]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <asm/uaccess.h>
66
67 #include "cxgb4.h"
68 #include "t4_regs.h"
69 #include "t4_msg.h"
70 #include "t4fw_api.h"
71 #include "cxgb4_dcb.h"
72 #include "cxgb4_debugfs.h"
73 #include "l2t.h"
74
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80
81 /*
82  * Max interrupt hold-off timer value in us.  Queues fall back to this value
83  * under extreme memory pressure so it's largish to give the system time to
84  * recover.
85  */
86 #define MAX_SGE_TIMERVAL 200U
87
88 enum {
89         /*
90          * Physical Function provisioning constants.
91          */
92         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
93         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
94         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
95                                          */
96         PFRES_NEQ = 256,                /* # of egress queues */
97         PFRES_NIQ = 0,                  /* # of ingress queues */
98         PFRES_TC = 0,                   /* PCI-E traffic class */
99         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
100
101         PFRES_R_CAPS = FW_CMD_CAP_PF,
102         PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104 #ifdef CONFIG_PCI_IOV
105         /*
106          * Virtual Function provisioning constants.  We need two extra Ingress
107          * Queues with Interrupt capability to serve as the VF's Firmware
108          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109          * neither will have Free Lists associated with them).  For each
110          * Ethernet/Control Egress Queue and for each Free List, we need an
111          * Egress Context.
112          */
113         VFRES_NPORTS = 1,               /* # of "ports" per VF */
114         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
115
116         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
117         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
118         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
120         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
121         VFRES_TC = 0,                   /* PCI-E traffic class */
122         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
123
124         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128
129 /*
130  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
131  * static and likely not to be useful in the long run.  We really need to
132  * implement some form of persistent configuration which the firmware
133  * controls.
134  */
135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136                                   unsigned int pf, unsigned int vf)
137 {
138         unsigned int portn, portvec;
139
140         /*
141          * Give PF's access to all of the ports.
142          */
143         if (vf == 0)
144                 return FW_PFVF_CMD_PMASK_M;
145
146         /*
147          * For VFs, we'll assign them access to the ports based purely on the
148          * PF.  We assign active ports in order, wrapping around if there are
149          * fewer active ports than PFs: e.g. active port[pf % nports].
150          * Unfortunately the adapter's port_info structs haven't been
151          * initialized yet so we have to compute this.
152          */
153         if (adapter->params.nports == 0)
154                 return 0;
155
156         portn = pf % adapter->params.nports;
157         portvec = adapter->params.portvec;
158         for (;;) {
159                 /*
160                  * Isolate the lowest set bit in the port vector.  If we're at
161                  * the port number that we want, return that as the pmask.
162                  * otherwise mask that bit out of the port vector and
163                  * decrement our port number ...
164                  */
165                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166                 if (portn == 0)
167                         return pmask;
168                 portn--;
169                 portvec &= ~pmask;
170         }
171         /*NOTREACHED*/
172 }
173
174 enum {
175         MAX_TXQ_ENTRIES      = 16384,
176         MAX_CTRL_TXQ_ENTRIES = 1024,
177         MAX_RSPQ_ENTRIES     = 16384,
178         MAX_RX_BUFFERS       = 16384,
179         MIN_TXQ_ENTRIES      = 32,
180         MIN_CTRL_TXQ_ENTRIES = 32,
181         MIN_RSPQ_ENTRIES     = 128,
182         MIN_FL_ENTRIES       = 16
183 };
184
185 /* Host shadow copy of ingress filter entry.  This is in host native format
186  * and doesn't match the ordering or bit order, etc. of the hardware of the
187  * firmware command.  The use of bit-field structure elements is purely to
188  * remind ourselves of the field size limitations and save memory in the case
189  * where the filter table is large.
190  */
191 struct filter_entry {
192         /* Administrative fields for filter.
193          */
194         u32 valid:1;            /* filter allocated and valid */
195         u32 locked:1;           /* filter is administratively locked */
196
197         u32 pending:1;          /* filter action is pending firmware reply */
198         u32 smtidx:8;           /* Source MAC Table index for smac */
199         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
200
201         /* The filter itself.  Most of this is a straight copy of information
202          * provided by the extended ioctl().  Some fields are translated to
203          * internal forms -- for instance the Ingress Queue ID passed in from
204          * the ioctl() is translated into the Absolute Ingress Queue ID.
205          */
206         struct ch_filter_specification fs;
207 };
208
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
213 /* Macros needed to support the PCI Device ID Table ...
214  */
215 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
216         static struct pci_device_id cxgb4_pci_tbl[] = {
217 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
218
219 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
220  * called for both.
221  */
222 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
223
224 #define CH_PCI_ID_TABLE_ENTRY(devid) \
225                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
226
227 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
228                 { 0, } \
229         }
230
231 #include "t4_pci_id_tbl.h"
232
233 #define FW4_FNAME "cxgb4/t4fw.bin"
234 #define FW5_FNAME "cxgb4/t5fw.bin"
235 #define FW4_CFNAME "cxgb4/t4-config.txt"
236 #define FW5_CFNAME "cxgb4/t5-config.txt"
237
238 MODULE_DESCRIPTION(DRV_DESC);
239 MODULE_AUTHOR("Chelsio Communications");
240 MODULE_LICENSE("Dual BSD/GPL");
241 MODULE_VERSION(DRV_VERSION);
242 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
243 MODULE_FIRMWARE(FW4_FNAME);
244 MODULE_FIRMWARE(FW5_FNAME);
245
246 /*
247  * Normally we're willing to become the firmware's Master PF but will be happy
248  * if another PF has already become the Master and initialized the adapter.
249  * Setting "force_init" will cause this driver to forcibly establish itself as
250  * the Master PF and initialize the adapter.
251  */
252 static uint force_init;
253
254 module_param(force_init, uint, 0644);
255 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
256
257 /*
258  * Normally if the firmware we connect to has Configuration File support, we
259  * use that and only fall back to the old Driver-based initialization if the
260  * Configuration File fails for some reason.  If force_old_init is set, then
261  * we'll always use the old Driver-based initialization sequence.
262  */
263 static uint force_old_init;
264
265 module_param(force_old_init, uint, 0644);
266 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
267
268 static int dflt_msg_enable = DFLT_MSG_ENABLE;
269
270 module_param(dflt_msg_enable, int, 0644);
271 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
272
273 /*
274  * The driver uses the best interrupt scheme available on a platform in the
275  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
276  * of these schemes the driver may consider as follows:
277  *
278  * msi = 2: choose from among all three options
279  * msi = 1: only consider MSI and INTx interrupts
280  * msi = 0: force INTx interrupts
281  */
282 static int msi = 2;
283
284 module_param(msi, int, 0644);
285 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
286
287 /*
288  * Queue interrupt hold-off timer values.  Queues default to the first of these
289  * upon creation.
290  */
291 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
292
293 module_param_array(intr_holdoff, uint, NULL, 0644);
294 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
295                  "0..4 in microseconds");
296
297 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
298
299 module_param_array(intr_cnt, uint, NULL, 0644);
300 MODULE_PARM_DESC(intr_cnt,
301                  "thresholds 1..3 for queue interrupt packet counters");
302
303 /*
304  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
305  * offset by 2 bytes in order to have the IP headers line up on 4-byte
306  * boundaries.  This is a requirement for many architectures which will throw
307  * a machine check fault if an attempt is made to access one of the 4-byte IP
308  * header fields on a non-4-byte boundary.  And it's a major performance issue
309  * even on some architectures which allow it like some implementations of the
310  * x86 ISA.  However, some architectures don't mind this and for some very
311  * edge-case performance sensitive applications (like forwarding large volumes
312  * of small packets), setting this DMA offset to 0 will decrease the number of
313  * PCI-E Bus transfers enough to measurably affect performance.
314  */
315 static int rx_dma_offset = 2;
316
317 static bool vf_acls;
318
319 #ifdef CONFIG_PCI_IOV
320 module_param(vf_acls, bool, 0644);
321 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
322
323 /* Configure the number of PCI-E Virtual Function which are to be instantiated
324  * on SR-IOV Capable Physical Functions.
325  */
326 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
327
328 module_param_array(num_vf, uint, NULL, 0644);
329 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
330 #endif
331
332 /* TX Queue select used to determine what algorithm to use for selecting TX
333  * queue. Select between the kernel provided function (select_queue=0) or user
334  * cxgb_select_queue function (select_queue=1)
335  *
336  * Default: select_queue=0
337  */
338 static int select_queue;
339 module_param(select_queue, int, 0644);
340 MODULE_PARM_DESC(select_queue,
341                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
342
343 /*
344  * The filter TCAM has a fixed portion and a variable portion.  The fixed
345  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
346  * ports.  The variable portion is 36 bits which can include things like Exact
347  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
348  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
349  * far exceed the 36-bit budget for this "compressed" header portion of the
350  * filter.  Thus, we have a scarce resource which must be carefully managed.
351  *
352  * By default we set this up to mostly match the set of filter matching
353  * capabilities of T3 but with accommodations for some of T4's more
354  * interesting features:
355  *
356  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
357  *     [Inner] VLAN (17), Port (3), FCoE (1) }
358  */
359 enum {
360         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
361         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
362         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
363 };
364
365 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
366
367 module_param(tp_vlan_pri_map, uint, 0644);
368 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
369
370 static struct dentry *cxgb4_debugfs_root;
371
372 static LIST_HEAD(adapter_list);
373 static DEFINE_MUTEX(uld_mutex);
374 /* Adapter list to be accessed from atomic context */
375 static LIST_HEAD(adap_rcu_list);
376 static DEFINE_SPINLOCK(adap_rcu_lock);
377 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
378 static const char *uld_str[] = { "RDMA", "iSCSI" };
379
380 static void link_report(struct net_device *dev)
381 {
382         if (!netif_carrier_ok(dev))
383                 netdev_info(dev, "link down\n");
384         else {
385                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
386
387                 const char *s = "10Mbps";
388                 const struct port_info *p = netdev_priv(dev);
389
390                 switch (p->link_cfg.speed) {
391                 case 10000:
392                         s = "10Gbps";
393                         break;
394                 case 1000:
395                         s = "1000Mbps";
396                         break;
397                 case 100:
398                         s = "100Mbps";
399                         break;
400                 case 40000:
401                         s = "40Gbps";
402                         break;
403                 }
404
405                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
406                             fc[p->link_cfg.fc]);
407         }
408 }
409
410 #ifdef CONFIG_CHELSIO_T4_DCB
411 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
412 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
413 {
414         struct port_info *pi = netdev_priv(dev);
415         struct adapter *adap = pi->adapter;
416         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
417         int i;
418
419         /* We use a simple mapping of Port TX Queue Index to DCB
420          * Priority when we're enabling DCB.
421          */
422         for (i = 0; i < pi->nqsets; i++, txq++) {
423                 u32 name, value;
424                 int err;
425
426                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
427                         FW_PARAMS_PARAM_X_V(
428                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
429                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
430                 value = enable ? i : 0xffffffff;
431
432                 /* Since we can be called while atomic (from "interrupt
433                  * level") we need to issue the Set Parameters Commannd
434                  * without sleeping (timeout < 0).
435                  */
436                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
437                                             &name, &value);
438
439                 if (err)
440                         dev_err(adap->pdev_dev,
441                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
442                                 enable ? "set" : "unset", pi->port_id, i, -err);
443                 else
444                         txq->dcb_prio = value;
445         }
446 }
447 #endif /* CONFIG_CHELSIO_T4_DCB */
448
449 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
450 {
451         struct net_device *dev = adapter->port[port_id];
452
453         /* Skip changes from disabled ports. */
454         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
455                 if (link_stat)
456                         netif_carrier_on(dev);
457                 else {
458 #ifdef CONFIG_CHELSIO_T4_DCB
459                         cxgb4_dcb_state_init(dev);
460                         dcb_tx_queue_prio_enable(dev, false);
461 #endif /* CONFIG_CHELSIO_T4_DCB */
462                         netif_carrier_off(dev);
463                 }
464
465                 link_report(dev);
466         }
467 }
468
469 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
470 {
471         static const char *mod_str[] = {
472                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
473         };
474
475         const struct net_device *dev = adap->port[port_id];
476         const struct port_info *pi = netdev_priv(dev);
477
478         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
479                 netdev_info(dev, "port module unplugged\n");
480         else if (pi->mod_type < ARRAY_SIZE(mod_str))
481                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
482 }
483
484 /*
485  * Configure the exact and hash address filters to handle a port's multicast
486  * and secondary unicast MAC addresses.
487  */
488 static int set_addr_filters(const struct net_device *dev, bool sleep)
489 {
490         u64 mhash = 0;
491         u64 uhash = 0;
492         bool free = true;
493         u16 filt_idx[7];
494         const u8 *addr[7];
495         int ret, naddr = 0;
496         const struct netdev_hw_addr *ha;
497         int uc_cnt = netdev_uc_count(dev);
498         int mc_cnt = netdev_mc_count(dev);
499         const struct port_info *pi = netdev_priv(dev);
500         unsigned int mb = pi->adapter->fn;
501
502         /* first do the secondary unicast addresses */
503         netdev_for_each_uc_addr(ha, dev) {
504                 addr[naddr++] = ha->addr;
505                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
506                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
507                                         naddr, addr, filt_idx, &uhash, sleep);
508                         if (ret < 0)
509                                 return ret;
510
511                         free = false;
512                         naddr = 0;
513                 }
514         }
515
516         /* next set up the multicast addresses */
517         netdev_for_each_mc_addr(ha, dev) {
518                 addr[naddr++] = ha->addr;
519                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
520                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
521                                         naddr, addr, filt_idx, &mhash, sleep);
522                         if (ret < 0)
523                                 return ret;
524
525                         free = false;
526                         naddr = 0;
527                 }
528         }
529
530         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
531                                 uhash | mhash, sleep);
532 }
533
534 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
535 module_param(dbfifo_int_thresh, int, 0644);
536 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
537
538 /*
539  * usecs to sleep while draining the dbfifo
540  */
541 static int dbfifo_drain_delay = 1000;
542 module_param(dbfifo_drain_delay, int, 0644);
543 MODULE_PARM_DESC(dbfifo_drain_delay,
544                  "usecs to sleep while draining the dbfifo");
545
546 /*
547  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
548  * If @mtu is -1 it is left unchanged.
549  */
550 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
551 {
552         int ret;
553         struct port_info *pi = netdev_priv(dev);
554
555         ret = set_addr_filters(dev, sleep_ok);
556         if (ret == 0)
557                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
558                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
559                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
560                                     sleep_ok);
561         return ret;
562 }
563
564 /**
565  *      link_start - enable a port
566  *      @dev: the port to enable
567  *
568  *      Performs the MAC and PHY actions needed to enable a port.
569  */
570 static int link_start(struct net_device *dev)
571 {
572         int ret;
573         struct port_info *pi = netdev_priv(dev);
574         unsigned int mb = pi->adapter->fn;
575
576         /*
577          * We do not set address filters and promiscuity here, the stack does
578          * that step explicitly.
579          */
580         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
581                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
582         if (ret == 0) {
583                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
584                                     pi->xact_addr_filt, dev->dev_addr, true,
585                                     true);
586                 if (ret >= 0) {
587                         pi->xact_addr_filt = ret;
588                         ret = 0;
589                 }
590         }
591         if (ret == 0)
592                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
593                                     &pi->link_cfg);
594         if (ret == 0) {
595                 local_bh_disable();
596                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
597                                           true, CXGB4_DCB_ENABLED);
598                 local_bh_enable();
599         }
600
601         return ret;
602 }
603
604 int cxgb4_dcb_enabled(const struct net_device *dev)
605 {
606 #ifdef CONFIG_CHELSIO_T4_DCB
607         struct port_info *pi = netdev_priv(dev);
608
609         if (!pi->dcb.enabled)
610                 return 0;
611
612         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
613                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
614 #else
615         return 0;
616 #endif
617 }
618 EXPORT_SYMBOL(cxgb4_dcb_enabled);
619
620 #ifdef CONFIG_CHELSIO_T4_DCB
621 /* Handle a Data Center Bridging update message from the firmware. */
622 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
623 {
624         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
625         struct net_device *dev = adap->port[port];
626         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
627         int new_dcb_enabled;
628
629         cxgb4_dcb_handle_fw_update(adap, pcmd);
630         new_dcb_enabled = cxgb4_dcb_enabled(dev);
631
632         /* If the DCB has become enabled or disabled on the port then we're
633          * going to need to set up/tear down DCB Priority parameters for the
634          * TX Queues associated with the port.
635          */
636         if (new_dcb_enabled != old_dcb_enabled)
637                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
638 }
639 #endif /* CONFIG_CHELSIO_T4_DCB */
640
641 /* Clear a filter and release any of its resources that we own.  This also
642  * clears the filter's "pending" status.
643  */
644 static void clear_filter(struct adapter *adap, struct filter_entry *f)
645 {
646         /* If the new or old filter have loopback rewriteing rules then we'll
647          * need to free any existing Layer Two Table (L2T) entries of the old
648          * filter rule.  The firmware will handle freeing up any Source MAC
649          * Table (SMT) entries used for rewriting Source MAC Addresses in
650          * loopback rules.
651          */
652         if (f->l2t)
653                 cxgb4_l2t_release(f->l2t);
654
655         /* The zeroing of the filter rule below clears the filter valid,
656          * pending, locked flags, l2t pointer, etc. so it's all we need for
657          * this operation.
658          */
659         memset(f, 0, sizeof(*f));
660 }
661
662 /* Handle a filter write/deletion reply.
663  */
664 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
665 {
666         unsigned int idx = GET_TID(rpl);
667         unsigned int nidx = idx - adap->tids.ftid_base;
668         unsigned int ret;
669         struct filter_entry *f;
670
671         if (idx >= adap->tids.ftid_base && nidx <
672            (adap->tids.nftids + adap->tids.nsftids)) {
673                 idx = nidx;
674                 ret = GET_TCB_COOKIE(rpl->cookie);
675                 f = &adap->tids.ftid_tab[idx];
676
677                 if (ret == FW_FILTER_WR_FLT_DELETED) {
678                         /* Clear the filter when we get confirmation from the
679                          * hardware that the filter has been deleted.
680                          */
681                         clear_filter(adap, f);
682                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
683                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
684                                 idx);
685                         clear_filter(adap, f);
686                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
687                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
688                         f->pending = 0;  /* asynchronous setup completed */
689                         f->valid = 1;
690                 } else {
691                         /* Something went wrong.  Issue a warning about the
692                          * problem and clear everything out.
693                          */
694                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
695                                 idx, ret);
696                         clear_filter(adap, f);
697                 }
698         }
699 }
700
701 /* Response queue handler for the FW event queue.
702  */
703 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
704                           const struct pkt_gl *gl)
705 {
706         u8 opcode = ((const struct rss_header *)rsp)->opcode;
707
708         rsp++;                                          /* skip RSS header */
709
710         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
711          */
712         if (unlikely(opcode == CPL_FW4_MSG &&
713            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
714                 rsp++;
715                 opcode = ((const struct rss_header *)rsp)->opcode;
716                 rsp++;
717                 if (opcode != CPL_SGE_EGR_UPDATE) {
718                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
719                                 , opcode);
720                         goto out;
721                 }
722         }
723
724         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
725                 const struct cpl_sge_egr_update *p = (void *)rsp;
726                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
727                 struct sge_txq *txq;
728
729                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
730                 txq->restarts++;
731                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
732                         struct sge_eth_txq *eq;
733
734                         eq = container_of(txq, struct sge_eth_txq, q);
735                         netif_tx_wake_queue(eq->txq);
736                 } else {
737                         struct sge_ofld_txq *oq;
738
739                         oq = container_of(txq, struct sge_ofld_txq, q);
740                         tasklet_schedule(&oq->qresume_tsk);
741                 }
742         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
743                 const struct cpl_fw6_msg *p = (void *)rsp;
744
745 #ifdef CONFIG_CHELSIO_T4_DCB
746                 const struct fw_port_cmd *pcmd = (const void *)p->data;
747                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
748                 unsigned int action =
749                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
750
751                 if (cmd == FW_PORT_CMD &&
752                     action == FW_PORT_ACTION_GET_PORT_INFO) {
753                         int port = FW_PORT_CMD_PORTID_G(
754                                         be32_to_cpu(pcmd->op_to_portid));
755                         struct net_device *dev = q->adap->port[port];
756                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
757                                             FW_PORT_CMD_DCBXDIS_F)
758                                            ? CXGB4_DCB_INPUT_FW_DISABLED
759                                            : CXGB4_DCB_INPUT_FW_ENABLED);
760
761                         cxgb4_dcb_state_fsm(dev, state_input);
762                 }
763
764                 if (cmd == FW_PORT_CMD &&
765                     action == FW_PORT_ACTION_L2_DCB_CFG)
766                         dcb_rpl(q->adap, pcmd);
767                 else
768 #endif
769                         if (p->type == 0)
770                                 t4_handle_fw_rpl(q->adap, p->data);
771         } else if (opcode == CPL_L2T_WRITE_RPL) {
772                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
773
774                 do_l2t_write_rpl(q->adap, p);
775         } else if (opcode == CPL_SET_TCB_RPL) {
776                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
777
778                 filter_rpl(q->adap, p);
779         } else
780                 dev_err(q->adap->pdev_dev,
781                         "unexpected CPL %#x on FW event queue\n", opcode);
782 out:
783         return 0;
784 }
785
786 /**
787  *      uldrx_handler - response queue handler for ULD queues
788  *      @q: the response queue that received the packet
789  *      @rsp: the response queue descriptor holding the offload message
790  *      @gl: the gather list of packet fragments
791  *
792  *      Deliver an ingress offload packet to a ULD.  All processing is done by
793  *      the ULD, we just maintain statistics.
794  */
795 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
796                          const struct pkt_gl *gl)
797 {
798         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
799
800         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
801          */
802         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
803             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
804                 rsp += 2;
805
806         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
807                 rxq->stats.nomem++;
808                 return -1;
809         }
810         if (gl == NULL)
811                 rxq->stats.imm++;
812         else if (gl == CXGB4_MSG_AN)
813                 rxq->stats.an++;
814         else
815                 rxq->stats.pkts++;
816         return 0;
817 }
818
819 static void disable_msi(struct adapter *adapter)
820 {
821         if (adapter->flags & USING_MSIX) {
822                 pci_disable_msix(adapter->pdev);
823                 adapter->flags &= ~USING_MSIX;
824         } else if (adapter->flags & USING_MSI) {
825                 pci_disable_msi(adapter->pdev);
826                 adapter->flags &= ~USING_MSI;
827         }
828 }
829
830 /*
831  * Interrupt handler for non-data events used with MSI-X.
832  */
833 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
834 {
835         struct adapter *adap = cookie;
836
837         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
838         if (v & PFSW) {
839                 adap->swintr = 1;
840                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
841         }
842         t4_slow_intr_handler(adap);
843         return IRQ_HANDLED;
844 }
845
846 /*
847  * Name the MSI-X interrupts.
848  */
849 static void name_msix_vecs(struct adapter *adap)
850 {
851         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
852
853         /* non-data interrupts */
854         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
855
856         /* FW events */
857         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
858                  adap->port[0]->name);
859
860         /* Ethernet queues */
861         for_each_port(adap, j) {
862                 struct net_device *d = adap->port[j];
863                 const struct port_info *pi = netdev_priv(d);
864
865                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
866                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
867                                  d->name, i);
868         }
869
870         /* offload queues */
871         for_each_ofldrxq(&adap->sge, i)
872                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
873                          adap->port[0]->name, i);
874
875         for_each_rdmarxq(&adap->sge, i)
876                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
877                          adap->port[0]->name, i);
878
879         for_each_rdmaciq(&adap->sge, i)
880                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
881                          adap->port[0]->name, i);
882 }
883
884 static int request_msix_queue_irqs(struct adapter *adap)
885 {
886         struct sge *s = &adap->sge;
887         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
888         int msi_index = 2;
889
890         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
891                           adap->msix_info[1].desc, &s->fw_evtq);
892         if (err)
893                 return err;
894
895         for_each_ethrxq(s, ethqidx) {
896                 err = request_irq(adap->msix_info[msi_index].vec,
897                                   t4_sge_intr_msix, 0,
898                                   adap->msix_info[msi_index].desc,
899                                   &s->ethrxq[ethqidx].rspq);
900                 if (err)
901                         goto unwind;
902                 msi_index++;
903         }
904         for_each_ofldrxq(s, ofldqidx) {
905                 err = request_irq(adap->msix_info[msi_index].vec,
906                                   t4_sge_intr_msix, 0,
907                                   adap->msix_info[msi_index].desc,
908                                   &s->ofldrxq[ofldqidx].rspq);
909                 if (err)
910                         goto unwind;
911                 msi_index++;
912         }
913         for_each_rdmarxq(s, rdmaqidx) {
914                 err = request_irq(adap->msix_info[msi_index].vec,
915                                   t4_sge_intr_msix, 0,
916                                   adap->msix_info[msi_index].desc,
917                                   &s->rdmarxq[rdmaqidx].rspq);
918                 if (err)
919                         goto unwind;
920                 msi_index++;
921         }
922         for_each_rdmaciq(s, rdmaciqqidx) {
923                 err = request_irq(adap->msix_info[msi_index].vec,
924                                   t4_sge_intr_msix, 0,
925                                   adap->msix_info[msi_index].desc,
926                                   &s->rdmaciq[rdmaciqqidx].rspq);
927                 if (err)
928                         goto unwind;
929                 msi_index++;
930         }
931         return 0;
932
933 unwind:
934         while (--rdmaciqqidx >= 0)
935                 free_irq(adap->msix_info[--msi_index].vec,
936                          &s->rdmaciq[rdmaciqqidx].rspq);
937         while (--rdmaqidx >= 0)
938                 free_irq(adap->msix_info[--msi_index].vec,
939                          &s->rdmarxq[rdmaqidx].rspq);
940         while (--ofldqidx >= 0)
941                 free_irq(adap->msix_info[--msi_index].vec,
942                          &s->ofldrxq[ofldqidx].rspq);
943         while (--ethqidx >= 0)
944                 free_irq(adap->msix_info[--msi_index].vec,
945                          &s->ethrxq[ethqidx].rspq);
946         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
947         return err;
948 }
949
950 static void free_msix_queue_irqs(struct adapter *adap)
951 {
952         int i, msi_index = 2;
953         struct sge *s = &adap->sge;
954
955         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
956         for_each_ethrxq(s, i)
957                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
958         for_each_ofldrxq(s, i)
959                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
960         for_each_rdmarxq(s, i)
961                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
962         for_each_rdmaciq(s, i)
963                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
964 }
965
966 /**
967  *      write_rss - write the RSS table for a given port
968  *      @pi: the port
969  *      @queues: array of queue indices for RSS
970  *
971  *      Sets up the portion of the HW RSS table for the port's VI to distribute
972  *      packets to the Rx queues in @queues.
973  */
974 static int write_rss(const struct port_info *pi, const u16 *queues)
975 {
976         u16 *rss;
977         int i, err;
978         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
979
980         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
981         if (!rss)
982                 return -ENOMEM;
983
984         /* map the queue indices to queue ids */
985         for (i = 0; i < pi->rss_size; i++, queues++)
986                 rss[i] = q[*queues].rspq.abs_id;
987
988         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
989                                   pi->rss_size, rss, pi->rss_size);
990         kfree(rss);
991         return err;
992 }
993
994 /**
995  *      setup_rss - configure RSS
996  *      @adap: the adapter
997  *
998  *      Sets up RSS for each port.
999  */
1000 static int setup_rss(struct adapter *adap)
1001 {
1002         int i, err;
1003
1004         for_each_port(adap, i) {
1005                 const struct port_info *pi = adap2pinfo(adap, i);
1006
1007                 err = write_rss(pi, pi->rss);
1008                 if (err)
1009                         return err;
1010         }
1011         return 0;
1012 }
1013
1014 /*
1015  * Return the channel of the ingress queue with the given qid.
1016  */
1017 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1018 {
1019         qid -= p->ingr_start;
1020         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1021 }
1022
1023 /*
1024  * Wait until all NAPI handlers are descheduled.
1025  */
1026 static void quiesce_rx(struct adapter *adap)
1027 {
1028         int i;
1029
1030         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1031                 struct sge_rspq *q = adap->sge.ingr_map[i];
1032
1033                 if (q && q->handler)
1034                         napi_disable(&q->napi);
1035         }
1036 }
1037
1038 /*
1039  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1040  */
1041 static void enable_rx(struct adapter *adap)
1042 {
1043         int i;
1044
1045         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1046                 struct sge_rspq *q = adap->sge.ingr_map[i];
1047
1048                 if (!q)
1049                         continue;
1050                 if (q->handler)
1051                         napi_enable(&q->napi);
1052                 /* 0-increment GTS to start the timer and enable interrupts */
1053                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1054                              SEINTARM(q->intr_params) |
1055                              INGRESSQID(q->cntxt_id));
1056         }
1057 }
1058
1059 /**
1060  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1061  *      @adap: the adapter
1062  *
1063  *      Determines how many sets of SGE queues to use and initializes them.
1064  *      We support multiple queue sets per port if we have MSI-X, otherwise
1065  *      just one queue set per port.
1066  */
1067 static int setup_sge_queues(struct adapter *adap)
1068 {
1069         int err, msi_idx, i, j;
1070         struct sge *s = &adap->sge;
1071
1072         bitmap_zero(s->starving_fl, MAX_EGRQ);
1073         bitmap_zero(s->txq_maperr, MAX_EGRQ);
1074
1075         if (adap->flags & USING_MSIX)
1076                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1077         else {
1078                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1079                                        NULL, NULL);
1080                 if (err)
1081                         return err;
1082                 msi_idx = -((int)s->intrq.abs_id + 1);
1083         }
1084
1085         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1086                                msi_idx, NULL, fwevtq_handler);
1087         if (err) {
1088 freeout:        t4_free_sge_resources(adap);
1089                 return err;
1090         }
1091
1092         for_each_port(adap, i) {
1093                 struct net_device *dev = adap->port[i];
1094                 struct port_info *pi = netdev_priv(dev);
1095                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1096                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1097
1098                 for (j = 0; j < pi->nqsets; j++, q++) {
1099                         if (msi_idx > 0)
1100                                 msi_idx++;
1101                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1102                                                msi_idx, &q->fl,
1103                                                t4_ethrx_handler);
1104                         if (err)
1105                                 goto freeout;
1106                         q->rspq.idx = j;
1107                         memset(&q->stats, 0, sizeof(q->stats));
1108                 }
1109                 for (j = 0; j < pi->nqsets; j++, t++) {
1110                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1111                                         netdev_get_tx_queue(dev, j),
1112                                         s->fw_evtq.cntxt_id);
1113                         if (err)
1114                                 goto freeout;
1115                 }
1116         }
1117
1118         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1119         for_each_ofldrxq(s, i) {
1120                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1121                 struct net_device *dev = adap->port[i / j];
1122
1123                 if (msi_idx > 0)
1124                         msi_idx++;
1125                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1126                                        q->fl.size ? &q->fl : NULL,
1127                                        uldrx_handler);
1128                 if (err)
1129                         goto freeout;
1130                 memset(&q->stats, 0, sizeof(q->stats));
1131                 s->ofld_rxq[i] = q->rspq.abs_id;
1132                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1133                                             s->fw_evtq.cntxt_id);
1134                 if (err)
1135                         goto freeout;
1136         }
1137
1138         for_each_rdmarxq(s, i) {
1139                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1140
1141                 if (msi_idx > 0)
1142                         msi_idx++;
1143                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1144                                        msi_idx, q->fl.size ? &q->fl : NULL,
1145                                        uldrx_handler);
1146                 if (err)
1147                         goto freeout;
1148                 memset(&q->stats, 0, sizeof(q->stats));
1149                 s->rdma_rxq[i] = q->rspq.abs_id;
1150         }
1151
1152         for_each_rdmaciq(s, i) {
1153                 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1154
1155                 if (msi_idx > 0)
1156                         msi_idx++;
1157                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1158                                        msi_idx, q->fl.size ? &q->fl : NULL,
1159                                        uldrx_handler);
1160                 if (err)
1161                         goto freeout;
1162                 memset(&q->stats, 0, sizeof(q->stats));
1163                 s->rdma_ciq[i] = q->rspq.abs_id;
1164         }
1165
1166         for_each_port(adap, i) {
1167                 /*
1168                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1169                  * have RDMA queues, and that's the right value.
1170                  */
1171                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1172                                             s->fw_evtq.cntxt_id,
1173                                             s->rdmarxq[i].rspq.cntxt_id);
1174                 if (err)
1175                         goto freeout;
1176         }
1177
1178         t4_write_reg(adap, is_t4(adap->params.chip) ?
1179                                 MPS_TRC_RSS_CONTROL :
1180                                 MPS_T5_TRC_RSS_CONTROL,
1181                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1182                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1183         return 0;
1184 }
1185
1186 /*
1187  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1188  * The allocated memory is cleared.
1189  */
1190 void *t4_alloc_mem(size_t size)
1191 {
1192         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1193
1194         if (!p)
1195                 p = vzalloc(size);
1196         return p;
1197 }
1198
1199 /*
1200  * Free memory allocated through alloc_mem().
1201  */
1202 void t4_free_mem(void *addr)
1203 {
1204         if (is_vmalloc_addr(addr))
1205                 vfree(addr);
1206         else
1207                 kfree(addr);
1208 }
1209
1210 /* Send a Work Request to write the filter at a specified index.  We construct
1211  * a Firmware Filter Work Request to have the work done and put the indicated
1212  * filter into "pending" mode which will prevent any further actions against
1213  * it till we get a reply from the firmware on the completion status of the
1214  * request.
1215  */
1216 static int set_filter_wr(struct adapter *adapter, int fidx)
1217 {
1218         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1219         struct sk_buff *skb;
1220         struct fw_filter_wr *fwr;
1221         unsigned int ftid;
1222
1223         /* If the new filter requires loopback Destination MAC and/or VLAN
1224          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1225          * the filter.
1226          */
1227         if (f->fs.newdmac || f->fs.newvlan) {
1228                 /* allocate L2T entry for new filter */
1229                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1230                 if (f->l2t == NULL)
1231                         return -EAGAIN;
1232                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1233                                         f->fs.eport, f->fs.dmac)) {
1234                         cxgb4_l2t_release(f->l2t);
1235                         f->l2t = NULL;
1236                         return -ENOMEM;
1237                 }
1238         }
1239
1240         ftid = adapter->tids.ftid_base + fidx;
1241
1242         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1243         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1244         memset(fwr, 0, sizeof(*fwr));
1245
1246         /* It would be nice to put most of the following in t4_hw.c but most
1247          * of the work is translating the cxgbtool ch_filter_specification
1248          * into the Work Request and the definition of that structure is
1249          * currently in cxgbtool.h which isn't appropriate to pull into the
1250          * common code.  We may eventually try to come up with a more neutral
1251          * filter specification structure but for now it's easiest to simply
1252          * put this fairly direct code in line ...
1253          */
1254         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1255         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1256         fwr->tid_to_iq =
1257                 htonl(FW_FILTER_WR_TID_V(ftid) |
1258                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1259                       FW_FILTER_WR_NOREPLY_V(0) |
1260                       FW_FILTER_WR_IQ_V(f->fs.iq));
1261         fwr->del_filter_to_l2tix =
1262                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1263                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1264                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1265                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1266                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1267                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1268                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1269                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1270                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1271                                              f->fs.newvlan == VLAN_REWRITE) |
1272                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1273                                             f->fs.newvlan == VLAN_REWRITE) |
1274                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1275                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1276                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1277                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1278         fwr->ethtype = htons(f->fs.val.ethtype);
1279         fwr->ethtypem = htons(f->fs.mask.ethtype);
1280         fwr->frag_to_ovlan_vldm =
1281                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1282                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1283                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1284                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1285                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1286                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1287         fwr->smac_sel = 0;
1288         fwr->rx_chan_rx_rpl_iq =
1289                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1290                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1291         fwr->maci_to_matchtypem =
1292                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1293                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1294                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1295                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1296                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1297                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1298                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1299                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1300         fwr->ptcl = f->fs.val.proto;
1301         fwr->ptclm = f->fs.mask.proto;
1302         fwr->ttyp = f->fs.val.tos;
1303         fwr->ttypm = f->fs.mask.tos;
1304         fwr->ivlan = htons(f->fs.val.ivlan);
1305         fwr->ivlanm = htons(f->fs.mask.ivlan);
1306         fwr->ovlan = htons(f->fs.val.ovlan);
1307         fwr->ovlanm = htons(f->fs.mask.ovlan);
1308         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1309         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1310         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1311         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1312         fwr->lp = htons(f->fs.val.lport);
1313         fwr->lpm = htons(f->fs.mask.lport);
1314         fwr->fp = htons(f->fs.val.fport);
1315         fwr->fpm = htons(f->fs.mask.fport);
1316         if (f->fs.newsmac)
1317                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1318
1319         /* Mark the filter as "pending" and ship off the Filter Work Request.
1320          * When we get the Work Request Reply we'll clear the pending status.
1321          */
1322         f->pending = 1;
1323         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1324         t4_ofld_send(adapter, skb);
1325         return 0;
1326 }
1327
1328 /* Delete the filter at a specified index.
1329  */
1330 static int del_filter_wr(struct adapter *adapter, int fidx)
1331 {
1332         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1333         struct sk_buff *skb;
1334         struct fw_filter_wr *fwr;
1335         unsigned int len, ftid;
1336
1337         len = sizeof(*fwr);
1338         ftid = adapter->tids.ftid_base + fidx;
1339
1340         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1341         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1342         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1343
1344         /* Mark the filter as "pending" and ship off the Filter Work Request.
1345          * When we get the Work Request Reply we'll clear the pending status.
1346          */
1347         f->pending = 1;
1348         t4_mgmt_tx(adapter, skb);
1349         return 0;
1350 }
1351
1352 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1353                              void *accel_priv, select_queue_fallback_t fallback)
1354 {
1355         int txq;
1356
1357 #ifdef CONFIG_CHELSIO_T4_DCB
1358         /* If a Data Center Bridging has been successfully negotiated on this
1359          * link then we'll use the skb's priority to map it to a TX Queue.
1360          * The skb's priority is determined via the VLAN Tag Priority Code
1361          * Point field.
1362          */
1363         if (cxgb4_dcb_enabled(dev)) {
1364                 u16 vlan_tci;
1365                 int err;
1366
1367                 err = vlan_get_tag(skb, &vlan_tci);
1368                 if (unlikely(err)) {
1369                         if (net_ratelimit())
1370                                 netdev_warn(dev,
1371                                             "TX Packet without VLAN Tag on DCB Link\n");
1372                         txq = 0;
1373                 } else {
1374                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1375                 }
1376                 return txq;
1377         }
1378 #endif /* CONFIG_CHELSIO_T4_DCB */
1379
1380         if (select_queue) {
1381                 txq = (skb_rx_queue_recorded(skb)
1382                         ? skb_get_rx_queue(skb)
1383                         : smp_processor_id());
1384
1385                 while (unlikely(txq >= dev->real_num_tx_queues))
1386                         txq -= dev->real_num_tx_queues;
1387
1388                 return txq;
1389         }
1390
1391         return fallback(dev, skb) % dev->real_num_tx_queues;
1392 }
1393
1394 static inline int is_offload(const struct adapter *adap)
1395 {
1396         return adap->params.offload;
1397 }
1398
1399 /*
1400  * Implementation of ethtool operations.
1401  */
1402
1403 static u32 get_msglevel(struct net_device *dev)
1404 {
1405         return netdev2adap(dev)->msg_enable;
1406 }
1407
1408 static void set_msglevel(struct net_device *dev, u32 val)
1409 {
1410         netdev2adap(dev)->msg_enable = val;
1411 }
1412
1413 static char stats_strings[][ETH_GSTRING_LEN] = {
1414         "TxOctetsOK         ",
1415         "TxFramesOK         ",
1416         "TxBroadcastFrames  ",
1417         "TxMulticastFrames  ",
1418         "TxUnicastFrames    ",
1419         "TxErrorFrames      ",
1420
1421         "TxFrames64         ",
1422         "TxFrames65To127    ",
1423         "TxFrames128To255   ",
1424         "TxFrames256To511   ",
1425         "TxFrames512To1023  ",
1426         "TxFrames1024To1518 ",
1427         "TxFrames1519ToMax  ",
1428
1429         "TxFramesDropped    ",
1430         "TxPauseFrames      ",
1431         "TxPPP0Frames       ",
1432         "TxPPP1Frames       ",
1433         "TxPPP2Frames       ",
1434         "TxPPP3Frames       ",
1435         "TxPPP4Frames       ",
1436         "TxPPP5Frames       ",
1437         "TxPPP6Frames       ",
1438         "TxPPP7Frames       ",
1439
1440         "RxOctetsOK         ",
1441         "RxFramesOK         ",
1442         "RxBroadcastFrames  ",
1443         "RxMulticastFrames  ",
1444         "RxUnicastFrames    ",
1445
1446         "RxFramesTooLong    ",
1447         "RxJabberErrors     ",
1448         "RxFCSErrors        ",
1449         "RxLengthErrors     ",
1450         "RxSymbolErrors     ",
1451         "RxRuntFrames       ",
1452
1453         "RxFrames64         ",
1454         "RxFrames65To127    ",
1455         "RxFrames128To255   ",
1456         "RxFrames256To511   ",
1457         "RxFrames512To1023  ",
1458         "RxFrames1024To1518 ",
1459         "RxFrames1519ToMax  ",
1460
1461         "RxPauseFrames      ",
1462         "RxPPP0Frames       ",
1463         "RxPPP1Frames       ",
1464         "RxPPP2Frames       ",
1465         "RxPPP3Frames       ",
1466         "RxPPP4Frames       ",
1467         "RxPPP5Frames       ",
1468         "RxPPP6Frames       ",
1469         "RxPPP7Frames       ",
1470
1471         "RxBG0FramesDropped ",
1472         "RxBG1FramesDropped ",
1473         "RxBG2FramesDropped ",
1474         "RxBG3FramesDropped ",
1475         "RxBG0FramesTrunc   ",
1476         "RxBG1FramesTrunc   ",
1477         "RxBG2FramesTrunc   ",
1478         "RxBG3FramesTrunc   ",
1479
1480         "TSO                ",
1481         "TxCsumOffload      ",
1482         "RxCsumGood         ",
1483         "VLANextractions    ",
1484         "VLANinsertions     ",
1485         "GROpackets         ",
1486         "GROmerged          ",
1487         "WriteCoalSuccess   ",
1488         "WriteCoalFail      ",
1489 };
1490
1491 static int get_sset_count(struct net_device *dev, int sset)
1492 {
1493         switch (sset) {
1494         case ETH_SS_STATS:
1495                 return ARRAY_SIZE(stats_strings);
1496         default:
1497                 return -EOPNOTSUPP;
1498         }
1499 }
1500
1501 #define T4_REGMAP_SIZE (160 * 1024)
1502 #define T5_REGMAP_SIZE (332 * 1024)
1503
1504 static int get_regs_len(struct net_device *dev)
1505 {
1506         struct adapter *adap = netdev2adap(dev);
1507         if (is_t4(adap->params.chip))
1508                 return T4_REGMAP_SIZE;
1509         else
1510                 return T5_REGMAP_SIZE;
1511 }
1512
1513 static int get_eeprom_len(struct net_device *dev)
1514 {
1515         return EEPROMSIZE;
1516 }
1517
1518 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1519 {
1520         struct adapter *adapter = netdev2adap(dev);
1521
1522         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1523         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1524         strlcpy(info->bus_info, pci_name(adapter->pdev),
1525                 sizeof(info->bus_info));
1526
1527         if (adapter->params.fw_vers)
1528                 snprintf(info->fw_version, sizeof(info->fw_version),
1529                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1530                         FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
1531                         FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
1532                         FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
1533                         FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers),
1534                         FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
1535                         FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
1536                         FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
1537                         FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
1538 }
1539
1540 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1541 {
1542         if (stringset == ETH_SS_STATS)
1543                 memcpy(data, stats_strings, sizeof(stats_strings));
1544 }
1545
1546 /*
1547  * port stats maintained per queue of the port.  They should be in the same
1548  * order as in stats_strings above.
1549  */
1550 struct queue_port_stats {
1551         u64 tso;
1552         u64 tx_csum;
1553         u64 rx_csum;
1554         u64 vlan_ex;
1555         u64 vlan_ins;
1556         u64 gro_pkts;
1557         u64 gro_merged;
1558 };
1559
1560 static void collect_sge_port_stats(const struct adapter *adap,
1561                 const struct port_info *p, struct queue_port_stats *s)
1562 {
1563         int i;
1564         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1565         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1566
1567         memset(s, 0, sizeof(*s));
1568         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1569                 s->tso += tx->tso;
1570                 s->tx_csum += tx->tx_cso;
1571                 s->rx_csum += rx->stats.rx_cso;
1572                 s->vlan_ex += rx->stats.vlan_ex;
1573                 s->vlan_ins += tx->vlan_ins;
1574                 s->gro_pkts += rx->stats.lro_pkts;
1575                 s->gro_merged += rx->stats.lro_merged;
1576         }
1577 }
1578
1579 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1580                       u64 *data)
1581 {
1582         struct port_info *pi = netdev_priv(dev);
1583         struct adapter *adapter = pi->adapter;
1584         u32 val1, val2;
1585
1586         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1587
1588         data += sizeof(struct port_stats) / sizeof(u64);
1589         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1590         data += sizeof(struct queue_port_stats) / sizeof(u64);
1591         if (!is_t4(adapter->params.chip)) {
1592                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1593                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1594                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1595                 *data = val1 - val2;
1596                 data++;
1597                 *data = val2;
1598                 data++;
1599         } else {
1600                 memset(data, 0, 2 * sizeof(u64));
1601                 *data += 2;
1602         }
1603 }
1604
1605 /*
1606  * Return a version number to identify the type of adapter.  The scheme is:
1607  * - bits 0..9: chip version
1608  * - bits 10..15: chip revision
1609  * - bits 16..23: register dump version
1610  */
1611 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1612 {
1613         return CHELSIO_CHIP_VERSION(ap->params.chip) |
1614                 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1615 }
1616
1617 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1618                            unsigned int end)
1619 {
1620         u32 *p = buf + start;
1621
1622         for ( ; start <= end; start += sizeof(u32))
1623                 *p++ = t4_read_reg(ap, start);
1624 }
1625
1626 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1627                      void *buf)
1628 {
1629         static const unsigned int t4_reg_ranges[] = {
1630                 0x1008, 0x1108,
1631                 0x1180, 0x11b4,
1632                 0x11fc, 0x123c,
1633                 0x1300, 0x173c,
1634                 0x1800, 0x18fc,
1635                 0x3000, 0x30d8,
1636                 0x30e0, 0x5924,
1637                 0x5960, 0x59d4,
1638                 0x5a00, 0x5af8,
1639                 0x6000, 0x6098,
1640                 0x6100, 0x6150,
1641                 0x6200, 0x6208,
1642                 0x6240, 0x6248,
1643                 0x6280, 0x6338,
1644                 0x6370, 0x638c,
1645                 0x6400, 0x643c,
1646                 0x6500, 0x6524,
1647                 0x6a00, 0x6a38,
1648                 0x6a60, 0x6a78,
1649                 0x6b00, 0x6b84,
1650                 0x6bf0, 0x6c84,
1651                 0x6cf0, 0x6d84,
1652                 0x6df0, 0x6e84,
1653                 0x6ef0, 0x6f84,
1654                 0x6ff0, 0x7084,
1655                 0x70f0, 0x7184,
1656                 0x71f0, 0x7284,
1657                 0x72f0, 0x7384,
1658                 0x73f0, 0x7450,
1659                 0x7500, 0x7530,
1660                 0x7600, 0x761c,
1661                 0x7680, 0x76cc,
1662                 0x7700, 0x7798,
1663                 0x77c0, 0x77fc,
1664                 0x7900, 0x79fc,
1665                 0x7b00, 0x7c38,
1666                 0x7d00, 0x7efc,
1667                 0x8dc0, 0x8e1c,
1668                 0x8e30, 0x8e78,
1669                 0x8ea0, 0x8f6c,
1670                 0x8fc0, 0x9074,
1671                 0x90fc, 0x90fc,
1672                 0x9400, 0x9458,
1673                 0x9600, 0x96bc,
1674                 0x9800, 0x9808,
1675                 0x9820, 0x983c,
1676                 0x9850, 0x9864,
1677                 0x9c00, 0x9c6c,
1678                 0x9c80, 0x9cec,
1679                 0x9d00, 0x9d6c,
1680                 0x9d80, 0x9dec,
1681                 0x9e00, 0x9e6c,
1682                 0x9e80, 0x9eec,
1683                 0x9f00, 0x9f6c,
1684                 0x9f80, 0x9fec,
1685                 0xd004, 0xd03c,
1686                 0xdfc0, 0xdfe0,
1687                 0xe000, 0xea7c,
1688                 0xf000, 0x11110,
1689                 0x11118, 0x11190,
1690                 0x19040, 0x1906c,
1691                 0x19078, 0x19080,
1692                 0x1908c, 0x19124,
1693                 0x19150, 0x191b0,
1694                 0x191d0, 0x191e8,
1695                 0x19238, 0x1924c,
1696                 0x193f8, 0x19474,
1697                 0x19490, 0x194f8,
1698                 0x19800, 0x19f30,
1699                 0x1a000, 0x1a06c,
1700                 0x1a0b0, 0x1a120,
1701                 0x1a128, 0x1a138,
1702                 0x1a190, 0x1a1c4,
1703                 0x1a1fc, 0x1a1fc,
1704                 0x1e040, 0x1e04c,
1705                 0x1e284, 0x1e28c,
1706                 0x1e2c0, 0x1e2c0,
1707                 0x1e2e0, 0x1e2e0,
1708                 0x1e300, 0x1e384,
1709                 0x1e3c0, 0x1e3c8,
1710                 0x1e440, 0x1e44c,
1711                 0x1e684, 0x1e68c,
1712                 0x1e6c0, 0x1e6c0,
1713                 0x1e6e0, 0x1e6e0,
1714                 0x1e700, 0x1e784,
1715                 0x1e7c0, 0x1e7c8,
1716                 0x1e840, 0x1e84c,
1717                 0x1ea84, 0x1ea8c,
1718                 0x1eac0, 0x1eac0,
1719                 0x1eae0, 0x1eae0,
1720                 0x1eb00, 0x1eb84,
1721                 0x1ebc0, 0x1ebc8,
1722                 0x1ec40, 0x1ec4c,
1723                 0x1ee84, 0x1ee8c,
1724                 0x1eec0, 0x1eec0,
1725                 0x1eee0, 0x1eee0,
1726                 0x1ef00, 0x1ef84,
1727                 0x1efc0, 0x1efc8,
1728                 0x1f040, 0x1f04c,
1729                 0x1f284, 0x1f28c,
1730                 0x1f2c0, 0x1f2c0,
1731                 0x1f2e0, 0x1f2e0,
1732                 0x1f300, 0x1f384,
1733                 0x1f3c0, 0x1f3c8,
1734                 0x1f440, 0x1f44c,
1735                 0x1f684, 0x1f68c,
1736                 0x1f6c0, 0x1f6c0,
1737                 0x1f6e0, 0x1f6e0,
1738                 0x1f700, 0x1f784,
1739                 0x1f7c0, 0x1f7c8,
1740                 0x1f840, 0x1f84c,
1741                 0x1fa84, 0x1fa8c,
1742                 0x1fac0, 0x1fac0,
1743                 0x1fae0, 0x1fae0,
1744                 0x1fb00, 0x1fb84,
1745                 0x1fbc0, 0x1fbc8,
1746                 0x1fc40, 0x1fc4c,
1747                 0x1fe84, 0x1fe8c,
1748                 0x1fec0, 0x1fec0,
1749                 0x1fee0, 0x1fee0,
1750                 0x1ff00, 0x1ff84,
1751                 0x1ffc0, 0x1ffc8,
1752                 0x20000, 0x2002c,
1753                 0x20100, 0x2013c,
1754                 0x20190, 0x201c8,
1755                 0x20200, 0x20318,
1756                 0x20400, 0x20528,
1757                 0x20540, 0x20614,
1758                 0x21000, 0x21040,
1759                 0x2104c, 0x21060,
1760                 0x210c0, 0x210ec,
1761                 0x21200, 0x21268,
1762                 0x21270, 0x21284,
1763                 0x212fc, 0x21388,
1764                 0x21400, 0x21404,
1765                 0x21500, 0x21518,
1766                 0x2152c, 0x2153c,
1767                 0x21550, 0x21554,
1768                 0x21600, 0x21600,
1769                 0x21608, 0x21628,
1770                 0x21630, 0x2163c,
1771                 0x21700, 0x2171c,
1772                 0x21780, 0x2178c,
1773                 0x21800, 0x21c38,
1774                 0x21c80, 0x21d7c,
1775                 0x21e00, 0x21e04,
1776                 0x22000, 0x2202c,
1777                 0x22100, 0x2213c,
1778                 0x22190, 0x221c8,
1779                 0x22200, 0x22318,
1780                 0x22400, 0x22528,
1781                 0x22540, 0x22614,
1782                 0x23000, 0x23040,
1783                 0x2304c, 0x23060,
1784                 0x230c0, 0x230ec,
1785                 0x23200, 0x23268,
1786                 0x23270, 0x23284,
1787                 0x232fc, 0x23388,
1788                 0x23400, 0x23404,
1789                 0x23500, 0x23518,
1790                 0x2352c, 0x2353c,
1791                 0x23550, 0x23554,
1792                 0x23600, 0x23600,
1793                 0x23608, 0x23628,
1794                 0x23630, 0x2363c,
1795                 0x23700, 0x2371c,
1796                 0x23780, 0x2378c,
1797                 0x23800, 0x23c38,
1798                 0x23c80, 0x23d7c,
1799                 0x23e00, 0x23e04,
1800                 0x24000, 0x2402c,
1801                 0x24100, 0x2413c,
1802                 0x24190, 0x241c8,
1803                 0x24200, 0x24318,
1804                 0x24400, 0x24528,
1805                 0x24540, 0x24614,
1806                 0x25000, 0x25040,
1807                 0x2504c, 0x25060,
1808                 0x250c0, 0x250ec,
1809                 0x25200, 0x25268,
1810                 0x25270, 0x25284,
1811                 0x252fc, 0x25388,
1812                 0x25400, 0x25404,
1813                 0x25500, 0x25518,
1814                 0x2552c, 0x2553c,
1815                 0x25550, 0x25554,
1816                 0x25600, 0x25600,
1817                 0x25608, 0x25628,
1818                 0x25630, 0x2563c,
1819                 0x25700, 0x2571c,
1820                 0x25780, 0x2578c,
1821                 0x25800, 0x25c38,
1822                 0x25c80, 0x25d7c,
1823                 0x25e00, 0x25e04,
1824                 0x26000, 0x2602c,
1825                 0x26100, 0x2613c,
1826                 0x26190, 0x261c8,
1827                 0x26200, 0x26318,
1828                 0x26400, 0x26528,
1829                 0x26540, 0x26614,
1830                 0x27000, 0x27040,
1831                 0x2704c, 0x27060,
1832                 0x270c0, 0x270ec,
1833                 0x27200, 0x27268,
1834                 0x27270, 0x27284,
1835                 0x272fc, 0x27388,
1836                 0x27400, 0x27404,
1837                 0x27500, 0x27518,
1838                 0x2752c, 0x2753c,
1839                 0x27550, 0x27554,
1840                 0x27600, 0x27600,
1841                 0x27608, 0x27628,
1842                 0x27630, 0x2763c,
1843                 0x27700, 0x2771c,
1844                 0x27780, 0x2778c,
1845                 0x27800, 0x27c38,
1846                 0x27c80, 0x27d7c,
1847                 0x27e00, 0x27e04
1848         };
1849
1850         static const unsigned int t5_reg_ranges[] = {
1851                 0x1008, 0x1148,
1852                 0x1180, 0x11b4,
1853                 0x11fc, 0x123c,
1854                 0x1280, 0x173c,
1855                 0x1800, 0x18fc,
1856                 0x3000, 0x3028,
1857                 0x3060, 0x30d8,
1858                 0x30e0, 0x30fc,
1859                 0x3140, 0x357c,
1860                 0x35a8, 0x35cc,
1861                 0x35ec, 0x35ec,
1862                 0x3600, 0x5624,
1863                 0x56cc, 0x575c,
1864                 0x580c, 0x5814,
1865                 0x5890, 0x58bc,
1866                 0x5940, 0x59dc,
1867                 0x59fc, 0x5a18,
1868                 0x5a60, 0x5a9c,
1869                 0x5b9c, 0x5bfc,
1870                 0x6000, 0x6040,
1871                 0x6058, 0x614c,
1872                 0x7700, 0x7798,
1873                 0x77c0, 0x78fc,
1874                 0x7b00, 0x7c54,
1875                 0x7d00, 0x7efc,
1876                 0x8dc0, 0x8de0,
1877                 0x8df8, 0x8e84,
1878                 0x8ea0, 0x8f84,
1879                 0x8fc0, 0x90f8,
1880                 0x9400, 0x9470,
1881                 0x9600, 0x96f4,
1882                 0x9800, 0x9808,
1883                 0x9820, 0x983c,
1884                 0x9850, 0x9864,
1885                 0x9c00, 0x9c6c,
1886                 0x9c80, 0x9cec,
1887                 0x9d00, 0x9d6c,
1888                 0x9d80, 0x9dec,
1889                 0x9e00, 0x9e6c,
1890                 0x9e80, 0x9eec,
1891                 0x9f00, 0x9f6c,
1892                 0x9f80, 0xa020,
1893                 0xd004, 0xd03c,
1894                 0xdfc0, 0xdfe0,
1895                 0xe000, 0x11088,
1896                 0x1109c, 0x11110,
1897                 0x11118, 0x1117c,
1898                 0x11190, 0x11204,
1899                 0x19040, 0x1906c,
1900                 0x19078, 0x19080,
1901                 0x1908c, 0x19124,
1902                 0x19150, 0x191b0,
1903                 0x191d0, 0x191e8,
1904                 0x19238, 0x19290,
1905                 0x193f8, 0x19474,
1906                 0x19490, 0x194cc,
1907                 0x194f0, 0x194f8,
1908                 0x19c00, 0x19c60,
1909                 0x19c94, 0x19e10,
1910                 0x19e50, 0x19f34,
1911                 0x19f40, 0x19f50,
1912                 0x19f90, 0x19fe4,
1913                 0x1a000, 0x1a06c,
1914                 0x1a0b0, 0x1a120,
1915                 0x1a128, 0x1a138,
1916                 0x1a190, 0x1a1c4,
1917                 0x1a1fc, 0x1a1fc,
1918                 0x1e008, 0x1e00c,
1919                 0x1e040, 0x1e04c,
1920                 0x1e284, 0x1e290,
1921                 0x1e2c0, 0x1e2c0,
1922                 0x1e2e0, 0x1e2e0,
1923                 0x1e300, 0x1e384,
1924                 0x1e3c0, 0x1e3c8,
1925                 0x1e408, 0x1e40c,
1926                 0x1e440, 0x1e44c,
1927                 0x1e684, 0x1e690,
1928                 0x1e6c0, 0x1e6c0,
1929                 0x1e6e0, 0x1e6e0,
1930                 0x1e700, 0x1e784,
1931                 0x1e7c0, 0x1e7c8,
1932                 0x1e808, 0x1e80c,
1933                 0x1e840, 0x1e84c,
1934                 0x1ea84, 0x1ea90,
1935                 0x1eac0, 0x1eac0,
1936                 0x1eae0, 0x1eae0,
1937                 0x1eb00, 0x1eb84,
1938                 0x1ebc0, 0x1ebc8,
1939                 0x1ec08, 0x1ec0c,
1940                 0x1ec40, 0x1ec4c,
1941                 0x1ee84, 0x1ee90,
1942                 0x1eec0, 0x1eec0,
1943                 0x1eee0, 0x1eee0,
1944                 0x1ef00, 0x1ef84,
1945                 0x1efc0, 0x1efc8,
1946                 0x1f008, 0x1f00c,
1947                 0x1f040, 0x1f04c,
1948                 0x1f284, 0x1f290,
1949                 0x1f2c0, 0x1f2c0,
1950                 0x1f2e0, 0x1f2e0,
1951                 0x1f300, 0x1f384,
1952                 0x1f3c0, 0x1f3c8,
1953                 0x1f408, 0x1f40c,
1954                 0x1f440, 0x1f44c,
1955                 0x1f684, 0x1f690,
1956                 0x1f6c0, 0x1f6c0,
1957                 0x1f6e0, 0x1f6e0,
1958                 0x1f700, 0x1f784,
1959                 0x1f7c0, 0x1f7c8,
1960                 0x1f808, 0x1f80c,
1961                 0x1f840, 0x1f84c,
1962                 0x1fa84, 0x1fa90,
1963                 0x1fac0, 0x1fac0,
1964                 0x1fae0, 0x1fae0,
1965                 0x1fb00, 0x1fb84,
1966                 0x1fbc0, 0x1fbc8,
1967                 0x1fc08, 0x1fc0c,
1968                 0x1fc40, 0x1fc4c,
1969                 0x1fe84, 0x1fe90,
1970                 0x1fec0, 0x1fec0,
1971                 0x1fee0, 0x1fee0,
1972                 0x1ff00, 0x1ff84,
1973                 0x1ffc0, 0x1ffc8,
1974                 0x30000, 0x30030,
1975                 0x30100, 0x30144,
1976                 0x30190, 0x301d0,
1977                 0x30200, 0x30318,
1978                 0x30400, 0x3052c,
1979                 0x30540, 0x3061c,
1980                 0x30800, 0x30834,
1981                 0x308c0, 0x30908,
1982                 0x30910, 0x309ac,
1983                 0x30a00, 0x30a04,
1984                 0x30a0c, 0x30a2c,
1985                 0x30a44, 0x30a50,
1986                 0x30a74, 0x30c24,
1987                 0x30d08, 0x30d14,
1988                 0x30d1c, 0x30d20,
1989                 0x30d3c, 0x30d50,
1990                 0x31200, 0x3120c,
1991                 0x31220, 0x31220,
1992                 0x31240, 0x31240,
1993                 0x31600, 0x31600,
1994                 0x31608, 0x3160c,
1995                 0x31a00, 0x31a1c,
1996                 0x31e04, 0x31e20,
1997                 0x31e38, 0x31e3c,
1998                 0x31e80, 0x31e80,
1999                 0x31e88, 0x31ea8,
2000                 0x31eb0, 0x31eb4,
2001                 0x31ec8, 0x31ed4,
2002                 0x31fb8, 0x32004,
2003                 0x32208, 0x3223c,
2004                 0x32600, 0x32630,
2005                 0x32a00, 0x32abc,
2006                 0x32b00, 0x32b70,
2007                 0x33000, 0x33048,
2008                 0x33060, 0x3309c,
2009                 0x330f0, 0x33148,
2010                 0x33160, 0x3319c,
2011                 0x331f0, 0x332e4,
2012                 0x332f8, 0x333e4,
2013                 0x333f8, 0x33448,
2014                 0x33460, 0x3349c,
2015                 0x334f0, 0x33548,
2016                 0x33560, 0x3359c,
2017                 0x335f0, 0x336e4,
2018                 0x336f8, 0x337e4,
2019                 0x337f8, 0x337fc,
2020                 0x33814, 0x33814,
2021                 0x3382c, 0x3382c,
2022                 0x33880, 0x3388c,
2023                 0x338e8, 0x338ec,
2024                 0x33900, 0x33948,
2025                 0x33960, 0x3399c,
2026                 0x339f0, 0x33ae4,
2027                 0x33af8, 0x33b10,
2028                 0x33b28, 0x33b28,
2029                 0x33b3c, 0x33b50,
2030                 0x33bf0, 0x33c10,
2031                 0x33c28, 0x33c28,
2032                 0x33c3c, 0x33c50,
2033                 0x33cf0, 0x33cfc,
2034                 0x34000, 0x34030,
2035                 0x34100, 0x34144,
2036                 0x34190, 0x341d0,
2037                 0x34200, 0x34318,
2038                 0x34400, 0x3452c,
2039                 0x34540, 0x3461c,
2040                 0x34800, 0x34834,
2041                 0x348c0, 0x34908,
2042                 0x34910, 0x349ac,
2043                 0x34a00, 0x34a04,
2044                 0x34a0c, 0x34a2c,
2045                 0x34a44, 0x34a50,
2046                 0x34a74, 0x34c24,
2047                 0x34d08, 0x34d14,
2048                 0x34d1c, 0x34d20,
2049                 0x34d3c, 0x34d50,
2050                 0x35200, 0x3520c,
2051                 0x35220, 0x35220,
2052                 0x35240, 0x35240,
2053                 0x35600, 0x35600,
2054                 0x35608, 0x3560c,
2055                 0x35a00, 0x35a1c,
2056                 0x35e04, 0x35e20,
2057                 0x35e38, 0x35e3c,
2058                 0x35e80, 0x35e80,
2059                 0x35e88, 0x35ea8,
2060                 0x35eb0, 0x35eb4,
2061                 0x35ec8, 0x35ed4,
2062                 0x35fb8, 0x36004,
2063                 0x36208, 0x3623c,
2064                 0x36600, 0x36630,
2065                 0x36a00, 0x36abc,
2066                 0x36b00, 0x36b70,
2067                 0x37000, 0x37048,
2068                 0x37060, 0x3709c,
2069                 0x370f0, 0x37148,
2070                 0x37160, 0x3719c,
2071                 0x371f0, 0x372e4,
2072                 0x372f8, 0x373e4,
2073                 0x373f8, 0x37448,
2074                 0x37460, 0x3749c,
2075                 0x374f0, 0x37548,
2076                 0x37560, 0x3759c,
2077                 0x375f0, 0x376e4,
2078                 0x376f8, 0x377e4,
2079                 0x377f8, 0x377fc,
2080                 0x37814, 0x37814,
2081                 0x3782c, 0x3782c,
2082                 0x37880, 0x3788c,
2083                 0x378e8, 0x378ec,
2084                 0x37900, 0x37948,
2085                 0x37960, 0x3799c,
2086                 0x379f0, 0x37ae4,
2087                 0x37af8, 0x37b10,
2088                 0x37b28, 0x37b28,
2089                 0x37b3c, 0x37b50,
2090                 0x37bf0, 0x37c10,
2091                 0x37c28, 0x37c28,
2092                 0x37c3c, 0x37c50,
2093                 0x37cf0, 0x37cfc,
2094                 0x38000, 0x38030,
2095                 0x38100, 0x38144,
2096                 0x38190, 0x381d0,
2097                 0x38200, 0x38318,
2098                 0x38400, 0x3852c,
2099                 0x38540, 0x3861c,
2100                 0x38800, 0x38834,
2101                 0x388c0, 0x38908,
2102                 0x38910, 0x389ac,
2103                 0x38a00, 0x38a04,
2104                 0x38a0c, 0x38a2c,
2105                 0x38a44, 0x38a50,
2106                 0x38a74, 0x38c24,
2107                 0x38d08, 0x38d14,
2108                 0x38d1c, 0x38d20,
2109                 0x38d3c, 0x38d50,
2110                 0x39200, 0x3920c,
2111                 0x39220, 0x39220,
2112                 0x39240, 0x39240,
2113                 0x39600, 0x39600,
2114                 0x39608, 0x3960c,
2115                 0x39a00, 0x39a1c,
2116                 0x39e04, 0x39e20,
2117                 0x39e38, 0x39e3c,
2118                 0x39e80, 0x39e80,
2119                 0x39e88, 0x39ea8,
2120                 0x39eb0, 0x39eb4,
2121                 0x39ec8, 0x39ed4,
2122                 0x39fb8, 0x3a004,
2123                 0x3a208, 0x3a23c,
2124                 0x3a600, 0x3a630,
2125                 0x3aa00, 0x3aabc,
2126                 0x3ab00, 0x3ab70,
2127                 0x3b000, 0x3b048,
2128                 0x3b060, 0x3b09c,
2129                 0x3b0f0, 0x3b148,
2130                 0x3b160, 0x3b19c,
2131                 0x3b1f0, 0x3b2e4,
2132                 0x3b2f8, 0x3b3e4,
2133                 0x3b3f8, 0x3b448,
2134                 0x3b460, 0x3b49c,
2135                 0x3b4f0, 0x3b548,
2136                 0x3b560, 0x3b59c,
2137                 0x3b5f0, 0x3b6e4,
2138                 0x3b6f8, 0x3b7e4,
2139                 0x3b7f8, 0x3b7fc,
2140                 0x3b814, 0x3b814,
2141                 0x3b82c, 0x3b82c,
2142                 0x3b880, 0x3b88c,
2143                 0x3b8e8, 0x3b8ec,
2144                 0x3b900, 0x3b948,
2145                 0x3b960, 0x3b99c,
2146                 0x3b9f0, 0x3bae4,
2147                 0x3baf8, 0x3bb10,
2148                 0x3bb28, 0x3bb28,
2149                 0x3bb3c, 0x3bb50,
2150                 0x3bbf0, 0x3bc10,
2151                 0x3bc28, 0x3bc28,
2152                 0x3bc3c, 0x3bc50,
2153                 0x3bcf0, 0x3bcfc,
2154                 0x3c000, 0x3c030,
2155                 0x3c100, 0x3c144,
2156                 0x3c190, 0x3c1d0,
2157                 0x3c200, 0x3c318,
2158                 0x3c400, 0x3c52c,
2159                 0x3c540, 0x3c61c,
2160                 0x3c800, 0x3c834,
2161                 0x3c8c0, 0x3c908,
2162                 0x3c910, 0x3c9ac,
2163                 0x3ca00, 0x3ca04,
2164                 0x3ca0c, 0x3ca2c,
2165                 0x3ca44, 0x3ca50,
2166                 0x3ca74, 0x3cc24,
2167                 0x3cd08, 0x3cd14,
2168                 0x3cd1c, 0x3cd20,
2169                 0x3cd3c, 0x3cd50,
2170                 0x3d200, 0x3d20c,
2171                 0x3d220, 0x3d220,
2172                 0x3d240, 0x3d240,
2173                 0x3d600, 0x3d600,
2174                 0x3d608, 0x3d60c,
2175                 0x3da00, 0x3da1c,
2176                 0x3de04, 0x3de20,
2177                 0x3de38, 0x3de3c,
2178                 0x3de80, 0x3de80,
2179                 0x3de88, 0x3dea8,
2180                 0x3deb0, 0x3deb4,
2181                 0x3dec8, 0x3ded4,
2182                 0x3dfb8, 0x3e004,
2183                 0x3e208, 0x3e23c,
2184                 0x3e600, 0x3e630,
2185                 0x3ea00, 0x3eabc,
2186                 0x3eb00, 0x3eb70,
2187                 0x3f000, 0x3f048,
2188                 0x3f060, 0x3f09c,
2189                 0x3f0f0, 0x3f148,
2190                 0x3f160, 0x3f19c,
2191                 0x3f1f0, 0x3f2e4,
2192                 0x3f2f8, 0x3f3e4,
2193                 0x3f3f8, 0x3f448,
2194                 0x3f460, 0x3f49c,
2195                 0x3f4f0, 0x3f548,
2196                 0x3f560, 0x3f59c,
2197                 0x3f5f0, 0x3f6e4,
2198                 0x3f6f8, 0x3f7e4,
2199                 0x3f7f8, 0x3f7fc,
2200                 0x3f814, 0x3f814,
2201                 0x3f82c, 0x3f82c,
2202                 0x3f880, 0x3f88c,
2203                 0x3f8e8, 0x3f8ec,
2204                 0x3f900, 0x3f948,
2205                 0x3f960, 0x3f99c,
2206                 0x3f9f0, 0x3fae4,
2207                 0x3faf8, 0x3fb10,
2208                 0x3fb28, 0x3fb28,
2209                 0x3fb3c, 0x3fb50,
2210                 0x3fbf0, 0x3fc10,
2211                 0x3fc28, 0x3fc28,
2212                 0x3fc3c, 0x3fc50,
2213                 0x3fcf0, 0x3fcfc,
2214                 0x40000, 0x4000c,
2215                 0x40040, 0x40068,
2216                 0x40080, 0x40144,
2217                 0x40180, 0x4018c,
2218                 0x40200, 0x40298,
2219                 0x402ac, 0x4033c,
2220                 0x403f8, 0x403fc,
2221                 0x41304, 0x413c4,
2222                 0x41400, 0x4141c,
2223                 0x41480, 0x414d0,
2224                 0x44000, 0x44078,
2225                 0x440c0, 0x44278,
2226                 0x442c0, 0x44478,
2227                 0x444c0, 0x44678,
2228                 0x446c0, 0x44878,
2229                 0x448c0, 0x449fc,
2230                 0x45000, 0x45068,
2231                 0x45080, 0x45084,
2232                 0x450a0, 0x450b0,
2233                 0x45200, 0x45268,
2234                 0x45280, 0x45284,
2235                 0x452a0, 0x452b0,
2236                 0x460c0, 0x460e4,
2237                 0x47000, 0x4708c,
2238                 0x47200, 0x47250,
2239                 0x47400, 0x47420,
2240                 0x47600, 0x47618,
2241                 0x47800, 0x47814,
2242                 0x48000, 0x4800c,
2243                 0x48040, 0x48068,
2244                 0x48080, 0x48144,
2245                 0x48180, 0x4818c,
2246                 0x48200, 0x48298,
2247                 0x482ac, 0x4833c,
2248                 0x483f8, 0x483fc,
2249                 0x49304, 0x493c4,
2250                 0x49400, 0x4941c,
2251                 0x49480, 0x494d0,
2252                 0x4c000, 0x4c078,
2253                 0x4c0c0, 0x4c278,
2254                 0x4c2c0, 0x4c478,
2255                 0x4c4c0, 0x4c678,
2256                 0x4c6c0, 0x4c878,
2257                 0x4c8c0, 0x4c9fc,
2258                 0x4d000, 0x4d068,
2259                 0x4d080, 0x4d084,
2260                 0x4d0a0, 0x4d0b0,
2261                 0x4d200, 0x4d268,
2262                 0x4d280, 0x4d284,
2263                 0x4d2a0, 0x4d2b0,
2264                 0x4e0c0, 0x4e0e4,
2265                 0x4f000, 0x4f08c,
2266                 0x4f200, 0x4f250,
2267                 0x4f400, 0x4f420,
2268                 0x4f600, 0x4f618,
2269                 0x4f800, 0x4f814,
2270                 0x50000, 0x500cc,
2271                 0x50400, 0x50400,
2272                 0x50800, 0x508cc,
2273                 0x50c00, 0x50c00,
2274                 0x51000, 0x5101c,
2275                 0x51300, 0x51308,
2276         };
2277
2278         int i;
2279         struct adapter *ap = netdev2adap(dev);
2280         static const unsigned int *reg_ranges;
2281         int arr_size = 0, buf_size = 0;
2282
2283         if (is_t4(ap->params.chip)) {
2284                 reg_ranges = &t4_reg_ranges[0];
2285                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2286                 buf_size = T4_REGMAP_SIZE;
2287         } else {
2288                 reg_ranges = &t5_reg_ranges[0];
2289                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2290                 buf_size = T5_REGMAP_SIZE;
2291         }
2292
2293         regs->version = mk_adap_vers(ap);
2294
2295         memset(buf, 0, buf_size);
2296         for (i = 0; i < arr_size; i += 2)
2297                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2298 }
2299
2300 static int restart_autoneg(struct net_device *dev)
2301 {
2302         struct port_info *p = netdev_priv(dev);
2303
2304         if (!netif_running(dev))
2305                 return -EAGAIN;
2306         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2307                 return -EINVAL;
2308         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2309         return 0;
2310 }
2311
2312 static int identify_port(struct net_device *dev,
2313                          enum ethtool_phys_id_state state)
2314 {
2315         unsigned int val;
2316         struct adapter *adap = netdev2adap(dev);
2317
2318         if (state == ETHTOOL_ID_ACTIVE)
2319                 val = 0xffff;
2320         else if (state == ETHTOOL_ID_INACTIVE)
2321                 val = 0;
2322         else
2323                 return -EINVAL;
2324
2325         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2326 }
2327
2328 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2329 {
2330         unsigned int v = 0;
2331
2332         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2333             type == FW_PORT_TYPE_BT_XAUI) {
2334                 v |= SUPPORTED_TP;
2335                 if (caps & FW_PORT_CAP_SPEED_100M)
2336                         v |= SUPPORTED_100baseT_Full;
2337                 if (caps & FW_PORT_CAP_SPEED_1G)
2338                         v |= SUPPORTED_1000baseT_Full;
2339                 if (caps & FW_PORT_CAP_SPEED_10G)
2340                         v |= SUPPORTED_10000baseT_Full;
2341         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2342                 v |= SUPPORTED_Backplane;
2343                 if (caps & FW_PORT_CAP_SPEED_1G)
2344                         v |= SUPPORTED_1000baseKX_Full;
2345                 if (caps & FW_PORT_CAP_SPEED_10G)
2346                         v |= SUPPORTED_10000baseKX4_Full;
2347         } else if (type == FW_PORT_TYPE_KR)
2348                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2349         else if (type == FW_PORT_TYPE_BP_AP)
2350                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2351                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2352         else if (type == FW_PORT_TYPE_BP4_AP)
2353                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2354                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2355                      SUPPORTED_10000baseKX4_Full;
2356         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2357                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP) {
2358                 v |= SUPPORTED_FIBRE;
2359                 if (caps & FW_PORT_CAP_SPEED_1G)
2360                         v |= SUPPORTED_1000baseT_Full;
2361                 if (caps & FW_PORT_CAP_SPEED_10G)
2362                         v |= SUPPORTED_10000baseT_Full;
2363         } else if (type == FW_PORT_TYPE_BP40_BA)
2364                 v |= SUPPORTED_40000baseSR4_Full;
2365
2366         if (caps & FW_PORT_CAP_ANEG)
2367                 v |= SUPPORTED_Autoneg;
2368         return v;
2369 }
2370
2371 static unsigned int to_fw_linkcaps(unsigned int caps)
2372 {
2373         unsigned int v = 0;
2374
2375         if (caps & ADVERTISED_100baseT_Full)
2376                 v |= FW_PORT_CAP_SPEED_100M;
2377         if (caps & ADVERTISED_1000baseT_Full)
2378                 v |= FW_PORT_CAP_SPEED_1G;
2379         if (caps & ADVERTISED_10000baseT_Full)
2380                 v |= FW_PORT_CAP_SPEED_10G;
2381         if (caps & ADVERTISED_40000baseSR4_Full)
2382                 v |= FW_PORT_CAP_SPEED_40G;
2383         return v;
2384 }
2385
2386 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2387 {
2388         const struct port_info *p = netdev_priv(dev);
2389
2390         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2391             p->port_type == FW_PORT_TYPE_BT_XFI ||
2392             p->port_type == FW_PORT_TYPE_BT_XAUI)
2393                 cmd->port = PORT_TP;
2394         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2395                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2396                 cmd->port = PORT_FIBRE;
2397         else if (p->port_type == FW_PORT_TYPE_SFP ||
2398                  p->port_type == FW_PORT_TYPE_QSFP_10G ||
2399                  p->port_type == FW_PORT_TYPE_QSFP) {
2400                 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2401                     p->mod_type == FW_PORT_MOD_TYPE_SR ||
2402                     p->mod_type == FW_PORT_MOD_TYPE_ER ||
2403                     p->mod_type == FW_PORT_MOD_TYPE_LRM)
2404                         cmd->port = PORT_FIBRE;
2405                 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2406                          p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2407                         cmd->port = PORT_DA;
2408                 else
2409                         cmd->port = PORT_OTHER;
2410         } else
2411                 cmd->port = PORT_OTHER;
2412
2413         if (p->mdio_addr >= 0) {
2414                 cmd->phy_address = p->mdio_addr;
2415                 cmd->transceiver = XCVR_EXTERNAL;
2416                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2417                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2418         } else {
2419                 cmd->phy_address = 0;  /* not really, but no better option */
2420                 cmd->transceiver = XCVR_INTERNAL;
2421                 cmd->mdio_support = 0;
2422         }
2423
2424         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2425         cmd->advertising = from_fw_linkcaps(p->port_type,
2426                                             p->link_cfg.advertising);
2427         ethtool_cmd_speed_set(cmd,
2428                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2429         cmd->duplex = DUPLEX_FULL;
2430         cmd->autoneg = p->link_cfg.autoneg;
2431         cmd->maxtxpkt = 0;
2432         cmd->maxrxpkt = 0;
2433         return 0;
2434 }
2435
2436 static unsigned int speed_to_caps(int speed)
2437 {
2438         if (speed == 100)
2439                 return FW_PORT_CAP_SPEED_100M;
2440         if (speed == 1000)
2441                 return FW_PORT_CAP_SPEED_1G;
2442         if (speed == 10000)
2443                 return FW_PORT_CAP_SPEED_10G;
2444         if (speed == 40000)
2445                 return FW_PORT_CAP_SPEED_40G;
2446         return 0;
2447 }
2448
2449 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2450 {
2451         unsigned int cap;
2452         struct port_info *p = netdev_priv(dev);
2453         struct link_config *lc = &p->link_cfg;
2454         u32 speed = ethtool_cmd_speed(cmd);
2455
2456         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2457                 return -EINVAL;
2458
2459         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2460                 /*
2461                  * PHY offers a single speed.  See if that's what's
2462                  * being requested.
2463                  */
2464                 if (cmd->autoneg == AUTONEG_DISABLE &&
2465                     (lc->supported & speed_to_caps(speed)))
2466                         return 0;
2467                 return -EINVAL;
2468         }
2469
2470         if (cmd->autoneg == AUTONEG_DISABLE) {
2471                 cap = speed_to_caps(speed);
2472
2473                 if (!(lc->supported & cap) ||
2474                     (speed == 1000) ||
2475                     (speed == 10000) ||
2476                     (speed == 40000))
2477                         return -EINVAL;
2478                 lc->requested_speed = cap;
2479                 lc->advertising = 0;
2480         } else {
2481                 cap = to_fw_linkcaps(cmd->advertising);
2482                 if (!(lc->supported & cap))
2483                         return -EINVAL;
2484                 lc->requested_speed = 0;
2485                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2486         }
2487         lc->autoneg = cmd->autoneg;
2488
2489         if (netif_running(dev))
2490                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2491                                      lc);
2492         return 0;
2493 }
2494
2495 static void get_pauseparam(struct net_device *dev,
2496                            struct ethtool_pauseparam *epause)
2497 {
2498         struct port_info *p = netdev_priv(dev);
2499
2500         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2501         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2502         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2503 }
2504
2505 static int set_pauseparam(struct net_device *dev,
2506                           struct ethtool_pauseparam *epause)
2507 {
2508         struct port_info *p = netdev_priv(dev);
2509         struct link_config *lc = &p->link_cfg;
2510
2511         if (epause->autoneg == AUTONEG_DISABLE)
2512                 lc->requested_fc = 0;
2513         else if (lc->supported & FW_PORT_CAP_ANEG)
2514                 lc->requested_fc = PAUSE_AUTONEG;
2515         else
2516                 return -EINVAL;
2517
2518         if (epause->rx_pause)
2519                 lc->requested_fc |= PAUSE_RX;
2520         if (epause->tx_pause)
2521                 lc->requested_fc |= PAUSE_TX;
2522         if (netif_running(dev))
2523                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2524                                      lc);
2525         return 0;
2526 }
2527
2528 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2529 {
2530         const struct port_info *pi = netdev_priv(dev);
2531         const struct sge *s = &pi->adapter->sge;
2532
2533         e->rx_max_pending = MAX_RX_BUFFERS;
2534         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2535         e->rx_jumbo_max_pending = 0;
2536         e->tx_max_pending = MAX_TXQ_ENTRIES;
2537
2538         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2539         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2540         e->rx_jumbo_pending = 0;
2541         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2542 }
2543
2544 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2545 {
2546         int i;
2547         const struct port_info *pi = netdev_priv(dev);
2548         struct adapter *adapter = pi->adapter;
2549         struct sge *s = &adapter->sge;
2550
2551         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2552             e->tx_pending > MAX_TXQ_ENTRIES ||
2553             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2554             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2555             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2556                 return -EINVAL;
2557
2558         if (adapter->flags & FULL_INIT_DONE)
2559                 return -EBUSY;
2560
2561         for (i = 0; i < pi->nqsets; ++i) {
2562                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2563                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2564                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2565         }
2566         return 0;
2567 }
2568
2569 static int closest_timer(const struct sge *s, int time)
2570 {
2571         int i, delta, match = 0, min_delta = INT_MAX;
2572
2573         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2574                 delta = time - s->timer_val[i];
2575                 if (delta < 0)
2576                         delta = -delta;
2577                 if (delta < min_delta) {
2578                         min_delta = delta;
2579                         match = i;
2580                 }
2581         }
2582         return match;
2583 }
2584
2585 static int closest_thres(const struct sge *s, int thres)
2586 {
2587         int i, delta, match = 0, min_delta = INT_MAX;
2588
2589         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2590                 delta = thres - s->counter_val[i];
2591                 if (delta < 0)
2592                         delta = -delta;
2593                 if (delta < min_delta) {
2594                         min_delta = delta;
2595                         match = i;
2596                 }
2597         }
2598         return match;
2599 }
2600
2601 /*
2602  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2603  */
2604 static unsigned int qtimer_val(const struct adapter *adap,
2605                                const struct sge_rspq *q)
2606 {
2607         unsigned int idx = q->intr_params >> 1;
2608
2609         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2610 }
2611
2612 /**
2613  *      set_rspq_intr_params - set a queue's interrupt holdoff parameters
2614  *      @q: the Rx queue
2615  *      @us: the hold-off time in us, or 0 to disable timer
2616  *      @cnt: the hold-off packet count, or 0 to disable counter
2617  *
2618  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2619  *      one of the two needs to be enabled for the queue to generate interrupts.
2620  */
2621 static int set_rspq_intr_params(struct sge_rspq *q,
2622                                 unsigned int us, unsigned int cnt)
2623 {
2624         struct adapter *adap = q->adap;
2625
2626         if ((us | cnt) == 0)
2627                 cnt = 1;
2628
2629         if (cnt) {
2630                 int err;
2631                 u32 v, new_idx;
2632
2633                 new_idx = closest_thres(&adap->sge, cnt);
2634                 if (q->desc && q->pktcnt_idx != new_idx) {
2635                         /* the queue has already been created, update it */
2636                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
2637                             FW_PARAMS_PARAM_X_V(
2638                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2639                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
2640                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2641                                             &new_idx);
2642                         if (err)
2643                                 return err;
2644                 }
2645                 q->pktcnt_idx = new_idx;
2646         }
2647
2648         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2649         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2650         return 0;
2651 }
2652
2653 /**
2654  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2655  * @dev: the network device
2656  * @us: the hold-off time in us, or 0 to disable timer
2657  * @cnt: the hold-off packet count, or 0 to disable counter
2658  *
2659  * Set the RX interrupt hold-off parameters for a network device.
2660  */
2661 static int set_rx_intr_params(struct net_device *dev,
2662                               unsigned int us, unsigned int cnt)
2663 {
2664         int i, err;
2665         struct port_info *pi = netdev_priv(dev);
2666         struct adapter *adap = pi->adapter;
2667         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2668
2669         for (i = 0; i < pi->nqsets; i++, q++) {
2670                 err = set_rspq_intr_params(&q->rspq, us, cnt);
2671                 if (err)
2672                         return err;
2673         }
2674         return 0;
2675 }
2676
2677 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
2678 {
2679         int i;
2680         struct port_info *pi = netdev_priv(dev);
2681         struct adapter *adap = pi->adapter;
2682         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2683
2684         for (i = 0; i < pi->nqsets; i++, q++)
2685                 q->rspq.adaptive_rx = adaptive_rx;
2686
2687         return 0;
2688 }
2689
2690 static int get_adaptive_rx_setting(struct net_device *dev)
2691 {
2692         struct port_info *pi = netdev_priv(dev);
2693         struct adapter *adap = pi->adapter;
2694         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2695
2696         return q->rspq.adaptive_rx;
2697 }
2698
2699 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2700 {
2701         set_adaptive_rx_setting(dev, c->use_adaptive_rx_coalesce);
2702         return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2703                                   c->rx_max_coalesced_frames);
2704 }
2705
2706 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2707 {
2708         const struct port_info *pi = netdev_priv(dev);
2709         const struct adapter *adap = pi->adapter;
2710         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2711
2712         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2713         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2714                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2715         c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
2716         return 0;
2717 }
2718
2719 /**
2720  *      eeprom_ptov - translate a physical EEPROM address to virtual
2721  *      @phys_addr: the physical EEPROM address
2722  *      @fn: the PCI function number
2723  *      @sz: size of function-specific area
2724  *
2725  *      Translate a physical EEPROM address to virtual.  The first 1K is
2726  *      accessed through virtual addresses starting at 31K, the rest is
2727  *      accessed through virtual addresses starting at 0.
2728  *
2729  *      The mapping is as follows:
2730  *      [0..1K) -> [31K..32K)
2731  *      [1K..1K+A) -> [31K-A..31K)
2732  *      [1K+A..ES) -> [0..ES-A-1K)
2733  *
2734  *      where A = @fn * @sz, and ES = EEPROM size.
2735  */
2736 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2737 {
2738         fn *= sz;
2739         if (phys_addr < 1024)
2740                 return phys_addr + (31 << 10);
2741         if (phys_addr < 1024 + fn)
2742                 return 31744 - fn + phys_addr - 1024;
2743         if (phys_addr < EEPROMSIZE)
2744                 return phys_addr - 1024 - fn;
2745         return -EINVAL;
2746 }
2747
2748 /*
2749  * The next two routines implement eeprom read/write from physical addresses.
2750  */
2751 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2752 {
2753         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2754
2755         if (vaddr >= 0)
2756                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2757         return vaddr < 0 ? vaddr : 0;
2758 }
2759
2760 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2761 {
2762         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2763
2764         if (vaddr >= 0)
2765                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2766         return vaddr < 0 ? vaddr : 0;
2767 }
2768
2769 #define EEPROM_MAGIC 0x38E2F10C
2770
2771 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2772                       u8 *data)
2773 {
2774         int i, err = 0;
2775         struct adapter *adapter = netdev2adap(dev);
2776
2777         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2778         if (!buf)
2779                 return -ENOMEM;
2780
2781         e->magic = EEPROM_MAGIC;
2782         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2783                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2784
2785         if (!err)
2786                 memcpy(data, buf + e->offset, e->len);
2787         kfree(buf);
2788         return err;
2789 }
2790
2791 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2792                       u8 *data)
2793 {
2794         u8 *buf;
2795         int err = 0;
2796         u32 aligned_offset, aligned_len, *p;
2797         struct adapter *adapter = netdev2adap(dev);
2798
2799         if (eeprom->magic != EEPROM_MAGIC)
2800                 return -EINVAL;
2801
2802         aligned_offset = eeprom->offset & ~3;
2803         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2804
2805         if (adapter->fn > 0) {
2806                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2807
2808                 if (aligned_offset < start ||
2809                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2810                         return -EPERM;
2811         }
2812
2813         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2814                 /*
2815                  * RMW possibly needed for first or last words.
2816                  */
2817                 buf = kmalloc(aligned_len, GFP_KERNEL);
2818                 if (!buf)
2819                         return -ENOMEM;
2820                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2821                 if (!err && aligned_len > 4)
2822                         err = eeprom_rd_phys(adapter,
2823                                              aligned_offset + aligned_len - 4,
2824                                              (u32 *)&buf[aligned_len - 4]);
2825                 if (err)
2826                         goto out;
2827                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2828         } else
2829                 buf = data;
2830
2831         err = t4_seeprom_wp(adapter, false);
2832         if (err)
2833                 goto out;
2834
2835         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2836                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2837                 aligned_offset += 4;
2838         }
2839
2840         if (!err)
2841                 err = t4_seeprom_wp(adapter, true);
2842 out:
2843         if (buf != data)
2844                 kfree(buf);
2845         return err;
2846 }
2847
2848 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2849 {
2850         int ret;
2851         const struct firmware *fw;
2852         struct adapter *adap = netdev2adap(netdev);
2853         unsigned int mbox = PCIE_FW_MASTER_M + 1;
2854
2855         ef->data[sizeof(ef->data) - 1] = '\0';
2856         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2857         if (ret < 0)
2858                 return ret;
2859
2860         /* If the adapter has been fully initialized then we'll go ahead and
2861          * try to get the firmware's cooperation in upgrading to the new
2862          * firmware image otherwise we'll try to do the entire job from the
2863          * host ... and we always "force" the operation in this path.
2864          */
2865         if (adap->flags & FULL_INIT_DONE)
2866                 mbox = adap->mbox;
2867
2868         ret = t4_fw_upgrade(adap, mbox, fw->data, fw->size, 1);
2869         release_firmware(fw);
2870         if (!ret)
2871                 dev_info(adap->pdev_dev, "loaded firmware %s,"
2872                          " reload cxgb4 driver\n", ef->data);
2873         return ret;
2874 }
2875
2876 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2877 #define BCAST_CRC 0xa0ccc1a6
2878
2879 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2880 {
2881         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2882         wol->wolopts = netdev2adap(dev)->wol;
2883         memset(&wol->sopass, 0, sizeof(wol->sopass));
2884 }
2885
2886 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2887 {
2888         int err = 0;
2889         struct port_info *pi = netdev_priv(dev);
2890
2891         if (wol->wolopts & ~WOL_SUPPORTED)
2892                 return -EINVAL;
2893         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2894                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2895         if (wol->wolopts & WAKE_BCAST) {
2896                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2897                                         ~0ULL, 0, false);
2898                 if (!err)
2899                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2900                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2901         } else
2902                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2903         return err;
2904 }
2905
2906 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2907 {
2908         const struct port_info *pi = netdev_priv(dev);
2909         netdev_features_t changed = dev->features ^ features;
2910         int err;
2911
2912         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2913                 return 0;
2914
2915         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2916                             -1, -1, -1,
2917                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2918         if (unlikely(err))
2919                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2920         return err;
2921 }
2922
2923 static u32 get_rss_table_size(struct net_device *dev)
2924 {
2925         const struct port_info *pi = netdev_priv(dev);
2926
2927         return pi->rss_size;
2928 }
2929
2930 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key, u8 *hfunc)
2931 {
2932         const struct port_info *pi = netdev_priv(dev);
2933         unsigned int n = pi->rss_size;
2934
2935         if (hfunc)
2936                 *hfunc = ETH_RSS_HASH_TOP;
2937         if (!p)
2938                 return 0;
2939         while (n--)
2940                 p[n] = pi->rss[n];
2941         return 0;
2942 }
2943
2944 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key,
2945                          const u8 hfunc)
2946 {
2947         unsigned int i;
2948         struct port_info *pi = netdev_priv(dev);
2949
2950         /* We require at least one supported parameter to be changed and no
2951          * change in any of the unsupported parameters
2952          */
2953         if (key ||
2954             (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
2955                 return -EOPNOTSUPP;
2956         if (!p)
2957                 return 0;
2958
2959         for (i = 0; i < pi->rss_size; i++)
2960                 pi->rss[i] = p[i];
2961         if (pi->adapter->flags & FULL_INIT_DONE)
2962                 return write_rss(pi, pi->rss);
2963         return 0;
2964 }
2965
2966 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2967                      u32 *rules)
2968 {
2969         const struct port_info *pi = netdev_priv(dev);
2970
2971         switch (info->cmd) {
2972         case ETHTOOL_GRXFH: {
2973                 unsigned int v = pi->rss_mode;
2974
2975                 info->data = 0;
2976                 switch (info->flow_type) {
2977                 case TCP_V4_FLOW:
2978                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F)
2979                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2980                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2981                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
2982                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2983                         break;
2984                 case UDP_V4_FLOW:
2985                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) &&
2986                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
2987                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2988                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2989                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
2990                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2991                         break;
2992                 case SCTP_V4_FLOW:
2993                 case AH_ESP_V4_FLOW:
2994                 case IPV4_FLOW:
2995                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
2996                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2997                         break;
2998                 case TCP_V6_FLOW:
2999                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F)
3000                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3001                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3002                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
3003                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3004                         break;
3005                 case UDP_V6_FLOW:
3006                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) &&
3007                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
3008                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3009                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3010                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
3011                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3012                         break;
3013                 case SCTP_V6_FLOW:
3014                 case AH_ESP_V6_FLOW:
3015                 case IPV6_FLOW:
3016                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
3017                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3018                         break;
3019                 }
3020                 return 0;
3021         }
3022         case ETHTOOL_GRXRINGS:
3023                 info->data = pi->nqsets;
3024                 return 0;
3025         }
3026         return -EOPNOTSUPP;
3027 }
3028
3029 static const struct ethtool_ops cxgb_ethtool_ops = {
3030         .get_settings      = get_settings,
3031         .set_settings      = set_settings,
3032         .get_drvinfo       = get_drvinfo,
3033         .get_msglevel      = get_msglevel,
3034         .set_msglevel      = set_msglevel,
3035         .get_ringparam     = get_sge_param,
3036         .set_ringparam     = set_sge_param,
3037         .get_coalesce      = get_coalesce,
3038         .set_coalesce      = set_coalesce,
3039         .get_eeprom_len    = get_eeprom_len,
3040         .get_eeprom        = get_eeprom,
3041         .set_eeprom        = set_eeprom,
3042         .get_pauseparam    = get_pauseparam,
3043         .set_pauseparam    = set_pauseparam,
3044         .get_link          = ethtool_op_get_link,
3045         .get_strings       = get_strings,
3046         .set_phys_id       = identify_port,
3047         .nway_reset        = restart_autoneg,
3048         .get_sset_count    = get_sset_count,
3049         .get_ethtool_stats = get_stats,
3050         .get_regs_len      = get_regs_len,
3051         .get_regs          = get_regs,
3052         .get_wol           = get_wol,
3053         .set_wol           = set_wol,
3054         .get_rxnfc         = get_rxnfc,
3055         .get_rxfh_indir_size = get_rss_table_size,
3056         .get_rxfh          = get_rss_table,
3057         .set_rxfh          = set_rss_table,
3058         .flash_device      = set_flash,
3059 };
3060
3061 static int setup_debugfs(struct adapter *adap)
3062 {
3063         if (IS_ERR_OR_NULL(adap->debugfs_root))
3064                 return -1;
3065
3066 #ifdef CONFIG_DEBUG_FS
3067         t4_setup_debugfs(adap);
3068 #endif
3069         return 0;
3070 }
3071
3072 /*
3073  * upper-layer driver support
3074  */
3075
3076 /*
3077  * Allocate an active-open TID and set it to the supplied value.
3078  */
3079 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3080 {
3081         int atid = -1;
3082
3083         spin_lock_bh(&t->atid_lock);
3084         if (t->afree) {
3085                 union aopen_entry *p = t->afree;
3086
3087                 atid = (p - t->atid_tab) + t->atid_base;
3088                 t->afree = p->next;
3089                 p->data = data;
3090                 t->atids_in_use++;
3091         }
3092         spin_unlock_bh(&t->atid_lock);
3093         return atid;
3094 }
3095 EXPORT_SYMBOL(cxgb4_alloc_atid);
3096
3097 /*
3098  * Release an active-open TID.
3099  */
3100 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3101 {
3102         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3103
3104         spin_lock_bh(&t->atid_lock);
3105         p->next = t->afree;
3106         t->afree = p;
3107         t->atids_in_use--;
3108         spin_unlock_bh(&t->atid_lock);
3109 }
3110 EXPORT_SYMBOL(cxgb4_free_atid);
3111
3112 /*
3113  * Allocate a server TID and set it to the supplied value.
3114  */
3115 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3116 {
3117         int stid;
3118
3119         spin_lock_bh(&t->stid_lock);
3120         if (family == PF_INET) {
3121                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3122                 if (stid < t->nstids)
3123                         __set_bit(stid, t->stid_bmap);
3124                 else
3125                         stid = -1;
3126         } else {
3127                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3128                 if (stid < 0)
3129                         stid = -1;
3130         }
3131         if (stid >= 0) {
3132                 t->stid_tab[stid].data = data;
3133                 stid += t->stid_base;
3134                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3135                  * This is equivalent to 4 TIDs. With CLIP enabled it
3136                  * needs 2 TIDs.
3137                  */
3138                 if (family == PF_INET)
3139                         t->stids_in_use++;
3140                 else
3141                         t->stids_in_use += 4;
3142         }
3143         spin_unlock_bh(&t->stid_lock);
3144         return stid;
3145 }
3146 EXPORT_SYMBOL(cxgb4_alloc_stid);
3147
3148 /* Allocate a server filter TID and set it to the supplied value.
3149  */
3150 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3151 {
3152         int stid;
3153
3154         spin_lock_bh(&t->stid_lock);
3155         if (family == PF_INET) {
3156                 stid = find_next_zero_bit(t->stid_bmap,
3157                                 t->nstids + t->nsftids, t->nstids);
3158                 if (stid < (t->nstids + t->nsftids))
3159                         __set_bit(stid, t->stid_bmap);
3160                 else
3161                         stid = -1;
3162         } else {
3163                 stid = -1;
3164         }
3165         if (stid >= 0) {
3166                 t->stid_tab[stid].data = data;
3167                 stid -= t->nstids;
3168                 stid += t->sftid_base;
3169                 t->stids_in_use++;
3170         }
3171         spin_unlock_bh(&t->stid_lock);
3172         return stid;
3173 }
3174 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3175
3176 /* Release a server TID.
3177  */
3178 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3179 {
3180         /* Is it a server filter TID? */
3181         if (t->nsftids && (stid >= t->sftid_base)) {
3182                 stid -= t->sftid_base;
3183                 stid += t->nstids;
3184         } else {
3185                 stid -= t->stid_base;
3186         }
3187
3188         spin_lock_bh(&t->stid_lock);
3189         if (family == PF_INET)
3190                 __clear_bit(stid, t->stid_bmap);
3191         else
3192                 bitmap_release_region(t->stid_bmap, stid, 2);
3193         t->stid_tab[stid].data = NULL;
3194         if (family == PF_INET)
3195                 t->stids_in_use--;
3196         else
3197                 t->stids_in_use -= 4;
3198         spin_unlock_bh(&t->stid_lock);
3199 }
3200 EXPORT_SYMBOL(cxgb4_free_stid);
3201
3202 /*
3203  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3204  */
3205 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3206                            unsigned int tid)
3207 {
3208         struct cpl_tid_release *req;
3209
3210         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3211         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3212         INIT_TP_WR(req, tid);
3213         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3214 }
3215
3216 /*
3217  * Queue a TID release request and if necessary schedule a work queue to
3218  * process it.
3219  */
3220 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3221                                     unsigned int tid)
3222 {
3223         void **p = &t->tid_tab[tid];
3224         struct adapter *adap = container_of(t, struct adapter, tids);
3225
3226         spin_lock_bh(&adap->tid_release_lock);
3227         *p = adap->tid_release_head;
3228         /* Low 2 bits encode the Tx channel number */
3229         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3230         if (!adap->tid_release_task_busy) {
3231                 adap->tid_release_task_busy = true;
3232                 queue_work(adap->workq, &adap->tid_release_task);
3233         }
3234         spin_unlock_bh(&adap->tid_release_lock);
3235 }
3236
3237 /*
3238  * Process the list of pending TID release requests.
3239  */
3240 static void process_tid_release_list(struct work_struct *work)
3241 {
3242         struct sk_buff *skb;
3243         struct adapter *adap;
3244
3245         adap = container_of(work, struct adapter, tid_release_task);
3246
3247         spin_lock_bh(&adap->tid_release_lock);
3248         while (adap->tid_release_head) {
3249                 void **p = adap->tid_release_head;
3250                 unsigned int chan = (uintptr_t)p & 3;
3251                 p = (void *)p - chan;
3252
3253                 adap->tid_release_head = *p;
3254                 *p = NULL;
3255                 spin_unlock_bh(&adap->tid_release_lock);
3256
3257                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3258                                          GFP_KERNEL)))
3259                         schedule_timeout_uninterruptible(1);
3260
3261                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3262                 t4_ofld_send(adap, skb);
3263                 spin_lock_bh(&adap->tid_release_lock);
3264         }
3265         adap->tid_release_task_busy = false;
3266         spin_unlock_bh(&adap->tid_release_lock);
3267 }
3268
3269 /*
3270  * Release a TID and inform HW.  If we are unable to allocate the release
3271  * message we defer to a work queue.
3272  */
3273 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3274 {
3275         void *old;
3276         struct sk_buff *skb;
3277         struct adapter *adap = container_of(t, struct adapter, tids);
3278
3279         old = t->tid_tab[tid];
3280         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3281         if (likely(skb)) {
3282                 t->tid_tab[tid] = NULL;
3283                 mk_tid_release(skb, chan, tid);
3284                 t4_ofld_send(adap, skb);
3285         } else
3286                 cxgb4_queue_tid_release(t, chan, tid);
3287         if (old)
3288                 atomic_dec(&t->tids_in_use);
3289 }
3290 EXPORT_SYMBOL(cxgb4_remove_tid);
3291
3292 /*
3293  * Allocate and initialize the TID tables.  Returns 0 on success.
3294  */
3295 static int tid_init(struct tid_info *t)
3296 {
3297         size_t size;
3298         unsigned int stid_bmap_size;
3299         unsigned int natids = t->natids;
3300         struct adapter *adap = container_of(t, struct adapter, tids);
3301
3302         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3303         size = t->ntids * sizeof(*t->tid_tab) +
3304                natids * sizeof(*t->atid_tab) +
3305                t->nstids * sizeof(*t->stid_tab) +
3306                t->nsftids * sizeof(*t->stid_tab) +
3307                stid_bmap_size * sizeof(long) +
3308                t->nftids * sizeof(*t->ftid_tab) +
3309                t->nsftids * sizeof(*t->ftid_tab);
3310
3311         t->tid_tab = t4_alloc_mem(size);
3312         if (!t->tid_tab)
3313                 return -ENOMEM;
3314
3315         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3316         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3317         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3318         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3319         spin_lock_init(&t->stid_lock);
3320         spin_lock_init(&t->atid_lock);
3321
3322         t->stids_in_use = 0;
3323         t->afree = NULL;
3324         t->atids_in_use = 0;
3325         atomic_set(&t->tids_in_use, 0);
3326
3327         /* Setup the free list for atid_tab and clear the stid bitmap. */
3328         if (natids) {
3329                 while (--natids)
3330                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3331                 t->afree = t->atid_tab;
3332         }
3333         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3334         /* Reserve stid 0 for T4/T5 adapters */
3335         if (!t->stid_base &&
3336             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3337                 __set_bit(0, t->stid_bmap);
3338
3339         return 0;
3340 }
3341
3342 int cxgb4_clip_get(const struct net_device *dev,
3343                    const struct in6_addr *lip)
3344 {
3345         struct adapter *adap;
3346         struct fw_clip_cmd c;
3347
3348         adap = netdev2adap(dev);
3349         memset(&c, 0, sizeof(c));
3350         c.op_to_write = htonl(FW_CMD_OP_V(FW_CLIP_CMD) |
3351                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3352         c.alloc_to_len16 = htonl(FW_CLIP_CMD_ALLOC_F | FW_LEN16(c));
3353         c.ip_hi = *(__be64 *)(lip->s6_addr);
3354         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3355         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3356 }
3357 EXPORT_SYMBOL(cxgb4_clip_get);
3358
3359 int cxgb4_clip_release(const struct net_device *dev,
3360                        const struct in6_addr *lip)
3361 {
3362         struct adapter *adap;
3363         struct fw_clip_cmd c;
3364
3365         adap = netdev2adap(dev);
3366         memset(&c, 0, sizeof(c));
3367         c.op_to_write = htonl(FW_CMD_OP_V(FW_CLIP_CMD) |
3368                         FW_CMD_REQUEST_F | FW_CMD_READ_F);
3369         c.alloc_to_len16 = htonl(FW_CLIP_CMD_FREE_F | FW_LEN16(c));
3370         c.ip_hi = *(__be64 *)(lip->s6_addr);
3371         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3372         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3373 }
3374 EXPORT_SYMBOL(cxgb4_clip_release);
3375
3376 /**
3377  *      cxgb4_create_server - create an IP server
3378  *      @dev: the device
3379  *      @stid: the server TID
3380  *      @sip: local IP address to bind server to
3381  *      @sport: the server's TCP port
3382  *      @queue: queue to direct messages from this server to
3383  *
3384  *      Create an IP server for the given port and address.
3385  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3386  */
3387 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3388                         __be32 sip, __be16 sport, __be16 vlan,
3389                         unsigned int queue)
3390 {
3391         unsigned int chan;
3392         struct sk_buff *skb;
3393         struct adapter *adap;
3394         struct cpl_pass_open_req *req;
3395         int ret;
3396
3397         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3398         if (!skb)
3399                 return -ENOMEM;
3400
3401         adap = netdev2adap(dev);
3402         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3403         INIT_TP_WR(req, 0);
3404         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3405         req->local_port = sport;
3406         req->peer_port = htons(0);
3407         req->local_ip = sip;
3408         req->peer_ip = htonl(0);
3409         chan = rxq_to_chan(&adap->sge, queue);
3410         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
3411         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3412                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3413         ret = t4_mgmt_tx(adap, skb);
3414         return net_xmit_eval(ret);
3415 }
3416 EXPORT_SYMBOL(cxgb4_create_server);
3417
3418 /*      cxgb4_create_server6 - create an IPv6 server
3419  *      @dev: the device
3420  *      @stid: the server TID
3421  *      @sip: local IPv6 address to bind server to
3422  *      @sport: the server's TCP port
3423  *      @queue: queue to direct messages from this server to
3424  *
3425  *      Create an IPv6 server for the given port and address.
3426  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3427  */
3428 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3429                          const struct in6_addr *sip, __be16 sport,
3430                          unsigned int queue)
3431 {
3432         unsigned int chan;
3433         struct sk_buff *skb;
3434         struct adapter *adap;
3435         struct cpl_pass_open_req6 *req;
3436         int ret;
3437
3438         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3439         if (!skb)
3440                 return -ENOMEM;
3441
3442         adap = netdev2adap(dev);
3443         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3444         INIT_TP_WR(req, 0);
3445         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3446         req->local_port = sport;
3447         req->peer_port = htons(0);
3448         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3449         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3450         req->peer_ip_hi = cpu_to_be64(0);
3451         req->peer_ip_lo = cpu_to_be64(0);
3452         chan = rxq_to_chan(&adap->sge, queue);
3453         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
3454         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3455                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3456         ret = t4_mgmt_tx(adap, skb);
3457         return net_xmit_eval(ret);
3458 }
3459 EXPORT_SYMBOL(cxgb4_create_server6);
3460
3461 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3462                         unsigned int queue, bool ipv6)
3463 {
3464         struct sk_buff *skb;
3465         struct adapter *adap;
3466         struct cpl_close_listsvr_req *req;
3467         int ret;
3468
3469         adap = netdev2adap(dev);
3470
3471         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3472         if (!skb)
3473                 return -ENOMEM;
3474
3475         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3476         INIT_TP_WR(req, 0);
3477         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3478         req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3479                                 LISTSVR_IPV6(0)) | QUEUENO(queue));
3480         ret = t4_mgmt_tx(adap, skb);
3481         return net_xmit_eval(ret);
3482 }
3483 EXPORT_SYMBOL(cxgb4_remove_server);
3484
3485 /**
3486  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3487  *      @mtus: the HW MTU table
3488  *      @mtu: the target MTU
3489  *      @idx: index of selected entry in the MTU table
3490  *
3491  *      Returns the index and the value in the HW MTU table that is closest to
3492  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3493  *      table, in which case that smallest available value is selected.
3494  */
3495 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3496                             unsigned int *idx)
3497 {
3498         unsigned int i = 0;
3499
3500         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3501                 ++i;
3502         if (idx)
3503                 *idx = i;
3504         return mtus[i];
3505 }
3506 EXPORT_SYMBOL(cxgb4_best_mtu);
3507
3508 /**
3509  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3510  *     @mtus: the HW MTU table
3511  *     @header_size: Header Size
3512  *     @data_size_max: maximum Data Segment Size
3513  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3514  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3515  *
3516  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3517  *     MTU Table based solely on a Maximum MTU parameter, we break that
3518  *     parameter up into a Header Size and Maximum Data Segment Size, and
3519  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3520  *     the Hardware MTU Table which will result in a Data Segment Size with
3521  *     the requested alignment _and_ that MTU isn't "too far" from the
3522  *     closest MTU, then we'll return that rather than the closest MTU.
3523  */
3524 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3525                                     unsigned short header_size,
3526                                     unsigned short data_size_max,
3527                                     unsigned short data_size_align,
3528                                     unsigned int *mtu_idxp)
3529 {
3530         unsigned short max_mtu = header_size + data_size_max;
3531         unsigned short data_size_align_mask = data_size_align - 1;
3532         int mtu_idx, aligned_mtu_idx;
3533
3534         /* Scan the MTU Table till we find an MTU which is larger than our
3535          * Maximum MTU or we reach the end of the table.  Along the way,
3536          * record the last MTU found, if any, which will result in a Data
3537          * Segment Length matching the requested alignment.
3538          */
3539         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3540                 unsigned short data_size = mtus[mtu_idx] - header_size;
3541
3542                 /* If this MTU minus the Header Size would result in a
3543                  * Data Segment Size of the desired alignment, remember it.
3544                  */
3545                 if ((data_size & data_size_align_mask) == 0)
3546                         aligned_mtu_idx = mtu_idx;
3547
3548                 /* If we're not at the end of the Hardware MTU Table and the
3549                  * next element is larger than our Maximum MTU, drop out of
3550                  * the loop.
3551                  */
3552                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3553                         break;
3554         }
3555
3556         /* If we fell out of the loop because we ran to the end of the table,
3557          * then we just have to use the last [largest] entry.
3558          */
3559         if (mtu_idx == NMTUS)
3560                 mtu_idx--;
3561
3562         /* If we found an MTU which resulted in the requested Data Segment
3563          * Length alignment and that's "not far" from the largest MTU which is
3564          * less than or equal to the maximum MTU, then use that.
3565          */
3566         if (aligned_mtu_idx >= 0 &&
3567             mtu_idx - aligned_mtu_idx <= 1)
3568                 mtu_idx = aligned_mtu_idx;
3569
3570         /* If the caller has passed in an MTU Index pointer, pass the
3571          * MTU Index back.  Return the MTU value.
3572          */
3573         if (mtu_idxp)
3574                 *mtu_idxp = mtu_idx;
3575         return mtus[mtu_idx];
3576 }
3577 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3578
3579 /**
3580  *      cxgb4_port_chan - get the HW channel of a port
3581  *      @dev: the net device for the port
3582  *
3583  *      Return the HW Tx channel of the given port.
3584  */
3585 unsigned int cxgb4_port_chan(const struct net_device *dev)
3586 {
3587         return netdev2pinfo(dev)->tx_chan;
3588 }
3589 EXPORT_SYMBOL(cxgb4_port_chan);
3590
3591 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3592 {
3593         struct adapter *adap = netdev2adap(dev);
3594         u32 v1, v2, lp_count, hp_count;
3595
3596         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3597         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3598         if (is_t4(adap->params.chip)) {
3599                 lp_count = G_LP_COUNT(v1);
3600                 hp_count = G_HP_COUNT(v1);
3601         } else {
3602                 lp_count = G_LP_COUNT_T5(v1);
3603                 hp_count = G_HP_COUNT_T5(v2);
3604         }
3605         return lpfifo ? lp_count : hp_count;
3606 }
3607 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3608
3609 /**
3610  *      cxgb4_port_viid - get the VI id of a port
3611  *      @dev: the net device for the port
3612  *
3613  *      Return the VI id of the given port.
3614  */
3615 unsigned int cxgb4_port_viid(const struct net_device *dev)
3616 {
3617         return netdev2pinfo(dev)->viid;
3618 }
3619 EXPORT_SYMBOL(cxgb4_port_viid);
3620
3621 /**
3622  *      cxgb4_port_idx - get the index of a port
3623  *      @dev: the net device for the port
3624  *
3625  *      Return the index of the given port.
3626  */
3627 unsigned int cxgb4_port_idx(const struct net_device *dev)
3628 {
3629         return netdev2pinfo(dev)->port_id;
3630 }
3631 EXPORT_SYMBOL(cxgb4_port_idx);
3632
3633 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3634                          struct tp_tcp_stats *v6)
3635 {
3636         struct adapter *adap = pci_get_drvdata(pdev);
3637
3638         spin_lock(&adap->stats_lock);
3639         t4_tp_get_tcp_stats(adap, v4, v6);
3640         spin_unlock(&adap->stats_lock);
3641 }
3642 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3643
3644 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3645                       const unsigned int *pgsz_order)
3646 {
3647         struct adapter *adap = netdev2adap(dev);
3648
3649         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3650         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3651                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3652                      HPZ3(pgsz_order[3]));
3653 }
3654 EXPORT_SYMBOL(cxgb4_iscsi_init);
3655
3656 int cxgb4_flush_eq_cache(struct net_device *dev)
3657 {
3658         struct adapter *adap = netdev2adap(dev);
3659         int ret;
3660
3661         ret = t4_fwaddrspace_write(adap, adap->mbox,
3662                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3663         return ret;
3664 }
3665 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3666
3667 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3668 {
3669         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3670         __be64 indices;
3671         int ret;
3672
3673         spin_lock(&adap->win0_lock);
3674         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3675                            sizeof(indices), (__be32 *)&indices,
3676                            T4_MEMORY_READ);
3677         spin_unlock(&adap->win0_lock);
3678         if (!ret) {
3679                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3680                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3681         }
3682         return ret;
3683 }
3684
3685 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3686                         u16 size)
3687 {
3688         struct adapter *adap = netdev2adap(dev);
3689         u16 hw_pidx, hw_cidx;
3690         int ret;
3691
3692         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3693         if (ret)
3694                 goto out;
3695
3696         if (pidx != hw_pidx) {
3697                 u16 delta;
3698
3699                 if (pidx >= hw_pidx)
3700                         delta = pidx - hw_pidx;
3701                 else
3702                         delta = size - hw_pidx + pidx;
3703                 wmb();
3704                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3705                              QID(qid) | PIDX(delta));
3706         }
3707 out:
3708         return ret;
3709 }
3710 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3711
3712 void cxgb4_disable_db_coalescing(struct net_device *dev)
3713 {
3714         struct adapter *adap;
3715
3716         adap = netdev2adap(dev);
3717         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3718                          F_NOCOALESCE);
3719 }
3720 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3721
3722 void cxgb4_enable_db_coalescing(struct net_device *dev)
3723 {
3724         struct adapter *adap;
3725
3726         adap = netdev2adap(dev);
3727         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3728 }
3729 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3730
3731 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3732 {
3733         struct adapter *adap;
3734         u32 offset, memtype, memaddr;
3735         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
3736         u32 edc0_end, edc1_end, mc0_end, mc1_end;
3737         int ret;
3738
3739         adap = netdev2adap(dev);
3740
3741         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3742
3743         /* Figure out where the offset lands in the Memory Type/Address scheme.
3744          * This code assumes that the memory is laid out starting at offset 0
3745          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3746          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
3747          * MC0, and some have both MC0 and MC1.
3748          */
3749         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3750         edc0_size = EDRAM0_SIZE_G(size) << 20;
3751         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3752         edc1_size = EDRAM1_SIZE_G(size) << 20;
3753         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3754         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
3755
3756         edc0_end = edc0_size;
3757         edc1_end = edc0_end + edc1_size;
3758         mc0_end = edc1_end + mc0_size;
3759
3760         if (offset < edc0_end) {
3761                 memtype = MEM_EDC0;
3762                 memaddr = offset;
3763         } else if (offset < edc1_end) {
3764                 memtype = MEM_EDC1;
3765                 memaddr = offset - edc0_end;
3766         } else {
3767                 if (offset < mc0_end) {
3768                         memtype = MEM_MC0;
3769                         memaddr = offset - edc1_end;
3770                 } else if (is_t4(adap->params.chip)) {
3771                         /* T4 only has a single memory channel */
3772                         goto err;
3773                 } else {
3774                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3775                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
3776                         mc1_end = mc0_end + mc1_size;
3777                         if (offset < mc1_end) {
3778                                 memtype = MEM_MC1;
3779                                 memaddr = offset - mc0_end;
3780                         } else {
3781                                 /* offset beyond the end of any memory */
3782                                 goto err;
3783                         }
3784                 }
3785         }
3786
3787         spin_lock(&adap->win0_lock);
3788         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3789         spin_unlock(&adap->win0_lock);
3790         return ret;
3791
3792 err:
3793         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3794                 stag, offset);
3795         return -EINVAL;
3796 }
3797 EXPORT_SYMBOL(cxgb4_read_tpte);
3798
3799 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3800 {
3801         u32 hi, lo;
3802         struct adapter *adap;
3803
3804         adap = netdev2adap(dev);
3805         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3806         hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3807
3808         return ((u64)hi << 32) | (u64)lo;
3809 }
3810 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3811
3812 int cxgb4_bar2_sge_qregs(struct net_device *dev,
3813                          unsigned int qid,
3814                          enum cxgb4_bar2_qtype qtype,
3815                          u64 *pbar2_qoffset,
3816                          unsigned int *pbar2_qid)
3817 {
3818         return t4_bar2_sge_qregs(netdev2adap(dev),
3819                                  qid,
3820                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
3821                                   ? T4_BAR2_QTYPE_EGRESS
3822                                   : T4_BAR2_QTYPE_INGRESS),
3823                                  pbar2_qoffset,
3824                                  pbar2_qid);
3825 }
3826 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
3827
3828 static struct pci_driver cxgb4_driver;
3829
3830 static void check_neigh_update(struct neighbour *neigh)
3831 {
3832         const struct device *parent;
3833         const struct net_device *netdev = neigh->dev;
3834
3835         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3836                 netdev = vlan_dev_real_dev(netdev);
3837         parent = netdev->dev.parent;
3838         if (parent && parent->driver == &cxgb4_driver.driver)
3839                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3840 }
3841
3842 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3843                        void *data)
3844 {
3845         switch (event) {
3846         case NETEVENT_NEIGH_UPDATE:
3847                 check_neigh_update(data);
3848                 break;
3849         case NETEVENT_REDIRECT:
3850         default:
3851                 break;
3852         }
3853         return 0;
3854 }
3855
3856 static bool netevent_registered;
3857 static struct notifier_block cxgb4_netevent_nb = {
3858         .notifier_call = netevent_cb
3859 };
3860
3861 static void drain_db_fifo(struct adapter *adap, int usecs)
3862 {
3863         u32 v1, v2, lp_count, hp_count;
3864
3865         do {
3866                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3867                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3868                 if (is_t4(adap->params.chip)) {
3869                         lp_count = G_LP_COUNT(v1);
3870                         hp_count = G_HP_COUNT(v1);
3871                 } else {
3872                         lp_count = G_LP_COUNT_T5(v1);
3873                         hp_count = G_HP_COUNT_T5(v2);
3874                 }
3875
3876                 if (lp_count == 0 && hp_count == 0)
3877                         break;
3878                 set_current_state(TASK_UNINTERRUPTIBLE);
3879                 schedule_timeout(usecs_to_jiffies(usecs));
3880         } while (1);
3881 }
3882
3883 static void disable_txq_db(struct sge_txq *q)
3884 {
3885         unsigned long flags;
3886
3887         spin_lock_irqsave(&q->db_lock, flags);
3888         q->db_disabled = 1;
3889         spin_unlock_irqrestore(&q->db_lock, flags);
3890 }
3891
3892 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3893 {
3894         spin_lock_irq(&q->db_lock);
3895         if (q->db_pidx_inc) {
3896                 /* Make sure that all writes to the TX descriptors
3897                  * are committed before we tell HW about them.
3898                  */
3899                 wmb();
3900                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3901                              QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3902                 q->db_pidx_inc = 0;
3903         }
3904         q->db_disabled = 0;
3905         spin_unlock_irq(&q->db_lock);
3906 }
3907
3908 static void disable_dbs(struct adapter *adap)
3909 {
3910         int i;
3911
3912         for_each_ethrxq(&adap->sge, i)
3913                 disable_txq_db(&adap->sge.ethtxq[i].q);
3914         for_each_ofldrxq(&adap->sge, i)
3915                 disable_txq_db(&adap->sge.ofldtxq[i].q);
3916         for_each_port(adap, i)
3917                 disable_txq_db(&adap->sge.ctrlq[i].q);
3918 }
3919
3920 static void enable_dbs(struct adapter *adap)
3921 {
3922         int i;
3923
3924         for_each_ethrxq(&adap->sge, i)
3925                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3926         for_each_ofldrxq(&adap->sge, i)
3927                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3928         for_each_port(adap, i)
3929                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
3930 }
3931
3932 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3933 {
3934         if (adap->uld_handle[CXGB4_ULD_RDMA])
3935                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3936                                 cmd);
3937 }
3938
3939 static void process_db_full(struct work_struct *work)
3940 {
3941         struct adapter *adap;
3942
3943         adap = container_of(work, struct adapter, db_full_task);
3944
3945         drain_db_fifo(adap, dbfifo_drain_delay);
3946         enable_dbs(adap);
3947         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3948         t4_set_reg_field(adap, SGE_INT_ENABLE3,
3949                          DBFIFO_HP_INT | DBFIFO_LP_INT,
3950                          DBFIFO_HP_INT | DBFIFO_LP_INT);
3951 }
3952
3953 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3954 {
3955         u16 hw_pidx, hw_cidx;
3956         int ret;
3957
3958         spin_lock_irq(&q->db_lock);
3959         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3960         if (ret)
3961                 goto out;
3962         if (q->db_pidx != hw_pidx) {
3963                 u16 delta;
3964
3965                 if (q->db_pidx >= hw_pidx)
3966                         delta = q->db_pidx - hw_pidx;
3967                 else
3968                         delta = q->size - hw_pidx + q->db_pidx;
3969                 wmb();
3970                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3971                              QID(q->cntxt_id) | PIDX(delta));
3972         }
3973 out:
3974         q->db_disabled = 0;
3975         q->db_pidx_inc = 0;
3976         spin_unlock_irq(&q->db_lock);
3977         if (ret)
3978                 CH_WARN(adap, "DB drop recovery failed.\n");
3979 }
3980 static void recover_all_queues(struct adapter *adap)
3981 {
3982         int i;
3983
3984         for_each_ethrxq(&adap->sge, i)
3985                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3986         for_each_ofldrxq(&adap->sge, i)
3987                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3988         for_each_port(adap, i)
3989                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3990 }
3991
3992 static void process_db_drop(struct work_struct *work)
3993 {
3994         struct adapter *adap;
3995
3996         adap = container_of(work, struct adapter, db_drop_task);
3997
3998         if (is_t4(adap->params.chip)) {
3999                 drain_db_fifo(adap, dbfifo_drain_delay);
4000                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4001                 drain_db_fifo(adap, dbfifo_drain_delay);
4002                 recover_all_queues(adap);
4003                 drain_db_fifo(adap, dbfifo_drain_delay);
4004                 enable_dbs(adap);
4005                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4006         } else {
4007                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4008                 u16 qid = (dropped_db >> 15) & 0x1ffff;
4009                 u16 pidx_inc = dropped_db & 0x1fff;
4010                 u64 bar2_qoffset;
4011                 unsigned int bar2_qid;
4012                 int ret;
4013
4014                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
4015                                         &bar2_qoffset, &bar2_qid);
4016                 if (ret)
4017                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
4018                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
4019                 else
4020                         writel(PIDX_T5(pidx_inc) | QID(bar2_qid),
4021                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
4022
4023                 /* Re-enable BAR2 WC */
4024                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4025         }
4026
4027         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4028 }
4029
4030 void t4_db_full(struct adapter *adap)
4031 {
4032         if (is_t4(adap->params.chip)) {
4033                 disable_dbs(adap);
4034                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4035                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4036                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4037                 queue_work(adap->workq, &adap->db_full_task);
4038         }
4039 }
4040
4041 void t4_db_dropped(struct adapter *adap)
4042 {
4043         if (is_t4(adap->params.chip)) {
4044                 disable_dbs(adap);
4045                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4046         }
4047         queue_work(adap->workq, &adap->db_drop_task);
4048 }
4049
4050 static void uld_attach(struct adapter *adap, unsigned int uld)
4051 {
4052         void *handle;
4053         struct cxgb4_lld_info lli;
4054         unsigned short i;
4055
4056         lli.pdev = adap->pdev;
4057         lli.pf = adap->fn;
4058         lli.l2t = adap->l2t;
4059         lli.tids = &adap->tids;
4060         lli.ports = adap->port;
4061         lli.vr = &adap->vres;
4062         lli.mtus = adap->params.mtus;
4063         if (uld == CXGB4_ULD_RDMA) {
4064                 lli.rxq_ids = adap->sge.rdma_rxq;
4065                 lli.ciq_ids = adap->sge.rdma_ciq;
4066                 lli.nrxq = adap->sge.rdmaqs;
4067                 lli.nciq = adap->sge.rdmaciqs;
4068         } else if (uld == CXGB4_ULD_ISCSI) {
4069                 lli.rxq_ids = adap->sge.ofld_rxq;
4070                 lli.nrxq = adap->sge.ofldqsets;
4071         }
4072         lli.ntxq = adap->sge.ofldqsets;
4073         lli.nchan = adap->params.nports;
4074         lli.nports = adap->params.nports;
4075         lli.wr_cred = adap->params.ofldq_wr_cred;
4076         lli.adapter_type = adap->params.chip;
4077         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4078         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4079         lli.udb_density = 1 << adap->params.sge.eq_qpp;
4080         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
4081         lli.filt_mode = adap->params.tp.vlan_pri_map;
4082         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4083         for (i = 0; i < NCHAN; i++)
4084                 lli.tx_modq[i] = i;
4085         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4086         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4087         lli.fw_vers = adap->params.fw_vers;
4088         lli.dbfifo_int_thresh = dbfifo_int_thresh;
4089         lli.sge_ingpadboundary = adap->sge.fl_align;
4090         lli.sge_egrstatuspagesize = adap->sge.stat_len;
4091         lli.sge_pktshift = adap->sge.pktshift;
4092         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4093         lli.max_ordird_qp = adap->params.max_ordird_qp;
4094         lli.max_ird_adapter = adap->params.max_ird_adapter;
4095         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4096
4097         handle = ulds[uld].add(&lli);
4098         if (IS_ERR(handle)) {
4099                 dev_warn(adap->pdev_dev,
4100                          "could not attach to the %s driver, error %ld\n",
4101                          uld_str[uld], PTR_ERR(handle));
4102                 return;
4103         }
4104
4105         adap->uld_handle[uld] = handle;
4106
4107         if (!netevent_registered) {
4108                 register_netevent_notifier(&cxgb4_netevent_nb);
4109                 netevent_registered = true;
4110         }
4111
4112         if (adap->flags & FULL_INIT_DONE)
4113                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4114 }
4115
4116 static void attach_ulds(struct adapter *adap)
4117 {
4118         unsigned int i;
4119
4120         spin_lock(&adap_rcu_lock);
4121         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4122         spin_unlock(&adap_rcu_lock);
4123
4124         mutex_lock(&uld_mutex);
4125         list_add_tail(&adap->list_node, &adapter_list);
4126         for (i = 0; i < CXGB4_ULD_MAX; i++)
4127                 if (ulds[i].add)
4128                         uld_attach(adap, i);
4129         mutex_unlock(&uld_mutex);
4130 }
4131
4132 static void detach_ulds(struct adapter *adap)
4133 {
4134         unsigned int i;
4135
4136         mutex_lock(&uld_mutex);
4137         list_del(&adap->list_node);
4138         for (i = 0; i < CXGB4_ULD_MAX; i++)
4139                 if (adap->uld_handle[i]) {
4140                         ulds[i].state_change(adap->uld_handle[i],
4141                                              CXGB4_STATE_DETACH);
4142                         adap->uld_handle[i] = NULL;
4143                 }
4144         if (netevent_registered && list_empty(&adapter_list)) {
4145                 unregister_netevent_notifier(&cxgb4_netevent_nb);
4146                 netevent_registered = false;
4147         }
4148         mutex_unlock(&uld_mutex);
4149
4150         spin_lock(&adap_rcu_lock);
4151         list_del_rcu(&adap->rcu_node);
4152         spin_unlock(&adap_rcu_lock);
4153 }
4154
4155 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4156 {
4157         unsigned int i;
4158
4159         mutex_lock(&uld_mutex);
4160         for (i = 0; i < CXGB4_ULD_MAX; i++)
4161                 if (adap->uld_handle[i])
4162                         ulds[i].state_change(adap->uld_handle[i], new_state);
4163         mutex_unlock(&uld_mutex);
4164 }
4165
4166 /**
4167  *      cxgb4_register_uld - register an upper-layer driver
4168  *      @type: the ULD type
4169  *      @p: the ULD methods
4170  *
4171  *      Registers an upper-layer driver with this driver and notifies the ULD
4172  *      about any presently available devices that support its type.  Returns
4173  *      %-EBUSY if a ULD of the same type is already registered.
4174  */
4175 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4176 {
4177         int ret = 0;
4178         struct adapter *adap;
4179
4180         if (type >= CXGB4_ULD_MAX)
4181                 return -EINVAL;
4182         mutex_lock(&uld_mutex);
4183         if (ulds[type].add) {
4184                 ret = -EBUSY;
4185                 goto out;
4186         }
4187         ulds[type] = *p;
4188         list_for_each_entry(adap, &adapter_list, list_node)
4189                 uld_attach(adap, type);
4190 out:    mutex_unlock(&uld_mutex);
4191         return ret;
4192 }
4193 EXPORT_SYMBOL(cxgb4_register_uld);
4194
4195 /**
4196  *      cxgb4_unregister_uld - unregister an upper-layer driver
4197  *      @type: the ULD type
4198  *
4199  *      Unregisters an existing upper-layer driver.
4200  */
4201 int cxgb4_unregister_uld(enum cxgb4_uld type)
4202 {
4203         struct adapter *adap;
4204
4205         if (type >= CXGB4_ULD_MAX)
4206                 return -EINVAL;
4207         mutex_lock(&uld_mutex);
4208         list_for_each_entry(adap, &adapter_list, list_node)
4209                 adap->uld_handle[type] = NULL;
4210         ulds[type].add = NULL;
4211         mutex_unlock(&uld_mutex);
4212         return 0;
4213 }
4214 EXPORT_SYMBOL(cxgb4_unregister_uld);
4215
4216 /* Check if netdev on which event is occured belongs to us or not. Return
4217  * success (true) if it belongs otherwise failure (false).
4218  * Called with rcu_read_lock() held.
4219  */
4220 #if IS_ENABLED(CONFIG_IPV6)
4221 static bool cxgb4_netdev(const struct net_device *netdev)
4222 {
4223         struct adapter *adap;
4224         int i;
4225
4226         list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4227                 for (i = 0; i < MAX_NPORTS; i++)
4228                         if (adap->port[i] == netdev)
4229                                 return true;
4230         return false;
4231 }
4232
4233 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4234                     unsigned long event)
4235 {
4236         int ret = NOTIFY_DONE;
4237
4238         rcu_read_lock();
4239         if (cxgb4_netdev(event_dev)) {
4240                 switch (event) {
4241                 case NETDEV_UP:
4242                         ret = cxgb4_clip_get(event_dev, &ifa->addr);
4243                         if (ret < 0) {
4244                                 rcu_read_unlock();
4245                                 return ret;
4246                         }
4247                         ret = NOTIFY_OK;
4248                         break;
4249                 case NETDEV_DOWN:
4250                         cxgb4_clip_release(event_dev, &ifa->addr);
4251                         ret = NOTIFY_OK;
4252                         break;
4253                 default:
4254                         break;
4255                 }
4256         }
4257         rcu_read_unlock();
4258         return ret;
4259 }
4260
4261 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4262                 unsigned long event, void *data)
4263 {
4264         struct inet6_ifaddr *ifa = data;
4265         struct net_device *event_dev;
4266         int ret = NOTIFY_DONE;
4267         struct bonding *bond = netdev_priv(ifa->idev->dev);
4268         struct list_head *iter;
4269         struct slave *slave;
4270         struct pci_dev *first_pdev = NULL;
4271
4272         if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4273                 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4274                 ret = clip_add(event_dev, ifa, event);
4275         } else if (ifa->idev->dev->flags & IFF_MASTER) {
4276                 /* It is possible that two different adapters are bonded in one
4277                  * bond. We need to find such different adapters and add clip
4278                  * in all of them only once.
4279                  */
4280                 bond_for_each_slave(bond, slave, iter) {
4281                         if (!first_pdev) {
4282                                 ret = clip_add(slave->dev, ifa, event);
4283                                 /* If clip_add is success then only initialize
4284                                  * first_pdev since it means it is our device
4285                                  */
4286                                 if (ret == NOTIFY_OK)
4287                                         first_pdev = to_pci_dev(
4288                                                         slave->dev->dev.parent);
4289                         } else if (first_pdev !=
4290                                    to_pci_dev(slave->dev->dev.parent))
4291                                         ret = clip_add(slave->dev, ifa, event);
4292                 }
4293         } else
4294                 ret = clip_add(ifa->idev->dev, ifa, event);
4295
4296         return ret;
4297 }
4298
4299 static struct notifier_block cxgb4_inet6addr_notifier = {
4300         .notifier_call = cxgb4_inet6addr_handler
4301 };
4302
4303 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4304  * a physical device.
4305  * The physical device reference is needed to send the actul CLIP command.
4306  */
4307 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4308 {
4309         struct inet6_dev *idev = NULL;
4310         struct inet6_ifaddr *ifa;
4311         int ret = 0;
4312
4313         idev = __in6_dev_get(root_dev);
4314         if (!idev)
4315                 return ret;
4316
4317         read_lock_bh(&idev->lock);
4318         list_for_each_entry(ifa, &idev->addr_list, if_list) {
4319                 ret = cxgb4_clip_get(dev, &ifa->addr);
4320                 if (ret < 0)
4321                         break;
4322         }
4323         read_unlock_bh(&idev->lock);
4324
4325         return ret;
4326 }
4327
4328 static int update_root_dev_clip(struct net_device *dev)
4329 {
4330         struct net_device *root_dev = NULL;
4331         int i, ret = 0;
4332
4333         /* First populate the real net device's IPv6 addresses */
4334         ret = update_dev_clip(dev, dev);
4335         if (ret)
4336                 return ret;
4337
4338         /* Parse all bond and vlan devices layered on top of the physical dev */
4339         root_dev = netdev_master_upper_dev_get_rcu(dev);
4340         if (root_dev) {
4341                 ret = update_dev_clip(root_dev, dev);
4342                 if (ret)
4343                         return ret;
4344         }
4345
4346         for (i = 0; i < VLAN_N_VID; i++) {
4347                 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4348                 if (!root_dev)
4349                         continue;
4350
4351                 ret = update_dev_clip(root_dev, dev);
4352                 if (ret)
4353                         break;
4354         }
4355         return ret;
4356 }
4357
4358 static void update_clip(const struct adapter *adap)
4359 {
4360         int i;
4361         struct net_device *dev;
4362         int ret;
4363
4364         rcu_read_lock();
4365
4366         for (i = 0; i < MAX_NPORTS; i++) {
4367                 dev = adap->port[i];
4368                 ret = 0;
4369
4370                 if (dev)
4371                         ret = update_root_dev_clip(dev);
4372
4373                 if (ret < 0)
4374                         break;
4375         }
4376         rcu_read_unlock();
4377 }
4378 #endif /* IS_ENABLED(CONFIG_IPV6) */
4379
4380 /**
4381  *      cxgb_up - enable the adapter
4382  *      @adap: adapter being enabled
4383  *
4384  *      Called when the first port is enabled, this function performs the
4385  *      actions necessary to make an adapter operational, such as completing
4386  *      the initialization of HW modules, and enabling interrupts.
4387  *
4388  *      Must be called with the rtnl lock held.
4389  */
4390 static int cxgb_up(struct adapter *adap)
4391 {
4392         int err;
4393
4394         err = setup_sge_queues(adap);
4395         if (err)
4396                 goto out;
4397         err = setup_rss(adap);
4398         if (err)
4399                 goto freeq;
4400
4401         if (adap->flags & USING_MSIX) {
4402                 name_msix_vecs(adap);
4403                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4404                                   adap->msix_info[0].desc, adap);
4405                 if (err)
4406                         goto irq_err;
4407
4408                 err = request_msix_queue_irqs(adap);
4409                 if (err) {
4410                         free_irq(adap->msix_info[0].vec, adap);
4411                         goto irq_err;
4412                 }
4413         } else {
4414                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4415                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4416                                   adap->port[0]->name, adap);
4417                 if (err)
4418                         goto irq_err;
4419         }
4420         enable_rx(adap);
4421         t4_sge_start(adap);
4422         t4_intr_enable(adap);
4423         adap->flags |= FULL_INIT_DONE;
4424         notify_ulds(adap, CXGB4_STATE_UP);
4425 #if IS_ENABLED(CONFIG_IPV6)
4426         update_clip(adap);
4427 #endif
4428  out:
4429         return err;
4430  irq_err:
4431         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4432  freeq:
4433         t4_free_sge_resources(adap);
4434         goto out;
4435 }
4436
4437 static void cxgb_down(struct adapter *adapter)
4438 {
4439         t4_intr_disable(adapter);
4440         cancel_work_sync(&adapter->tid_release_task);
4441         cancel_work_sync(&adapter->db_full_task);
4442         cancel_work_sync(&adapter->db_drop_task);
4443         adapter->tid_release_task_busy = false;
4444         adapter->tid_release_head = NULL;
4445
4446         if (adapter->flags & USING_MSIX) {
4447                 free_msix_queue_irqs(adapter);
4448                 free_irq(adapter->msix_info[0].vec, adapter);
4449         } else
4450                 free_irq(adapter->pdev->irq, adapter);
4451         quiesce_rx(adapter);
4452         t4_sge_stop(adapter);
4453         t4_free_sge_resources(adapter);
4454         adapter->flags &= ~FULL_INIT_DONE;
4455 }
4456
4457 /*
4458  * net_device operations
4459  */
4460 static int cxgb_open(struct net_device *dev)
4461 {
4462         int err;
4463         struct port_info *pi = netdev_priv(dev);
4464         struct adapter *adapter = pi->adapter;
4465
4466         netif_carrier_off(dev);
4467
4468         if (!(adapter->flags & FULL_INIT_DONE)) {
4469                 err = cxgb_up(adapter);
4470                 if (err < 0)
4471                         return err;
4472         }
4473
4474         err = link_start(dev);
4475         if (!err)
4476                 netif_tx_start_all_queues(dev);
4477         return err;
4478 }
4479
4480 static int cxgb_close(struct net_device *dev)
4481 {
4482         struct port_info *pi = netdev_priv(dev);
4483         struct adapter *adapter = pi->adapter;
4484
4485         netif_tx_stop_all_queues(dev);
4486         netif_carrier_off(dev);
4487         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4488 }
4489
4490 /* Return an error number if the indicated filter isn't writable ...
4491  */
4492 static int writable_filter(struct filter_entry *f)
4493 {
4494         if (f->locked)
4495                 return -EPERM;
4496         if (f->pending)
4497                 return -EBUSY;
4498
4499         return 0;
4500 }
4501
4502 /* Delete the filter at the specified index (if valid).  The checks for all
4503  * the common problems with doing this like the filter being locked, currently
4504  * pending in another operation, etc.
4505  */
4506 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4507 {
4508         struct filter_entry *f;
4509         int ret;
4510
4511         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4512                 return -EINVAL;
4513
4514         f = &adapter->tids.ftid_tab[fidx];
4515         ret = writable_filter(f);
4516         if (ret)
4517                 return ret;
4518         if (f->valid)
4519                 return del_filter_wr(adapter, fidx);
4520
4521         return 0;
4522 }
4523
4524 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4525                 __be32 sip, __be16 sport, __be16 vlan,
4526                 unsigned int queue, unsigned char port, unsigned char mask)
4527 {
4528         int ret;
4529         struct filter_entry *f;
4530         struct adapter *adap;
4531         int i;
4532         u8 *val;
4533
4534         adap = netdev2adap(dev);
4535
4536         /* Adjust stid to correct filter index */
4537         stid -= adap->tids.sftid_base;
4538         stid += adap->tids.nftids;
4539
4540         /* Check to make sure the filter requested is writable ...
4541          */
4542         f = &adap->tids.ftid_tab[stid];
4543         ret = writable_filter(f);
4544         if (ret)
4545                 return ret;
4546
4547         /* Clear out any old resources being used by the filter before
4548          * we start constructing the new filter.
4549          */
4550         if (f->valid)
4551                 clear_filter(adap, f);
4552
4553         /* Clear out filter specifications */
4554         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4555         f->fs.val.lport = cpu_to_be16(sport);
4556         f->fs.mask.lport  = ~0;
4557         val = (u8 *)&sip;
4558         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4559                 for (i = 0; i < 4; i++) {
4560                         f->fs.val.lip[i] = val[i];
4561                         f->fs.mask.lip[i] = ~0;
4562                 }
4563                 if (adap->params.tp.vlan_pri_map & F_PORT) {
4564                         f->fs.val.iport = port;
4565                         f->fs.mask.iport = mask;
4566                 }
4567         }
4568
4569         if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4570                 f->fs.val.proto = IPPROTO_TCP;
4571                 f->fs.mask.proto = ~0;
4572         }
4573
4574         f->fs.dirsteer = 1;
4575         f->fs.iq = queue;
4576         /* Mark filter as locked */
4577         f->locked = 1;
4578         f->fs.rpttid = 1;
4579
4580         ret = set_filter_wr(adap, stid);
4581         if (ret) {
4582                 clear_filter(adap, f);
4583                 return ret;
4584         }
4585
4586         return 0;
4587 }
4588 EXPORT_SYMBOL(cxgb4_create_server_filter);
4589
4590 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4591                 unsigned int queue, bool ipv6)
4592 {
4593         int ret;
4594         struct filter_entry *f;
4595         struct adapter *adap;
4596
4597         adap = netdev2adap(dev);
4598
4599         /* Adjust stid to correct filter index */
4600         stid -= adap->tids.sftid_base;
4601         stid += adap->tids.nftids;
4602
4603         f = &adap->tids.ftid_tab[stid];
4604         /* Unlock the filter */
4605         f->locked = 0;
4606
4607         ret = delete_filter(adap, stid);
4608         if (ret)
4609                 return ret;
4610
4611         return 0;
4612 }
4613 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4614
4615 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4616                                                 struct rtnl_link_stats64 *ns)
4617 {
4618         struct port_stats stats;
4619         struct port_info *p = netdev_priv(dev);
4620         struct adapter *adapter = p->adapter;
4621
4622         /* Block retrieving statistics during EEH error
4623          * recovery. Otherwise, the recovery might fail
4624          * and the PCI device will be removed permanently
4625          */
4626         spin_lock(&adapter->stats_lock);
4627         if (!netif_device_present(dev)) {
4628                 spin_unlock(&adapter->stats_lock);
4629                 return ns;
4630         }
4631         t4_get_port_stats(adapter, p->tx_chan, &stats);
4632         spin_unlock(&adapter->stats_lock);
4633
4634         ns->tx_bytes   = stats.tx_octets;
4635         ns->tx_packets = stats.tx_frames;
4636         ns->rx_bytes   = stats.rx_octets;
4637         ns->rx_packets = stats.rx_frames;
4638         ns->multicast  = stats.rx_mcast_frames;
4639
4640         /* detailed rx_errors */
4641         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4642                                stats.rx_runt;
4643         ns->rx_over_errors   = 0;
4644         ns->rx_crc_errors    = stats.rx_fcs_err;
4645         ns->rx_frame_errors  = stats.rx_symbol_err;
4646         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4647                                stats.rx_ovflow2 + stats.rx_ovflow3 +
4648                                stats.rx_trunc0 + stats.rx_trunc1 +
4649                                stats.rx_trunc2 + stats.rx_trunc3;
4650         ns->rx_missed_errors = 0;
4651
4652         /* detailed tx_errors */
4653         ns->tx_aborted_errors   = 0;
4654         ns->tx_carrier_errors   = 0;
4655         ns->tx_fifo_errors      = 0;
4656         ns->tx_heartbeat_errors = 0;
4657         ns->tx_window_errors    = 0;
4658
4659         ns->tx_errors = stats.tx_error_frames;
4660         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4661                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4662         return ns;
4663 }
4664
4665 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4666 {
4667         unsigned int mbox;
4668         int ret = 0, prtad, devad;
4669         struct port_info *pi = netdev_priv(dev);
4670         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4671
4672         switch (cmd) {
4673         case SIOCGMIIPHY:
4674                 if (pi->mdio_addr < 0)
4675                         return -EOPNOTSUPP;
4676                 data->phy_id = pi->mdio_addr;
4677                 break;
4678         case SIOCGMIIREG:
4679         case SIOCSMIIREG:
4680                 if (mdio_phy_id_is_c45(data->phy_id)) {
4681                         prtad = mdio_phy_id_prtad(data->phy_id);
4682                         devad = mdio_phy_id_devad(data->phy_id);
4683                 } else if (data->phy_id < 32) {
4684                         prtad = data->phy_id;
4685                         devad = 0;
4686                         data->reg_num &= 0x1f;
4687                 } else
4688                         return -EINVAL;
4689
4690                 mbox = pi->adapter->fn;
4691                 if (cmd == SIOCGMIIREG)
4692                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4693                                          data->reg_num, &data->val_out);
4694                 else
4695                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4696                                          data->reg_num, data->val_in);
4697                 break;
4698         default:
4699                 return -EOPNOTSUPP;
4700         }
4701         return ret;
4702 }
4703
4704 static void cxgb_set_rxmode(struct net_device *dev)
4705 {
4706         /* unfortunately we can't return errors to the stack */
4707         set_rxmode(dev, -1, false);
4708 }
4709
4710 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4711 {
4712         int ret;
4713         struct port_info *pi = netdev_priv(dev);
4714
4715         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4716                 return -EINVAL;
4717         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4718                             -1, -1, -1, true);
4719         if (!ret)
4720                 dev->mtu = new_mtu;
4721         return ret;
4722 }
4723
4724 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4725 {
4726         int ret;
4727         struct sockaddr *addr = p;
4728         struct port_info *pi = netdev_priv(dev);
4729
4730         if (!is_valid_ether_addr(addr->sa_data))
4731                 return -EADDRNOTAVAIL;
4732
4733         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4734                             pi->xact_addr_filt, addr->sa_data, true, true);
4735         if (ret < 0)
4736                 return ret;
4737
4738         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4739         pi->xact_addr_filt = ret;
4740         return 0;
4741 }
4742
4743 #ifdef CONFIG_NET_POLL_CONTROLLER
4744 static void cxgb_netpoll(struct net_device *dev)
4745 {
4746         struct port_info *pi = netdev_priv(dev);
4747         struct adapter *adap = pi->adapter;
4748
4749         if (adap->flags & USING_MSIX) {
4750                 int i;
4751                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4752
4753                 for (i = pi->nqsets; i; i--, rx++)
4754                         t4_sge_intr_msix(0, &rx->rspq);
4755         } else
4756                 t4_intr_handler(adap)(0, adap);
4757 }
4758 #endif
4759
4760 static const struct net_device_ops cxgb4_netdev_ops = {
4761         .ndo_open             = cxgb_open,
4762         .ndo_stop             = cxgb_close,
4763         .ndo_start_xmit       = t4_eth_xmit,
4764         .ndo_select_queue     = cxgb_select_queue,
4765         .ndo_get_stats64      = cxgb_get_stats,
4766         .ndo_set_rx_mode      = cxgb_set_rxmode,
4767         .ndo_set_mac_address  = cxgb_set_mac_addr,
4768         .ndo_set_features     = cxgb_set_features,
4769         .ndo_validate_addr    = eth_validate_addr,
4770         .ndo_do_ioctl         = cxgb_ioctl,
4771         .ndo_change_mtu       = cxgb_change_mtu,
4772 #ifdef CONFIG_NET_POLL_CONTROLLER
4773         .ndo_poll_controller  = cxgb_netpoll,
4774 #endif
4775 };
4776
4777 void t4_fatal_err(struct adapter *adap)
4778 {
4779         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4780         t4_intr_disable(adap);
4781         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4782 }
4783
4784 /* Return the specified PCI-E Configuration Space register from our Physical
4785  * Function.  We try first via a Firmware LDST Command since we prefer to let
4786  * the firmware own all of these registers, but if that fails we go for it
4787  * directly ourselves.
4788  */
4789 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4790 {
4791         struct fw_ldst_cmd ldst_cmd;
4792         u32 val;
4793         int ret;
4794
4795         /* Construct and send the Firmware LDST Command to retrieve the
4796          * specified PCI-E Configuration Space register.
4797          */
4798         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4799         ldst_cmd.op_to_addrspace =
4800                 htonl(FW_CMD_OP_V(FW_LDST_CMD) |
4801                       FW_CMD_REQUEST_F |
4802                       FW_CMD_READ_F |
4803                       FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
4804         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4805         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
4806         ldst_cmd.u.pcie.ctrl_to_fn =
4807                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
4808         ldst_cmd.u.pcie.r = reg;
4809         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4810                          &ldst_cmd);
4811
4812         /* If the LDST Command suucceeded, exctract the returned register
4813          * value.  Otherwise read it directly ourself.
4814          */
4815         if (ret == 0)
4816                 val = ntohl(ldst_cmd.u.pcie.data[0]);
4817         else
4818                 t4_hw_pci_read_cfg4(adap, reg, &val);
4819
4820         return val;
4821 }
4822
4823 static void setup_memwin(struct adapter *adap)
4824 {
4825         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4826
4827         if (is_t4(adap->params.chip)) {
4828                 u32 bar0;
4829
4830                 /* Truncation intentional: we only read the bottom 32-bits of
4831                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
4832                  * mechanism to read BAR0 instead of using
4833                  * pci_resource_start() because we could be operating from
4834                  * within a Virtual Machine which is trapping our accesses to
4835                  * our Configuration Space and we need to set up the PCI-E
4836                  * Memory Window decoders with the actual addresses which will
4837                  * be coming across the PCI-E link.
4838                  */
4839                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4840                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4841                 adap->t4_bar0 = bar0;
4842
4843                 mem_win0_base = bar0 + MEMWIN0_BASE;
4844                 mem_win1_base = bar0 + MEMWIN1_BASE;
4845                 mem_win2_base = bar0 + MEMWIN2_BASE;
4846                 mem_win2_aperture = MEMWIN2_APERTURE;
4847         } else {
4848                 /* For T5, only relative offset inside the PCIe BAR is passed */
4849                 mem_win0_base = MEMWIN0_BASE;
4850                 mem_win1_base = MEMWIN1_BASE;
4851                 mem_win2_base = MEMWIN2_BASE_T5;
4852                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
4853         }
4854         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4855                      mem_win0_base | BIR(0) |
4856                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4857         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4858                      mem_win1_base | BIR(0) |
4859                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4860         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4861                      mem_win2_base | BIR(0) |
4862                      WINDOW(ilog2(mem_win2_aperture) - 10));
4863         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
4864 }
4865
4866 static void setup_memwin_rdma(struct adapter *adap)
4867 {
4868         if (adap->vres.ocq.size) {
4869                 u32 start;
4870                 unsigned int sz_kb;
4871
4872                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4873                 start &= PCI_BASE_ADDRESS_MEM_MASK;
4874                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4875                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4876                 t4_write_reg(adap,
4877                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4878                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
4879                 t4_write_reg(adap,
4880                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4881                              adap->vres.ocq.start);
4882                 t4_read_reg(adap,
4883                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4884         }
4885 }
4886
4887 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4888 {
4889         u32 v;
4890         int ret;
4891
4892         /* get device capabilities */
4893         memset(c, 0, sizeof(*c));
4894         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4895                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
4896         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4897         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4898         if (ret < 0)
4899                 return ret;
4900
4901         /* select capabilities we'll be using */
4902         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4903                 if (!vf_acls)
4904                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4905                 else
4906                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4907         } else if (vf_acls) {
4908                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4909                 return ret;
4910         }
4911         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4912                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4913         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4914         if (ret < 0)
4915                 return ret;
4916
4917         ret = t4_config_glbl_rss(adap, adap->fn,
4918                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4919                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4920                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4921         if (ret < 0)
4922                 return ret;
4923
4924         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4925                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
4926         if (ret < 0)
4927                 return ret;
4928
4929         t4_sge_init(adap);
4930
4931         /* tweak some settings */
4932         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4933         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4934         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4935         v = t4_read_reg(adap, TP_PIO_DATA);
4936         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
4937
4938         /* first 4 Tx modulation queues point to consecutive Tx channels */
4939         adap->params.tp.tx_modq_map = 0xE4;
4940         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4941                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4942
4943         /* associate each Tx modulation queue with consecutive Tx channels */
4944         v = 0x84218421;
4945         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4946                           &v, 1, A_TP_TX_SCHED_HDR);
4947         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4948                           &v, 1, A_TP_TX_SCHED_FIFO);
4949         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4950                           &v, 1, A_TP_TX_SCHED_PCMD);
4951
4952 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4953         if (is_offload(adap)) {
4954                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4955                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4956                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4957                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4958                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4959                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4960                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4961                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4962                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4963                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4964         }
4965
4966         /* get basic stuff going */
4967         return t4_early_init(adap, adap->fn);
4968 }
4969
4970 /*
4971  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4972  */
4973 #define MAX_ATIDS 8192U
4974
4975 /*
4976  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4977  *
4978  * If the firmware we're dealing with has Configuration File support, then
4979  * we use that to perform all configuration
4980  */
4981
4982 /*
4983  * Tweak configuration based on module parameters, etc.  Most of these have
4984  * defaults assigned to them by Firmware Configuration Files (if we're using
4985  * them) but need to be explicitly set if we're using hard-coded
4986  * initialization.  But even in the case of using Firmware Configuration
4987  * Files, we'd like to expose the ability to change these via module
4988  * parameters so these are essentially common tweaks/settings for
4989  * Configuration Files and hard-coded initialization ...
4990  */
4991 static int adap_init0_tweaks(struct adapter *adapter)
4992 {
4993         /*
4994          * Fix up various Host-Dependent Parameters like Page Size, Cache
4995          * Line Size, etc.  The firmware default is for a 4KB Page Size and
4996          * 64B Cache Line Size ...
4997          */
4998         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4999
5000         /*
5001          * Process module parameters which affect early initialization.
5002          */
5003         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5004                 dev_err(&adapter->pdev->dev,
5005                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
5006                         rx_dma_offset);
5007                 rx_dma_offset = 2;
5008         }
5009         t4_set_reg_field(adapter, SGE_CONTROL,
5010                          PKTSHIFT_MASK,
5011                          PKTSHIFT(rx_dma_offset));
5012
5013         /*
5014          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5015          * adds the pseudo header itself.
5016          */
5017         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5018                                CSUM_HAS_PSEUDO_HDR, 0);
5019
5020         return 0;
5021 }
5022
5023 /*
5024  * Attempt to initialize the adapter via a Firmware Configuration File.
5025  */
5026 static int adap_init0_config(struct adapter *adapter, int reset)
5027 {
5028         struct fw_caps_config_cmd caps_cmd;
5029         const struct firmware *cf;
5030         unsigned long mtype = 0, maddr = 0;
5031         u32 finiver, finicsum, cfcsum;
5032         int ret;
5033         int config_issued = 0;
5034         char *fw_config_file, fw_config_file_path[256];
5035         char *config_name = NULL;
5036
5037         /*
5038          * Reset device if necessary.
5039          */
5040         if (reset) {
5041                 ret = t4_fw_reset(adapter, adapter->mbox,
5042                                   PIORSTMODE | PIORST);
5043                 if (ret < 0)
5044                         goto bye;
5045         }
5046
5047         /*
5048          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5049          * then use that.  Otherwise, use the configuration file stored
5050          * in the adapter flash ...
5051          */
5052         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5053         case CHELSIO_T4:
5054                 fw_config_file = FW4_CFNAME;
5055                 break;
5056         case CHELSIO_T5:
5057                 fw_config_file = FW5_CFNAME;
5058                 break;
5059         default:
5060                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5061                        adapter->pdev->device);
5062                 ret = -EINVAL;
5063                 goto bye;
5064         }
5065
5066         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5067         if (ret < 0) {
5068                 config_name = "On FLASH";
5069                 mtype = FW_MEMTYPE_CF_FLASH;
5070                 maddr = t4_flash_cfg_addr(adapter);
5071         } else {
5072                 u32 params[7], val[7];
5073
5074                 sprintf(fw_config_file_path,
5075                         "/lib/firmware/%s", fw_config_file);
5076                 config_name = fw_config_file_path;
5077
5078                 if (cf->size >= FLASH_CFG_MAX_SIZE)
5079                         ret = -ENOMEM;
5080                 else {
5081                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5082                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
5083                         ret = t4_query_params(adapter, adapter->mbox,
5084                                               adapter->fn, 0, 1, params, val);
5085                         if (ret == 0) {
5086                                 /*
5087                                  * For t4_memory_rw() below addresses and
5088                                  * sizes have to be in terms of multiples of 4
5089                                  * bytes.  So, if the Configuration File isn't
5090                                  * a multiple of 4 bytes in length we'll have
5091                                  * to write that out separately since we can't
5092                                  * guarantee that the bytes following the
5093                                  * residual byte in the buffer returned by
5094                                  * request_firmware() are zeroed out ...
5095                                  */
5096                                 size_t resid = cf->size & 0x3;
5097                                 size_t size = cf->size & ~0x3;
5098                                 __be32 *data = (__be32 *)cf->data;
5099
5100                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
5101                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
5102
5103                                 spin_lock(&adapter->win0_lock);
5104                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5105                                                    size, data, T4_MEMORY_WRITE);
5106                                 if (ret == 0 && resid != 0) {
5107                                         union {
5108                                                 __be32 word;
5109                                                 char buf[4];
5110                                         } last;
5111                                         int i;
5112
5113                                         last.word = data[size >> 2];
5114                                         for (i = resid; i < 4; i++)
5115                                                 last.buf[i] = 0;
5116                                         ret = t4_memory_rw(adapter, 0, mtype,
5117                                                            maddr + size,
5118                                                            4, &last.word,
5119                                                            T4_MEMORY_WRITE);
5120                                 }
5121                                 spin_unlock(&adapter->win0_lock);
5122                         }
5123                 }
5124
5125                 release_firmware(cf);
5126                 if (ret)
5127                         goto bye;
5128         }
5129
5130         /*
5131          * Issue a Capability Configuration command to the firmware to get it
5132          * to parse the Configuration File.  We don't use t4_fw_config_file()
5133          * because we want the ability to modify various features after we've
5134          * processed the configuration file ...
5135          */
5136         memset(&caps_cmd, 0, sizeof(caps_cmd));
5137         caps_cmd.op_to_write =
5138                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5139                       FW_CMD_REQUEST_F |
5140                       FW_CMD_READ_F);
5141         caps_cmd.cfvalid_to_len16 =
5142                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
5143                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
5144                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
5145                       FW_LEN16(caps_cmd));
5146         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5147                          &caps_cmd);
5148
5149         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5150          * Configuration File in FLASH), our last gasp effort is to use the
5151          * Firmware Configuration File which is embedded in the firmware.  A
5152          * very few early versions of the firmware didn't have one embedded
5153          * but we can ignore those.
5154          */
5155         if (ret == -ENOENT) {
5156                 memset(&caps_cmd, 0, sizeof(caps_cmd));
5157                 caps_cmd.op_to_write =
5158                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5159                                         FW_CMD_REQUEST_F |
5160                                         FW_CMD_READ_F);
5161                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5162                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5163                                 sizeof(caps_cmd), &caps_cmd);
5164                 config_name = "Firmware Default";
5165         }
5166
5167         config_issued = 1;
5168         if (ret < 0)
5169                 goto bye;
5170
5171         finiver = ntohl(caps_cmd.finiver);
5172         finicsum = ntohl(caps_cmd.finicsum);
5173         cfcsum = ntohl(caps_cmd.cfcsum);
5174         if (finicsum != cfcsum)
5175                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5176                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5177                          finicsum, cfcsum);
5178
5179         /*
5180          * And now tell the firmware to use the configuration we just loaded.
5181          */
5182         caps_cmd.op_to_write =
5183                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5184                       FW_CMD_REQUEST_F |
5185                       FW_CMD_WRITE_F);
5186         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5187         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5188                          NULL);
5189         if (ret < 0)
5190                 goto bye;
5191
5192         /*
5193          * Tweak configuration based on system architecture, module
5194          * parameters, etc.
5195          */
5196         ret = adap_init0_tweaks(adapter);
5197         if (ret < 0)
5198                 goto bye;
5199
5200         /*
5201          * And finally tell the firmware to initialize itself using the
5202          * parameters from the Configuration File.
5203          */
5204         ret = t4_fw_initialize(adapter, adapter->mbox);
5205         if (ret < 0)
5206                 goto bye;
5207
5208         /*
5209          * Return successfully and note that we're operating with parameters
5210          * not supplied by the driver, rather than from hard-wired
5211          * initialization constants burried in the driver.
5212          */
5213         adapter->flags |= USING_SOFT_PARAMS;
5214         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5215                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5216                  config_name, finiver, cfcsum);
5217         return 0;
5218
5219         /*
5220          * Something bad happened.  Return the error ...  (If the "error"
5221          * is that there's no Configuration File on the adapter we don't
5222          * want to issue a warning since this is fairly common.)
5223          */
5224 bye:
5225         if (config_issued && ret != -ENOENT)
5226                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5227                          config_name, -ret);
5228         return ret;
5229 }
5230
5231 /*
5232  * Attempt to initialize the adapter via hard-coded, driver supplied
5233  * parameters ...
5234  */
5235 static int adap_init0_no_config(struct adapter *adapter, int reset)
5236 {
5237         struct sge *s = &adapter->sge;
5238         struct fw_caps_config_cmd caps_cmd;
5239         u32 v;
5240         int i, ret;
5241
5242         /*
5243          * Reset device if necessary
5244          */
5245         if (reset) {
5246                 ret = t4_fw_reset(adapter, adapter->mbox,
5247                                   PIORSTMODE | PIORST);
5248                 if (ret < 0)
5249                         goto bye;
5250         }
5251
5252         /*
5253          * Get device capabilities and select which we'll be using.
5254          */
5255         memset(&caps_cmd, 0, sizeof(caps_cmd));
5256         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5257                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
5258         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5259         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5260                          &caps_cmd);
5261         if (ret < 0)
5262                 goto bye;
5263
5264         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5265                 if (!vf_acls)
5266                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5267                 else
5268                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5269         } else if (vf_acls) {
5270                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5271                 goto bye;
5272         }
5273         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5274                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5275         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5276                          NULL);
5277         if (ret < 0)
5278                 goto bye;
5279
5280         /*
5281          * Tweak configuration based on system architecture, module
5282          * parameters, etc.
5283          */
5284         ret = adap_init0_tweaks(adapter);
5285         if (ret < 0)
5286                 goto bye;
5287
5288         /*
5289          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5290          * mode which maps each Virtual Interface to its own section of
5291          * the RSS Table and we turn on all map and hash enables ...
5292          */
5293         adapter->flags |= RSS_TNLALLLOOKUP;
5294         ret = t4_config_glbl_rss(adapter, adapter->mbox,
5295                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5296                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
5297                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F |
5298                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
5299                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F : 0));
5300         if (ret < 0)
5301                 goto bye;
5302
5303         /*
5304          * Set up our own fundamental resource provisioning ...
5305          */
5306         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5307                           PFRES_NEQ, PFRES_NETHCTRL,
5308                           PFRES_NIQFLINT, PFRES_NIQ,
5309                           PFRES_TC, PFRES_NVI,
5310                           FW_PFVF_CMD_CMASK_M,
5311                           pfvfres_pmask(adapter, adapter->fn, 0),
5312                           PFRES_NEXACTF,
5313                           PFRES_R_CAPS, PFRES_WX_CAPS);
5314         if (ret < 0)
5315                 goto bye;
5316
5317         /*
5318          * Perform low level SGE initialization.  We need to do this before we
5319          * send the firmware the INITIALIZE command because that will cause
5320          * any other PF Drivers which are waiting for the Master
5321          * Initialization to proceed forward.
5322          */
5323         for (i = 0; i < SGE_NTIMERS - 1; i++)
5324                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5325         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5326         s->counter_val[0] = 1;
5327         for (i = 1; i < SGE_NCOUNTERS; i++)
5328                 s->counter_val[i] = min(intr_cnt[i - 1],
5329                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
5330         t4_sge_init(adapter);
5331
5332 #ifdef CONFIG_PCI_IOV
5333         /*
5334          * Provision resource limits for Virtual Functions.  We currently
5335          * grant them all the same static resource limits except for the Port
5336          * Access Rights Mask which we're assigning based on the PF.  All of
5337          * the static provisioning stuff for both the PF and VF really needs
5338          * to be managed in a persistent manner for each device which the
5339          * firmware controls.
5340          */
5341         {
5342                 int pf, vf;
5343
5344                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5345                         if (num_vf[pf] <= 0)
5346                                 continue;
5347
5348                         /* VF numbering starts at 1! */
5349                         for (vf = 1; vf <= num_vf[pf]; vf++) {
5350                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5351                                                   pf, vf,
5352                                                   VFRES_NEQ, VFRES_NETHCTRL,
5353                                                   VFRES_NIQFLINT, VFRES_NIQ,
5354                                                   VFRES_TC, VFRES_NVI,
5355                                                   FW_PFVF_CMD_CMASK_M,
5356                                                   pfvfres_pmask(
5357                                                   adapter, pf, vf),
5358                                                   VFRES_NEXACTF,
5359                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
5360                                 if (ret < 0)
5361                                         dev_warn(adapter->pdev_dev,
5362                                                  "failed to "\
5363                                                  "provision pf/vf=%d/%d; "
5364                                                  "err=%d\n", pf, vf, ret);
5365                         }
5366                 }
5367         }
5368 #endif
5369
5370         /*
5371          * Set up the default filter mode.  Later we'll want to implement this
5372          * via a firmware command, etc. ...  This needs to be done before the
5373          * firmare initialization command ...  If the selected set of fields
5374          * isn't equal to the default value, we'll need to make sure that the
5375          * field selections will fit in the 36-bit budget.
5376          */
5377         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5378                 int j, bits = 0;
5379
5380                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5381                         switch (tp_vlan_pri_map & (1 << j)) {
5382                         case 0:
5383                                 /* compressed filter field not enabled */
5384                                 break;
5385                         case FCOE_MASK:
5386                                 bits +=  1;
5387                                 break;
5388                         case PORT_MASK:
5389                                 bits +=  3;
5390                                 break;
5391                         case VNIC_ID_MASK:
5392                                 bits += 17;
5393                                 break;
5394                         case VLAN_MASK:
5395                                 bits += 17;
5396                                 break;
5397                         case TOS_MASK:
5398                                 bits +=  8;
5399                                 break;
5400                         case PROTOCOL_MASK:
5401                                 bits +=  8;
5402                                 break;
5403                         case ETHERTYPE_MASK:
5404                                 bits += 16;
5405                                 break;
5406                         case MACMATCH_MASK:
5407                                 bits +=  9;
5408                                 break;
5409                         case MPSHITTYPE_MASK:
5410                                 bits +=  3;
5411                                 break;
5412                         case FRAGMENTATION_MASK:
5413                                 bits +=  1;
5414                                 break;
5415                         }
5416
5417                 if (bits > 36) {
5418                         dev_err(adapter->pdev_dev,
5419                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5420                                 " using %#x\n", tp_vlan_pri_map, bits,
5421                                 TP_VLAN_PRI_MAP_DEFAULT);
5422                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5423                 }
5424         }
5425         v = tp_vlan_pri_map;
5426         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5427                           &v, 1, TP_VLAN_PRI_MAP);
5428
5429         /*
5430          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5431          * to support any of the compressed filter fields above.  Newer
5432          * versions of the firmware do this automatically but it doesn't hurt
5433          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5434          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5435          * since the firmware automatically turns this on and off when we have
5436          * a non-zero number of filters active (since it does have a
5437          * performance impact).
5438          */
5439         if (tp_vlan_pri_map)
5440                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5441                                  FIVETUPLELOOKUP_MASK,
5442                                  FIVETUPLELOOKUP_MASK);
5443
5444         /*
5445          * Tweak some settings.
5446          */
5447         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5448                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5449                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5450                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5451
5452         /*
5453          * Get basic stuff going by issuing the Firmware Initialize command.
5454          * Note that this _must_ be after all PFVF commands ...
5455          */
5456         ret = t4_fw_initialize(adapter, adapter->mbox);
5457         if (ret < 0)
5458                 goto bye;
5459
5460         /*
5461          * Return successfully!
5462          */
5463         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5464                  "driver parameters\n");
5465         return 0;
5466
5467         /*
5468          * Something bad happened.  Return the error ...
5469          */
5470 bye:
5471         return ret;
5472 }
5473
5474 static struct fw_info fw_info_array[] = {
5475         {
5476                 .chip = CHELSIO_T4,
5477                 .fs_name = FW4_CFNAME,
5478                 .fw_mod_name = FW4_FNAME,
5479                 .fw_hdr = {
5480                         .chip = FW_HDR_CHIP_T4,
5481                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5482                         .intfver_nic = FW_INTFVER(T4, NIC),
5483                         .intfver_vnic = FW_INTFVER(T4, VNIC),
5484                         .intfver_ri = FW_INTFVER(T4, RI),
5485                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5486                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
5487                 },
5488         }, {
5489                 .chip = CHELSIO_T5,
5490                 .fs_name = FW5_CFNAME,
5491                 .fw_mod_name = FW5_FNAME,
5492                 .fw_hdr = {
5493                         .chip = FW_HDR_CHIP_T5,
5494                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5495                         .intfver_nic = FW_INTFVER(T5, NIC),
5496                         .intfver_vnic = FW_INTFVER(T5, VNIC),
5497                         .intfver_ri = FW_INTFVER(T5, RI),
5498                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5499                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
5500                 },
5501         }
5502 };
5503
5504 static struct fw_info *find_fw_info(int chip)
5505 {
5506         int i;
5507
5508         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5509                 if (fw_info_array[i].chip == chip)
5510                         return &fw_info_array[i];
5511         }
5512         return NULL;
5513 }
5514
5515 /*
5516  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5517  */
5518 static int adap_init0(struct adapter *adap)
5519 {
5520         int ret;
5521         u32 v, port_vec;
5522         enum dev_state state;
5523         u32 params[7], val[7];
5524         struct fw_caps_config_cmd caps_cmd;
5525         int reset = 1;
5526
5527         /*
5528          * Contact FW, advertising Master capability (and potentially forcing
5529          * ourselves as the Master PF if our module parameter force_init is
5530          * set).
5531          */
5532         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5533                           force_init ? MASTER_MUST : MASTER_MAY,
5534                           &state);
5535         if (ret < 0) {
5536                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5537                         ret);
5538                 return ret;
5539         }
5540         if (ret == adap->mbox)
5541                 adap->flags |= MASTER_PF;
5542         if (force_init && state == DEV_STATE_INIT)
5543                 state = DEV_STATE_UNINIT;
5544
5545         /*
5546          * If we're the Master PF Driver and the device is uninitialized,
5547          * then let's consider upgrading the firmware ...  (We always want
5548          * to check the firmware version number in order to A. get it for
5549          * later reporting and B. to warn if the currently loaded firmware
5550          * is excessively mismatched relative to the driver.)
5551          */
5552         t4_get_fw_version(adap, &adap->params.fw_vers);
5553         t4_get_tp_version(adap, &adap->params.tp_vers);
5554         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5555                 struct fw_info *fw_info;
5556                 struct fw_hdr *card_fw;
5557                 const struct firmware *fw;
5558                 const u8 *fw_data = NULL;
5559                 unsigned int fw_size = 0;
5560
5561                 /* This is the firmware whose headers the driver was compiled
5562                  * against
5563                  */
5564                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5565                 if (fw_info == NULL) {
5566                         dev_err(adap->pdev_dev,
5567                                 "unable to get firmware info for chip %d.\n",
5568                                 CHELSIO_CHIP_VERSION(adap->params.chip));
5569                         return -EINVAL;
5570                 }
5571
5572                 /* allocate memory to read the header of the firmware on the
5573                  * card
5574                  */
5575                 card_fw = t4_alloc_mem(sizeof(*card_fw));
5576
5577                 /* Get FW from from /lib/firmware/ */
5578                 ret = request_firmware(&fw, fw_info->fw_mod_name,
5579                                        adap->pdev_dev);
5580                 if (ret < 0) {
5581                         dev_err(adap->pdev_dev,
5582                                 "unable to load firmware image %s, error %d\n",
5583                                 fw_info->fw_mod_name, ret);
5584                 } else {
5585                         fw_data = fw->data;
5586                         fw_size = fw->size;
5587                 }
5588
5589                 /* upgrade FW logic */
5590                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5591                                  state, &reset);
5592
5593                 /* Cleaning up */
5594                 if (fw != NULL)
5595                         release_firmware(fw);
5596                 t4_free_mem(card_fw);
5597
5598                 if (ret < 0)
5599                         goto bye;
5600         }
5601
5602         /*
5603          * Grab VPD parameters.  This should be done after we establish a
5604          * connection to the firmware since some of the VPD parameters
5605          * (notably the Core Clock frequency) are retrieved via requests to
5606          * the firmware.  On the other hand, we need these fairly early on
5607          * so we do this right after getting ahold of the firmware.
5608          */
5609         ret = get_vpd_params(adap, &adap->params.vpd);
5610         if (ret < 0)
5611                 goto bye;
5612
5613         /*
5614          * Find out what ports are available to us.  Note that we need to do
5615          * this before calling adap_init0_no_config() since it needs nports
5616          * and portvec ...
5617          */
5618         v =
5619             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5620             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5621         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5622         if (ret < 0)
5623                 goto bye;
5624
5625         adap->params.nports = hweight32(port_vec);
5626         adap->params.portvec = port_vec;
5627
5628         /*
5629          * If the firmware is initialized already (and we're not forcing a
5630          * master initialization), note that we're living with existing
5631          * adapter parameters.  Otherwise, it's time to try initializing the
5632          * adapter ...
5633          */
5634         if (state == DEV_STATE_INIT) {
5635                 dev_info(adap->pdev_dev, "Coming up as %s: "\
5636                          "Adapter already initialized\n",
5637                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5638                 adap->flags |= USING_SOFT_PARAMS;
5639         } else {
5640                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5641                          "Initializing adapter\n");
5642                 /*
5643                  * If the firmware doesn't support Configuration
5644                  * Files warn user and exit,
5645                  */
5646                 if (ret < 0)
5647                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
5648                                  "configuration file.\n");
5649                 if (force_old_init)
5650                         ret = adap_init0_no_config(adap, reset);
5651                 else {
5652                         /*
5653                          * Find out whether we're dealing with a version of
5654                          * the firmware which has configuration file support.
5655                          */
5656                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5657                                      FW_PARAMS_PARAM_X_V(
5658                                              FW_PARAMS_PARAM_DEV_CF));
5659                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5660                                               params, val);
5661
5662                         /*
5663                          * If the firmware doesn't support Configuration
5664                          * Files, use the old Driver-based, hard-wired
5665                          * initialization.  Otherwise, try using the
5666                          * Configuration File support and fall back to the
5667                          * Driver-based initialization if there's no
5668                          * Configuration File found.
5669                          */
5670                         if (ret < 0)
5671                                 ret = adap_init0_no_config(adap, reset);
5672                         else {
5673                                 /*
5674                                  * The firmware provides us with a memory
5675                                  * buffer where we can load a Configuration
5676                                  * File from the host if we want to override
5677                                  * the Configuration File in flash.
5678                                  */
5679
5680                                 ret = adap_init0_config(adap, reset);
5681                                 if (ret == -ENOENT) {
5682                                         dev_info(adap->pdev_dev,
5683                                             "No Configuration File present "
5684                                             "on adapter. Using hard-wired "
5685                                             "configuration parameters.\n");
5686                                         ret = adap_init0_no_config(adap, reset);
5687                                 }
5688                         }
5689                 }
5690                 if (ret < 0) {
5691                         dev_err(adap->pdev_dev,
5692                                 "could not initialize adapter, error %d\n",
5693                                 -ret);
5694                         goto bye;
5695                 }
5696         }
5697
5698         /*
5699          * If we're living with non-hard-coded parameters (either from a
5700          * Firmware Configuration File or values programmed by a different PF
5701          * Driver), give the SGE code a chance to pull in anything that it
5702          * needs ...  Note that this must be called after we retrieve our VPD
5703          * parameters in order to know how to convert core ticks to seconds.
5704          */
5705         if (adap->flags & USING_SOFT_PARAMS) {
5706                 ret = t4_sge_init(adap);
5707                 if (ret < 0)
5708                         goto bye;
5709         }
5710
5711         if (is_bypass_device(adap->pdev->device))
5712                 adap->params.bypass = 1;
5713
5714         /*
5715          * Grab some of our basic fundamental operating parameters.
5716          */
5717 #define FW_PARAM_DEV(param) \
5718         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
5719         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
5720
5721 #define FW_PARAM_PFVF(param) \
5722         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
5723         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
5724         FW_PARAMS_PARAM_Y_V(0) | \
5725         FW_PARAMS_PARAM_Z_V(0)
5726
5727         params[0] = FW_PARAM_PFVF(EQ_START);
5728         params[1] = FW_PARAM_PFVF(L2T_START);
5729         params[2] = FW_PARAM_PFVF(L2T_END);
5730         params[3] = FW_PARAM_PFVF(FILTER_START);
5731         params[4] = FW_PARAM_PFVF(FILTER_END);
5732         params[5] = FW_PARAM_PFVF(IQFLINT_START);
5733         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5734         if (ret < 0)
5735                 goto bye;
5736         adap->sge.egr_start = val[0];
5737         adap->l2t_start = val[1];
5738         adap->l2t_end = val[2];
5739         adap->tids.ftid_base = val[3];
5740         adap->tids.nftids = val[4] - val[3] + 1;
5741         adap->sge.ingr_start = val[5];
5742
5743         /* query params related to active filter region */
5744         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5745         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5746         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5747         /* If Active filter size is set we enable establishing
5748          * offload connection through firmware work request
5749          */
5750         if ((val[0] != val[1]) && (ret >= 0)) {
5751                 adap->flags |= FW_OFLD_CONN;
5752                 adap->tids.aftid_base = val[0];
5753                 adap->tids.aftid_end = val[1];
5754         }
5755
5756         /* If we're running on newer firmware, let it know that we're
5757          * prepared to deal with encapsulated CPL messages.  Older
5758          * firmware won't understand this and we'll just get
5759          * unencapsulated messages ...
5760          */
5761         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5762         val[0] = 1;
5763         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5764
5765         /*
5766          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5767          * capability.  Earlier versions of the firmware didn't have the
5768          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5769          * permission to use ULPTX MEMWRITE DSGL.
5770          */
5771         if (is_t4(adap->params.chip)) {
5772                 adap->params.ulptx_memwrite_dsgl = false;
5773         } else {
5774                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5775                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5776                                       1, params, val);
5777                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5778         }
5779
5780         /*
5781          * Get device capabilities so we can determine what resources we need
5782          * to manage.
5783          */
5784         memset(&caps_cmd, 0, sizeof(caps_cmd));
5785         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5786                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
5787         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5788         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5789                          &caps_cmd);
5790         if (ret < 0)
5791                 goto bye;
5792
5793         if (caps_cmd.ofldcaps) {
5794                 /* query offload-related parameters */
5795                 params[0] = FW_PARAM_DEV(NTID);
5796                 params[1] = FW_PARAM_PFVF(SERVER_START);
5797                 params[2] = FW_PARAM_PFVF(SERVER_END);
5798                 params[3] = FW_PARAM_PFVF(TDDP_START);
5799                 params[4] = FW_PARAM_PFVF(TDDP_END);
5800                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5801                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5802                                       params, val);
5803                 if (ret < 0)
5804                         goto bye;
5805                 adap->tids.ntids = val[0];
5806                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5807                 adap->tids.stid_base = val[1];
5808                 adap->tids.nstids = val[2] - val[1] + 1;
5809                 /*
5810                  * Setup server filter region. Divide the availble filter
5811                  * region into two parts. Regular filters get 1/3rd and server
5812                  * filters get 2/3rd part. This is only enabled if workarond
5813                  * path is enabled.
5814                  * 1. For regular filters.
5815                  * 2. Server filter: This are special filters which are used
5816                  * to redirect SYN packets to offload queue.
5817                  */
5818                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5819                         adap->tids.sftid_base = adap->tids.ftid_base +
5820                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5821                         adap->tids.nsftids = adap->tids.nftids -
5822                                          DIV_ROUND_UP(adap->tids.nftids, 3);
5823                         adap->tids.nftids = adap->tids.sftid_base -
5824                                                 adap->tids.ftid_base;
5825                 }
5826                 adap->vres.ddp.start = val[3];
5827                 adap->vres.ddp.size = val[4] - val[3] + 1;
5828                 adap->params.ofldq_wr_cred = val[5];
5829
5830                 adap->params.offload = 1;
5831         }
5832         if (caps_cmd.rdmacaps) {
5833                 params[0] = FW_PARAM_PFVF(STAG_START);
5834                 params[1] = FW_PARAM_PFVF(STAG_END);
5835                 params[2] = FW_PARAM_PFVF(RQ_START);
5836                 params[3] = FW_PARAM_PFVF(RQ_END);
5837                 params[4] = FW_PARAM_PFVF(PBL_START);
5838                 params[5] = FW_PARAM_PFVF(PBL_END);
5839                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5840                                       params, val);
5841                 if (ret < 0)
5842                         goto bye;
5843                 adap->vres.stag.start = val[0];
5844                 adap->vres.stag.size = val[1] - val[0] + 1;
5845                 adap->vres.rq.start = val[2];
5846                 adap->vres.rq.size = val[3] - val[2] + 1;
5847                 adap->vres.pbl.start = val[4];
5848                 adap->vres.pbl.size = val[5] - val[4] + 1;
5849
5850                 params[0] = FW_PARAM_PFVF(SQRQ_START);
5851                 params[1] = FW_PARAM_PFVF(SQRQ_END);
5852                 params[2] = FW_PARAM_PFVF(CQ_START);
5853                 params[3] = FW_PARAM_PFVF(CQ_END);
5854                 params[4] = FW_PARAM_PFVF(OCQ_START);
5855                 params[5] = FW_PARAM_PFVF(OCQ_END);
5856                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
5857                                       val);
5858                 if (ret < 0)
5859                         goto bye;
5860                 adap->vres.qp.start = val[0];
5861                 adap->vres.qp.size = val[1] - val[0] + 1;
5862                 adap->vres.cq.start = val[2];
5863                 adap->vres.cq.size = val[3] - val[2] + 1;
5864                 adap->vres.ocq.start = val[4];
5865                 adap->vres.ocq.size = val[5] - val[4] + 1;
5866
5867                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5868                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5869                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
5870                                       val);
5871                 if (ret < 0) {
5872                         adap->params.max_ordird_qp = 8;
5873                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5874                         ret = 0;
5875                 } else {
5876                         adap->params.max_ordird_qp = val[0];
5877                         adap->params.max_ird_adapter = val[1];
5878                 }
5879                 dev_info(adap->pdev_dev,
5880                          "max_ordird_qp %d max_ird_adapter %d\n",
5881                          adap->params.max_ordird_qp,
5882                          adap->params.max_ird_adapter);
5883         }
5884         if (caps_cmd.iscsicaps) {
5885                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5886                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5887                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5888                                       params, val);
5889                 if (ret < 0)
5890                         goto bye;
5891                 adap->vres.iscsi.start = val[0];
5892                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5893         }
5894 #undef FW_PARAM_PFVF
5895 #undef FW_PARAM_DEV
5896
5897         /* The MTU/MSS Table is initialized by now, so load their values.  If
5898          * we're initializing the adapter, then we'll make any modifications
5899          * we want to the MTU/MSS Table and also initialize the congestion
5900          * parameters.
5901          */
5902         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5903         if (state != DEV_STATE_INIT) {
5904                 int i;
5905
5906                 /* The default MTU Table contains values 1492 and 1500.
5907                  * However, for TCP, it's better to have two values which are
5908                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5909                  * This allows us to have a TCP Data Payload which is a
5910                  * multiple of 8 regardless of what combination of TCP Options
5911                  * are in use (always a multiple of 4 bytes) which is
5912                  * important for performance reasons.  For instance, if no
5913                  * options are in use, then we have a 20-byte IP header and a
5914                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
5915                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5916                  * which is not a multiple of 8.  So using an MSS of 1488 in
5917                  * this case results in a TCP Data Payload of 1448 bytes which
5918                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5919                  * Stamps have been negotiated, then an MTU of 1500 bytes
5920                  * results in a TCP Data Payload of 1448 bytes which, as
5921                  * above, is a multiple of 8 bytes ...
5922                  */
5923                 for (i = 0; i < NMTUS; i++)
5924                         if (adap->params.mtus[i] == 1492) {
5925                                 adap->params.mtus[i] = 1488;
5926                                 break;
5927                         }
5928
5929                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5930                              adap->params.b_wnd);
5931         }
5932         t4_init_sge_params(adap);
5933         t4_init_tp_params(adap);
5934         adap->flags |= FW_OK;
5935         return 0;
5936
5937         /*
5938          * Something bad happened.  If a command timed out or failed with EIO
5939          * FW does not operate within its spec or something catastrophic
5940          * happened to HW/FW, stop issuing commands.
5941          */
5942 bye:
5943         if (ret != -ETIMEDOUT && ret != -EIO)
5944                 t4_fw_bye(adap, adap->mbox);
5945         return ret;
5946 }
5947
5948 /* EEH callbacks */
5949
5950 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5951                                          pci_channel_state_t state)
5952 {
5953         int i;
5954         struct adapter *adap = pci_get_drvdata(pdev);
5955
5956         if (!adap)
5957                 goto out;
5958
5959         rtnl_lock();
5960         adap->flags &= ~FW_OK;
5961         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5962         spin_lock(&adap->stats_lock);
5963         for_each_port(adap, i) {
5964                 struct net_device *dev = adap->port[i];
5965
5966                 netif_device_detach(dev);
5967                 netif_carrier_off(dev);
5968         }
5969         spin_unlock(&adap->stats_lock);
5970         if (adap->flags & FULL_INIT_DONE)
5971                 cxgb_down(adap);
5972         rtnl_unlock();
5973         if ((adap->flags & DEV_ENABLED)) {
5974                 pci_disable_device(pdev);
5975                 adap->flags &= ~DEV_ENABLED;
5976         }
5977 out:    return state == pci_channel_io_perm_failure ?
5978                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5979 }
5980
5981 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5982 {
5983         int i, ret;
5984         struct fw_caps_config_cmd c;
5985         struct adapter *adap = pci_get_drvdata(pdev);
5986
5987         if (!adap) {
5988                 pci_restore_state(pdev);
5989                 pci_save_state(pdev);
5990                 return PCI_ERS_RESULT_RECOVERED;
5991         }
5992
5993         if (!(adap->flags & DEV_ENABLED)) {
5994                 if (pci_enable_device(pdev)) {
5995                         dev_err(&pdev->dev, "Cannot reenable PCI "
5996                                             "device after reset\n");
5997                         return PCI_ERS_RESULT_DISCONNECT;
5998                 }
5999                 adap->flags |= DEV_ENABLED;
6000         }
6001
6002         pci_set_master(pdev);
6003         pci_restore_state(pdev);
6004         pci_save_state(pdev);
6005         pci_cleanup_aer_uncorrect_error_status(pdev);
6006
6007         if (t4_wait_dev_ready(adap->regs) < 0)
6008                 return PCI_ERS_RESULT_DISCONNECT;
6009         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6010                 return PCI_ERS_RESULT_DISCONNECT;
6011         adap->flags |= FW_OK;
6012         if (adap_init1(adap, &c))
6013                 return PCI_ERS_RESULT_DISCONNECT;
6014
6015         for_each_port(adap, i) {
6016                 struct port_info *p = adap2pinfo(adap, i);
6017
6018                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6019                                   NULL, NULL);
6020                 if (ret < 0)
6021                         return PCI_ERS_RESULT_DISCONNECT;
6022                 p->viid = ret;
6023                 p->xact_addr_filt = -1;
6024         }
6025
6026         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6027                      adap->params.b_wnd);
6028         setup_memwin(adap);
6029         if (cxgb_up(adap))
6030                 return PCI_ERS_RESULT_DISCONNECT;
6031         return PCI_ERS_RESULT_RECOVERED;
6032 }
6033
6034 static void eeh_resume(struct pci_dev *pdev)
6035 {
6036         int i;
6037         struct adapter *adap = pci_get_drvdata(pdev);
6038
6039         if (!adap)
6040                 return;
6041
6042         rtnl_lock();
6043         for_each_port(adap, i) {
6044                 struct net_device *dev = adap->port[i];
6045
6046                 if (netif_running(dev)) {
6047                         link_start(dev);
6048                         cxgb_set_rxmode(dev);
6049                 }
6050                 netif_device_attach(dev);
6051         }
6052         rtnl_unlock();
6053 }
6054
6055 static const struct pci_error_handlers cxgb4_eeh = {
6056         .error_detected = eeh_err_detected,
6057         .slot_reset     = eeh_slot_reset,
6058         .resume         = eeh_resume,
6059 };
6060
6061 static inline bool is_x_10g_port(const struct link_config *lc)
6062 {
6063         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6064                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6065 }
6066
6067 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6068                              unsigned int us, unsigned int cnt,
6069                              unsigned int size, unsigned int iqe_size)
6070 {
6071         q->adap = adap;
6072         set_rspq_intr_params(q, us, cnt);
6073         q->iqe_len = iqe_size;
6074         q->size = size;
6075 }
6076
6077 /*
6078  * Perform default configuration of DMA queues depending on the number and type
6079  * of ports we found and the number of available CPUs.  Most settings can be
6080  * modified by the admin prior to actual use.
6081  */
6082 static void cfg_queues(struct adapter *adap)
6083 {
6084         struct sge *s = &adap->sge;
6085         int i, n10g = 0, qidx = 0;
6086 #ifndef CONFIG_CHELSIO_T4_DCB
6087         int q10g = 0;
6088 #endif
6089         int ciq_size;
6090
6091         for_each_port(adap, i)
6092                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6093 #ifdef CONFIG_CHELSIO_T4_DCB
6094         /* For Data Center Bridging support we need to be able to support up
6095          * to 8 Traffic Priorities; each of which will be assigned to its
6096          * own TX Queue in order to prevent Head-Of-Line Blocking.
6097          */
6098         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6099                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6100                         MAX_ETH_QSETS, adap->params.nports * 8);
6101                 BUG_ON(1);
6102         }
6103
6104         for_each_port(adap, i) {
6105                 struct port_info *pi = adap2pinfo(adap, i);
6106
6107                 pi->first_qset = qidx;
6108                 pi->nqsets = 8;
6109                 qidx += pi->nqsets;
6110         }
6111 #else /* !CONFIG_CHELSIO_T4_DCB */
6112         /*
6113          * We default to 1 queue per non-10G port and up to # of cores queues
6114          * per 10G port.
6115          */
6116         if (n10g)
6117                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6118         if (q10g > netif_get_num_default_rss_queues())
6119                 q10g = netif_get_num_default_rss_queues();
6120
6121         for_each_port(adap, i) {
6122                 struct port_info *pi = adap2pinfo(adap, i);
6123
6124                 pi->first_qset = qidx;
6125                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6126                 qidx += pi->nqsets;
6127         }
6128 #endif /* !CONFIG_CHELSIO_T4_DCB */
6129
6130         s->ethqsets = qidx;
6131         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
6132
6133         if (is_offload(adap)) {
6134                 /*
6135                  * For offload we use 1 queue/channel if all ports are up to 1G,
6136                  * otherwise we divide all available queues amongst the channels
6137                  * capped by the number of available cores.
6138                  */
6139                 if (n10g) {
6140                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6141                                   num_online_cpus());
6142                         s->ofldqsets = roundup(i, adap->params.nports);
6143                 } else
6144                         s->ofldqsets = adap->params.nports;
6145                 /* For RDMA one Rx queue per channel suffices */
6146                 s->rdmaqs = adap->params.nports;
6147                 s->rdmaciqs = adap->params.nports;
6148         }
6149
6150         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6151                 struct sge_eth_rxq *r = &s->ethrxq[i];
6152
6153                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6154                 r->fl.size = 72;
6155         }
6156
6157         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6158                 s->ethtxq[i].q.size = 1024;
6159
6160         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6161                 s->ctrlq[i].q.size = 512;
6162
6163         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6164                 s->ofldtxq[i].q.size = 1024;
6165
6166         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6167                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6168
6169                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6170                 r->rspq.uld = CXGB4_ULD_ISCSI;
6171                 r->fl.size = 72;
6172         }
6173
6174         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6175                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6176
6177                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6178                 r->rspq.uld = CXGB4_ULD_RDMA;
6179                 r->fl.size = 72;
6180         }
6181
6182         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6183         if (ciq_size > SGE_MAX_IQ_SIZE) {
6184                 CH_WARN(adap, "CIQ size too small for available IQs\n");
6185                 ciq_size = SGE_MAX_IQ_SIZE;
6186         }
6187
6188         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6189                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6190
6191                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6192                 r->rspq.uld = CXGB4_ULD_RDMA;
6193         }
6194
6195         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6196         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6197 }
6198
6199 /*
6200  * Reduce the number of Ethernet queues across all ports to at most n.
6201  * n provides at least one queue per port.
6202  */
6203 static void reduce_ethqs(struct adapter *adap, int n)
6204 {
6205         int i;
6206         struct port_info *pi;
6207
6208         while (n < adap->sge.ethqsets)
6209                 for_each_port(adap, i) {
6210                         pi = adap2pinfo(adap, i);
6211                         if (pi->nqsets > 1) {
6212                                 pi->nqsets--;
6213                                 adap->sge.ethqsets--;
6214                                 if (adap->sge.ethqsets <= n)
6215                                         break;
6216                         }
6217                 }
6218
6219         n = 0;
6220         for_each_port(adap, i) {
6221                 pi = adap2pinfo(adap, i);
6222                 pi->first_qset = n;
6223                 n += pi->nqsets;
6224         }
6225 }
6226
6227 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6228 #define EXTRA_VECS 2
6229
6230 static int enable_msix(struct adapter *adap)
6231 {
6232         int ofld_need = 0;
6233         int i, want, need;
6234         struct sge *s = &adap->sge;
6235         unsigned int nchan = adap->params.nports;
6236         struct msix_entry entries[MAX_INGQ + 1];
6237
6238         for (i = 0; i < ARRAY_SIZE(entries); ++i)
6239                 entries[i].entry = i;
6240
6241         want = s->max_ethqsets + EXTRA_VECS;
6242         if (is_offload(adap)) {
6243                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6244                 /* need nchan for each possible ULD */
6245                 ofld_need = 3 * nchan;
6246         }
6247 #ifdef CONFIG_CHELSIO_T4_DCB
6248         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6249          * each port.
6250          */
6251         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6252 #else
6253         need = adap->params.nports + EXTRA_VECS + ofld_need;
6254 #endif
6255         want = pci_enable_msix_range(adap->pdev, entries, need, want);
6256         if (want < 0)
6257                 return want;
6258
6259         /*
6260          * Distribute available vectors to the various queue groups.
6261          * Every group gets its minimum requirement and NIC gets top
6262          * priority for leftovers.
6263          */
6264         i = want - EXTRA_VECS - ofld_need;
6265         if (i < s->max_ethqsets) {
6266                 s->max_ethqsets = i;
6267                 if (i < s->ethqsets)
6268                         reduce_ethqs(adap, i);
6269         }
6270         if (is_offload(adap)) {
6271                 i = want - EXTRA_VECS - s->max_ethqsets;
6272                 i -= ofld_need - nchan;
6273                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
6274         }
6275         for (i = 0; i < want; ++i)
6276                 adap->msix_info[i].vec = entries[i].vector;
6277
6278         return 0;
6279 }
6280
6281 #undef EXTRA_VECS
6282
6283 static int init_rss(struct adapter *adap)
6284 {
6285         unsigned int i, j;
6286
6287         for_each_port(adap, i) {
6288                 struct port_info *pi = adap2pinfo(adap, i);
6289
6290                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6291                 if (!pi->rss)
6292                         return -ENOMEM;
6293                 for (j = 0; j < pi->rss_size; j++)
6294                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6295         }
6296         return 0;
6297 }
6298
6299 static void print_port_info(const struct net_device *dev)
6300 {
6301         char buf[80];
6302         char *bufp = buf;
6303         const char *spd = "";
6304         const struct port_info *pi = netdev_priv(dev);
6305         const struct adapter *adap = pi->adapter;
6306
6307         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6308                 spd = " 2.5 GT/s";
6309         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6310                 spd = " 5 GT/s";
6311         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6312                 spd = " 8 GT/s";
6313
6314         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6315                 bufp += sprintf(bufp, "100/");
6316         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6317                 bufp += sprintf(bufp, "1000/");
6318         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6319                 bufp += sprintf(bufp, "10G/");
6320         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6321                 bufp += sprintf(bufp, "40G/");
6322         if (bufp != buf)
6323                 --bufp;
6324         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6325
6326         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6327                     adap->params.vpd.id,
6328                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6329                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6330                     (adap->flags & USING_MSIX) ? " MSI-X" :
6331                     (adap->flags & USING_MSI) ? " MSI" : "");
6332         netdev_info(dev, "S/N: %s, P/N: %s\n",
6333                     adap->params.vpd.sn, adap->params.vpd.pn);
6334 }
6335
6336 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6337 {
6338         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6339 }
6340
6341 /*
6342  * Free the following resources:
6343  * - memory used for tables
6344  * - MSI/MSI-X
6345  * - net devices
6346  * - resources FW is holding for us
6347  */
6348 static void free_some_resources(struct adapter *adapter)
6349 {
6350         unsigned int i;
6351
6352         t4_free_mem(adapter->l2t);
6353         t4_free_mem(adapter->tids.tid_tab);
6354         disable_msi(adapter);
6355
6356         for_each_port(adapter, i)
6357                 if (adapter->port[i]) {
6358                         kfree(adap2pinfo(adapter, i)->rss);
6359                         free_netdev(adapter->port[i]);
6360                 }
6361         if (adapter->flags & FW_OK)
6362                 t4_fw_bye(adapter, adapter->fn);
6363 }
6364
6365 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6366 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6367                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6368 #define SEGMENT_SIZE 128
6369
6370 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6371 {
6372         int func, i, err, s_qpp, qpp, num_seg;
6373         struct port_info *pi;
6374         bool highdma = false;
6375         struct adapter *adapter = NULL;
6376         void __iomem *regs;
6377
6378         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6379
6380         err = pci_request_regions(pdev, KBUILD_MODNAME);
6381         if (err) {
6382                 /* Just info, some other driver may have claimed the device. */
6383                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6384                 return err;
6385         }
6386
6387         err = pci_enable_device(pdev);
6388         if (err) {
6389                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6390                 goto out_release_regions;
6391         }
6392
6393         regs = pci_ioremap_bar(pdev, 0);
6394         if (!regs) {
6395                 dev_err(&pdev->dev, "cannot map device registers\n");
6396                 err = -ENOMEM;
6397                 goto out_disable_device;
6398         }
6399
6400         err = t4_wait_dev_ready(regs);
6401         if (err < 0)
6402                 goto out_unmap_bar0;
6403
6404         /* We control everything through one PF */
6405         func = SOURCEPF_GET(readl(regs + PL_WHOAMI));
6406         if (func != ent->driver_data) {
6407                 iounmap(regs);
6408                 pci_disable_device(pdev);
6409                 pci_save_state(pdev);        /* to restore SR-IOV later */
6410                 goto sriov;
6411         }
6412
6413         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6414                 highdma = true;
6415                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6416                 if (err) {
6417                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6418                                 "coherent allocations\n");
6419                         goto out_unmap_bar0;
6420                 }
6421         } else {
6422                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6423                 if (err) {
6424                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6425                         goto out_unmap_bar0;
6426                 }
6427         }
6428
6429         pci_enable_pcie_error_reporting(pdev);
6430         enable_pcie_relaxed_ordering(pdev);
6431         pci_set_master(pdev);
6432         pci_save_state(pdev);
6433
6434         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6435         if (!adapter) {
6436                 err = -ENOMEM;
6437                 goto out_unmap_bar0;
6438         }
6439
6440         adapter->workq = create_singlethread_workqueue("cxgb4");
6441         if (!adapter->workq) {
6442                 err = -ENOMEM;
6443                 goto out_free_adapter;
6444         }
6445
6446         /* PCI device has been enabled */
6447         adapter->flags |= DEV_ENABLED;
6448
6449         adapter->regs = regs;
6450         adapter->pdev = pdev;
6451         adapter->pdev_dev = &pdev->dev;
6452         adapter->mbox = func;
6453         adapter->fn = func;
6454         adapter->msg_enable = dflt_msg_enable;
6455         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6456
6457         spin_lock_init(&adapter->stats_lock);
6458         spin_lock_init(&adapter->tid_release_lock);
6459         spin_lock_init(&adapter->win0_lock);
6460
6461         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6462         INIT_WORK(&adapter->db_full_task, process_db_full);
6463         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6464
6465         err = t4_prep_adapter(adapter);
6466         if (err)
6467                 goto out_free_adapter;
6468
6469
6470         if (!is_t4(adapter->params.chip)) {
6471                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6472                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6473                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6474                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6475
6476                 /* Each segment size is 128B. Write coalescing is enabled only
6477                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6478                  * queue is less no of segments that can be accommodated in
6479                  * a page size.
6480                  */
6481                 if (qpp > num_seg) {
6482                         dev_err(&pdev->dev,
6483                                 "Incorrect number of egress queues per page\n");
6484                         err = -EINVAL;
6485                         goto out_free_adapter;
6486                 }
6487                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6488                 pci_resource_len(pdev, 2));
6489                 if (!adapter->bar2) {
6490                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6491                         err = -ENOMEM;
6492                         goto out_free_adapter;
6493                 }
6494         }
6495
6496         setup_memwin(adapter);
6497         err = adap_init0(adapter);
6498         setup_memwin_rdma(adapter);
6499         if (err)
6500                 goto out_unmap_bar;
6501
6502         for_each_port(adapter, i) {
6503                 struct net_device *netdev;
6504
6505                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6506                                            MAX_ETH_QSETS);
6507                 if (!netdev) {
6508                         err = -ENOMEM;
6509                         goto out_free_dev;
6510                 }
6511
6512                 SET_NETDEV_DEV(netdev, &pdev->dev);
6513
6514                 adapter->port[i] = netdev;
6515                 pi = netdev_priv(netdev);
6516                 pi->adapter = adapter;
6517                 pi->xact_addr_filt = -1;
6518                 pi->port_id = i;
6519                 netdev->irq = pdev->irq;
6520
6521                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6522                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6523                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
6524                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6525                 if (highdma)
6526                         netdev->hw_features |= NETIF_F_HIGHDMA;
6527                 netdev->features |= netdev->hw_features;
6528                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6529
6530                 netdev->priv_flags |= IFF_UNICAST_FLT;
6531
6532                 netdev->netdev_ops = &cxgb4_netdev_ops;
6533 #ifdef CONFIG_CHELSIO_T4_DCB
6534                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6535                 cxgb4_dcb_state_init(netdev);
6536 #endif
6537                 netdev->ethtool_ops = &cxgb_ethtool_ops;
6538         }
6539
6540         pci_set_drvdata(pdev, adapter);
6541
6542         if (adapter->flags & FW_OK) {
6543                 err = t4_port_init(adapter, func, func, 0);
6544                 if (err)
6545                         goto out_free_dev;
6546         }
6547
6548         /*
6549          * Configure queues and allocate tables now, they can be needed as
6550          * soon as the first register_netdev completes.
6551          */
6552         cfg_queues(adapter);
6553
6554         adapter->l2t = t4_init_l2t();
6555         if (!adapter->l2t) {
6556                 /* We tolerate a lack of L2T, giving up some functionality */
6557                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6558                 adapter->params.offload = 0;
6559         }
6560
6561         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6562                 dev_warn(&pdev->dev, "could not allocate TID table, "
6563                          "continuing\n");
6564                 adapter->params.offload = 0;
6565         }
6566
6567         /* See what interrupts we'll be using */
6568         if (msi > 1 && enable_msix(adapter) == 0)
6569                 adapter->flags |= USING_MSIX;
6570         else if (msi > 0 && pci_enable_msi(pdev) == 0)
6571                 adapter->flags |= USING_MSI;
6572
6573         err = init_rss(adapter);
6574         if (err)
6575                 goto out_free_dev;
6576
6577         /*
6578          * The card is now ready to go.  If any errors occur during device
6579          * registration we do not fail the whole card but rather proceed only
6580          * with the ports we manage to register successfully.  However we must
6581          * register at least one net device.
6582          */
6583         for_each_port(adapter, i) {
6584                 pi = adap2pinfo(adapter, i);
6585                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6586                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6587
6588                 err = register_netdev(adapter->port[i]);
6589                 if (err)
6590                         break;
6591                 adapter->chan_map[pi->tx_chan] = i;
6592                 print_port_info(adapter->port[i]);
6593         }
6594         if (i == 0) {
6595                 dev_err(&pdev->dev, "could not register any net devices\n");
6596                 goto out_free_dev;
6597         }
6598         if (err) {
6599                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6600                 err = 0;
6601         }
6602
6603         if (cxgb4_debugfs_root) {
6604                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6605                                                            cxgb4_debugfs_root);
6606                 setup_debugfs(adapter);
6607         }
6608
6609         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6610         pdev->needs_freset = 1;
6611
6612         if (is_offload(adapter))
6613                 attach_ulds(adapter);
6614
6615 sriov:
6616 #ifdef CONFIG_PCI_IOV
6617         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6618                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6619                         dev_info(&pdev->dev,
6620                                  "instantiated %u virtual functions\n",
6621                                  num_vf[func]);
6622 #endif
6623         return 0;
6624
6625  out_free_dev:
6626         free_some_resources(adapter);
6627  out_unmap_bar:
6628         if (!is_t4(adapter->params.chip))
6629                 iounmap(adapter->bar2);
6630  out_free_adapter:
6631         if (adapter->workq)
6632                 destroy_workqueue(adapter->workq);
6633
6634         kfree(adapter);
6635  out_unmap_bar0:
6636         iounmap(regs);
6637  out_disable_device:
6638         pci_disable_pcie_error_reporting(pdev);
6639         pci_disable_device(pdev);
6640  out_release_regions:
6641         pci_release_regions(pdev);
6642         return err;
6643 }
6644
6645 static void remove_one(struct pci_dev *pdev)
6646 {
6647         struct adapter *adapter = pci_get_drvdata(pdev);
6648
6649 #ifdef CONFIG_PCI_IOV
6650         pci_disable_sriov(pdev);
6651
6652 #endif
6653
6654         if (adapter) {
6655                 int i;
6656
6657                 /* Tear down per-adapter Work Queue first since it can contain
6658                  * references to our adapter data structure.
6659                  */
6660                 destroy_workqueue(adapter->workq);
6661
6662                 if (is_offload(adapter))
6663                         detach_ulds(adapter);
6664
6665                 for_each_port(adapter, i)
6666                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6667                                 unregister_netdev(adapter->port[i]);
6668
6669                 debugfs_remove_recursive(adapter->debugfs_root);
6670
6671                 /* If we allocated filters, free up state associated with any
6672                  * valid filters ...
6673                  */
6674                 if (adapter->tids.ftid_tab) {
6675                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
6676                         for (i = 0; i < (adapter->tids.nftids +
6677                                         adapter->tids.nsftids); i++, f++)
6678                                 if (f->valid)
6679                                         clear_filter(adapter, f);
6680                 }
6681
6682                 if (adapter->flags & FULL_INIT_DONE)
6683                         cxgb_down(adapter);
6684
6685                 free_some_resources(adapter);
6686                 iounmap(adapter->regs);
6687                 if (!is_t4(adapter->params.chip))
6688                         iounmap(adapter->bar2);
6689                 pci_disable_pcie_error_reporting(pdev);
6690                 if ((adapter->flags & DEV_ENABLED)) {
6691                         pci_disable_device(pdev);
6692                         adapter->flags &= ~DEV_ENABLED;
6693                 }
6694                 pci_release_regions(pdev);
6695                 synchronize_rcu();
6696                 kfree(adapter);
6697         } else
6698                 pci_release_regions(pdev);
6699 }
6700
6701 static struct pci_driver cxgb4_driver = {
6702         .name     = KBUILD_MODNAME,
6703         .id_table = cxgb4_pci_tbl,
6704         .probe    = init_one,
6705         .remove   = remove_one,
6706         .shutdown = remove_one,
6707         .err_handler = &cxgb4_eeh,
6708 };
6709
6710 static int __init cxgb4_init_module(void)
6711 {
6712         int ret;
6713
6714         /* Debugfs support is optional, just warn if this fails */
6715         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6716         if (!cxgb4_debugfs_root)
6717                 pr_warn("could not create debugfs entry, continuing\n");
6718
6719         ret = pci_register_driver(&cxgb4_driver);
6720         if (ret < 0)
6721                 debugfs_remove(cxgb4_debugfs_root);
6722
6723 #if IS_ENABLED(CONFIG_IPV6)
6724         register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6725 #endif
6726
6727         return ret;
6728 }
6729
6730 static void __exit cxgb4_cleanup_module(void)
6731 {
6732 #if IS_ENABLED(CONFIG_IPV6)
6733         unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6734 #endif
6735         pci_unregister_driver(&cxgb4_driver);
6736         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6737 }
6738
6739 module_init(cxgb4_init_module);
6740 module_exit(cxgb4_cleanup_module);