> output low\n",
2119                    gpio_num, gpio_shift);
2120                 /* clear FLOAT and set CLR */
2121                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2122                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2123                 break;
2124
2125         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2126                 DP(NETIF_MSG_LINK,
2127                    "Set GPIO %d (shift %d) -> output high\n",
2128                    gpio_num, gpio_shift);
2129                 /* clear FLOAT and set SET */
2130                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2131                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2132                 break;
2133
2134         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2135                 DP(NETIF_MSG_LINK,
2136                    "Set GPIO %d (shift %d) -> input\n",
2137                    gpio_num, gpio_shift);
2138                 /* set FLOAT */
2139                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2140                 break;
2141
2142         default:
2143                 break;
2144         }
2145
2146         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2147         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2148
2149         return 0;
2150 }
2151
2152 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2153 {
2154         u32 gpio_reg = 0;
2155         int rc = 0;
2156
2157         /* Any port swapping should be handled by caller. */
2158
2159         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2160         /* read GPIO and mask except the float bits */
2161         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2162         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2163         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2164         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2165
2166         switch (mode) {
2167         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2168                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2169                 /* set CLR */
2170                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2171                 break;
2172
2173         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2174                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2175                 /* set SET */
2176                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2177                 break;
2178
2179         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2180                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2181                 /* set FLOAT */
2182                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2183                 break;
2184
2185         default:
2186                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2187                 rc = -EINVAL;
2188                 break;
2189         }
2190
2191         if (rc == 0)
2192                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2193
2194         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2195
2196         return rc;
2197 }
2198
2199 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2200 {
2201         /* The GPIO should be swapped if swap register is set and active */
2202         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2203                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2204         int gpio_shift = gpio_num +
2205                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2206         u32 gpio_mask = (1 << gpio_shift);
2207         u32 gpio_reg;
2208
2209         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2210                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2211                 return -EINVAL;
2212         }
2213
2214         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2215         /* read GPIO int */
2216         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2217
2218         switch (mode) {
2219         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2220                 DP(NETIF_MSG_LINK,
2221                    "Clear GPIO INT %d (shift %d) -> output low\n",
2222                    gpio_num, gpio_shift);
2223                 /* clear SET and set CLR */
2224                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2225                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2226                 break;
2227
2228         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2229                 DP(NETIF_MSG_LINK,
2230                    "Set GPIO INT %d (shift %d) -> output high\n",
2231                    gpio_num, gpio_shift);
2232                 /* clear CLR and set SET */
2233                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2234                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2235                 break;
2236
2237         default:
2238                 break;
2239         }
2240
2241         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2242         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2243
2244         return 0;
2245 }
2246
2247 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2248 {
2249         u32 spio_reg;
2250
2251         /* Only 2 SPIOs are configurable */
2252         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2253                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2254                 return -EINVAL;
2255         }
2256
2257         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2258         /* read SPIO and mask except the float bits */
2259         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2260
2261         switch (mode) {
2262         case MISC_SPIO_OUTPUT_LOW:
2263                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2264                 /* clear FLOAT and set CLR */
2265                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2266                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2267                 break;
2268
2269         case MISC_SPIO_OUTPUT_HIGH:
2270                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2271                 /* clear FLOAT and set SET */
2272                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2273                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2274                 break;
2275
2276         case MISC_SPIO_INPUT_HI_Z:
2277                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2278                 /* set FLOAT */
2279                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2280                 break;
2281
2282         default:
2283                 break;
2284         }
2285
2286         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2287         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2288
2289         return 0;
2290 }
2291
2292 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2293 {
2294         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2295
2296         bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2297                                            ADVERTISED_Pause);
2298         switch (bp->link_vars.ieee_fc &
2299                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2300         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2301                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2302                                                   ADVERTISED_Pause);
2303                 break;
2304
2305         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2306                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2307                 break;
2308
2309         default:
2310                 break;
2311         }
2312 }
2313
2314 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2315 {
2316         /* Initialize link parameters structure variables
2317          * It is recommended to turn off RX FC for jumbo frames
2318          *  for better performance
2319          */
2320         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2321                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2322         else
2323                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2324 }
2325
2326 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2327 {
2328         u32 pause_enabled = 0;
2329
2330         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2331                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2332                         pause_enabled = 1;
2333
2334                 REG_WR(bp, BAR_USTRORM_INTMEM +
2335                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2336                        pause_enabled);
2337         }
2338
2339         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2340            pause_enabled ? "enabled" : "disabled");
2341 }
2342
2343 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2344 {
2345         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2346         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2347
2348         if (!BP_NOMCP(bp)) {
2349                 bnx2x_set_requested_fc(bp);
2350                 bnx2x_acquire_phy_lock(bp);
2351
2352                 if (load_mode == LOAD_DIAG) {
2353                         struct link_params *lp = &bp->link_params;
2354                         lp->loopback_mode = LOOPBACK_XGXS;
2355                         /* Prefer doing PHY loopback at highest speed */
2356                         if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2357                                 if (lp->speed_cap_mask[cfx_idx] &
2358                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2359                                         lp->req_line_speed[cfx_idx] =
2360                                         SPEED_20000;
2361                                 else if (lp->speed_cap_mask[cfx_idx] &
2362                                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2363                                                 lp->req_line_speed[cfx_idx] =
2364                                                 SPEED_10000;
2365                                 else
2366                                         lp->req_line_speed[cfx_idx] =
2367                                         SPEED_1000;
2368                         }
2369                 }
2370
2371                 if (load_mode == LOAD_LOOPBACK_EXT) {
2372                         struct link_params *lp = &bp->link_params;
2373                         lp->loopback_mode = LOOPBACK_EXT;
2374                 }
2375
2376                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2377
2378                 bnx2x_release_phy_lock(bp);
2379
2380                 bnx2x_init_dropless_fc(bp);
2381
2382                 bnx2x_calc_fc_adv(bp);
2383
2384                 if (bp->link_vars.link_up) {
2385                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2386                         bnx2x_link_report(bp);
2387                 }
2388                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2389                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2390                 return rc;
2391         }
2392         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2393         return -EINVAL;
2394 }
2395
2396 void bnx2x_link_set(struct bnx2x *bp)
2397 {
2398         if (!BP_NOMCP(bp)) {
2399                 bnx2x_acquire_phy_lock(bp);
2400                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2401                 bnx2x_release_phy_lock(bp);
2402
2403                 bnx2x_init_dropless_fc(bp);
2404
2405                 bnx2x_calc_fc_adv(bp);
2406         } else
2407                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2408 }
2409
2410 static void bnx2x__link_reset(struct bnx2x *bp)
2411 {
2412         if (!BP_NOMCP(bp)) {
2413                 bnx2x_acquire_phy_lock(bp);
2414                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2415                 bnx2x_release_phy_lock(bp);
2416         } else
2417                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2418 }
2419
2420 void bnx2x_force_link_reset(struct bnx2x *bp)
2421 {
2422         bnx2x_acquire_phy_lock(bp);
2423         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2424         bnx2x_release_phy_lock(bp);
2425 }
2426
2427 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2428 {
2429         u8 rc = 0;
2430
2431         if (!BP_NOMCP(bp)) {
2432                 bnx2x_acquire_phy_lock(bp);
2433                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2434                                      is_serdes);
2435                 bnx2x_release_phy_lock(bp);
2436         } else
2437                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2438
2439         return rc;
2440 }
2441
2442 /* Calculates the sum of vn_min_rates.
2443    It's needed for further normalizing of the min_rates.
2444    Returns:
2445      sum of vn_min_rates.
2446        or
2447      0 - if all the min_rates are 0.
2448      In the later case fairness algorithm should be deactivated.
2449      If not all min_rates are zero then those that are zeroes will be set to 1.
2450  */
2451 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2452                                       struct cmng_init_input *input)
2453 {
2454         int all_zero = 1;
2455         int vn;
2456
2457         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2458                 u32 vn_cfg = bp->mf_config[vn];
2459                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2460                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2461
2462                 /* Skip hidden vns */
2463                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2464                         vn_min_rate = 0;
2465                 /* If min rate is zero - set it to 1 */
2466                 else if (!vn_min_rate)
2467                         vn_min_rate = DEF_MIN_RATE;
2468                 else
2469                         all_zero = 0;
2470
2471                 input->vnic_min_rate[vn] = vn_min_rate;
2472         }
2473
2474         /* if ETS or all min rates are zeros - disable fairness */
2475         if (BNX2X_IS_ETS_ENABLED(bp)) {
2476                 input->flags.cmng_enables &=
2477                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2478                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2479         } else if (all_zero) {
2480                 input->flags.cmng_enables &=
2481                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482                 DP(NETIF_MSG_IFUP,
2483                    "All MIN values are zeroes fairness will be disabled\n");
2484         } else
2485                 input->flags.cmng_enables |=
2486                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2487 }
2488
2489 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2490                                     struct cmng_init_input *input)
2491 {
2492         u16 vn_max_rate;
2493         u32 vn_cfg = bp->mf_config[vn];
2494
2495         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2496                 vn_max_rate = 0;
2497         else {
2498                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2499
2500                 if (IS_MF_PERCENT_BW(bp)) {
2501                         /* maxCfg in percents of linkspeed */
2502                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2503                 } else /* SD modes */
2504                         /* maxCfg is absolute in 100Mb units */
2505                         vn_max_rate = maxCfg * 100;
2506         }
2507
2508         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2509
2510         input->vnic_max_rate[vn] = vn_max_rate;
2511 }
2512
2513 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2514 {
2515         if (CHIP_REV_IS_SLOW(bp))
2516                 return CMNG_FNS_NONE;
2517         if (IS_MF(bp))
2518                 return CMNG_FNS_MINMAX;
2519
2520         return CMNG_FNS_NONE;
2521 }
2522
2523 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2524 {
2525         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2526
2527         if (BP_NOMCP(bp))
2528                 return; /* what should be the default value in this case */
2529
2530         /* For 2 port configuration the absolute function number formula
2531          * is:
2532          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2533          *
2534          *      and there are 4 functions per port
2535          *
2536          * For 4 port configuration it is
2537          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2538          *
2539          *      and there are 2 functions per port
2540          */
2541         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2542                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2543
2544                 if (func >= E1H_FUNC_MAX)
2545                         break;
2546
2547                 bp->mf_config[vn] =
2548                         MF_CFG_RD(bp, func_mf_config[func].config);
2549         }
2550         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2551                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2552                 bp->flags |= MF_FUNC_DIS;
2553         } else {
2554                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2555                 bp->flags &= ~MF_FUNC_DIS;
2556         }
2557 }
2558
2559 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2560 {
2561         struct cmng_init_input input;
2562         memset(&input, 0, sizeof(struct cmng_init_input));
2563
2564         input.port_rate = bp->link_vars.line_speed;
2565
2566         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2567                 int vn;
2568
2569                 /* read mf conf from shmem */
2570                 if (read_cfg)
2571                         bnx2x_read_mf_cfg(bp);
2572
2573                 /* vn_weight_sum and enable fairness if not 0 */
2574                 bnx2x_calc_vn_min(bp, &input);
2575
2576                 /* calculate and set min-max rate for each vn */
2577                 if (bp->port.pmf)
2578                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2579                                 bnx2x_calc_vn_max(bp, vn, &input);
2580
2581                 /* always enable rate shaping and fairness */
2582                 input.flags.cmng_enables |=
2583                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2584
2585                 bnx2x_init_cmng(&input, &bp->cmng);
2586                 return;
2587         }
2588
2589         /* rate shaping and fairness are disabled */
2590         DP(NETIF_MSG_IFUP,
2591            "rate shaping and fairness are disabled\n");
2592 }
2593
2594 static void storm_memset_cmng(struct bnx2x *bp,
2595                               struct cmng_init *cmng,
2596                               u8 port)
2597 {
2598         int vn;
2599         size_t size = sizeof(struct cmng_struct_per_port);
2600
2601         u32 addr = BAR_XSTRORM_INTMEM +
2602                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2603
2604         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2605
2606         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2607                 int func = func_by_vn(bp, vn);
2608
2609                 addr = BAR_XSTRORM_INTMEM +
2610                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2611                 size = sizeof(struct rate_shaping_vars_per_vn);
2612                 __storm_memset_struct(bp, addr, size,
2613                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2614
2615                 addr = BAR_XSTRORM_INTMEM +
2616                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2617                 size = sizeof(struct fairness_vars_per_vn);
2618                 __storm_memset_struct(bp, addr, size,
2619                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2620         }
2621 }
2622
2623 /* init cmng mode in HW according to local configuration */
2624 void bnx2x_set_local_cmng(struct bnx2x *bp)
2625 {
2626         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2627
2628         if (cmng_fns != CMNG_FNS_NONE) {
2629                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2630                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2631         } else {
2632                 /* rate shaping and fairness are disabled */
2633                 DP(NETIF_MSG_IFUP,
2634                    "single function mode without fairness\n");
2635         }
2636 }
2637
2638 /* This function is called upon link interrupt */
2639 static void bnx2x_link_attn(struct bnx2x *bp)
2640 {
2641         /* Make sure that we are synced with the current statistics */
2642         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2643
2644         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2645
2646         bnx2x_init_dropless_fc(bp);
2647
2648         if (bp->link_vars.link_up) {
2649
2650                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2651                         struct host_port_stats *pstats;
2652
2653                         pstats = bnx2x_sp(bp, port_stats);
2654                         /* reset old mac stats */
2655                         memset(&(pstats->mac_stx[0]), 0,
2656                                sizeof(struct mac_stx));
2657                 }
2658                 if (bp->state == BNX2X_STATE_OPEN)
2659                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2660         }
2661
2662         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2663                 bnx2x_set_local_cmng(bp);
2664
2665         __bnx2x_link_report(bp);
2666
2667         if (IS_MF(bp))
2668                 bnx2x_link_sync_notify(bp);
2669 }
2670
2671 void bnx2x__link_status_update(struct bnx2x *bp)
2672 {
2673         if (bp->state != BNX2X_STATE_OPEN)
2674                 return;
2675
2676         /* read updated dcb configuration */
2677         if (IS_PF(bp)) {
2678                 bnx2x_dcbx_pmf_update(bp);
2679                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2680                 if (bp->link_vars.link_up)
2681                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2682                 else
2683                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2684                         /* indicate link status */
2685                 bnx2x_link_report(bp);
2686
2687         } else { /* VF */
2688                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2689                                           SUPPORTED_10baseT_Full |
2690                                           SUPPORTED_100baseT_Half |
2691                                           SUPPORTED_100baseT_Full |
2692                                           SUPPORTED_1000baseT_Full |
2693                                           SUPPORTED_2500baseX_Full |
2694                                           SUPPORTED_10000baseT_Full |
2695                                           SUPPORTED_TP |
2696                                           SUPPORTED_FIBRE |
2697                                           SUPPORTED_Autoneg |
2698                                           SUPPORTED_Pause |
2699                                           SUPPORTED_Asym_Pause);
2700                 bp->port.advertising[0] = bp->port.supported[0];
2701
2702                 bp->link_params.bp = bp;
2703                 bp->link_params.port = BP_PORT(bp);
2704                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2705                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2706                 bp->link_params.req_line_speed[0] = SPEED_10000;
2707                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2708                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2709                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2710                 bp->link_vars.line_speed = SPEED_10000;
2711                 bp->link_vars.link_status =
2712                         (LINK_STATUS_LINK_UP |
2713                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2714                 bp->link_vars.link_up = 1;
2715                 bp->link_vars.duplex = DUPLEX_FULL;
2716                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2717                 __bnx2x_link_report(bp);
2718
2719                 bnx2x_sample_bulletin(bp);
2720
2721                 /* if bulletin board did not have an update for link status
2722                  * __bnx2x_link_report will report current status
2723                  * but it will NOT duplicate report in case of already reported
2724                  * during sampling bulletin board.
2725                  */
2726                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2727         }
2728 }
2729
2730 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2731                                   u16 vlan_val, u8 allowed_prio)
2732 {
2733         struct bnx2x_func_state_params func_params = {NULL};
2734         struct bnx2x_func_afex_update_params *f_update_params =
2735                 &func_params.params.afex_update;
2736
2737         func_params.f_obj = &bp->func_obj;
2738         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2739
2740         /* no need to wait for RAMROD completion, so don't
2741          * set RAMROD_COMP_WAIT flag
2742          */
2743
2744         f_update_params->vif_id = vifid;
2745         f_update_params->afex_default_vlan = vlan_val;
2746         f_update_params->allowed_priorities = allowed_prio;
2747
2748         /* if ramrod can not be sent, response to MCP immediately */
2749         if (bnx2x_func_state_change(bp, &func_params) < 0)
2750                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2751
2752         return 0;
2753 }
2754
2755 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2756                                           u16 vif_index, u8 func_bit_map)
2757 {
2758         struct bnx2x_func_state_params func_params = {NULL};
2759         struct bnx2x_func_afex_viflists_params *update_params =
2760                 &func_params.params.afex_viflists;
2761         int rc;
2762         u32 drv_msg_code;
2763
2764         /* validate only LIST_SET and LIST_GET are received from switch */
2765         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2766                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2767                           cmd_type);
2768
2769         func_params.f_obj = &bp->func_obj;
2770         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2771
2772         /* set parameters according to cmd_type */
2773         update_params->afex_vif_list_command = cmd_type;
2774         update_params->vif_list_index = vif_index;
2775         update_params->func_bit_map =
2776                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2777         update_params->func_to_clear = 0;
2778         drv_msg_code =
2779                 (cmd_type == VIF_LIST_RULE_GET) ?
2780                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2781                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2782
2783         /* if ramrod can not be sent, respond to MCP immediately for
2784          * SET and GET requests (other are not triggered from MCP)
2785          */
2786         rc = bnx2x_func_state_change(bp, &func_params);
2787         if (rc < 0)
2788                 bnx2x_fw_command(bp, drv_msg_code, 0);
2789
2790         return 0;
2791 }
2792
2793 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2794 {
2795         struct afex_stats afex_stats;
2796         u32 func = BP_ABS_FUNC(bp);
2797         u32 mf_config;
2798         u16 vlan_val;
2799         u32 vlan_prio;
2800         u16 vif_id;
2801         u8 allowed_prio;
2802         u8 vlan_mode;
2803         u32 addr_to_write, vifid, addrs, stats_type, i;
2804
2805         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2806                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2807                 DP(BNX2X_MSG_MCP,
2808                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2809                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2810         }
2811
2812         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2813                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2814                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2815                 DP(BNX2X_MSG_MCP,
2816                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2817                    vifid, addrs);
2818                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2819                                                addrs);
2820         }
2821
2822         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2823                 addr_to_write = SHMEM2_RD(bp,
2824                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2825                 stats_type = SHMEM2_RD(bp,
2826                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2827
2828                 DP(BNX2X_MSG_MCP,
2829                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2830                    addr_to_write);
2831
2832                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2833
2834                 /* write response to scratchpad, for MCP */
2835                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2836                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2837                                *(((u32 *)(&afex_stats))+i));
2838
2839                 /* send ack message to MCP */
2840                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2841         }
2842
2843         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2844                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2845                 bp->mf_config[BP_VN(bp)] = mf_config;
2846                 DP(BNX2X_MSG_MCP,
2847                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2848                    mf_config);
2849
2850                 /* if VIF_SET is "enabled" */
2851                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2852                         /* set rate limit directly to internal RAM */
2853                         struct cmng_init_input cmng_input;
2854                         struct rate_shaping_vars_per_vn m_rs_vn;
2855                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2856                         u32 addr = BAR_XSTRORM_INTMEM +
2857                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2858
2859                         bp->mf_config[BP_VN(bp)] = mf_config;
2860
2861                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2862                         m_rs_vn.vn_counter.rate =
2863                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2864                         m_rs_vn.vn_counter.quota =
2865                                 (m_rs_vn.vn_counter.rate *
2866                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2867
2868                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2869
2870                         /* read relevant values from mf_cfg struct in shmem */
2871                         vif_id =
2872                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2873                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2874                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2875                         vlan_val =
2876                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2878                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2879                         vlan_prio = (mf_config &
2880                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2881                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2882                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2883                         vlan_mode =
2884                                 (MF_CFG_RD(bp,
2885                                            func_mf_config[func].afex_config) &
2886                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2887                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2888                         allowed_prio =
2889                                 (MF_CFG_RD(bp,
2890                                            func_mf_config[func].afex_config) &
2891                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2892                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2893
2894                         /* send ramrod to FW, return in case of failure */
2895                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2896                                                    allowed_prio))
2897                                 return;
2898
2899                         bp->afex_def_vlan_tag = vlan_val;
2900                         bp->afex_vlan_mode = vlan_mode;
2901                 } else {
2902                         /* notify link down because BP->flags is disabled */
2903                         bnx2x_link_report(bp);
2904
2905                         /* send INVALID VIF ramrod to FW */
2906                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2907
2908                         /* Reset the default afex VLAN */
2909                         bp->afex_def_vlan_tag = -1;
2910                 }
2911         }
2912 }
2913
2914 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2915 {
2916         struct bnx2x_func_switch_update_params *switch_update_params;
2917         struct bnx2x_func_state_params func_params;
2918
2919         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2920         switch_update_params = &func_params.params.switch_update;
2921         func_params.f_obj = &bp->func_obj;
2922         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2923
2924         if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2925                 int func = BP_ABS_FUNC(bp);
2926                 u32 val;
2927
2928                 /* Re-learn the S-tag from shmem */
2929                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2930                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2931                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2932                         bp->mf_ov = val;
2933                 } else {
2934                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2935                         goto fail;
2936                 }
2937
2938                 /* Configure new S-tag in LLH */
2939                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2940                        bp->mf_ov);
2941
2942                 /* Send Ramrod to update FW of change */
2943                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2944                           &switch_update_params->changes);
2945                 switch_update_params->vlan = bp->mf_ov;
2946
2947                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2948                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2949                                   bp->mf_ov);
2950                         goto fail;
2951                 } else {
2952                         DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2953                            bp->mf_ov);
2954                 }
2955         } else {
2956                 goto fail;
2957         }
2958
2959         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2960         return;
2961 fail:
2962         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2963 }
2964
2965 static void bnx2x_pmf_update(struct bnx2x *bp)
2966 {
2967         int port = BP_PORT(bp);
2968         u32 val;
2969
2970         bp->port.pmf = 1;
2971         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2972
2973         /*
2974          * We need the mb() to ensure the ordering between the writing to
2975          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2976          */
2977         smp_mb();
2978
2979         /* queue a periodic task */
2980         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2981
2982         bnx2x_dcbx_pmf_update(bp);
2983
2984         /* enable nig attention */
2985         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2986         if (bp->common.int_block == INT_BLOCK_HC) {
2987                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2988                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2989         } else if (!CHIP_IS_E1x(bp)) {
2990                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2991                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2992         }
2993
2994         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2995 }
2996
2997 /* end of Link */
2998
2999 /* slow path */
3000
3001 /*
3002  * General service functions
3003  */
3004
3005 /* send the MCP a request, block until there is a reply */
3006 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3007 {
3008         int mb_idx = BP_FW_MB_IDX(bp);
3009         u32 seq;
3010         u32 rc = 0;
3011         u32 cnt = 1;
3012         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3013
3014         mutex_lock(&bp->fw_mb_mutex);
3015         seq = ++bp->fw_seq;
3016         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3017         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3018
3019         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3020                         (command | seq), param);
3021
3022         do {
3023                 /* let the FW do it's magic ... */
3024                 msleep(delay);
3025
3026                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3027
3028                 /* Give the FW up to 5 second (500*10ms) */
3029         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3030
3031         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3032            cnt*delay, rc, seq);
3033
3034         /* is this a reply to our command? */
3035         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3036                 rc &= FW_MSG_CODE_MASK;
3037         else {
3038                 /* FW BUG! */
3039                 BNX2X_ERR("FW failed to respond!\n");
3040                 bnx2x_fw_dump(bp);
3041                 rc = 0;
3042         }
3043         mutex_unlock(&bp->fw_mb_mutex);
3044
3045         return rc;
3046 }
3047
3048 static void storm_memset_func_cfg(struct bnx2x *bp,
3049                                  struct tstorm_eth_function_common_config *tcfg,
3050                                  u16 abs_fid)
3051 {
3052         size_t size = sizeof(struct tstorm_eth_function_common_config);
3053
3054         u32 addr = BAR_TSTRORM_INTMEM +
3055                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3056
3057         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3058 }
3059
3060 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3061 {
3062         if (CHIP_IS_E1x(bp)) {
3063                 struct tstorm_eth_function_common_config tcfg = {0};
3064
3065                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3066         }
3067
3068         /* Enable the function in the FW */
3069         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3070         storm_memset_func_en(bp, p->func_id, 1);
3071
3072         /* spq */
3073         if (p->spq_active) {
3074                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3075                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3076                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3077         }
3078 }
3079
3080 /**
3081  * bnx2x_get_common_flags - Return common flags
3082  *
3083  * @bp          device handle
3084  * @fp          queue handle
3085  * @zero_stats  TRUE if statistics zeroing is needed
3086  *
3087  * Return the flags that are common for the Tx-only and not normal connections.
3088  */
3089 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3090                                             struct bnx2x_fastpath *fp,
3091                                             bool zero_stats)
3092 {
3093         unsigned long flags = 0;
3094
3095         /* PF driver will always initialize the Queue to an ACTIVE state */
3096         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3097
3098         /* tx only connections collect statistics (on the same index as the
3099          * parent connection). The statistics are zeroed when the parent
3100          * connection is initialized.
3101          */
3102
3103         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3104         if (zero_stats)
3105                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3106
3107         if (bp->flags & TX_SWITCHING)
3108                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3109
3110         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3111         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3112
3113 #ifdef BNX2X_STOP_ON_ERROR
3114         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3115 #endif
3116
3117         return flags;
3118 }
3119
3120 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3121                                        struct bnx2x_fastpath *fp,
3122                                        bool leading)
3123 {
3124         unsigned long flags = 0;
3125
3126         /* calculate other queue flags */
3127         if (IS_MF_SD(bp))
3128                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3129
3130         if (IS_FCOE_FP(fp)) {
3131                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3132                 /* For FCoE - force usage of default priority (for afex) */
3133                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3134         }
3135
3136         if (fp->mode != TPA_MODE_DISABLED) {
3137                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3138                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3139                 if (fp->mode == TPA_MODE_GRO)
3140                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3141         }
3142
3143         if (leading) {
3144                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3145                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3146         }
3147
3148         /* Always set HW VLAN stripping */
3149         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3150
3151         /* configure silent vlan removal */
3152         if (IS_MF_AFEX(bp))
3153                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3154
3155         return flags | bnx2x_get_common_flags(bp, fp, true);
3156 }
3157
3158 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3159         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3160         u8 cos)
3161 {
3162         gen_init->stat_id = bnx2x_stats_id(fp);
3163         gen_init->spcl_id = fp->cl_id;
3164
3165         /* Always use mini-jumbo MTU for FCoE L2 ring */
3166         if (IS_FCOE_FP(fp))
3167                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3168         else
3169                 gen_init->mtu = bp->dev->mtu;
3170
3171         gen_init->cos = cos;
3172
3173         gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3174 }
3175
3176 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3177         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3178         struct bnx2x_rxq_setup_params *rxq_init)
3179 {
3180         u8 max_sge = 0;
3181         u16 sge_sz = 0;
3182         u16 tpa_agg_size = 0;
3183
3184         if (fp->mode != TPA_MODE_DISABLED) {
3185                 pause->sge_th_lo = SGE_TH_LO(bp);
3186                 pause->sge_th_hi = SGE_TH_HI(bp);
3187
3188                 /* validate SGE ring has enough to cross high threshold */
3189                 WARN_ON(bp->dropless_fc &&
3190                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3191                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3192
3193                 tpa_agg_size = TPA_AGG_SIZE;
3194                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3195                         SGE_PAGE_SHIFT;
3196                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3197                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3198                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3199         }
3200
3201         /* pause - not for e1 */
3202         if (!CHIP_IS_E1(bp)) {
3203                 pause->bd_th_lo = BD_TH_LO(bp);
3204                 pause->bd_th_hi = BD_TH_HI(bp);
3205
3206                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3207                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3208                 /*
3209                  * validate that rings have enough entries to cross
3210                  * high thresholds
3211                  */
3212                 WARN_ON(bp->dropless_fc &&
3213                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3214                                 bp->rx_ring_size);
3215                 WARN_ON(bp->dropless_fc &&
3216                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3217                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3218
3219                 pause->pri_map = 1;
3220         }
3221
3222         /* rxq setup */
3223         rxq_init->dscr_map = fp->rx_desc_mapping;
3224         rxq_init->sge_map = fp->rx_sge_mapping;
3225         rxq_init->rcq_map = fp->rx_comp_mapping;
3226         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3227
3228         /* This should be a maximum number of data bytes that may be
3229          * placed on the BD (not including paddings).
3230          */
3231         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3232                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3233
3234         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3235         rxq_init->tpa_agg_sz = tpa_agg_size;
3236         rxq_init->sge_buf_sz = sge_sz;
3237         rxq_init->max_sges_pkt = max_sge;
3238         rxq_init->rss_engine_id = BP_FUNC(bp);
3239         rxq_init->mcast_engine_id = BP_FUNC(bp);
3240
3241         /* Maximum number or simultaneous TPA aggregation for this Queue.
3242          *
3243          * For PF Clients it should be the maximum available number.
3244          * VF driver(s) may want to define it to a smaller value.
3245          */
3246         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3247
3248         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3249         rxq_init->fw_sb_id = fp->fw_sb_id;
3250
3251         if (IS_FCOE_FP(fp))
3252                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3253         else
3254                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3255         /* configure silent vlan removal
3256          * if multi function mode is afex, then mask default vlan
3257          */
3258         if (IS_MF_AFEX(bp)) {
3259                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3260                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3261         }
3262 }
3263
3264 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3265         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3266         u8 cos)
3267 {
3268         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3269         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3270         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3271         txq_init->fw_sb_id = fp->fw_sb_id;
3272
3273         /*
3274          * set the tss leading client id for TX classification ==
3275          * leading RSS client id
3276          */
3277         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3278
3279         if (IS_FCOE_FP(fp)) {
3280                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3281                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3282         }
3283 }
3284
3285 static void bnx2x_pf_init(struct bnx2x *bp)
3286 {
3287         struct bnx2x_func_init_params func_init = {0};
3288         struct event_ring_data eq_data = { {0} };
3289
3290         if (!CHIP_IS_E1x(bp)) {
3291                 /* reset IGU PF statistics: MSIX + ATTN */
3292                 /* PF */
3293                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3294                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3295                            (CHIP_MODE_IS_4_PORT(bp) ?
3296                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3297                 /* ATTN */
3298                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3299                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3300                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3301                            (CHIP_MODE_IS_4_PORT(bp) ?
3302                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3303         }
3304
3305         func_init.spq_active = true;
3306         func_init.pf_id = BP_FUNC(bp);
3307         func_init.func_id = BP_FUNC(bp);
3308         func_init.spq_map = bp->spq_mapping;
3309         func_init.spq_prod = bp->spq_prod_idx;
3310
3311         bnx2x_func_init(bp, &func_init);
3312
3313         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3314
3315         /*
3316          * Congestion management values depend on the link rate
3317          * There is no active link so initial link rate is set to 10 Gbps.
3318          * When the link comes up The congestion management values are
3319          * re-calculated according to the actual link rate.
3320          */
3321         bp->link_vars.line_speed = SPEED_10000;
3322         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3323
3324         /* Only the PMF sets the HW */
3325         if (bp->port.pmf)
3326                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3327
3328         /* init Event Queue - PCI bus guarantees correct endianity*/
3329         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3330         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3331         eq_data.producer = bp->eq_prod;
3332         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3333         eq_data.sb_id = DEF_SB_ID;
3334         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3335 }
3336
3337 static void bnx2x_e1h_disable(struct bnx2x *bp)
3338 {
3339         int port = BP_PORT(bp);
3340
3341         bnx2x_tx_disable(bp);
3342
3343         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3344 }
3345
3346 static void bnx2x_e1h_enable(struct bnx2x *bp)
3347 {
3348         int port = BP_PORT(bp);
3349
3350         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3351                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3352
3353         /* Tx queue should be only re-enabled */
3354         netif_tx_wake_all_queues(bp->dev);
3355
3356         /*
3357          * Should not call netif_carrier_on since it will be called if the link
3358          * is up when checking for link state
3359          */
3360 }
3361
3362 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3363
3364 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3365 {
3366         struct eth_stats_info *ether_stat =
3367                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3368         struct bnx2x_vlan_mac_obj *mac_obj =
3369                 &bp->sp_objs->mac_obj;
3370         int i;
3371
3372         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3373                 ETH_STAT_INFO_VERSION_LEN);
3374
3375         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3376          * mac_local field in ether_stat struct. The base address is offset by 2
3377          * bytes to account for the field being 8 bytes but a mac address is
3378          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3379          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3380          * allocated by the ether_stat struct, so the macs will land in their
3381          * proper positions.
3382          */
3383         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3384                 memset(ether_stat->mac_local + i, 0,
3385                        sizeof(ether_stat->mac_local[0]));
3386         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3387                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3388                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3389                                 ETH_ALEN);
3390         ether_stat->mtu_size = bp->dev->mtu;
3391         if (bp->dev->features & NETIF_F_RXCSUM)
3392                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3393         if (bp->dev->features & NETIF_F_TSO)
3394                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3395         ether_stat->feature_flags |= bp->common.boot_mode;
3396
3397         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3398
3399         ether_stat->txq_size = bp->tx_ring_size;
3400         ether_stat->rxq_size = bp->rx_ring_size;
3401
3402 #ifdef CONFIG_BNX2X_SRIOV
3403         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3404 #endif
3405 }
3406
3407 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3408 {
3409         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3410         struct fcoe_stats_info *fcoe_stat =
3411                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3412
3413         if (!CNIC_LOADED(bp))
3414                 return;
3415
3416         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3417
3418         fcoe_stat->qos_priority =
3419                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3420
3421         /* insert FCoE stats from ramrod response */
3422         if (!NO_FCOE(bp)) {
3423                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3424                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3425                         tstorm_queue_statistics;
3426
3427                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3428                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429                         xstorm_queue_statistics;
3430
3431                 struct fcoe_statistics_params *fw_fcoe_stat =
3432                         &bp->fw_stats_data->fcoe;
3433
3434                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3435                           fcoe_stat->rx_bytes_lo,
3436                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3437
3438                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3439                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3440                           fcoe_stat->rx_bytes_lo,
3441                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3442
3443                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3444                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3445                           fcoe_stat->rx_bytes_lo,
3446                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3447
3448                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3449                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3450                           fcoe_stat->rx_bytes_lo,
3451                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3452
3453                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3454                           fcoe_stat->rx_frames_lo,
3455                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3456
3457                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458                           fcoe_stat->rx_frames_lo,
3459                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3460
3461                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462                           fcoe_stat->rx_frames_lo,
3463                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3464
3465                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466                           fcoe_stat->rx_frames_lo,
3467                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3468
3469                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3470                           fcoe_stat->tx_bytes_lo,
3471                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3472
3473                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3474                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3475                           fcoe_stat->tx_bytes_lo,
3476                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3477
3478                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3479                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3480                           fcoe_stat->tx_bytes_lo,
3481                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3482
3483                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3484                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3485                           fcoe_stat->tx_bytes_lo,
3486                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3487
3488                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3489                           fcoe_stat->tx_frames_lo,
3490                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3491
3492                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493                           fcoe_stat->tx_frames_lo,
3494                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3495
3496                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497                           fcoe_stat->tx_frames_lo,
3498                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3499
3500                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501                           fcoe_stat->tx_frames_lo,
3502                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3503         }
3504
3505         /* ask L5 driver to add data to the struct */
3506         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3507 }
3508
3509 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3510 {
3511         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3512         struct iscsi_stats_info *iscsi_stat =
3513                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3514
3515         if (!CNIC_LOADED(bp))
3516                 return;
3517
3518         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3519                ETH_ALEN);
3520
3521         iscsi_stat->qos_priority =
3522                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3523
3524         /* ask L5 driver to add data to the struct */
3525         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3526 }
3527
3528 /* called due to MCP event (on pmf):
3529  *      reread new bandwidth configuration
3530  *      configure FW
3531  *      notify others function about the change
3532  */
3533 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3534 {
3535         if (bp->link_vars.link_up) {
3536                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3537                 bnx2x_link_sync_notify(bp);
3538         }
3539         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3540 }
3541
3542 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3543 {
3544         bnx2x_config_mf_bw(bp);
3545         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3546 }
3547
3548 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3549 {
3550         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3551         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3552 }
3553
3554 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3555 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3556
3557 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3558 {
3559         enum drv_info_opcode op_code;
3560         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3561         bool release = false;
3562         int wait;
3563
3564         /* if drv_info version supported by MFW doesn't match - send NACK */
3565         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3566                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3567                 return;
3568         }
3569
3570         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3571                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3572
3573         /* Must prevent other flows from accessing drv_info_to_mcp */
3574         mutex_lock(&bp->drv_info_mutex);
3575
3576         memset(&bp->slowpath->drv_info_to_mcp, 0,
3577                sizeof(union drv_info_to_mcp));
3578
3579         switch (op_code) {
3580         case ETH_STATS_OPCODE:
3581                 bnx2x_drv_info_ether_stat(bp);
3582                 break;
3583         case FCOE_STATS_OPCODE:
3584                 bnx2x_drv_info_fcoe_stat(bp);
3585                 break;
3586         case ISCSI_STATS_OPCODE:
3587                 bnx2x_drv_info_iscsi_stat(bp);
3588                 break;
3589         default:
3590                 /* if op code isn't supported - send NACK */
3591                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3592                 goto out;
3593         }
3594
3595         /* if we got drv_info attn from MFW then these fields are defined in
3596          * shmem2 for sure
3597          */
3598         SHMEM2_WR(bp, drv_info_host_addr_lo,
3599                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3600         SHMEM2_WR(bp, drv_info_host_addr_hi,
3601                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3602
3603         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3604
3605         /* Since possible management wants both this and get_driver_version
3606          * need to wait until management notifies us it finished utilizing
3607          * the buffer.
3608          */
3609         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3610                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3611         } else if (!bp->drv_info_mng_owner) {
3612                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3613
3614                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3615                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3616
3617                         /* Management is done; need to clear indication */
3618                         if (indication & bit) {
3619                                 SHMEM2_WR(bp, mfw_drv_indication,
3620                                           indication & ~bit);
3621                                 release = true;
3622                                 break;
3623                         }
3624
3625                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3626                 }
3627         }
3628         if (!release) {
3629                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3630                 bp->drv_info_mng_owner = true;
3631         }
3632
3633 out:
3634         mutex_unlock(&bp->drv_info_mutex);
3635 }
3636
3637 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3638 {
3639         u8 vals[4];
3640         int i = 0;
3641
3642         if (bnx2x_format) {
3643                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3644                            &vals[0], &vals[1], &vals[2], &vals[3]);
3645                 if (i > 0)
3646                         vals[0] -= '0';
3647         } else {
3648                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3649                            &vals[0], &vals[1], &vals[2], &vals[3]);
3650         }
3651
3652         while (i < 4)
3653                 vals[i++] = 0;
3654
3655         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3656 }
3657
3658 void bnx2x_update_mng_version(struct bnx2x *bp)
3659 {
3660         u32 iscsiver = DRV_VER_NOT_LOADED;
3661         u32 fcoever = DRV_VER_NOT_LOADED;
3662         u32 ethver = DRV_VER_NOT_LOADED;
3663         int idx = BP_FW_MB_IDX(bp);
3664         u8 *version;
3665
3666         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3667                 return;
3668
3669         mutex_lock(&bp->drv_info_mutex);
3670         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3671         if (bp->drv_info_mng_owner)
3672                 goto out;
3673
3674         if (bp->state != BNX2X_STATE_OPEN)
3675                 goto out;
3676
3677         /* Parse ethernet driver version */
3678         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3679         if (!CNIC_LOADED(bp))
3680                 goto out;
3681
3682         /* Try getting storage driver version via cnic */
3683         memset(&bp->slowpath->drv_info_to_mcp, 0,
3684                sizeof(union drv_info_to_mcp));
3685         bnx2x_drv_info_iscsi_stat(bp);
3686         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3687         iscsiver = bnx2x_update_mng_version_utility(version, false);
3688
3689         memset(&bp->slowpath->drv_info_to_mcp, 0,
3690                sizeof(union drv_info_to_mcp));
3691         bnx2x_drv_info_fcoe_stat(bp);
3692         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3693         fcoever = bnx2x_update_mng_version_utility(version, false);
3694
3695 out:
3696         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3697         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3698         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3699
3700         mutex_unlock(&bp->drv_info_mutex);
3701
3702         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3703            ethver, iscsiver, fcoever);
3704 }
3705
3706 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3707 {
3708         struct timeval epoc;
3709         u32 drv_ver;
3710         u32 valid_dump;
3711
3712         if (!SHMEM2_HAS(bp, drv_info))
3713                 return;
3714
3715         /* Update Driver load time */
3716         do_gettimeofday(&epoc);
3717         SHMEM2_WR(bp, drv_info.epoc, epoc.tv_sec);
3718
3719         drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3720         SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3721
3722         SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3723
3724         /* Check & notify On-Chip dump. */
3725         valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3726
3727         if (valid_dump & FIRST_DUMP_VALID)
3728                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3729
3730         if (valid_dump & SECOND_DUMP_VALID)
3731                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3732 }
3733
3734 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3735 {
3736         u32 cmd_ok, cmd_fail;
3737
3738         /* sanity */
3739         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3740             event & DRV_STATUS_OEM_EVENT_MASK) {
3741                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3742                 return;
3743         }
3744
3745         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3746                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3747                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3748         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3749                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3750                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3751         }
3752
3753         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3754
3755         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3756                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3757                 /* This is the only place besides the function initialization
3758                  * where the bp->flags can change so it is done without any
3759                  * locks
3760                  */
3761                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3762                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3763                         bp->flags |= MF_FUNC_DIS;
3764
3765                         bnx2x_e1h_disable(bp);
3766                 } else {
3767                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3768                         bp->flags &= ~MF_FUNC_DIS;
3769
3770                         bnx2x_e1h_enable(bp);
3771                 }
3772                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3773                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3774         }
3775
3776         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3777                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3778                 bnx2x_config_mf_bw(bp);
3779                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3780                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3781         }
3782
3783         /* Report results to MCP */
3784         if (event)
3785                 bnx2x_fw_command(bp, cmd_fail, 0);
3786         else
3787                 bnx2x_fw_command(bp, cmd_ok, 0);
3788 }
3789
3790 /* must be called under the spq lock */
3791 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3792 {
3793         struct eth_spe *next_spe = bp->spq_prod_bd;
3794
3795         if (bp->spq_prod_bd == bp->spq_last_bd) {
3796                 bp->spq_prod_bd = bp->spq;
3797                 bp->spq_prod_idx = 0;
3798                 DP(BNX2X_MSG_SP, "end of spq\n");
3799         } else {
3800                 bp->spq_prod_bd++;
3801                 bp->spq_prod_idx++;
3802         }
3803         return next_spe;
3804 }
3805
3806 /* must be called under the spq lock */
3807 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3808 {
3809         int func = BP_FUNC(bp);
3810
3811         /*
3812          * Make sure that BD data is updated before writing the producer:
3813          * BD data is written to the memory, the producer is read from the
3814          * memory, thus we need a full memory barrier to ensure the ordering.
3815          */
3816         mb();
3817
3818         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3819                  bp->spq_prod_idx);
3820         mmiowb();
3821 }
3822
3823 /**
3824  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3825  *
3826  * @cmd:        command to check
3827  * @cmd_type:   command type
3828  */
3829 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3830 {
3831         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3832             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3833             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3834             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3835             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3836             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3837             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3838                 return true;
3839         else
3840                 return false;
3841 }
3842
3843 /**
3844  * bnx2x_sp_post - place a single command on an SP ring
3845  *
3846  * @bp:         driver handle
3847  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3848  * @cid:        SW CID the command is related to
3849  * @data_hi:    command private data address (high 32 bits)
3850  * @data_lo:    command private data address (low 32 bits)
3851  * @cmd_type:   command type (e.g. NONE, ETH)
3852  *
3853  * SP data is handled as if it's always an address pair, thus data fields are
3854  * not swapped to little endian in upper functions. Instead this function swaps
3855  * data as if it's two u32 fields.
3856  */
3857 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3858                   u32 data_hi, u32 data_lo, int cmd_type)
3859 {
3860         struct eth_spe *spe;
3861         u16 type;
3862         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3863
3864 #ifdef BNX2X_STOP_ON_ERROR
3865         if (unlikely(bp->panic)) {
3866                 BNX2X_ERR("Can't post SP when there is panic\n");
3867                 return -EIO;
3868         }
3869 #endif
3870
3871         spin_lock_bh(&bp->spq_lock);
3872
3873         if (common) {
3874                 if (!atomic_read(&bp->eq_spq_left)) {
3875                         BNX2X_ERR("BUG! EQ ring full!\n");
3876                         spin_unlock_bh(&bp->spq_lock);
3877                         bnx2x_panic();
3878                         return -EBUSY;
3879                 }
3880         } else if (!atomic_read(&bp->cq_spq_left)) {
3881                         BNX2X_ERR("BUG! SPQ ring full!\n");
3882                         spin_unlock_bh(&bp->spq_lock);
3883                         bnx2x_panic();
3884                         return -EBUSY;
3885         }
3886
3887         spe = bnx2x_sp_get_next(bp);
3888
3889         /* CID needs port number to be encoded int it */
3890         spe->hdr.conn_and_cmd_data =
3891                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3892                                     HW_CID(bp, cid));
3893
3894         /* In some cases, type may already contain the func-id
3895          * mainly in SRIOV related use cases, so we add it here only
3896          * if it's not already set.
3897          */
3898         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3899                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3900                         SPE_HDR_CONN_TYPE;
3901                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3902                          SPE_HDR_FUNCTION_ID);
3903         } else {
3904                 type = cmd_type;
3905         }
3906
3907         spe->hdr.type = cpu_to_le16(type);
3908
3909         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3910         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3911
3912         /*
3913          * It's ok if the actual decrement is issued towards the memory
3914          * somewhere between the spin_lock and spin_unlock. Thus no
3915          * more explicit memory barrier is needed.
3916          */
3917         if (common)
3918                 atomic_dec(&bp->eq_spq_left);
3919         else
3920                 atomic_dec(&bp->cq_spq_left);
3921
3922         DP(BNX2X_MSG_SP,
3923            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3924            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3925            (u32)(U64_LO(bp->spq_mapping) +
3926            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3927            HW_CID(bp, cid), data_hi, data_lo, type,
3928            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3929
3930         bnx2x_sp_prod_update(bp);
3931         spin_unlock_bh(&bp->spq_lock);
3932         return 0;
3933 }
3934
3935 /* acquire split MCP access lock register */
3936 static int bnx2x_acquire_alr(struct bnx2x *bp)
3937 {
3938         u32 j, val;
3939         int rc = 0;
3940
3941         might_sleep();
3942         for (j = 0; j < 1000; j++) {
3943                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3944                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3945                 if (val & MCPR_ACCESS_LOCK_LOCK)
3946                         break;
3947
3948                 usleep_range(5000, 10000);
3949         }
3950         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3951                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3952                 rc = -EBUSY;
3953         }
3954
3955         return rc;
3956 }
3957
3958 /* release split MCP access lock register */
3959 static void bnx2x_release_alr(struct bnx2x *bp)
3960 {
3961         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3962 }
3963
3964 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3965 #define BNX2X_DEF_SB_IDX        0x0002
3966
3967 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3968 {
3969         struct host_sp_status_block *def_sb = bp->def_status_blk;
3970         u16 rc = 0;
3971
3972         barrier(); /* status block is written to by the chip */
3973         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3974                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3975                 rc |= BNX2X_DEF_SB_ATT_IDX;
3976         }
3977
3978         if (bp->def_idx != def_sb->sp_sb.running_index) {
3979                 bp->def_idx = def_sb->sp_sb.running_index;
3980                 rc |= BNX2X_DEF_SB_IDX;
3981         }
3982
3983         /* Do not reorder: indices reading should complete before handling */
3984         barrier();
3985         return rc;
3986 }
3987
3988 /*
3989  * slow path service functions
3990  */
3991
3992 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3993 {
3994         int port = BP_PORT(bp);
3995         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3996                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3997         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3998                                        NIG_REG_MASK_INTERRUPT_PORT0;
3999         u32 aeu_mask;
4000         u32 nig_mask = 0;
4001         u32 reg_addr;
4002
4003         if (bp->attn_state & asserted)
4004                 BNX2X_ERR("IGU ERROR\n");
4005
4006         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4007         aeu_mask = REG_RD(bp, aeu_addr);
4008
4009         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4010            aeu_mask, asserted);
4011         aeu_mask &= ~(asserted & 0x3ff);
4012         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4013
4014         REG_WR(bp, aeu_addr, aeu_mask);
4015         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4016
4017         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4018         bp->attn_state |= asserted;
4019         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4020
4021         if (asserted & ATTN_HARD_WIRED_MASK) {
4022                 if (asserted & ATTN_NIG_FOR_FUNC) {
4023
4024                         bnx2x_acquire_phy_lock(bp);
4025
4026                         /* save nig interrupt mask */
4027                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4028
4029                         /* If nig_mask is not set, no need to call the update
4030                          * function.
4031                          */
4032                         if (nig_mask) {
4033                                 REG_WR(bp, nig_int_mask_addr, 0);
4034
4035                                 bnx2x_link_attn(bp);
4036                         }
4037
4038                         /* handle unicore attn? */
4039                 }
4040                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4041                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4042
4043                 if (asserted & GPIO_2_FUNC)
4044                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4045
4046                 if (asserted & GPIO_3_FUNC)
4047                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4048
4049                 if (asserted & GPIO_4_FUNC)
4050                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4051
4052                 if (port == 0) {
4053                         if (asserted & ATTN_GENERAL_ATTN_1) {
4054                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4055                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4056                         }
4057                         if (asserted & ATTN_GENERAL_ATTN_2) {
4058                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4059                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4060                         }
4061                         if (asserted & ATTN_GENERAL_ATTN_3) {
4062                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4063                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4064                         }
4065                 } else {
4066                         if (asserted & ATTN_GENERAL_ATTN_4) {
4067                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4068                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4069                         }
4070                         if (asserted & ATTN_GENERAL_ATTN_5) {
4071                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4072                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4073                         }
4074                         if (asserted & ATTN_GENERAL_ATTN_6) {
4075                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4076                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4077                         }
4078                 }
4079
4080         } /* if hardwired */
4081
4082         if (bp->common.int_block == INT_BLOCK_HC)
4083                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4084                             COMMAND_REG_ATTN_BITS_SET);
4085         else
4086                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4087
4088         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4089            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4090         REG_WR(bp, reg_addr, asserted);
4091
4092         /* now set back the mask */
4093         if (asserted & ATTN_NIG_FOR_FUNC) {
4094                 /* Verify that IGU ack through BAR was written before restoring
4095                  * NIG mask. This loop should exit after 2-3 iterations max.
4096                  */
4097                 if (bp->common.int_block != INT_BLOCK_HC) {
4098                         u32 cnt = 0, igu_acked;
4099                         do {
4100                                 igu_acked = REG_RD(bp,
4101                                                    IGU_REG_ATTENTION_ACK_BITS);
4102                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4103                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4104                         if (!igu_acked)
4105                                 DP(NETIF_MSG_HW,
4106                                    "Failed to verify IGU ack on time\n");
4107                         barrier();
4108                 }
4109                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4110                 bnx2x_release_phy_lock(bp);
4111         }
4112 }
4113
4114 static void bnx2x_fan_failure(struct bnx2x *bp)
4115 {
4116         int port = BP_PORT(bp);
4117         u32 ext_phy_config;
4118         /* mark the failure */
4119         ext_phy_config =
4120                 SHMEM_RD(bp,
4121                          dev_info.port_hw_config[port].external_phy_config);
4122
4123         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4124         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4125         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4126                  ext_phy_config);
4127
4128         /* log the failure */
4129         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4130                             "Please contact OEM Support for assistance\n");
4131
4132         /* Schedule device reset (unload)
4133          * This is due to some boards consuming sufficient power when driver is
4134          * up to overheat if fan fails.
4135          */
4136         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4137 }
4138
4139 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4140 {
4141         int port = BP_PORT(bp);
4142         int reg_offset;
4143         u32 val;
4144
4145         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4146                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4147
4148         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4149
4150                 val = REG_RD(bp, reg_offset);
4151                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4152                 REG_WR(bp, reg_offset, val);
4153
4154                 BNX2X_ERR("SPIO5 hw attention\n");
4155
4156                 /* Fan failure attention */
4157                 bnx2x_hw_reset_phy(&bp->link_params);
4158                 bnx2x_fan_failure(bp);
4159         }
4160
4161         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4162                 bnx2x_acquire_phy_lock(bp);
4163                 bnx2x_handle_module_detect_int(&bp->link_params);
4164                 bnx2x_release_phy_lock(bp);
4165         }
4166
4167         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4168
4169                 val = REG_RD(bp, reg_offset);
4170                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4171                 REG_WR(bp, reg_offset, val);
4172
4173                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4174                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4175                 bnx2x_panic();
4176         }
4177 }
4178
4179 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4180 {
4181         u32 val;
4182
4183         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4184
4185                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4186                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4187                 /* DORQ discard attention */
4188                 if (val & 0x2)
4189                         BNX2X_ERR("FATAL error from DORQ\n");
4190         }
4191
4192         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4193
4194                 int port = BP_PORT(bp);
4195                 int reg_offset;
4196
4197                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4198                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4199
4200                 val = REG_RD(bp, reg_offset);
4201                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4202                 REG_WR(bp, reg_offset, val);
4203
4204                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4205                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4206                 bnx2x_panic();
4207         }
4208 }
4209
4210 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4211 {
4212         u32 val;
4213
4214         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4215
4216                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4217                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4218                 /* CFC error attention */
4219                 if (val & 0x2)
4220                         BNX2X_ERR("FATAL error from CFC\n");
4221         }
4222
4223         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4224                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4225                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4226                 /* RQ_USDMDP_FIFO_OVERFLOW */
4227                 if (val & 0x18000)
4228                         BNX2X_ERR("FATAL error from PXP\n");
4229
4230                 if (!CHIP_IS_E1x(bp)) {
4231                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4232                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4233                 }
4234         }
4235
4236         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4237
4238                 int port = BP_PORT(bp);
4239                 int reg_offset;
4240
4241                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4242                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4243
4244                 val = REG_RD(bp, reg_offset);
4245                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4246                 REG_WR(bp, reg_offset, val);
4247
4248                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4249                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4250                 bnx2x_panic();
4251         }
4252 }
4253
4254 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4255 {
4256         u32 val;
4257
4258         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4259
4260                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4261                         int func = BP_FUNC(bp);
4262
4263                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4264                         bnx2x_read_mf_cfg(bp);
4265                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4266                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4267                         val = SHMEM_RD(bp,
4268                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4269
4270                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4271                                    DRV_STATUS_OEM_EVENT_MASK))
4272                                 bnx2x_oem_event(bp,
4273                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4274                                                 DRV_STATUS_OEM_EVENT_MASK)));
4275
4276                         if (val & DRV_STATUS_SET_MF_BW)
4277                                 bnx2x_set_mf_bw(bp);
4278
4279                         if (val & DRV_STATUS_DRV_INFO_REQ)
4280                                 bnx2x_handle_drv_info_req(bp);
4281
4282                         if (val & DRV_STATUS_VF_DISABLED)
4283                                 bnx2x_schedule_iov_task(bp,
4284                                                         BNX2X_IOV_HANDLE_FLR);
4285
4286                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4287                                 bnx2x_pmf_update(bp);
4288
4289                         if (bp->port.pmf &&
4290                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4291                                 bp->dcbx_enabled > 0)
4292                                 /* start dcbx state machine */
4293                                 bnx2x_dcbx_set_params(bp,
4294                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4295                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4296                                 bnx2x_handle_afex_cmd(bp,
4297                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4298                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4299                                 bnx2x_handle_eee_event(bp);
4300
4301                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4302                                 bnx2x_handle_update_svid_cmd(bp);
4303
4304                         if (bp->link_vars.periodic_flags &
4305                             PERIODIC_FLAGS_LINK_EVENT) {
4306                                 /*  sync with link */
4307                                 bnx2x_acquire_phy_lock(bp);
4308                                 bp->link_vars.periodic_flags &=
4309                                         ~PERIODIC_FLAGS_LINK_EVENT;
4310                                 bnx2x_release_phy_lock(bp);
4311                                 if (IS_MF(bp))
4312                                         bnx2x_link_sync_notify(bp);
4313                                 bnx2x_link_report(bp);
4314                         }
4315                         /* Always call it here: bnx2x_link_report() will
4316                          * prevent the link indication duplication.
4317                          */
4318                         bnx2x__link_status_update(bp);
4319                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4320
4321                         BNX2X_ERR("MC assert!\n");
4322                         bnx2x_mc_assert(bp);
4323                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4324                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4325                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4326                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4327                         bnx2x_panic();
4328
4329                 } else if (attn & BNX2X_MCP_ASSERT) {
4330
4331                         BNX2X_ERR("MCP assert!\n");
4332                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4333                         bnx2x_fw_dump(bp);
4334
4335                 } else
4336                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4337         }
4338
4339         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4340                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4341                 if (attn & BNX2X_GRC_TIMEOUT) {
4342                         val = CHIP_IS_E1(bp) ? 0 :
4343                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4344                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4345                 }
4346                 if (attn & BNX2X_GRC_RSV) {
4347                         val = CHIP_IS_E1(bp) ? 0 :
4348                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4349                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4350                 }
4351                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4352         }
4353 }
4354
4355 /*
4356  * Bits map:
4357  * 0-7   - Engine0 load counter.
4358  * 8-15  - Engine1 load counter.
4359  * 16    - Engine0 RESET_IN_PROGRESS bit.
4360  * 17    - Engine1 RESET_IN_PROGRESS bit.
4361  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4362  *         on the engine
4363  * 19    - Engine1 ONE_IS_LOADED.
4364  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4365  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4366  *         just the one belonging to its engine).
4367  *
4368  */
4369 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4370
4371 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4372 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4373 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4374 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4375 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4376 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4377 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4378
4379 /*
4380  * Set the GLOBAL_RESET bit.
4381  *
4382  * Should be run under rtnl lock
4383  */
4384 void bnx2x_set_reset_global(struct bnx2x *bp)
4385 {
4386         u32 val;
4387         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4388         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4389         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4390         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4391 }
4392
4393 /*
4394  * Clear the GLOBAL_RESET bit.
4395  *
4396  * Should be run under rtnl lock
4397  */
4398 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4399 {
4400         u32 val;
4401         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4402         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4403         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4404         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405 }
4406
4407 /*
4408  * Checks the GLOBAL_RESET bit.
4409  *
4410  * should be run under rtnl lock
4411  */
4412 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4413 {
4414         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4415
4416         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4417         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4418 }
4419
4420 /*
4421  * Clear RESET_IN_PROGRESS bit for the current engine.
4422  *
4423  * Should be run under rtnl lock
4424  */
4425 static void bnx2x_set_reset_done(struct bnx2x *bp)
4426 {
4427         u32 val;
4428         u32 bit = BP_PATH(bp) ?
4429                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4430         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4431         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4432
4433         /* Clear the bit */
4434         val &= ~bit;
4435         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4436
4437         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4438 }
4439
4440 /*
4441  * Set RESET_IN_PROGRESS for the current engine.
4442  *
4443  * should be run under rtnl lock
4444  */
4445 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4446 {
4447         u32 val;
4448         u32 bit = BP_PATH(bp) ?
4449                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4450         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4451         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4452
4453         /* Set the bit */
4454         val |= bit;
4455         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4456         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4457 }
4458
4459 /*
4460  * Checks the RESET_IN_PROGRESS bit for the given engine.
4461  * should be run under rtnl lock
4462  */
4463 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4464 {
4465         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4466         u32 bit = engine ?
4467                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4468
4469         /* return false if bit is set */
4470         return (val & bit) ? false : true;
4471 }
4472
4473 /*
4474  * set pf load for the current pf.
4475  *
4476  * should be run under rtnl lock
4477  */
4478 void bnx2x_set_pf_load(struct bnx2x *bp)
4479 {
4480         u32 val1, val;
4481         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4482                              BNX2X_PATH0_LOAD_CNT_MASK;
4483         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4484                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4485
4486         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4487         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4488
4489         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4490
4491         /* get the current counter value */
4492         val1 = (val & mask) >> shift;
4493
4494         /* set bit of that PF */
4495         val1 |= (1 << bp->pf_num);
4496
4497         /* clear the old value */
4498         val &= ~mask;
4499
4500         /* set the new one */
4501         val |= ((val1 << shift) & mask);
4502
4503         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4504         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4505 }
4506
4507 /**
4508  * bnx2x_clear_pf_load - clear pf load mark
4509  *
4510  * @bp:         driver handle
4511  *
4512  * Should be run under rtnl lock.
4513  * Decrements the load counter for the current engine. Returns
4514  * whether other functions are still loaded
4515  */
4516 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4517 {
4518         u32 val1, val;
4519         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4520                              BNX2X_PATH0_LOAD_CNT_MASK;
4521         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4522                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4523
4524         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4525         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4526         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4527
4528         /* get the current counter value */
4529         val1 = (val & mask) >> shift;
4530
4531         /* clear bit of that PF */
4532         val1 &= ~(1 << bp->pf_num);
4533
4534         /* clear the old value */
4535         val &= ~mask;
4536
4537         /* set the new one */
4538         val |= ((val1 << shift) & mask);
4539
4540         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4541         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4542         return val1 != 0;
4543 }
4544
4545 /*
4546  * Read the load status for the current engine.
4547  *
4548  * should be run under rtnl lock
4549  */
4550 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4551 {
4552         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4553                              BNX2X_PATH0_LOAD_CNT_MASK);
4554         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4555                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4556         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4557
4558         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4559
4560         val = (val & mask) >> shift;
4561
4562         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4563            engine, val);
4564
4565         return val != 0;
4566 }
4567
4568 static void _print_parity(struct bnx2x *bp, u32 reg)
4569 {
4570         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4571 }
4572
4573 static void _print_next_block(int idx, const char *blk)
4574 {
4575         pr_cont("%s%s", idx ? ", " : "", blk);
4576 }
4577
4578 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4579                                             int *par_num, bool print)
4580 {
4581         u32 cur_bit;
4582         bool res;
4583         int i;
4584
4585         res = false;
4586
4587         for (i = 0; sig; i++) {
4588                 cur_bit = (0x1UL << i);
4589                 if (sig & cur_bit) {
4590                         res |= true; /* Each bit is real error! */
4591
4592                         if (print) {
4593                                 switch (cur_bit) {
4594                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4595                                         _print_next_block((*par_num)++, "BRB");
4596                                         _print_parity(bp,
4597                                                       BRB1_REG_BRB1_PRTY_STS);
4598                                         break;
4599                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4600                                         _print_next_block((*par_num)++,
4601                                                           "PARSER");
4602                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4603                                         break;
4604                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4605                                         _print_next_block((*par_num)++, "TSDM");
4606                                         _print_parity(bp,
4607                                                       TSDM_REG_TSDM_PRTY_STS);
4608                                         break;
4609                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4610                                         _print_next_block((*par_num)++,
4611                                                           "SEARCHER");
4612                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4613                                         break;
4614                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4615                                         _print_next_block((*par_num)++, "TCM");
4616                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4617                                         break;
4618                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4619                                         _print_next_block((*par_num)++,
4620                                                           "TSEMI");
4621                                         _print_parity(bp,
4622                                                       TSEM_REG_TSEM_PRTY_STS_0);
4623                                         _print_parity(bp,
4624                                                       TSEM_REG_TSEM_PRTY_STS_1);
4625                                         break;
4626                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4627                                         _print_next_block((*par_num)++, "XPB");
4628                                         _print_parity(bp, GRCBASE_XPB +
4629                                                           PB_REG_PB_PRTY_STS);
4630                                         break;
4631                                 }
4632                         }
4633
4634                         /* Clear the bit */
4635                         sig &= ~cur_bit;
4636                 }
4637         }
4638
4639         return res;
4640 }
4641
4642 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4643                                             int *par_num, bool *global,
4644                                             bool print)
4645 {
4646         u32 cur_bit;
4647         bool res;
4648         int i;
4649
4650         res = false;
4651
4652         for (i = 0; sig; i++) {
4653                 cur_bit = (0x1UL << i);
4654                 if (sig & cur_bit) {
4655                         res |= true; /* Each bit is real error! */
4656                         switch (cur_bit) {
4657                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4658                                 if (print) {
4659                                         _print_next_block((*par_num)++, "PBF");
4660                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4661                                 }
4662                                 break;
4663                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4664                                 if (print) {
4665                                         _print_next_block((*par_num)++, "QM");
4666                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4667                                 }
4668                                 break;
4669                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4670                                 if (print) {
4671                                         _print_next_block((*par_num)++, "TM");
4672                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4673                                 }
4674                                 break;
4675                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4676                                 if (print) {
4677                                         _print_next_block((*par_num)++, "XSDM");
4678                                         _print_parity(bp,
4679                                                       XSDM_REG_XSDM_PRTY_STS);
4680                                 }
4681                                 break;
4682                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4683                                 if (print) {
4684                                         _print_next_block((*par_num)++, "XCM");
4685                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4686                                 }
4687                                 break;
4688                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4689                                 if (print) {
4690                                         _print_next_block((*par_num)++,
4691                                                           "XSEMI");
4692                                         _print_parity(bp,
4693                                                       XSEM_REG_XSEM_PRTY_STS_0);
4694                                         _print_parity(bp,
4695                                                       XSEM_REG_XSEM_PRTY_STS_1);
4696                                 }
4697                                 break;
4698                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4699                                 if (print) {
4700                                         _print_next_block((*par_num)++,
4701                                                           "DOORBELLQ");
4702                                         _print_parity(bp,
4703                                                       DORQ_REG_DORQ_PRTY_STS);
4704                                 }
4705                                 break;
4706                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4707                                 if (print) {
4708                                         _print_next_block((*par_num)++, "NIG");
4709                                         if (CHIP_IS_E1x(bp)) {
4710                                                 _print_parity(bp,
4711                                                         NIG_REG_NIG_PRTY_STS);
4712                                         } else {
4713                                                 _print_parity(bp,
4714                                                         NIG_REG_NIG_PRTY_STS_0);
4715                                                 _print_parity(bp,
4716                                                         NIG_REG_NIG_PRTY_STS_1);
4717                                         }
4718                                 }
4719                                 break;
4720                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4721                                 if (print)
4722                                         _print_next_block((*par_num)++,
4723                                                           "VAUX PCI CORE");
4724                                 *global = true;
4725                                 break;
4726                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4727                                 if (print) {
4728                                         _print_next_block((*par_num)++,
4729                                                           "DEBUG");
4730                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4731                                 }
4732                                 break;
4733                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4734                                 if (print) {
4735                                         _print_next_block((*par_num)++, "USDM");
4736                                         _print_parity(bp,
4737                                                       USDM_REG_USDM_PRTY_STS);
4738                                 }
4739                                 break;
4740                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4741                                 if (print) {
4742                                         _print_next_block((*par_num)++, "UCM");
4743                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4744                                 }
4745                                 break;
4746                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4747                                 if (print) {
4748                                         _print_next_block((*par_num)++,
4749                                                           "USEMI");
4750                                         _print_parity(bp,
4751                                                       USEM_REG_USEM_PRTY_STS_0);
4752                                         _print_parity(bp,
4753                                                       USEM_REG_USEM_PRTY_STS_1);
4754                                 }
4755                                 break;
4756                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4757                                 if (print) {
4758                                         _print_next_block((*par_num)++, "UPB");
4759                                         _print_parity(bp, GRCBASE_UPB +
4760                                                           PB_REG_PB_PRTY_STS);
4761                                 }
4762                                 break;
4763                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4764                                 if (print) {
4765                                         _print_next_block((*par_num)++, "CSDM");
4766                                         _print_parity(bp,
4767                                                       CSDM_REG_CSDM_PRTY_STS);
4768                                 }
4769                                 break;
4770                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4771                                 if (print) {
4772                                         _print_next_block((*par_num)++, "CCM");
4773                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4774                                 }
4775                                 break;
4776                         }
4777
4778                         /* Clear the bit */
4779                         sig &= ~cur_bit;
4780                 }
4781         }
4782
4783         return res;
4784 }
4785
4786 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4787                                             int *par_num, bool print)
4788 {
4789         u32 cur_bit;
4790         bool res;
4791         int i;
4792
4793         res = false;
4794
4795         for (i = 0; sig; i++) {
4796                 cur_bit = (0x1UL << i);
4797                 if (sig & cur_bit) {
4798                         res = true; /* Each bit is real error! */
4799                         if (print) {
4800                                 switch (cur_bit) {
4801                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4802                                         _print_next_block((*par_num)++,
4803                                                           "CSEMI");
4804                                         _print_parity(bp,
4805                                                       CSEM_REG_CSEM_PRTY_STS_0);
4806                                         _print_parity(bp,
4807                                                       CSEM_REG_CSEM_PRTY_STS_1);
4808                                         break;
4809                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4810                                         _print_next_block((*par_num)++, "PXP");
4811                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4812                                         _print_parity(bp,
4813                                                       PXP2_REG_PXP2_PRTY_STS_0);
4814                                         _print_parity(bp,
4815                                                       PXP2_REG_PXP2_PRTY_STS_1);
4816                                         break;
4817                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4818                                         _print_next_block((*par_num)++,
4819                                                           "PXPPCICLOCKCLIENT");
4820                                         break;
4821                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4822                                         _print_next_block((*par_num)++, "CFC");
4823                                         _print_parity(bp,
4824                                                       CFC_REG_CFC_PRTY_STS);
4825                                         break;
4826                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4827                                         _print_next_block((*par_num)++, "CDU");
4828                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4829                                         break;
4830                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4831                                         _print_next_block((*par_num)++, "DMAE");
4832                                         _print_parity(bp,
4833                                                       DMAE_REG_DMAE_PRTY_STS);
4834                                         break;
4835                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4836                                         _print_next_block((*par_num)++, "IGU");
4837                                         if (CHIP_IS_E1x(bp))
4838                                                 _print_parity(bp,
4839                                                         HC_REG_HC_PRTY_STS);
4840                                         else
4841                                                 _print_parity(bp,
4842                                                         IGU_REG_IGU_PRTY_STS);
4843                                         break;
4844                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4845                                         _print_next_block((*par_num)++, "MISC");
4846                                         _print_parity(bp,
4847                                                       MISC_REG_MISC_PRTY_STS);
4848                                         break;
4849                                 }
4850                         }
4851
4852                         /* Clear the bit */
4853                         sig &= ~cur_bit;
4854                 }
4855         }
4856
4857         return res;
4858 }
4859
4860 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4861                                             int *par_num, bool *global,
4862                                             bool print)
4863 {
4864         bool res = false;
4865         u32 cur_bit;
4866         int i;
4867
4868         for (i = 0; sig; i++) {
4869                 cur_bit = (0x1UL << i);
4870                 if (sig & cur_bit) {
4871                         switch (cur_bit) {
4872                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4873                                 if (print)
4874                                         _print_next_block((*par_num)++,
4875                                                           "MCP ROM");
4876                                 *global = true;
4877                                 res = true;
4878                                 break;
4879                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4880                                 if (print)
4881                                         _print_next_block((*par_num)++,
4882                                                           "MCP UMP RX");
4883                                 *global = true;
4884                                 res = true;
4885                                 break;
4886                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4887                                 if (print)
4888                                         _print_next_block((*par_num)++,
4889                                                           "MCP UMP TX");
4890                                 *global = true;
4891                                 res = true;
4892                                 break;
4893                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4894                                 (*par_num)++;
4895                                 /* clear latched SCPAD PATIRY from MCP */
4896                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4897                                        1UL << 10);
4898                                 break;
4899                         }
4900
4901                         /* Clear the bit */
4902                         sig &= ~cur_bit;
4903                 }
4904         }
4905
4906         return res;
4907 }
4908
4909 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4910                                             int *par_num, bool print)
4911 {
4912         u32 cur_bit;
4913         bool res;
4914         int i;
4915
4916         res = false;
4917
4918         for (i = 0; sig; i++) {
4919                 cur_bit = (0x1UL << i);
4920                 if (sig & cur_bit) {
4921                         res = true; /* Each bit is real error! */
4922                         if (print) {
4923                                 switch (cur_bit) {
4924                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4925                                         _print_next_block((*par_num)++,
4926                                                           "PGLUE_B");
4927                                         _print_parity(bp,
4928                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4929                                         break;
4930                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4931                                         _print_next_block((*par_num)++, "ATC");
4932                                         _print_parity(bp,
4933                                                       ATC_REG_ATC_PRTY_STS);
4934                                         break;
4935                                 }
4936                         }
4937                         /* Clear the bit */
4938                         sig &= ~cur_bit;
4939                 }
4940         }
4941
4942         return res;
4943 }
4944
4945 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4946                               u32 *sig)
4947 {
4948         bool res = false;
4949
4950         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4951             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4952             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4953             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4954             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4955                 int par_num = 0;
4956
4957                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4958                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4959                           sig[0] & HW_PRTY_ASSERT_SET_0,
4960                           sig[1] & HW_PRTY_ASSERT_SET_1,
4961                           sig[2] & HW_PRTY_ASSERT_SET_2,
4962                           sig[3] & HW_PRTY_ASSERT_SET_3,
4963                           sig[4] & HW_PRTY_ASSERT_SET_4);
4964                 if (print) {
4965                         if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4966                              (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4967                              (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4968                              (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4969                              (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4970                                 netdev_err(bp->dev,
4971                                            "Parity errors detected in blocks: ");
4972                         } else {
4973                                 print = false;
4974                         }
4975                 }
4976                 res |= bnx2x_check_blocks_with_parity0(bp,
4977                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4978                 res |= bnx2x_check_blocks_with_parity1(bp,
4979                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4980                 res |= bnx2x_check_blocks_with_parity2(bp,
4981                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4982                 res |= bnx2x_check_blocks_with_parity3(bp,
4983                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4984                 res |= bnx2x_check_blocks_with_parity4(bp,
4985                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4986
4987                 if (print)
4988                         pr_cont("\n");
4989         }
4990
4991         return res;
4992 }
4993
4994 /**
4995  * bnx2x_chk_parity_attn - checks for parity attentions.
4996  *
4997  * @bp:         driver handle
4998  * @global:     true if there was a global attention
4999  * @print:      show parity attention in syslog
5000  */
5001 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5002 {
5003         struct attn_route attn = { {0} };
5004         int port = BP_PORT(bp);
5005
5006         attn.sig[0] = REG_RD(bp,
5007                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5008                              port*4);
5009         attn.sig[1] = REG_RD(bp,
5010                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5011                              port*4);
5012         attn.sig[2] = REG_RD(bp,
5013                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5014                              port*4);
5015         attn.sig[3] = REG_RD(bp,
5016                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5017                              port*4);
5018         /* Since MCP attentions can't be disabled inside the block, we need to
5019          * read AEU registers to see whether they're currently disabled
5020          */
5021         attn.sig[3] &= ((REG_RD(bp,
5022                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5023                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5024                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5025                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5026
5027         if (!CHIP_IS_E1x(bp))
5028                 attn.sig[4] = REG_RD(bp,
5029                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5030                                      port*4);
5031
5032         return bnx2x_parity_attn(bp, global, print, attn.sig);
5033 }
5034
5035 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5036 {
5037         u32 val;
5038         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5039
5040                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5041                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5042                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5043                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5044                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5045                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5046                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5047                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5048                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5049                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5050                 if (val &
5051                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5052                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5053                 if (val &
5054                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5055                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5056                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5057                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5058                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5059                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5060                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5061                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5062         }
5063         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5064                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5065                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5066                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5067                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5068                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5069                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5070                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5071                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5072                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5073                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5074                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5075                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5076                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5077                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5078         }
5079
5080         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5081                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5082                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5083                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5084                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5085         }
5086 }
5087
5088 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5089 {
5090         struct attn_route attn, *group_mask;
5091         int port = BP_PORT(bp);
5092         int index;
5093         u32 reg_addr;
5094         u32 val;
5095         u32 aeu_mask;
5096         bool global = false;
5097
5098         /* need to take HW lock because MCP or other port might also
5099            try to handle this event */
5100         bnx2x_acquire_alr(bp);
5101
5102         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5103 #ifndef BNX2X_STOP_ON_ERROR
5104                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5105                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5106                 /* Disable HW interrupts */
5107                 bnx2x_int_disable(bp);
5108                 /* In case of parity errors don't handle attentions so that
5109                  * other function would "see" parity errors.
5110                  */
5111 #else
5112                 bnx2x_panic();
5113 #endif
5114                 bnx2x_release_alr(bp);
5115                 return;
5116         }
5117
5118         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5119         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5120         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5121         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5122         if (!CHIP_IS_E1x(bp))
5123                 attn.sig[4] =
5124                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5125         else
5126                 attn.sig[4] = 0;
5127
5128         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5129            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5130
5131         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5132                 if (deasserted & (1 << index)) {
5133                         group_mask = &bp->attn_group[index];
5134
5135                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5136                            index,
5137                            group_mask->sig[0], group_mask->sig[1],
5138                            group_mask->sig[2], group_mask->sig[3],
5139                            group_mask->sig[4]);
5140
5141                         bnx2x_attn_int_deasserted4(bp,
5142                                         attn.sig[4] & group_mask->sig[4]);
5143                         bnx2x_attn_int_deasserted3(bp,
5144                                         attn.sig[3] & group_mask->sig[3]);
5145                         bnx2x_attn_int_deasserted1(bp,
5146                                         attn.sig[1] & group_mask->sig[1]);
5147                         bnx2x_attn_int_deasserted2(bp,
5148                                         attn.sig[2] & group_mask->sig[2]);
5149                         bnx2x_attn_int_deasserted0(bp,
5150                                         attn.sig[0] & group_mask->sig[0]);
5151                 }
5152         }
5153
5154         bnx2x_release_alr(bp);
5155
5156         if (bp->common.int_block == INT_BLOCK_HC)
5157                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5158                             COMMAND_REG_ATTN_BITS_CLR);
5159         else
5160                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5161
5162         val = ~deasserted;
5163         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5164            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5165         REG_WR(bp, reg_addr, val);
5166
5167         if (~bp->attn_state & deasserted)
5168                 BNX2X_ERR("IGU ERROR\n");
5169
5170         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5171                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5172
5173         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5174         aeu_mask = REG_RD(bp, reg_addr);
5175
5176         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5177            aeu_mask, deasserted);
5178         aeu_mask |= (deasserted & 0x3ff);
5179         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5180
5181         REG_WR(bp, reg_addr, aeu_mask);
5182         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5183
5184         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5185         bp->attn_state &= ~deasserted;
5186         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5187 }
5188
5189 static void bnx2x_attn_int(struct bnx2x *bp)
5190 {
5191         /* read local copy of bits */
5192         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5193                                                                 attn_bits);
5194         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5195                                                                 attn_bits_ack);
5196         u32 attn_state = bp->attn_state;
5197
5198         /* look for changed bits */
5199         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5200         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5201
5202         DP(NETIF_MSG_HW,
5203            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5204            attn_bits, attn_ack, asserted, deasserted);
5205
5206         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5207                 BNX2X_ERR("BAD attention state\n");
5208
5209         /* handle bits that were raised */
5210         if (asserted)
5211                 bnx2x_attn_int_asserted(bp, asserted);
5212
5213         if (deasserted)
5214                 bnx2x_attn_int_deasserted(bp, deasserted);
5215 }
5216
5217 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5218                       u16 index, u8 op, u8 update)
5219 {
5220         u32 igu_addr = bp->igu_base_addr;
5221         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5222         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5223                              igu_addr);
5224 }
5225
5226 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5227 {
5228         /* No memory barriers */
5229         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5230         mmiowb(); /* keep prod updates ordered */
5231 }
5232
5233 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5234                                       union event_ring_elem *elem)
5235 {
5236         u8 err = elem->message.error;
5237
5238         if (!bp->cnic_eth_dev.starting_cid  ||
5239             (cid < bp->cnic_eth_dev.starting_cid &&
5240             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5241                 return 1;
5242
5243         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5244
5245         if (unlikely(err)) {
5246
5247                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5248                           cid);
5249                 bnx2x_panic_dump(bp, false);
5250         }
5251         bnx2x_cnic_cfc_comp(bp, cid, err);
5252         return 0;
5253 }
5254
5255 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5256 {
5257         struct bnx2x_mcast_ramrod_params rparam;
5258         int rc;
5259
5260         memset(&rparam, 0, sizeof(rparam));
5261
5262         rparam.mcast_obj = &bp->mcast_obj;
5263
5264         netif_addr_lock_bh(bp->dev);
5265
5266         /* Clear pending state for the last command */
5267         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5268
5269         /* If there are pending mcast commands - send them */
5270         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5271                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5272                 if (rc < 0)
5273                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5274                                   rc);
5275         }
5276
5277         netif_addr_unlock_bh(bp->dev);
5278 }
5279
5280 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5281                                             union event_ring_elem *elem)
5282 {
5283         unsigned long ramrod_flags = 0;
5284         int rc = 0;
5285         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5286         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5287
5288         /* Always push next commands out, don't wait here */
5289         __set_bit(RAMROD_CONT, &ramrod_flags);
5290
5291         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5292                             >> BNX2X_SWCID_SHIFT) {
5293         case BNX2X_FILTER_MAC_PENDING:
5294                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5295                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5296                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5297                 else
5298                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5299
5300                 break;
5301         case BNX2X_FILTER_VLAN_PENDING:
5302                 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5303                 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5304                 break;
5305         case BNX2X_FILTER_MCAST_PENDING:
5306                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5307                 /* This is only relevant for 57710 where multicast MACs are
5308                  * configured as unicast MACs using the same ramrod.
5309                  */
5310                 bnx2x_handle_mcast_eqe(bp);
5311                 return;
5312         default:
5313                 BNX2X_ERR("Unsupported classification command: %d\n",
5314                           elem->message.data.eth_event.echo);
5315                 return;
5316         }
5317
5318         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5319
5320         if (rc < 0)
5321                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5322         else if (rc > 0)
5323                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5324 }
5325
5326 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5327
5328 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5329 {
5330         netif_addr_lock_bh(bp->dev);
5331
5332         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5333
5334         /* Send rx_mode command again if was requested */
5335         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5336                 bnx2x_set_storm_rx_mode(bp);
5337         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5338                                     &bp->sp_state))
5339                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5340         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5341                                     &bp->sp_state))
5342                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5343
5344         netif_addr_unlock_bh(bp->dev);
5345 }
5346
5347 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5348                                               union event_ring_elem *elem)
5349 {
5350         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5351                 DP(BNX2X_MSG_SP,
5352                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5353                    elem->message.data.vif_list_event.func_bit_map);
5354                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5355                         elem->message.data.vif_list_event.func_bit_map);
5356         } else if (elem->message.data.vif_list_event.echo ==
5357                    VIF_LIST_RULE_SET) {
5358                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5359                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5360         }
5361 }
5362
5363 /* called with rtnl_lock */
5364 static void bnx2x_after_function_update(struct bnx2x *bp)
5365 {
5366         int q, rc;
5367         struct bnx2x_fastpath *fp;
5368         struct bnx2x_queue_state_params queue_params = {NULL};
5369         struct bnx2x_queue_update_params *q_update_params =
5370                 &queue_params.params.update;
5371
5372         /* Send Q update command with afex vlan removal values for all Qs */
5373         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5374
5375         /* set silent vlan removal values according to vlan mode */
5376         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5377                   &q_update_params->update_flags);
5378         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5379                   &q_update_params->update_flags);
5380         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5381
5382         /* in access mode mark mask and value are 0 to strip all vlans */
5383         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5384                 q_update_params->silent_removal_value = 0;
5385                 q_update_params->silent_removal_mask = 0;
5386         } else {
5387                 q_update_params->silent_removal_value =
5388                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5389                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5390         }
5391
5392         for_each_eth_queue(bp, q) {
5393                 /* Set the appropriate Queue object */
5394                 fp = &bp->fp[q];
5395                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5396
5397                 /* send the ramrod */
5398                 rc = bnx2x_queue_state_change(bp, &queue_params);
5399                 if (rc < 0)
5400                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5401                                   q);
5402         }
5403
5404         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5405                 fp = &bp->fp[FCOE_IDX(bp)];
5406                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5407
5408                 /* clear pending completion bit */
5409                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5410
5411                 /* mark latest Q bit */
5412                 smp_mb__before_atomic();
5413                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5414                 smp_mb__after_atomic();
5415
5416                 /* send Q update ramrod for FCoE Q */
5417                 rc = bnx2x_queue_state_change(bp, &queue_params);
5418                 if (rc < 0)
5419                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5420                                   q);
5421         } else {
5422                 /* If no FCoE ring - ACK MCP now */
5423                 bnx2x_link_report(bp);
5424                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5425         }
5426 }
5427
5428 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5429         struct bnx2x *bp, u32 cid)
5430 {
5431         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5432
5433         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5434                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5435         else
5436                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5437 }
5438
5439 static void bnx2x_eq_int(struct bnx2x *bp)
5440 {
5441         u16 hw_cons, sw_cons, sw_prod;
5442         union event_ring_elem *elem;
5443         u8 echo;
5444         u32 cid;
5445         u8 opcode;
5446         int rc, spqe_cnt = 0;
5447         struct bnx2x_queue_sp_obj *q_obj;
5448         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5449         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5450
5451         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5452
5453         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5454          * when we get the next-page we need to adjust so the loop
5455          * condition below will be met. The next element is the size of a
5456          * regular element and hence incrementing by 1
5457          */
5458         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5459                 hw_cons++;
5460
5461         /* This function may never run in parallel with itself for a
5462          * specific bp, thus there is no need in "paired" read memory
5463          * barrier here.
5464          */
5465         sw_cons = bp->eq_cons;
5466         sw_prod = bp->eq_prod;
5467
5468         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5469                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5470
5471         for (; sw_cons != hw_cons;
5472               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5473
5474                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5475
5476                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5477                 if (!rc) {
5478                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5479                            rc);
5480                         goto next_spqe;
5481                 }
5482
5483                 /* elem CID originates from FW; actually LE */
5484                 cid = SW_CID((__force __le32)
5485                              elem->message.data.cfc_del_event.cid);
5486                 opcode = elem->message.opcode;
5487
5488                 /* handle eq element */
5489                 switch (opcode) {
5490                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5491                         bnx2x_vf_mbx_schedule(bp,
5492                                               &elem->message.data.vf_pf_event);
5493                         continue;
5494
5495                 case EVENT_RING_OPCODE_STAT_QUERY:
5496                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5497                                "got statistics comp event %d\n",
5498                                bp->stats_comp++);
5499                         /* nothing to do with stats comp */
5500                         goto next_spqe;
5501
5502                 case EVENT_RING_OPCODE_CFC_DEL:
5503                         /* handle according to cid range */
5504                         /*
5505                          * we may want to verify here that the bp state is
5506                          * HALTING
5507                          */
5508                         DP(BNX2X_MSG_SP,
5509                            "got delete ramrod for MULTI[%d]\n", cid);
5510
5511                         if (CNIC_LOADED(bp) &&
5512                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5513                                 goto next_spqe;
5514
5515                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5516
5517                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5518                                 break;
5519
5520                         goto next_spqe;
5521
5522                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5523                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5524                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5525                         if (f_obj->complete_cmd(bp, f_obj,
5526                                                 BNX2X_F_CMD_TX_STOP))
5527                                 break;
5528                         goto next_spqe;
5529
5530                 case EVENT_RING_OPCODE_START_TRAFFIC:
5531                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5532                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5533                         if (f_obj->complete_cmd(bp, f_obj,
5534                                                 BNX2X_F_CMD_TX_START))
5535                                 break;
5536                         goto next_spqe;
5537
5538                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5539                         echo = elem->message.data.function_update_event.echo;
5540                         if (echo == SWITCH_UPDATE) {
5541                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5542                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5543                                 if (f_obj->complete_cmd(
5544                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5545                                         break;
5546
5547                         } else {
5548                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5549
5550                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5551                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5552                                 f_obj->complete_cmd(bp, f_obj,
5553                                                     BNX2X_F_CMD_AFEX_UPDATE);
5554
5555                                 /* We will perform the Queues update from
5556                                  * sp_rtnl task as all Queue SP operations
5557                                  * should run under rtnl_lock.
5558                                  */
5559                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5560                         }
5561
5562                         goto next_spqe;
5563
5564                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5565                         f_obj->complete_cmd(bp, f_obj,
5566                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5567                         bnx2x_after_afex_vif_lists(bp, elem);
5568                         goto next_spqe;
5569                 case EVENT_RING_OPCODE_FUNCTION_START:
5570                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5571                            "got FUNC_START ramrod\n");
5572                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5573                                 break;
5574
5575                         goto next_spqe;
5576
5577                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5578                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5579                            "got FUNC_STOP ramrod\n");
5580                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5581                                 break;
5582
5583                         goto next_spqe;
5584
5585                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5586                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5587                            "got set_timesync ramrod completion\n");
5588                         if (f_obj->complete_cmd(bp, f_obj,
5589                                                 BNX2X_F_CMD_SET_TIMESYNC))
5590                                 break;
5591                         goto next_spqe;
5592                 }
5593
5594                 switch (opcode | bp->state) {
5595                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5596                       BNX2X_STATE_OPEN):
5597                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598                       BNX2X_STATE_OPENING_WAIT4_PORT):
5599                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5600                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5601                         cid = elem->message.data.eth_event.echo &
5602                                 BNX2X_SWCID_MASK;
5603                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5604                            cid);
5605                         rss_raw->clear_pending(rss_raw);
5606                         break;
5607
5608                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5609                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5610                 case (EVENT_RING_OPCODE_SET_MAC |
5611                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5612                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613                       BNX2X_STATE_OPEN):
5614                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615                       BNX2X_STATE_DIAG):
5616                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5617                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5618                         DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5619                         bnx2x_handle_classification_eqe(bp, elem);
5620                         break;
5621
5622                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623                       BNX2X_STATE_OPEN):
5624                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625                       BNX2X_STATE_DIAG):
5626                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5627                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5628                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5629                         bnx2x_handle_mcast_eqe(bp);
5630                         break;
5631
5632                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5633                       BNX2X_STATE_OPEN):
5634                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5635                       BNX2X_STATE_DIAG):
5636                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5637                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5638                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5639                         bnx2x_handle_rx_mode_eqe(bp);
5640                         break;
5641                 default:
5642                         /* unknown event log error and continue */
5643                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5644                                   elem->message.opcode, bp->state);
5645                 }
5646 next_spqe:
5647                 spqe_cnt++;
5648         } /* for */
5649
5650         smp_mb__before_atomic();
5651         atomic_add(spqe_cnt, &bp->eq_spq_left);
5652
5653         bp->eq_cons = sw_cons;
5654         bp->eq_prod = sw_prod;
5655         /* Make sure that above mem writes were issued towards the memory */
5656         smp_wmb();
5657
5658         /* update producer */
5659         bnx2x_update_eq_prod(bp, bp->eq_prod);
5660 }
5661
5662 static void bnx2x_sp_task(struct work_struct *work)
5663 {
5664         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5665
5666         DP(BNX2X_MSG_SP, "sp task invoked\n");
5667
5668         /* make sure the atomic interrupt_occurred has been written */
5669         smp_rmb();
5670         if (atomic_read(&bp->interrupt_occurred)) {
5671
5672                 /* what work needs to be performed? */
5673                 u16 status = bnx2x_update_dsb_idx(bp);
5674
5675                 DP(BNX2X_MSG_SP, "status %x\n", status);
5676                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5677                 atomic_set(&bp->interrupt_occurred, 0);
5678
5679                 /* HW attentions */
5680                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5681                         bnx2x_attn_int(bp);
5682                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5683                 }
5684
5685                 /* SP events: STAT_QUERY and others */
5686                 if (status & BNX2X_DEF_SB_IDX) {
5687                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5688
5689                 if (FCOE_INIT(bp) &&
5690                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5691                                 /* Prevent local bottom-halves from running as
5692                                  * we are going to change the local NAPI list.
5693                                  */
5694                                 local_bh_disable();
5695                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5696                                 local_bh_enable();
5697                         }
5698
5699                         /* Handle EQ completions */
5700                         bnx2x_eq_int(bp);
5701                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5702                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5703
5704                         status &= ~BNX2X_DEF_SB_IDX;
5705                 }
5706
5707                 /* if status is non zero then perhaps something went wrong */
5708                 if (unlikely(status))
5709                         DP(BNX2X_MSG_SP,
5710                            "got an unknown interrupt! (status 0x%x)\n", status);
5711
5712                 /* ack status block only if something was actually handled */
5713                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5714                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5715         }
5716
5717         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5718         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5719                                &bp->sp_state)) {
5720                 bnx2x_link_report(bp);
5721                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5722         }
5723 }
5724
5725 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5726 {
5727         struct net_device *dev = dev_instance;
5728         struct bnx2x *bp = netdev_priv(dev);
5729
5730         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5731                      IGU_INT_DISABLE, 0);
5732
5733 #ifdef BNX2X_STOP_ON_ERROR
5734         if (unlikely(bp->panic))
5735                 return IRQ_HANDLED;
5736 #endif
5737
5738         if (CNIC_LOADED(bp)) {
5739                 struct cnic_ops *c_ops;
5740
5741                 rcu_read_lock();
5742                 c_ops = rcu_dereference(bp->cnic_ops);
5743                 if (c_ops)
5744                         c_ops->cnic_handler(bp->cnic_data, NULL);
5745                 rcu_read_unlock();
5746         }
5747
5748         /* schedule sp task to perform default status block work, ack
5749          * attentions and enable interrupts.
5750          */
5751         bnx2x_schedule_sp_task(bp);
5752
5753         return IRQ_HANDLED;
5754 }
5755
5756 /* end of slow path */
5757
5758 void bnx2x_drv_pulse(struct bnx2x *bp)
5759 {
5760         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5761                  bp->fw_drv_pulse_wr_seq);
5762 }
5763
5764 static void bnx2x_timer(unsigned long data)
5765 {
5766         struct bnx2x *bp = (struct bnx2x *) data;
5767
5768         if (!netif_running(bp->dev))
5769                 return;
5770
5771         if (IS_PF(bp) &&
5772             !BP_NOMCP(bp)) {
5773                 int mb_idx = BP_FW_MB_IDX(bp);
5774                 u16 drv_pulse;
5775                 u16 mcp_pulse;
5776
5777                 ++bp->fw_drv_pulse_wr_seq;
5778                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5779                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5780                 bnx2x_drv_pulse(bp);
5781
5782                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5783                              MCP_PULSE_SEQ_MASK);
5784                 /* The delta between driver pulse and mcp response
5785                  * should not get too big. If the MFW is more than 5 pulses
5786                  * behind, we should worry about it enough to generate an error
5787                  * log.
5788                  */
5789                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5790                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5791                                   drv_pulse, mcp_pulse);
5792         }
5793
5794         if (bp->state == BNX2X_STATE_OPEN)
5795                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5796
5797         /* sample pf vf bulletin board for new posts from pf */
5798         if (IS_VF(bp))
5799                 bnx2x_timer_sriov(bp);
5800
5801         mod_timer(&bp->timer, jiffies + bp->current_interval);
5802 }
5803
5804 /* end of Statistics */
5805
5806 /* nic init */
5807
5808 /*
5809  * nic init service functions
5810  */
5811
5812 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5813 {
5814         u32 i;
5815         if (!(len%4) && !(addr%4))
5816                 for (i = 0; i < len; i += 4)
5817                         REG_WR(bp, addr + i, fill);
5818         else
5819                 for (i = 0; i < len; i++)
5820                         REG_WR8(bp, addr + i, fill);
5821 }
5822
5823 /* helper: writes FP SP data to FW - data_size in dwords */
5824 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5825                                 int fw_sb_id,
5826                                 u32 *sb_data_p,
5827                                 u32 data_size)
5828 {
5829         int index;
5830         for (index = 0; index < data_size; index++)
5831                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5832                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5833                         sizeof(u32)*index,
5834                         *(sb_data_p + index));
5835 }
5836
5837 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5838 {
5839         u32 *sb_data_p;
5840         u32 data_size = 0;
5841         struct hc_status_block_data_e2 sb_data_e2;
5842         struct hc_status_block_data_e1x sb_data_e1x;
5843
5844         /* disable the function first */
5845         if (!CHIP_IS_E1x(bp)) {
5846                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5847                 sb_data_e2.common.state = SB_DISABLED;
5848                 sb_data_e2.common.p_func.vf_valid = false;
5849                 sb_data_p = (u32 *)&sb_data_e2;
5850                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5851         } else {
5852                 memset(&sb_data_e1x, 0,
5853                        sizeof(struct hc_status_block_data_e1x));
5854                 sb_data_e1x.common.state = SB_DISABLED;
5855                 sb_data_e1x.common.p_func.vf_valid = false;
5856                 sb_data_p = (u32 *)&sb_data_e1x;
5857                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5858         }
5859         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5860
5861         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5862                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5863                         CSTORM_STATUS_BLOCK_SIZE);
5864         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5865                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5866                         CSTORM_SYNC_BLOCK_SIZE);
5867 }
5868
5869 /* helper:  writes SP SB data to FW */
5870 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5871                 struct hc_sp_status_block_data *sp_sb_data)
5872 {
5873         int func = BP_FUNC(bp);
5874         int i;
5875         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5876                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5877                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5878                         i*sizeof(u32),
5879                         *((u32 *)sp_sb_data + i));
5880 }
5881
5882 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5883 {
5884         int func = BP_FUNC(bp);
5885         struct hc_sp_status_block_data sp_sb_data;
5886         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5887
5888         sp_sb_data.state = SB_DISABLED;
5889         sp_sb_data.p_func.vf_valid = false;
5890
5891         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5892
5893         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5894                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5895                         CSTORM_SP_STATUS_BLOCK_SIZE);
5896         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5897                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5898                         CSTORM_SP_SYNC_BLOCK_SIZE);
5899 }
5900
5901 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5902                                            int igu_sb_id, int igu_seg_id)
5903 {
5904         hc_sm->igu_sb_id = igu_sb_id;
5905         hc_sm->igu_seg_id = igu_seg_id;
5906         hc_sm->timer_value = 0xFF;
5907         hc_sm->time_to_expire = 0xFFFFFFFF;
5908 }
5909
5910 /* allocates state machine ids. */
5911 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5912 {
5913         /* zero out state machine indices */
5914         /* rx indices */
5915         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5916
5917         /* tx indices */
5918         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5919         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5920         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5921         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5922
5923         /* map indices */
5924         /* rx indices */
5925         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5926                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5927
5928         /* tx indices */
5929         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5930                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5932                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5934                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5936                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5937 }
5938
5939 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5940                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5941 {
5942         int igu_seg_id;
5943
5944         struct hc_status_block_data_e2 sb_data_e2;
5945         struct hc_status_block_data_e1x sb_data_e1x;
5946         struct hc_status_block_sm  *hc_sm_p;
5947         int data_size;
5948         u32 *sb_data_p;
5949
5950         if (CHIP_INT_MODE_IS_BC(bp))
5951                 igu_seg_id = HC_SEG_ACCESS_NORM;
5952         else
5953                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5954
5955         bnx2x_zero_fp_sb(bp, fw_sb_id);
5956
5957         if (!CHIP_IS_E1x(bp)) {
5958                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5959                 sb_data_e2.common.state = SB_ENABLED;
5960                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5961                 sb_data_e2.common.p_func.vf_id = vfid;
5962                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5963                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5964                 sb_data_e2.common.same_igu_sb_1b = true;
5965                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5966                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5967                 hc_sm_p = sb_data_e2.common.state_machine;
5968                 sb_data_p = (u32 *)&sb_data_e2;
5969                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5970                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5971         } else {
5972                 memset(&sb_data_e1x, 0,
5973                        sizeof(struct hc_status_block_data_e1x));
5974                 sb_data_e1x.common.state = SB_ENABLED;
5975                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5976                 sb_data_e1x.common.p_func.vf_id = 0xff;
5977                 sb_data_e1x.common.p_func.vf_valid = false;
5978                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5979                 sb_data_e1x.common.same_igu_sb_1b = true;
5980                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5981                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5982                 hc_sm_p = sb_data_e1x.common.state_machine;
5983                 sb_data_p = (u32 *)&sb_data_e1x;
5984                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5985                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5986         }
5987
5988         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5989                                        igu_sb_id, igu_seg_id);
5990         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5991                                        igu_sb_id, igu_seg_id);
5992
5993         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5994
5995         /* write indices to HW - PCI guarantees endianity of regpairs */
5996         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5997 }
5998
5999 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6000                                      u16 tx_usec, u16 rx_usec)
6001 {
6002         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6003                                     false, rx_usec);
6004         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6005                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6006                                        tx_usec);
6007         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6008                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6009                                        tx_usec);
6010         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6011                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6012                                        tx_usec);
6013 }
6014
6015 static void bnx2x_init_def_sb(struct bnx2x *bp)
6016 {
6017         struct host_sp_status_block *def_sb = bp->def_status_blk;
6018         dma_addr_t mapping = bp->def_status_blk_mapping;
6019         int igu_sp_sb_index;
6020         int igu_seg_id;
6021         int port = BP_PORT(bp);
6022         int func = BP_FUNC(bp);
6023         int reg_offset, reg_offset_en5;
6024         u64 section;
6025         int index;
6026         struct hc_sp_status_block_data sp_sb_data;
6027         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6028
6029         if (CHIP_INT_MODE_IS_BC(bp)) {
6030                 igu_sp_sb_index = DEF_SB_IGU_ID;
6031                 igu_seg_id = HC_SEG_ACCESS_DEF;
6032         } else {
6033                 igu_sp_sb_index = bp->igu_dsb_id;
6034                 igu_seg_id = IGU_SEG_ACCESS_DEF;
6035         }
6036
6037         /* ATTN */
6038         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6039                                             atten_status_block);
6040         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6041
6042         bp->attn_state = 0;
6043
6044         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6045                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6046         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6047                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6048         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6049                 int sindex;
6050                 /* take care of sig[0]..sig[4] */
6051                 for (sindex = 0; sindex < 4; sindex++)
6052                         bp->attn_group[index].sig[sindex] =
6053                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6054
6055                 if (!CHIP_IS_E1x(bp))
6056                         /*
6057                          * enable5 is separate from the rest of the registers,
6058                          * and therefore the address skip is 4
6059                          * and not 16 between the different groups
6060                          */
6061                         bp->attn_group[index].sig[4] = REG_RD(bp,
6062                                         reg_offset_en5 + 0x4*index);
6063                 else
6064                         bp->attn_group[index].sig[4] = 0;
6065         }
6066
6067         if (bp->common.int_block == INT_BLOCK_HC) {
6068                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6069                                      HC_REG_ATTN_MSG0_ADDR_L);
6070
6071                 REG_WR(bp, reg_offset, U64_LO(section));
6072                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6073         } else if (!CHIP_IS_E1x(bp)) {
6074                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6075                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6076         }
6077
6078         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6079                                             sp_sb);
6080
6081         bnx2x_zero_sp_sb(bp);
6082
6083         /* PCI guarantees endianity of regpairs */
6084         sp_sb_data.state                = SB_ENABLED;
6085         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6086         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6087         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6088         sp_sb_data.igu_seg_id           = igu_seg_id;
6089         sp_sb_data.p_func.pf_id         = func;
6090         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6091         sp_sb_data.p_func.vf_id         = 0xff;
6092
6093         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6094
6095         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6096 }
6097
6098 void bnx2x_update_coalesce(struct bnx2x *bp)
6099 {
6100         int i;
6101
6102         for_each_eth_queue(bp, i)
6103                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6104                                          bp->tx_ticks, bp->rx_ticks);
6105 }
6106
6107 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6108 {
6109         spin_lock_init(&bp->spq_lock);
6110         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6111
6112         bp->spq_prod_idx = 0;
6113         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6114         bp->spq_prod_bd = bp->spq;
6115         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6116 }
6117
6118 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6119 {
6120         int i;
6121         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6122                 union event_ring_elem *elem =
6123                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6124
6125                 elem->next_page.addr.hi =
6126                         cpu_to_le32(U64_HI(bp->eq_mapping +
6127                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6128                 elem->next_page.addr.lo =
6129                         cpu_to_le32(U64_LO(bp->eq_mapping +
6130                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6131         }
6132         bp->eq_cons = 0;
6133         bp->eq_prod = NUM_EQ_DESC;
6134         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6135         /* we want a warning message before it gets wrought... */
6136         atomic_set(&bp->eq_spq_left,
6137                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6138 }
6139
6140 /* called with netif_addr_lock_bh() */
6141 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6142                                unsigned long rx_mode_flags,
6143                                unsigned long rx_accept_flags,
6144                                unsigned long tx_accept_flags,
6145                                unsigned long ramrod_flags)
6146 {
6147         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6148         int rc;
6149
6150         memset(&ramrod_param, 0, sizeof(ramrod_param));
6151
6152         /* Prepare ramrod parameters */
6153         ramrod_param.cid = 0;
6154         ramrod_param.cl_id = cl_id;
6155         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6156         ramrod_param.func_id = BP_FUNC(bp);
6157
6158         ramrod_param.pstate = &bp->sp_state;
6159         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6160
6161         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6162         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6163
6164         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6165
6166         ramrod_param.ramrod_flags = ramrod_flags;
6167         ramrod_param.rx_mode_flags = rx_mode_flags;
6168
6169         ramrod_param.rx_accept_flags = rx_accept_flags;
6170         ramrod_param.tx_accept_flags = tx_accept_flags;
6171
6172         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6173         if (rc < 0) {
6174                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6175                 return rc;
6176         }
6177
6178         return 0;
6179 }
6180
6181 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6182                                    unsigned long *rx_accept_flags,
6183                                    unsigned long *tx_accept_flags)
6184 {
6185         /* Clear the flags first */
6186         *rx_accept_flags = 0;
6187         *tx_accept_flags = 0;
6188
6189         switch (rx_mode) {
6190         case BNX2X_RX_MODE_NONE:
6191                 /*
6192                  * 'drop all' supersedes any accept flags that may have been
6193                  * passed to the function.
6194                  */
6195                 break;
6196         case BNX2X_RX_MODE_NORMAL:
6197                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6198                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6199                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6200
6201                 /* internal switching mode */
6202                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6203                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6204                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6205
6206                 if (bp->accept_any_vlan) {
6207                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209                 }
6210
6211                 break;
6212         case BNX2X_RX_MODE_ALLMULTI:
6213                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6214                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6215                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6216
6217                 /* internal switching mode */
6218                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6219                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6220                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6221
6222                 if (bp->accept_any_vlan) {
6223                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6224                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6225                 }
6226
6227                 break;
6228         case BNX2X_RX_MODE_PROMISC:
6229                 /* According to definition of SI mode, iface in promisc mode
6230                  * should receive matched and unmatched (in resolution of port)
6231                  * unicast packets.
6232                  */
6233                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6234                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237
6238                 /* internal switching mode */
6239                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6241
6242                 if (IS_MF_SI(bp))
6243                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6244                 else
6245                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6246
6247                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6248                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6249
6250                 break;
6251         default:
6252                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6253                 return -EINVAL;
6254         }
6255
6256         return 0;
6257 }
6258
6259 /* called with netif_addr_lock_bh() */
6260 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6261 {
6262         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6263         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6264         int rc;
6265
6266         if (!NO_FCOE(bp))
6267                 /* Configure rx_mode of FCoE Queue */
6268                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6269
6270         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6271                                      &tx_accept_flags);
6272         if (rc)
6273                 return rc;
6274
6275         __set_bit(RAMROD_RX, &ramrod_flags);
6276         __set_bit(RAMROD_TX, &ramrod_flags);
6277
6278         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6279                                    rx_accept_flags, tx_accept_flags,
6280                                    ramrod_flags);
6281 }
6282
6283 static void bnx2x_init_internal_common(struct bnx2x *bp)
6284 {
6285         int i;
6286
6287         /* Zero this manually as its initialization is
6288            currently missing in the initTool */
6289         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6290                 REG_WR(bp, BAR_USTRORM_INTMEM +
6291                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6292         if (!CHIP_IS_E1x(bp)) {
6293                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6294                         CHIP_INT_MODE_IS_BC(bp) ?
6295                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6296         }
6297 }
6298
6299 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6300 {
6301         switch (load_code) {
6302         case FW_MSG_CODE_DRV_LOAD_COMMON:
6303         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6304                 bnx2x_init_internal_common(bp);
6305                 /* no break */
6306
6307         case FW_MSG_CODE_DRV_LOAD_PORT:
6308                 /* nothing to do */
6309                 /* no break */
6310
6311         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6312                 /* internal memory per function is
6313                    initialized inside bnx2x_pf_init */
6314                 break;
6315
6316         default:
6317                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6318                 break;
6319         }
6320 }
6321
6322 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6323 {
6324         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6325 }
6326
6327 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6328 {
6329         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6330 }
6331
6332 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6333 {
6334         if (CHIP_IS_E1x(fp->bp))
6335                 return BP_L_ID(fp->bp) + fp->index;
6336         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6337                 return bnx2x_fp_igu_sb_id(fp);
6338 }
6339
6340 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6341 {
6342         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6343         u8 cos;
6344         unsigned long q_type = 0;
6345         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6346         fp->rx_queue = fp_idx;
6347         fp->cid = fp_idx;
6348         fp->cl_id = bnx2x_fp_cl_id(fp);
6349         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6350         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6351         /* qZone id equals to FW (per path) client id */
6352         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6353
6354         /* init shortcut */
6355         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6356
6357         /* Setup SB indices */
6358         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6359
6360         /* Configure Queue State object */
6361         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6362         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6363
6364         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6365
6366         /* init tx data */
6367         for_each_cos_in_tx_queue(fp, cos) {
6368                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6369                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6370                                   FP_COS_TO_TXQ(fp, cos, bp),
6371                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6372                 cids[cos] = fp->txdata_ptr[cos]->cid;
6373         }
6374
6375         /* nothing more for vf to do here */
6376         if (IS_VF(bp))
6377                 return;
6378
6379         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6380                       fp->fw_sb_id, fp->igu_sb_id);
6381         bnx2x_update_fpsb_idx(fp);
6382         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6383                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6384                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6385
6386         /**
6387          * Configure classification DBs: Always enable Tx switching
6388          */
6389         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6390
6391         DP(NETIF_MSG_IFUP,
6392            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6393            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6394            fp->igu_sb_id);
6395 }
6396
6397 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6398 {
6399         int i;
6400
6401         for (i = 1; i <= NUM_TX_RINGS; i++) {
6402                 struct eth_tx_next_bd *tx_next_bd =
6403                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6404
6405                 tx_next_bd->addr_hi =
6406                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6407                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6408                 tx_next_bd->addr_lo =
6409                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6410                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6411         }
6412
6413         *txdata->tx_cons_sb = cpu_to_le16(0);
6414
6415         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6416         txdata->tx_db.data.zero_fill1 = 0;
6417         txdata->tx_db.data.prod = 0;
6418
6419         txdata->tx_pkt_prod = 0;
6420         txdata->tx_pkt_cons = 0;
6421         txdata->tx_bd_prod = 0;
6422         txdata->tx_bd_cons = 0;
6423         txdata->tx_pkt = 0;
6424 }
6425
6426 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6427 {
6428         int i;
6429
6430         for_each_tx_queue_cnic(bp, i)
6431                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6432 }
6433
6434 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6435 {
6436         int i;
6437         u8 cos;
6438
6439         for_each_eth_queue(bp, i)
6440                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6441                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6442 }
6443
6444 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6445 {
6446         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6447         unsigned long q_type = 0;
6448
6449         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6450         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6451                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6452         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6453         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6454         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6455         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6456         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6457                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6458                           fp);
6459
6460         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6461
6462         /* qZone id equals to FW (per path) client id */
6463         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6464         /* init shortcut */
6465         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6466                 bnx2x_rx_ustorm_prods_offset(fp);
6467
6468         /* Configure Queue State object */
6469         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6470         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6471
6472         /* No multi-CoS for FCoE L2 client */
6473         BUG_ON(fp->max_cos != 1);
6474
6475         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6476                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6477                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6478
6479         DP(NETIF_MSG_IFUP,
6480            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6481            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6482            fp->igu_sb_id);
6483 }
6484
6485 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6486 {
6487         if (!NO_FCOE(bp))
6488                 bnx2x_init_fcoe_fp(bp);
6489
6490         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6491                       BNX2X_VF_ID_INVALID, false,
6492                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6493
6494         /* ensure status block indices were read */
6495         rmb();
6496         bnx2x_init_rx_rings_cnic(bp);
6497         bnx2x_init_tx_rings_cnic(bp);
6498
6499         /* flush all */
6500         mb();
6501         mmiowb();
6502 }
6503
6504 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6505 {
6506         int i;
6507
6508         /* Setup NIC internals and enable interrupts */
6509         for_each_eth_queue(bp, i)
6510                 bnx2x_init_eth_fp(bp, i);
6511
6512         /* ensure status block indices were read */
6513         rmb();
6514         bnx2x_init_rx_rings(bp);
6515         bnx2x_init_tx_rings(bp);
6516
6517         if (IS_PF(bp)) {
6518                 /* Initialize MOD_ABS interrupts */
6519                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6520                                        bp->common.shmem_base,
6521                                        bp->common.shmem2_base, BP_PORT(bp));
6522
6523                 /* initialize the default status block and sp ring */
6524                 bnx2x_init_def_sb(bp);
6525                 bnx2x_update_dsb_idx(bp);
6526                 bnx2x_init_sp_ring(bp);
6527         } else {
6528                 bnx2x_memset_stats(bp);
6529         }
6530 }
6531
6532 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6533 {
6534         bnx2x_init_eq_ring(bp);
6535         bnx2x_init_internal(bp, load_code);
6536         bnx2x_pf_init(bp);
6537         bnx2x_stats_init(bp);
6538
6539         /* flush all before enabling interrupts */
6540         mb();
6541         mmiowb();
6542
6543         bnx2x_int_enable(bp);
6544
6545         /* Check for SPIO5 */
6546         bnx2x_attn_int_deasserted0(bp,
6547                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6548                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6549 }
6550
6551 /* gzip service functions */
6552 static int bnx2x_gunzip_init(struct bnx2x *bp)
6553 {
6554         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6555                                             &bp->gunzip_mapping, GFP_KERNEL);
6556         if (bp->gunzip_buf  == NULL)
6557                 goto gunzip_nomem1;
6558
6559         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6560         if (bp->strm  == NULL)
6561                 goto gunzip_nomem2;
6562
6563         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6564         if (bp->strm->workspace == NULL)
6565                 goto gunzip_nomem3;
6566
6567         return 0;
6568
6569 gunzip_nomem3:
6570         kfree(bp->strm);
6571         bp->strm = NULL;
6572
6573 gunzip_nomem2:
6574         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6575                           bp->gunzip_mapping);
6576         bp->gunzip_buf = NULL;
6577
6578 gunzip_nomem1:
6579         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6580         return -ENOMEM;
6581 }
6582
6583 static void bnx2x_gunzip_end(struct bnx2x *bp)
6584 {
6585         if (bp->strm) {
6586                 vfree(bp->strm->workspace);
6587                 kfree(bp->strm);
6588                 bp->strm = NULL;
6589         }
6590
6591         if (bp->gunzip_buf) {
6592                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6593                                   bp->gunzip_mapping);
6594                 bp->gunzip_buf = NULL;
6595         }
6596 }
6597
6598 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6599 {
6600         int n, rc;
6601
6602         /* check gzip header */
6603         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6604                 BNX2X_ERR("Bad gzip header\n");
6605                 return -EINVAL;
6606         }
6607
6608         n = 10;
6609
6610 #define FNAME                           0x8
6611
6612         if (zbuf[3] & FNAME)
6613                 while ((zbuf[n++] != 0) && (n < len));
6614
6615         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6616         bp->strm->avail_in = len - n;
6617         bp->strm->next_out = bp->gunzip_buf;
6618         bp->strm->avail_out = FW_BUF_SIZE;
6619
6620         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6621         if (rc != Z_OK)
6622                 return rc;
6623
6624         rc = zlib_inflate(bp->strm, Z_FINISH);
6625         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6626                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6627                            bp->strm->msg);
6628
6629         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6630         if (bp->gunzip_outlen & 0x3)
6631                 netdev_err(bp->dev,
6632                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6633                                 bp->gunzip_outlen);
6634         bp->gunzip_outlen >>= 2;
6635
6636         zlib_inflateEnd(bp->strm);
6637
6638         if (rc == Z_STREAM_END)
6639                 return 0;
6640
6641         return rc;
6642 }
6643
6644 /* nic load/unload */
6645
6646 /*
6647  * General service functions
6648  */
6649
6650 /* send a NIG loopback debug packet */
6651 static void bnx2x_lb_pckt(struct bnx2x *bp)
6652 {
6653         u32 wb_write[3];
6654
6655         /* Ethernet source and destination addresses */
6656         wb_write[0] = 0x55555555;
6657         wb_write[1] = 0x55555555;
6658         wb_write[2] = 0x20;             /* SOP */
6659         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6660
6661         /* NON-IP protocol */
6662         wb_write[0] = 0x09000000;
6663         wb_write[1] = 0x55555555;
6664         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6665         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6666 }
6667
6668 /* some of the internal memories
6669  * are not directly readable from the driver
6670  * to test them we send debug packets
6671  */
6672 static int bnx2x_int_mem_test(struct bnx2x *bp)
6673 {
6674         int factor;
6675         int count, i;
6676         u32 val = 0;
6677
6678         if (CHIP_REV_IS_FPGA(bp))
6679                 factor = 120;
6680         else if (CHIP_REV_IS_EMUL(bp))
6681                 factor = 200;
6682         else
6683                 factor = 1;
6684
6685         /* Disable inputs of parser neighbor blocks */
6686         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6687         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6688         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6689         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6690
6691         /*  Write 0 to parser credits for CFC search request */
6692         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6693
6694         /* send Ethernet packet */
6695         bnx2x_lb_pckt(bp);
6696
6697         /* TODO do i reset NIG statistic? */
6698         /* Wait until NIG register shows 1 packet of size 0x10 */
6699         count = 1000 * factor;
6700         while (count) {
6701
6702                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6703                 val = *bnx2x_sp(bp, wb_data[0]);
6704                 if (val == 0x10)
6705                         break;
6706
6707                 usleep_range(10000, 20000);
6708                 count--;
6709         }
6710         if (val != 0x10) {
6711                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6712                 return -1;
6713         }
6714
6715         /* Wait until PRS register shows 1 packet */
6716         count = 1000 * factor;
6717         while (count) {
6718                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6719                 if (val == 1)
6720                         break;
6721
6722                 usleep_range(10000, 20000);
6723                 count--;
6724         }
6725         if (val != 0x1) {
6726                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6727                 return -2;
6728         }
6729
6730         /* Reset and init BRB, PRS */
6731         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6732         msleep(50);
6733         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6734         msleep(50);
6735         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6736         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6737
6738         DP(NETIF_MSG_HW, "part2\n");
6739
6740         /* Disable inputs of parser neighbor blocks */
6741         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6742         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6743         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6744         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6745
6746         /* Write 0 to parser credits for CFC search request */
6747         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6748
6749         /* send 10 Ethernet packets */
6750         for (i = 0; i < 10; i++)
6751                 bnx2x_lb_pckt(bp);
6752
6753         /* Wait until NIG register shows 10 + 1
6754            packets of size 11*0x10 = 0xb0 */
6755         count = 1000 * factor;
6756         while (count) {
6757
6758                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6759                 val = *bnx2x_sp(bp, wb_data[0]);
6760                 if (val == 0xb0)
6761                         break;
6762
6763                 usleep_range(10000, 20000);
6764                 count--;
6765         }
6766         if (val != 0xb0) {
6767                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6768                 return -3;
6769         }
6770
6771         /* Wait until PRS register shows 2 packets */
6772         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6773         if (val != 2)
6774                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6775
6776         /* Write 1 to parser credits for CFC search request */
6777         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6778
6779         /* Wait until PRS register shows 3 packets */
6780         msleep(10 * factor);
6781         /* Wait until NIG register shows 1 packet of size 0x10 */
6782         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6783         if (val != 3)
6784                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6785
6786         /* clear NIG EOP FIFO */
6787         for (i = 0; i < 11; i++)
6788                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6789         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6790         if (val != 1) {
6791                 BNX2X_ERR("clear of NIG failed\n");
6792                 return -4;
6793         }
6794
6795         /* Reset and init BRB, PRS, NIG */
6796         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6797         msleep(50);
6798         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6799         msleep(50);
6800         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6801         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6802         if (!CNIC_SUPPORT(bp))
6803                 /* set NIC mode */
6804                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6805
6806         /* Enable inputs of parser neighbor blocks */
6807         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6808         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6809         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6810         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6811
6812         DP(NETIF_MSG_HW, "done\n");
6813
6814         return 0; /* OK */
6815 }
6816
6817 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6818 {
6819         u32 val;
6820
6821         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6822         if (!CHIP_IS_E1x(bp))
6823                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6824         else
6825                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6826         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6827         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6828         /*
6829          * mask read length error interrupts in brb for parser
6830          * (parsing unit and 'checksum and crc' unit)
6831          * these errors are legal (PU reads fixed length and CAC can cause
6832          * read length error on truncated packets)
6833          */
6834         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6835         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6836         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6837         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6838         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6839         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6840 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6841 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6842         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6843         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6844         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6845 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6846 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6847         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6848         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6849         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6850         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6851 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6852 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6853
6854         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6855                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6856                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6857         if (!CHIP_IS_E1x(bp))
6858                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6859                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6860         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6861
6862         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6863         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6864         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6865 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6866
6867         if (!CHIP_IS_E1x(bp))
6868                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6869                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6870
6871         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6872         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6873 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6874         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6875 }
6876
6877 static void bnx2x_reset_common(struct bnx2x *bp)
6878 {
6879         u32 val = 0x1400;
6880
6881         /* reset_common */
6882         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6883                0xd3ffff7f);
6884
6885         if (CHIP_IS_E3(bp)) {
6886                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6887                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6888         }
6889
6890         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6891 }
6892
6893 static void bnx2x_setup_dmae(struct bnx2x *bp)
6894 {
6895         bp->dmae_ready = 0;
6896         spin_lock_init(&bp->dmae_lock);
6897 }
6898
6899 static void bnx2x_init_pxp(struct bnx2x *bp)
6900 {
6901         u16 devctl;
6902         int r_order, w_order;
6903
6904         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6905         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6906         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6907         if (bp->mrrs == -1)
6908                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6909         else {
6910                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6911                 r_order = bp->mrrs;
6912         }
6913
6914         bnx2x_init_pxp_arb(bp, r_order, w_order);
6915 }
6916
6917 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6918 {
6919         int is_required;
6920         u32 val;
6921         int port;
6922
6923         if (BP_NOMCP(bp))
6924                 return;
6925
6926         is_required = 0;
6927         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6928               SHARED_HW_CFG_FAN_FAILURE_MASK;
6929
6930         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6931                 is_required = 1;
6932
6933         /*
6934          * The fan failure mechanism is usually related to the PHY type since
6935          * the power consumption of the board is affected by the PHY. Currently,
6936          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6937          */
6938         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6939                 for (port = PORT_0; port < PORT_MAX; port++) {
6940                         is_required |=
6941                                 bnx2x_fan_failure_det_req(
6942                                         bp,
6943                                         bp->common.shmem_base,
6944                                         bp->common.shmem2_base,
6945                                         port);
6946                 }
6947
6948         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6949
6950         if (is_required == 0)
6951                 return;
6952
6953         /* Fan failure is indicated by SPIO 5 */
6954         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6955
6956         /* set to active low mode */
6957         val = REG_RD(bp, MISC_REG_SPIO_INT);
6958         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6959         REG_WR(bp, MISC_REG_SPIO_INT, val);
6960
6961         /* enable interrupt to signal the IGU */
6962         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6963         val |= MISC_SPIO_SPIO5;
6964         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6965 }
6966
6967 void bnx2x_pf_disable(struct bnx2x *bp)
6968 {
6969         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6970         val &= ~IGU_PF_CONF_FUNC_EN;
6971
6972         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6973         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6974         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6975 }
6976
6977 static void bnx2x__common_init_phy(struct bnx2x *bp)
6978 {
6979         u32 shmem_base[2], shmem2_base[2];
6980         /* Avoid common init in case MFW supports LFA */
6981         if (SHMEM2_RD(bp, size) >
6982             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6983                 return;
6984         shmem_base[0] =  bp->common.shmem_base;
6985         shmem2_base[0] = bp->common.shmem2_base;
6986         if (!CHIP_IS_E1x(bp)) {
6987                 shmem_base[1] =
6988                         SHMEM2_RD(bp, other_shmem_base_addr);
6989                 shmem2_base[1] =
6990                         SHMEM2_RD(bp, other_shmem2_base_addr);
6991         }
6992         bnx2x_acquire_phy_lock(bp);
6993         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6994                               bp->common.chip_id);
6995         bnx2x_release_phy_lock(bp);
6996 }
6997
6998 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6999 {
7000         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7001         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7002         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7003         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7004         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7005
7006         /* make sure this value is 0 */
7007         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7008
7009         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7010         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7011         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7012         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7013 }
7014
7015 static void bnx2x_set_endianity(struct bnx2x *bp)
7016 {
7017 #ifdef __BIG_ENDIAN
7018         bnx2x_config_endianity(bp, 1);
7019 #else
7020         bnx2x_config_endianity(bp, 0);
7021 #endif
7022 }
7023
7024 static void bnx2x_reset_endianity(struct bnx2x *bp)
7025 {
7026         bnx2x_config_endianity(bp, 0);
7027 }
7028
7029 /**
7030  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7031  *
7032  * @bp:         driver handle
7033  */
7034 static int bnx2x_init_hw_common(struct bnx2x *bp)
7035 {
7036         u32 val;
7037
7038         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7039
7040         /*
7041          * take the RESET lock to protect undi_unload flow from accessing
7042          * registers while we're resetting the chip
7043          */
7044         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7045
7046         bnx2x_reset_common(bp);
7047         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7048
7049         val = 0xfffc;
7050         if (CHIP_IS_E3(bp)) {
7051                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7052                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7053         }
7054         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7055
7056         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7057
7058         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7059
7060         if (!CHIP_IS_E1x(bp)) {
7061                 u8 abs_func_id;
7062
7063                 /**
7064                  * 4-port mode or 2-port mode we need to turn of master-enable
7065                  * for everyone, after that, turn it back on for self.
7066                  * so, we disregard multi-function or not, and always disable
7067                  * for all functions on the given path, this means 0,2,4,6 for
7068                  * path 0 and 1,3,5,7 for path 1
7069                  */
7070                 for (abs_func_id = BP_PATH(bp);
7071                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7072                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7073                                 REG_WR(bp,
7074                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7075                                     1);
7076                                 continue;
7077                         }
7078
7079                         bnx2x_pretend_func(bp, abs_func_id);
7080                         /* clear pf enable */
7081                         bnx2x_pf_disable(bp);
7082                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7083                 }
7084         }
7085
7086         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7087         if (CHIP_IS_E1(bp)) {
7088                 /* enable HW interrupt from PXP on USDM overflow
7089                    bit 16 on INT_MASK_0 */
7090                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7091         }
7092
7093         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7094         bnx2x_init_pxp(bp);
7095         bnx2x_set_endianity(bp);
7096         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7097
7098         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7099                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7100
7101         /* let the HW do it's magic ... */
7102         msleep(100);
7103         /* finish PXP init */
7104         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7105         if (val != 1) {
7106                 BNX2X_ERR("PXP2 CFG failed\n");
7107                 return -EBUSY;
7108         }
7109         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7110         if (val != 1) {
7111                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7112                 return -EBUSY;
7113         }
7114
7115         /* Timers bug workaround E2 only. We need to set the entire ILT to
7116          * have entries with value "0" and valid bit on.
7117          * This needs to be done by the first PF that is loaded in a path
7118          * (i.e. common phase)
7119          */
7120         if (!CHIP_IS_E1x(bp)) {
7121 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7122  * (i.e. vnic3) to start even if it is marked as "scan-off".
7123  * This occurs when a different function (func2,3) is being marked
7124  * as "scan-off". Real-life scenario for example: if a driver is being
7125  * load-unloaded while func6,7 are down. This will cause the timer to access
7126  * the ilt, translate to a logical address and send a request to read/write.
7127  * Since the ilt for the function that is down is not valid, this will cause
7128  * a translation error which is unrecoverable.
7129  * The Workaround is intended to make sure that when this happens nothing fatal
7130  * will occur. The workaround:
7131  *      1.  First PF driver which loads on a path will:
7132  *              a.  After taking the chip out of reset, by using pretend,
7133  *                  it will write "0" to the following registers of
7134  *                  the other vnics.
7135  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7136  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7137  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7138  *                  And for itself it will write '1' to
7139  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7140  *                  dmae-operations (writing to pram for example.)
7141  *                  note: can be done for only function 6,7 but cleaner this
7142  *                        way.
7143  *              b.  Write zero+valid to the entire ILT.
7144  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7145  *                  VNIC3 (of that port). The range allocated will be the
7146  *                  entire ILT. This is needed to prevent  ILT range error.
7147  *      2.  Any PF driver load flow:
7148  *              a.  ILT update with the physical addresses of the allocated
7149  *                  logical pages.
7150  *              b.  Wait 20msec. - note that this timeout is needed to make
7151  *                  sure there are no requests in one of the PXP internal
7152  *                  queues with "old" ILT addresses.
7153  *              c.  PF enable in the PGLC.
7154  *              d.  Clear the was_error of the PF in the PGLC. (could have
7155  *                  occurred while driver was down)
7156  *              e.  PF enable in the CFC (WEAK + STRONG)
7157  *              f.  Timers scan enable
7158  *      3.  PF driver unload flow:
7159  *              a.  Clear the Timers scan_en.
7160  *              b.  Polling for scan_on=0 for that PF.
7161  *              c.  Clear the PF enable bit in the PXP.
7162  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7163  *              e.  Write zero+valid to all ILT entries (The valid bit must
7164  *                  stay set)
7165  *              f.  If this is VNIC 3 of a port then also init
7166  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7167  *                  to the last entry in the ILT.
7168  *
7169  *      Notes:
7170  *      Currently the PF error in the PGLC is non recoverable.
7171  *      In the future the there will be a recovery routine for this error.
7172  *      Currently attention is masked.
7173  *      Having an MCP lock on the load/unload process does not guarantee that
7174  *      there is no Timer disable during Func6/7 enable. This is because the
7175  *      Timers scan is currently being cleared by the MCP on FLR.
7176  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7177  *      there is error before clearing it. But the flow above is simpler and
7178  *      more general.
7179  *      All ILT entries are written by zero+valid and not just PF6/7
7180  *      ILT entries since in the future the ILT entries allocation for
7181  *      PF-s might be dynamic.
7182  */
7183                 struct ilt_client_info ilt_cli;
7184                 struct bnx2x_ilt ilt;
7185                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7186                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7187
7188                 /* initialize dummy TM client */
7189                 ilt_cli.start = 0;
7190                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7191                 ilt_cli.client_num = ILT_CLIENT_TM;
7192
7193                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7194                  * Step 2: set the timers first/last ilt entry to point
7195                  * to the entire range to prevent ILT range error for 3rd/4th
7196                  * vnic (this code assumes existence of the vnic)
7197                  *
7198                  * both steps performed by call to bnx2x_ilt_client_init_op()
7199                  * with dummy TM client
7200                  *
7201                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7202                  * and his brother are split registers
7203                  */
7204                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7205                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7206                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7207
7208                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7209                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7210                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7211         }
7212
7213         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7214         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7215
7216         if (!CHIP_IS_E1x(bp)) {
7217                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7218                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7219                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7220
7221                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7222
7223                 /* let the HW do it's magic ... */
7224                 do {
7225                         msleep(200);
7226                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7227                 } while (factor-- && (val != 1));
7228
7229                 if (val != 1) {
7230                         BNX2X_ERR("ATC_INIT failed\n");
7231                         return -EBUSY;
7232                 }
7233         }
7234
7235         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7236
7237         bnx2x_iov_init_dmae(bp);
7238
7239         /* clean the DMAE memory */
7240         bp->dmae_ready = 1;
7241         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7242
7243         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7244
7245         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7246
7247         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7248
7249         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7250
7251         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7252         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7253         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7254         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7255
7256         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7257
7258         /* QM queues pointers table */
7259         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7260
7261         /* soft reset pulse */
7262         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7263         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7264
7265         if (CNIC_SUPPORT(bp))
7266                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7267
7268         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7269
7270         if (!CHIP_REV_IS_SLOW(bp))
7271                 /* enable hw interrupt from doorbell Q */
7272                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7273
7274         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7275
7276         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7277         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7278
7279         if (!CHIP_IS_E1(bp))
7280                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7281
7282         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7283                 if (IS_MF_AFEX(bp)) {
7284                         /* configure that VNTag and VLAN headers must be
7285                          * received in afex mode
7286                          */
7287                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7288                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7289                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7290                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7291                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7292                 } else {
7293                         /* Bit-map indicating which L2 hdrs may appear
7294                          * after the basic Ethernet header
7295                          */
7296                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7297                                bp->path_has_ovlan ? 7 : 6);
7298                 }
7299         }
7300
7301         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7302         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7303         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7304         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7305
7306         if (!CHIP_IS_E1x(bp)) {
7307                 /* reset VFC memories */
7308                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7309                            VFC_MEMORIES_RST_REG_CAM_RST |
7310                            VFC_MEMORIES_RST_REG_RAM_RST);
7311                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7312                            VFC_MEMORIES_RST_REG_CAM_RST |
7313                            VFC_MEMORIES_RST_REG_RAM_RST);
7314
7315                 msleep(20);
7316         }
7317
7318         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7319         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7320         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7321         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7322
7323         /* sync semi rtc */
7324         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7325                0x80000000);
7326         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7327                0x80000000);
7328
7329         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7330         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7331         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7332
7333         if (!CHIP_IS_E1x(bp)) {
7334                 if (IS_MF_AFEX(bp)) {
7335                         /* configure that VNTag and VLAN headers must be
7336                          * sent in afex mode
7337                          */
7338                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7339                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7340                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7341                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7342                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7343                 } else {
7344                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7345                                bp->path_has_ovlan ? 7 : 6);
7346                 }
7347         }
7348
7349         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7350
7351         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7352
7353         if (CNIC_SUPPORT(bp)) {
7354                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7355                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7356                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7357                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7358                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7359                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7360                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7361                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7362                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7363                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7364         }
7365         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7366
7367         if (sizeof(union cdu_context) != 1024)
7368                 /* we currently assume that a context is 1024 bytes */
7369                 dev_alert(&bp->pdev->dev,
7370                           "please adjust the size of cdu_context(%ld)\n",
7371                           (long)sizeof(union cdu_context));
7372
7373         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7374         val = (4 << 24) + (0 << 12) + 1024;
7375         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7376
7377         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7378         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7379         /* enable context validation interrupt from CFC */
7380         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7381
7382         /* set the thresholds to prevent CFC/CDU race */
7383         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7384
7385         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7386
7387         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7388                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7389
7390         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7391         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7392
7393         /* Reset PCIE errors for debug */
7394         REG_WR(bp, 0x2814, 0xffffffff);
7395         REG_WR(bp, 0x3820, 0xffffffff);
7396
7397         if (!CHIP_IS_E1x(bp)) {
7398                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7399                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7400                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7401                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7402                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7403                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7404                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7405                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7406                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7407                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7408                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7409         }
7410
7411         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7412         if (!CHIP_IS_E1(bp)) {
7413                 /* in E3 this done in per-port section */
7414                 if (!CHIP_IS_E3(bp))
7415                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7416         }
7417         if (CHIP_IS_E1H(bp))
7418                 /* not applicable for E2 (and above ...) */
7419                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7420
7421         if (CHIP_REV_IS_SLOW(bp))
7422                 msleep(200);
7423
7424         /* finish CFC init */
7425         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7426         if (val != 1) {
7427                 BNX2X_ERR("CFC LL_INIT failed\n");
7428                 return -EBUSY;
7429         }
7430         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7431         if (val != 1) {
7432                 BNX2X_ERR("CFC AC_INIT failed\n");
7433                 return -EBUSY;
7434         }
7435         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7436         if (val != 1) {
7437                 BNX2X_ERR("CFC CAM_INIT failed\n");
7438                 return -EBUSY;
7439         }
7440         REG_WR(bp, CFC_REG_DEBUG0, 0);
7441
7442         if (CHIP_IS_E1(bp)) {
7443                 /* read NIG statistic
7444                    to see if this is our first up since powerup */
7445                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7446                 val = *bnx2x_sp(bp, wb_data[0]);
7447
7448                 /* do internal memory self test */
7449                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7450                         BNX2X_ERR("internal mem self test failed\n");
7451                         return -EBUSY;
7452                 }
7453         }
7454
7455         bnx2x_setup_fan_failure_detection(bp);
7456
7457         /* clear PXP2 attentions */
7458         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7459
7460         bnx2x_enable_blocks_attention(bp);
7461         bnx2x_enable_blocks_parity(bp);
7462
7463         if (!BP_NOMCP(bp)) {
7464                 if (CHIP_IS_E1x(bp))
7465                         bnx2x__common_init_phy(bp);
7466         } else
7467                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7468
7469         if (SHMEM2_HAS(bp, netproc_fw_ver))
7470                 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7471
7472         return 0;
7473 }
7474
7475 /**
7476  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7477  *
7478  * @bp:         driver handle
7479  */
7480 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7481 {
7482         int rc = bnx2x_init_hw_common(bp);
7483
7484         if (rc)
7485                 return rc;
7486
7487         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7488         if (!BP_NOMCP(bp))
7489                 bnx2x__common_init_phy(bp);
7490
7491         return 0;
7492 }
7493
7494 static int bnx2x_init_hw_port(struct bnx2x *bp)
7495 {
7496         int port = BP_PORT(bp);
7497         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7498         u32 low, high;
7499         u32 val, reg;
7500
7501         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7502
7503         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7504
7505         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7506         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7507         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7508
7509         /* Timers bug workaround: disables the pf_master bit in pglue at
7510          * common phase, we need to enable it here before any dmae access are
7511          * attempted. Therefore we manually added the enable-master to the
7512          * port phase (it also happens in the function phase)
7513          */
7514         if (!CHIP_IS_E1x(bp))
7515                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7516
7517         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7518         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7519         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7520         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7521
7522         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7523         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7524         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7525         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7526
7527         /* QM cid (connection) count */
7528         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7529
7530         if (CNIC_SUPPORT(bp)) {
7531                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7532                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7533                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7534         }
7535
7536         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7537
7538         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7539
7540         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7541
7542                 if (IS_MF(bp))
7543                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7544                 else if (bp->dev->mtu > 4096) {
7545                         if (bp->flags & ONE_PORT_FLAG)
7546                                 low = 160;
7547                         else {
7548                                 val = bp->dev->mtu;
7549                                 /* (24*1024 + val*4)/256 */
7550                                 low = 96 + (val/64) +
7551                                                 ((val % 64) ? 1 : 0);
7552                         }
7553                 } else
7554                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7555                 high = low + 56;        /* 14*1024/256 */
7556                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7557                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7558         }
7559
7560         if (CHIP_MODE_IS_4_PORT(bp))
7561                 REG_WR(bp, (BP_PORT(bp) ?
7562                             BRB1_REG_MAC_GUARANTIED_1 :
7563                             BRB1_REG_MAC_GUARANTIED_0), 40);
7564
7565         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7566         if (CHIP_IS_E3B0(bp)) {
7567                 if (IS_MF_AFEX(bp)) {
7568                         /* configure headers for AFEX mode */
7569                         REG_WR(bp, BP_PORT(bp) ?
7570                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7571                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7572                         REG_WR(bp, BP_PORT(bp) ?
7573                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7574                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7575                         REG_WR(bp, BP_PORT(bp) ?
7576                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7577                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7578                 } else {
7579                         /* Ovlan exists only if we are in multi-function +
7580                          * switch-dependent mode, in switch-independent there
7581                          * is no ovlan headers
7582                          */
7583                         REG_WR(bp, BP_PORT(bp) ?
7584                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7585                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7586                                (bp->path_has_ovlan ? 7 : 6));
7587                 }
7588         }
7589
7590         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7591         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7592         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7593         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7594
7595         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7596         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7597         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7598         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7599
7600         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7601         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7602
7603         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7604
7605         if (CHIP_IS_E1x(bp)) {
7606                 /* configure PBF to work without PAUSE mtu 9000 */
7607                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7608
7609                 /* update threshold */
7610                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7611                 /* update init credit */
7612                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7613
7614                 /* probe changes */
7615                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7616                 udelay(50);
7617                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7618         }
7619
7620         if (CNIC_SUPPORT(bp))
7621                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7622
7623         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7624         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7625
7626         if (CHIP_IS_E1(bp)) {
7627                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7628                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7629         }
7630         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7631
7632         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7633
7634         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7635         /* init aeu_mask_attn_func_0/1:
7636          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7637          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7638          *             bits 4-7 are used for "per vn group attention" */
7639         val = IS_MF(bp) ? 0xF7 : 0x7;
7640         /* Enable DCBX attention for all but E1 */
7641         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7642         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7643
7644         /* SCPAD_PARITY should NOT trigger close the gates */
7645         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7646         REG_WR(bp, reg,
7647                REG_RD(bp, reg) &
7648                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7649
7650         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7651         REG_WR(bp, reg,
7652                REG_RD(bp, reg) &
7653                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7654
7655         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7656
7657         if (!CHIP_IS_E1x(bp)) {
7658                 /* Bit-map indicating which L2 hdrs may appear after the
7659                  * basic Ethernet header
7660                  */
7661                 if (IS_MF_AFEX(bp))
7662                         REG_WR(bp, BP_PORT(bp) ?
7663                                NIG_REG_P1_HDRS_AFTER_BASIC :
7664                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7665                 else
7666                         REG_WR(bp, BP_PORT(bp) ?
7667                                NIG_REG_P1_HDRS_AFTER_BASIC :
7668                                NIG_REG_P0_HDRS_AFTER_BASIC,
7669                                IS_MF_SD(bp) ? 7 : 6);
7670
7671                 if (CHIP_IS_E3(bp))
7672                         REG_WR(bp, BP_PORT(bp) ?
7673                                    NIG_REG_LLH1_MF_MODE :
7674                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7675         }
7676         if (!CHIP_IS_E3(bp))
7677                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7678
7679         if (!CHIP_IS_E1(bp)) {
7680                 /* 0x2 disable mf_ov, 0x1 enable */
7681                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7682                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7683
7684                 if (!CHIP_IS_E1x(bp)) {
7685                         val = 0;
7686                         switch (bp->mf_mode) {
7687                         case MULTI_FUNCTION_SD:
7688                                 val = 1;
7689                                 break;
7690                         case MULTI_FUNCTION_SI:
7691                         case MULTI_FUNCTION_AFEX:
7692                                 val = 2;
7693                                 break;
7694                         }
7695
7696                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7697                                                   NIG_REG_LLH0_CLS_TYPE), val);
7698                 }
7699                 {
7700                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7701                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7702                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7703                 }
7704         }
7705
7706         /* If SPIO5 is set to generate interrupts, enable it for this port */
7707         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7708         if (val & MISC_SPIO_SPIO5) {
7709                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7710                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7711                 val = REG_RD(bp, reg_addr);
7712                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7713                 REG_WR(bp, reg_addr, val);
7714         }
7715
7716         return 0;
7717 }
7718
7719 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7720 {
7721         int reg;
7722         u32 wb_write[2];
7723
7724         if (CHIP_IS_E1(bp))
7725                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7726         else
7727                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7728
7729         wb_write[0] = ONCHIP_ADDR1(addr);
7730         wb_write[1] = ONCHIP_ADDR2(addr);
7731         REG_WR_DMAE(bp, reg, wb_write, 2);
7732 }
7733
7734 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7735 {
7736         u32 data, ctl, cnt = 100;
7737         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7738         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7739         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7740         u32 sb_bit =  1 << (idu_sb_id%32);
7741         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7742         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7743
7744         /* Not supported in BC mode */
7745         if (CHIP_INT_MODE_IS_BC(bp))
7746                 return;
7747
7748         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7749                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7750                 IGU_REGULAR_CLEANUP_SET                         |
7751                 IGU_REGULAR_BCLEANUP;
7752
7753         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7754               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7755               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7756
7757         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7758                          data, igu_addr_data);
7759         REG_WR(bp, igu_addr_data, data);
7760         mmiowb();
7761         barrier();
7762         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7763                           ctl, igu_addr_ctl);
7764         REG_WR(bp, igu_addr_ctl, ctl);
7765         mmiowb();
7766         barrier();
7767
7768         /* wait for clean up to finish */
7769         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7770                 msleep(20);
7771
7772         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7773                 DP(NETIF_MSG_HW,
7774                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7775                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7776         }
7777 }
7778
7779 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7780 {
7781         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7782 }
7783
7784 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7785 {
7786         u32 i, base = FUNC_ILT_BASE(func);
7787         for (i = base; i < base + ILT_PER_FUNC; i++)
7788                 bnx2x_ilt_wr(bp, i, 0);
7789 }
7790
7791 static void bnx2x_init_searcher(struct bnx2x *bp)
7792 {
7793         int port = BP_PORT(bp);
7794         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7795         /* T1 hash bits value determines the T1 number of entries */
7796         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7797 }
7798
7799 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7800 {
7801         int rc;
7802         struct bnx2x_func_state_params func_params = {NULL};
7803         struct bnx2x_func_switch_update_params *switch_update_params =
7804                 &func_params.params.switch_update;
7805
7806         /* Prepare parameters for function state transitions */
7807         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7808         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7809
7810         func_params.f_obj = &bp->func_obj;
7811         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7812
7813         /* Function parameters */
7814         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7815                   &switch_update_params->changes);
7816         if (suspend)
7817                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7818                           &switch_update_params->changes);
7819
7820         rc = bnx2x_func_state_change(bp, &func_params);
7821
7822         return rc;
7823 }
7824
7825 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7826 {
7827         int rc, i, port = BP_PORT(bp);
7828         int vlan_en = 0, mac_en[NUM_MACS];
7829
7830         /* Close input from network */
7831         if (bp->mf_mode == SINGLE_FUNCTION) {
7832                 bnx2x_set_rx_filter(&bp->link_params, 0);
7833         } else {
7834                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7835                                    NIG_REG_LLH0_FUNC_EN);
7836                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7837                           NIG_REG_LLH0_FUNC_EN, 0);
7838                 for (i = 0; i < NUM_MACS; i++) {
7839                         mac_en[i] = REG_RD(bp, port ?
7840                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7841                                               4 * i) :
7842                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7843                                               4 * i));
7844                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7845                                               4 * i) :
7846                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7847                 }
7848         }
7849
7850         /* Close BMC to host */
7851         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7852                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7853
7854         /* Suspend Tx switching to the PF. Completion of this ramrod
7855          * further guarantees that all the packets of that PF / child
7856          * VFs in BRB were processed by the Parser, so it is safe to
7857          * change the NIC_MODE register.
7858          */
7859         rc = bnx2x_func_switch_update(bp, 1);
7860         if (rc) {
7861                 BNX2X_ERR("Can't suspend tx-switching!\n");
7862                 return rc;
7863         }
7864
7865         /* Change NIC_MODE register */
7866         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7867
7868         /* Open input from network */
7869         if (bp->mf_mode == SINGLE_FUNCTION) {
7870                 bnx2x_set_rx_filter(&bp->link_params, 1);
7871         } else {
7872                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7873                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7874                 for (i = 0; i < NUM_MACS; i++) {
7875                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7876                                               4 * i) :
7877                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7878                                   mac_en[i]);
7879                 }
7880         }
7881
7882         /* Enable BMC to host */
7883         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7884                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7885
7886         /* Resume Tx switching to the PF */
7887         rc = bnx2x_func_switch_update(bp, 0);
7888         if (rc) {
7889                 BNX2X_ERR("Can't resume tx-switching!\n");
7890                 return rc;
7891         }
7892
7893         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7894         return 0;
7895 }
7896
7897 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7898 {
7899         int rc;
7900
7901         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7902
7903         if (CONFIGURE_NIC_MODE(bp)) {
7904                 /* Configure searcher as part of function hw init */
7905                 bnx2x_init_searcher(bp);
7906
7907                 /* Reset NIC mode */
7908                 rc = bnx2x_reset_nic_mode(bp);
7909                 if (rc)
7910                         BNX2X_ERR("Can't change NIC mode!\n");
7911                 return rc;
7912         }
7913
7914         return 0;
7915 }
7916
7917 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7918  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7919  * the addresses of the transaction, resulting in was-error bit set in the pci
7920  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7921  * to clear the interrupt which detected this from the pglueb and the was done
7922  * bit
7923  */
7924 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7925 {
7926         if (!CHIP_IS_E1x(bp))
7927                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7928                        1 << BP_ABS_FUNC(bp));
7929 }
7930
7931 static int bnx2x_init_hw_func(struct bnx2x *bp)
7932 {
7933         int port = BP_PORT(bp);
7934         int func = BP_FUNC(bp);
7935         int init_phase = PHASE_PF0 + func;
7936         struct bnx2x_ilt *ilt = BP_ILT(bp);
7937         u16 cdu_ilt_start;
7938         u32 addr, val;
7939         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7940         int i, main_mem_width, rc;
7941
7942         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7943
7944         /* FLR cleanup - hmmm */
7945         if (!CHIP_IS_E1x(bp)) {
7946                 rc = bnx2x_pf_flr_clnup(bp);
7947                 if (rc) {
7948                         bnx2x_fw_dump(bp);
7949                         return rc;
7950                 }
7951         }
7952
7953         /* set MSI reconfigure capability */
7954         if (bp->common.int_block == INT_BLOCK_HC) {
7955                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7956                 val = REG_RD(bp, addr);
7957                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7958                 REG_WR(bp, addr, val);
7959         }
7960
7961         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7962         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7963
7964         ilt = BP_ILT(bp);
7965         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7966
7967         if (IS_SRIOV(bp))
7968                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7969         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7970
7971         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7972          * those of the VFs, so start line should be reset
7973          */
7974         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7975         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7976                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7977                 ilt->lines[cdu_ilt_start + i].page_mapping =
7978                         bp->context[i].cxt_mapping;
7979                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7980         }
7981
7982         bnx2x_ilt_init_op(bp, INITOP_SET);
7983
7984         if (!CONFIGURE_NIC_MODE(bp)) {
7985                 bnx2x_init_searcher(bp);
7986                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7987                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7988         } else {
7989                 /* Set NIC mode */
7990                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7991                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7992         }
7993
7994         if (!CHIP_IS_E1x(bp)) {
7995                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7996
7997                 /* Turn on a single ISR mode in IGU if driver is going to use
7998                  * INT#x or MSI
7999                  */
8000                 if (!(bp->flags & USING_MSIX_FLAG))
8001                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8002                 /*
8003                  * Timers workaround bug: function init part.
8004                  * Need to wait 20msec after initializing ILT,
8005                  * needed to make sure there are no requests in
8006                  * one of the PXP internal queues with "old" ILT addresses
8007                  */
8008                 msleep(20);
8009                 /*
8010                  * Master enable - Due to WB DMAE writes performed before this
8011                  * register is re-initialized as part of the regular function
8012                  * init
8013                  */
8014                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8015                 /* Enable the function in IGU */
8016                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8017         }
8018
8019         bp->dmae_ready = 1;
8020
8021         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8022
8023         bnx2x_clean_pglue_errors(bp);
8024
8025         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8026         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8027         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8028         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8029         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8030         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8031         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8032         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8033         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8034         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8035         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8036         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8037         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8038
8039         if (!CHIP_IS_E1x(bp))
8040                 REG_WR(bp, QM_REG_PF_EN, 1);
8041
8042         if (!CHIP_IS_E1x(bp)) {
8043                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8046                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8047         }
8048         bnx2x_init_block(bp, BLOCK_QM, init_phase);
8049
8050         bnx2x_init_block(bp, BLOCK_TM, init_phase);
8051         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8052         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8053
8054         bnx2x_iov_init_dq(bp);
8055
8056         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8057         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8058         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8059         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8060         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8061         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8062         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8063         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8064         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8065         if (!CHIP_IS_E1x(bp))
8066                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8067
8068         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8069
8070         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8071
8072         if (!CHIP_IS_E1x(bp))
8073                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8074
8075         if (IS_MF(bp)) {
8076                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8077                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8078                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8079                                bp->mf_ov);
8080                 }
8081         }
8082
8083         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8084
8085         /* HC init per function */
8086         if (bp->common.int_block == INT_BLOCK_HC) {
8087                 if (CHIP_IS_E1H(bp)) {
8088                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8089
8090                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8091                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8092                 }
8093                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8094
8095         } else {
8096                 int num_segs, sb_idx, prod_offset;
8097
8098                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8099
8100                 if (!CHIP_IS_E1x(bp)) {
8101                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8102                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8103                 }
8104
8105                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8106
8107                 if (!CHIP_IS_E1x(bp)) {
8108                         int dsb_idx = 0;
8109                         /**
8110                          * Producer memory:
8111                          * E2 mode: address 0-135 match to the mapping memory;
8112                          * 136 - PF0 default prod; 137 - PF1 default prod;
8113                          * 138 - PF2 default prod; 139 - PF3 default prod;
8114                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8115                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8116                          * 144-147 reserved.
8117                          *
8118                          * E1.5 mode - In backward compatible mode;
8119                          * for non default SB; each even line in the memory
8120                          * holds the U producer and each odd line hold
8121                          * the C producer. The first 128 producers are for
8122                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8123                          * producers are for the DSB for each PF.
8124                          * Each PF has five segments: (the order inside each
8125                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8126                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8127                          * 144-147 attn prods;
8128                          */
8129                         /* non-default-status-blocks */
8130                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8131                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8132                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8133                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8134                                         num_segs;
8135
8136                                 for (i = 0; i < num_segs; i++) {
8137                                         addr = IGU_REG_PROD_CONS_MEMORY +
8138                                                         (prod_offset + i) * 4;
8139                                         REG_WR(bp, addr, 0);
8140                                 }
8141                                 /* send consumer update with value 0 */
8142                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8143                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8144                                 bnx2x_igu_clear_sb(bp,
8145                                                    bp->igu_base_sb + sb_idx);
8146                         }
8147
8148                         /* default-status-blocks */
8149                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8150                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8151
8152                         if (CHIP_MODE_IS_4_PORT(bp))
8153                                 dsb_idx = BP_FUNC(bp);
8154                         else
8155                                 dsb_idx = BP_VN(bp);
8156
8157                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8158                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8159                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8160
8161                         /*
8162                          * igu prods come in chunks of E1HVN_MAX (4) -
8163                          * does not matters what is the current chip mode
8164                          */
8165                         for (i = 0; i < (num_segs * E1HVN_MAX);
8166                              i += E1HVN_MAX) {
8167                                 addr = IGU_REG_PROD_CONS_MEMORY +
8168                                                         (prod_offset + i)*4;
8169                                 REG_WR(bp, addr, 0);
8170                         }
8171                         /* send consumer update with 0 */
8172                         if (CHIP_INT_MODE_IS_BC(bp)) {
8173                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8174                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8175                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8176                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8177                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8178                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8179                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8181                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8182                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8183                         } else {
8184                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8186                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8187                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8188                         }
8189                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8190
8191                         /* !!! These should become driver const once
8192                            rf-tool supports split-68 const */
8193                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8194                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8195                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8196                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8197                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8198                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8199                 }
8200         }
8201
8202         /* Reset PCIE errors for debug */
8203         REG_WR(bp, 0x2114, 0xffffffff);
8204         REG_WR(bp, 0x2120, 0xffffffff);
8205
8206         if (CHIP_IS_E1x(bp)) {
8207                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8208                 main_mem_base = HC_REG_MAIN_MEMORY +
8209                                 BP_PORT(bp) * (main_mem_size * 4);
8210                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8211                 main_mem_width = 8;
8212
8213                 val = REG_RD(bp, main_mem_prty_clr);
8214                 if (val)
8215                         DP(NETIF_MSG_HW,
8216                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8217                            val);
8218
8219                 /* Clear "false" parity errors in MSI-X table */
8220                 for (i = main_mem_base;
8221                      i < main_mem_base + main_mem_size * 4;
8222                      i += main_mem_width) {
8223                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8224                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8225                                          i, main_mem_width / 4);
8226                 }
8227                 /* Clear HC parity attention */
8228                 REG_RD(bp, main_mem_prty_clr);
8229         }
8230
8231 #ifdef BNX2X_STOP_ON_ERROR
8232         /* Enable STORMs SP logging */
8233         REG_WR8(bp, BAR_USTRORM_INTMEM +
8234                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8235         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8236                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8237         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8238                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8239         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8240                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8241 #endif
8242
8243         bnx2x_phy_probe(&bp->link_params);
8244
8245         return 0;
8246 }
8247
8248 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8249 {
8250         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8251
8252         if (!CHIP_IS_E1x(bp))
8253                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8254                                sizeof(struct host_hc_status_block_e2));
8255         else
8256                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8257                                sizeof(struct host_hc_status_block_e1x));
8258
8259         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8260 }
8261
8262 void bnx2x_free_mem(struct bnx2x *bp)
8263 {
8264         int i;
8265
8266         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8267                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8268
8269         if (IS_VF(bp))
8270                 return;
8271
8272         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8273                        sizeof(struct host_sp_status_block));
8274
8275         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8276                        sizeof(struct bnx2x_slowpath));
8277
8278         for (i = 0; i < L2_ILT_LINES(bp); i++)
8279                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8280                                bp->context[i].size);
8281         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8282
8283         BNX2X_FREE(bp->ilt->lines);
8284
8285         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8286
8287         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8288                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8289
8290         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8291
8292         bnx2x_iov_free_mem(bp);
8293 }
8294
8295 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8296 {
8297         if (!CHIP_IS_E1x(bp)) {
8298                 /* size = the status block + ramrod buffers */
8299                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8300                                                     sizeof(struct host_hc_status_block_e2));
8301                 if (!bp->cnic_sb.e2_sb)
8302                         goto alloc_mem_err;
8303         } else {
8304                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8305                                                      sizeof(struct host_hc_status_block_e1x));
8306                 if (!bp->cnic_sb.e1x_sb)
8307                         goto alloc_mem_err;
8308         }
8309
8310         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8311                 /* allocate searcher T2 table, as it wasn't allocated before */
8312                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8313                 if (!bp->t2)
8314                         goto alloc_mem_err;
8315         }
8316
8317         /* write address to which L5 should insert its values */
8318         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8319                 &bp->slowpath->drv_info_to_mcp;
8320
8321         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8322                 goto alloc_mem_err;
8323
8324         return 0;
8325
8326 alloc_mem_err:
8327         bnx2x_free_mem_cnic(bp);
8328         BNX2X_ERR("Can't allocate memory\n");
8329         return -ENOMEM;
8330 }
8331
8332 int bnx2x_alloc_mem(struct bnx2x *bp)
8333 {
8334         int i, allocated, context_size;
8335
8336         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8337                 /* allocate searcher T2 table */
8338                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8339                 if (!bp->t2)
8340                         goto alloc_mem_err;
8341         }
8342
8343         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8344                                              sizeof(struct host_sp_status_block));
8345         if (!bp->def_status_blk)
8346                 goto alloc_mem_err;
8347
8348         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8349                                        sizeof(struct bnx2x_slowpath));
8350         if (!bp->slowpath)
8351                 goto alloc_mem_err;
8352
8353         /* Allocate memory for CDU context:
8354          * This memory is allocated separately and not in the generic ILT
8355          * functions because CDU differs in few aspects:
8356          * 1. There are multiple entities allocating memory for context -
8357          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8358          * its own ILT lines.
8359          * 2. Since CDU page-size is not a single 4KB page (which is the case
8360          * for the other ILT clients), to be efficient we want to support
8361          * allocation of sub-page-size in the last entry.
8362          * 3. Context pointers are used by the driver to pass to FW / update
8363          * the context (for the other ILT clients the pointers are used just to
8364          * free the memory during unload).
8365          */
8366         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8367
8368         for (i = 0, allocated = 0; allocated < context_size; i++) {
8369                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8370                                           (context_size - allocated));
8371                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8372                                                       bp->context[i].size);
8373                 if (!bp->context[i].vcxt)
8374                         goto alloc_mem_err;
8375                 allocated += bp->context[i].size;
8376         }
8377         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8378                                  GFP_KERNEL);
8379         if (!bp->ilt->lines)
8380                 goto alloc_mem_err;
8381
8382         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8383                 goto alloc_mem_err;
8384
8385         if (bnx2x_iov_alloc_mem(bp))
8386                 goto alloc_mem_err;
8387
8388         /* Slow path ring */
8389         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8390         if (!bp->spq)
8391                 goto alloc_mem_err;
8392
8393         /* EQ */
8394         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8395                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8396         if (!bp->eq_ring)
8397                 goto alloc_mem_err;
8398
8399         return 0;
8400
8401 alloc_mem_err:
8402         bnx2x_free_mem(bp);
8403         BNX2X_ERR("Can't allocate memory\n");
8404         return -ENOMEM;
8405 }
8406
8407 /*
8408  * Init service functions
8409  */
8410
8411 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8412                       struct bnx2x_vlan_mac_obj *obj, bool set,
8413                       int mac_type, unsigned long *ramrod_flags)
8414 {
8415         int rc;
8416         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8417
8418         memset(&ramrod_param, 0, sizeof(ramrod_param));
8419
8420         /* Fill general parameters */
8421         ramrod_param.vlan_mac_obj = obj;
8422         ramrod_param.ramrod_flags = *ramrod_flags;
8423
8424         /* Fill a user request section if needed */
8425         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8426                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8427
8428                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8429
8430                 /* Set the command: ADD or DEL */
8431                 if (set)
8432                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8433                 else
8434                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8435         }
8436
8437         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8438
8439         if (rc == -EEXIST) {
8440                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8441                 /* do not treat adding same MAC as error */
8442                 rc = 0;
8443         } else if (rc < 0)
8444                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8445
8446         return rc;
8447 }
8448
8449 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8450                        struct bnx2x_vlan_mac_obj *obj, bool set,
8451                        unsigned long *ramrod_flags)
8452 {
8453         int rc;
8454         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8455
8456         memset(&ramrod_param, 0, sizeof(ramrod_param));
8457
8458         /* Fill general parameters */
8459         ramrod_param.vlan_mac_obj = obj;
8460         ramrod_param.ramrod_flags = *ramrod_flags;
8461
8462         /* Fill a user request section if needed */
8463         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8464                 ramrod_param.user_req.u.vlan.vlan = vlan;
8465                 /* Set the command: ADD or DEL */
8466                 if (set)
8467                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8468                 else
8469                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8470         }
8471
8472         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8473
8474         if (rc == -EEXIST) {
8475                 /* Do not treat adding same vlan as error. */
8476                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8477                 rc = 0;
8478         } else if (rc < 0) {
8479                 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8480         }
8481
8482         return rc;
8483 }
8484
8485 int bnx2x_del_all_macs(struct bnx2x *bp,
8486                        struct bnx2x_vlan_mac_obj *mac_obj,
8487                        int mac_type, bool wait_for_comp)
8488 {
8489         int rc;
8490         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8491
8492         /* Wait for completion of requested */
8493         if (wait_for_comp)
8494                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8495
8496         /* Set the mac type of addresses we want to clear */
8497         __set_bit(mac_type, &vlan_mac_flags);
8498
8499         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8500         if (rc < 0)
8501                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8502
8503         return rc;
8504 }
8505
8506 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8507 {
8508         if (IS_PF(bp)) {
8509                 unsigned long ramrod_flags = 0;
8510
8511                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8512                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8513                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8514                                          &bp->sp_objs->mac_obj, set,
8515                                          BNX2X_ETH_MAC, &ramrod_flags);
8516         } else { /* vf */
8517                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8518                                              bp->fp->index, set);
8519         }
8520 }
8521
8522 int bnx2x_setup_leading(struct bnx2x *bp)
8523 {
8524         if (IS_PF(bp))
8525                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8526         else /* VF */
8527                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8528 }
8529
8530 /**
8531  * bnx2x_set_int_mode - configure interrupt mode
8532  *
8533  * @bp:         driver handle
8534  *
8535  * In case of MSI-X it will also try to enable MSI-X.
8536  */
8537 int bnx2x_set_int_mode(struct bnx2x *bp)
8538 {
8539         int rc = 0;
8540
8541         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8542                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8543                 return -EINVAL;
8544         }
8545
8546         switch (int_mode) {
8547         case BNX2X_INT_MODE_MSIX:
8548                 /* attempt to enable msix */
8549                 rc = bnx2x_enable_msix(bp);
8550
8551                 /* msix attained */
8552                 if (!rc)
8553                         return 0;
8554
8555                 /* vfs use only msix */
8556                 if (rc && IS_VF(bp))
8557                         return rc;
8558
8559                 /* failed to enable multiple MSI-X */
8560                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8561                                bp->num_queues,
8562                                1 + bp->num_cnic_queues);
8563
8564                 /* falling through... */
8565         case BNX2X_INT_MODE_MSI:
8566                 bnx2x_enable_msi(bp);
8567
8568                 /* falling through... */
8569         case BNX2X_INT_MODE_INTX:
8570                 bp->num_ethernet_queues = 1;
8571                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8572                 BNX2X_DEV_INFO("set number of queues to 1\n");
8573                 break;
8574         default:
8575                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8576                 return -EINVAL;
8577         }
8578         return 0;
8579 }
8580
8581 /* must be called prior to any HW initializations */
8582 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8583 {
8584         if (IS_SRIOV(bp))
8585                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8586         return L2_ILT_LINES(bp);
8587 }
8588
8589 void bnx2x_ilt_set_info(struct bnx2x *bp)
8590 {
8591         struct ilt_client_info *ilt_client;
8592         struct bnx2x_ilt *ilt = BP_ILT(bp);
8593         u16 line = 0;
8594
8595         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8596         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8597
8598         /* CDU */
8599         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8600         ilt_client->client_num = ILT_CLIENT_CDU;
8601         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8602         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8603         ilt_client->start = line;
8604         line += bnx2x_cid_ilt_lines(bp);
8605
8606         if (CNIC_SUPPORT(bp))
8607                 line += CNIC_ILT_LINES;
8608         ilt_client->end = line - 1;
8609
8610         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8611            ilt_client->start,
8612            ilt_client->end,
8613            ilt_client->page_size,
8614            ilt_client->flags,
8615            ilog2(ilt_client->page_size >> 12));
8616
8617         /* QM */
8618         if (QM_INIT(bp->qm_cid_count)) {
8619                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8620                 ilt_client->client_num = ILT_CLIENT_QM;
8621                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8622                 ilt_client->flags = 0;
8623                 ilt_client->start = line;
8624
8625                 /* 4 bytes for each cid */
8626                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8627                                                          QM_ILT_PAGE_SZ);
8628
8629                 ilt_client->end = line - 1;
8630
8631                 DP(NETIF_MSG_IFUP,
8632                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8633                    ilt_client->start,
8634                    ilt_client->end,
8635                    ilt_client->page_size,
8636                    ilt_client->flags,
8637                    ilog2(ilt_client->page_size >> 12));
8638         }
8639
8640         if (CNIC_SUPPORT(bp)) {
8641                 /* SRC */
8642                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8643                 ilt_client->client_num = ILT_CLIENT_SRC;
8644                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8645                 ilt_client->flags = 0;
8646                 ilt_client->start = line;
8647                 line += SRC_ILT_LINES;
8648                 ilt_client->end = line - 1;
8649
8650                 DP(NETIF_MSG_IFUP,
8651                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8652                    ilt_client->start,
8653                    ilt_client->end,
8654                    ilt_client->page_size,
8655                    ilt_client->flags,
8656                    ilog2(ilt_client->page_size >> 12));
8657
8658                 /* TM */
8659                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8660                 ilt_client->client_num = ILT_CLIENT_TM;
8661                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8662                 ilt_client->flags = 0;
8663                 ilt_client->start = line;
8664                 line += TM_ILT_LINES;
8665                 ilt_client->end = line - 1;
8666
8667                 DP(NETIF_MSG_IFUP,
8668                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8669                    ilt_client->start,
8670                    ilt_client->end,
8671                    ilt_client->page_size,
8672                    ilt_client->flags,
8673                    ilog2(ilt_client->page_size >> 12));
8674         }
8675
8676         BUG_ON(line > ILT_MAX_LINES);
8677 }
8678
8679 /**
8680  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8681  *
8682  * @bp:                 driver handle
8683  * @fp:                 pointer to fastpath
8684  * @init_params:        pointer to parameters structure
8685  *
8686  * parameters configured:
8687  *      - HC configuration
8688  *      - Queue's CDU context
8689  */
8690 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8691         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8692 {
8693         u8 cos;
8694         int cxt_index, cxt_offset;
8695
8696         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8697         if (!IS_FCOE_FP(fp)) {
8698                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8699                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8700
8701                 /* If HC is supported, enable host coalescing in the transition
8702                  * to INIT state.
8703                  */
8704                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8705                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8706
8707                 /* HC rate */
8708                 init_params->rx.hc_rate = bp->rx_ticks ?
8709                         (1000000 / bp->rx_ticks) : 0;
8710                 init_params->tx.hc_rate = bp->tx_ticks ?
8711                         (1000000 / bp->tx_ticks) : 0;
8712
8713                 /* FW SB ID */
8714                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8715                         fp->fw_sb_id;
8716
8717                 /*
8718                  * CQ index among the SB indices: FCoE clients uses the default
8719                  * SB, therefore it's different.
8720                  */
8721                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8722                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8723         }
8724
8725         /* set maximum number of COSs supported by this queue */
8726         init_params->max_cos = fp->max_cos;
8727
8728         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8729             fp->index, init_params->max_cos);
8730
8731         /* set the context pointers queue object */
8732         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8733                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8734                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8735                                 ILT_PAGE_CIDS);
8736                 init_params->cxts[cos] =
8737                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8738         }
8739 }
8740
8741 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8742                         struct bnx2x_queue_state_params *q_params,
8743                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8744                         int tx_index, bool leading)
8745 {
8746         memset(tx_only_params, 0, sizeof(*tx_only_params));
8747
8748         /* Set the command */
8749         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8750
8751         /* Set tx-only QUEUE flags: don't zero statistics */
8752         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8753
8754         /* choose the index of the cid to send the slow path on */
8755         tx_only_params->cid_index = tx_index;
8756
8757         /* Set general TX_ONLY_SETUP parameters */
8758         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8759
8760         /* Set Tx TX_ONLY_SETUP parameters */
8761         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8762
8763         DP(NETIF_MSG_IFUP,
8764            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8765            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8766            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8767            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8768
8769         /* send the ramrod */
8770         return bnx2x_queue_state_change(bp, q_params);
8771 }
8772
8773 /**
8774  * bnx2x_setup_queue - setup queue
8775  *
8776  * @bp:         driver handle
8777  * @fp:         pointer to fastpath
8778  * @leading:    is leading
8779  *
8780  * This function performs 2 steps in a Queue state machine
8781  *      actually: 1) RESET->INIT 2) INIT->SETUP
8782  */
8783
8784 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8785                        bool leading)
8786 {
8787         struct bnx2x_queue_state_params q_params = {NULL};
8788         struct bnx2x_queue_setup_params *setup_params =
8789                                                 &q_params.params.setup;
8790         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8791                                                 &q_params.params.tx_only;
8792         int rc;
8793         u8 tx_index;
8794
8795         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8796
8797         /* reset IGU state skip FCoE L2 queue */
8798         if (!IS_FCOE_FP(fp))
8799                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8800                              IGU_INT_ENABLE, 0);
8801
8802         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8803         /* We want to wait for completion in this context */
8804         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8805
8806         /* Prepare the INIT parameters */
8807         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8808
8809         /* Set the command */
8810         q_params.cmd = BNX2X_Q_CMD_INIT;
8811
8812         /* Change the state to INIT */
8813         rc = bnx2x_queue_state_change(bp, &q_params);
8814         if (rc) {
8815                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8816                 return rc;
8817         }
8818
8819         DP(NETIF_MSG_IFUP, "init complete\n");
8820
8821         /* Now move the Queue to the SETUP state... */
8822         memset(setup_params, 0, sizeof(*setup_params));
8823
8824         /* Set QUEUE flags */
8825         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8826
8827         /* Set general SETUP parameters */
8828         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8829                                 FIRST_TX_COS_INDEX);
8830
8831         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8832                             &setup_params->rxq_params);
8833
8834         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8835                            FIRST_TX_COS_INDEX);
8836
8837         /* Set the command */
8838         q_params.cmd = BNX2X_Q_CMD_SETUP;
8839
8840         if (IS_FCOE_FP(fp))
8841                 bp->fcoe_init = true;
8842
8843         /* Change the state to SETUP */
8844         rc = bnx2x_queue_state_change(bp, &q_params);
8845         if (rc) {
8846                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8847                 return rc;
8848         }
8849
8850         /* loop through the relevant tx-only indices */
8851         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8852               tx_index < fp->max_cos;
8853               tx_index++) {
8854
8855                 /* prepare and send tx-only ramrod*/
8856                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8857                                           tx_only_params, tx_index, leading);
8858                 if (rc) {
8859                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8860                                   fp->index, tx_index);
8861                         return rc;
8862                 }
8863         }
8864
8865         return rc;
8866 }
8867
8868 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8869 {
8870         struct bnx2x_fastpath *fp = &bp->fp[index];
8871         struct bnx2x_fp_txdata *txdata;
8872         struct bnx2x_queue_state_params q_params = {NULL};
8873         int rc, tx_index;
8874
8875         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8876
8877         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8878         /* We want to wait for completion in this context */
8879         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8880
8881         /* close tx-only connections */
8882         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8883              tx_index < fp->max_cos;
8884              tx_index++){
8885
8886                 /* ascertain this is a normal queue*/
8887                 txdata = fp->txdata_ptr[tx_index];
8888
8889                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8890                                                         txdata->txq_index);
8891
8892                 /* send halt terminate on tx-only connection */
8893                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8894                 memset(&q_params.params.terminate, 0,
8895                        sizeof(q_params.params.terminate));
8896                 q_params.params.terminate.cid_index = tx_index;
8897
8898                 rc = bnx2x_queue_state_change(bp, &q_params);
8899                 if (rc)
8900                         return rc;
8901
8902                 /* send halt terminate on tx-only connection */
8903                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8904                 memset(&q_params.params.cfc_del, 0,
8905                        sizeof(q_params.params.cfc_del));
8906                 q_params.params.cfc_del.cid_index = tx_index;
8907                 rc = bnx2x_queue_state_change(bp, &q_params);
8908                 if (rc)
8909                         return rc;
8910         }
8911         /* Stop the primary connection: */
8912         /* ...halt the connection */
8913         q_params.cmd = BNX2X_Q_CMD_HALT;
8914         rc = bnx2x_queue_state_change(bp, &q_params);
8915         if (rc)
8916                 return rc;
8917
8918         /* ...terminate the connection */
8919         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8920         memset(&q_params.params.terminate, 0,
8921                sizeof(q_params.params.terminate));
8922         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8923         rc = bnx2x_queue_state_change(bp, &q_params);
8924         if (rc)
8925                 return rc;
8926         /* ...delete cfc entry */
8927         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8928         memset(&q_params.params.cfc_del, 0,
8929                sizeof(q_params.params.cfc_del));
8930         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8931         return bnx2x_queue_state_change(bp, &q_params);
8932 }
8933
8934 static void bnx2x_reset_func(struct bnx2x *bp)
8935 {
8936         int port = BP_PORT(bp);
8937         int func = BP_FUNC(bp);
8938         int i;
8939
8940         /* Disable the function in the FW */
8941         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8942         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8943         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8944         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8945
8946         /* FP SBs */
8947         for_each_eth_queue(bp, i) {
8948                 struct bnx2x_fastpath *fp = &bp->fp[i];
8949                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8950                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8951                            SB_DISABLED);
8952         }
8953
8954         if (CNIC_LOADED(bp))
8955                 /* CNIC SB */
8956                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8957                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8958                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8959
8960         /* SP SB */
8961         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8962                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8963                 SB_DISABLED);
8964
8965         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8966                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8967                        0);
8968
8969         /* Configure IGU */
8970         if (bp->common.int_block == INT_BLOCK_HC) {
8971                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8972                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8973         } else {
8974                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8975                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8976         }
8977
8978         if (CNIC_LOADED(bp)) {
8979                 /* Disable Timer scan */
8980                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8981                 /*
8982                  * Wait for at least 10ms and up to 2 second for the timers
8983                  * scan to complete
8984                  */
8985                 for (i = 0; i < 200; i++) {
8986                         usleep_range(10000, 20000);
8987                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8988                                 break;
8989                 }
8990         }
8991         /* Clear ILT */
8992         bnx2x_clear_func_ilt(bp, func);
8993
8994         /* Timers workaround bug for E2: if this is vnic-3,
8995          * we need to set the entire ilt range for this timers.
8996          */
8997         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8998                 struct ilt_client_info ilt_cli;
8999                 /* use dummy TM client */
9000                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9001                 ilt_cli.start = 0;
9002                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9003                 ilt_cli.client_num = ILT_CLIENT_TM;
9004
9005                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9006         }
9007
9008         /* this assumes that reset_port() called before reset_func()*/
9009         if (!CHIP_IS_E1x(bp))
9010                 bnx2x_pf_disable(bp);
9011
9012         bp->dmae_ready = 0;
9013 }
9014
9015 static void bnx2x_reset_port(struct bnx2x *bp)
9016 {
9017         int port = BP_PORT(bp);
9018         u32 val;
9019
9020         /* Reset physical Link */
9021         bnx2x__link_reset(bp);
9022
9023         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9024
9025         /* Do not rcv packets to BRB */
9026         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9027         /* Do not direct rcv packets that are not for MCP to the BRB */
9028         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9029                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9030
9031         /* Configure AEU */
9032         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9033
9034         msleep(100);
9035         /* Check for BRB port occupancy */
9036         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9037         if (val)
9038                 DP(NETIF_MSG_IFDOWN,
9039                    "BRB1 is not empty  %d blocks are occupied\n", val);
9040
9041         /* TODO: Close Doorbell port? */
9042 }
9043
9044 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9045 {
9046         struct bnx2x_func_state_params func_params = {NULL};
9047
9048         /* Prepare parameters for function state transitions */
9049         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9050
9051         func_params.f_obj = &bp->func_obj;
9052         func_params.cmd = BNX2X_F_CMD_HW_RESET;
9053
9054         func_params.params.hw_init.load_phase = load_code;
9055
9056         return bnx2x_func_state_change(bp, &func_params);
9057 }
9058
9059 static int bnx2x_func_stop(struct bnx2x *bp)
9060 {
9061         struct bnx2x_func_state_params func_params = {NULL};
9062         int rc;
9063
9064         /* Prepare parameters for function state transitions */
9065         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9066         func_params.f_obj = &bp->func_obj;
9067         func_params.cmd = BNX2X_F_CMD_STOP;
9068
9069         /*
9070          * Try to stop the function the 'good way'. If fails (in case
9071          * of a parity error during bnx2x_chip_cleanup()) and we are
9072          * not in a debug mode, perform a state transaction in order to
9073          * enable further HW_RESET transaction.
9074          */
9075         rc = bnx2x_func_state_change(bp, &func_params);
9076         if (rc) {
9077 #ifdef BNX2X_STOP_ON_ERROR
9078                 return rc;
9079 #else
9080                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9081                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9082                 return bnx2x_func_state_change(bp, &func_params);
9083 #endif
9084         }
9085
9086         return 0;
9087 }
9088
9089 /**
9090  * bnx2x_send_unload_req - request unload mode from the MCP.
9091  *
9092  * @bp:                 driver handle
9093  * @unload_mode:        requested function's unload mode
9094  *
9095  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9096  */
9097 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9098 {
9099         u32 reset_code = 0;
9100         int port = BP_PORT(bp);
9101
9102         /* Select the UNLOAD request mode */
9103         if (unload_mode == UNLOAD_NORMAL)
9104                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9105
9106         else if (bp->flags & NO_WOL_FLAG)
9107                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9108
9109         else if (bp->wol) {
9110                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9111                 u8 *mac_addr = bp->dev->dev_addr;
9112                 struct pci_dev *pdev = bp->pdev;
9113                 u32 val;
9114                 u16 pmc;
9115
9116                 /* The mac address is written to entries 1-4 to
9117                  * preserve entry 0 which is used by the PMF
9118                  */
9119                 u8 entry = (BP_VN(bp) + 1)*8;
9120
9121                 val = (mac_addr[0] << 8) | mac_addr[1];
9122                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9123
9124                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9125                       (mac_addr[4] << 8) | mac_addr[5];
9126                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9127
9128                 /* Enable the PME and clear the status */
9129                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9130                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9131                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9132
9133                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9134
9135         } else
9136                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9137
9138         /* Send the request to the MCP */
9139         if (!BP_NOMCP(bp))
9140                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9141         else {
9142                 int path = BP_PATH(bp);
9143
9144                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9145                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9146                    bnx2x_load_count[path][2]);
9147                 bnx2x_load_count[path][0]--;
9148                 bnx2x_load_count[path][1 + port]--;
9149                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9150                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9151                    bnx2x_load_count[path][2]);
9152                 if (bnx2x_load_count[path][0] == 0)
9153                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9154                 else if (bnx2x_load_count[path][1 + port] == 0)
9155                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9156                 else
9157                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9158         }
9159
9160         return reset_code;
9161 }
9162
9163 /**
9164  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9165  *
9166  * @bp:         driver handle
9167  * @keep_link:          true iff link should be kept up
9168  */
9169 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9170 {
9171         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9172
9173         /* Report UNLOAD_DONE to MCP */
9174         if (!BP_NOMCP(bp))
9175                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9176 }
9177
9178 static int bnx2x_func_wait_started(struct bnx2x *bp)
9179 {
9180         int tout = 50;
9181         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9182
9183         if (!bp->port.pmf)
9184                 return 0;
9185
9186         /*
9187          * (assumption: No Attention from MCP at this stage)
9188          * PMF probably in the middle of TX disable/enable transaction
9189          * 1. Sync IRS for default SB
9190          * 2. Sync SP queue - this guarantees us that attention handling started
9191          * 3. Wait, that TX disable/enable transaction completes
9192          *
9193          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9194          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9195          * received completion for the transaction the state is TX_STOPPED.
9196          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9197          * transaction.
9198          */
9199
9200         /* make sure default SB ISR is done */
9201         if (msix)
9202                 synchronize_irq(bp->msix_table[0].vector);
9203         else
9204                 synchronize_irq(bp->pdev->irq);
9205
9206         flush_workqueue(bnx2x_wq);
9207         flush_workqueue(bnx2x_iov_wq);
9208
9209         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9210                                 BNX2X_F_STATE_STARTED && tout--)
9211                 msleep(20);
9212
9213         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9214                                                 BNX2X_F_STATE_STARTED) {
9215 #ifdef BNX2X_STOP_ON_ERROR
9216                 BNX2X_ERR("Wrong function state\n");
9217                 return -EBUSY;
9218 #else
9219                 /*
9220                  * Failed to complete the transaction in a "good way"
9221                  * Force both transactions with CLR bit
9222                  */
9223                 struct bnx2x_func_state_params func_params = {NULL};
9224
9225                 DP(NETIF_MSG_IFDOWN,
9226                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9227
9228                 func_params.f_obj = &bp->func_obj;
9229                 __set_bit(RAMROD_DRV_CLR_ONLY,
9230                                         &func_params.ramrod_flags);
9231
9232                 /* STARTED-->TX_ST0PPED */
9233                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9234                 bnx2x_func_state_change(bp, &func_params);
9235
9236                 /* TX_ST0PPED-->STARTED */
9237                 func_params.cmd = BNX2X_F_CMD_TX_START;
9238                 return bnx2x_func_state_change(bp, &func_params);
9239 #endif
9240         }
9241
9242         return 0;
9243 }
9244
9245 static void bnx2x_disable_ptp(struct bnx2x *bp)
9246 {
9247         int port = BP_PORT(bp);
9248
9249         /* Disable sending PTP packets to host */
9250         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9251                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9252
9253         /* Reset PTP event detection rules */
9254         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9255                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9256         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9257                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9258         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9259                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9260         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9261                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9262
9263         /* Disable the PTP feature */
9264         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9265                NIG_REG_P0_PTP_EN, 0x0);
9266 }
9267
9268 /* Called during unload, to stop PTP-related stuff */
9269 static void bnx2x_stop_ptp(struct bnx2x *bp)
9270 {
9271         /* Cancel PTP work queue. Should be done after the Tx queues are
9272          * drained to prevent additional scheduling.
9273          */
9274         cancel_work_sync(&bp->ptp_task);
9275
9276         if (bp->ptp_tx_skb) {
9277                 dev_kfree_skb_any(bp->ptp_tx_skb);
9278                 bp->ptp_tx_skb = NULL;
9279         }
9280
9281         /* Disable PTP in HW */
9282         bnx2x_disable_ptp(bp);
9283
9284         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9285 }
9286
9287 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9288 {
9289         int port = BP_PORT(bp);
9290         int i, rc = 0;
9291         u8 cos;
9292         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9293         u32 reset_code;
9294
9295         /* Wait until tx fastpath tasks complete */
9296         for_each_tx_queue(bp, i) {
9297                 struct bnx2x_fastpath *fp = &bp->fp[i];
9298
9299                 for_each_cos_in_tx_queue(fp, cos)
9300                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9301 #ifdef BNX2X_STOP_ON_ERROR
9302                 if (rc)
9303                         return;
9304 #endif
9305         }
9306
9307         /* Give HW time to discard old tx messages */
9308         usleep_range(1000, 2000);
9309
9310         /* Clean all ETH MACs */
9311         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9312                                 false);
9313         if (rc < 0)
9314                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9315
9316         /* Clean up UC list  */
9317         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9318                                 true);
9319         if (rc < 0)
9320                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9321                           rc);
9322
9323         /* Disable LLH */
9324         if (!CHIP_IS_E1(bp))
9325                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9326
9327         /* Set "drop all" (stop Rx).
9328          * We need to take a netif_addr_lock() here in order to prevent
9329          * a race between the completion code and this code.
9330          */
9331         netif_addr_lock_bh(bp->dev);
9332         /* Schedule the rx_mode command */
9333         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9334                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9335         else
9336                 bnx2x_set_storm_rx_mode(bp);
9337
9338         /* Cleanup multicast configuration */
9339         rparam.mcast_obj = &bp->mcast_obj;
9340         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9341         if (rc < 0)
9342                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9343
9344         netif_addr_unlock_bh(bp->dev);
9345
9346         bnx2x_iov_chip_cleanup(bp);
9347
9348         /*
9349          * Send the UNLOAD_REQUEST to the MCP. This will return if
9350          * this function should perform FUNC, PORT or COMMON HW
9351          * reset.
9352          */
9353         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9354
9355         /*
9356          * (assumption: No Attention from MCP at this stage)
9357          * PMF probably in the middle of TX disable/enable transaction
9358          */
9359         rc = bnx2x_func_wait_started(bp);
9360         if (rc) {
9361                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9362 #ifdef BNX2X_STOP_ON_ERROR
9363                 return;
9364 #endif
9365         }
9366
9367         /* Close multi and leading connections
9368          * Completions for ramrods are collected in a synchronous way
9369          */
9370         for_each_eth_queue(bp, i)
9371                 if (bnx2x_stop_queue(bp, i))
9372 #ifdef BNX2X_STOP_ON_ERROR
9373                         return;
9374 #else
9375                         goto unload_error;
9376 #endif
9377
9378         if (CNIC_LOADED(bp)) {
9379                 for_each_cnic_queue(bp, i)
9380                         if (bnx2x_stop_queue(bp, i))
9381 #ifdef BNX2X_STOP_ON_ERROR
9382                                 return;
9383 #else
9384                                 goto unload_error;
9385 #endif
9386         }
9387
9388         /* If SP settings didn't get completed so far - something
9389          * very wrong has happen.
9390          */
9391         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9392                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9393
9394 #ifndef BNX2X_STOP_ON_ERROR
9395 unload_error:
9396 #endif
9397         rc = bnx2x_func_stop(bp);
9398         if (rc) {
9399                 BNX2X_ERR("Function stop failed!\n");
9400 #ifdef BNX2X_STOP_ON_ERROR
9401                 return;
9402 #endif
9403         }
9404
9405         /* stop_ptp should be after the Tx queues are drained to prevent
9406          * scheduling to the cancelled PTP work queue. It should also be after
9407          * function stop ramrod is sent, since as part of this ramrod FW access
9408          * PTP registers.
9409          */
9410         if (bp->flags & PTP_SUPPORTED)
9411                 bnx2x_stop_ptp(bp);
9412
9413         /* Disable HW interrupts, NAPI */
9414         bnx2x_netif_stop(bp, 1);
9415         /* Delete all NAPI objects */
9416         bnx2x_del_all_napi(bp);
9417         if (CNIC_LOADED(bp))
9418                 bnx2x_del_all_napi_cnic(bp);
9419
9420         /* Release IRQs */
9421         bnx2x_free_irq(bp);
9422
9423         /* Reset the chip */
9424         rc = bnx2x_reset_hw(bp, reset_code);
9425         if (rc)
9426                 BNX2X_ERR("HW_RESET failed\n");
9427
9428         /* Report UNLOAD_DONE to MCP */
9429         bnx2x_send_unload_done(bp, keep_link);
9430 }
9431
9432 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9433 {
9434         u32 val;
9435
9436         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9437
9438         if (CHIP_IS_E1(bp)) {
9439                 int port = BP_PORT(bp);
9440                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9441                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9442
9443                 val = REG_RD(bp, addr);
9444                 val &= ~(0x300);
9445                 REG_WR(bp, addr, val);
9446         } else {
9447                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9448                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9449                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9450                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9451         }
9452 }
9453
9454 /* Close gates #2, #3 and #4: */
9455 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9456 {
9457         u32 val;
9458
9459         /* Gates #2 and #4a are closed/opened for "not E1" only */
9460         if (!CHIP_IS_E1(bp)) {
9461                 /* #4 */
9462                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9463                 /* #2 */
9464                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9465         }
9466
9467         /* #3 */
9468         if (CHIP_IS_E1x(bp)) {
9469                 /* Prevent interrupts from HC on both ports */
9470                 val = REG_RD(bp, HC_REG_CONFIG_1);
9471                 REG_WR(bp, HC_REG_CONFIG_1,
9472                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9473                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9474
9475                 val = REG_RD(bp, HC_REG_CONFIG_0);
9476                 REG_WR(bp, HC_REG_CONFIG_0,
9477                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9478                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9479         } else {
9480                 /* Prevent incoming interrupts in IGU */
9481                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9482
9483                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9484                        (!close) ?
9485                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9486                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9487         }
9488
9489         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9490                 close ? "closing" : "opening");
9491         mmiowb();
9492 }
9493
9494 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9495
9496 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9497 {
9498         /* Do some magic... */
9499         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9500         *magic_val = val & SHARED_MF_CLP_MAGIC;
9501         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9502 }
9503
9504 /**
9505  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9506  *
9507  * @bp:         driver handle
9508  * @magic_val:  old value of the `magic' bit.
9509  */
9510 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9511 {
9512         /* Restore the `magic' bit value... */
9513         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9514         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9515                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9516 }
9517
9518 /**
9519  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9520  *
9521  * @bp:         driver handle
9522  * @magic_val:  old value of 'magic' bit.
9523  *
9524  * Takes care of CLP configurations.
9525  */
9526 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9527 {
9528         u32 shmem;
9529         u32 validity_offset;
9530
9531         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9532
9533         /* Set `magic' bit in order to save MF config */
9534         if (!CHIP_IS_E1(bp))
9535                 bnx2x_clp_reset_prep(bp, magic_val);
9536
9537         /* Get shmem offset */
9538         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9539         validity_offset =
9540                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9541
9542         /* Clear validity map flags */
9543         if (shmem > 0)
9544                 REG_WR(bp, shmem + validity_offset, 0);
9545 }
9546
9547 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9548 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9549
9550 /**
9551  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9552  *
9553  * @bp: driver handle
9554  */
9555 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9556 {
9557         /* special handling for emulation and FPGA,
9558            wait 10 times longer */
9559         if (CHIP_REV_IS_SLOW(bp))
9560                 msleep(MCP_ONE_TIMEOUT*10);
9561         else
9562                 msleep(MCP_ONE_TIMEOUT);
9563 }
9564
9565 /*
9566  * initializes bp->common.shmem_base and waits for validity signature to appear
9567  */
9568 static int bnx2x_init_shmem(struct bnx2x *bp)
9569 {
9570         int cnt = 0;
9571         u32 val = 0;
9572
9573         do {
9574                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9575                 if (bp->common.shmem_base) {
9576                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9577                         if (val & SHR_MEM_VALIDITY_MB)
9578                                 return 0;
9579                 }
9580
9581                 bnx2x_mcp_wait_one(bp);
9582
9583         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9584
9585         BNX2X_ERR("BAD MCP validity signature\n");
9586
9587         return -ENODEV;
9588 }
9589
9590 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9591 {
9592         int rc = bnx2x_init_shmem(bp);
9593
9594         /* Restore the `magic' bit value */
9595         if (!CHIP_IS_E1(bp))
9596                 bnx2x_clp_reset_done(bp, magic_val);
9597
9598         return rc;
9599 }
9600
9601 static void bnx2x_pxp_prep(struct bnx2x *bp)
9602 {
9603         if (!CHIP_IS_E1(bp)) {
9604                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9605                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9606                 mmiowb();
9607         }
9608 }
9609
9610 /*
9611  * Reset the whole chip except for:
9612  *      - PCIE core
9613  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9614  *              one reset bit)
9615  *      - IGU
9616  *      - MISC (including AEU)
9617  *      - GRC
9618  *      - RBCN, RBCP
9619  */
9620 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9621 {
9622         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9623         u32 global_bits2, stay_reset2;
9624
9625         /*
9626          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9627          * (per chip) blocks.
9628          */
9629         global_bits2 =
9630                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9631                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9632
9633         /* Don't reset the following blocks.
9634          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9635          *            reset, as in 4 port device they might still be owned
9636          *            by the MCP (there is only one leader per path).
9637          */
9638         not_reset_mask1 =
9639                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9640                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9641                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9642
9643         not_reset_mask2 =
9644                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9645                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9646                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9647                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9648                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9649                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9650                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9651                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9652                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9653                 MISC_REGISTERS_RESET_REG_2_PGLC |
9654                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9655                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9656                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9657                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9658                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9659                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9660
9661         /*
9662          * Keep the following blocks in reset:
9663          *  - all xxMACs are handled by the bnx2x_link code.
9664          */
9665         stay_reset2 =
9666                 MISC_REGISTERS_RESET_REG_2_XMAC |
9667                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9668
9669         /* Full reset masks according to the chip */
9670         reset_mask1 = 0xffffffff;
9671
9672         if (CHIP_IS_E1(bp))
9673                 reset_mask2 = 0xffff;
9674         else if (CHIP_IS_E1H(bp))
9675                 reset_mask2 = 0x1ffff;
9676         else if (CHIP_IS_E2(bp))
9677                 reset_mask2 = 0xfffff;
9678         else /* CHIP_IS_E3 */
9679                 reset_mask2 = 0x3ffffff;
9680
9681         /* Don't reset global blocks unless we need to */
9682         if (!global)
9683                 reset_mask2 &= ~global_bits2;
9684
9685         /*
9686          * In case of attention in the QM, we need to reset PXP
9687          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9688          * because otherwise QM reset would release 'close the gates' shortly
9689          * before resetting the PXP, then the PSWRQ would send a write
9690          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9691          * read the payload data from PSWWR, but PSWWR would not
9692          * respond. The write queue in PGLUE would stuck, dmae commands
9693          * would not return. Therefore it's important to reset the second
9694          * reset register (containing the
9695          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9696          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9697          * bit).
9698          */
9699         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9700                reset_mask2 & (~not_reset_mask2));
9701
9702         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9703                reset_mask1 & (~not_reset_mask1));
9704
9705         barrier();
9706         mmiowb();
9707
9708         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9709                reset_mask2 & (~stay_reset2));
9710
9711         barrier();
9712         mmiowb();
9713
9714         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9715         mmiowb();
9716 }
9717
9718 /**
9719  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9720  * It should get cleared in no more than 1s.
9721  *
9722  * @bp: driver handle
9723  *
9724  * It should get cleared in no more than 1s. Returns 0 if
9725  * pending writes bit gets cleared.
9726  */
9727 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9728 {
9729         u32 cnt = 1000;
9730         u32 pend_bits = 0;
9731
9732         do {
9733                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9734
9735                 if (pend_bits == 0)
9736                         break;
9737
9738                 usleep_range(1000, 2000);
9739         } while (cnt-- > 0);
9740
9741         if (cnt <= 0) {
9742                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9743                           pend_bits);
9744                 return -EBUSY;
9745         }
9746
9747         return 0;
9748 }
9749
9750 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9751 {
9752         int cnt = 1000;
9753         u32 val = 0;
9754         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9755         u32 tags_63_32 = 0;
9756
9757         /* Empty the Tetris buffer, wait for 1s */
9758         do {
9759                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9760                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9761                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9762                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9763                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9764                 if (CHIP_IS_E3(bp))
9765                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9766
9767                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9768                     ((port_is_idle_0 & 0x1) == 0x1) &&
9769                     ((port_is_idle_1 & 0x1) == 0x1) &&
9770                     (pgl_exp_rom2 == 0xffffffff) &&
9771                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9772                         break;
9773                 usleep_range(1000, 2000);
9774         } while (cnt-- > 0);
9775
9776         if (cnt <= 0) {
9777                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9778                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9779                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9780                           pgl_exp_rom2);
9781                 return -EAGAIN;
9782         }
9783
9784         barrier();
9785
9786         /* Close gates #2, #3 and #4 */
9787         bnx2x_set_234_gates(bp, true);
9788
9789         /* Poll for IGU VQs for 57712 and newer chips */
9790         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9791                 return -EAGAIN;
9792
9793         /* TBD: Indicate that "process kill" is in progress to MCP */
9794
9795         /* Clear "unprepared" bit */
9796         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9797         barrier();
9798
9799         /* Make sure all is written to the chip before the reset */
9800         mmiowb();
9801
9802         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9803          * PSWHST, GRC and PSWRD Tetris buffer.
9804          */
9805         usleep_range(1000, 2000);
9806
9807         /* Prepare to chip reset: */
9808         /* MCP */
9809         if (global)
9810                 bnx2x_reset_mcp_prep(bp, &val);
9811
9812         /* PXP */
9813         bnx2x_pxp_prep(bp);
9814         barrier();
9815
9816         /* reset the chip */
9817         bnx2x_process_kill_chip_reset(bp, global);
9818         barrier();
9819
9820         /* clear errors in PGB */
9821         if (!CHIP_IS_E1x(bp))
9822                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9823
9824         /* Recover after reset: */
9825         /* MCP */
9826         if (global && bnx2x_reset_mcp_comp(bp, val))
9827                 return -EAGAIN;
9828
9829         /* TBD: Add resetting the NO_MCP mode DB here */
9830
9831         /* Open the gates #2, #3 and #4 */
9832         bnx2x_set_234_gates(bp, false);
9833
9834         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9835          * reset state, re-enable attentions. */
9836
9837         return 0;
9838 }
9839
9840 static int bnx2x_leader_reset(struct bnx2x *bp)
9841 {
9842         int rc = 0;
9843         bool global = bnx2x_reset_is_global(bp);
9844         u32 load_code;
9845
9846         /* if not going to reset MCP - load "fake" driver to reset HW while
9847          * driver is owner of the HW
9848          */
9849         if (!global && !BP_NOMCP(bp)) {
9850                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9851                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9852                 if (!load_code) {
9853                         BNX2X_ERR("MCP response failure, aborting\n");
9854                         rc = -EAGAIN;
9855                         goto exit_leader_reset;
9856                 }
9857                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9858                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9859                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9860                         rc = -EAGAIN;
9861                         goto exit_leader_reset2;
9862                 }
9863                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9864                 if (!load_code) {
9865                         BNX2X_ERR("MCP response failure, aborting\n");
9866                         rc = -EAGAIN;
9867                         goto exit_leader_reset2;
9868                 }
9869         }
9870
9871         /* Try to recover after the failure */
9872         if (bnx2x_process_kill(bp, global)) {
9873                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9874                           BP_PATH(bp));
9875                 rc = -EAGAIN;
9876                 goto exit_leader_reset2;
9877         }
9878
9879         /*
9880          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9881          * state.
9882          */
9883         bnx2x_set_reset_done(bp);
9884         if (global)
9885                 bnx2x_clear_reset_global(bp);
9886
9887 exit_leader_reset2:
9888         /* unload "fake driver" if it was loaded */
9889         if (!global && !BP_NOMCP(bp)) {
9890                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9891                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9892         }
9893 exit_leader_reset:
9894         bp->is_leader = 0;
9895         bnx2x_release_leader_lock(bp);
9896         smp_mb();
9897         return rc;
9898 }
9899
9900 static void bnx2x_recovery_failed(struct bnx2x *bp)
9901 {
9902         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9903
9904         /* Disconnect this device */
9905         netif_device_detach(bp->dev);
9906
9907         /*
9908          * Block ifup for all function on this engine until "process kill"
9909          * or power cycle.
9910          */
9911         bnx2x_set_reset_in_progress(bp);
9912
9913         /* Shut down the power */
9914         bnx2x_set_power_state(bp, PCI_D3hot);
9915
9916         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9917
9918         smp_mb();
9919 }
9920
9921 /*
9922  * Assumption: runs under rtnl lock. This together with the fact
9923  * that it's called only from bnx2x_sp_rtnl() ensure that it
9924  * will never be called when netif_running(bp->dev) is false.
9925  */
9926 static void bnx2x_parity_recover(struct bnx2x *bp)
9927 {
9928         bool global = false;
9929         u32 error_recovered, error_unrecovered;
9930         bool is_parity;
9931
9932         DP(NETIF_MSG_HW, "Handling parity\n");
9933         while (1) {
9934                 switch (bp->recovery_state) {
9935                 case BNX2X_RECOVERY_INIT:
9936                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9937                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9938                         WARN_ON(!is_parity);
9939
9940                         /* Try to get a LEADER_LOCK HW lock */
9941                         if (bnx2x_trylock_leader_lock(bp)) {
9942                                 bnx2x_set_reset_in_progress(bp);
9943                                 /*
9944                                  * Check if there is a global attention and if
9945                                  * there was a global attention, set the global
9946                                  * reset bit.
9947                                  */
9948
9949                                 if (global)
9950                                         bnx2x_set_reset_global(bp);
9951
9952                                 bp->is_leader = 1;
9953                         }
9954
9955                         /* Stop the driver */
9956                         /* If interface has been removed - break */
9957                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9958                                 return;
9959
9960                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9961
9962                         /* Ensure "is_leader", MCP command sequence and
9963                          * "recovery_state" update values are seen on other
9964                          * CPUs.
9965                          */
9966                         smp_mb();
9967                         break;
9968
9969                 case BNX2X_RECOVERY_WAIT:
9970                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9971                         if (bp->is_leader) {
9972                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9973                                 bool other_load_status =
9974                                         bnx2x_get_load_status(bp, other_engine);
9975                                 bool load_status =
9976                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9977                                 global = bnx2x_reset_is_global(bp);
9978
9979                                 /*
9980                                  * In case of a parity in a global block, let
9981                                  * the first leader that performs a
9982                                  * leader_reset() reset the global blocks in
9983                                  * order to clear global attentions. Otherwise
9984                                  * the gates will remain closed for that
9985                                  * engine.
9986                                  */
9987                                 if (load_status ||
9988                                     (global && other_load_status)) {
9989                                         /* Wait until all other functions get
9990                                          * down.
9991                                          */
9992                                         schedule_delayed_work(&bp->sp_rtnl_task,
9993                                                                 HZ/10);
9994                                         return;
9995                                 } else {
9996                                         /* If all other functions got down -
9997                                          * try to bring the chip back to
9998                                          * normal. In any case it's an exit
9999                                          * point for a leader.
10000                                          */
10001                                         if (bnx2x_leader_reset(bp)) {
10002                                                 bnx2x_recovery_failed(bp);
10003                                                 return;
10004                                         }
10005
10006                                         /* If we are here, means that the
10007                                          * leader has succeeded and doesn't
10008                                          * want to be a leader any more. Try
10009                                          * to continue as a none-leader.
10010                                          */
10011                                         break;
10012                                 }
10013                         } else { /* non-leader */
10014                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10015                                         /* Try to get a LEADER_LOCK HW lock as
10016                                          * long as a former leader may have
10017                                          * been unloaded by the user or
10018                                          * released a leadership by another
10019                                          * reason.
10020                                          */
10021                                         if (bnx2x_trylock_leader_lock(bp)) {
10022                                                 /* I'm a leader now! Restart a
10023                                                  * switch case.
10024                                                  */
10025                                                 bp->is_leader = 1;
10026                                                 break;
10027                                         }
10028
10029                                         schedule_delayed_work(&bp->sp_rtnl_task,
10030                                                                 HZ/10);
10031                                         return;
10032
10033                                 } else {
10034                                         /*
10035                                          * If there was a global attention, wait
10036                                          * for it to be cleared.
10037                                          */
10038                                         if (bnx2x_reset_is_global(bp)) {
10039                                                 schedule_delayed_work(
10040                                                         &bp->sp_rtnl_task,
10041                                                         HZ/10);
10042                                                 return;
10043                                         }
10044
10045                                         error_recovered =
10046                                           bp->eth_stats.recoverable_error;
10047                                         error_unrecovered =
10048                                           bp->eth_stats.unrecoverable_error;
10049                                         bp->recovery_state =
10050                                                 BNX2X_RECOVERY_NIC_LOADING;
10051                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10052                                                 error_unrecovered++;
10053                                                 netdev_err(bp->dev,
10054                                                            "Recovery failed. Power cycle needed\n");
10055                                                 /* Disconnect this device */
10056                                                 netif_device_detach(bp->dev);
10057                                                 /* Shut down the power */
10058                                                 bnx2x_set_power_state(
10059                                                         bp, PCI_D3hot);
10060                                                 smp_mb();
10061                                         } else {
10062                                                 bp->recovery_state =
10063                                                         BNX2X_RECOVERY_DONE;
10064                                                 error_recovered++;
10065                                                 smp_mb();
10066                                         }
10067                                         bp->eth_stats.recoverable_error =
10068                                                 error_recovered;
10069                                         bp->eth_stats.unrecoverable_error =
10070                                                 error_unrecovered;
10071
10072                                         return;
10073                                 }
10074                         }
10075                 default:
10076                         return;
10077                 }
10078         }
10079 }
10080
10081 #ifdef CONFIG_BNX2X_VXLAN
10082 static int bnx2x_vxlan_port_update(struct bnx2x *bp, u16 port)
10083 {
10084         struct bnx2x_func_switch_update_params *switch_update_params;
10085         struct bnx2x_func_state_params func_params = {NULL};
10086         int rc;
10087
10088         switch_update_params = &func_params.params.switch_update;
10089
10090         /* Prepare parameters for function state transitions */
10091         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10092         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10093
10094         func_params.f_obj = &bp->func_obj;
10095         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10096
10097         /* Function parameters */
10098         __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10099                   &switch_update_params->changes);
10100         switch_update_params->vxlan_dst_port = port;
10101         rc = bnx2x_func_state_change(bp, &func_params);
10102         if (rc)
10103                 BNX2X_ERR("failed to change vxlan dst port to %d (rc = 0x%x)\n",
10104                           port, rc);
10105         return rc;
10106 }
10107
10108 static void __bnx2x_add_vxlan_port(struct bnx2x *bp, u16 port)
10109 {
10110         if (!netif_running(bp->dev))
10111                 return;
10112
10113         if (bp->vxlan_dst_port || !IS_PF(bp)) {
10114                 DP(BNX2X_MSG_SP, "Vxlan destination port limit reached\n");
10115                 return;
10116         }
10117
10118         bp->vxlan_dst_port = port;
10119         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_ADD_VXLAN_PORT, 0);
10120 }
10121
10122 static void bnx2x_add_vxlan_port(struct net_device *netdev,
10123                                  sa_family_t sa_family, __be16 port)
10124 {
10125         struct bnx2x *bp = netdev_priv(netdev);
10126         u16 t_port = ntohs(port);
10127
10128         __bnx2x_add_vxlan_port(bp, t_port);
10129 }
10130
10131 static void __bnx2x_del_vxlan_port(struct bnx2x *bp, u16 port)
10132 {
10133         if (!bp->vxlan_dst_port || bp->vxlan_dst_port != port || !IS_PF(bp)) {
10134                 DP(BNX2X_MSG_SP, "Invalid vxlan port\n");
10135                 return;
10136         }
10137
10138         if (netif_running(bp->dev)) {
10139                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_DEL_VXLAN_PORT, 0);
10140         } else {
10141                 bp->vxlan_dst_port = 0;
10142                 netdev_info(bp->dev, "Deleted vxlan dest port %d", port);
10143         }
10144 }
10145
10146 static void bnx2x_del_vxlan_port(struct net_device *netdev,
10147                                  sa_family_t sa_family, __be16 port)
10148 {
10149         struct bnx2x *bp = netdev_priv(netdev);
10150         u16 t_port = ntohs(port);
10151
10152         __bnx2x_del_vxlan_port(bp, t_port);
10153 }
10154 #endif
10155
10156 static int bnx2x_close(struct net_device *dev);
10157
10158 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10159  * scheduled on a general queue in order to prevent a dead lock.
10160  */
10161 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10162 {
10163         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10164 #ifdef CONFIG_BNX2X_VXLAN
10165         u16 port;
10166 #endif
10167
10168         rtnl_lock();
10169
10170         if (!netif_running(bp->dev)) {
10171                 rtnl_unlock();
10172                 return;
10173         }
10174
10175         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10176 #ifdef BNX2X_STOP_ON_ERROR
10177                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10178                           "you will need to reboot when done\n");
10179                 goto sp_rtnl_not_reset;
10180 #endif
10181                 /*
10182                  * Clear all pending SP commands as we are going to reset the
10183                  * function anyway.
10184                  */
10185                 bp->sp_rtnl_state = 0;
10186                 smp_mb();
10187
10188                 bnx2x_parity_recover(bp);
10189
10190                 rtnl_unlock();
10191                 return;
10192         }
10193
10194         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10195 #ifdef BNX2X_STOP_ON_ERROR
10196                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10197                           "you will need to reboot when done\n");
10198                 goto sp_rtnl_not_reset;
10199 #endif
10200
10201                 /*
10202                  * Clear all pending SP commands as we are going to reset the
10203                  * function anyway.
10204                  */
10205                 bp->sp_rtnl_state = 0;
10206                 smp_mb();
10207
10208                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10209                 bnx2x_nic_load(bp, LOAD_NORMAL);
10210
10211                 rtnl_unlock();
10212                 return;
10213         }
10214 #ifdef BNX2X_STOP_ON_ERROR
10215 sp_rtnl_not_reset:
10216 #endif
10217         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10218                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10219         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10220                 bnx2x_after_function_update(bp);
10221         /*
10222          * in case of fan failure we need to reset id if the "stop on error"
10223          * debug flag is set, since we trying to prevent permanent overheating
10224          * damage
10225          */
10226         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10227                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10228                 netif_device_detach(bp->dev);
10229                 bnx2x_close(bp->dev);
10230                 rtnl_unlock();
10231                 return;
10232         }
10233
10234         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10235                 DP(BNX2X_MSG_SP,
10236                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10237                 bnx2x_vfpf_set_mcast(bp->dev);
10238         }
10239         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10240                                &bp->sp_rtnl_state)){
10241                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10242                         bnx2x_tx_disable(bp);
10243                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10244                 }
10245         }
10246
10247         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10248                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10249                 bnx2x_set_rx_mode_inner(bp);
10250         }
10251
10252         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10253                                &bp->sp_rtnl_state))
10254                 bnx2x_pf_set_vfs_vlan(bp);
10255
10256         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10257                 bnx2x_dcbx_stop_hw_tx(bp);
10258                 bnx2x_dcbx_resume_hw_tx(bp);
10259         }
10260
10261         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10262                                &bp->sp_rtnl_state))
10263                 bnx2x_update_mng_version(bp);
10264
10265 #ifdef CONFIG_BNX2X_VXLAN
10266         port = bp->vxlan_dst_port;
10267         if (test_and_clear_bit(BNX2X_SP_RTNL_ADD_VXLAN_PORT,
10268                                &bp->sp_rtnl_state)) {
10269                 if (!bnx2x_vxlan_port_update(bp, port))
10270                         netdev_info(bp->dev, "Added vxlan dest port %d", port);
10271                 else
10272                         bp->vxlan_dst_port = 0;
10273         }
10274
10275         if (test_and_clear_bit(BNX2X_SP_RTNL_DEL_VXLAN_PORT,
10276                                &bp->sp_rtnl_state)) {
10277                 if (!bnx2x_vxlan_port_update(bp, 0)) {
10278                         netdev_info(bp->dev,
10279                                     "Deleted vxlan dest port %d", port);
10280                         bp->vxlan_dst_port = 0;
10281                         vxlan_get_rx_port(bp->dev);
10282                 }
10283         }
10284 #endif
10285
10286         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10287          * can be called from other contexts as well)
10288          */
10289         rtnl_unlock();
10290
10291         /* enable SR-IOV if applicable */
10292         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10293                                                &bp->sp_rtnl_state)) {
10294                 bnx2x_disable_sriov(bp);
10295                 bnx2x_enable_sriov(bp);
10296         }
10297 }
10298
10299 static void bnx2x_period_task(struct work_struct *work)
10300 {
10301         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10302
10303         if (!netif_running(bp->dev))
10304                 goto period_task_exit;
10305
10306         if (CHIP_REV_IS_SLOW(bp)) {
10307                 BNX2X_ERR("period task called on emulation, ignoring\n");
10308                 goto period_task_exit;
10309         }
10310
10311         bnx2x_acquire_phy_lock(bp);
10312         /*
10313          * The barrier is needed to ensure the ordering between the writing to
10314          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10315          * the reading here.
10316          */
10317         smp_mb();
10318         if (bp->port.pmf) {
10319                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10320
10321                 /* Re-queue task in 1 sec */
10322                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10323         }
10324
10325         bnx2x_release_phy_lock(bp);
10326 period_task_exit:
10327         return;
10328 }
10329
10330 /*
10331  * Init service functions
10332  */
10333
10334 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10335 {
10336         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10337         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10338         return base + (BP_ABS_FUNC(bp)) * stride;
10339 }
10340
10341 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10342                                          u8 port, u32 reset_reg,
10343                                          struct bnx2x_mac_vals *vals)
10344 {
10345         u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10346         u32 base_addr;
10347
10348         if (!(mask & reset_reg))
10349                 return false;
10350
10351         BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10352         base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10353         vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10354         vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10355         REG_WR(bp, vals->umac_addr[port], 0);
10356
10357         return true;
10358 }
10359
10360 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10361                                         struct bnx2x_mac_vals *vals)
10362 {
10363         u32 val, base_addr, offset, mask, reset_reg;
10364         bool mac_stopped = false;
10365         u8 port = BP_PORT(bp);
10366
10367         /* reset addresses as they also mark which values were changed */
10368         memset(vals, 0, sizeof(*vals));
10369
10370         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10371
10372         if (!CHIP_IS_E3(bp)) {
10373                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10374                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10375                 if ((mask & reset_reg) && val) {
10376                         u32 wb_data[2];
10377                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10378                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10379                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10380                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10381                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10382
10383                         /*
10384                          * use rd/wr since we cannot use dmae. This is safe
10385                          * since MCP won't access the bus due to the request
10386                          * to unload, and no function on the path can be
10387                          * loaded at this time.
10388                          */
10389                         wb_data[0] = REG_RD(bp, base_addr + offset);
10390                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10391                         vals->bmac_addr = base_addr + offset;
10392                         vals->bmac_val[0] = wb_data[0];
10393                         vals->bmac_val[1] = wb_data[1];
10394                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10395                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10396                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10397                 }
10398                 BNX2X_DEV_INFO("Disable emac Rx\n");
10399                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10400                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10401                 REG_WR(bp, vals->emac_addr, 0);
10402                 mac_stopped = true;
10403         } else {
10404                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10405                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10406                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10407                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10408                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10409                                val & ~(1 << 1));
10410                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10411                                val | (1 << 1));
10412                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10413                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10414                         REG_WR(bp, vals->xmac_addr, 0);
10415                         mac_stopped = true;
10416                 }
10417
10418                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10419                                                             reset_reg, vals);
10420                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10421                                                             reset_reg, vals);
10422         }
10423
10424         if (mac_stopped)
10425                 msleep(20);
10426 }
10427
10428 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10429 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10430                                         0x1848 + ((f) << 4))
10431 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10432 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10433 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10434
10435 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10436 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10437 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10438
10439 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10440 {
10441         /* UNDI marks its presence in DORQ -
10442          * it initializes CID offset for normal bell to 0x7
10443          */
10444         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10445             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10446                 return false;
10447
10448         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10449                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10450                 return true;
10451         }
10452
10453         return false;
10454 }
10455
10456 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10457 {
10458         u16 rcq, bd;
10459         u32 addr, tmp_reg;
10460
10461         if (BP_FUNC(bp) < 2)
10462                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10463         else
10464                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10465
10466         tmp_reg = REG_RD(bp, addr);
10467         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10468         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10469
10470         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10471         REG_WR(bp, addr, tmp_reg);
10472
10473         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10474                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10475 }
10476
10477 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10478 {
10479         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10480                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10481         if (!rc) {
10482                 BNX2X_ERR("MCP response failure, aborting\n");
10483                 return -EBUSY;
10484         }
10485
10486         return 0;
10487 }
10488
10489 static struct bnx2x_prev_path_list *
10490                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10491 {
10492         struct bnx2x_prev_path_list *tmp_list;
10493
10494         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10495                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10496                     bp->pdev->bus->number == tmp_list->bus &&
10497                     BP_PATH(bp) == tmp_list->path)
10498                         return tmp_list;
10499
10500         return NULL;
10501 }
10502
10503 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10504 {
10505         struct bnx2x_prev_path_list *tmp_list;
10506         int rc;
10507
10508         rc = down_interruptible(&bnx2x_prev_sem);
10509         if (rc) {
10510                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10511                 return rc;
10512         }
10513
10514         tmp_list = bnx2x_prev_path_get_entry(bp);
10515         if (tmp_list) {
10516                 tmp_list->aer = 1;
10517                 rc = 0;
10518         } else {
10519                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10520                           BP_PATH(bp));
10521         }
10522
10523         up(&bnx2x_prev_sem);
10524
10525         return rc;
10526 }
10527
10528 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10529 {
10530         struct bnx2x_prev_path_list *tmp_list;
10531         bool rc = false;
10532
10533         if (down_trylock(&bnx2x_prev_sem))
10534                 return false;
10535
10536         tmp_list = bnx2x_prev_path_get_entry(bp);
10537         if (tmp_list) {
10538                 if (tmp_list->aer) {
10539                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10540                            BP_PATH(bp));
10541                 } else {
10542                         rc = true;
10543                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10544                                        BP_PATH(bp));
10545                 }
10546         }
10547
10548         up(&bnx2x_prev_sem);
10549
10550         return rc;
10551 }
10552
10553 bool bnx2x_port_after_undi(struct bnx2x *bp)
10554 {
10555         struct bnx2x_prev_path_list *entry;
10556         bool val;
10557
10558         down(&bnx2x_prev_sem);
10559
10560         entry = bnx2x_prev_path_get_entry(bp);
10561         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10562
10563         up(&bnx2x_prev_sem);
10564
10565         return val;
10566 }
10567
10568 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10569 {
10570         struct bnx2x_prev_path_list *tmp_list;
10571         int rc;
10572
10573         rc = down_interruptible(&bnx2x_prev_sem);
10574         if (rc) {
10575                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10576                 return rc;
10577         }
10578
10579         /* Check whether the entry for this path already exists */
10580         tmp_list = bnx2x_prev_path_get_entry(bp);
10581         if (tmp_list) {
10582                 if (!tmp_list->aer) {
10583                         BNX2X_ERR("Re-Marking the path.\n");
10584                 } else {
10585                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10586                            BP_PATH(bp));
10587                         tmp_list->aer = 0;
10588                 }
10589                 up(&bnx2x_prev_sem);
10590                 return 0;
10591         }
10592         up(&bnx2x_prev_sem);
10593
10594         /* Create an entry for this path and add it */
10595         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10596         if (!tmp_list) {
10597                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10598                 return -ENOMEM;
10599         }
10600
10601         tmp_list->bus = bp->pdev->bus->number;
10602         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10603         tmp_list->path = BP_PATH(bp);
10604         tmp_list->aer = 0;
10605         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10606
10607         rc = down_interruptible(&bnx2x_prev_sem);
10608         if (rc) {
10609                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10610                 kfree(tmp_list);
10611         } else {
10612                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10613                    BP_PATH(bp));
10614                 list_add(&tmp_list->list, &bnx2x_prev_list);
10615                 up(&bnx2x_prev_sem);
10616         }
10617
10618         return rc;
10619 }
10620
10621 static int bnx2x_do_flr(struct bnx2x *bp)
10622 {
10623         struct pci_dev *dev = bp->pdev;
10624
10625         if (CHIP_IS_E1x(bp)) {
10626                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10627                 return -EINVAL;
10628         }
10629
10630         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10631         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10632                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10633                           bp->common.bc_ver);
10634                 return -EINVAL;
10635         }
10636
10637         if (!pci_wait_for_pending_transaction(dev))
10638                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10639
10640         BNX2X_DEV_INFO("Initiating FLR\n");
10641         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10642
10643         return 0;
10644 }
10645
10646 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10647 {
10648         int rc;
10649
10650         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10651
10652         /* Test if previous unload process was already finished for this path */
10653         if (bnx2x_prev_is_path_marked(bp))
10654                 return bnx2x_prev_mcp_done(bp);
10655
10656         BNX2X_DEV_INFO("Path is unmarked\n");
10657
10658         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10659         if (bnx2x_prev_is_after_undi(bp))
10660                 goto out;
10661
10662         /* If function has FLR capabilities, and existing FW version matches
10663          * the one required, then FLR will be sufficient to clean any residue
10664          * left by previous driver
10665          */
10666         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10667
10668         if (!rc) {
10669                 /* fw version is good */
10670                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10671                 rc = bnx2x_do_flr(bp);
10672         }
10673
10674         if (!rc) {
10675                 /* FLR was performed */
10676                 BNX2X_DEV_INFO("FLR successful\n");
10677                 return 0;
10678         }
10679
10680         BNX2X_DEV_INFO("Could not FLR\n");
10681
10682 out:
10683         /* Close the MCP request, return failure*/
10684         rc = bnx2x_prev_mcp_done(bp);
10685         if (!rc)
10686                 rc = BNX2X_PREV_WAIT_NEEDED;
10687
10688         return rc;
10689 }
10690
10691 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10692 {
10693         u32 reset_reg, tmp_reg = 0, rc;
10694         bool prev_undi = false;
10695         struct bnx2x_mac_vals mac_vals;
10696
10697         /* It is possible a previous function received 'common' answer,
10698          * but hasn't loaded yet, therefore creating a scenario of
10699          * multiple functions receiving 'common' on the same path.
10700          */
10701         BNX2X_DEV_INFO("Common unload Flow\n");
10702
10703         memset(&mac_vals, 0, sizeof(mac_vals));
10704
10705         if (bnx2x_prev_is_path_marked(bp))
10706                 return bnx2x_prev_mcp_done(bp);
10707
10708         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10709
10710         /* Reset should be performed after BRB is emptied */
10711         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10712                 u32 timer_count = 1000;
10713
10714                 /* Close the MAC Rx to prevent BRB from filling up */
10715                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10716
10717                 /* close LLH filters for both ports towards the BRB */
10718                 bnx2x_set_rx_filter(&bp->link_params, 0);
10719                 bp->link_params.port ^= 1;
10720                 bnx2x_set_rx_filter(&bp->link_params, 0);
10721                 bp->link_params.port ^= 1;
10722
10723                 /* Check if the UNDI driver was previously loaded */
10724                 if (bnx2x_prev_is_after_undi(bp)) {
10725                         prev_undi = true;
10726                         /* clear the UNDI indication */
10727                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10728                         /* clear possible idle check errors */
10729                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10730                 }
10731                 if (!CHIP_IS_E1x(bp))
10732                         /* block FW from writing to host */
10733                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10734
10735                 /* wait until BRB is empty */
10736                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10737                 while (timer_count) {
10738                         u32 prev_brb = tmp_reg;
10739
10740                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10741                         if (!tmp_reg)
10742                                 break;
10743
10744                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10745
10746                         /* reset timer as long as BRB actually gets emptied */
10747                         if (prev_brb > tmp_reg)
10748                                 timer_count = 1000;
10749                         else
10750                                 timer_count--;
10751
10752                         /* If UNDI resides in memory, manually increment it */
10753                         if (prev_undi)
10754                                 bnx2x_prev_unload_undi_inc(bp, 1);
10755
10756                         udelay(10);
10757                 }
10758
10759                 if (!timer_count)
10760                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10761         }
10762
10763         /* No packets are in the pipeline, path is ready for reset */
10764         bnx2x_reset_common(bp);
10765
10766         if (mac_vals.xmac_addr)
10767                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10768         if (mac_vals.umac_addr[0])
10769                 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10770         if (mac_vals.umac_addr[1])
10771                 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10772         if (mac_vals.emac_addr)
10773                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10774         if (mac_vals.bmac_addr) {
10775                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10776                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10777         }
10778
10779         rc = bnx2x_prev_mark_path(bp, prev_undi);
10780         if (rc) {
10781                 bnx2x_prev_mcp_done(bp);
10782                 return rc;
10783         }
10784
10785         return bnx2x_prev_mcp_done(bp);
10786 }
10787
10788 static int bnx2x_prev_unload(struct bnx2x *bp)
10789 {
10790         int time_counter = 10;
10791         u32 rc, fw, hw_lock_reg, hw_lock_val;
10792         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10793
10794         /* clear hw from errors which may have resulted from an interrupted
10795          * dmae transaction.
10796          */
10797         bnx2x_clean_pglue_errors(bp);
10798
10799         /* Release previously held locks */
10800         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10801                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10802                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10803
10804         hw_lock_val = REG_RD(bp, hw_lock_reg);
10805         if (hw_lock_val) {
10806                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10807                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10808                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10809                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10810                 }
10811
10812                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10813                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10814         } else
10815                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10816
10817         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10818                 BNX2X_DEV_INFO("Release previously held alr\n");
10819                 bnx2x_release_alr(bp);
10820         }
10821
10822         do {
10823                 int aer = 0;
10824                 /* Lock MCP using an unload request */
10825                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10826                 if (!fw) {
10827                         BNX2X_ERR("MCP response failure, aborting\n");
10828                         rc = -EBUSY;
10829                         break;
10830                 }
10831
10832                 rc = down_interruptible(&bnx2x_prev_sem);
10833                 if (rc) {
10834                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10835                                   rc);
10836                 } else {
10837                         /* If Path is marked by EEH, ignore unload status */
10838                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10839                                  bnx2x_prev_path_get_entry(bp)->aer);
10840                         up(&bnx2x_prev_sem);
10841                 }
10842
10843                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10844                         rc = bnx2x_prev_unload_common(bp);
10845                         break;
10846                 }
10847
10848                 /* non-common reply from MCP might require looping */
10849                 rc = bnx2x_prev_unload_uncommon(bp);
10850                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10851                         break;
10852
10853                 msleep(20);
10854         } while (--time_counter);
10855
10856         if (!time_counter || rc) {
10857                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10858                 rc = -EPROBE_DEFER;
10859         }
10860
10861         /* Mark function if its port was used to boot from SAN */
10862         if (bnx2x_port_after_undi(bp))
10863                 bp->link_params.feature_config_flags |=
10864                         FEATURE_CONFIG_BOOT_FROM_SAN;
10865
10866         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10867
10868         return rc;
10869 }
10870
10871 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10872 {
10873         u32 val, val2, val3, val4, id, boot_mode;
10874         u16 pmc;
10875
10876         /* Get the chip revision id and number. */
10877         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10878         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10879         id = ((val & 0xffff) << 16);
10880         val = REG_RD(bp, MISC_REG_CHIP_REV);
10881         id |= ((val & 0xf) << 12);
10882
10883         /* Metal is read from PCI regs, but we can't access >=0x400 from
10884          * the configuration space (so we need to reg_rd)
10885          */
10886         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10887         id |= (((val >> 24) & 0xf) << 4);
10888         val = REG_RD(bp, MISC_REG_BOND_ID);
10889         id |= (val & 0xf);
10890         bp->common.chip_id = id;
10891
10892         /* force 57811 according to MISC register */
10893         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10894                 if (CHIP_IS_57810(bp))
10895                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10896                                 (bp->common.chip_id & 0x0000FFFF);
10897                 else if (CHIP_IS_57810_MF(bp))
10898                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10899                                 (bp->common.chip_id & 0x0000FFFF);
10900                 bp->common.chip_id |= 0x1;
10901         }
10902
10903         /* Set doorbell size */
10904         bp->db_size = (1 << BNX2X_DB_SHIFT);
10905
10906         if (!CHIP_IS_E1x(bp)) {
10907                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10908                 if ((val & 1) == 0)
10909                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10910                 else
10911                         val = (val >> 1) & 1;
10912                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10913                                                        "2_PORT_MODE");
10914                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10915                                                  CHIP_2_PORT_MODE;
10916
10917                 if (CHIP_MODE_IS_4_PORT(bp))
10918                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10919                 else
10920                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10921         } else {
10922                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10923                 bp->pfid = bp->pf_num;                  /* 0..7 */
10924         }
10925
10926         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10927
10928         bp->link_params.chip_id = bp->common.chip_id;
10929         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10930
10931         val = (REG_RD(bp, 0x2874) & 0x55);
10932         if ((bp->common.chip_id & 0x1) ||
10933             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10934                 bp->flags |= ONE_PORT_FLAG;
10935                 BNX2X_DEV_INFO("single port device\n");
10936         }
10937
10938         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10939         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10940                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10941         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10942                        bp->common.flash_size, bp->common.flash_size);
10943
10944         bnx2x_init_shmem(bp);
10945
10946         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10947                                         MISC_REG_GENERIC_CR_1 :
10948                                         MISC_REG_GENERIC_CR_0));
10949
10950         bp->link_params.shmem_base = bp->common.shmem_base;
10951         bp->link_params.shmem2_base = bp->common.shmem2_base;
10952         if (SHMEM2_RD(bp, size) >
10953             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10954                 bp->link_params.lfa_base =
10955                 REG_RD(bp, bp->common.shmem2_base +
10956                        (u32)offsetof(struct shmem2_region,
10957                                      lfa_host_addr[BP_PORT(bp)]));
10958         else
10959                 bp->link_params.lfa_base = 0;
10960         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10961                        bp->common.shmem_base, bp->common.shmem2_base);
10962
10963         if (!bp->common.shmem_base) {
10964                 BNX2X_DEV_INFO("MCP not active\n");
10965                 bp->flags |= NO_MCP_FLAG;
10966                 return;
10967         }
10968
10969         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10970         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10971
10972         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10973                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10974                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10975
10976         bp->link_params.feature_config_flags = 0;
10977         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10978         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10979                 bp->link_params.feature_config_flags |=
10980                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10981         else
10982                 bp->link_params.feature_config_flags &=
10983                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10984
10985         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10986         bp->common.bc_ver = val;
10987         BNX2X_DEV_INFO("bc_ver %X\n", val);
10988         if (val < BNX2X_BC_VER) {
10989                 /* for now only warn
10990                  * later we might need to enforce this */
10991                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10992                           BNX2X_BC_VER, val);
10993         }
10994         bp->link_params.feature_config_flags |=
10995                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10996                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10997
10998         bp->link_params.feature_config_flags |=
10999                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11000                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11001         bp->link_params.feature_config_flags |=
11002                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11003                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11004         bp->link_params.feature_config_flags |=
11005                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11006                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11007
11008         bp->link_params.feature_config_flags |=
11009                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11010                 FEATURE_CONFIG_MT_SUPPORT : 0;
11011
11012         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11013                         BC_SUPPORTS_PFC_STATS : 0;
11014
11015         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11016                         BC_SUPPORTS_FCOE_FEATURES : 0;
11017
11018         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11019                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11020
11021         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11022                         BC_SUPPORTS_RMMOD_CMD : 0;
11023
11024         boot_mode = SHMEM_RD(bp,
11025                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11026                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11027         switch (boot_mode) {
11028         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11029                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11030                 break;
11031         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11032                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11033                 break;
11034         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11035                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11036                 break;
11037         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11038                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11039                 break;
11040         }
11041
11042         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11043         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11044
11045         BNX2X_DEV_INFO("%sWoL capable\n",
11046                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
11047
11048         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11049         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11050         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11051         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11052
11053         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11054                  val, val2, val3, val4);
11055 }
11056
11057 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11058 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11059
11060 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11061 {
11062         int pfid = BP_FUNC(bp);
11063         int igu_sb_id;
11064         u32 val;
11065         u8 fid, igu_sb_cnt = 0;
11066
11067         bp->igu_base_sb = 0xff;
11068         if (CHIP_INT_MODE_IS_BC(bp)) {
11069                 int vn = BP_VN(bp);
11070                 igu_sb_cnt = bp->igu_sb_cnt;
11071                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11072                         FP_SB_MAX_E1x;
11073
11074                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11075                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11076
11077                 return 0;
11078         }
11079
11080         /* IGU in normal mode - read CAM */
11081         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11082              igu_sb_id++) {
11083                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11084                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11085                         continue;
11086                 fid = IGU_FID(val);
11087                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11088                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11089                                 continue;
11090                         if (IGU_VEC(val) == 0)
11091                                 /* default status block */
11092                                 bp->igu_dsb_id = igu_sb_id;
11093                         else {
11094                                 if (bp->igu_base_sb == 0xff)
11095                                         bp->igu_base_sb = igu_sb_id;
11096                                 igu_sb_cnt++;
11097                         }
11098                 }
11099         }
11100
11101 #ifdef CONFIG_PCI_MSI
11102         /* Due to new PF resource allocation by MFW T7.4 and above, it's
11103          * optional that number of CAM entries will not be equal to the value
11104          * advertised in PCI.
11105          * Driver should use the minimal value of both as the actual status
11106          * block count
11107          */
11108         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11109 #endif
11110
11111         if (igu_sb_cnt == 0) {
11112                 BNX2X_ERR("CAM configuration error\n");
11113                 return -EINVAL;
11114         }
11115
11116         return 0;
11117 }
11118
11119 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11120 {
11121         int cfg_size = 0, idx, port = BP_PORT(bp);
11122
11123         /* Aggregation of supported attributes of all external phys */
11124         bp->port.supported[0] = 0;
11125         bp->port.supported[1] = 0;
11126         switch (bp->link_params.num_phys) {
11127         case 1:
11128                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11129                 cfg_size = 1;
11130                 break;
11131         case 2:
11132                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11133                 cfg_size = 1;
11134                 break;
11135         case 3:
11136                 if (bp->link_params.multi_phy_config &
11137                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11138                         bp->port.supported[1] =
11139                                 bp->link_params.phy[EXT_PHY1].supported;
11140                         bp->port.supported[0] =
11141                                 bp->link_params.phy[EXT_PHY2].supported;
11142                 } else {
11143                         bp->port.supported[0] =
11144                                 bp->link_params.phy[EXT_PHY1].supported;
11145                         bp->port.supported[1] =
11146                                 bp->link_params.phy[EXT_PHY2].supported;
11147                 }
11148                 cfg_size = 2;
11149                 break;
11150         }
11151
11152         if (!(bp->port.supported[0] || bp->port.supported[1])) {
11153                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11154                            SHMEM_RD(bp,
11155                            dev_info.port_hw_config[port].external_phy_config),
11156                            SHMEM_RD(bp,
11157                            dev_info.port_hw_config[port].external_phy_config2));
11158                         return;
11159         }
11160
11161         if (CHIP_IS_E3(bp))
11162                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11163         else {
11164                 switch (switch_cfg) {
11165                 case SWITCH_CFG_1G:
11166                         bp->port.phy_addr = REG_RD(
11167                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11168                         break;
11169                 case SWITCH_CFG_10G:
11170                         bp->port.phy_addr = REG_RD(
11171                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11172                         break;
11173                 default:
11174                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11175                                   bp->port.link_config[0]);
11176                         return;
11177                 }
11178         }
11179         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11180         /* mask what we support according to speed_cap_mask per configuration */
11181         for (idx = 0; idx < cfg_size; idx++) {
11182                 if (!(bp->link_params.speed_cap_mask[idx] &
11183                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11184                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11185
11186                 if (!(bp->link_params.speed_cap_mask[idx] &
11187                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11188                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11189
11190                 if (!(bp->link_params.speed_cap_mask[idx] &
11191                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11192                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11193
11194                 if (!(bp->link_params.speed_cap_mask[idx] &
11195                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11196                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11197
11198                 if (!(bp->link_params.speed_cap_mask[idx] &
11199                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11200                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11201                                                      SUPPORTED_1000baseT_Full);
11202
11203                 if (!(bp->link_params.speed_cap_mask[idx] &
11204                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11205                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11206
11207                 if (!(bp->link_params.speed_cap_mask[idx] &
11208                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11209                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11210
11211                 if (!(bp->link_params.speed_cap_mask[idx] &
11212                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11213                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11214         }
11215
11216         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11217                        bp->port.supported[1]);
11218 }
11219
11220 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11221 {
11222         u32 link_config, idx, cfg_size = 0;
11223         bp->port.advertising[0] = 0;
11224         bp->port.advertising[1] = 0;
11225         switch (bp->link_params.num_phys) {
11226         case 1:
11227         case 2:
11228                 cfg_size = 1;
11229                 break;
11230         case 3:
11231                 cfg_size = 2;
11232                 break;
11233         }
11234         for (idx = 0; idx < cfg_size; idx++) {
11235                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11236                 link_config = bp->port.link_config[idx];
11237                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11238                 case PORT_FEATURE_LINK_SPEED_AUTO:
11239                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11240                                 bp->link_params.req_line_speed[idx] =
11241                                         SPEED_AUTO_NEG;
11242                                 bp->port.advertising[idx] |=
11243                                         bp->port.supported[idx];
11244                                 if (bp->link_params.phy[EXT_PHY1].type ==
11245                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11246                                         bp->port.advertising[idx] |=
11247                                         (SUPPORTED_100baseT_Half |
11248                                          SUPPORTED_100baseT_Full);
11249                         } else {
11250                                 /* force 10G, no AN */
11251                                 bp->link_params.req_line_speed[idx] =
11252                                         SPEED_10000;
11253                                 bp->port.advertising[idx] |=
11254                                         (ADVERTISED_10000baseT_Full |
11255                                          ADVERTISED_FIBRE);
11256                                 continue;
11257                         }
11258                         break;
11259
11260                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11261                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11262                                 bp->link_params.req_line_speed[idx] =
11263                                         SPEED_10;
11264                                 bp->port.advertising[idx] |=
11265                                         (ADVERTISED_10baseT_Full |
11266                                          ADVERTISED_TP);
11267                         } else {
11268                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11269                                             link_config,
11270                                     bp->link_params.speed_cap_mask[idx]);
11271                                 return;
11272                         }
11273                         break;
11274
11275                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11276                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11277                                 bp->link_params.req_line_speed[idx] =
11278                                         SPEED_10;
11279                                 bp->link_params.req_duplex[idx] =
11280                                         DUPLEX_HALF;
11281                                 bp->port.advertising[idx] |=
11282                                         (ADVERTISED_10baseT_Half |
11283                                          ADVERTISED_TP);
11284                         } else {
11285                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11286                                             link_config,
11287                                           bp->link_params.speed_cap_mask[idx]);
11288                                 return;
11289                         }
11290                         break;
11291
11292                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11293                         if (bp->port.supported[idx] &
11294                             SUPPORTED_100baseT_Full) {
11295                                 bp->link_params.req_line_speed[idx] =
11296                                         SPEED_100;
11297                                 bp->port.advertising[idx] |=
11298                                         (ADVERTISED_100baseT_Full |
11299                                          ADVERTISED_TP);
11300                         } else {
11301                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11302                                             link_config,
11303                                           bp->link_params.speed_cap_mask[idx]);
11304                                 return;
11305                         }
11306                         break;
11307
11308                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11309                         if (bp->port.supported[idx] &
11310                             SUPPORTED_100baseT_Half) {
11311                                 bp->link_params.req_line_speed[idx] =
11312                                                                 SPEED_100;
11313                                 bp->link_params.req_duplex[idx] =
11314                                                                 DUPLEX_HALF;
11315                                 bp->port.advertising[idx] |=
11316                                         (ADVERTISED_100baseT_Half |
11317                                          ADVERTISED_TP);
11318                         } else {
11319                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11320                                     link_config,
11321                                     bp->link_params.speed_cap_mask[idx]);
11322                                 return;
11323                         }
11324                         break;
11325
11326                 case PORT_FEATURE_LINK_SPEED_1G:
11327                         if (bp->port.supported[idx] &
11328                             SUPPORTED_1000baseT_Full) {
11329                                 bp->link_params.req_line_speed[idx] =
11330                                         SPEED_1000;
11331                                 bp->port.advertising[idx] |=
11332                                         (ADVERTISED_1000baseT_Full |
11333                                          ADVERTISED_TP);
11334                         } else if (bp->port.supported[idx] &
11335                                    SUPPORTED_1000baseKX_Full) {
11336                                 bp->link_params.req_line_speed[idx] =
11337                                         SPEED_1000;
11338                                 bp->port.advertising[idx] |=
11339                                         ADVERTISED_1000baseKX_Full;
11340                         } else {
11341                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11342                                     link_config,
11343                                     bp->link_params.speed_cap_mask[idx]);
11344                                 return;
11345                         }
11346                         break;
11347
11348                 case PORT_FEATURE_LINK_SPEED_2_5G:
11349                         if (bp->port.supported[idx] &
11350                             SUPPORTED_2500baseX_Full) {
11351                                 bp->link_params.req_line_speed[idx] =
11352                                         SPEED_2500;
11353                                 bp->port.advertising[idx] |=
11354                                         (ADVERTISED_2500baseX_Full |
11355                                                 ADVERTISED_TP);
11356                         } else {
11357                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11358                                     link_config,
11359                                     bp->link_params.speed_cap_mask[idx]);
11360                                 return;
11361                         }
11362                         break;
11363
11364                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11365                         if (bp->port.supported[idx] &
11366                             SUPPORTED_10000baseT_Full) {
11367                                 bp->link_params.req_line_speed[idx] =
11368                                         SPEED_10000;
11369                                 bp->port.advertising[idx] |=
11370                                         (ADVERTISED_10000baseT_Full |
11371                                                 ADVERTISED_FIBRE);
11372                         } else if (bp->port.supported[idx] &
11373                                    SUPPORTED_10000baseKR_Full) {
11374                                 bp->link_params.req_line_speed[idx] =
11375                                         SPEED_10000;
11376                                 bp->port.advertising[idx] |=
11377                                         (ADVERTISED_10000baseKR_Full |
11378                                                 ADVERTISED_FIBRE);
11379                         } else {
11380                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11381                                     link_config,
11382                                     bp->link_params.speed_cap_mask[idx]);
11383                                 return;
11384                         }
11385                         break;
11386                 case PORT_FEATURE_LINK_SPEED_20G:
11387                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11388
11389                         break;
11390                 default:
11391                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11392                                   link_config);
11393                                 bp->link_params.req_line_speed[idx] =
11394                                                         SPEED_AUTO_NEG;
11395                                 bp->port.advertising[idx] =
11396                                                 bp->port.supported[idx];
11397                         break;
11398                 }
11399
11400                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11401                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11402                 if (bp->link_params.req_flow_ctrl[idx] ==
11403                     BNX2X_FLOW_CTRL_AUTO) {
11404                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11405                                 bp->link_params.req_flow_ctrl[idx] =
11406                                                         BNX2X_FLOW_CTRL_NONE;
11407                         else
11408                                 bnx2x_set_requested_fc(bp);
11409                 }
11410
11411                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11412                                bp->link_params.req_line_speed[idx],
11413                                bp->link_params.req_duplex[idx],
11414                                bp->link_params.req_flow_ctrl[idx],
11415                                bp->port.advertising[idx]);
11416         }
11417 }
11418
11419 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11420 {
11421         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11422         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11423         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11424         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11425 }
11426
11427 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11428 {
11429         int port = BP_PORT(bp);
11430         u32 config;
11431         u32 ext_phy_type, ext_phy_config, eee_mode;
11432
11433         bp->link_params.bp = bp;
11434         bp->link_params.port = port;
11435
11436         bp->link_params.lane_config =
11437                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11438
11439         bp->link_params.speed_cap_mask[0] =
11440                 SHMEM_RD(bp,
11441                          dev_info.port_hw_config[port].speed_capability_mask) &
11442                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11443         bp->link_params.speed_cap_mask[1] =
11444                 SHMEM_RD(bp,
11445                          dev_info.port_hw_config[port].speed_capability_mask2) &
11446                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11447         bp->port.link_config[0] =
11448                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11449
11450         bp->port.link_config[1] =
11451                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11452
11453         bp->link_params.multi_phy_config =
11454                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11455         /* If the device is capable of WoL, set the default state according
11456          * to the HW
11457          */
11458         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11459         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11460                    (config & PORT_FEATURE_WOL_ENABLED));
11461
11462         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11463             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11464                 bp->flags |= NO_ISCSI_FLAG;
11465         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11466             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11467                 bp->flags |= NO_FCOE_FLAG;
11468
11469         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11470                        bp->link_params.lane_config,
11471                        bp->link_params.speed_cap_mask[0],
11472                        bp->port.link_config[0]);
11473
11474         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11475                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11476         bnx2x_phy_probe(&bp->link_params);
11477         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11478
11479         bnx2x_link_settings_requested(bp);
11480
11481         /*
11482          * If connected directly, work with the internal PHY, otherwise, work
11483          * with the external PHY
11484          */
11485         ext_phy_config =
11486                 SHMEM_RD(bp,
11487                          dev_info.port_hw_config[port].external_phy_config);
11488         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11489         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11490                 bp->mdio.prtad = bp->port.phy_addr;
11491
11492         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11493                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11494                 bp->mdio.prtad =
11495                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11496
11497         /* Configure link feature according to nvram value */
11498         eee_mode = (((SHMEM_RD(bp, dev_info.
11499                       port_feature_config[port].eee_power_mode)) &
11500                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11501                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11502         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11503                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11504                                            EEE_MODE_ENABLE_LPI |
11505                                            EEE_MODE_OUTPUT_TIME;
11506         } else {
11507                 bp->link_params.eee_mode = 0;
11508         }
11509 }
11510
11511 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11512 {
11513         u32 no_flags = NO_ISCSI_FLAG;
11514         int port = BP_PORT(bp);
11515         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11516                                 drv_lic_key[port].max_iscsi_conn);
11517
11518         if (!CNIC_SUPPORT(bp)) {
11519                 bp->flags |= no_flags;
11520                 return;
11521         }
11522
11523         /* Get the number of maximum allowed iSCSI connections */
11524         bp->cnic_eth_dev.max_iscsi_conn =
11525                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11526                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11527
11528         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11529                        bp->cnic_eth_dev.max_iscsi_conn);
11530
11531         /*
11532          * If maximum allowed number of connections is zero -
11533          * disable the feature.
11534          */
11535         if (!bp->cnic_eth_dev.max_iscsi_conn)
11536                 bp->flags |= no_flags;
11537 }
11538
11539 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11540 {
11541         /* Port info */
11542         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11543                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11544         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11545                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11546
11547         /* Node info */
11548         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11549                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11550         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11551                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11552 }
11553
11554 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11555 {
11556         u8 count = 0;
11557
11558         if (IS_MF(bp)) {
11559                 u8 fid;
11560
11561                 /* iterate over absolute function ids for this path: */
11562                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11563                         if (IS_MF_SD(bp)) {
11564                                 u32 cfg = MF_CFG_RD(bp,
11565                                                     func_mf_config[fid].config);
11566
11567                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11568                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11569                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11570                                         count++;
11571                         } else {
11572                                 u32 cfg = MF_CFG_RD(bp,
11573                                                     func_ext_config[fid].
11574                                                                       func_cfg);
11575
11576                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11577                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11578                                         count++;
11579                         }
11580                 }
11581         } else { /* SF */
11582                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11583
11584                 for (port = 0; port < port_cnt; port++) {
11585                         u32 lic = SHMEM_RD(bp,
11586                                            drv_lic_key[port].max_fcoe_conn) ^
11587                                   FW_ENCODE_32BIT_PATTERN;
11588                         if (lic)
11589                                 count++;
11590                 }
11591         }
11592
11593         return count;
11594 }
11595
11596 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11597 {
11598         int port = BP_PORT(bp);
11599         int func = BP_ABS_FUNC(bp);
11600         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11601                                 drv_lic_key[port].max_fcoe_conn);
11602         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11603
11604         if (!CNIC_SUPPORT(bp)) {
11605                 bp->flags |= NO_FCOE_FLAG;
11606                 return;
11607         }
11608
11609         /* Get the number of maximum allowed FCoE connections */
11610         bp->cnic_eth_dev.max_fcoe_conn =
11611                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11612                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11613
11614         /* Calculate the number of maximum allowed FCoE tasks */
11615         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11616
11617         /* check if FCoE resources must be shared between different functions */
11618         if (num_fcoe_func)
11619                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11620
11621         /* Read the WWN: */
11622         if (!IS_MF(bp)) {
11623                 /* Port info */
11624                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11625                         SHMEM_RD(bp,
11626                                  dev_info.port_hw_config[port].
11627                                  fcoe_wwn_port_name_upper);
11628                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11629                         SHMEM_RD(bp,
11630                                  dev_info.port_hw_config[port].
11631                                  fcoe_wwn_port_name_lower);
11632
11633                 /* Node info */
11634                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11635                         SHMEM_RD(bp,
11636                                  dev_info.port_hw_config[port].
11637                                  fcoe_wwn_node_name_upper);
11638                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11639                         SHMEM_RD(bp,
11640                                  dev_info.port_hw_config[port].
11641                                  fcoe_wwn_node_name_lower);
11642         } else if (!IS_MF_SD(bp)) {
11643                 /* Read the WWN info only if the FCoE feature is enabled for
11644                  * this function.
11645                  */
11646                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11647                         bnx2x_get_ext_wwn_info(bp, func);
11648         } else {
11649                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11650                         bnx2x_get_ext_wwn_info(bp, func);
11651         }
11652
11653         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11654
11655         /*
11656          * If maximum allowed number of connections is zero -
11657          * disable the feature.
11658          */
11659         if (!bp->cnic_eth_dev.max_fcoe_conn)
11660                 bp->flags |= NO_FCOE_FLAG;
11661 }
11662
11663 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11664 {
11665         /*
11666          * iSCSI may be dynamically disabled but reading
11667          * info here we will decrease memory usage by driver
11668          * if the feature is disabled for good
11669          */
11670         bnx2x_get_iscsi_info(bp);
11671         bnx2x_get_fcoe_info(bp);
11672 }
11673
11674 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11675 {
11676         u32 val, val2;
11677         int func = BP_ABS_FUNC(bp);
11678         int port = BP_PORT(bp);
11679         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11680         u8 *fip_mac = bp->fip_mac;
11681
11682         if (IS_MF(bp)) {
11683                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11684                  * FCoE MAC then the appropriate feature should be disabled.
11685                  * In non SD mode features configuration comes from struct
11686                  * func_ext_config.
11687                  */
11688                 if (!IS_MF_SD(bp)) {
11689                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11690                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11691                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11692                                                  iscsi_mac_addr_upper);
11693                                 val = MF_CFG_RD(bp, func_ext_config[func].
11694                                                 iscsi_mac_addr_lower);
11695                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11696                                 BNX2X_DEV_INFO
11697                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11698                         } else {
11699                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11700                         }
11701
11702                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11703                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11704                                                  fcoe_mac_addr_upper);
11705                                 val = MF_CFG_RD(bp, func_ext_config[func].
11706                                                 fcoe_mac_addr_lower);
11707                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11708                                 BNX2X_DEV_INFO
11709                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11710                         } else {
11711                                 bp->flags |= NO_FCOE_FLAG;
11712                         }
11713
11714                         bp->mf_ext_config = cfg;
11715
11716                 } else { /* SD MODE */
11717                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11718                                 /* use primary mac as iscsi mac */
11719                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11720
11721                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11722                                 BNX2X_DEV_INFO
11723                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11724                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11725                                 /* use primary mac as fip mac */
11726                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11727                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11728                                 BNX2X_DEV_INFO
11729                                         ("Read FIP MAC: %pM\n", fip_mac);
11730                         }
11731                 }
11732
11733                 /* If this is a storage-only interface, use SAN mac as
11734                  * primary MAC. Notice that for SD this is already the case,
11735                  * as the SAN mac was copied from the primary MAC.
11736                  */
11737                 if (IS_MF_FCOE_AFEX(bp))
11738                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11739         } else {
11740                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11741                                 iscsi_mac_upper);
11742                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11743                                iscsi_mac_lower);
11744                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11745
11746                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11747                                 fcoe_fip_mac_upper);
11748                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11749                                fcoe_fip_mac_lower);
11750                 bnx2x_set_mac_buf(fip_mac, val, val2);
11751         }
11752
11753         /* Disable iSCSI OOO if MAC configuration is invalid. */
11754         if (!is_valid_ether_addr(iscsi_mac)) {
11755                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11756                 eth_zero_addr(iscsi_mac);
11757         }
11758
11759         /* Disable FCoE if MAC configuration is invalid. */
11760         if (!is_valid_ether_addr(fip_mac)) {
11761                 bp->flags |= NO_FCOE_FLAG;
11762                 eth_zero_addr(bp->fip_mac);
11763         }
11764 }
11765
11766 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11767 {
11768         u32 val, val2;
11769         int func = BP_ABS_FUNC(bp);
11770         int port = BP_PORT(bp);
11771
11772         /* Zero primary MAC configuration */
11773         eth_zero_addr(bp->dev->dev_addr);
11774
11775         if (BP_NOMCP(bp)) {
11776                 BNX2X_ERROR("warning: random MAC workaround active\n");
11777                 eth_hw_addr_random(bp->dev);
11778         } else if (IS_MF(bp)) {
11779                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11780                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11781                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11782                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11783                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11784
11785                 if (CNIC_SUPPORT(bp))
11786                         bnx2x_get_cnic_mac_hwinfo(bp);
11787         } else {
11788                 /* in SF read MACs from port configuration */
11789                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11790                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11791                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11792
11793                 if (CNIC_SUPPORT(bp))
11794                         bnx2x_get_cnic_mac_hwinfo(bp);
11795         }
11796
11797         if (!BP_NOMCP(bp)) {
11798                 /* Read physical port identifier from shmem */
11799                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11800                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11801                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11802                 bp->flags |= HAS_PHYS_PORT_ID;
11803         }
11804
11805         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11806
11807         if (!is_valid_ether_addr(bp->dev->dev_addr))
11808                 dev_err(&bp->pdev->dev,
11809                         "bad Ethernet MAC address configuration: %pM\n"
11810                         "change it manually before bringing up the appropriate network interface\n",
11811                         bp->dev->dev_addr);
11812 }
11813
11814 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11815 {
11816         int tmp;
11817         u32 cfg;
11818
11819         if (IS_VF(bp))
11820                 return false;
11821
11822         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11823                 /* Take function: tmp = func */
11824                 tmp = BP_ABS_FUNC(bp);
11825                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11826                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11827         } else {
11828                 /* Take port: tmp = port */
11829                 tmp = BP_PORT(bp);
11830                 cfg = SHMEM_RD(bp,
11831                                dev_info.port_hw_config[tmp].generic_features);
11832                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11833         }
11834         return cfg;
11835 }
11836
11837 static void validate_set_si_mode(struct bnx2x *bp)
11838 {
11839         u8 func = BP_ABS_FUNC(bp);
11840         u32 val;
11841
11842         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11843
11844         /* check for legal mac (upper bytes) */
11845         if (val != 0xffff) {
11846                 bp->mf_mode = MULTI_FUNCTION_SI;
11847                 bp->mf_config[BP_VN(bp)] =
11848                         MF_CFG_RD(bp, func_mf_config[func].config);
11849         } else
11850                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11851 }
11852
11853 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11854 {
11855         int /*abs*/func = BP_ABS_FUNC(bp);
11856         int vn, mfw_vn;
11857         u32 val = 0, val2 = 0;
11858         int rc = 0;
11859
11860         /* Validate that chip access is feasible */
11861         if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11862                 dev_err(&bp->pdev->dev,
11863                         "Chip read returns all Fs. Preventing probe from continuing\n");
11864                 return -EINVAL;
11865         }
11866
11867         bnx2x_get_common_hwinfo(bp);
11868
11869         /*
11870          * initialize IGU parameters
11871          */
11872         if (CHIP_IS_E1x(bp)) {
11873                 bp->common.int_block = INT_BLOCK_HC;
11874
11875                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11876                 bp->igu_base_sb = 0;
11877         } else {
11878                 bp->common.int_block = INT_BLOCK_IGU;
11879
11880                 /* do not allow device reset during IGU info processing */
11881                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11882
11883                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11884
11885                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11886                         int tout = 5000;
11887
11888                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11889
11890                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11891                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11892                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11893
11894                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11895                                 tout--;
11896                                 usleep_range(1000, 2000);
11897                         }
11898
11899                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11900                                 dev_err(&bp->pdev->dev,
11901                                         "FORCING Normal Mode failed!!!\n");
11902                                 bnx2x_release_hw_lock(bp,
11903                                                       HW_LOCK_RESOURCE_RESET);
11904                                 return -EPERM;
11905                         }
11906                 }
11907
11908                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11909                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11910                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11911                 } else
11912                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11913
11914                 rc = bnx2x_get_igu_cam_info(bp);
11915                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11916                 if (rc)
11917                         return rc;
11918         }
11919
11920         /*
11921          * set base FW non-default (fast path) status block id, this value is
11922          * used to initialize the fw_sb_id saved on the fp/queue structure to
11923          * determine the id used by the FW.
11924          */
11925         if (CHIP_IS_E1x(bp))
11926                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11927         else /*
11928               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11929               * the same queue are indicated on the same IGU SB). So we prefer
11930               * FW and IGU SBs to be the same value.
11931               */
11932                 bp->base_fw_ndsb = bp->igu_base_sb;
11933
11934         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11935                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11936                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11937
11938         /*
11939          * Initialize MF configuration
11940          */
11941
11942         bp->mf_ov = 0;
11943         bp->mf_mode = 0;
11944         bp->mf_sub_mode = 0;
11945         vn = BP_VN(bp);
11946         mfw_vn = BP_FW_MB_IDX(bp);
11947
11948         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11949                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11950                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11951                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11952
11953                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11954                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11955                 else
11956                         bp->common.mf_cfg_base = bp->common.shmem_base +
11957                                 offsetof(struct shmem_region, func_mb) +
11958                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11959                 /*
11960                  * get mf configuration:
11961                  * 1. Existence of MF configuration
11962                  * 2. MAC address must be legal (check only upper bytes)
11963                  *    for  Switch-Independent mode;
11964                  *    OVLAN must be legal for Switch-Dependent mode
11965                  * 3. SF_MODE configures specific MF mode
11966                  */
11967                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11968                         /* get mf configuration */
11969                         val = SHMEM_RD(bp,
11970                                        dev_info.shared_feature_config.config);
11971                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11972
11973                         switch (val) {
11974                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11975                                 validate_set_si_mode(bp);
11976                                 break;
11977                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11978                                 if ((!CHIP_IS_E1x(bp)) &&
11979                                     (MF_CFG_RD(bp, func_mf_config[func].
11980                                                mac_upper) != 0xffff) &&
11981                                     (SHMEM2_HAS(bp,
11982                                                 afex_driver_support))) {
11983                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11984                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11985                                                 func_mf_config[func].config);
11986                                 } else {
11987                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11988                                 }
11989                                 break;
11990                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11991                                 /* get OV configuration */
11992                                 val = MF_CFG_RD(bp,
11993                                         func_mf_config[FUNC_0].e1hov_tag);
11994                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11995
11996                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11997                                         bp->mf_mode = MULTI_FUNCTION_SD;
11998                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11999                                                 func_mf_config[func].config);
12000                                 } else
12001                                         BNX2X_DEV_INFO("illegal OV for SD\n");
12002                                 break;
12003                         case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12004                                 bp->mf_mode = MULTI_FUNCTION_SD;
12005                                 bp->mf_sub_mode = SUB_MF_MODE_BD;
12006                                 bp->mf_config[vn] =
12007                                         MF_CFG_RD(bp,
12008                                                   func_mf_config[func].config);
12009
12010                                 if (SHMEM2_HAS(bp, mtu_size)) {
12011                                         int mtu_idx = BP_FW_MB_IDX(bp);
12012                                         u16 mtu_size;
12013                                         u32 mtu;
12014
12015                                         mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12016                                         mtu_size = (u16)mtu;
12017                                         DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12018                                            mtu_size, mtu);
12019
12020                                         /* if valid: update device mtu */
12021                                         if (((mtu_size + ETH_HLEN) >=
12022                                              ETH_MIN_PACKET_SIZE) &&
12023                                             (mtu_size <=
12024                                              ETH_MAX_JUMBO_PACKET_SIZE))
12025                                                 bp->dev->mtu = mtu_size;
12026                                 }
12027                                 break;
12028                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12029                                 bp->mf_mode = MULTI_FUNCTION_SD;
12030                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12031                                 bp->mf_config[vn] =
12032                                         MF_CFG_RD(bp,
12033                                                   func_mf_config[func].config);
12034                                 break;
12035                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12036                                 bp->mf_config[vn] = 0;
12037                                 break;
12038                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12039                                 val2 = SHMEM_RD(bp,
12040                                         dev_info.shared_hw_config.config_3);
12041                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12042                                 switch (val2) {
12043                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12044                                         validate_set_si_mode(bp);
12045                                         bp->mf_sub_mode =
12046                                                         SUB_MF_MODE_NPAR1_DOT_5;
12047                                         break;
12048                                 default:
12049                                         /* Unknown configuration */
12050                                         bp->mf_config[vn] = 0;
12051                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12052                                                        val);
12053                                 }
12054                                 break;
12055                         default:
12056                                 /* Unknown configuration: reset mf_config */
12057                                 bp->mf_config[vn] = 0;
12058                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12059                         }
12060                 }
12061
12062                 BNX2X_DEV_INFO("%s function mode\n",
12063                                IS_MF(bp) ? "multi" : "single");
12064
12065                 switch (bp->mf_mode) {
12066                 case MULTI_FUNCTION_SD:
12067                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12068                               FUNC_MF_CFG_E1HOV_TAG_MASK;
12069                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12070                                 bp->mf_ov = val;
12071                                 bp->path_has_ovlan = true;
12072
12073                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12074                                                func, bp->mf_ov, bp->mf_ov);
12075                         } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12076                                    (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12077                                 dev_err(&bp->pdev->dev,
12078                                         "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12079                                         func);
12080                                 bp->path_has_ovlan = true;
12081                         } else {
12082                                 dev_err(&bp->pdev->dev,
12083                                         "No valid MF OV for func %d, aborting\n",
12084                                         func);
12085                                 return -EPERM;
12086                         }
12087                         break;
12088                 case MULTI_FUNCTION_AFEX:
12089                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12090                         break;
12091                 case MULTI_FUNCTION_SI:
12092                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12093                                        func);
12094                         break;
12095                 default:
12096                         if (vn) {
12097                                 dev_err(&bp->pdev->dev,
12098                                         "VN %d is in a single function mode, aborting\n",
12099                                         vn);
12100                                 return -EPERM;
12101                         }
12102                         break;
12103                 }
12104
12105                 /* check if other port on the path needs ovlan:
12106                  * Since MF configuration is shared between ports
12107                  * Possible mixed modes are only
12108                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12109                  */
12110                 if (CHIP_MODE_IS_4_PORT(bp) &&
12111                     !bp->path_has_ovlan &&
12112                     !IS_MF(bp) &&
12113                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12114                         u8 other_port = !BP_PORT(bp);
12115                         u8 other_func = BP_PATH(bp) + 2*other_port;
12116                         val = MF_CFG_RD(bp,
12117                                         func_mf_config[other_func].e1hov_tag);
12118                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12119                                 bp->path_has_ovlan = true;
12120                 }
12121         }
12122
12123         /* adjust igu_sb_cnt to MF for E1H */
12124         if (CHIP_IS_E1H(bp) && IS_MF(bp))
12125                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12126
12127         /* port info */
12128         bnx2x_get_port_hwinfo(bp);
12129
12130         /* Get MAC addresses */
12131         bnx2x_get_mac_hwinfo(bp);
12132
12133         bnx2x_get_cnic_info(bp);
12134
12135         return rc;
12136 }
12137
12138 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12139 {
12140         int cnt, i, block_end, rodi;
12141         char vpd_start[BNX2X_VPD_LEN+1];
12142         char str_id_reg[VENDOR_ID_LEN+1];
12143         char str_id_cap[VENDOR_ID_LEN+1];
12144         char *vpd_data;
12145         char *vpd_extended_data = NULL;
12146         u8 len;
12147
12148         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12149         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12150
12151         if (cnt < BNX2X_VPD_LEN)
12152                 goto out_not_found;
12153
12154         /* VPD RO tag should be first tag after identifier string, hence
12155          * we should be able to find it in first BNX2X_VPD_LEN chars
12156          */
12157         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12158                              PCI_VPD_LRDT_RO_DATA);
12159         if (i < 0)
12160                 goto out_not_found;
12161
12162         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12163                     pci_vpd_lrdt_size(&vpd_start[i]);
12164
12165         i += PCI_VPD_LRDT_TAG_SIZE;
12166
12167         if (block_end > BNX2X_VPD_LEN) {
12168                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12169                 if (vpd_extended_data  == NULL)
12170                         goto out_not_found;
12171
12172                 /* read rest of vpd image into vpd_extended_data */
12173                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12174                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12175                                    block_end - BNX2X_VPD_LEN,
12176                                    vpd_extended_data + BNX2X_VPD_LEN);
12177                 if (cnt < (block_end - BNX2X_VPD_LEN))
12178                         goto out_not_found;
12179                 vpd_data = vpd_extended_data;
12180         } else
12181                 vpd_data = vpd_start;
12182
12183         /* now vpd_data holds full vpd content in both cases */
12184
12185         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12186                                    PCI_VPD_RO_KEYWORD_MFR_ID);
12187         if (rodi < 0)
12188                 goto out_not_found;
12189
12190         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12191
12192         if (len != VENDOR_ID_LEN)
12193                 goto out_not_found;
12194
12195         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12196
12197         /* vendor specific info */
12198         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12199         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12200         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12201             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12202
12203                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12204                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
12205                 if (rodi >= 0) {
12206                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12207
12208                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12209
12210                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12211                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12212                                 bp->fw_ver[len] = ' ';
12213                         }
12214                 }
12215                 kfree(vpd_extended_data);
12216                 return;
12217         }
12218 out_not_found:
12219         kfree(vpd_extended_data);
12220         return;
12221 }
12222
12223 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12224 {
12225         u32 flags = 0;
12226
12227         if (CHIP_REV_IS_FPGA(bp))
12228                 SET_FLAGS(flags, MODE_FPGA);
12229         else if (CHIP_REV_IS_EMUL(bp))
12230                 SET_FLAGS(flags, MODE_EMUL);
12231         else
12232                 SET_FLAGS(flags, MODE_ASIC);
12233
12234         if (CHIP_MODE_IS_4_PORT(bp))
12235                 SET_FLAGS(flags, MODE_PORT4);
12236         else
12237                 SET_FLAGS(flags, MODE_PORT2);
12238
12239         if (CHIP_IS_E2(bp))
12240                 SET_FLAGS(flags, MODE_E2);
12241         else if (CHIP_IS_E3(bp)) {
12242                 SET_FLAGS(flags, MODE_E3);
12243                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12244                         SET_FLAGS(flags, MODE_E3_A0);
12245                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12246                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12247         }
12248
12249         if (IS_MF(bp)) {
12250                 SET_FLAGS(flags, MODE_MF);
12251                 switch (bp->mf_mode) {
12252                 case MULTI_FUNCTION_SD:
12253                         SET_FLAGS(flags, MODE_MF_SD);
12254                         break;
12255                 case MULTI_FUNCTION_SI:
12256                         SET_FLAGS(flags, MODE_MF_SI);
12257                         break;
12258                 case MULTI_FUNCTION_AFEX:
12259                         SET_FLAGS(flags, MODE_MF_AFEX);
12260                         break;
12261                 }
12262         } else
12263                 SET_FLAGS(flags, MODE_SF);
12264
12265 #if defined(__LITTLE_ENDIAN)
12266         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12267 #else /*(__BIG_ENDIAN)*/
12268         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12269 #endif
12270         INIT_MODE_FLAGS(bp) = flags;
12271 }
12272
12273 static int bnx2x_init_bp(struct bnx2x *bp)
12274 {
12275         int func;
12276         int rc;
12277
12278         mutex_init(&bp->port.phy_mutex);
12279         mutex_init(&bp->fw_mb_mutex);
12280         mutex_init(&bp->drv_info_mutex);
12281         sema_init(&bp->stats_lock, 1);
12282         bp->drv_info_mng_owner = false;
12283         INIT_LIST_HEAD(&bp->vlan_reg);
12284
12285         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12286         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12287         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12288         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12289         if (IS_PF(bp)) {
12290                 rc = bnx2x_get_hwinfo(bp);
12291                 if (rc)
12292                         return rc;
12293         } else {
12294                 eth_zero_addr(bp->dev->dev_addr);
12295         }
12296
12297         bnx2x_set_modes_bitmap(bp);
12298
12299         rc = bnx2x_alloc_mem_bp(bp);
12300         if (rc)
12301                 return rc;
12302
12303         bnx2x_read_fwinfo(bp);
12304
12305         func = BP_FUNC(bp);
12306
12307         /* need to reset chip if undi was active */
12308         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12309                 /* init fw_seq */
12310                 bp->fw_seq =
12311                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12312                                                         DRV_MSG_SEQ_NUMBER_MASK;
12313                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12314
12315                 rc = bnx2x_prev_unload(bp);
12316                 if (rc) {
12317                         bnx2x_free_mem_bp(bp);
12318                         return rc;
12319                 }
12320         }
12321
12322         if (CHIP_REV_IS_FPGA(bp))
12323                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12324
12325         if (BP_NOMCP(bp) && (func == 0))
12326                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12327
12328         bp->disable_tpa = disable_tpa;
12329         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12330         /* Reduce memory usage in kdump environment by disabling TPA */
12331         bp->disable_tpa |= is_kdump_kernel();
12332
12333         /* Set TPA flags */
12334         if (bp->disable_tpa) {
12335                 bp->dev->hw_features &= ~NETIF_F_LRO;
12336                 bp->dev->features &= ~NETIF_F_LRO;
12337         }
12338
12339         if (CHIP_IS_E1(bp))
12340                 bp->dropless_fc = 0;
12341         else
12342                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12343
12344         bp->mrrs = mrrs;
12345
12346         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12347         if (IS_VF(bp))
12348                 bp->rx_ring_size = MAX_RX_AVAIL;
12349
12350         /* make sure that the numbers are in the right granularity */
12351         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12352         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12353
12354         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12355
12356         init_timer(&bp->timer);
12357         bp->timer.expires = jiffies + bp->current_interval;
12358         bp->timer.data = (unsigned long) bp;
12359         bp->timer.function = bnx2x_timer;
12360
12361         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12362             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12363             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12364             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12365                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12366                 bnx2x_dcbx_init_params(bp);
12367         } else {
12368                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12369         }
12370
12371         if (CHIP_IS_E1x(bp))
12372                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12373         else
12374                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12375
12376         /* multiple tx priority */
12377         if (IS_VF(bp))
12378                 bp->max_cos = 1;
12379         else if (CHIP_IS_E1x(bp))
12380                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12381         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12382                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12383         else if (CHIP_IS_E3B0(bp))
12384                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12385         else
12386                 BNX2X_ERR("unknown chip %x revision %x\n",
12387                           CHIP_NUM(bp), CHIP_REV(bp));
12388         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12389
12390         /* We need at least one default status block for slow-path events,
12391          * second status block for the L2 queue, and a third status block for
12392          * CNIC if supported.
12393          */
12394         if (IS_VF(bp))
12395                 bp->min_msix_vec_cnt = 1;
12396         else if (CNIC_SUPPORT(bp))
12397                 bp->min_msix_vec_cnt = 3;
12398         else /* PF w/o cnic */
12399                 bp->min_msix_vec_cnt = 2;
12400         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12401
12402         bp->dump_preset_idx = 1;
12403
12404         if (CHIP_IS_E3B0(bp))
12405                 bp->flags |= PTP_SUPPORTED;
12406
12407         return rc;
12408 }
12409
12410 /****************************************************************************
12411 * General service functions
12412 ****************************************************************************/
12413
12414 /*
12415  * net_device service functions
12416  */
12417
12418 /* called with rtnl_lock */
12419 static int bnx2x_open(struct net_device *dev)
12420 {
12421         struct bnx2x *bp = netdev_priv(dev);
12422         int rc;
12423
12424         bp->stats_init = true;
12425
12426         netif_carrier_off(dev);
12427
12428         bnx2x_set_power_state(bp, PCI_D0);
12429
12430         /* If parity had happen during the unload, then attentions
12431          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12432          * want the first function loaded on the current engine to
12433          * complete the recovery.
12434          * Parity recovery is only relevant for PF driver.
12435          */
12436         if (IS_PF(bp)) {
12437                 int other_engine = BP_PATH(bp) ? 0 : 1;
12438                 bool other_load_status, load_status;
12439                 bool global = false;
12440
12441                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12442                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12443                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12444                     bnx2x_chk_parity_attn(bp, &global, true)) {
12445                         do {
12446                                 /* If there are attentions and they are in a
12447                                  * global blocks, set the GLOBAL_RESET bit
12448                                  * regardless whether it will be this function
12449                                  * that will complete the recovery or not.
12450                                  */
12451                                 if (global)
12452                                         bnx2x_set_reset_global(bp);
12453
12454                                 /* Only the first function on the current
12455                                  * engine should try to recover in open. In case
12456                                  * of attentions in global blocks only the first
12457                                  * in the chip should try to recover.
12458                                  */
12459                                 if ((!load_status &&
12460                                      (!global || !other_load_status)) &&
12461                                       bnx2x_trylock_leader_lock(bp) &&
12462                                       !bnx2x_leader_reset(bp)) {
12463                                         netdev_info(bp->dev,
12464                                                     "Recovered in open\n");
12465                                         break;
12466                                 }
12467
12468                                 /* recovery has failed... */
12469                                 bnx2x_set_power_state(bp, PCI_D3hot);
12470                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12471
12472                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12473                                           "If you still see this message after a few retries then power cycle is required.\n");
12474
12475                                 return -EAGAIN;
12476                         } while (0);
12477                 }
12478         }
12479
12480         bp->recovery_state = BNX2X_RECOVERY_DONE;
12481         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12482         if (rc)
12483                 return rc;
12484
12485 #ifdef CONFIG_BNX2X_VXLAN
12486         if (IS_PF(bp))
12487                 vxlan_get_rx_port(dev);
12488 #endif
12489
12490         return 0;
12491 }
12492
12493 /* called with rtnl_lock */
12494 static int bnx2x_close(struct net_device *dev)
12495 {
12496         struct bnx2x *bp = netdev_priv(dev);
12497
12498         /* Unload the driver, release IRQs */
12499         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12500
12501         return 0;
12502 }
12503
12504 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12505                                       struct bnx2x_mcast_ramrod_params *p)
12506 {
12507         int mc_count = netdev_mc_count(bp->dev);
12508         struct bnx2x_mcast_list_elem *mc_mac =
12509                 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12510         struct netdev_hw_addr *ha;
12511
12512         if (!mc_mac)
12513                 return -ENOMEM;
12514
12515         INIT_LIST_HEAD(&p->mcast_list);
12516
12517         netdev_for_each_mc_addr(ha, bp->dev) {
12518                 mc_mac->mac = bnx2x_mc_addr(ha);
12519                 list_add_tail(&mc_mac->link, &p->mcast_list);
12520                 mc_mac++;
12521         }
12522
12523         p->mcast_list_len = mc_count;
12524
12525         return 0;
12526 }
12527
12528 static void bnx2x_free_mcast_macs_list(
12529         struct bnx2x_mcast_ramrod_params *p)
12530 {
12531         struct bnx2x_mcast_list_elem *mc_mac =
12532                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12533                                  link);
12534
12535         WARN_ON(!mc_mac);
12536         kfree(mc_mac);
12537 }
12538
12539 /**
12540  * bnx2x_set_uc_list - configure a new unicast MACs list.
12541  *
12542  * @bp: driver handle
12543  *
12544  * We will use zero (0) as a MAC type for these MACs.
12545  */
12546 static int bnx2x_set_uc_list(struct bnx2x *bp)
12547 {
12548         int rc;
12549         struct net_device *dev = bp->dev;
12550         struct netdev_hw_addr *ha;
12551         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12552         unsigned long ramrod_flags = 0;
12553
12554         /* First schedule a cleanup up of old configuration */
12555         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12556         if (rc < 0) {
12557                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12558                 return rc;
12559         }
12560
12561         netdev_for_each_uc_addr(ha, dev) {
12562                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12563                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12564                 if (rc == -EEXIST) {
12565                         DP(BNX2X_MSG_SP,
12566                            "Failed to schedule ADD operations: %d\n", rc);
12567                         /* do not treat adding same MAC as error */
12568                         rc = 0;
12569
12570                 } else if (rc < 0) {
12571
12572                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12573                                   rc);
12574                         return rc;
12575                 }
12576         }
12577
12578         /* Execute the pending commands */
12579         __set_bit(RAMROD_CONT, &ramrod_flags);
12580         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12581                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12582 }
12583
12584 static int bnx2x_set_mc_list(struct bnx2x *bp)
12585 {
12586         struct net_device *dev = bp->dev;
12587         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12588         int rc = 0;
12589
12590         rparam.mcast_obj = &bp->mcast_obj;
12591
12592         /* first, clear all configured multicast MACs */
12593         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12594         if (rc < 0) {
12595                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12596                 return rc;
12597         }
12598
12599         /* then, configure a new MACs list */
12600         if (netdev_mc_count(dev)) {
12601                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12602                 if (rc) {
12603                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12604                                   rc);
12605                         return rc;
12606                 }
12607
12608                 /* Now add the new MACs */
12609                 rc = bnx2x_config_mcast(bp, &rparam,
12610                                         BNX2X_MCAST_CMD_ADD);
12611                 if (rc < 0)
12612                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12613                                   rc);
12614
12615                 bnx2x_free_mcast_macs_list(&rparam);
12616         }
12617
12618         return rc;
12619 }
12620
12621 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12622 static void bnx2x_set_rx_mode(struct net_device *dev)
12623 {
12624         struct bnx2x *bp = netdev_priv(dev);
12625
12626         if (bp->state != BNX2X_STATE_OPEN) {
12627                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12628                 return;
12629         } else {
12630                 /* Schedule an SP task to handle rest of change */
12631                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12632                                        NETIF_MSG_IFUP);
12633         }
12634 }
12635
12636 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12637 {
12638         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12639
12640         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12641
12642         netif_addr_lock_bh(bp->dev);
12643
12644         if (bp->dev->flags & IFF_PROMISC) {
12645                 rx_mode = BNX2X_RX_MODE_PROMISC;
12646         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12647                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12648                     CHIP_IS_E1(bp))) {
12649                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12650         } else {
12651                 if (IS_PF(bp)) {
12652                         /* some multicasts */
12653                         if (bnx2x_set_mc_list(bp) < 0)
12654                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12655
12656                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12657                         netif_addr_unlock_bh(bp->dev);
12658                         if (bnx2x_set_uc_list(bp) < 0)
12659                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12660                         netif_addr_lock_bh(bp->dev);
12661                 } else {
12662                         /* configuring mcast to a vf involves sleeping (when we
12663                          * wait for the pf's response).
12664                          */
12665                         bnx2x_schedule_sp_rtnl(bp,
12666                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12667                 }
12668         }
12669
12670         bp->rx_mode = rx_mode;
12671         /* handle ISCSI SD mode */
12672         if (IS_MF_ISCSI_ONLY(bp))
12673                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12674
12675         /* Schedule the rx_mode command */
12676         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12677                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12678                 netif_addr_unlock_bh(bp->dev);
12679                 return;
12680         }
12681
12682         if (IS_PF(bp)) {
12683                 bnx2x_set_storm_rx_mode(bp);
12684                 netif_addr_unlock_bh(bp->dev);
12685         } else {
12686                 /* VF will need to request the PF to make this change, and so
12687                  * the VF needs to release the bottom-half lock prior to the
12688                  * request (as it will likely require sleep on the VF side)
12689                  */
12690                 netif_addr_unlock_bh(bp->dev);
12691                 bnx2x_vfpf_storm_rx_mode(bp);
12692         }
12693 }
12694
12695 /* called with rtnl_lock */
12696 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12697                            int devad, u16 addr)
12698 {
12699         struct bnx2x *bp = netdev_priv(netdev);
12700         u16 value;
12701         int rc;
12702
12703         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12704            prtad, devad, addr);
12705
12706         /* The HW expects different devad if CL22 is used */
12707         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12708
12709         bnx2x_acquire_phy_lock(bp);
12710         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12711         bnx2x_release_phy_lock(bp);
12712         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12713
12714         if (!rc)
12715                 rc = value;
12716         return rc;
12717 }
12718
12719 /* called with rtnl_lock */
12720 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12721                             u16 addr, u16 value)
12722 {
12723         struct bnx2x *bp = netdev_priv(netdev);
12724         int rc;
12725
12726         DP(NETIF_MSG_LINK,
12727            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12728            prtad, devad, addr, value);
12729
12730         /* The HW expects different devad if CL22 is used */
12731         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12732
12733         bnx2x_acquire_phy_lock(bp);
12734         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12735         bnx2x_release_phy_lock(bp);
12736         return rc;
12737 }
12738
12739 /* called with rtnl_lock */
12740 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12741 {
12742         struct bnx2x *bp = netdev_priv(dev);
12743         struct mii_ioctl_data *mdio = if_mii(ifr);
12744
12745         if (!netif_running(dev))
12746                 return -EAGAIN;
12747
12748         switch (cmd) {
12749         case SIOCSHWTSTAMP:
12750                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12751         default:
12752                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12753                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12754                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12755         }
12756 }
12757
12758 #ifdef CONFIG_NET_POLL_CONTROLLER
12759 static void poll_bnx2x(struct net_device *dev)
12760 {
12761         struct bnx2x *bp = netdev_priv(dev);
12762         int i;
12763
12764         for_each_eth_queue(bp, i) {
12765                 struct bnx2x_fastpath *fp = &bp->fp[i];
12766                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12767         }
12768 }
12769 #endif
12770
12771 static int bnx2x_validate_addr(struct net_device *dev)
12772 {
12773         struct bnx2x *bp = netdev_priv(dev);
12774
12775         /* query the bulletin board for mac address configured by the PF */
12776         if (IS_VF(bp))
12777                 bnx2x_sample_bulletin(bp);
12778
12779         if (!is_valid_ether_addr(dev->dev_addr)) {
12780                 BNX2X_ERR("Non-valid Ethernet address\n");
12781                 return -EADDRNOTAVAIL;
12782         }
12783         return 0;
12784 }
12785
12786 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12787                                   struct netdev_phys_item_id *ppid)
12788 {
12789         struct bnx2x *bp = netdev_priv(netdev);
12790
12791         if (!(bp->flags & HAS_PHYS_PORT_ID))
12792                 return -EOPNOTSUPP;
12793
12794         ppid->id_len = sizeof(bp->phys_port_id);
12795         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12796
12797         return 0;
12798 }
12799
12800 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12801                                               struct net_device *dev,
12802                                               netdev_features_t features)
12803 {
12804         features = vlan_features_check(skb, features);
12805         return vxlan_features_check(skb, features);
12806 }
12807
12808 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12809 {
12810         int rc;
12811
12812         if (IS_PF(bp)) {
12813                 unsigned long ramrod_flags = 0;
12814
12815                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12816                 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12817                                         add, &ramrod_flags);
12818         } else {
12819                 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12820         }
12821
12822         return rc;
12823 }
12824
12825 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12826 {
12827         struct bnx2x_vlan_entry *vlan;
12828         int rc = 0;
12829
12830         if (!bp->vlan_cnt) {
12831                 DP(NETIF_MSG_IFUP, "No need to re-configure vlan filters\n");
12832                 return 0;
12833         }
12834
12835         list_for_each_entry(vlan, &bp->vlan_reg, link) {
12836                 /* Prepare for cleanup in case of errors */
12837                 if (rc) {
12838                         vlan->hw = false;
12839                         continue;
12840                 }
12841
12842                 if (!vlan->hw)
12843                         continue;
12844
12845                 DP(NETIF_MSG_IFUP, "Re-configuring vlan 0x%04x\n", vlan->vid);
12846
12847                 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12848                 if (rc) {
12849                         BNX2X_ERR("Unable to configure VLAN %d\n", vlan->vid);
12850                         vlan->hw = false;
12851                         rc = -EINVAL;
12852                         continue;
12853                 }
12854         }
12855
12856         return rc;
12857 }
12858
12859 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12860 {
12861         struct bnx2x *bp = netdev_priv(dev);
12862         struct bnx2x_vlan_entry *vlan;
12863         bool hw = false;
12864         int rc = 0;
12865
12866         if (!netif_running(bp->dev)) {
12867                 DP(NETIF_MSG_IFUP,
12868                    "Ignoring VLAN configuration the interface is down\n");
12869                 return -EFAULT;
12870         }
12871
12872         DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12873
12874         vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12875         if (!vlan)
12876                 return -ENOMEM;
12877
12878         bp->vlan_cnt++;
12879         if (bp->vlan_cnt > bp->vlan_credit && !bp->accept_any_vlan) {
12880                 DP(NETIF_MSG_IFUP, "Accept all VLAN raised\n");
12881                 bp->accept_any_vlan = true;
12882                 if (IS_PF(bp))
12883                         bnx2x_set_rx_mode_inner(bp);
12884                 else
12885                         bnx2x_vfpf_storm_rx_mode(bp);
12886         } else if (bp->vlan_cnt <= bp->vlan_credit) {
12887                 rc = __bnx2x_vlan_configure_vid(bp, vid, true);
12888                 hw = true;
12889         }
12890
12891         vlan->vid = vid;
12892         vlan->hw = hw;
12893
12894         if (!rc) {
12895                 list_add(&vlan->link, &bp->vlan_reg);
12896         } else {
12897                 bp->vlan_cnt--;
12898                 kfree(vlan);
12899         }
12900
12901         DP(NETIF_MSG_IFUP, "Adding VLAN result %d\n", rc);
12902
12903         return rc;
12904 }
12905
12906 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12907 {
12908         struct bnx2x *bp = netdev_priv(dev);
12909         struct bnx2x_vlan_entry *vlan;
12910         int rc = 0;
12911
12912         if (!netif_running(bp->dev)) {
12913                 DP(NETIF_MSG_IFUP,
12914                    "Ignoring VLAN configuration the interface is down\n");
12915                 return -EFAULT;
12916         }
12917
12918         DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12919
12920         if (!bp->vlan_cnt) {
12921                 BNX2X_ERR("Unable to kill VLAN %d\n", vid);
12922                 return -EINVAL;
12923         }
12924
12925         list_for_each_entry(vlan, &bp->vlan_reg, link)
12926                 if (vlan->vid == vid)
12927                         break;
12928
12929         if (vlan->vid != vid) {
12930                 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12931                 return -EINVAL;
12932         }
12933
12934         if (vlan->hw)
12935                 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12936
12937         list_del(&vlan->link);
12938         kfree(vlan);
12939
12940         bp->vlan_cnt--;
12941
12942         if (bp->vlan_cnt <= bp->vlan_credit && bp->accept_any_vlan) {
12943                 /* Configure all non-configured entries */
12944                 list_for_each_entry(vlan, &bp->vlan_reg, link) {
12945                         if (vlan->hw)
12946                                 continue;
12947
12948                         rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12949                         if (rc) {
12950                                 BNX2X_ERR("Unable to config VLAN %d\n",
12951                                           vlan->vid);
12952                                 continue;
12953                         }
12954                         DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n",
12955                            vlan->vid);
12956                         vlan->hw = true;
12957                 }
12958                 DP(NETIF_MSG_IFUP, "Accept all VLAN Removed\n");
12959                 bp->accept_any_vlan = false;
12960                 if (IS_PF(bp))
12961                         bnx2x_set_rx_mode_inner(bp);
12962                 else
12963                         bnx2x_vfpf_storm_rx_mode(bp);
12964         }
12965
12966         DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
12967
12968         return rc;
12969 }
12970
12971 static const struct net_device_ops bnx2x_netdev_ops = {
12972         .ndo_open               = bnx2x_open,
12973         .ndo_stop               = bnx2x_close,
12974         .ndo_start_xmit         = bnx2x_start_xmit,
12975         .ndo_select_queue       = bnx2x_select_queue,
12976         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12977         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12978         .ndo_validate_addr      = bnx2x_validate_addr,
12979         .ndo_do_ioctl           = bnx2x_ioctl,
12980         .ndo_change_mtu         = bnx2x_change_mtu,
12981         .ndo_fix_features       = bnx2x_fix_features,
12982         .ndo_set_features       = bnx2x_set_features,
12983         .ndo_tx_timeout         = bnx2x_tx_timeout,
12984         .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
12985         .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
12986 #ifdef CONFIG_NET_POLL_CONTROLLER
12987         .ndo_poll_controller    = poll_bnx2x,
12988 #endif
12989         .ndo_setup_tc           = bnx2x_setup_tc,
12990 #ifdef CONFIG_BNX2X_SRIOV
12991         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12992         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12993         .ndo_get_vf_config      = bnx2x_get_vf_config,
12994 #endif
12995 #ifdef NETDEV_FCOE_WWNN
12996         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12997 #endif
12998
12999 #ifdef CONFIG_NET_RX_BUSY_POLL
13000         .ndo_busy_poll          = bnx2x_low_latency_recv,
13001 #endif
13002         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13003         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13004         .ndo_features_check     = bnx2x_features_check,
13005 #ifdef CONFIG_BNX2X_VXLAN
13006         .ndo_add_vxlan_port     = bnx2x_add_vxlan_port,
13007         .ndo_del_vxlan_port     = bnx2x_del_vxlan_port,
13008 #endif
13009 };
13010
13011 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13012 {
13013         struct device *dev = &bp->pdev->dev;
13014
13015         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13016             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13017                 dev_err(dev, "System does not support DMA, aborting\n");
13018                 return -EIO;
13019         }
13020
13021         return 0;
13022 }
13023
13024 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13025 {
13026         if (bp->flags & AER_ENABLED) {
13027                 pci_disable_pcie_error_reporting(bp->pdev);
13028                 bp->flags &= ~AER_ENABLED;
13029         }
13030 }
13031
13032 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13033                           struct net_device *dev, unsigned long board_type)
13034 {
13035         int rc;
13036         u32 pci_cfg_dword;
13037         bool chip_is_e1x = (board_type == BCM57710 ||
13038                             board_type == BCM57711 ||
13039                             board_type == BCM57711E);
13040
13041         SET_NETDEV_DEV(dev, &pdev->dev);
13042
13043         bp->dev = dev;
13044         bp->pdev = pdev;
13045
13046         rc = pci_enable_device(pdev);
13047         if (rc) {
13048                 dev_err(&bp->pdev->dev,
13049                         "Cannot enable PCI device, aborting\n");
13050                 goto err_out;
13051         }
13052
13053         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13054                 dev_err(&bp->pdev->dev,
13055                         "Cannot find PCI device base address, aborting\n");
13056                 rc = -ENODEV;
13057                 goto err_out_disable;
13058         }
13059
13060         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13061                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13062                 rc = -ENODEV;
13063                 goto err_out_disable;
13064         }
13065
13066         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13067         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13068             PCICFG_REVESION_ID_ERROR_VAL) {
13069                 pr_err("PCI device error, probably due to fan failure, aborting\n");
13070                 rc = -ENODEV;
13071                 goto err_out_disable;
13072         }
13073
13074         if (atomic_read(&pdev->enable_cnt) == 1) {
13075                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13076                 if (rc) {
13077                         dev_err(&bp->pdev->dev,
13078                                 "Cannot obtain PCI resources, aborting\n");
13079                         goto err_out_disable;
13080                 }
13081
13082                 pci_set_master(pdev);
13083                 pci_save_state(pdev);
13084         }
13085
13086         if (IS_PF(bp)) {
13087                 if (!pdev->pm_cap) {
13088                         dev_err(&bp->pdev->dev,
13089                                 "Cannot find power management capability, aborting\n");
13090                         rc = -EIO;
13091                         goto err_out_release;
13092                 }
13093         }
13094
13095         if (!pci_is_pcie(pdev)) {
13096                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13097                 rc = -EIO;
13098                 goto err_out_release;
13099         }
13100
13101         rc = bnx2x_set_coherency_mask(bp);
13102         if (rc)
13103                 goto err_out_release;
13104
13105         dev->mem_start = pci_resource_start(pdev, 0);
13106         dev->base_addr = dev->mem_start;
13107         dev->mem_end = pci_resource_end(pdev, 0);
13108
13109         dev->irq = pdev->irq;
13110
13111         bp->regview = pci_ioremap_bar(pdev, 0);
13112         if (!bp->regview) {
13113                 dev_err(&bp->pdev->dev,
13114                         "Cannot map register space, aborting\n");
13115                 rc = -ENOMEM;
13116                 goto err_out_release;
13117         }
13118
13119         /* In E1/E1H use pci device function given by kernel.
13120          * In E2/E3 read physical function from ME register since these chips
13121          * support Physical Device Assignment where kernel BDF maybe arbitrary
13122          * (depending on hypervisor).
13123          */
13124         if (chip_is_e1x) {
13125                 bp->pf_num = PCI_FUNC(pdev->devfn);
13126         } else {
13127                 /* chip is E2/3*/
13128                 pci_read_config_dword(bp->pdev,
13129                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
13130                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13131                                   ME_REG_ABS_PF_NUM_SHIFT);
13132         }
13133         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13134
13135         /* clean indirect addresses */
13136         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13137                                PCICFG_VENDOR_ID_OFFSET);
13138
13139         /* Set PCIe reset type to fundamental for EEH recovery */
13140         pdev->needs_freset = 1;
13141
13142         /* AER (Advanced Error reporting) configuration */
13143         rc = pci_enable_pcie_error_reporting(pdev);
13144         if (!rc)
13145                 bp->flags |= AER_ENABLED;
13146         else
13147                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13148
13149         /*
13150          * Clean the following indirect addresses for all functions since it
13151          * is not used by the driver.
13152          */
13153         if (IS_PF(bp)) {
13154                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13155                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13156                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13157                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13158
13159                 if (chip_is_e1x) {
13160                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13161                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13162                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13163                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13164                 }
13165
13166                 /* Enable internal target-read (in case we are probed after PF
13167                  * FLR). Must be done prior to any BAR read access. Only for
13168                  * 57712 and up
13169                  */
13170                 if (!chip_is_e1x)
13171                         REG_WR(bp,
13172                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13173         }
13174
13175         dev->watchdog_timeo = TX_TIMEOUT;
13176
13177         dev->netdev_ops = &bnx2x_netdev_ops;
13178         bnx2x_set_ethtool_ops(bp, dev);
13179
13180         dev->priv_flags |= IFF_UNICAST_FLT;
13181
13182         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13183                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13184                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13185                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13186         if (!chip_is_e1x) {
13187                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
13188                                     NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
13189                 dev->hw_enc_features =
13190                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13191                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13192                         NETIF_F_GSO_IPIP |
13193                         NETIF_F_GSO_SIT |
13194                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
13195         }
13196
13197         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13198                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13199
13200         /* VF with OLD Hypervisor or old PF do not support filtering */
13201         if (IS_PF(bp)) {
13202                 if (CHIP_IS_E1x(bp))
13203                         bp->accept_any_vlan = true;
13204                 else
13205                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13206 #ifdef CONFIG_BNX2X_SRIOV
13207         } else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13208                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13209 #endif
13210         }
13211
13212         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13213         dev->features |= NETIF_F_HIGHDMA;
13214
13215         /* Add Loopback capability to the device */
13216         dev->hw_features |= NETIF_F_LOOPBACK;
13217
13218 #ifdef BCM_DCBNL
13219         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13220 #endif
13221
13222         /* get_port_hwinfo() will set prtad and mmds properly */
13223         bp->mdio.prtad = MDIO_PRTAD_NONE;
13224         bp->mdio.mmds = 0;
13225         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13226         bp->mdio.dev = dev;
13227         bp->mdio.mdio_read = bnx2x_mdio_read;
13228         bp->mdio.mdio_write = bnx2x_mdio_write;
13229
13230         return 0;
13231
13232 err_out_release:
13233         if (atomic_read(&pdev->enable_cnt) == 1)
13234                 pci_release_regions(pdev);
13235
13236 err_out_disable:
13237         pci_disable_device(pdev);
13238
13239 err_out:
13240         return rc;
13241 }
13242
13243 static int bnx2x_check_firmware(struct bnx2x *bp)
13244 {
13245         const struct firmware *firmware = bp->firmware;
13246         struct bnx2x_fw_file_hdr *fw_hdr;
13247         struct bnx2x_fw_file_section *sections;
13248         u32 offset, len, num_ops;
13249         __be16 *ops_offsets;
13250         int i;
13251         const u8 *fw_ver;
13252
13253         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13254                 BNX2X_ERR("Wrong FW size\n");
13255                 return -EINVAL;
13256         }
13257
13258         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13259         sections = (struct bnx2x_fw_file_section *)fw_hdr;
13260
13261         /* Make sure none of the offsets and sizes make us read beyond
13262          * the end of the firmware data */
13263         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13264                 offset = be32_to_cpu(sections[i].offset);
13265                 len = be32_to_cpu(sections[i].len);
13266                 if (offset + len > firmware->size) {
13267                         BNX2X_ERR("Section %d length is out of bounds\n", i);
13268                         return -EINVAL;
13269                 }
13270         }
13271
13272         /* Likewise for the init_ops offsets */
13273         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13274         ops_offsets = (__force __be16 *)(firmware->data + offset);
13275         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13276
13277         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13278                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13279                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
13280                         return -EINVAL;
13281                 }
13282         }
13283
13284         /* Check FW version */
13285         offset = be32_to_cpu(fw_hdr->fw_version.offset);
13286         fw_ver = firmware->data + offset;
13287         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13288             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13289             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13290             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13291                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13292                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13293                        BCM_5710_FW_MAJOR_VERSION,
13294                        BCM_5710_FW_MINOR_VERSION,
13295                        BCM_5710_FW_REVISION_VERSION,
13296                        BCM_5710_FW_ENGINEERING_VERSION);
13297                 return -EINVAL;
13298         }
13299
13300         return 0;
13301 }
13302
13303 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13304 {
13305         const __be32 *source = (const __be32 *)_source;
13306         u32 *target = (u32 *)_target;
13307         u32 i;
13308
13309         for (i = 0; i < n/4; i++)
13310                 target[i] = be32_to_cpu(source[i]);
13311 }
13312
13313 /*
13314    Ops array is stored in the following format:
13315    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13316  */
13317 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13318 {
13319         const __be32 *source = (const __be32 *)_source;
13320         struct raw_op *target = (struct raw_op *)_target;
13321         u32 i, j, tmp;
13322
13323         for (i = 0, j = 0; i < n/8; i++, j += 2) {
13324                 tmp = be32_to_cpu(source[j]);
13325                 target[i].op = (tmp >> 24) & 0xff;
13326                 target[i].offset = tmp & 0xffffff;
13327                 target[i].raw_data = be32_to_cpu(source[j + 1]);
13328         }
13329 }
13330
13331 /* IRO array is stored in the following format:
13332  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13333  */
13334 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13335 {
13336         const __be32 *source = (const __be32 *)_source;
13337         struct iro *target = (struct iro *)_target;
13338         u32 i, j, tmp;
13339
13340         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13341                 target[i].base = be32_to_cpu(source[j]);
13342                 j++;
13343                 tmp = be32_to_cpu(source[j]);
13344                 target[i].m1 = (tmp >> 16) & 0xffff;
13345                 target[i].m2 = tmp & 0xffff;
13346                 j++;
13347                 tmp = be32_to_cpu(source[j]);
13348                 target[i].m3 = (tmp >> 16) & 0xffff;
13349                 target[i].size = tmp & 0xffff;
13350                 j++;
13351         }
13352 }
13353
13354 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13355 {
13356         const __be16 *source = (const __be16 *)_source;
13357         u16 *target = (u16 *)_target;
13358         u32 i;
13359
13360         for (i = 0; i < n/2; i++)
13361                 target[i] = be16_to_cpu(source[i]);
13362 }
13363
13364 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13365 do {                                                                    \
13366         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13367         bp->arr = kmalloc(len, GFP_KERNEL);                             \
13368         if (!bp->arr)                                                   \
13369                 goto lbl;                                               \
13370         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13371              (u8 *)bp->arr, len);                                       \
13372 } while (0)
13373
13374 static int bnx2x_init_firmware(struct bnx2x *bp)
13375 {
13376         const char *fw_file_name;
13377         struct bnx2x_fw_file_hdr *fw_hdr;
13378         int rc;
13379
13380         if (bp->firmware)
13381                 return 0;
13382
13383         if (CHIP_IS_E1(bp))
13384                 fw_file_name = FW_FILE_NAME_E1;
13385         else if (CHIP_IS_E1H(bp))
13386                 fw_file_name = FW_FILE_NAME_E1H;
13387         else if (!CHIP_IS_E1x(bp))
13388                 fw_file_name = FW_FILE_NAME_E2;
13389         else {
13390                 BNX2X_ERR("Unsupported chip revision\n");
13391                 return -EINVAL;
13392         }
13393         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13394
13395         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13396         if (rc) {
13397                 BNX2X_ERR("Can't load firmware file %s\n",
13398                           fw_file_name);
13399                 goto request_firmware_exit;
13400         }
13401
13402         rc = bnx2x_check_firmware(bp);
13403         if (rc) {
13404                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13405                 goto request_firmware_exit;
13406         }
13407
13408         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13409
13410         /* Initialize the pointers to the init arrays */
13411         /* Blob */
13412         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13413
13414         /* Opcodes */
13415         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13416
13417         /* Offsets */
13418         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13419                             be16_to_cpu_n);
13420
13421         /* STORMs firmware */
13422         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13423                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13424         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13425                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13426         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13427                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13428         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13429                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
13430         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13431                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13432         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13433                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13434         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13435                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13436         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13437                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
13438         /* IRO */
13439         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13440
13441         return 0;
13442
13443 iro_alloc_err:
13444         kfree(bp->init_ops_offsets);
13445 init_offsets_alloc_err:
13446         kfree(bp->init_ops);
13447 init_ops_alloc_err:
13448         kfree(bp->init_data);
13449 request_firmware_exit:
13450         release_firmware(bp->firmware);
13451         bp->firmware = NULL;
13452
13453         return rc;
13454 }
13455
13456 static void bnx2x_release_firmware(struct bnx2x *bp)
13457 {
13458         kfree(bp->init_ops_offsets);
13459         kfree(bp->init_ops);
13460         kfree(bp->init_data);
13461         release_firmware(bp->firmware);
13462         bp->firmware = NULL;
13463 }
13464
13465 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13466         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13467         .init_hw_cmn      = bnx2x_init_hw_common,
13468         .init_hw_port     = bnx2x_init_hw_port,
13469         .init_hw_func     = bnx2x_init_hw_func,
13470
13471         .reset_hw_cmn     = bnx2x_reset_common,
13472         .reset_hw_port    = bnx2x_reset_port,
13473         .reset_hw_func    = bnx2x_reset_func,
13474
13475         .gunzip_init      = bnx2x_gunzip_init,
13476         .gunzip_end       = bnx2x_gunzip_end,
13477
13478         .init_fw          = bnx2x_init_firmware,
13479         .release_fw       = bnx2x_release_firmware,
13480 };
13481
13482 void bnx2x__init_func_obj(struct bnx2x *bp)
13483 {
13484         /* Prepare DMAE related driver resources */
13485         bnx2x_setup_dmae(bp);
13486
13487         bnx2x_init_func_obj(bp, &bp->func_obj,
13488                             bnx2x_sp(bp, func_rdata),
13489                             bnx2x_sp_mapping(bp, func_rdata),
13490                             bnx2x_sp(bp, func_afex_rdata),
13491                             bnx2x_sp_mapping(bp, func_afex_rdata),
13492                             &bnx2x_func_sp_drv);
13493 }
13494
13495 /* must be called after sriov-enable */
13496 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13497 {
13498         int cid_count = BNX2X_L2_MAX_CID(bp);
13499
13500         if (IS_SRIOV(bp))
13501                 cid_count += BNX2X_VF_CIDS;
13502
13503         if (CNIC_SUPPORT(bp))
13504                 cid_count += CNIC_CID_MAX;
13505
13506         return roundup(cid_count, QM_CID_ROUND);
13507 }
13508
13509 /**
13510  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13511  *
13512  * @dev:        pci device
13513  *
13514  */
13515 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13516 {
13517         int index;
13518         u16 control = 0;
13519
13520         /*
13521          * If MSI-X is not supported - return number of SBs needed to support
13522          * one fast path queue: one FP queue + SB for CNIC
13523          */
13524         if (!pdev->msix_cap) {
13525                 dev_info(&pdev->dev, "no msix capability found\n");
13526                 return 1 + cnic_cnt;
13527         }
13528         dev_info(&pdev->dev, "msix capability found\n");
13529
13530         /*
13531          * The value in the PCI configuration space is the index of the last
13532          * entry, namely one less than the actual size of the table, which is
13533          * exactly what we want to return from this function: number of all SBs
13534          * without the default SB.
13535          * For VFs there is no default SB, then we return (index+1).
13536          */
13537         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13538
13539         index = control & PCI_MSIX_FLAGS_QSIZE;
13540
13541         return index;
13542 }
13543
13544 static int set_max_cos_est(int chip_id)
13545 {
13546         switch (chip_id) {
13547         case BCM57710:
13548         case BCM57711:
13549         case BCM57711E:
13550                 return BNX2X_MULTI_TX_COS_E1X;
13551         case BCM57712:
13552         case BCM57712_MF:
13553                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13554         case BCM57800:
13555         case BCM57800_MF:
13556         case BCM57810:
13557         case BCM57810_MF:
13558         case BCM57840_4_10:
13559         case BCM57840_2_20:
13560         case BCM57840_O:
13561         case BCM57840_MFO:
13562         case BCM57840_MF:
13563         case BCM57811:
13564         case BCM57811_MF:
13565                 return BNX2X_MULTI_TX_COS_E3B0;
13566         case BCM57712_VF:
13567         case BCM57800_VF:
13568         case BCM57810_VF:
13569         case BCM57840_VF:
13570         case BCM57811_VF:
13571                 return 1;
13572         default:
13573                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13574                 return -ENODEV;
13575         }
13576 }
13577
13578 static int set_is_vf(int chip_id)
13579 {
13580         switch (chip_id) {
13581         case BCM57712_VF:
13582         case BCM57800_VF:
13583         case BCM57810_VF:
13584         case BCM57840_VF:
13585         case BCM57811_VF:
13586                 return true;
13587         default:
13588                 return false;
13589         }
13590 }
13591
13592 /* nig_tsgen registers relative address */
13593 #define tsgen_ctrl 0x0
13594 #define tsgen_freecount 0x10
13595 #define tsgen_synctime_t0 0x20
13596 #define tsgen_offset_t0 0x28
13597 #define tsgen_drift_t0 0x30
13598 #define tsgen_synctime_t1 0x58
13599 #define tsgen_offset_t1 0x60
13600 #define tsgen_drift_t1 0x68
13601
13602 /* FW workaround for setting drift */
13603 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13604                                           int best_val, int best_period)
13605 {
13606         struct bnx2x_func_state_params func_params = {NULL};
13607         struct bnx2x_func_set_timesync_params *set_timesync_params =
13608                 &func_params.params.set_timesync;
13609
13610         /* Prepare parameters for function state transitions */
13611         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13612         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13613
13614         func_params.f_obj = &bp->func_obj;
13615         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13616
13617         /* Function parameters */
13618         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13619         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13620         set_timesync_params->add_sub_drift_adjust_value =
13621                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13622         set_timesync_params->drift_adjust_value = best_val;
13623         set_timesync_params->drift_adjust_period = best_period;
13624
13625         return bnx2x_func_state_change(bp, &func_params);
13626 }
13627
13628 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13629 {
13630         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13631         int rc;
13632         int drift_dir = 1;
13633         int val, period, period1, period2, dif, dif1, dif2;
13634         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13635
13636         DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13637
13638         if (!netif_running(bp->dev)) {
13639                 DP(BNX2X_MSG_PTP,
13640                    "PTP adjfreq called while the interface is down\n");
13641                 return -EFAULT;
13642         }
13643
13644         if (ppb < 0) {
13645                 ppb = -ppb;
13646                 drift_dir = 0;
13647         }
13648
13649         if (ppb == 0) {
13650                 best_val = 1;
13651                 best_period = 0x1FFFFFF;
13652         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13653                 best_val = 31;
13654                 best_period = 1;
13655         } else {
13656                 /* Changed not to allow val = 8, 16, 24 as these values
13657                  * are not supported in workaround.
13658                  */
13659                 for (val = 0; val <= 31; val++) {
13660                         if ((val & 0x7) == 0)
13661                                 continue;
13662                         period1 = val * 1000000 / ppb;
13663                         period2 = period1 + 1;
13664                         if (period1 != 0)
13665                                 dif1 = ppb - (val * 1000000 / period1);
13666                         else
13667                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13668                         if (dif1 < 0)
13669                                 dif1 = -dif1;
13670                         dif2 = ppb - (val * 1000000 / period2);
13671                         if (dif2 < 0)
13672                                 dif2 = -dif2;
13673                         dif = (dif1 < dif2) ? dif1 : dif2;
13674                         period = (dif1 < dif2) ? period1 : period2;
13675                         if (dif < best_dif) {
13676                                 best_dif = dif;
13677                                 best_val = val;
13678                                 best_period = period;
13679                         }
13680                 }
13681         }
13682
13683         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13684                                             best_period);
13685         if (rc) {
13686                 BNX2X_ERR("Failed to set drift\n");
13687                 return -EFAULT;
13688         }
13689
13690         DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13691            best_period);
13692
13693         return 0;
13694 }
13695
13696 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13697 {
13698         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13699
13700         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13701
13702         timecounter_adjtime(&bp->timecounter, delta);
13703
13704         return 0;
13705 }
13706
13707 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13708 {
13709         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13710         u64 ns;
13711
13712         ns = timecounter_read(&bp->timecounter);
13713
13714         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13715
13716         *ts = ns_to_timespec64(ns);
13717
13718         return 0;
13719 }
13720
13721 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13722                              const struct timespec64 *ts)
13723 {
13724         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13725         u64 ns;
13726
13727         ns = timespec64_to_ns(ts);
13728
13729         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13730
13731         /* Re-init the timecounter */
13732         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13733
13734         return 0;
13735 }
13736
13737 /* Enable (or disable) ancillary features of the phc subsystem */
13738 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13739                             struct ptp_clock_request *rq, int on)
13740 {
13741         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13742
13743         BNX2X_ERR("PHC ancillary features are not supported\n");
13744         return -ENOTSUPP;
13745 }
13746
13747 static void bnx2x_register_phc(struct bnx2x *bp)
13748 {
13749         /* Fill the ptp_clock_info struct and register PTP clock*/
13750         bp->ptp_clock_info.owner = THIS_MODULE;
13751         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13752         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13753         bp->ptp_clock_info.n_alarm = 0;
13754         bp->ptp_clock_info.n_ext_ts = 0;
13755         bp->ptp_clock_info.n_per_out = 0;
13756         bp->ptp_clock_info.pps = 0;
13757         bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13758         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13759         bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13760         bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13761         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13762
13763         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13764         if (IS_ERR(bp->ptp_clock)) {
13765                 bp->ptp_clock = NULL;
13766                 BNX2X_ERR("PTP clock registeration failed\n");
13767         }
13768 }
13769
13770 static int bnx2x_init_one(struct pci_dev *pdev,
13771                                     const struct pci_device_id *ent)
13772 {
13773         struct net_device *dev = NULL;
13774         struct bnx2x *bp;
13775         enum pcie_link_width pcie_width;
13776         enum pci_bus_speed pcie_speed;
13777         int rc, max_non_def_sbs;
13778         int rx_count, tx_count, rss_count, doorbell_size;
13779         int max_cos_est;
13780         bool is_vf;
13781         int cnic_cnt;
13782
13783         /* Management FW 'remembers' living interfaces. Allow it some time
13784          * to forget previously living interfaces, allowing a proper re-load.
13785          */
13786         if (is_kdump_kernel()) {
13787                 ktime_t now = ktime_get_boottime();
13788                 ktime_t fw_ready_time = ktime_set(5, 0);
13789
13790                 if (ktime_before(now, fw_ready_time))
13791                         msleep(ktime_ms_delta(fw_ready_time, now));
13792         }
13793
13794         /* An estimated maximum supported CoS number according to the chip
13795          * version.
13796          * We will try to roughly estimate the maximum number of CoSes this chip
13797          * may support in order to minimize the memory allocated for Tx
13798          * netdev_queue's. This number will be accurately calculated during the
13799          * initialization of bp->max_cos based on the chip versions AND chip
13800          * revision in the bnx2x_init_bp().
13801          */
13802         max_cos_est = set_max_cos_est(ent->driver_data);
13803         if (max_cos_est < 0)
13804                 return max_cos_est;
13805         is_vf = set_is_vf(ent->driver_data);
13806         cnic_cnt = is_vf ? 0 : 1;
13807
13808         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13809
13810         /* add another SB for VF as it has no default SB */
13811         max_non_def_sbs += is_vf ? 1 : 0;
13812
13813         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13814         rss_count = max_non_def_sbs - cnic_cnt;
13815
13816         if (rss_count < 1)
13817                 return -EINVAL;
13818
13819         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13820         rx_count = rss_count + cnic_cnt;
13821
13822         /* Maximum number of netdev Tx queues:
13823          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13824          */
13825         tx_count = rss_count * max_cos_est + cnic_cnt;
13826
13827         /* dev zeroed in init_etherdev */
13828         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13829         if (!dev)
13830                 return -ENOMEM;
13831
13832         bp = netdev_priv(dev);
13833
13834         bp->flags = 0;
13835         if (is_vf)
13836                 bp->flags |= IS_VF_FLAG;
13837
13838         bp->igu_sb_cnt = max_non_def_sbs;
13839         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13840         bp->msg_enable = debug;
13841         bp->cnic_support = cnic_cnt;
13842         bp->cnic_probe = bnx2x_cnic_probe;
13843
13844         pci_set_drvdata(pdev, dev);
13845
13846         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13847         if (rc < 0) {
13848                 free_netdev(dev);
13849                 return rc;
13850         }
13851
13852         BNX2X_DEV_INFO("This is a %s function\n",
13853                        IS_PF(bp) ? "physical" : "virtual");
13854         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13855         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13856         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13857                        tx_count, rx_count);
13858
13859         rc = bnx2x_init_bp(bp);
13860         if (rc)
13861                 goto init_one_exit;
13862
13863         /* Map doorbells here as we need the real value of bp->max_cos which
13864          * is initialized in bnx2x_init_bp() to determine the number of
13865          * l2 connections.
13866          */
13867         if (IS_VF(bp)) {
13868                 bp->doorbells = bnx2x_vf_doorbells(bp);
13869                 rc = bnx2x_vf_pci_alloc(bp);
13870                 if (rc)
13871                         goto init_one_exit;
13872         } else {
13873                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13874                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13875                         dev_err(&bp->pdev->dev,
13876                                 "Cannot map doorbells, bar size too small, aborting\n");
13877                         rc = -ENOMEM;
13878                         goto init_one_exit;
13879                 }
13880                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13881                                                 doorbell_size);
13882         }
13883         if (!bp->doorbells) {
13884                 dev_err(&bp->pdev->dev,
13885                         "Cannot map doorbell space, aborting\n");
13886                 rc = -ENOMEM;
13887                 goto init_one_exit;
13888         }
13889
13890         if (IS_VF(bp)) {
13891                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13892                 if (rc)
13893                         goto init_one_exit;
13894         }
13895
13896         /* Enable SRIOV if capability found in configuration space */
13897         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13898         if (rc)
13899                 goto init_one_exit;
13900
13901         /* calc qm_cid_count */
13902         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13903         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13904
13905         /* disable FCOE L2 queue for E1x*/
13906         if (CHIP_IS_E1x(bp))
13907                 bp->flags |= NO_FCOE_FLAG;
13908
13909         /* Set bp->num_queues for MSI-X mode*/
13910         bnx2x_set_num_queues(bp);
13911
13912         /* Configure interrupt mode: try to enable MSI-X/MSI if
13913          * needed.
13914          */
13915         rc = bnx2x_set_int_mode(bp);
13916         if (rc) {
13917                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13918                 goto init_one_exit;
13919         }
13920         BNX2X_DEV_INFO("set interrupts successfully\n");
13921
13922         /* register the net device */
13923         rc = register_netdev(dev);
13924         if (rc) {
13925                 dev_err(&pdev->dev, "Cannot register net device\n");
13926                 goto init_one_exit;
13927         }
13928         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13929
13930         if (!NO_FCOE(bp)) {
13931                 /* Add storage MAC address */
13932                 rtnl_lock();
13933                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13934                 rtnl_unlock();
13935         }
13936         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13937             pcie_speed == PCI_SPEED_UNKNOWN ||
13938             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13939                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13940         else
13941                 BNX2X_DEV_INFO(
13942                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13943                        board_info[ent->driver_data].name,
13944                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13945                        pcie_width,
13946                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13947                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13948                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13949                        "Unknown",
13950                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
13951
13952         bnx2x_register_phc(bp);
13953
13954         if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
13955                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
13956
13957         return 0;
13958
13959 init_one_exit:
13960         bnx2x_disable_pcie_error_reporting(bp);
13961
13962         if (bp->regview)
13963                 iounmap(bp->regview);
13964
13965         if (IS_PF(bp) && bp->doorbells)
13966                 iounmap(bp->doorbells);
13967
13968         free_netdev(dev);
13969
13970         if (atomic_read(&pdev->enable_cnt) == 1)
13971                 pci_release_regions(pdev);
13972
13973         pci_disable_device(pdev);
13974
13975         return rc;
13976 }
13977
13978 static void __bnx2x_remove(struct pci_dev *pdev,
13979                            struct net_device *dev,
13980                            struct bnx2x *bp,
13981                            bool remove_netdev)
13982 {
13983         if (bp->ptp_clock) {
13984                 ptp_clock_unregister(bp->ptp_clock);
13985                 bp->ptp_clock = NULL;
13986         }
13987
13988         /* Delete storage MAC address */
13989         if (!NO_FCOE(bp)) {
13990                 rtnl_lock();
13991                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13992                 rtnl_unlock();
13993         }
13994
13995 #ifdef BCM_DCBNL
13996         /* Delete app tlvs from dcbnl */
13997         bnx2x_dcbnl_update_applist(bp, true);
13998 #endif
13999
14000         if (IS_PF(bp) &&
14001             !BP_NOMCP(bp) &&
14002             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14003                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14004
14005         /* Close the interface - either directly or implicitly */
14006         if (remove_netdev) {
14007                 unregister_netdev(dev);
14008         } else {
14009                 rtnl_lock();
14010                 dev_close(dev);
14011                 rtnl_unlock();
14012         }
14013
14014         bnx2x_iov_remove_one(bp);
14015
14016         /* Power on: we can't let PCI layer write to us while we are in D3 */
14017         if (IS_PF(bp)) {
14018                 bnx2x_set_power_state(bp, PCI_D0);
14019                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14020
14021                 /* Set endianity registers to reset values in case next driver
14022                  * boots in different endianty environment.
14023                  */
14024                 bnx2x_reset_endianity(bp);
14025         }
14026
14027         /* Disable MSI/MSI-X */
14028         bnx2x_disable_msi(bp);
14029
14030         /* Power off */
14031         if (IS_PF(bp))
14032                 bnx2x_set_power_state(bp, PCI_D3hot);
14033
14034         /* Make sure RESET task is not scheduled before continuing */
14035         cancel_delayed_work_sync(&bp->sp_rtnl_task);
14036
14037         /* send message via vfpf channel to release the resources of this vf */
14038         if (IS_VF(bp))
14039                 bnx2x_vfpf_release(bp);
14040
14041         /* Assumes no further PCIe PM changes will occur */
14042         if (system_state == SYSTEM_POWER_OFF) {
14043                 pci_wake_from_d3(pdev, bp->wol);
14044                 pci_set_power_state(pdev, PCI_D3hot);
14045         }
14046
14047         bnx2x_disable_pcie_error_reporting(bp);
14048         if (remove_netdev) {
14049                 if (bp->regview)
14050                         iounmap(bp->regview);
14051
14052                 /* For vfs, doorbells are part of the regview and were unmapped
14053                  * along with it. FW is only loaded by PF.
14054                  */
14055                 if (IS_PF(bp)) {
14056                         if (bp->doorbells)
14057                                 iounmap(bp->doorbells);
14058
14059                         bnx2x_release_firmware(bp);
14060                 } else {
14061                         bnx2x_vf_pci_dealloc(bp);
14062                 }
14063                 bnx2x_free_mem_bp(bp);
14064
14065                 free_netdev(dev);
14066
14067                 if (atomic_read(&pdev->enable_cnt) == 1)
14068                         pci_release_regions(pdev);
14069
14070                 pci_disable_device(pdev);
14071         }
14072 }
14073
14074 static void bnx2x_remove_one(struct pci_dev *pdev)
14075 {
14076         struct net_device *dev = pci_get_drvdata(pdev);
14077         struct bnx2x *bp;
14078
14079         if (!dev) {
14080                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14081                 return;
14082         }
14083         bp = netdev_priv(dev);
14084
14085         __bnx2x_remove(pdev, dev, bp, true);
14086 }
14087
14088 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14089 {
14090         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14091
14092         bp->rx_mode = BNX2X_RX_MODE_NONE;
14093
14094         if (CNIC_LOADED(bp))
14095                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14096
14097         /* Stop Tx */
14098         bnx2x_tx_disable(bp);
14099         /* Delete all NAPI objects */
14100         bnx2x_del_all_napi(bp);
14101         if (CNIC_LOADED(bp))
14102                 bnx2x_del_all_napi_cnic(bp);
14103         netdev_reset_tc(bp->dev);
14104
14105         del_timer_sync(&bp->timer);
14106         cancel_delayed_work_sync(&bp->sp_task);
14107         cancel_delayed_work_sync(&bp->period_task);
14108
14109         if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14110                 bp->stats_state = STATS_STATE_DISABLED;
14111                 up(&bp->stats_lock);
14112         }
14113
14114         bnx2x_save_statistics(bp);
14115
14116         netif_carrier_off(bp->dev);
14117
14118         return 0;
14119 }
14120
14121 /**
14122  * bnx2x_io_error_detected - called when PCI error is detected
14123  * @pdev: Pointer to PCI device
14124  * @state: The current pci connection state
14125  *
14126  * This function is called after a PCI bus error affecting
14127  * this device has been detected.
14128  */
14129 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14130                                                 pci_channel_state_t state)
14131 {
14132         struct net_device *dev = pci_get_drvdata(pdev);
14133         struct bnx2x *bp = netdev_priv(dev);
14134
14135         rtnl_lock();
14136
14137         BNX2X_ERR("IO error detected\n");
14138
14139         netif_device_detach(dev);
14140
14141         if (state == pci_channel_io_perm_failure) {
14142                 rtnl_unlock();
14143                 return PCI_ERS_RESULT_DISCONNECT;
14144         }
14145
14146         if (netif_running(dev))
14147                 bnx2x_eeh_nic_unload(bp);
14148
14149         bnx2x_prev_path_mark_eeh(bp);
14150
14151         pci_disable_device(pdev);
14152
14153         rtnl_unlock();
14154
14155         /* Request a slot reset */
14156         return PCI_ERS_RESULT_NEED_RESET;
14157 }
14158
14159 /**
14160  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14161  * @pdev: Pointer to PCI device
14162  *
14163  * Restart the card from scratch, as if from a cold-boot.
14164  */
14165 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14166 {
14167         struct net_device *dev = pci_get_drvdata(pdev);
14168         struct bnx2x *bp = netdev_priv(dev);
14169         int i;
14170
14171         rtnl_lock();
14172         BNX2X_ERR("IO slot reset initializing...\n");
14173         if (pci_enable_device(pdev)) {
14174                 dev_err(&pdev->dev,
14175                         "Cannot re-enable PCI device after reset\n");
14176                 rtnl_unlock();
14177                 return PCI_ERS_RESULT_DISCONNECT;
14178         }
14179
14180         pci_set_master(pdev);
14181         pci_restore_state(pdev);
14182         pci_save_state(pdev);
14183
14184         if (netif_running(dev))
14185                 bnx2x_set_power_state(bp, PCI_D0);
14186
14187         if (netif_running(dev)) {
14188                 BNX2X_ERR("IO slot reset --> driver unload\n");
14189
14190                 /* MCP should have been reset; Need to wait for validity */
14191                 bnx2x_init_shmem(bp);
14192
14193                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14194                         u32 v;
14195
14196                         v = SHMEM2_RD(bp,
14197                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14198                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14199                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14200                 }
14201                 bnx2x_drain_tx_queues(bp);
14202                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14203                 bnx2x_netif_stop(bp, 1);
14204                 bnx2x_free_irq(bp);
14205
14206                 /* Report UNLOAD_DONE to MCP */
14207                 bnx2x_send_unload_done(bp, true);
14208
14209                 bp->sp_state = 0;
14210                 bp->port.pmf = 0;
14211
14212                 bnx2x_prev_unload(bp);
14213
14214                 /* We should have reseted the engine, so It's fair to
14215                  * assume the FW will no longer write to the bnx2x driver.
14216                  */
14217                 bnx2x_squeeze_objects(bp);
14218                 bnx2x_free_skbs(bp);
14219                 for_each_rx_queue(bp, i)
14220                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14221                 bnx2x_free_fp_mem(bp);
14222                 bnx2x_free_mem(bp);
14223
14224                 bp->state = BNX2X_STATE_CLOSED;
14225         }
14226
14227         rtnl_unlock();
14228
14229         /* If AER, perform cleanup of the PCIe registers */
14230         if (bp->flags & AER_ENABLED) {
14231                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
14232                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14233                 else
14234                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14235         }
14236
14237         return PCI_ERS_RESULT_RECOVERED;
14238 }
14239
14240 /**
14241  * bnx2x_io_resume - called when traffic can start flowing again
14242  * @pdev: Pointer to PCI device
14243  *
14244  * This callback is called when the error recovery driver tells us that
14245  * its OK to resume normal operation.
14246  */
14247 static void bnx2x_io_resume(struct pci_dev *pdev)
14248 {
14249         struct net_device *dev = pci_get_drvdata(pdev);
14250         struct bnx2x *bp = netdev_priv(dev);
14251
14252         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14253                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14254                 return;
14255         }
14256
14257         rtnl_lock();
14258
14259         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14260                                                         DRV_MSG_SEQ_NUMBER_MASK;
14261
14262         if (netif_running(dev))
14263                 bnx2x_nic_load(bp, LOAD_NORMAL);
14264
14265         netif_device_attach(dev);
14266
14267         rtnl_unlock();
14268 }
14269
14270 static const struct pci_error_handlers bnx2x_err_handler = {
14271         .error_detected = bnx2x_io_error_detected,
14272         .slot_reset     = bnx2x_io_slot_reset,
14273         .resume         = bnx2x_io_resume,
14274 };
14275
14276 static void bnx2x_shutdown(struct pci_dev *pdev)
14277 {
14278         struct net_device *dev = pci_get_drvdata(pdev);
14279         struct bnx2x *bp;
14280
14281         if (!dev)
14282                 return;
14283
14284         bp = netdev_priv(dev);
14285         if (!bp)
14286                 return;
14287
14288         rtnl_lock();
14289         netif_device_detach(dev);
14290         rtnl_unlock();
14291
14292         /* Don't remove the netdevice, as there are scenarios which will cause
14293          * the kernel to hang, e.g., when trying to remove bnx2i while the
14294          * rootfs is mounted from SAN.
14295          */
14296         __bnx2x_remove(pdev, dev, bp, false);
14297 }
14298
14299 static struct pci_driver bnx2x_pci_driver = {
14300         .name        = DRV_MODULE_NAME,
14301         .id_table    = bnx2x_pci_tbl,
14302         .probe       = bnx2x_init_one,
14303         .remove      = bnx2x_remove_one,
14304         .suspend     = bnx2x_suspend,
14305         .resume      = bnx2x_resume,
14306         .err_handler = &bnx2x_err_handler,
14307 #ifdef CONFIG_BNX2X_SRIOV
14308         .sriov_configure = bnx2x_sriov_configure,
14309 #endif
14310         .shutdown    = bnx2x_shutdown,
14311 };
14312
14313 static int __init bnx2x_init(void)
14314 {
14315         int ret;
14316
14317         pr_info("%s", version);
14318
14319         bnx2x_wq = create_singlethread_workqueue("bnx2x");
14320         if (bnx2x_wq == NULL) {
14321                 pr_err("Cannot create workqueue\n");
14322                 return -ENOMEM;
14323         }
14324         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14325         if (!bnx2x_iov_wq) {
14326                 pr_err("Cannot create iov workqueue\n");
14327                 destroy_workqueue(bnx2x_wq);
14328                 return -ENOMEM;
14329         }
14330
14331         ret = pci_register_driver(&bnx2x_pci_driver);
14332         if (ret) {
14333                 pr_err("Cannot register driver\n");
14334                 destroy_workqueue(bnx2x_wq);
14335                 destroy_workqueue(bnx2x_iov_wq);
14336         }
14337         return ret;
14338 }
14339
14340 static void __exit bnx2x_cleanup(void)
14341 {
14342         struct list_head *pos, *q;
14343
14344         pci_unregister_driver(&bnx2x_pci_driver);
14345
14346         destroy_workqueue(bnx2x_wq);
14347         destroy_workqueue(bnx2x_iov_wq);
14348
14349         /* Free globally allocated resources */
14350         list_for_each_safe(pos, q, &bnx2x_prev_list) {
14351                 struct bnx2x_prev_path_list *tmp =
14352                         list_entry(pos, struct bnx2x_prev_path_list, list);
14353                 list_del(pos);
14354                 kfree(tmp);
14355         }
14356 }
14357
14358 void bnx2x_notify_link_changed(struct bnx2x *bp)
14359 {
14360         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14361 }
14362
14363 module_init(bnx2x_init);
14364 module_exit(bnx2x_cleanup);
14365
14366 /**
14367  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14368  *
14369  * @bp:         driver handle
14370  * @set:        set or clear the CAM entry
14371  *
14372  * This function will wait until the ramrod completion returns.
14373  * Return 0 if success, -ENODEV if ramrod doesn't return.
14374  */
14375 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14376 {
14377         unsigned long ramrod_flags = 0;
14378
14379         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14380         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14381                                  &bp->iscsi_l2_mac_obj, true,
14382                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14383 }
14384
14385 /* count denotes the number of new completions we have seen */
14386 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14387 {
14388         struct eth_spe *spe;
14389         int cxt_index, cxt_offset;
14390
14391 #ifdef BNX2X_STOP_ON_ERROR
14392         if (unlikely(bp->panic))
14393                 return;
14394 #endif
14395
14396         spin_lock_bh(&bp->spq_lock);
14397         BUG_ON(bp->cnic_spq_pending < count);
14398         bp->cnic_spq_pending -= count;
14399
14400         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14401                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14402                                 & SPE_HDR_CONN_TYPE) >>
14403                                 SPE_HDR_CONN_TYPE_SHIFT;
14404                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14405                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14406
14407                 /* Set validation for iSCSI L2 client before sending SETUP
14408                  *  ramrod
14409                  */
14410                 if (type == ETH_CONNECTION_TYPE) {
14411                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14412                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14413                                         ILT_PAGE_CIDS;
14414                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14415                                         (cxt_index * ILT_PAGE_CIDS);
14416                                 bnx2x_set_ctx_validation(bp,
14417                                         &bp->context[cxt_index].
14418                                                          vcxt[cxt_offset].eth,
14419                                         BNX2X_ISCSI_ETH_CID(bp));
14420                         }
14421                 }
14422
14423                 /*
14424                  * There may be not more than 8 L2, not more than 8 L5 SPEs
14425                  * and in the air. We also check that number of outstanding
14426                  * COMMON ramrods is not more than the EQ and SPQ can
14427                  * accommodate.
14428                  */
14429                 if (type == ETH_CONNECTION_TYPE) {
14430                         if (!atomic_read(&bp->cq_spq_left))
14431                                 break;
14432                         else
14433                                 atomic_dec(&bp->cq_spq_left);
14434                 } else if (type == NONE_CONNECTION_TYPE) {
14435                         if (!atomic_read(&bp->eq_spq_left))
14436                                 break;
14437                         else
14438                                 atomic_dec(&bp->eq_spq_left);
14439                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14440                            (type == FCOE_CONNECTION_TYPE)) {
14441                         if (bp->cnic_spq_pending >=
14442                             bp->cnic_eth_dev.max_kwqe_pending)
14443                                 break;
14444                         else
14445                                 bp->cnic_spq_pending++;
14446                 } else {
14447                         BNX2X_ERR("Unknown SPE type: %d\n", type);
14448                         bnx2x_panic();
14449                         break;
14450                 }
14451
14452                 spe = bnx2x_sp_get_next(bp);
14453                 *spe = *bp->cnic_kwq_cons;
14454
14455                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14456                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14457
14458                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14459                         bp->cnic_kwq_cons = bp->cnic_kwq;
14460                 else
14461                         bp->cnic_kwq_cons++;
14462         }
14463         bnx2x_sp_prod_update(bp);
14464         spin_unlock_bh(&bp->spq_lock);
14465 }
14466
14467 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14468                                struct kwqe_16 *kwqes[], u32 count)
14469 {
14470         struct bnx2x *bp = netdev_priv(dev);
14471         int i;
14472
14473 #ifdef BNX2X_STOP_ON_ERROR
14474         if (unlikely(bp->panic)) {
14475                 BNX2X_ERR("Can't post to SP queue while panic\n");
14476                 return -EIO;
14477         }
14478 #endif
14479
14480         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14481             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14482                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14483                 return -EAGAIN;
14484         }
14485
14486         spin_lock_bh(&bp->spq_lock);
14487
14488         for (i = 0; i < count; i++) {
14489                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14490
14491                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14492                         break;
14493
14494                 *bp->cnic_kwq_prod = *spe;
14495
14496                 bp->cnic_kwq_pending++;
14497
14498                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14499                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14500                    spe->data.update_data_addr.hi,
14501                    spe->data.update_data_addr.lo,
14502                    bp->cnic_kwq_pending);
14503
14504                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14505                         bp->cnic_kwq_prod = bp->cnic_kwq;
14506                 else
14507                         bp->cnic_kwq_prod++;
14508         }
14509
14510         spin_unlock_bh(&bp->spq_lock);
14511
14512         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14513                 bnx2x_cnic_sp_post(bp, 0);
14514
14515         return i;
14516 }
14517
14518 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14519 {
14520         struct cnic_ops *c_ops;
14521         int rc = 0;
14522
14523         mutex_lock(&bp->cnic_mutex);
14524         c_ops = rcu_dereference_protected(bp->cnic_ops,
14525                                           lockdep_is_held(&bp->cnic_mutex));
14526         if (c_ops)
14527                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14528         mutex_unlock(&bp->cnic_mutex);
14529
14530         return rc;
14531 }
14532
14533 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14534 {
14535         struct cnic_ops *c_ops;
14536         int rc = 0;
14537
14538         rcu_read_lock();
14539         c_ops = rcu_dereference(bp->cnic_ops);
14540         if (c_ops)
14541                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14542         rcu_read_unlock();
14543
14544         return rc;
14545 }
14546
14547 /*
14548  * for commands that have no data
14549  */
14550 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14551 {
14552         struct cnic_ctl_info ctl = {0};
14553
14554         ctl.cmd = cmd;
14555
14556         return bnx2x_cnic_ctl_send(bp, &ctl);
14557 }
14558
14559 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14560 {
14561         struct cnic_ctl_info ctl = {0};
14562
14563         /* first we tell CNIC and only then we count this as a completion */
14564         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14565         ctl.data.comp.cid = cid;
14566         ctl.data.comp.error = err;
14567
14568         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14569         bnx2x_cnic_sp_post(bp, 0);
14570 }
14571
14572 /* Called with netif_addr_lock_bh() taken.
14573  * Sets an rx_mode config for an iSCSI ETH client.
14574  * Doesn't block.
14575  * Completion should be checked outside.
14576  */
14577 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14578 {
14579         unsigned long accept_flags = 0, ramrod_flags = 0;
14580         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14581         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14582
14583         if (start) {
14584                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14585                  * because it's the only way for UIO Queue to accept
14586                  * multicasts (in non-promiscuous mode only one Queue per
14587                  * function will receive multicast packets (leading in our
14588                  * case).
14589                  */
14590                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14591                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14592                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14593                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14594
14595                 /* Clear STOP_PENDING bit if START is requested */
14596                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14597
14598                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14599         } else
14600                 /* Clear START_PENDING bit if STOP is requested */
14601                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14602
14603         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14604                 set_bit(sched_state, &bp->sp_state);
14605         else {
14606                 __set_bit(RAMROD_RX, &ramrod_flags);
14607                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14608                                     ramrod_flags);
14609         }
14610 }
14611
14612 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14613 {
14614         struct bnx2x *bp = netdev_priv(dev);
14615         int rc = 0;
14616
14617         switch (ctl->cmd) {
14618         case DRV_CTL_CTXTBL_WR_CMD: {
14619                 u32 index = ctl->data.io.offset;
14620                 dma_addr_t addr = ctl->data.io.dma_addr;
14621
14622                 bnx2x_ilt_wr(bp, index, addr);
14623                 break;
14624         }
14625
14626         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14627                 int count = ctl->data.credit.credit_count;
14628
14629                 bnx2x_cnic_sp_post(bp, count);
14630                 break;
14631         }
14632
14633         /* rtnl_lock is held.  */
14634         case DRV_CTL_START_L2_CMD: {
14635                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14636                 unsigned long sp_bits = 0;
14637
14638                 /* Configure the iSCSI classification object */
14639                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14640                                    cp->iscsi_l2_client_id,
14641                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14642                                    bnx2x_sp(bp, mac_rdata),
14643                                    bnx2x_sp_mapping(bp, mac_rdata),
14644                                    BNX2X_FILTER_MAC_PENDING,
14645                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14646                                    &bp->macs_pool);
14647
14648                 /* Set iSCSI MAC address */
14649                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14650                 if (rc)
14651                         break;
14652
14653                 mmiowb();
14654                 barrier();
14655
14656                 /* Start accepting on iSCSI L2 ring */
14657
14658                 netif_addr_lock_bh(dev);
14659                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14660                 netif_addr_unlock_bh(dev);
14661
14662                 /* bits to wait on */
14663                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14664                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14665
14666                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14667                         BNX2X_ERR("rx_mode completion timed out!\n");
14668
14669                 break;
14670         }
14671
14672         /* rtnl_lock is held.  */
14673         case DRV_CTL_STOP_L2_CMD: {
14674                 unsigned long sp_bits = 0;
14675
14676                 /* Stop accepting on iSCSI L2 ring */
14677                 netif_addr_lock_bh(dev);
14678                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14679                 netif_addr_unlock_bh(dev);
14680
14681                 /* bits to wait on */
14682                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14683                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14684
14685                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14686                         BNX2X_ERR("rx_mode completion timed out!\n");
14687
14688                 mmiowb();
14689                 barrier();
14690
14691                 /* Unset iSCSI L2 MAC */
14692                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14693                                         BNX2X_ISCSI_ETH_MAC, true);
14694                 break;
14695         }
14696         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14697                 int count = ctl->data.credit.credit_count;
14698
14699                 smp_mb__before_atomic();
14700                 atomic_add(count, &bp->cq_spq_left);
14701                 smp_mb__after_atomic();
14702                 break;
14703         }
14704         case DRV_CTL_ULP_REGISTER_CMD: {
14705                 int ulp_type = ctl->data.register_data.ulp_type;
14706
14707                 if (CHIP_IS_E3(bp)) {
14708                         int idx = BP_FW_MB_IDX(bp);
14709                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14710                         int path = BP_PATH(bp);
14711                         int port = BP_PORT(bp);
14712                         int i;
14713                         u32 scratch_offset;
14714                         u32 *host_addr;
14715
14716                         /* first write capability to shmem2 */
14717                         if (ulp_type == CNIC_ULP_ISCSI)
14718                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14719                         else if (ulp_type == CNIC_ULP_FCOE)
14720                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14721                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14722
14723                         if ((ulp_type != CNIC_ULP_FCOE) ||
14724                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14725                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14726                                 break;
14727
14728                         /* if reached here - should write fcoe capabilities */
14729                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14730                         if (!scratch_offset)
14731                                 break;
14732                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14733                                                    fcoe_features[path][port]);
14734                         host_addr = (u32 *) &(ctl->data.register_data.
14735                                               fcoe_features);
14736                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14737                              i += 4)
14738                                 REG_WR(bp, scratch_offset + i,
14739                                        *(host_addr + i/4));
14740                 }
14741                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14742                 break;
14743         }
14744
14745         case DRV_CTL_ULP_UNREGISTER_CMD: {
14746                 int ulp_type = ctl->data.ulp_type;
14747
14748                 if (CHIP_IS_E3(bp)) {
14749                         int idx = BP_FW_MB_IDX(bp);
14750                         u32 cap;
14751
14752                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14753                         if (ulp_type == CNIC_ULP_ISCSI)
14754                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14755                         else if (ulp_type == CNIC_ULP_FCOE)
14756                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14757                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14758                 }
14759                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14760                 break;
14761         }
14762
14763         default:
14764                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14765                 rc = -EINVAL;
14766         }
14767
14768         /* For storage-only interfaces, change driver state */
14769         if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14770                 switch (ctl->drv_state) {
14771                 case DRV_NOP:
14772                         break;
14773                 case DRV_ACTIVE:
14774                         bnx2x_set_os_driver_state(bp,
14775                                                   OS_DRIVER_STATE_ACTIVE);
14776                         break;
14777                 case DRV_INACTIVE:
14778                         bnx2x_set_os_driver_state(bp,
14779                                                   OS_DRIVER_STATE_DISABLED);
14780                         break;
14781                 case DRV_UNLOADED:
14782                         bnx2x_set_os_driver_state(bp,
14783                                                   OS_DRIVER_STATE_NOT_LOADED);
14784                         break;
14785                 default:
14786                 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14787                 }
14788         }
14789
14790         return rc;
14791 }
14792
14793 static int bnx2x_get_fc_npiv(struct net_device *dev,
14794                              struct cnic_fc_npiv_tbl *cnic_tbl)
14795 {
14796         struct bnx2x *bp = netdev_priv(dev);
14797         struct bdn_fc_npiv_tbl *tbl = NULL;
14798         u32 offset, entries;
14799         int rc = -EINVAL;
14800         int i;
14801
14802         if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14803                 goto out;
14804
14805         DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14806
14807         tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14808         if (!tbl) {
14809                 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14810                 goto out;
14811         }
14812
14813         offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14814         DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14815
14816         /* Read the table contents from nvram */
14817         if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14818                 BNX2X_ERR("Failed to read FC-NPIV table\n");
14819                 goto out;
14820         }
14821
14822         /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14823          * the number of entries back to cpu endianness.
14824          */
14825         entries = tbl->fc_npiv_cfg.num_of_npiv;
14826         entries = (__force u32)be32_to_cpu((__force __be32)entries);
14827         tbl->fc_npiv_cfg.num_of_npiv = entries;
14828
14829         if (!tbl->fc_npiv_cfg.num_of_npiv) {
14830                 DP(BNX2X_MSG_MCP,
14831                    "No FC-NPIV table [valid, simply not present]\n");
14832                 goto out;
14833         } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14834                 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14835                           tbl->fc_npiv_cfg.num_of_npiv);
14836                 goto out;
14837         } else {
14838                 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14839                    tbl->fc_npiv_cfg.num_of_npiv);
14840         }
14841
14842         /* Copy the data into cnic-provided struct */
14843         cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14844         for (i = 0; i < cnic_tbl->count; i++) {
14845                 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14846                 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14847         }
14848
14849         rc = 0;
14850 out:
14851         kfree(tbl);
14852         return rc;
14853 }
14854
14855 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14856 {
14857         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14858
14859         if (bp->flags & USING_MSIX_FLAG) {
14860                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14861                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14862                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14863         } else {
14864                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14865                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14866         }
14867         if (!CHIP_IS_E1x(bp))
14868                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14869         else
14870                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14871
14872         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14873         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14874         cp->irq_arr[1].status_blk = bp->def_status_blk;
14875         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14876         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14877
14878         cp->num_irq = 2;
14879 }
14880
14881 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14882 {
14883         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14884
14885         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14886                              bnx2x_cid_ilt_lines(bp);
14887         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14888         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14889         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14890
14891         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14892            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14893            cp->iscsi_l2_cid);
14894
14895         if (NO_ISCSI_OOO(bp))
14896                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14897 }
14898
14899 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14900                                void *data)
14901 {
14902         struct bnx2x *bp = netdev_priv(dev);
14903         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14904         int rc;
14905
14906         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14907
14908         if (ops == NULL) {
14909                 BNX2X_ERR("NULL ops received\n");
14910                 return -EINVAL;
14911         }
14912
14913         if (!CNIC_SUPPORT(bp)) {
14914                 BNX2X_ERR("Can't register CNIC when not supported\n");
14915                 return -EOPNOTSUPP;
14916         }
14917
14918         if (!CNIC_LOADED(bp)) {
14919                 rc = bnx2x_load_cnic(bp);
14920                 if (rc) {
14921                         BNX2X_ERR("CNIC-related load failed\n");
14922                         return rc;
14923                 }
14924         }
14925
14926         bp->cnic_enabled = true;
14927
14928         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14929         if (!bp->cnic_kwq)
14930                 return -ENOMEM;
14931
14932         bp->cnic_kwq_cons = bp->cnic_kwq;
14933         bp->cnic_kwq_prod = bp->cnic_kwq;
14934         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14935
14936         bp->cnic_spq_pending = 0;
14937         bp->cnic_kwq_pending = 0;
14938
14939         bp->cnic_data = data;
14940
14941         cp->num_irq = 0;
14942         cp->drv_state |= CNIC_DRV_STATE_REGD;
14943         cp->iro_arr = bp->iro_arr;
14944
14945         bnx2x_setup_cnic_irq_info(bp);
14946
14947         rcu_assign_pointer(bp->cnic_ops, ops);
14948
14949         /* Schedule driver to read CNIC driver versions */
14950         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14951
14952         return 0;
14953 }
14954
14955 static int bnx2x_unregister_cnic(struct net_device *dev)
14956 {
14957         struct bnx2x *bp = netdev_priv(dev);
14958         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14959
14960         mutex_lock(&bp->cnic_mutex);
14961         cp->drv_state = 0;
14962         RCU_INIT_POINTER(bp->cnic_ops, NULL);
14963         mutex_unlock(&bp->cnic_mutex);
14964         synchronize_rcu();
14965         bp->cnic_enabled = false;
14966         kfree(bp->cnic_kwq);
14967         bp->cnic_kwq = NULL;
14968
14969         return 0;
14970 }
14971
14972 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14973 {
14974         struct bnx2x *bp = netdev_priv(dev);
14975         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14976
14977         /* If both iSCSI and FCoE are disabled - return NULL in
14978          * order to indicate CNIC that it should not try to work
14979          * with this device.
14980          */
14981         if (NO_ISCSI(bp) && NO_FCOE(bp))
14982                 return NULL;
14983
14984         cp->drv_owner = THIS_MODULE;
14985         cp->chip_id = CHIP_ID(bp);
14986         cp->pdev = bp->pdev;
14987         cp->io_base = bp->regview;
14988         cp->io_base2 = bp->doorbells;
14989         cp->max_kwqe_pending = 8;
14990         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14991         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14992                              bnx2x_cid_ilt_lines(bp);
14993         cp->ctx_tbl_len = CNIC_ILT_LINES;
14994         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14995         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14996         cp->drv_ctl = bnx2x_drv_ctl;
14997         cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
14998         cp->drv_register_cnic = bnx2x_register_cnic;
14999         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15000         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15001         cp->iscsi_l2_client_id =
15002                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15003         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15004
15005         if (NO_ISCSI_OOO(bp))
15006                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15007
15008         if (NO_ISCSI(bp))
15009                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15010
15011         if (NO_FCOE(bp))
15012                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15013
15014         BNX2X_DEV_INFO(
15015                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15016            cp->ctx_blk_size,
15017            cp->ctx_tbl_offset,
15018            cp->ctx_tbl_len,
15019            cp->starting_cid);
15020         return cp;
15021 }
15022
15023 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15024 {
15025         struct bnx2x *bp = fp->bp;
15026         u32 offset = BAR_USTRORM_INTMEM;
15027
15028         if (IS_VF(bp))
15029                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15030         else if (!CHIP_IS_E1x(bp))
15031                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15032         else
15033                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15034
15035         return offset;
15036 }
15037
15038 /* called only on E1H or E2.
15039  * When pretending to be PF, the pretend value is the function number 0...7
15040  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15041  * combination
15042  */
15043 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15044 {
15045         u32 pretend_reg;
15046
15047         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15048                 return -1;
15049
15050         /* get my own pretend register */
15051         pretend_reg = bnx2x_get_pretend_reg(bp);
15052         REG_WR(bp, pretend_reg, pretend_func_val);
15053         REG_RD(bp, pretend_reg);
15054         return 0;
15055 }
15056
15057 static void bnx2x_ptp_task(struct work_struct *work)
15058 {
15059         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15060         int port = BP_PORT(bp);
15061         u32 val_seq;
15062         u64 timestamp, ns;
15063         struct skb_shared_hwtstamps shhwtstamps;
15064
15065         /* Read Tx timestamp registers */
15066         val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15067                          NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15068         if (val_seq & 0x10000) {
15069                 /* There is a valid timestamp value */
15070                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15071                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15072                 timestamp <<= 32;
15073                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15074                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15075                 /* Reset timestamp register to allow new timestamp */
15076                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15077                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15078                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15079
15080                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15081                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15082                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15083                 dev_kfree_skb_any(bp->ptp_tx_skb);
15084                 bp->ptp_tx_skb = NULL;
15085
15086                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15087                    timestamp, ns);
15088         } else {
15089                 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15090                 /* Reschedule to keep checking for a valid timestamp value */
15091                 schedule_work(&bp->ptp_task);
15092         }
15093 }
15094
15095 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15096 {
15097         int port = BP_PORT(bp);
15098         u64 timestamp, ns;
15099
15100         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15101                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15102         timestamp <<= 32;
15103         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15104                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15105
15106         /* Reset timestamp register to allow new timestamp */
15107         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15108                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15109
15110         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15111
15112         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15113
15114         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15115            timestamp, ns);
15116 }
15117
15118 /* Read the PHC */
15119 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15120 {
15121         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15122         int port = BP_PORT(bp);
15123         u32 wb_data[2];
15124         u64 phc_cycles;
15125
15126         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15127                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15128         phc_cycles = wb_data[1];
15129         phc_cycles = (phc_cycles << 32) + wb_data[0];
15130
15131         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15132
15133         return phc_cycles;
15134 }
15135
15136 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15137 {
15138         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15139         bp->cyclecounter.read = bnx2x_cyclecounter_read;
15140         bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15141         bp->cyclecounter.shift = 1;
15142         bp->cyclecounter.mult = 1;
15143 }
15144
15145 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15146 {
15147         struct bnx2x_func_state_params func_params = {NULL};
15148         struct bnx2x_func_set_timesync_params *set_timesync_params =
15149                 &func_params.params.set_timesync;
15150
15151         /* Prepare parameters for function state transitions */
15152         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15153         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15154
15155         func_params.f_obj = &bp->func_obj;
15156         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15157
15158         /* Function parameters */
15159         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15160         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15161
15162         return bnx2x_func_state_change(bp, &func_params);
15163 }
15164
15165 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15166 {
15167         struct bnx2x_queue_state_params q_params;
15168         int rc, i;
15169
15170         /* send queue update ramrod to enable PTP packets */
15171         memset(&q_params, 0, sizeof(q_params));
15172         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15173         q_params.cmd = BNX2X_Q_CMD_UPDATE;
15174         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15175                   &q_params.params.update.update_flags);
15176         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15177                   &q_params.params.update.update_flags);
15178
15179         /* send the ramrod on all the queues of the PF */
15180         for_each_eth_queue(bp, i) {
15181                 struct bnx2x_fastpath *fp = &bp->fp[i];
15182
15183                 /* Set the appropriate Queue object */
15184                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15185
15186                 /* Update the Queue state */
15187                 rc = bnx2x_queue_state_change(bp, &q_params);
15188                 if (rc) {
15189                         BNX2X_ERR("Failed to enable PTP packets\n");
15190                         return rc;
15191                 }
15192         }
15193
15194         return 0;
15195 }
15196
15197 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15198 {
15199         int port = BP_PORT(bp);
15200         int rc;
15201
15202         if (!bp->hwtstamp_ioctl_called)
15203                 return 0;
15204
15205         switch (bp->tx_type) {
15206         case HWTSTAMP_TX_ON:
15207                 bp->flags |= TX_TIMESTAMPING_EN;
15208                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15209                        NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15210                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15211                        NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15212                 break;
15213         case HWTSTAMP_TX_ONESTEP_SYNC:
15214                 BNX2X_ERR("One-step timestamping is not supported\n");
15215                 return -ERANGE;
15216         }
15217
15218         switch (bp->rx_filter) {
15219         case HWTSTAMP_FILTER_NONE:
15220                 break;
15221         case HWTSTAMP_FILTER_ALL:
15222         case HWTSTAMP_FILTER_SOME:
15223                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15224                 break;
15225         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15226         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15227         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15228                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15229                 /* Initialize PTP detection for UDP/IPv4 events */
15230                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15231                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15232                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15233                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15234                 break;
15235         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15236         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15237         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15238                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15239                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15240                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15241                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15242                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15243                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15244                 break;
15245         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15246         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15247         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15248                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15249                 /* Initialize PTP detection L2 events */
15250                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15251                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15252                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15253                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15254
15255                 break;
15256         case HWTSTAMP_FILTER_PTP_V2_EVENT:
15257         case HWTSTAMP_FILTER_PTP_V2_SYNC:
15258         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15259                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15260                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15261                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15262                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15263                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15264                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15265                 break;
15266         }
15267
15268         /* Indicate to FW that this PF expects recorded PTP packets */
15269         rc = bnx2x_enable_ptp_packets(bp);
15270         if (rc)
15271                 return rc;
15272
15273         /* Enable sending PTP packets to host */
15274         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15275                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15276
15277         return 0;
15278 }
15279
15280 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15281 {
15282         struct hwtstamp_config config;
15283         int rc;
15284
15285         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15286
15287         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15288                 return -EFAULT;
15289
15290         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15291            config.tx_type, config.rx_filter);
15292
15293         if (config.flags) {
15294                 BNX2X_ERR("config.flags is reserved for future use\n");
15295                 return -EINVAL;
15296         }
15297
15298         bp->hwtstamp_ioctl_called = 1;
15299         bp->tx_type = config.tx_type;
15300         bp->rx_filter = config.rx_filter;
15301
15302         rc = bnx2x_configure_ptp_filters(bp);
15303         if (rc)
15304                 return rc;
15305
15306         config.rx_filter = bp->rx_filter;
15307
15308         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15309                 -EFAULT : 0;
15310 }
15311
15312 /* Configures HW for PTP */
15313 static int bnx2x_configure_ptp(struct bnx2x *bp)
15314 {
15315         int rc, port = BP_PORT(bp);
15316         u32 wb_data[2];
15317
15318         /* Reset PTP event detection rules - will be configured in the IOCTL */
15319         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15320                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15321         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15322                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15323         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15324                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15325         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15326                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15327
15328         /* Disable PTP packets to host - will be configured in the IOCTL*/
15329         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15330                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15331
15332         /* Enable the PTP feature */
15333         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15334                NIG_REG_P0_PTP_EN, 0x3F);
15335
15336         /* Enable the free-running counter */
15337         wb_data[0] = 0;
15338         wb_data[1] = 0;
15339         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15340
15341         /* Reset drift register (offset register is not reset) */
15342         rc = bnx2x_send_reset_timesync_ramrod(bp);
15343         if (rc) {
15344                 BNX2X_ERR("Failed to reset PHC drift register\n");
15345                 return -EFAULT;
15346         }
15347
15348         /* Reset possibly old timestamps */
15349         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15350                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15351         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15352                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15353
15354         return 0;
15355 }
15356
15357 /* Called during load, to initialize PTP-related stuff */
15358 void bnx2x_init_ptp(struct bnx2x *bp)
15359 {
15360         int rc;
15361
15362         /* Configure PTP in HW */
15363         rc = bnx2x_configure_ptp(bp);
15364         if (rc) {
15365                 BNX2X_ERR("Stopping PTP initialization\n");
15366                 return;
15367         }
15368
15369         /* Init work queue for Tx timestamping */
15370         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15371
15372         /* Init cyclecounter and timecounter. This is done only in the first
15373          * load. If done in every load, PTP application will fail when doing
15374          * unload / load (e.g. MTU change) while it is running.
15375          */
15376         if (!bp->timecounter_init_done) {
15377                 bnx2x_init_cyclecounter(bp);
15378                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15379                                  ktime_to_ns(ktime_get_real()));
15380                 bp->timecounter_init_done = 1;
15381         }
15382
15383         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15384 }