]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
cxgb4: Remove unnecessary struct in6_addr * casts
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "cxgb4_debugfs.h"
72 #include "l2t.h"
73
74 #include <../drivers/net/bonding/bonding.h>
75
76 #ifdef DRV_VERSION
77 #undef DRV_VERSION
78 #endif
79 #define DRV_VERSION "2.0.0-ko"
80 #define DRV_DESC "Chelsio T4/T5 Network Driver"
81
82 /*
83  * Max interrupt hold-off timer value in us.  Queues fall back to this value
84  * under extreme memory pressure so it's largish to give the system time to
85  * recover.
86  */
87 #define MAX_SGE_TIMERVAL 200U
88
89 enum {
90         /*
91          * Physical Function provisioning constants.
92          */
93         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
94         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
95         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
96                                          */
97         PFRES_NEQ = 256,                /* # of egress queues */
98         PFRES_NIQ = 0,                  /* # of ingress queues */
99         PFRES_TC = 0,                   /* PCI-E traffic class */
100         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
101
102         PFRES_R_CAPS = FW_CMD_CAP_PF,
103         PFRES_WX_CAPS = FW_CMD_CAP_PF,
104
105 #ifdef CONFIG_PCI_IOV
106         /*
107          * Virtual Function provisioning constants.  We need two extra Ingress
108          * Queues with Interrupt capability to serve as the VF's Firmware
109          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
110          * neither will have Free Lists associated with them).  For each
111          * Ethernet/Control Egress Queue and for each Free List, we need an
112          * Egress Context.
113          */
114         VFRES_NPORTS = 1,               /* # of "ports" per VF */
115         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
116
117         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
118         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
119         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
120         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
121         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
122         VFRES_TC = 0,                   /* PCI-E traffic class */
123         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
124
125         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
126         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
127 #endif
128 };
129
130 /*
131  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
132  * static and likely not to be useful in the long run.  We really need to
133  * implement some form of persistent configuration which the firmware
134  * controls.
135  */
136 static unsigned int pfvfres_pmask(struct adapter *adapter,
137                                   unsigned int pf, unsigned int vf)
138 {
139         unsigned int portn, portvec;
140
141         /*
142          * Give PF's access to all of the ports.
143          */
144         if (vf == 0)
145                 return FW_PFVF_CMD_PMASK_MASK;
146
147         /*
148          * For VFs, we'll assign them access to the ports based purely on the
149          * PF.  We assign active ports in order, wrapping around if there are
150          * fewer active ports than PFs: e.g. active port[pf % nports].
151          * Unfortunately the adapter's port_info structs haven't been
152          * initialized yet so we have to compute this.
153          */
154         if (adapter->params.nports == 0)
155                 return 0;
156
157         portn = pf % adapter->params.nports;
158         portvec = adapter->params.portvec;
159         for (;;) {
160                 /*
161                  * Isolate the lowest set bit in the port vector.  If we're at
162                  * the port number that we want, return that as the pmask.
163                  * otherwise mask that bit out of the port vector and
164                  * decrement our port number ...
165                  */
166                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
167                 if (portn == 0)
168                         return pmask;
169                 portn--;
170                 portvec &= ~pmask;
171         }
172         /*NOTREACHED*/
173 }
174
175 enum {
176         MAX_TXQ_ENTRIES      = 16384,
177         MAX_CTRL_TXQ_ENTRIES = 1024,
178         MAX_RSPQ_ENTRIES     = 16384,
179         MAX_RX_BUFFERS       = 16384,
180         MIN_TXQ_ENTRIES      = 32,
181         MIN_CTRL_TXQ_ENTRIES = 32,
182         MIN_RSPQ_ENTRIES     = 128,
183         MIN_FL_ENTRIES       = 16
184 };
185
186 /* Host shadow copy of ingress filter entry.  This is in host native format
187  * and doesn't match the ordering or bit order, etc. of the hardware of the
188  * firmware command.  The use of bit-field structure elements is purely to
189  * remind ourselves of the field size limitations and save memory in the case
190  * where the filter table is large.
191  */
192 struct filter_entry {
193         /* Administrative fields for filter.
194          */
195         u32 valid:1;            /* filter allocated and valid */
196         u32 locked:1;           /* filter is administratively locked */
197
198         u32 pending:1;          /* filter action is pending firmware reply */
199         u32 smtidx:8;           /* Source MAC Table index for smac */
200         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
201
202         /* The filter itself.  Most of this is a straight copy of information
203          * provided by the extended ioctl().  Some fields are translated to
204          * internal forms -- for instance the Ingress Queue ID passed in from
205          * the ioctl() is translated into the Absolute Ingress Queue ID.
206          */
207         struct ch_filter_specification fs;
208 };
209
210 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
211                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
212                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
213
214 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
215
216 static const struct pci_device_id cxgb4_pci_tbl[] = {
217         CH_DEVICE(0xa000, 0),  /* PE10K */
218         CH_DEVICE(0x4001, -1),
219         CH_DEVICE(0x4002, -1),
220         CH_DEVICE(0x4003, -1),
221         CH_DEVICE(0x4004, -1),
222         CH_DEVICE(0x4005, -1),
223         CH_DEVICE(0x4006, -1),
224         CH_DEVICE(0x4007, -1),
225         CH_DEVICE(0x4008, -1),
226         CH_DEVICE(0x4009, -1),
227         CH_DEVICE(0x400a, -1),
228         CH_DEVICE(0x400d, -1),
229         CH_DEVICE(0x400e, -1),
230         CH_DEVICE(0x4080, -1),
231         CH_DEVICE(0x4081, -1),
232         CH_DEVICE(0x4082, -1),
233         CH_DEVICE(0x4083, -1),
234         CH_DEVICE(0x4084, -1),
235         CH_DEVICE(0x4085, -1),
236         CH_DEVICE(0x4086, -1),
237         CH_DEVICE(0x4087, -1),
238         CH_DEVICE(0x4088, -1),
239         CH_DEVICE(0x4401, 4),
240         CH_DEVICE(0x4402, 4),
241         CH_DEVICE(0x4403, 4),
242         CH_DEVICE(0x4404, 4),
243         CH_DEVICE(0x4405, 4),
244         CH_DEVICE(0x4406, 4),
245         CH_DEVICE(0x4407, 4),
246         CH_DEVICE(0x4408, 4),
247         CH_DEVICE(0x4409, 4),
248         CH_DEVICE(0x440a, 4),
249         CH_DEVICE(0x440d, 4),
250         CH_DEVICE(0x440e, 4),
251         CH_DEVICE(0x4480, 4),
252         CH_DEVICE(0x4481, 4),
253         CH_DEVICE(0x4482, 4),
254         CH_DEVICE(0x4483, 4),
255         CH_DEVICE(0x4484, 4),
256         CH_DEVICE(0x4485, 4),
257         CH_DEVICE(0x4486, 4),
258         CH_DEVICE(0x4487, 4),
259         CH_DEVICE(0x4488, 4),
260         CH_DEVICE(0x5001, 4),
261         CH_DEVICE(0x5002, 4),
262         CH_DEVICE(0x5003, 4),
263         CH_DEVICE(0x5004, 4),
264         CH_DEVICE(0x5005, 4),
265         CH_DEVICE(0x5006, 4),
266         CH_DEVICE(0x5007, 4),
267         CH_DEVICE(0x5008, 4),
268         CH_DEVICE(0x5009, 4),
269         CH_DEVICE(0x500A, 4),
270         CH_DEVICE(0x500B, 4),
271         CH_DEVICE(0x500C, 4),
272         CH_DEVICE(0x500D, 4),
273         CH_DEVICE(0x500E, 4),
274         CH_DEVICE(0x500F, 4),
275         CH_DEVICE(0x5010, 4),
276         CH_DEVICE(0x5011, 4),
277         CH_DEVICE(0x5012, 4),
278         CH_DEVICE(0x5013, 4),
279         CH_DEVICE(0x5014, 4),
280         CH_DEVICE(0x5015, 4),
281         CH_DEVICE(0x5080, 4),
282         CH_DEVICE(0x5081, 4),
283         CH_DEVICE(0x5082, 4),
284         CH_DEVICE(0x5083, 4),
285         CH_DEVICE(0x5084, 4),
286         CH_DEVICE(0x5085, 4),
287         CH_DEVICE(0x5086, 4),
288         CH_DEVICE(0x5087, 4),
289         CH_DEVICE(0x5088, 4),
290         CH_DEVICE(0x5401, 4),
291         CH_DEVICE(0x5402, 4),
292         CH_DEVICE(0x5403, 4),
293         CH_DEVICE(0x5404, 4),
294         CH_DEVICE(0x5405, 4),
295         CH_DEVICE(0x5406, 4),
296         CH_DEVICE(0x5407, 4),
297         CH_DEVICE(0x5408, 4),
298         CH_DEVICE(0x5409, 4),
299         CH_DEVICE(0x540A, 4),
300         CH_DEVICE(0x540B, 4),
301         CH_DEVICE(0x540C, 4),
302         CH_DEVICE(0x540D, 4),
303         CH_DEVICE(0x540E, 4),
304         CH_DEVICE(0x540F, 4),
305         CH_DEVICE(0x5410, 4),
306         CH_DEVICE(0x5411, 4),
307         CH_DEVICE(0x5412, 4),
308         CH_DEVICE(0x5413, 4),
309         CH_DEVICE(0x5414, 4),
310         CH_DEVICE(0x5415, 4),
311         CH_DEVICE(0x5480, 4),
312         CH_DEVICE(0x5481, 4),
313         CH_DEVICE(0x5482, 4),
314         CH_DEVICE(0x5483, 4),
315         CH_DEVICE(0x5484, 4),
316         CH_DEVICE(0x5485, 4),
317         CH_DEVICE(0x5486, 4),
318         CH_DEVICE(0x5487, 4),
319         CH_DEVICE(0x5488, 4),
320         { 0, }
321 };
322
323 #define FW4_FNAME "cxgb4/t4fw.bin"
324 #define FW5_FNAME "cxgb4/t5fw.bin"
325 #define FW4_CFNAME "cxgb4/t4-config.txt"
326 #define FW5_CFNAME "cxgb4/t5-config.txt"
327
328 MODULE_DESCRIPTION(DRV_DESC);
329 MODULE_AUTHOR("Chelsio Communications");
330 MODULE_LICENSE("Dual BSD/GPL");
331 MODULE_VERSION(DRV_VERSION);
332 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
333 MODULE_FIRMWARE(FW4_FNAME);
334 MODULE_FIRMWARE(FW5_FNAME);
335
336 /*
337  * Normally we're willing to become the firmware's Master PF but will be happy
338  * if another PF has already become the Master and initialized the adapter.
339  * Setting "force_init" will cause this driver to forcibly establish itself as
340  * the Master PF and initialize the adapter.
341  */
342 static uint force_init;
343
344 module_param(force_init, uint, 0644);
345 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
346
347 /*
348  * Normally if the firmware we connect to has Configuration File support, we
349  * use that and only fall back to the old Driver-based initialization if the
350  * Configuration File fails for some reason.  If force_old_init is set, then
351  * we'll always use the old Driver-based initialization sequence.
352  */
353 static uint force_old_init;
354
355 module_param(force_old_init, uint, 0644);
356 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
357
358 static int dflt_msg_enable = DFLT_MSG_ENABLE;
359
360 module_param(dflt_msg_enable, int, 0644);
361 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
362
363 /*
364  * The driver uses the best interrupt scheme available on a platform in the
365  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
366  * of these schemes the driver may consider as follows:
367  *
368  * msi = 2: choose from among all three options
369  * msi = 1: only consider MSI and INTx interrupts
370  * msi = 0: force INTx interrupts
371  */
372 static int msi = 2;
373
374 module_param(msi, int, 0644);
375 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
376
377 /*
378  * Queue interrupt hold-off timer values.  Queues default to the first of these
379  * upon creation.
380  */
381 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
382
383 module_param_array(intr_holdoff, uint, NULL, 0644);
384 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
385                  "0..4 in microseconds");
386
387 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
388
389 module_param_array(intr_cnt, uint, NULL, 0644);
390 MODULE_PARM_DESC(intr_cnt,
391                  "thresholds 1..3 for queue interrupt packet counters");
392
393 /*
394  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
395  * offset by 2 bytes in order to have the IP headers line up on 4-byte
396  * boundaries.  This is a requirement for many architectures which will throw
397  * a machine check fault if an attempt is made to access one of the 4-byte IP
398  * header fields on a non-4-byte boundary.  And it's a major performance issue
399  * even on some architectures which allow it like some implementations of the
400  * x86 ISA.  However, some architectures don't mind this and for some very
401  * edge-case performance sensitive applications (like forwarding large volumes
402  * of small packets), setting this DMA offset to 0 will decrease the number of
403  * PCI-E Bus transfers enough to measurably affect performance.
404  */
405 static int rx_dma_offset = 2;
406
407 static bool vf_acls;
408
409 #ifdef CONFIG_PCI_IOV
410 module_param(vf_acls, bool, 0644);
411 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
412
413 /* Configure the number of PCI-E Virtual Function which are to be instantiated
414  * on SR-IOV Capable Physical Functions.
415  */
416 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
417
418 module_param_array(num_vf, uint, NULL, 0644);
419 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
420 #endif
421
422 /* TX Queue select used to determine what algorithm to use for selecting TX
423  * queue. Select between the kernel provided function (select_queue=0) or user
424  * cxgb_select_queue function (select_queue=1)
425  *
426  * Default: select_queue=0
427  */
428 static int select_queue;
429 module_param(select_queue, int, 0644);
430 MODULE_PARM_DESC(select_queue,
431                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
432
433 /*
434  * The filter TCAM has a fixed portion and a variable portion.  The fixed
435  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
436  * ports.  The variable portion is 36 bits which can include things like Exact
437  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
438  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
439  * far exceed the 36-bit budget for this "compressed" header portion of the
440  * filter.  Thus, we have a scarce resource which must be carefully managed.
441  *
442  * By default we set this up to mostly match the set of filter matching
443  * capabilities of T3 but with accommodations for some of T4's more
444  * interesting features:
445  *
446  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
447  *     [Inner] VLAN (17), Port (3), FCoE (1) }
448  */
449 enum {
450         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
451         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
452         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
453 };
454
455 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
456
457 module_param(tp_vlan_pri_map, uint, 0644);
458 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
459
460 static struct dentry *cxgb4_debugfs_root;
461
462 static LIST_HEAD(adapter_list);
463 static DEFINE_MUTEX(uld_mutex);
464 /* Adapter list to be accessed from atomic context */
465 static LIST_HEAD(adap_rcu_list);
466 static DEFINE_SPINLOCK(adap_rcu_lock);
467 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
468 static const char *uld_str[] = { "RDMA", "iSCSI" };
469
470 static void link_report(struct net_device *dev)
471 {
472         if (!netif_carrier_ok(dev))
473                 netdev_info(dev, "link down\n");
474         else {
475                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
476
477                 const char *s = "10Mbps";
478                 const struct port_info *p = netdev_priv(dev);
479
480                 switch (p->link_cfg.speed) {
481                 case 10000:
482                         s = "10Gbps";
483                         break;
484                 case 1000:
485                         s = "1000Mbps";
486                         break;
487                 case 100:
488                         s = "100Mbps";
489                         break;
490                 case 40000:
491                         s = "40Gbps";
492                         break;
493                 }
494
495                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
496                             fc[p->link_cfg.fc]);
497         }
498 }
499
500 #ifdef CONFIG_CHELSIO_T4_DCB
501 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
502 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
503 {
504         struct port_info *pi = netdev_priv(dev);
505         struct adapter *adap = pi->adapter;
506         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
507         int i;
508
509         /* We use a simple mapping of Port TX Queue Index to DCB
510          * Priority when we're enabling DCB.
511          */
512         for (i = 0; i < pi->nqsets; i++, txq++) {
513                 u32 name, value;
514                 int err;
515
516                 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
517                         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
518                         FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
519                 value = enable ? i : 0xffffffff;
520
521                 /* Since we can be called while atomic (from "interrupt
522                  * level") we need to issue the Set Parameters Commannd
523                  * without sleeping (timeout < 0).
524                  */
525                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
526                                             &name, &value);
527
528                 if (err)
529                         dev_err(adap->pdev_dev,
530                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
531                                 enable ? "set" : "unset", pi->port_id, i, -err);
532                 else
533                         txq->dcb_prio = value;
534         }
535 }
536 #endif /* CONFIG_CHELSIO_T4_DCB */
537
538 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
539 {
540         struct net_device *dev = adapter->port[port_id];
541
542         /* Skip changes from disabled ports. */
543         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
544                 if (link_stat)
545                         netif_carrier_on(dev);
546                 else {
547 #ifdef CONFIG_CHELSIO_T4_DCB
548                         cxgb4_dcb_state_init(dev);
549                         dcb_tx_queue_prio_enable(dev, false);
550 #endif /* CONFIG_CHELSIO_T4_DCB */
551                         netif_carrier_off(dev);
552                 }
553
554                 link_report(dev);
555         }
556 }
557
558 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
559 {
560         static const char *mod_str[] = {
561                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
562         };
563
564         const struct net_device *dev = adap->port[port_id];
565         const struct port_info *pi = netdev_priv(dev);
566
567         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
568                 netdev_info(dev, "port module unplugged\n");
569         else if (pi->mod_type < ARRAY_SIZE(mod_str))
570                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
571 }
572
573 /*
574  * Configure the exact and hash address filters to handle a port's multicast
575  * and secondary unicast MAC addresses.
576  */
577 static int set_addr_filters(const struct net_device *dev, bool sleep)
578 {
579         u64 mhash = 0;
580         u64 uhash = 0;
581         bool free = true;
582         u16 filt_idx[7];
583         const u8 *addr[7];
584         int ret, naddr = 0;
585         const struct netdev_hw_addr *ha;
586         int uc_cnt = netdev_uc_count(dev);
587         int mc_cnt = netdev_mc_count(dev);
588         const struct port_info *pi = netdev_priv(dev);
589         unsigned int mb = pi->adapter->fn;
590
591         /* first do the secondary unicast addresses */
592         netdev_for_each_uc_addr(ha, dev) {
593                 addr[naddr++] = ha->addr;
594                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
595                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
596                                         naddr, addr, filt_idx, &uhash, sleep);
597                         if (ret < 0)
598                                 return ret;
599
600                         free = false;
601                         naddr = 0;
602                 }
603         }
604
605         /* next set up the multicast addresses */
606         netdev_for_each_mc_addr(ha, dev) {
607                 addr[naddr++] = ha->addr;
608                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
609                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
610                                         naddr, addr, filt_idx, &mhash, sleep);
611                         if (ret < 0)
612                                 return ret;
613
614                         free = false;
615                         naddr = 0;
616                 }
617         }
618
619         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
620                                 uhash | mhash, sleep);
621 }
622
623 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
624 module_param(dbfifo_int_thresh, int, 0644);
625 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
626
627 /*
628  * usecs to sleep while draining the dbfifo
629  */
630 static int dbfifo_drain_delay = 1000;
631 module_param(dbfifo_drain_delay, int, 0644);
632 MODULE_PARM_DESC(dbfifo_drain_delay,
633                  "usecs to sleep while draining the dbfifo");
634
635 /*
636  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
637  * If @mtu is -1 it is left unchanged.
638  */
639 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
640 {
641         int ret;
642         struct port_info *pi = netdev_priv(dev);
643
644         ret = set_addr_filters(dev, sleep_ok);
645         if (ret == 0)
646                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
647                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
648                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
649                                     sleep_ok);
650         return ret;
651 }
652
653 /**
654  *      link_start - enable a port
655  *      @dev: the port to enable
656  *
657  *      Performs the MAC and PHY actions needed to enable a port.
658  */
659 static int link_start(struct net_device *dev)
660 {
661         int ret;
662         struct port_info *pi = netdev_priv(dev);
663         unsigned int mb = pi->adapter->fn;
664
665         /*
666          * We do not set address filters and promiscuity here, the stack does
667          * that step explicitly.
668          */
669         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
670                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
671         if (ret == 0) {
672                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
673                                     pi->xact_addr_filt, dev->dev_addr, true,
674                                     true);
675                 if (ret >= 0) {
676                         pi->xact_addr_filt = ret;
677                         ret = 0;
678                 }
679         }
680         if (ret == 0)
681                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
682                                     &pi->link_cfg);
683         if (ret == 0) {
684                 local_bh_disable();
685                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
686                                           true, CXGB4_DCB_ENABLED);
687                 local_bh_enable();
688         }
689
690         return ret;
691 }
692
693 int cxgb4_dcb_enabled(const struct net_device *dev)
694 {
695 #ifdef CONFIG_CHELSIO_T4_DCB
696         struct port_info *pi = netdev_priv(dev);
697
698         if (!pi->dcb.enabled)
699                 return 0;
700
701         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
702                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
703 #else
704         return 0;
705 #endif
706 }
707 EXPORT_SYMBOL(cxgb4_dcb_enabled);
708
709 #ifdef CONFIG_CHELSIO_T4_DCB
710 /* Handle a Data Center Bridging update message from the firmware. */
711 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
712 {
713         int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
714         struct net_device *dev = adap->port[port];
715         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
716         int new_dcb_enabled;
717
718         cxgb4_dcb_handle_fw_update(adap, pcmd);
719         new_dcb_enabled = cxgb4_dcb_enabled(dev);
720
721         /* If the DCB has become enabled or disabled on the port then we're
722          * going to need to set up/tear down DCB Priority parameters for the
723          * TX Queues associated with the port.
724          */
725         if (new_dcb_enabled != old_dcb_enabled)
726                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
727 }
728 #endif /* CONFIG_CHELSIO_T4_DCB */
729
730 /* Clear a filter and release any of its resources that we own.  This also
731  * clears the filter's "pending" status.
732  */
733 static void clear_filter(struct adapter *adap, struct filter_entry *f)
734 {
735         /* If the new or old filter have loopback rewriteing rules then we'll
736          * need to free any existing Layer Two Table (L2T) entries of the old
737          * filter rule.  The firmware will handle freeing up any Source MAC
738          * Table (SMT) entries used for rewriting Source MAC Addresses in
739          * loopback rules.
740          */
741         if (f->l2t)
742                 cxgb4_l2t_release(f->l2t);
743
744         /* The zeroing of the filter rule below clears the filter valid,
745          * pending, locked flags, l2t pointer, etc. so it's all we need for
746          * this operation.
747          */
748         memset(f, 0, sizeof(*f));
749 }
750
751 /* Handle a filter write/deletion reply.
752  */
753 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
754 {
755         unsigned int idx = GET_TID(rpl);
756         unsigned int nidx = idx - adap->tids.ftid_base;
757         unsigned int ret;
758         struct filter_entry *f;
759
760         if (idx >= adap->tids.ftid_base && nidx <
761            (adap->tids.nftids + adap->tids.nsftids)) {
762                 idx = nidx;
763                 ret = GET_TCB_COOKIE(rpl->cookie);
764                 f = &adap->tids.ftid_tab[idx];
765
766                 if (ret == FW_FILTER_WR_FLT_DELETED) {
767                         /* Clear the filter when we get confirmation from the
768                          * hardware that the filter has been deleted.
769                          */
770                         clear_filter(adap, f);
771                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
772                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
773                                 idx);
774                         clear_filter(adap, f);
775                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
776                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
777                         f->pending = 0;  /* asynchronous setup completed */
778                         f->valid = 1;
779                 } else {
780                         /* Something went wrong.  Issue a warning about the
781                          * problem and clear everything out.
782                          */
783                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
784                                 idx, ret);
785                         clear_filter(adap, f);
786                 }
787         }
788 }
789
790 /* Response queue handler for the FW event queue.
791  */
792 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
793                           const struct pkt_gl *gl)
794 {
795         u8 opcode = ((const struct rss_header *)rsp)->opcode;
796
797         rsp++;                                          /* skip RSS header */
798
799         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
800          */
801         if (unlikely(opcode == CPL_FW4_MSG &&
802            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
803                 rsp++;
804                 opcode = ((const struct rss_header *)rsp)->opcode;
805                 rsp++;
806                 if (opcode != CPL_SGE_EGR_UPDATE) {
807                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
808                                 , opcode);
809                         goto out;
810                 }
811         }
812
813         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
814                 const struct cpl_sge_egr_update *p = (void *)rsp;
815                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
816                 struct sge_txq *txq;
817
818                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
819                 txq->restarts++;
820                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
821                         struct sge_eth_txq *eq;
822
823                         eq = container_of(txq, struct sge_eth_txq, q);
824                         netif_tx_wake_queue(eq->txq);
825                 } else {
826                         struct sge_ofld_txq *oq;
827
828                         oq = container_of(txq, struct sge_ofld_txq, q);
829                         tasklet_schedule(&oq->qresume_tsk);
830                 }
831         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
832                 const struct cpl_fw6_msg *p = (void *)rsp;
833
834 #ifdef CONFIG_CHELSIO_T4_DCB
835                 const struct fw_port_cmd *pcmd = (const void *)p->data;
836                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
837                 unsigned int action =
838                         FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
839
840                 if (cmd == FW_PORT_CMD &&
841                     action == FW_PORT_ACTION_GET_PORT_INFO) {
842                         int port = FW_PORT_CMD_PORTID_GET(
843                                         be32_to_cpu(pcmd->op_to_portid));
844                         struct net_device *dev = q->adap->port[port];
845                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
846                                             FW_PORT_CMD_DCBXDIS)
847                                            ? CXGB4_DCB_INPUT_FW_DISABLED
848                                            : CXGB4_DCB_INPUT_FW_ENABLED);
849
850                         cxgb4_dcb_state_fsm(dev, state_input);
851                 }
852
853                 if (cmd == FW_PORT_CMD &&
854                     action == FW_PORT_ACTION_L2_DCB_CFG)
855                         dcb_rpl(q->adap, pcmd);
856                 else
857 #endif
858                         if (p->type == 0)
859                                 t4_handle_fw_rpl(q->adap, p->data);
860         } else if (opcode == CPL_L2T_WRITE_RPL) {
861                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
862
863                 do_l2t_write_rpl(q->adap, p);
864         } else if (opcode == CPL_SET_TCB_RPL) {
865                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
866
867                 filter_rpl(q->adap, p);
868         } else
869                 dev_err(q->adap->pdev_dev,
870                         "unexpected CPL %#x on FW event queue\n", opcode);
871 out:
872         return 0;
873 }
874
875 /**
876  *      uldrx_handler - response queue handler for ULD queues
877  *      @q: the response queue that received the packet
878  *      @rsp: the response queue descriptor holding the offload message
879  *      @gl: the gather list of packet fragments
880  *
881  *      Deliver an ingress offload packet to a ULD.  All processing is done by
882  *      the ULD, we just maintain statistics.
883  */
884 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
885                          const struct pkt_gl *gl)
886 {
887         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
888
889         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
890          */
891         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
892             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
893                 rsp += 2;
894
895         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
896                 rxq->stats.nomem++;
897                 return -1;
898         }
899         if (gl == NULL)
900                 rxq->stats.imm++;
901         else if (gl == CXGB4_MSG_AN)
902                 rxq->stats.an++;
903         else
904                 rxq->stats.pkts++;
905         return 0;
906 }
907
908 static void disable_msi(struct adapter *adapter)
909 {
910         if (adapter->flags & USING_MSIX) {
911                 pci_disable_msix(adapter->pdev);
912                 adapter->flags &= ~USING_MSIX;
913         } else if (adapter->flags & USING_MSI) {
914                 pci_disable_msi(adapter->pdev);
915                 adapter->flags &= ~USING_MSI;
916         }
917 }
918
919 /*
920  * Interrupt handler for non-data events used with MSI-X.
921  */
922 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
923 {
924         struct adapter *adap = cookie;
925
926         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
927         if (v & PFSW) {
928                 adap->swintr = 1;
929                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
930         }
931         t4_slow_intr_handler(adap);
932         return IRQ_HANDLED;
933 }
934
935 /*
936  * Name the MSI-X interrupts.
937  */
938 static void name_msix_vecs(struct adapter *adap)
939 {
940         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
941
942         /* non-data interrupts */
943         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
944
945         /* FW events */
946         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
947                  adap->port[0]->name);
948
949         /* Ethernet queues */
950         for_each_port(adap, j) {
951                 struct net_device *d = adap->port[j];
952                 const struct port_info *pi = netdev_priv(d);
953
954                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
955                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
956                                  d->name, i);
957         }
958
959         /* offload queues */
960         for_each_ofldrxq(&adap->sge, i)
961                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
962                          adap->port[0]->name, i);
963
964         for_each_rdmarxq(&adap->sge, i)
965                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
966                          adap->port[0]->name, i);
967
968         for_each_rdmaciq(&adap->sge, i)
969                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
970                          adap->port[0]->name, i);
971 }
972
973 static int request_msix_queue_irqs(struct adapter *adap)
974 {
975         struct sge *s = &adap->sge;
976         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
977         int msi_index = 2;
978
979         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
980                           adap->msix_info[1].desc, &s->fw_evtq);
981         if (err)
982                 return err;
983
984         for_each_ethrxq(s, ethqidx) {
985                 err = request_irq(adap->msix_info[msi_index].vec,
986                                   t4_sge_intr_msix, 0,
987                                   adap->msix_info[msi_index].desc,
988                                   &s->ethrxq[ethqidx].rspq);
989                 if (err)
990                         goto unwind;
991                 msi_index++;
992         }
993         for_each_ofldrxq(s, ofldqidx) {
994                 err = request_irq(adap->msix_info[msi_index].vec,
995                                   t4_sge_intr_msix, 0,
996                                   adap->msix_info[msi_index].desc,
997                                   &s->ofldrxq[ofldqidx].rspq);
998                 if (err)
999                         goto unwind;
1000                 msi_index++;
1001         }
1002         for_each_rdmarxq(s, rdmaqidx) {
1003                 err = request_irq(adap->msix_info[msi_index].vec,
1004                                   t4_sge_intr_msix, 0,
1005                                   adap->msix_info[msi_index].desc,
1006                                   &s->rdmarxq[rdmaqidx].rspq);
1007                 if (err)
1008                         goto unwind;
1009                 msi_index++;
1010         }
1011         for_each_rdmaciq(s, rdmaciqqidx) {
1012                 err = request_irq(adap->msix_info[msi_index].vec,
1013                                   t4_sge_intr_msix, 0,
1014                                   adap->msix_info[msi_index].desc,
1015                                   &s->rdmaciq[rdmaciqqidx].rspq);
1016                 if (err)
1017                         goto unwind;
1018                 msi_index++;
1019         }
1020         return 0;
1021
1022 unwind:
1023         while (--rdmaciqqidx >= 0)
1024                 free_irq(adap->msix_info[--msi_index].vec,
1025                          &s->rdmaciq[rdmaciqqidx].rspq);
1026         while (--rdmaqidx >= 0)
1027                 free_irq(adap->msix_info[--msi_index].vec,
1028                          &s->rdmarxq[rdmaqidx].rspq);
1029         while (--ofldqidx >= 0)
1030                 free_irq(adap->msix_info[--msi_index].vec,
1031                          &s->ofldrxq[ofldqidx].rspq);
1032         while (--ethqidx >= 0)
1033                 free_irq(adap->msix_info[--msi_index].vec,
1034                          &s->ethrxq[ethqidx].rspq);
1035         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1036         return err;
1037 }
1038
1039 static void free_msix_queue_irqs(struct adapter *adap)
1040 {
1041         int i, msi_index = 2;
1042         struct sge *s = &adap->sge;
1043
1044         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1045         for_each_ethrxq(s, i)
1046                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1047         for_each_ofldrxq(s, i)
1048                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1049         for_each_rdmarxq(s, i)
1050                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1051         for_each_rdmaciq(s, i)
1052                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1053 }
1054
1055 /**
1056  *      write_rss - write the RSS table for a given port
1057  *      @pi: the port
1058  *      @queues: array of queue indices for RSS
1059  *
1060  *      Sets up the portion of the HW RSS table for the port's VI to distribute
1061  *      packets to the Rx queues in @queues.
1062  */
1063 static int write_rss(const struct port_info *pi, const u16 *queues)
1064 {
1065         u16 *rss;
1066         int i, err;
1067         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1068
1069         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1070         if (!rss)
1071                 return -ENOMEM;
1072
1073         /* map the queue indices to queue ids */
1074         for (i = 0; i < pi->rss_size; i++, queues++)
1075                 rss[i] = q[*queues].rspq.abs_id;
1076
1077         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1078                                   pi->rss_size, rss, pi->rss_size);
1079         kfree(rss);
1080         return err;
1081 }
1082
1083 /**
1084  *      setup_rss - configure RSS
1085  *      @adap: the adapter
1086  *
1087  *      Sets up RSS for each port.
1088  */
1089 static int setup_rss(struct adapter *adap)
1090 {
1091         int i, err;
1092
1093         for_each_port(adap, i) {
1094                 const struct port_info *pi = adap2pinfo(adap, i);
1095
1096                 err = write_rss(pi, pi->rss);
1097                 if (err)
1098                         return err;
1099         }
1100         return 0;
1101 }
1102
1103 /*
1104  * Return the channel of the ingress queue with the given qid.
1105  */
1106 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1107 {
1108         qid -= p->ingr_start;
1109         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1110 }
1111
1112 /*
1113  * Wait until all NAPI handlers are descheduled.
1114  */
1115 static void quiesce_rx(struct adapter *adap)
1116 {
1117         int i;
1118
1119         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1120                 struct sge_rspq *q = adap->sge.ingr_map[i];
1121
1122                 if (q && q->handler)
1123                         napi_disable(&q->napi);
1124         }
1125 }
1126
1127 /*
1128  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1129  */
1130 static void enable_rx(struct adapter *adap)
1131 {
1132         int i;
1133
1134         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1135                 struct sge_rspq *q = adap->sge.ingr_map[i];
1136
1137                 if (!q)
1138                         continue;
1139                 if (q->handler)
1140                         napi_enable(&q->napi);
1141                 /* 0-increment GTS to start the timer and enable interrupts */
1142                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1143                              SEINTARM(q->intr_params) |
1144                              INGRESSQID(q->cntxt_id));
1145         }
1146 }
1147
1148 /**
1149  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1150  *      @adap: the adapter
1151  *
1152  *      Determines how many sets of SGE queues to use and initializes them.
1153  *      We support multiple queue sets per port if we have MSI-X, otherwise
1154  *      just one queue set per port.
1155  */
1156 static int setup_sge_queues(struct adapter *adap)
1157 {
1158         int err, msi_idx, i, j;
1159         struct sge *s = &adap->sge;
1160
1161         bitmap_zero(s->starving_fl, MAX_EGRQ);
1162         bitmap_zero(s->txq_maperr, MAX_EGRQ);
1163
1164         if (adap->flags & USING_MSIX)
1165                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1166         else {
1167                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1168                                        NULL, NULL);
1169                 if (err)
1170                         return err;
1171                 msi_idx = -((int)s->intrq.abs_id + 1);
1172         }
1173
1174         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1175                                msi_idx, NULL, fwevtq_handler);
1176         if (err) {
1177 freeout:        t4_free_sge_resources(adap);
1178                 return err;
1179         }
1180
1181         for_each_port(adap, i) {
1182                 struct net_device *dev = adap->port[i];
1183                 struct port_info *pi = netdev_priv(dev);
1184                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1185                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1186
1187                 for (j = 0; j < pi->nqsets; j++, q++) {
1188                         if (msi_idx > 0)
1189                                 msi_idx++;
1190                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1191                                                msi_idx, &q->fl,
1192                                                t4_ethrx_handler);
1193                         if (err)
1194                                 goto freeout;
1195                         q->rspq.idx = j;
1196                         memset(&q->stats, 0, sizeof(q->stats));
1197                 }
1198                 for (j = 0; j < pi->nqsets; j++, t++) {
1199                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1200                                         netdev_get_tx_queue(dev, j),
1201                                         s->fw_evtq.cntxt_id);
1202                         if (err)
1203                                 goto freeout;
1204                 }
1205         }
1206
1207         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1208         for_each_ofldrxq(s, i) {
1209                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1210                 struct net_device *dev = adap->port[i / j];
1211
1212                 if (msi_idx > 0)
1213                         msi_idx++;
1214                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1215                                        q->fl.size ? &q->fl : NULL,
1216                                        uldrx_handler);
1217                 if (err)
1218                         goto freeout;
1219                 memset(&q->stats, 0, sizeof(q->stats));
1220                 s->ofld_rxq[i] = q->rspq.abs_id;
1221                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1222                                             s->fw_evtq.cntxt_id);
1223                 if (err)
1224                         goto freeout;
1225         }
1226
1227         for_each_rdmarxq(s, i) {
1228                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1229
1230                 if (msi_idx > 0)
1231                         msi_idx++;
1232                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1233                                        msi_idx, q->fl.size ? &q->fl : NULL,
1234                                        uldrx_handler);
1235                 if (err)
1236                         goto freeout;
1237                 memset(&q->stats, 0, sizeof(q->stats));
1238                 s->rdma_rxq[i] = q->rspq.abs_id;
1239         }
1240
1241         for_each_rdmaciq(s, i) {
1242                 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1243
1244                 if (msi_idx > 0)
1245                         msi_idx++;
1246                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1247                                        msi_idx, q->fl.size ? &q->fl : NULL,
1248                                        uldrx_handler);
1249                 if (err)
1250                         goto freeout;
1251                 memset(&q->stats, 0, sizeof(q->stats));
1252                 s->rdma_ciq[i] = q->rspq.abs_id;
1253         }
1254
1255         for_each_port(adap, i) {
1256                 /*
1257                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1258                  * have RDMA queues, and that's the right value.
1259                  */
1260                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1261                                             s->fw_evtq.cntxt_id,
1262                                             s->rdmarxq[i].rspq.cntxt_id);
1263                 if (err)
1264                         goto freeout;
1265         }
1266
1267         t4_write_reg(adap, is_t4(adap->params.chip) ?
1268                                 MPS_TRC_RSS_CONTROL :
1269                                 MPS_T5_TRC_RSS_CONTROL,
1270                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1271                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1272         return 0;
1273 }
1274
1275 /*
1276  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1277  * The allocated memory is cleared.
1278  */
1279 void *t4_alloc_mem(size_t size)
1280 {
1281         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1282
1283         if (!p)
1284                 p = vzalloc(size);
1285         return p;
1286 }
1287
1288 /*
1289  * Free memory allocated through alloc_mem().
1290  */
1291 void t4_free_mem(void *addr)
1292 {
1293         if (is_vmalloc_addr(addr))
1294                 vfree(addr);
1295         else
1296                 kfree(addr);
1297 }
1298
1299 /* Send a Work Request to write the filter at a specified index.  We construct
1300  * a Firmware Filter Work Request to have the work done and put the indicated
1301  * filter into "pending" mode which will prevent any further actions against
1302  * it till we get a reply from the firmware on the completion status of the
1303  * request.
1304  */
1305 static int set_filter_wr(struct adapter *adapter, int fidx)
1306 {
1307         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1308         struct sk_buff *skb;
1309         struct fw_filter_wr *fwr;
1310         unsigned int ftid;
1311
1312         /* If the new filter requires loopback Destination MAC and/or VLAN
1313          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1314          * the filter.
1315          */
1316         if (f->fs.newdmac || f->fs.newvlan) {
1317                 /* allocate L2T entry for new filter */
1318                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1319                 if (f->l2t == NULL)
1320                         return -EAGAIN;
1321                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1322                                         f->fs.eport, f->fs.dmac)) {
1323                         cxgb4_l2t_release(f->l2t);
1324                         f->l2t = NULL;
1325                         return -ENOMEM;
1326                 }
1327         }
1328
1329         ftid = adapter->tids.ftid_base + fidx;
1330
1331         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1332         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1333         memset(fwr, 0, sizeof(*fwr));
1334
1335         /* It would be nice to put most of the following in t4_hw.c but most
1336          * of the work is translating the cxgbtool ch_filter_specification
1337          * into the Work Request and the definition of that structure is
1338          * currently in cxgbtool.h which isn't appropriate to pull into the
1339          * common code.  We may eventually try to come up with a more neutral
1340          * filter specification structure but for now it's easiest to simply
1341          * put this fairly direct code in line ...
1342          */
1343         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1344         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1345         fwr->tid_to_iq =
1346                 htonl(V_FW_FILTER_WR_TID(ftid) |
1347                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1348                       V_FW_FILTER_WR_NOREPLY(0) |
1349                       V_FW_FILTER_WR_IQ(f->fs.iq));
1350         fwr->del_filter_to_l2tix =
1351                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1352                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1353                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1354                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1355                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1356                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1357                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1358                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1359                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1360                                              f->fs.newvlan == VLAN_REWRITE) |
1361                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1362                                             f->fs.newvlan == VLAN_REWRITE) |
1363                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1364                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1365                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1366                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1367         fwr->ethtype = htons(f->fs.val.ethtype);
1368         fwr->ethtypem = htons(f->fs.mask.ethtype);
1369         fwr->frag_to_ovlan_vldm =
1370                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1371                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1372                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1373                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1374                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1375                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1376         fwr->smac_sel = 0;
1377         fwr->rx_chan_rx_rpl_iq =
1378                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1379                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1380         fwr->maci_to_matchtypem =
1381                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1382                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1383                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1384                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1385                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1386                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1387                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1388                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1389         fwr->ptcl = f->fs.val.proto;
1390         fwr->ptclm = f->fs.mask.proto;
1391         fwr->ttyp = f->fs.val.tos;
1392         fwr->ttypm = f->fs.mask.tos;
1393         fwr->ivlan = htons(f->fs.val.ivlan);
1394         fwr->ivlanm = htons(f->fs.mask.ivlan);
1395         fwr->ovlan = htons(f->fs.val.ovlan);
1396         fwr->ovlanm = htons(f->fs.mask.ovlan);
1397         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1398         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1399         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1400         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1401         fwr->lp = htons(f->fs.val.lport);
1402         fwr->lpm = htons(f->fs.mask.lport);
1403         fwr->fp = htons(f->fs.val.fport);
1404         fwr->fpm = htons(f->fs.mask.fport);
1405         if (f->fs.newsmac)
1406                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1407
1408         /* Mark the filter as "pending" and ship off the Filter Work Request.
1409          * When we get the Work Request Reply we'll clear the pending status.
1410          */
1411         f->pending = 1;
1412         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1413         t4_ofld_send(adapter, skb);
1414         return 0;
1415 }
1416
1417 /* Delete the filter at a specified index.
1418  */
1419 static int del_filter_wr(struct adapter *adapter, int fidx)
1420 {
1421         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1422         struct sk_buff *skb;
1423         struct fw_filter_wr *fwr;
1424         unsigned int len, ftid;
1425
1426         len = sizeof(*fwr);
1427         ftid = adapter->tids.ftid_base + fidx;
1428
1429         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1430         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1431         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1432
1433         /* Mark the filter as "pending" and ship off the Filter Work Request.
1434          * When we get the Work Request Reply we'll clear the pending status.
1435          */
1436         f->pending = 1;
1437         t4_mgmt_tx(adapter, skb);
1438         return 0;
1439 }
1440
1441 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1442                              void *accel_priv, select_queue_fallback_t fallback)
1443 {
1444         int txq;
1445
1446 #ifdef CONFIG_CHELSIO_T4_DCB
1447         /* If a Data Center Bridging has been successfully negotiated on this
1448          * link then we'll use the skb's priority to map it to a TX Queue.
1449          * The skb's priority is determined via the VLAN Tag Priority Code
1450          * Point field.
1451          */
1452         if (cxgb4_dcb_enabled(dev)) {
1453                 u16 vlan_tci;
1454                 int err;
1455
1456                 err = vlan_get_tag(skb, &vlan_tci);
1457                 if (unlikely(err)) {
1458                         if (net_ratelimit())
1459                                 netdev_warn(dev,
1460                                             "TX Packet without VLAN Tag on DCB Link\n");
1461                         txq = 0;
1462                 } else {
1463                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1464                 }
1465                 return txq;
1466         }
1467 #endif /* CONFIG_CHELSIO_T4_DCB */
1468
1469         if (select_queue) {
1470                 txq = (skb_rx_queue_recorded(skb)
1471                         ? skb_get_rx_queue(skb)
1472                         : smp_processor_id());
1473
1474                 while (unlikely(txq >= dev->real_num_tx_queues))
1475                         txq -= dev->real_num_tx_queues;
1476
1477                 return txq;
1478         }
1479
1480         return fallback(dev, skb) % dev->real_num_tx_queues;
1481 }
1482
1483 static inline int is_offload(const struct adapter *adap)
1484 {
1485         return adap->params.offload;
1486 }
1487
1488 /*
1489  * Implementation of ethtool operations.
1490  */
1491
1492 static u32 get_msglevel(struct net_device *dev)
1493 {
1494         return netdev2adap(dev)->msg_enable;
1495 }
1496
1497 static void set_msglevel(struct net_device *dev, u32 val)
1498 {
1499         netdev2adap(dev)->msg_enable = val;
1500 }
1501
1502 static char stats_strings[][ETH_GSTRING_LEN] = {
1503         "TxOctetsOK         ",
1504         "TxFramesOK         ",
1505         "TxBroadcastFrames  ",
1506         "TxMulticastFrames  ",
1507         "TxUnicastFrames    ",
1508         "TxErrorFrames      ",
1509
1510         "TxFrames64         ",
1511         "TxFrames65To127    ",
1512         "TxFrames128To255   ",
1513         "TxFrames256To511   ",
1514         "TxFrames512To1023  ",
1515         "TxFrames1024To1518 ",
1516         "TxFrames1519ToMax  ",
1517
1518         "TxFramesDropped    ",
1519         "TxPauseFrames      ",
1520         "TxPPP0Frames       ",
1521         "TxPPP1Frames       ",
1522         "TxPPP2Frames       ",
1523         "TxPPP3Frames       ",
1524         "TxPPP4Frames       ",
1525         "TxPPP5Frames       ",
1526         "TxPPP6Frames       ",
1527         "TxPPP7Frames       ",
1528
1529         "RxOctetsOK         ",
1530         "RxFramesOK         ",
1531         "RxBroadcastFrames  ",
1532         "RxMulticastFrames  ",
1533         "RxUnicastFrames    ",
1534
1535         "RxFramesTooLong    ",
1536         "RxJabberErrors     ",
1537         "RxFCSErrors        ",
1538         "RxLengthErrors     ",
1539         "RxSymbolErrors     ",
1540         "RxRuntFrames       ",
1541
1542         "RxFrames64         ",
1543         "RxFrames65To127    ",
1544         "RxFrames128To255   ",
1545         "RxFrames256To511   ",
1546         "RxFrames512To1023  ",
1547         "RxFrames1024To1518 ",
1548         "RxFrames1519ToMax  ",
1549
1550         "RxPauseFrames      ",
1551         "RxPPP0Frames       ",
1552         "RxPPP1Frames       ",
1553         "RxPPP2Frames       ",
1554         "RxPPP3Frames       ",
1555         "RxPPP4Frames       ",
1556         "RxPPP5Frames       ",
1557         "RxPPP6Frames       ",
1558         "RxPPP7Frames       ",
1559
1560         "RxBG0FramesDropped ",
1561         "RxBG1FramesDropped ",
1562         "RxBG2FramesDropped ",
1563         "RxBG3FramesDropped ",
1564         "RxBG0FramesTrunc   ",
1565         "RxBG1FramesTrunc   ",
1566         "RxBG2FramesTrunc   ",
1567         "RxBG3FramesTrunc   ",
1568
1569         "TSO                ",
1570         "TxCsumOffload      ",
1571         "RxCsumGood         ",
1572         "VLANextractions    ",
1573         "VLANinsertions     ",
1574         "GROpackets         ",
1575         "GROmerged          ",
1576         "WriteCoalSuccess   ",
1577         "WriteCoalFail      ",
1578 };
1579
1580 static int get_sset_count(struct net_device *dev, int sset)
1581 {
1582         switch (sset) {
1583         case ETH_SS_STATS:
1584                 return ARRAY_SIZE(stats_strings);
1585         default:
1586                 return -EOPNOTSUPP;
1587         }
1588 }
1589
1590 #define T4_REGMAP_SIZE (160 * 1024)
1591 #define T5_REGMAP_SIZE (332 * 1024)
1592
1593 static int get_regs_len(struct net_device *dev)
1594 {
1595         struct adapter *adap = netdev2adap(dev);
1596         if (is_t4(adap->params.chip))
1597                 return T4_REGMAP_SIZE;
1598         else
1599                 return T5_REGMAP_SIZE;
1600 }
1601
1602 static int get_eeprom_len(struct net_device *dev)
1603 {
1604         return EEPROMSIZE;
1605 }
1606
1607 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1608 {
1609         struct adapter *adapter = netdev2adap(dev);
1610
1611         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1612         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1613         strlcpy(info->bus_info, pci_name(adapter->pdev),
1614                 sizeof(info->bus_info));
1615
1616         if (adapter->params.fw_vers)
1617                 snprintf(info->fw_version, sizeof(info->fw_version),
1618                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1619                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1620                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1621                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1622                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1623                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1624                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1625                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1626                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1627 }
1628
1629 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1630 {
1631         if (stringset == ETH_SS_STATS)
1632                 memcpy(data, stats_strings, sizeof(stats_strings));
1633 }
1634
1635 /*
1636  * port stats maintained per queue of the port.  They should be in the same
1637  * order as in stats_strings above.
1638  */
1639 struct queue_port_stats {
1640         u64 tso;
1641         u64 tx_csum;
1642         u64 rx_csum;
1643         u64 vlan_ex;
1644         u64 vlan_ins;
1645         u64 gro_pkts;
1646         u64 gro_merged;
1647 };
1648
1649 static void collect_sge_port_stats(const struct adapter *adap,
1650                 const struct port_info *p, struct queue_port_stats *s)
1651 {
1652         int i;
1653         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1654         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1655
1656         memset(s, 0, sizeof(*s));
1657         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1658                 s->tso += tx->tso;
1659                 s->tx_csum += tx->tx_cso;
1660                 s->rx_csum += rx->stats.rx_cso;
1661                 s->vlan_ex += rx->stats.vlan_ex;
1662                 s->vlan_ins += tx->vlan_ins;
1663                 s->gro_pkts += rx->stats.lro_pkts;
1664                 s->gro_merged += rx->stats.lro_merged;
1665         }
1666 }
1667
1668 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1669                       u64 *data)
1670 {
1671         struct port_info *pi = netdev_priv(dev);
1672         struct adapter *adapter = pi->adapter;
1673         u32 val1, val2;
1674
1675         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1676
1677         data += sizeof(struct port_stats) / sizeof(u64);
1678         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1679         data += sizeof(struct queue_port_stats) / sizeof(u64);
1680         if (!is_t4(adapter->params.chip)) {
1681                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1682                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1683                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1684                 *data = val1 - val2;
1685                 data++;
1686                 *data = val2;
1687                 data++;
1688         } else {
1689                 memset(data, 0, 2 * sizeof(u64));
1690                 *data += 2;
1691         }
1692 }
1693
1694 /*
1695  * Return a version number to identify the type of adapter.  The scheme is:
1696  * - bits 0..9: chip version
1697  * - bits 10..15: chip revision
1698  * - bits 16..23: register dump version
1699  */
1700 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1701 {
1702         return CHELSIO_CHIP_VERSION(ap->params.chip) |
1703                 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1704 }
1705
1706 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1707                            unsigned int end)
1708 {
1709         u32 *p = buf + start;
1710
1711         for ( ; start <= end; start += sizeof(u32))
1712                 *p++ = t4_read_reg(ap, start);
1713 }
1714
1715 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1716                      void *buf)
1717 {
1718         static const unsigned int t4_reg_ranges[] = {
1719                 0x1008, 0x1108,
1720                 0x1180, 0x11b4,
1721                 0x11fc, 0x123c,
1722                 0x1300, 0x173c,
1723                 0x1800, 0x18fc,
1724                 0x3000, 0x30d8,
1725                 0x30e0, 0x5924,
1726                 0x5960, 0x59d4,
1727                 0x5a00, 0x5af8,
1728                 0x6000, 0x6098,
1729                 0x6100, 0x6150,
1730                 0x6200, 0x6208,
1731                 0x6240, 0x6248,
1732                 0x6280, 0x6338,
1733                 0x6370, 0x638c,
1734                 0x6400, 0x643c,
1735                 0x6500, 0x6524,
1736                 0x6a00, 0x6a38,
1737                 0x6a60, 0x6a78,
1738                 0x6b00, 0x6b84,
1739                 0x6bf0, 0x6c84,
1740                 0x6cf0, 0x6d84,
1741                 0x6df0, 0x6e84,
1742                 0x6ef0, 0x6f84,
1743                 0x6ff0, 0x7084,
1744                 0x70f0, 0x7184,
1745                 0x71f0, 0x7284,
1746                 0x72f0, 0x7384,
1747                 0x73f0, 0x7450,
1748                 0x7500, 0x7530,
1749                 0x7600, 0x761c,
1750                 0x7680, 0x76cc,
1751                 0x7700, 0x7798,
1752                 0x77c0, 0x77fc,
1753                 0x7900, 0x79fc,
1754                 0x7b00, 0x7c38,
1755                 0x7d00, 0x7efc,
1756                 0x8dc0, 0x8e1c,
1757                 0x8e30, 0x8e78,
1758                 0x8ea0, 0x8f6c,
1759                 0x8fc0, 0x9074,
1760                 0x90fc, 0x90fc,
1761                 0x9400, 0x9458,
1762                 0x9600, 0x96bc,
1763                 0x9800, 0x9808,
1764                 0x9820, 0x983c,
1765                 0x9850, 0x9864,
1766                 0x9c00, 0x9c6c,
1767                 0x9c80, 0x9cec,
1768                 0x9d00, 0x9d6c,
1769                 0x9d80, 0x9dec,
1770                 0x9e00, 0x9e6c,
1771                 0x9e80, 0x9eec,
1772                 0x9f00, 0x9f6c,
1773                 0x9f80, 0x9fec,
1774                 0xd004, 0xd03c,
1775                 0xdfc0, 0xdfe0,
1776                 0xe000, 0xea7c,
1777                 0xf000, 0x11110,
1778                 0x11118, 0x11190,
1779                 0x19040, 0x1906c,
1780                 0x19078, 0x19080,
1781                 0x1908c, 0x19124,
1782                 0x19150, 0x191b0,
1783                 0x191d0, 0x191e8,
1784                 0x19238, 0x1924c,
1785                 0x193f8, 0x19474,
1786                 0x19490, 0x194f8,
1787                 0x19800, 0x19f30,
1788                 0x1a000, 0x1a06c,
1789                 0x1a0b0, 0x1a120,
1790                 0x1a128, 0x1a138,
1791                 0x1a190, 0x1a1c4,
1792                 0x1a1fc, 0x1a1fc,
1793                 0x1e040, 0x1e04c,
1794                 0x1e284, 0x1e28c,
1795                 0x1e2c0, 0x1e2c0,
1796                 0x1e2e0, 0x1e2e0,
1797                 0x1e300, 0x1e384,
1798                 0x1e3c0, 0x1e3c8,
1799                 0x1e440, 0x1e44c,
1800                 0x1e684, 0x1e68c,
1801                 0x1e6c0, 0x1e6c0,
1802                 0x1e6e0, 0x1e6e0,
1803                 0x1e700, 0x1e784,
1804                 0x1e7c0, 0x1e7c8,
1805                 0x1e840, 0x1e84c,
1806                 0x1ea84, 0x1ea8c,
1807                 0x1eac0, 0x1eac0,
1808                 0x1eae0, 0x1eae0,
1809                 0x1eb00, 0x1eb84,
1810                 0x1ebc0, 0x1ebc8,
1811                 0x1ec40, 0x1ec4c,
1812                 0x1ee84, 0x1ee8c,
1813                 0x1eec0, 0x1eec0,
1814                 0x1eee0, 0x1eee0,
1815                 0x1ef00, 0x1ef84,
1816                 0x1efc0, 0x1efc8,
1817                 0x1f040, 0x1f04c,
1818                 0x1f284, 0x1f28c,
1819                 0x1f2c0, 0x1f2c0,
1820                 0x1f2e0, 0x1f2e0,
1821                 0x1f300, 0x1f384,
1822                 0x1f3c0, 0x1f3c8,
1823                 0x1f440, 0x1f44c,
1824                 0x1f684, 0x1f68c,
1825                 0x1f6c0, 0x1f6c0,
1826                 0x1f6e0, 0x1f6e0,
1827                 0x1f700, 0x1f784,
1828                 0x1f7c0, 0x1f7c8,
1829                 0x1f840, 0x1f84c,
1830                 0x1fa84, 0x1fa8c,
1831                 0x1fac0, 0x1fac0,
1832                 0x1fae0, 0x1fae0,
1833                 0x1fb00, 0x1fb84,
1834                 0x1fbc0, 0x1fbc8,
1835                 0x1fc40, 0x1fc4c,
1836                 0x1fe84, 0x1fe8c,
1837                 0x1fec0, 0x1fec0,
1838                 0x1fee0, 0x1fee0,
1839                 0x1ff00, 0x1ff84,
1840                 0x1ffc0, 0x1ffc8,
1841                 0x20000, 0x2002c,
1842                 0x20100, 0x2013c,
1843                 0x20190, 0x201c8,
1844                 0x20200, 0x20318,
1845                 0x20400, 0x20528,
1846                 0x20540, 0x20614,
1847                 0x21000, 0x21040,
1848                 0x2104c, 0x21060,
1849                 0x210c0, 0x210ec,
1850                 0x21200, 0x21268,
1851                 0x21270, 0x21284,
1852                 0x212fc, 0x21388,
1853                 0x21400, 0x21404,
1854                 0x21500, 0x21518,
1855                 0x2152c, 0x2153c,
1856                 0x21550, 0x21554,
1857                 0x21600, 0x21600,
1858                 0x21608, 0x21628,
1859                 0x21630, 0x2163c,
1860                 0x21700, 0x2171c,
1861                 0x21780, 0x2178c,
1862                 0x21800, 0x21c38,
1863                 0x21c80, 0x21d7c,
1864                 0x21e00, 0x21e04,
1865                 0x22000, 0x2202c,
1866                 0x22100, 0x2213c,
1867                 0x22190, 0x221c8,
1868                 0x22200, 0x22318,
1869                 0x22400, 0x22528,
1870                 0x22540, 0x22614,
1871                 0x23000, 0x23040,
1872                 0x2304c, 0x23060,
1873                 0x230c0, 0x230ec,
1874                 0x23200, 0x23268,
1875                 0x23270, 0x23284,
1876                 0x232fc, 0x23388,
1877                 0x23400, 0x23404,
1878                 0x23500, 0x23518,
1879                 0x2352c, 0x2353c,
1880                 0x23550, 0x23554,
1881                 0x23600, 0x23600,
1882                 0x23608, 0x23628,
1883                 0x23630, 0x2363c,
1884                 0x23700, 0x2371c,
1885                 0x23780, 0x2378c,
1886                 0x23800, 0x23c38,
1887                 0x23c80, 0x23d7c,
1888                 0x23e00, 0x23e04,
1889                 0x24000, 0x2402c,
1890                 0x24100, 0x2413c,
1891                 0x24190, 0x241c8,
1892                 0x24200, 0x24318,
1893                 0x24400, 0x24528,
1894                 0x24540, 0x24614,
1895                 0x25000, 0x25040,
1896                 0x2504c, 0x25060,
1897                 0x250c0, 0x250ec,
1898                 0x25200, 0x25268,
1899                 0x25270, 0x25284,
1900                 0x252fc, 0x25388,
1901                 0x25400, 0x25404,
1902                 0x25500, 0x25518,
1903                 0x2552c, 0x2553c,
1904                 0x25550, 0x25554,
1905                 0x25600, 0x25600,
1906                 0x25608, 0x25628,
1907                 0x25630, 0x2563c,
1908                 0x25700, 0x2571c,
1909                 0x25780, 0x2578c,
1910                 0x25800, 0x25c38,
1911                 0x25c80, 0x25d7c,
1912                 0x25e00, 0x25e04,
1913                 0x26000, 0x2602c,
1914                 0x26100, 0x2613c,
1915                 0x26190, 0x261c8,
1916                 0x26200, 0x26318,
1917                 0x26400, 0x26528,
1918                 0x26540, 0x26614,
1919                 0x27000, 0x27040,
1920                 0x2704c, 0x27060,
1921                 0x270c0, 0x270ec,
1922                 0x27200, 0x27268,
1923                 0x27270, 0x27284,
1924                 0x272fc, 0x27388,
1925                 0x27400, 0x27404,
1926                 0x27500, 0x27518,
1927                 0x2752c, 0x2753c,
1928                 0x27550, 0x27554,
1929                 0x27600, 0x27600,
1930                 0x27608, 0x27628,
1931                 0x27630, 0x2763c,
1932                 0x27700, 0x2771c,
1933                 0x27780, 0x2778c,
1934                 0x27800, 0x27c38,
1935                 0x27c80, 0x27d7c,
1936                 0x27e00, 0x27e04
1937         };
1938
1939         static const unsigned int t5_reg_ranges[] = {
1940                 0x1008, 0x1148,
1941                 0x1180, 0x11b4,
1942                 0x11fc, 0x123c,
1943                 0x1280, 0x173c,
1944                 0x1800, 0x18fc,
1945                 0x3000, 0x3028,
1946                 0x3060, 0x30d8,
1947                 0x30e0, 0x30fc,
1948                 0x3140, 0x357c,
1949                 0x35a8, 0x35cc,
1950                 0x35ec, 0x35ec,
1951                 0x3600, 0x5624,
1952                 0x56cc, 0x575c,
1953                 0x580c, 0x5814,
1954                 0x5890, 0x58bc,
1955                 0x5940, 0x59dc,
1956                 0x59fc, 0x5a18,
1957                 0x5a60, 0x5a9c,
1958                 0x5b9c, 0x5bfc,
1959                 0x6000, 0x6040,
1960                 0x6058, 0x614c,
1961                 0x7700, 0x7798,
1962                 0x77c0, 0x78fc,
1963                 0x7b00, 0x7c54,
1964                 0x7d00, 0x7efc,
1965                 0x8dc0, 0x8de0,
1966                 0x8df8, 0x8e84,
1967                 0x8ea0, 0x8f84,
1968                 0x8fc0, 0x90f8,
1969                 0x9400, 0x9470,
1970                 0x9600, 0x96f4,
1971                 0x9800, 0x9808,
1972                 0x9820, 0x983c,
1973                 0x9850, 0x9864,
1974                 0x9c00, 0x9c6c,
1975                 0x9c80, 0x9cec,
1976                 0x9d00, 0x9d6c,
1977                 0x9d80, 0x9dec,
1978                 0x9e00, 0x9e6c,
1979                 0x9e80, 0x9eec,
1980                 0x9f00, 0x9f6c,
1981                 0x9f80, 0xa020,
1982                 0xd004, 0xd03c,
1983                 0xdfc0, 0xdfe0,
1984                 0xe000, 0x11088,
1985                 0x1109c, 0x11110,
1986                 0x11118, 0x1117c,
1987                 0x11190, 0x11204,
1988                 0x19040, 0x1906c,
1989                 0x19078, 0x19080,
1990                 0x1908c, 0x19124,
1991                 0x19150, 0x191b0,
1992                 0x191d0, 0x191e8,
1993                 0x19238, 0x19290,
1994                 0x193f8, 0x19474,
1995                 0x19490, 0x194cc,
1996                 0x194f0, 0x194f8,
1997                 0x19c00, 0x19c60,
1998                 0x19c94, 0x19e10,
1999                 0x19e50, 0x19f34,
2000                 0x19f40, 0x19f50,
2001                 0x19f90, 0x19fe4,
2002                 0x1a000, 0x1a06c,
2003                 0x1a0b0, 0x1a120,
2004                 0x1a128, 0x1a138,
2005                 0x1a190, 0x1a1c4,
2006                 0x1a1fc, 0x1a1fc,
2007                 0x1e008, 0x1e00c,
2008                 0x1e040, 0x1e04c,
2009                 0x1e284, 0x1e290,
2010                 0x1e2c0, 0x1e2c0,
2011                 0x1e2e0, 0x1e2e0,
2012                 0x1e300, 0x1e384,
2013                 0x1e3c0, 0x1e3c8,
2014                 0x1e408, 0x1e40c,
2015                 0x1e440, 0x1e44c,
2016                 0x1e684, 0x1e690,
2017                 0x1e6c0, 0x1e6c0,
2018                 0x1e6e0, 0x1e6e0,
2019                 0x1e700, 0x1e784,
2020                 0x1e7c0, 0x1e7c8,
2021                 0x1e808, 0x1e80c,
2022                 0x1e840, 0x1e84c,
2023                 0x1ea84, 0x1ea90,
2024                 0x1eac0, 0x1eac0,
2025                 0x1eae0, 0x1eae0,
2026                 0x1eb00, 0x1eb84,
2027                 0x1ebc0, 0x1ebc8,
2028                 0x1ec08, 0x1ec0c,
2029                 0x1ec40, 0x1ec4c,
2030                 0x1ee84, 0x1ee90,
2031                 0x1eec0, 0x1eec0,
2032                 0x1eee0, 0x1eee0,
2033                 0x1ef00, 0x1ef84,
2034                 0x1efc0, 0x1efc8,
2035                 0x1f008, 0x1f00c,
2036                 0x1f040, 0x1f04c,
2037                 0x1f284, 0x1f290,
2038                 0x1f2c0, 0x1f2c0,
2039                 0x1f2e0, 0x1f2e0,
2040                 0x1f300, 0x1f384,
2041                 0x1f3c0, 0x1f3c8,
2042                 0x1f408, 0x1f40c,
2043                 0x1f440, 0x1f44c,
2044                 0x1f684, 0x1f690,
2045                 0x1f6c0, 0x1f6c0,
2046                 0x1f6e0, 0x1f6e0,
2047                 0x1f700, 0x1f784,
2048                 0x1f7c0, 0x1f7c8,
2049                 0x1f808, 0x1f80c,
2050                 0x1f840, 0x1f84c,
2051                 0x1fa84, 0x1fa90,
2052                 0x1fac0, 0x1fac0,
2053                 0x1fae0, 0x1fae0,
2054                 0x1fb00, 0x1fb84,
2055                 0x1fbc0, 0x1fbc8,
2056                 0x1fc08, 0x1fc0c,
2057                 0x1fc40, 0x1fc4c,
2058                 0x1fe84, 0x1fe90,
2059                 0x1fec0, 0x1fec0,
2060                 0x1fee0, 0x1fee0,
2061                 0x1ff00, 0x1ff84,
2062                 0x1ffc0, 0x1ffc8,
2063                 0x30000, 0x30030,
2064                 0x30100, 0x30144,
2065                 0x30190, 0x301d0,
2066                 0x30200, 0x30318,
2067                 0x30400, 0x3052c,
2068                 0x30540, 0x3061c,
2069                 0x30800, 0x30834,
2070                 0x308c0, 0x30908,
2071                 0x30910, 0x309ac,
2072                 0x30a00, 0x30a04,
2073                 0x30a0c, 0x30a2c,
2074                 0x30a44, 0x30a50,
2075                 0x30a74, 0x30c24,
2076                 0x30d08, 0x30d14,
2077                 0x30d1c, 0x30d20,
2078                 0x30d3c, 0x30d50,
2079                 0x31200, 0x3120c,
2080                 0x31220, 0x31220,
2081                 0x31240, 0x31240,
2082                 0x31600, 0x31600,
2083                 0x31608, 0x3160c,
2084                 0x31a00, 0x31a1c,
2085                 0x31e04, 0x31e20,
2086                 0x31e38, 0x31e3c,
2087                 0x31e80, 0x31e80,
2088                 0x31e88, 0x31ea8,
2089                 0x31eb0, 0x31eb4,
2090                 0x31ec8, 0x31ed4,
2091                 0x31fb8, 0x32004,
2092                 0x32208, 0x3223c,
2093                 0x32600, 0x32630,
2094                 0x32a00, 0x32abc,
2095                 0x32b00, 0x32b70,
2096                 0x33000, 0x33048,
2097                 0x33060, 0x3309c,
2098                 0x330f0, 0x33148,
2099                 0x33160, 0x3319c,
2100                 0x331f0, 0x332e4,
2101                 0x332f8, 0x333e4,
2102                 0x333f8, 0x33448,
2103                 0x33460, 0x3349c,
2104                 0x334f0, 0x33548,
2105                 0x33560, 0x3359c,
2106                 0x335f0, 0x336e4,
2107                 0x336f8, 0x337e4,
2108                 0x337f8, 0x337fc,
2109                 0x33814, 0x33814,
2110                 0x3382c, 0x3382c,
2111                 0x33880, 0x3388c,
2112                 0x338e8, 0x338ec,
2113                 0x33900, 0x33948,
2114                 0x33960, 0x3399c,
2115                 0x339f0, 0x33ae4,
2116                 0x33af8, 0x33b10,
2117                 0x33b28, 0x33b28,
2118                 0x33b3c, 0x33b50,
2119                 0x33bf0, 0x33c10,
2120                 0x33c28, 0x33c28,
2121                 0x33c3c, 0x33c50,
2122                 0x33cf0, 0x33cfc,
2123                 0x34000, 0x34030,
2124                 0x34100, 0x34144,
2125                 0x34190, 0x341d0,
2126                 0x34200, 0x34318,
2127                 0x34400, 0x3452c,
2128                 0x34540, 0x3461c,
2129                 0x34800, 0x34834,
2130                 0x348c0, 0x34908,
2131                 0x34910, 0x349ac,
2132                 0x34a00, 0x34a04,
2133                 0x34a0c, 0x34a2c,
2134                 0x34a44, 0x34a50,
2135                 0x34a74, 0x34c24,
2136                 0x34d08, 0x34d14,
2137                 0x34d1c, 0x34d20,
2138                 0x34d3c, 0x34d50,
2139                 0x35200, 0x3520c,
2140                 0x35220, 0x35220,
2141                 0x35240, 0x35240,
2142                 0x35600, 0x35600,
2143                 0x35608, 0x3560c,
2144                 0x35a00, 0x35a1c,
2145                 0x35e04, 0x35e20,
2146                 0x35e38, 0x35e3c,
2147                 0x35e80, 0x35e80,
2148                 0x35e88, 0x35ea8,
2149                 0x35eb0, 0x35eb4,
2150                 0x35ec8, 0x35ed4,
2151                 0x35fb8, 0x36004,
2152                 0x36208, 0x3623c,
2153                 0x36600, 0x36630,
2154                 0x36a00, 0x36abc,
2155                 0x36b00, 0x36b70,
2156                 0x37000, 0x37048,
2157                 0x37060, 0x3709c,
2158                 0x370f0, 0x37148,
2159                 0x37160, 0x3719c,
2160                 0x371f0, 0x372e4,
2161                 0x372f8, 0x373e4,
2162                 0x373f8, 0x37448,
2163                 0x37460, 0x3749c,
2164                 0x374f0, 0x37548,
2165                 0x37560, 0x3759c,
2166                 0x375f0, 0x376e4,
2167                 0x376f8, 0x377e4,
2168                 0x377f8, 0x377fc,
2169                 0x37814, 0x37814,
2170                 0x3782c, 0x3782c,
2171                 0x37880, 0x3788c,
2172                 0x378e8, 0x378ec,
2173                 0x37900, 0x37948,
2174                 0x37960, 0x3799c,
2175                 0x379f0, 0x37ae4,
2176                 0x37af8, 0x37b10,
2177                 0x37b28, 0x37b28,
2178                 0x37b3c, 0x37b50,
2179                 0x37bf0, 0x37c10,
2180                 0x37c28, 0x37c28,
2181                 0x37c3c, 0x37c50,
2182                 0x37cf0, 0x37cfc,
2183                 0x38000, 0x38030,
2184                 0x38100, 0x38144,
2185                 0x38190, 0x381d0,
2186                 0x38200, 0x38318,
2187                 0x38400, 0x3852c,
2188                 0x38540, 0x3861c,
2189                 0x38800, 0x38834,
2190                 0x388c0, 0x38908,
2191                 0x38910, 0x389ac,
2192                 0x38a00, 0x38a04,
2193                 0x38a0c, 0x38a2c,
2194                 0x38a44, 0x38a50,
2195                 0x38a74, 0x38c24,
2196                 0x38d08, 0x38d14,
2197                 0x38d1c, 0x38d20,
2198                 0x38d3c, 0x38d50,
2199                 0x39200, 0x3920c,
2200                 0x39220, 0x39220,
2201                 0x39240, 0x39240,
2202                 0x39600, 0x39600,
2203                 0x39608, 0x3960c,
2204                 0x39a00, 0x39a1c,
2205                 0x39e04, 0x39e20,
2206                 0x39e38, 0x39e3c,
2207                 0x39e80, 0x39e80,
2208                 0x39e88, 0x39ea8,
2209                 0x39eb0, 0x39eb4,
2210                 0x39ec8, 0x39ed4,
2211                 0x39fb8, 0x3a004,
2212                 0x3a208, 0x3a23c,
2213                 0x3a600, 0x3a630,
2214                 0x3aa00, 0x3aabc,
2215                 0x3ab00, 0x3ab70,
2216                 0x3b000, 0x3b048,
2217                 0x3b060, 0x3b09c,
2218                 0x3b0f0, 0x3b148,
2219                 0x3b160, 0x3b19c,
2220                 0x3b1f0, 0x3b2e4,
2221                 0x3b2f8, 0x3b3e4,
2222                 0x3b3f8, 0x3b448,
2223                 0x3b460, 0x3b49c,
2224                 0x3b4f0, 0x3b548,
2225                 0x3b560, 0x3b59c,
2226                 0x3b5f0, 0x3b6e4,
2227                 0x3b6f8, 0x3b7e4,
2228                 0x3b7f8, 0x3b7fc,
2229                 0x3b814, 0x3b814,
2230                 0x3b82c, 0x3b82c,
2231                 0x3b880, 0x3b88c,
2232                 0x3b8e8, 0x3b8ec,
2233                 0x3b900, 0x3b948,
2234                 0x3b960, 0x3b99c,
2235                 0x3b9f0, 0x3bae4,
2236                 0x3baf8, 0x3bb10,
2237                 0x3bb28, 0x3bb28,
2238                 0x3bb3c, 0x3bb50,
2239                 0x3bbf0, 0x3bc10,
2240                 0x3bc28, 0x3bc28,
2241                 0x3bc3c, 0x3bc50,
2242                 0x3bcf0, 0x3bcfc,
2243                 0x3c000, 0x3c030,
2244                 0x3c100, 0x3c144,
2245                 0x3c190, 0x3c1d0,
2246                 0x3c200, 0x3c318,
2247                 0x3c400, 0x3c52c,
2248                 0x3c540, 0x3c61c,
2249                 0x3c800, 0x3c834,
2250                 0x3c8c0, 0x3c908,
2251                 0x3c910, 0x3c9ac,
2252                 0x3ca00, 0x3ca04,
2253                 0x3ca0c, 0x3ca2c,
2254                 0x3ca44, 0x3ca50,
2255                 0x3ca74, 0x3cc24,
2256                 0x3cd08, 0x3cd14,
2257                 0x3cd1c, 0x3cd20,
2258                 0x3cd3c, 0x3cd50,
2259                 0x3d200, 0x3d20c,
2260                 0x3d220, 0x3d220,
2261                 0x3d240, 0x3d240,
2262                 0x3d600, 0x3d600,
2263                 0x3d608, 0x3d60c,
2264                 0x3da00, 0x3da1c,
2265                 0x3de04, 0x3de20,
2266                 0x3de38, 0x3de3c,
2267                 0x3de80, 0x3de80,
2268                 0x3de88, 0x3dea8,
2269                 0x3deb0, 0x3deb4,
2270                 0x3dec8, 0x3ded4,
2271                 0x3dfb8, 0x3e004,
2272                 0x3e208, 0x3e23c,
2273                 0x3e600, 0x3e630,
2274                 0x3ea00, 0x3eabc,
2275                 0x3eb00, 0x3eb70,
2276                 0x3f000, 0x3f048,
2277                 0x3f060, 0x3f09c,
2278                 0x3f0f0, 0x3f148,
2279                 0x3f160, 0x3f19c,
2280                 0x3f1f0, 0x3f2e4,
2281                 0x3f2f8, 0x3f3e4,
2282                 0x3f3f8, 0x3f448,
2283                 0x3f460, 0x3f49c,
2284                 0x3f4f0, 0x3f548,
2285                 0x3f560, 0x3f59c,
2286                 0x3f5f0, 0x3f6e4,
2287                 0x3f6f8, 0x3f7e4,
2288                 0x3f7f8, 0x3f7fc,
2289                 0x3f814, 0x3f814,
2290                 0x3f82c, 0x3f82c,
2291                 0x3f880, 0x3f88c,
2292                 0x3f8e8, 0x3f8ec,
2293                 0x3f900, 0x3f948,
2294                 0x3f960, 0x3f99c,
2295                 0x3f9f0, 0x3fae4,
2296                 0x3faf8, 0x3fb10,
2297                 0x3fb28, 0x3fb28,
2298                 0x3fb3c, 0x3fb50,
2299                 0x3fbf0, 0x3fc10,
2300                 0x3fc28, 0x3fc28,
2301                 0x3fc3c, 0x3fc50,
2302                 0x3fcf0, 0x3fcfc,
2303                 0x40000, 0x4000c,
2304                 0x40040, 0x40068,
2305                 0x40080, 0x40144,
2306                 0x40180, 0x4018c,
2307                 0x40200, 0x40298,
2308                 0x402ac, 0x4033c,
2309                 0x403f8, 0x403fc,
2310                 0x41304, 0x413c4,
2311                 0x41400, 0x4141c,
2312                 0x41480, 0x414d0,
2313                 0x44000, 0x44078,
2314                 0x440c0, 0x44278,
2315                 0x442c0, 0x44478,
2316                 0x444c0, 0x44678,
2317                 0x446c0, 0x44878,
2318                 0x448c0, 0x449fc,
2319                 0x45000, 0x45068,
2320                 0x45080, 0x45084,
2321                 0x450a0, 0x450b0,
2322                 0x45200, 0x45268,
2323                 0x45280, 0x45284,
2324                 0x452a0, 0x452b0,
2325                 0x460c0, 0x460e4,
2326                 0x47000, 0x4708c,
2327                 0x47200, 0x47250,
2328                 0x47400, 0x47420,
2329                 0x47600, 0x47618,
2330                 0x47800, 0x47814,
2331                 0x48000, 0x4800c,
2332                 0x48040, 0x48068,
2333                 0x48080, 0x48144,
2334                 0x48180, 0x4818c,
2335                 0x48200, 0x48298,
2336                 0x482ac, 0x4833c,
2337                 0x483f8, 0x483fc,
2338                 0x49304, 0x493c4,
2339                 0x49400, 0x4941c,
2340                 0x49480, 0x494d0,
2341                 0x4c000, 0x4c078,
2342                 0x4c0c0, 0x4c278,
2343                 0x4c2c0, 0x4c478,
2344                 0x4c4c0, 0x4c678,
2345                 0x4c6c0, 0x4c878,
2346                 0x4c8c0, 0x4c9fc,
2347                 0x4d000, 0x4d068,
2348                 0x4d080, 0x4d084,
2349                 0x4d0a0, 0x4d0b0,
2350                 0x4d200, 0x4d268,
2351                 0x4d280, 0x4d284,
2352                 0x4d2a0, 0x4d2b0,
2353                 0x4e0c0, 0x4e0e4,
2354                 0x4f000, 0x4f08c,
2355                 0x4f200, 0x4f250,
2356                 0x4f400, 0x4f420,
2357                 0x4f600, 0x4f618,
2358                 0x4f800, 0x4f814,
2359                 0x50000, 0x500cc,
2360                 0x50400, 0x50400,
2361                 0x50800, 0x508cc,
2362                 0x50c00, 0x50c00,
2363                 0x51000, 0x5101c,
2364                 0x51300, 0x51308,
2365         };
2366
2367         int i;
2368         struct adapter *ap = netdev2adap(dev);
2369         static const unsigned int *reg_ranges;
2370         int arr_size = 0, buf_size = 0;
2371
2372         if (is_t4(ap->params.chip)) {
2373                 reg_ranges = &t4_reg_ranges[0];
2374                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2375                 buf_size = T4_REGMAP_SIZE;
2376         } else {
2377                 reg_ranges = &t5_reg_ranges[0];
2378                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2379                 buf_size = T5_REGMAP_SIZE;
2380         }
2381
2382         regs->version = mk_adap_vers(ap);
2383
2384         memset(buf, 0, buf_size);
2385         for (i = 0; i < arr_size; i += 2)
2386                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2387 }
2388
2389 static int restart_autoneg(struct net_device *dev)
2390 {
2391         struct port_info *p = netdev_priv(dev);
2392
2393         if (!netif_running(dev))
2394                 return -EAGAIN;
2395         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2396                 return -EINVAL;
2397         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2398         return 0;
2399 }
2400
2401 static int identify_port(struct net_device *dev,
2402                          enum ethtool_phys_id_state state)
2403 {
2404         unsigned int val;
2405         struct adapter *adap = netdev2adap(dev);
2406
2407         if (state == ETHTOOL_ID_ACTIVE)
2408                 val = 0xffff;
2409         else if (state == ETHTOOL_ID_INACTIVE)
2410                 val = 0;
2411         else
2412                 return -EINVAL;
2413
2414         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2415 }
2416
2417 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2418 {
2419         unsigned int v = 0;
2420
2421         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2422             type == FW_PORT_TYPE_BT_XAUI) {
2423                 v |= SUPPORTED_TP;
2424                 if (caps & FW_PORT_CAP_SPEED_100M)
2425                         v |= SUPPORTED_100baseT_Full;
2426                 if (caps & FW_PORT_CAP_SPEED_1G)
2427                         v |= SUPPORTED_1000baseT_Full;
2428                 if (caps & FW_PORT_CAP_SPEED_10G)
2429                         v |= SUPPORTED_10000baseT_Full;
2430         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2431                 v |= SUPPORTED_Backplane;
2432                 if (caps & FW_PORT_CAP_SPEED_1G)
2433                         v |= SUPPORTED_1000baseKX_Full;
2434                 if (caps & FW_PORT_CAP_SPEED_10G)
2435                         v |= SUPPORTED_10000baseKX4_Full;
2436         } else if (type == FW_PORT_TYPE_KR)
2437                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2438         else if (type == FW_PORT_TYPE_BP_AP)
2439                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2440                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2441         else if (type == FW_PORT_TYPE_BP4_AP)
2442                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2443                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2444                      SUPPORTED_10000baseKX4_Full;
2445         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2446                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2447                 v |= SUPPORTED_FIBRE;
2448         else if (type == FW_PORT_TYPE_BP40_BA)
2449                 v |= SUPPORTED_40000baseSR4_Full;
2450
2451         if (caps & FW_PORT_CAP_ANEG)
2452                 v |= SUPPORTED_Autoneg;
2453         return v;
2454 }
2455
2456 static unsigned int to_fw_linkcaps(unsigned int caps)
2457 {
2458         unsigned int v = 0;
2459
2460         if (caps & ADVERTISED_100baseT_Full)
2461                 v |= FW_PORT_CAP_SPEED_100M;
2462         if (caps & ADVERTISED_1000baseT_Full)
2463                 v |= FW_PORT_CAP_SPEED_1G;
2464         if (caps & ADVERTISED_10000baseT_Full)
2465                 v |= FW_PORT_CAP_SPEED_10G;
2466         if (caps & ADVERTISED_40000baseSR4_Full)
2467                 v |= FW_PORT_CAP_SPEED_40G;
2468         return v;
2469 }
2470
2471 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2472 {
2473         const struct port_info *p = netdev_priv(dev);
2474
2475         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2476             p->port_type == FW_PORT_TYPE_BT_XFI ||
2477             p->port_type == FW_PORT_TYPE_BT_XAUI)
2478                 cmd->port = PORT_TP;
2479         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2480                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2481                 cmd->port = PORT_FIBRE;
2482         else if (p->port_type == FW_PORT_TYPE_SFP ||
2483                  p->port_type == FW_PORT_TYPE_QSFP_10G ||
2484                  p->port_type == FW_PORT_TYPE_QSFP) {
2485                 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2486                     p->mod_type == FW_PORT_MOD_TYPE_SR ||
2487                     p->mod_type == FW_PORT_MOD_TYPE_ER ||
2488                     p->mod_type == FW_PORT_MOD_TYPE_LRM)
2489                         cmd->port = PORT_FIBRE;
2490                 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2491                          p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2492                         cmd->port = PORT_DA;
2493                 else
2494                         cmd->port = PORT_OTHER;
2495         } else
2496                 cmd->port = PORT_OTHER;
2497
2498         if (p->mdio_addr >= 0) {
2499                 cmd->phy_address = p->mdio_addr;
2500                 cmd->transceiver = XCVR_EXTERNAL;
2501                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2502                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2503         } else {
2504                 cmd->phy_address = 0;  /* not really, but no better option */
2505                 cmd->transceiver = XCVR_INTERNAL;
2506                 cmd->mdio_support = 0;
2507         }
2508
2509         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2510         cmd->advertising = from_fw_linkcaps(p->port_type,
2511                                             p->link_cfg.advertising);
2512         ethtool_cmd_speed_set(cmd,
2513                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2514         cmd->duplex = DUPLEX_FULL;
2515         cmd->autoneg = p->link_cfg.autoneg;
2516         cmd->maxtxpkt = 0;
2517         cmd->maxrxpkt = 0;
2518         return 0;
2519 }
2520
2521 static unsigned int speed_to_caps(int speed)
2522 {
2523         if (speed == 100)
2524                 return FW_PORT_CAP_SPEED_100M;
2525         if (speed == 1000)
2526                 return FW_PORT_CAP_SPEED_1G;
2527         if (speed == 10000)
2528                 return FW_PORT_CAP_SPEED_10G;
2529         if (speed == 40000)
2530                 return FW_PORT_CAP_SPEED_40G;
2531         return 0;
2532 }
2533
2534 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2535 {
2536         unsigned int cap;
2537         struct port_info *p = netdev_priv(dev);
2538         struct link_config *lc = &p->link_cfg;
2539         u32 speed = ethtool_cmd_speed(cmd);
2540
2541         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2542                 return -EINVAL;
2543
2544         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2545                 /*
2546                  * PHY offers a single speed.  See if that's what's
2547                  * being requested.
2548                  */
2549                 if (cmd->autoneg == AUTONEG_DISABLE &&
2550                     (lc->supported & speed_to_caps(speed)))
2551                         return 0;
2552                 return -EINVAL;
2553         }
2554
2555         if (cmd->autoneg == AUTONEG_DISABLE) {
2556                 cap = speed_to_caps(speed);
2557
2558                 if (!(lc->supported & cap) ||
2559                     (speed == 1000) ||
2560                     (speed == 10000) ||
2561                     (speed == 40000))
2562                         return -EINVAL;
2563                 lc->requested_speed = cap;
2564                 lc->advertising = 0;
2565         } else {
2566                 cap = to_fw_linkcaps(cmd->advertising);
2567                 if (!(lc->supported & cap))
2568                         return -EINVAL;
2569                 lc->requested_speed = 0;
2570                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2571         }
2572         lc->autoneg = cmd->autoneg;
2573
2574         if (netif_running(dev))
2575                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2576                                      lc);
2577         return 0;
2578 }
2579
2580 static void get_pauseparam(struct net_device *dev,
2581                            struct ethtool_pauseparam *epause)
2582 {
2583         struct port_info *p = netdev_priv(dev);
2584
2585         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2586         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2587         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2588 }
2589
2590 static int set_pauseparam(struct net_device *dev,
2591                           struct ethtool_pauseparam *epause)
2592 {
2593         struct port_info *p = netdev_priv(dev);
2594         struct link_config *lc = &p->link_cfg;
2595
2596         if (epause->autoneg == AUTONEG_DISABLE)
2597                 lc->requested_fc = 0;
2598         else if (lc->supported & FW_PORT_CAP_ANEG)
2599                 lc->requested_fc = PAUSE_AUTONEG;
2600         else
2601                 return -EINVAL;
2602
2603         if (epause->rx_pause)
2604                 lc->requested_fc |= PAUSE_RX;
2605         if (epause->tx_pause)
2606                 lc->requested_fc |= PAUSE_TX;
2607         if (netif_running(dev))
2608                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2609                                      lc);
2610         return 0;
2611 }
2612
2613 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2614 {
2615         const struct port_info *pi = netdev_priv(dev);
2616         const struct sge *s = &pi->adapter->sge;
2617
2618         e->rx_max_pending = MAX_RX_BUFFERS;
2619         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2620         e->rx_jumbo_max_pending = 0;
2621         e->tx_max_pending = MAX_TXQ_ENTRIES;
2622
2623         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2624         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2625         e->rx_jumbo_pending = 0;
2626         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2627 }
2628
2629 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2630 {
2631         int i;
2632         const struct port_info *pi = netdev_priv(dev);
2633         struct adapter *adapter = pi->adapter;
2634         struct sge *s = &adapter->sge;
2635
2636         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2637             e->tx_pending > MAX_TXQ_ENTRIES ||
2638             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2639             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2640             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2641                 return -EINVAL;
2642
2643         if (adapter->flags & FULL_INIT_DONE)
2644                 return -EBUSY;
2645
2646         for (i = 0; i < pi->nqsets; ++i) {
2647                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2648                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2649                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2650         }
2651         return 0;
2652 }
2653
2654 static int closest_timer(const struct sge *s, int time)
2655 {
2656         int i, delta, match = 0, min_delta = INT_MAX;
2657
2658         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2659                 delta = time - s->timer_val[i];
2660                 if (delta < 0)
2661                         delta = -delta;
2662                 if (delta < min_delta) {
2663                         min_delta = delta;
2664                         match = i;
2665                 }
2666         }
2667         return match;
2668 }
2669
2670 static int closest_thres(const struct sge *s, int thres)
2671 {
2672         int i, delta, match = 0, min_delta = INT_MAX;
2673
2674         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2675                 delta = thres - s->counter_val[i];
2676                 if (delta < 0)
2677                         delta = -delta;
2678                 if (delta < min_delta) {
2679                         min_delta = delta;
2680                         match = i;
2681                 }
2682         }
2683         return match;
2684 }
2685
2686 /*
2687  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2688  */
2689 static unsigned int qtimer_val(const struct adapter *adap,
2690                                const struct sge_rspq *q)
2691 {
2692         unsigned int idx = q->intr_params >> 1;
2693
2694         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2695 }
2696
2697 /**
2698  *      set_rspq_intr_params - set a queue's interrupt holdoff parameters
2699  *      @q: the Rx queue
2700  *      @us: the hold-off time in us, or 0 to disable timer
2701  *      @cnt: the hold-off packet count, or 0 to disable counter
2702  *
2703  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2704  *      one of the two needs to be enabled for the queue to generate interrupts.
2705  */
2706 static int set_rspq_intr_params(struct sge_rspq *q,
2707                                 unsigned int us, unsigned int cnt)
2708 {
2709         struct adapter *adap = q->adap;
2710
2711         if ((us | cnt) == 0)
2712                 cnt = 1;
2713
2714         if (cnt) {
2715                 int err;
2716                 u32 v, new_idx;
2717
2718                 new_idx = closest_thres(&adap->sge, cnt);
2719                 if (q->desc && q->pktcnt_idx != new_idx) {
2720                         /* the queue has already been created, update it */
2721                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2722                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2723                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
2724                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2725                                             &new_idx);
2726                         if (err)
2727                                 return err;
2728                 }
2729                 q->pktcnt_idx = new_idx;
2730         }
2731
2732         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2733         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2734         return 0;
2735 }
2736
2737 /**
2738  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2739  * @dev: the network device
2740  * @us: the hold-off time in us, or 0 to disable timer
2741  * @cnt: the hold-off packet count, or 0 to disable counter
2742  *
2743  * Set the RX interrupt hold-off parameters for a network device.
2744  */
2745 static int set_rx_intr_params(struct net_device *dev,
2746                               unsigned int us, unsigned int cnt)
2747 {
2748         int i, err;
2749         struct port_info *pi = netdev_priv(dev);
2750         struct adapter *adap = pi->adapter;
2751         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2752
2753         for (i = 0; i < pi->nqsets; i++, q++) {
2754                 err = set_rspq_intr_params(&q->rspq, us, cnt);
2755                 if (err)
2756                         return err;
2757         }
2758         return 0;
2759 }
2760
2761 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
2762 {
2763         int i;
2764         struct port_info *pi = netdev_priv(dev);
2765         struct adapter *adap = pi->adapter;
2766         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2767
2768         for (i = 0; i < pi->nqsets; i++, q++)
2769                 q->rspq.adaptive_rx = adaptive_rx;
2770
2771         return 0;
2772 }
2773
2774 static int get_adaptive_rx_setting(struct net_device *dev)
2775 {
2776         struct port_info *pi = netdev_priv(dev);
2777         struct adapter *adap = pi->adapter;
2778         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2779
2780         return q->rspq.adaptive_rx;
2781 }
2782
2783 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2784 {
2785         set_adaptive_rx_setting(dev, c->use_adaptive_rx_coalesce);
2786         return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2787                                   c->rx_max_coalesced_frames);
2788 }
2789
2790 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2791 {
2792         const struct port_info *pi = netdev_priv(dev);
2793         const struct adapter *adap = pi->adapter;
2794         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2795
2796         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2797         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2798                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2799         c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
2800         return 0;
2801 }
2802
2803 /**
2804  *      eeprom_ptov - translate a physical EEPROM address to virtual
2805  *      @phys_addr: the physical EEPROM address
2806  *      @fn: the PCI function number
2807  *      @sz: size of function-specific area
2808  *
2809  *      Translate a physical EEPROM address to virtual.  The first 1K is
2810  *      accessed through virtual addresses starting at 31K, the rest is
2811  *      accessed through virtual addresses starting at 0.
2812  *
2813  *      The mapping is as follows:
2814  *      [0..1K) -> [31K..32K)
2815  *      [1K..1K+A) -> [31K-A..31K)
2816  *      [1K+A..ES) -> [0..ES-A-1K)
2817  *
2818  *      where A = @fn * @sz, and ES = EEPROM size.
2819  */
2820 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2821 {
2822         fn *= sz;
2823         if (phys_addr < 1024)
2824                 return phys_addr + (31 << 10);
2825         if (phys_addr < 1024 + fn)
2826                 return 31744 - fn + phys_addr - 1024;
2827         if (phys_addr < EEPROMSIZE)
2828                 return phys_addr - 1024 - fn;
2829         return -EINVAL;
2830 }
2831
2832 /*
2833  * The next two routines implement eeprom read/write from physical addresses.
2834  */
2835 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2836 {
2837         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2838
2839         if (vaddr >= 0)
2840                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2841         return vaddr < 0 ? vaddr : 0;
2842 }
2843
2844 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2845 {
2846         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2847
2848         if (vaddr >= 0)
2849                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2850         return vaddr < 0 ? vaddr : 0;
2851 }
2852
2853 #define EEPROM_MAGIC 0x38E2F10C
2854
2855 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2856                       u8 *data)
2857 {
2858         int i, err = 0;
2859         struct adapter *adapter = netdev2adap(dev);
2860
2861         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2862         if (!buf)
2863                 return -ENOMEM;
2864
2865         e->magic = EEPROM_MAGIC;
2866         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2867                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2868
2869         if (!err)
2870                 memcpy(data, buf + e->offset, e->len);
2871         kfree(buf);
2872         return err;
2873 }
2874
2875 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2876                       u8 *data)
2877 {
2878         u8 *buf;
2879         int err = 0;
2880         u32 aligned_offset, aligned_len, *p;
2881         struct adapter *adapter = netdev2adap(dev);
2882
2883         if (eeprom->magic != EEPROM_MAGIC)
2884                 return -EINVAL;
2885
2886         aligned_offset = eeprom->offset & ~3;
2887         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2888
2889         if (adapter->fn > 0) {
2890                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2891
2892                 if (aligned_offset < start ||
2893                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2894                         return -EPERM;
2895         }
2896
2897         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2898                 /*
2899                  * RMW possibly needed for first or last words.
2900                  */
2901                 buf = kmalloc(aligned_len, GFP_KERNEL);
2902                 if (!buf)
2903                         return -ENOMEM;
2904                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2905                 if (!err && aligned_len > 4)
2906                         err = eeprom_rd_phys(adapter,
2907                                              aligned_offset + aligned_len - 4,
2908                                              (u32 *)&buf[aligned_len - 4]);
2909                 if (err)
2910                         goto out;
2911                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2912         } else
2913                 buf = data;
2914
2915         err = t4_seeprom_wp(adapter, false);
2916         if (err)
2917                 goto out;
2918
2919         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2920                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2921                 aligned_offset += 4;
2922         }
2923
2924         if (!err)
2925                 err = t4_seeprom_wp(adapter, true);
2926 out:
2927         if (buf != data)
2928                 kfree(buf);
2929         return err;
2930 }
2931
2932 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2933 {
2934         int ret;
2935         const struct firmware *fw;
2936         struct adapter *adap = netdev2adap(netdev);
2937         unsigned int mbox = FW_PCIE_FW_MASTER_MASK + 1;
2938
2939         ef->data[sizeof(ef->data) - 1] = '\0';
2940         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2941         if (ret < 0)
2942                 return ret;
2943
2944         /* If the adapter has been fully initialized then we'll go ahead and
2945          * try to get the firmware's cooperation in upgrading to the new
2946          * firmware image otherwise we'll try to do the entire job from the
2947          * host ... and we always "force" the operation in this path.
2948          */
2949         if (adap->flags & FULL_INIT_DONE)
2950                 mbox = adap->mbox;
2951
2952         ret = t4_fw_upgrade(adap, mbox, fw->data, fw->size, 1);
2953         release_firmware(fw);
2954         if (!ret)
2955                 dev_info(adap->pdev_dev, "loaded firmware %s,"
2956                          " reload cxgb4 driver\n", ef->data);
2957         return ret;
2958 }
2959
2960 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2961 #define BCAST_CRC 0xa0ccc1a6
2962
2963 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2964 {
2965         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2966         wol->wolopts = netdev2adap(dev)->wol;
2967         memset(&wol->sopass, 0, sizeof(wol->sopass));
2968 }
2969
2970 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2971 {
2972         int err = 0;
2973         struct port_info *pi = netdev_priv(dev);
2974
2975         if (wol->wolopts & ~WOL_SUPPORTED)
2976                 return -EINVAL;
2977         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2978                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2979         if (wol->wolopts & WAKE_BCAST) {
2980                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2981                                         ~0ULL, 0, false);
2982                 if (!err)
2983                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2984                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2985         } else
2986                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2987         return err;
2988 }
2989
2990 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2991 {
2992         const struct port_info *pi = netdev_priv(dev);
2993         netdev_features_t changed = dev->features ^ features;
2994         int err;
2995
2996         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2997                 return 0;
2998
2999         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
3000                             -1, -1, -1,
3001                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
3002         if (unlikely(err))
3003                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
3004         return err;
3005 }
3006
3007 static u32 get_rss_table_size(struct net_device *dev)
3008 {
3009         const struct port_info *pi = netdev_priv(dev);
3010
3011         return pi->rss_size;
3012 }
3013
3014 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
3015 {
3016         const struct port_info *pi = netdev_priv(dev);
3017         unsigned int n = pi->rss_size;
3018
3019         while (n--)
3020                 p[n] = pi->rss[n];
3021         return 0;
3022 }
3023
3024 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
3025 {
3026         unsigned int i;
3027         struct port_info *pi = netdev_priv(dev);
3028
3029         for (i = 0; i < pi->rss_size; i++)
3030                 pi->rss[i] = p[i];
3031         if (pi->adapter->flags & FULL_INIT_DONE)
3032                 return write_rss(pi, pi->rss);
3033         return 0;
3034 }
3035
3036 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
3037                      u32 *rules)
3038 {
3039         const struct port_info *pi = netdev_priv(dev);
3040
3041         switch (info->cmd) {
3042         case ETHTOOL_GRXFH: {
3043                 unsigned int v = pi->rss_mode;
3044
3045                 info->data = 0;
3046                 switch (info->flow_type) {
3047                 case TCP_V4_FLOW:
3048                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3049                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3050                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3051                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3052                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3053                         break;
3054                 case UDP_V4_FLOW:
3055                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3056                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3057                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3058                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3059                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3060                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3061                         break;
3062                 case SCTP_V4_FLOW:
3063                 case AH_ESP_V4_FLOW:
3064                 case IPV4_FLOW:
3065                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3066                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3067                         break;
3068                 case TCP_V6_FLOW:
3069                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3070                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3071                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3072                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3073                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3074                         break;
3075                 case UDP_V6_FLOW:
3076                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3077                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3078                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3079                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3080                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3081                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3082                         break;
3083                 case SCTP_V6_FLOW:
3084                 case AH_ESP_V6_FLOW:
3085                 case IPV6_FLOW:
3086                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3087                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3088                         break;
3089                 }
3090                 return 0;
3091         }
3092         case ETHTOOL_GRXRINGS:
3093                 info->data = pi->nqsets;
3094                 return 0;
3095         }
3096         return -EOPNOTSUPP;
3097 }
3098
3099 static const struct ethtool_ops cxgb_ethtool_ops = {
3100         .get_settings      = get_settings,
3101         .set_settings      = set_settings,
3102         .get_drvinfo       = get_drvinfo,
3103         .get_msglevel      = get_msglevel,
3104         .set_msglevel      = set_msglevel,
3105         .get_ringparam     = get_sge_param,
3106         .set_ringparam     = set_sge_param,
3107         .get_coalesce      = get_coalesce,
3108         .set_coalesce      = set_coalesce,
3109         .get_eeprom_len    = get_eeprom_len,
3110         .get_eeprom        = get_eeprom,
3111         .set_eeprom        = set_eeprom,
3112         .get_pauseparam    = get_pauseparam,
3113         .set_pauseparam    = set_pauseparam,
3114         .get_link          = ethtool_op_get_link,
3115         .get_strings       = get_strings,
3116         .set_phys_id       = identify_port,
3117         .nway_reset        = restart_autoneg,
3118         .get_sset_count    = get_sset_count,
3119         .get_ethtool_stats = get_stats,
3120         .get_regs_len      = get_regs_len,
3121         .get_regs          = get_regs,
3122         .get_wol           = get_wol,
3123         .set_wol           = set_wol,
3124         .get_rxnfc         = get_rxnfc,
3125         .get_rxfh_indir_size = get_rss_table_size,
3126         .get_rxfh          = get_rss_table,
3127         .set_rxfh          = set_rss_table,
3128         .flash_device      = set_flash,
3129 };
3130
3131 static int setup_debugfs(struct adapter *adap)
3132 {
3133         if (IS_ERR_OR_NULL(adap->debugfs_root))
3134                 return -1;
3135
3136 #ifdef CONFIG_DEBUG_FS
3137         t4_setup_debugfs(adap);
3138 #endif
3139         return 0;
3140 }
3141
3142 /*
3143  * upper-layer driver support
3144  */
3145
3146 /*
3147  * Allocate an active-open TID and set it to the supplied value.
3148  */
3149 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3150 {
3151         int atid = -1;
3152
3153         spin_lock_bh(&t->atid_lock);
3154         if (t->afree) {
3155                 union aopen_entry *p = t->afree;
3156
3157                 atid = (p - t->atid_tab) + t->atid_base;
3158                 t->afree = p->next;
3159                 p->data = data;
3160                 t->atids_in_use++;
3161         }
3162         spin_unlock_bh(&t->atid_lock);
3163         return atid;
3164 }
3165 EXPORT_SYMBOL(cxgb4_alloc_atid);
3166
3167 /*
3168  * Release an active-open TID.
3169  */
3170 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3171 {
3172         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3173
3174         spin_lock_bh(&t->atid_lock);
3175         p->next = t->afree;
3176         t->afree = p;
3177         t->atids_in_use--;
3178         spin_unlock_bh(&t->atid_lock);
3179 }
3180 EXPORT_SYMBOL(cxgb4_free_atid);
3181
3182 /*
3183  * Allocate a server TID and set it to the supplied value.
3184  */
3185 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3186 {
3187         int stid;
3188
3189         spin_lock_bh(&t->stid_lock);
3190         if (family == PF_INET) {
3191                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3192                 if (stid < t->nstids)
3193                         __set_bit(stid, t->stid_bmap);
3194                 else
3195                         stid = -1;
3196         } else {
3197                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3198                 if (stid < 0)
3199                         stid = -1;
3200         }
3201         if (stid >= 0) {
3202                 t->stid_tab[stid].data = data;
3203                 stid += t->stid_base;
3204                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3205                  * This is equivalent to 4 TIDs. With CLIP enabled it
3206                  * needs 2 TIDs.
3207                  */
3208                 if (family == PF_INET)
3209                         t->stids_in_use++;
3210                 else
3211                         t->stids_in_use += 4;
3212         }
3213         spin_unlock_bh(&t->stid_lock);
3214         return stid;
3215 }
3216 EXPORT_SYMBOL(cxgb4_alloc_stid);
3217
3218 /* Allocate a server filter TID and set it to the supplied value.
3219  */
3220 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3221 {
3222         int stid;
3223
3224         spin_lock_bh(&t->stid_lock);
3225         if (family == PF_INET) {
3226                 stid = find_next_zero_bit(t->stid_bmap,
3227                                 t->nstids + t->nsftids, t->nstids);
3228                 if (stid < (t->nstids + t->nsftids))
3229                         __set_bit(stid, t->stid_bmap);
3230                 else
3231                         stid = -1;
3232         } else {
3233                 stid = -1;
3234         }
3235         if (stid >= 0) {
3236                 t->stid_tab[stid].data = data;
3237                 stid -= t->nstids;
3238                 stid += t->sftid_base;
3239                 t->stids_in_use++;
3240         }
3241         spin_unlock_bh(&t->stid_lock);
3242         return stid;
3243 }
3244 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3245
3246 /* Release a server TID.
3247  */
3248 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3249 {
3250         /* Is it a server filter TID? */
3251         if (t->nsftids && (stid >= t->sftid_base)) {
3252                 stid -= t->sftid_base;
3253                 stid += t->nstids;
3254         } else {
3255                 stid -= t->stid_base;
3256         }
3257
3258         spin_lock_bh(&t->stid_lock);
3259         if (family == PF_INET)
3260                 __clear_bit(stid, t->stid_bmap);
3261         else
3262                 bitmap_release_region(t->stid_bmap, stid, 2);
3263         t->stid_tab[stid].data = NULL;
3264         if (family == PF_INET)
3265                 t->stids_in_use--;
3266         else
3267                 t->stids_in_use -= 4;
3268         spin_unlock_bh(&t->stid_lock);
3269 }
3270 EXPORT_SYMBOL(cxgb4_free_stid);
3271
3272 /*
3273  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3274  */
3275 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3276                            unsigned int tid)
3277 {
3278         struct cpl_tid_release *req;
3279
3280         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3281         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3282         INIT_TP_WR(req, tid);
3283         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3284 }
3285
3286 /*
3287  * Queue a TID release request and if necessary schedule a work queue to
3288  * process it.
3289  */
3290 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3291                                     unsigned int tid)
3292 {
3293         void **p = &t->tid_tab[tid];
3294         struct adapter *adap = container_of(t, struct adapter, tids);
3295
3296         spin_lock_bh(&adap->tid_release_lock);
3297         *p = adap->tid_release_head;
3298         /* Low 2 bits encode the Tx channel number */
3299         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3300         if (!adap->tid_release_task_busy) {
3301                 adap->tid_release_task_busy = true;
3302                 queue_work(adap->workq, &adap->tid_release_task);
3303         }
3304         spin_unlock_bh(&adap->tid_release_lock);
3305 }
3306
3307 /*
3308  * Process the list of pending TID release requests.
3309  */
3310 static void process_tid_release_list(struct work_struct *work)
3311 {
3312         struct sk_buff *skb;
3313         struct adapter *adap;
3314
3315         adap = container_of(work, struct adapter, tid_release_task);
3316
3317         spin_lock_bh(&adap->tid_release_lock);
3318         while (adap->tid_release_head) {
3319                 void **p = adap->tid_release_head;
3320                 unsigned int chan = (uintptr_t)p & 3;
3321                 p = (void *)p - chan;
3322
3323                 adap->tid_release_head = *p;
3324                 *p = NULL;
3325                 spin_unlock_bh(&adap->tid_release_lock);
3326
3327                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3328                                          GFP_KERNEL)))
3329                         schedule_timeout_uninterruptible(1);
3330
3331                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3332                 t4_ofld_send(adap, skb);
3333                 spin_lock_bh(&adap->tid_release_lock);
3334         }
3335         adap->tid_release_task_busy = false;
3336         spin_unlock_bh(&adap->tid_release_lock);
3337 }
3338
3339 /*
3340  * Release a TID and inform HW.  If we are unable to allocate the release
3341  * message we defer to a work queue.
3342  */
3343 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3344 {
3345         void *old;
3346         struct sk_buff *skb;
3347         struct adapter *adap = container_of(t, struct adapter, tids);
3348
3349         old = t->tid_tab[tid];
3350         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3351         if (likely(skb)) {
3352                 t->tid_tab[tid] = NULL;
3353                 mk_tid_release(skb, chan, tid);
3354                 t4_ofld_send(adap, skb);
3355         } else
3356                 cxgb4_queue_tid_release(t, chan, tid);
3357         if (old)
3358                 atomic_dec(&t->tids_in_use);
3359 }
3360 EXPORT_SYMBOL(cxgb4_remove_tid);
3361
3362 /*
3363  * Allocate and initialize the TID tables.  Returns 0 on success.
3364  */
3365 static int tid_init(struct tid_info *t)
3366 {
3367         size_t size;
3368         unsigned int stid_bmap_size;
3369         unsigned int natids = t->natids;
3370         struct adapter *adap = container_of(t, struct adapter, tids);
3371
3372         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3373         size = t->ntids * sizeof(*t->tid_tab) +
3374                natids * sizeof(*t->atid_tab) +
3375                t->nstids * sizeof(*t->stid_tab) +
3376                t->nsftids * sizeof(*t->stid_tab) +
3377                stid_bmap_size * sizeof(long) +
3378                t->nftids * sizeof(*t->ftid_tab) +
3379                t->nsftids * sizeof(*t->ftid_tab);
3380
3381         t->tid_tab = t4_alloc_mem(size);
3382         if (!t->tid_tab)
3383                 return -ENOMEM;
3384
3385         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3386         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3387         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3388         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3389         spin_lock_init(&t->stid_lock);
3390         spin_lock_init(&t->atid_lock);
3391
3392         t->stids_in_use = 0;
3393         t->afree = NULL;
3394         t->atids_in_use = 0;
3395         atomic_set(&t->tids_in_use, 0);
3396
3397         /* Setup the free list for atid_tab and clear the stid bitmap. */
3398         if (natids) {
3399                 while (--natids)
3400                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3401                 t->afree = t->atid_tab;
3402         }
3403         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3404         /* Reserve stid 0 for T4/T5 adapters */
3405         if (!t->stid_base &&
3406             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3407                 __set_bit(0, t->stid_bmap);
3408
3409         return 0;
3410 }
3411
3412 int cxgb4_clip_get(const struct net_device *dev,
3413                    const struct in6_addr *lip)
3414 {
3415         struct adapter *adap;
3416         struct fw_clip_cmd c;
3417
3418         adap = netdev2adap(dev);
3419         memset(&c, 0, sizeof(c));
3420         c.op_to_write = htonl(FW_CMD_OP_V(FW_CLIP_CMD) |
3421                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3422         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3423         c.ip_hi = *(__be64 *)(lip->s6_addr);
3424         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3425         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3426 }
3427 EXPORT_SYMBOL(cxgb4_clip_get);
3428
3429 int cxgb4_clip_release(const struct net_device *dev,
3430                        const struct in6_addr *lip)
3431 {
3432         struct adapter *adap;
3433         struct fw_clip_cmd c;
3434
3435         adap = netdev2adap(dev);
3436         memset(&c, 0, sizeof(c));
3437         c.op_to_write = htonl(FW_CMD_OP_V(FW_CLIP_CMD) |
3438                         FW_CMD_REQUEST_F | FW_CMD_READ_F);
3439         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3440         c.ip_hi = *(__be64 *)(lip->s6_addr);
3441         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3442         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3443 }
3444 EXPORT_SYMBOL(cxgb4_clip_release);
3445
3446 /**
3447  *      cxgb4_create_server - create an IP server
3448  *      @dev: the device
3449  *      @stid: the server TID
3450  *      @sip: local IP address to bind server to
3451  *      @sport: the server's TCP port
3452  *      @queue: queue to direct messages from this server to
3453  *
3454  *      Create an IP server for the given port and address.
3455  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3456  */
3457 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3458                         __be32 sip, __be16 sport, __be16 vlan,
3459                         unsigned int queue)
3460 {
3461         unsigned int chan;
3462         struct sk_buff *skb;
3463         struct adapter *adap;
3464         struct cpl_pass_open_req *req;
3465         int ret;
3466
3467         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3468         if (!skb)
3469                 return -ENOMEM;
3470
3471         adap = netdev2adap(dev);
3472         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3473         INIT_TP_WR(req, 0);
3474         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3475         req->local_port = sport;
3476         req->peer_port = htons(0);
3477         req->local_ip = sip;
3478         req->peer_ip = htonl(0);
3479         chan = rxq_to_chan(&adap->sge, queue);
3480         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3481         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3482                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3483         ret = t4_mgmt_tx(adap, skb);
3484         return net_xmit_eval(ret);
3485 }
3486 EXPORT_SYMBOL(cxgb4_create_server);
3487
3488 /*      cxgb4_create_server6 - create an IPv6 server
3489  *      @dev: the device
3490  *      @stid: the server TID
3491  *      @sip: local IPv6 address to bind server to
3492  *      @sport: the server's TCP port
3493  *      @queue: queue to direct messages from this server to
3494  *
3495  *      Create an IPv6 server for the given port and address.
3496  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3497  */
3498 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3499                          const struct in6_addr *sip, __be16 sport,
3500                          unsigned int queue)
3501 {
3502         unsigned int chan;
3503         struct sk_buff *skb;
3504         struct adapter *adap;
3505         struct cpl_pass_open_req6 *req;
3506         int ret;
3507
3508         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3509         if (!skb)
3510                 return -ENOMEM;
3511
3512         adap = netdev2adap(dev);
3513         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3514         INIT_TP_WR(req, 0);
3515         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3516         req->local_port = sport;
3517         req->peer_port = htons(0);
3518         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3519         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3520         req->peer_ip_hi = cpu_to_be64(0);
3521         req->peer_ip_lo = cpu_to_be64(0);
3522         chan = rxq_to_chan(&adap->sge, queue);
3523         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3524         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3525                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3526         ret = t4_mgmt_tx(adap, skb);
3527         return net_xmit_eval(ret);
3528 }
3529 EXPORT_SYMBOL(cxgb4_create_server6);
3530
3531 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3532                         unsigned int queue, bool ipv6)
3533 {
3534         struct sk_buff *skb;
3535         struct adapter *adap;
3536         struct cpl_close_listsvr_req *req;
3537         int ret;
3538
3539         adap = netdev2adap(dev);
3540
3541         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3542         if (!skb)
3543                 return -ENOMEM;
3544
3545         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3546         INIT_TP_WR(req, 0);
3547         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3548         req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3549                                 LISTSVR_IPV6(0)) | QUEUENO(queue));
3550         ret = t4_mgmt_tx(adap, skb);
3551         return net_xmit_eval(ret);
3552 }
3553 EXPORT_SYMBOL(cxgb4_remove_server);
3554
3555 /**
3556  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3557  *      @mtus: the HW MTU table
3558  *      @mtu: the target MTU
3559  *      @idx: index of selected entry in the MTU table
3560  *
3561  *      Returns the index and the value in the HW MTU table that is closest to
3562  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3563  *      table, in which case that smallest available value is selected.
3564  */
3565 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3566                             unsigned int *idx)
3567 {
3568         unsigned int i = 0;
3569
3570         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3571                 ++i;
3572         if (idx)
3573                 *idx = i;
3574         return mtus[i];
3575 }
3576 EXPORT_SYMBOL(cxgb4_best_mtu);
3577
3578 /**
3579  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3580  *     @mtus: the HW MTU table
3581  *     @header_size: Header Size
3582  *     @data_size_max: maximum Data Segment Size
3583  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3584  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3585  *
3586  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3587  *     MTU Table based solely on a Maximum MTU parameter, we break that
3588  *     parameter up into a Header Size and Maximum Data Segment Size, and
3589  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3590  *     the Hardware MTU Table which will result in a Data Segment Size with
3591  *     the requested alignment _and_ that MTU isn't "too far" from the
3592  *     closest MTU, then we'll return that rather than the closest MTU.
3593  */
3594 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3595                                     unsigned short header_size,
3596                                     unsigned short data_size_max,
3597                                     unsigned short data_size_align,
3598                                     unsigned int *mtu_idxp)
3599 {
3600         unsigned short max_mtu = header_size + data_size_max;
3601         unsigned short data_size_align_mask = data_size_align - 1;
3602         int mtu_idx, aligned_mtu_idx;
3603
3604         /* Scan the MTU Table till we find an MTU which is larger than our
3605          * Maximum MTU or we reach the end of the table.  Along the way,
3606          * record the last MTU found, if any, which will result in a Data
3607          * Segment Length matching the requested alignment.
3608          */
3609         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3610                 unsigned short data_size = mtus[mtu_idx] - header_size;
3611
3612                 /* If this MTU minus the Header Size would result in a
3613                  * Data Segment Size of the desired alignment, remember it.
3614                  */
3615                 if ((data_size & data_size_align_mask) == 0)
3616                         aligned_mtu_idx = mtu_idx;
3617
3618                 /* If we're not at the end of the Hardware MTU Table and the
3619                  * next element is larger than our Maximum MTU, drop out of
3620                  * the loop.
3621                  */
3622                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3623                         break;
3624         }
3625
3626         /* If we fell out of the loop because we ran to the end of the table,
3627          * then we just have to use the last [largest] entry.
3628          */
3629         if (mtu_idx == NMTUS)
3630                 mtu_idx--;
3631
3632         /* If we found an MTU which resulted in the requested Data Segment
3633          * Length alignment and that's "not far" from the largest MTU which is
3634          * less than or equal to the maximum MTU, then use that.
3635          */
3636         if (aligned_mtu_idx >= 0 &&
3637             mtu_idx - aligned_mtu_idx <= 1)
3638                 mtu_idx = aligned_mtu_idx;
3639
3640         /* If the caller has passed in an MTU Index pointer, pass the
3641          * MTU Index back.  Return the MTU value.
3642          */
3643         if (mtu_idxp)
3644                 *mtu_idxp = mtu_idx;
3645         return mtus[mtu_idx];
3646 }
3647 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3648
3649 /**
3650  *      cxgb4_port_chan - get the HW channel of a port
3651  *      @dev: the net device for the port
3652  *
3653  *      Return the HW Tx channel of the given port.
3654  */
3655 unsigned int cxgb4_port_chan(const struct net_device *dev)
3656 {
3657         return netdev2pinfo(dev)->tx_chan;
3658 }
3659 EXPORT_SYMBOL(cxgb4_port_chan);
3660
3661 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3662 {
3663         struct adapter *adap = netdev2adap(dev);
3664         u32 v1, v2, lp_count, hp_count;
3665
3666         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3667         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3668         if (is_t4(adap->params.chip)) {
3669                 lp_count = G_LP_COUNT(v1);
3670                 hp_count = G_HP_COUNT(v1);
3671         } else {
3672                 lp_count = G_LP_COUNT_T5(v1);
3673                 hp_count = G_HP_COUNT_T5(v2);
3674         }
3675         return lpfifo ? lp_count : hp_count;
3676 }
3677 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3678
3679 /**
3680  *      cxgb4_port_viid - get the VI id of a port
3681  *      @dev: the net device for the port
3682  *
3683  *      Return the VI id of the given port.
3684  */
3685 unsigned int cxgb4_port_viid(const struct net_device *dev)
3686 {
3687         return netdev2pinfo(dev)->viid;
3688 }
3689 EXPORT_SYMBOL(cxgb4_port_viid);
3690
3691 /**
3692  *      cxgb4_port_idx - get the index of a port
3693  *      @dev: the net device for the port
3694  *
3695  *      Return the index of the given port.
3696  */
3697 unsigned int cxgb4_port_idx(const struct net_device *dev)
3698 {
3699         return netdev2pinfo(dev)->port_id;
3700 }
3701 EXPORT_SYMBOL(cxgb4_port_idx);
3702
3703 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3704                          struct tp_tcp_stats *v6)
3705 {
3706         struct adapter *adap = pci_get_drvdata(pdev);
3707
3708         spin_lock(&adap->stats_lock);
3709         t4_tp_get_tcp_stats(adap, v4, v6);
3710         spin_unlock(&adap->stats_lock);
3711 }
3712 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3713
3714 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3715                       const unsigned int *pgsz_order)
3716 {
3717         struct adapter *adap = netdev2adap(dev);
3718
3719         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3720         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3721                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3722                      HPZ3(pgsz_order[3]));
3723 }
3724 EXPORT_SYMBOL(cxgb4_iscsi_init);
3725
3726 int cxgb4_flush_eq_cache(struct net_device *dev)
3727 {
3728         struct adapter *adap = netdev2adap(dev);
3729         int ret;
3730
3731         ret = t4_fwaddrspace_write(adap, adap->mbox,
3732                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3733         return ret;
3734 }
3735 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3736
3737 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3738 {
3739         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3740         __be64 indices;
3741         int ret;
3742
3743         spin_lock(&adap->win0_lock);
3744         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3745                            sizeof(indices), (__be32 *)&indices,
3746                            T4_MEMORY_READ);
3747         spin_unlock(&adap->win0_lock);
3748         if (!ret) {
3749                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3750                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3751         }
3752         return ret;
3753 }
3754
3755 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3756                         u16 size)
3757 {
3758         struct adapter *adap = netdev2adap(dev);
3759         u16 hw_pidx, hw_cidx;
3760         int ret;
3761
3762         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3763         if (ret)
3764                 goto out;
3765
3766         if (pidx != hw_pidx) {
3767                 u16 delta;
3768
3769                 if (pidx >= hw_pidx)
3770                         delta = pidx - hw_pidx;
3771                 else
3772                         delta = size - hw_pidx + pidx;
3773                 wmb();
3774                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3775                              QID(qid) | PIDX(delta));
3776         }
3777 out:
3778         return ret;
3779 }
3780 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3781
3782 void cxgb4_disable_db_coalescing(struct net_device *dev)
3783 {
3784         struct adapter *adap;
3785
3786         adap = netdev2adap(dev);
3787         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3788                          F_NOCOALESCE);
3789 }
3790 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3791
3792 void cxgb4_enable_db_coalescing(struct net_device *dev)
3793 {
3794         struct adapter *adap;
3795
3796         adap = netdev2adap(dev);
3797         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3798 }
3799 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3800
3801 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3802 {
3803         struct adapter *adap;
3804         u32 offset, memtype, memaddr;
3805         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
3806         u32 edc0_end, edc1_end, mc0_end, mc1_end;
3807         int ret;
3808
3809         adap = netdev2adap(dev);
3810
3811         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3812
3813         /* Figure out where the offset lands in the Memory Type/Address scheme.
3814          * This code assumes that the memory is laid out starting at offset 0
3815          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3816          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
3817          * MC0, and some have both MC0 and MC1.
3818          */
3819         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3820         edc0_size = EDRAM0_SIZE_G(size) << 20;
3821         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3822         edc1_size = EDRAM1_SIZE_G(size) << 20;
3823         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3824         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
3825
3826         edc0_end = edc0_size;
3827         edc1_end = edc0_end + edc1_size;
3828         mc0_end = edc1_end + mc0_size;
3829
3830         if (offset < edc0_end) {
3831                 memtype = MEM_EDC0;
3832                 memaddr = offset;
3833         } else if (offset < edc1_end) {
3834                 memtype = MEM_EDC1;
3835                 memaddr = offset - edc0_end;
3836         } else {
3837                 if (offset < mc0_end) {
3838                         memtype = MEM_MC0;
3839                         memaddr = offset - edc1_end;
3840                 } else if (is_t4(adap->params.chip)) {
3841                         /* T4 only has a single memory channel */
3842                         goto err;
3843                 } else {
3844                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3845                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
3846                         mc1_end = mc0_end + mc1_size;
3847                         if (offset < mc1_end) {
3848                                 memtype = MEM_MC1;
3849                                 memaddr = offset - mc0_end;
3850                         } else {
3851                                 /* offset beyond the end of any memory */
3852                                 goto err;
3853                         }
3854                 }
3855         }
3856
3857         spin_lock(&adap->win0_lock);
3858         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3859         spin_unlock(&adap->win0_lock);
3860         return ret;
3861
3862 err:
3863         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3864                 stag, offset);
3865         return -EINVAL;
3866 }
3867 EXPORT_SYMBOL(cxgb4_read_tpte);
3868
3869 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3870 {
3871         u32 hi, lo;
3872         struct adapter *adap;
3873
3874         adap = netdev2adap(dev);
3875         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3876         hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3877
3878         return ((u64)hi << 32) | (u64)lo;
3879 }
3880 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3881
3882 static struct pci_driver cxgb4_driver;
3883
3884 static void check_neigh_update(struct neighbour *neigh)
3885 {
3886         const struct device *parent;
3887         const struct net_device *netdev = neigh->dev;
3888
3889         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3890                 netdev = vlan_dev_real_dev(netdev);
3891         parent = netdev->dev.parent;
3892         if (parent && parent->driver == &cxgb4_driver.driver)
3893                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3894 }
3895
3896 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3897                        void *data)
3898 {
3899         switch (event) {
3900         case NETEVENT_NEIGH_UPDATE:
3901                 check_neigh_update(data);
3902                 break;
3903         case NETEVENT_REDIRECT:
3904         default:
3905                 break;
3906         }
3907         return 0;
3908 }
3909
3910 static bool netevent_registered;
3911 static struct notifier_block cxgb4_netevent_nb = {
3912         .notifier_call = netevent_cb
3913 };
3914
3915 static void drain_db_fifo(struct adapter *adap, int usecs)
3916 {
3917         u32 v1, v2, lp_count, hp_count;
3918
3919         do {
3920                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3921                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3922                 if (is_t4(adap->params.chip)) {
3923                         lp_count = G_LP_COUNT(v1);
3924                         hp_count = G_HP_COUNT(v1);
3925                 } else {
3926                         lp_count = G_LP_COUNT_T5(v1);
3927                         hp_count = G_HP_COUNT_T5(v2);
3928                 }
3929
3930                 if (lp_count == 0 && hp_count == 0)
3931                         break;
3932                 set_current_state(TASK_UNINTERRUPTIBLE);
3933                 schedule_timeout(usecs_to_jiffies(usecs));
3934         } while (1);
3935 }
3936
3937 static void disable_txq_db(struct sge_txq *q)
3938 {
3939         unsigned long flags;
3940
3941         spin_lock_irqsave(&q->db_lock, flags);
3942         q->db_disabled = 1;
3943         spin_unlock_irqrestore(&q->db_lock, flags);
3944 }
3945
3946 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3947 {
3948         spin_lock_irq(&q->db_lock);
3949         if (q->db_pidx_inc) {
3950                 /* Make sure that all writes to the TX descriptors
3951                  * are committed before we tell HW about them.
3952                  */
3953                 wmb();
3954                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3955                              QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3956                 q->db_pidx_inc = 0;
3957         }
3958         q->db_disabled = 0;
3959         spin_unlock_irq(&q->db_lock);
3960 }
3961
3962 static void disable_dbs(struct adapter *adap)
3963 {
3964         int i;
3965
3966         for_each_ethrxq(&adap->sge, i)
3967                 disable_txq_db(&adap->sge.ethtxq[i].q);
3968         for_each_ofldrxq(&adap->sge, i)
3969                 disable_txq_db(&adap->sge.ofldtxq[i].q);
3970         for_each_port(adap, i)
3971                 disable_txq_db(&adap->sge.ctrlq[i].q);
3972 }
3973
3974 static void enable_dbs(struct adapter *adap)
3975 {
3976         int i;
3977
3978         for_each_ethrxq(&adap->sge, i)
3979                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3980         for_each_ofldrxq(&adap->sge, i)
3981                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3982         for_each_port(adap, i)
3983                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
3984 }
3985
3986 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3987 {
3988         if (adap->uld_handle[CXGB4_ULD_RDMA])
3989                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3990                                 cmd);
3991 }
3992
3993 static void process_db_full(struct work_struct *work)
3994 {
3995         struct adapter *adap;
3996
3997         adap = container_of(work, struct adapter, db_full_task);
3998
3999         drain_db_fifo(adap, dbfifo_drain_delay);
4000         enable_dbs(adap);
4001         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4002         t4_set_reg_field(adap, SGE_INT_ENABLE3,
4003                          DBFIFO_HP_INT | DBFIFO_LP_INT,
4004                          DBFIFO_HP_INT | DBFIFO_LP_INT);
4005 }
4006
4007 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4008 {
4009         u16 hw_pidx, hw_cidx;
4010         int ret;
4011
4012         spin_lock_irq(&q->db_lock);
4013         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4014         if (ret)
4015                 goto out;
4016         if (q->db_pidx != hw_pidx) {
4017                 u16 delta;
4018
4019                 if (q->db_pidx >= hw_pidx)
4020                         delta = q->db_pidx - hw_pidx;
4021                 else
4022                         delta = q->size - hw_pidx + q->db_pidx;
4023                 wmb();
4024                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4025                              QID(q->cntxt_id) | PIDX(delta));
4026         }
4027 out:
4028         q->db_disabled = 0;
4029         q->db_pidx_inc = 0;
4030         spin_unlock_irq(&q->db_lock);
4031         if (ret)
4032                 CH_WARN(adap, "DB drop recovery failed.\n");
4033 }
4034 static void recover_all_queues(struct adapter *adap)
4035 {
4036         int i;
4037
4038         for_each_ethrxq(&adap->sge, i)
4039                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4040         for_each_ofldrxq(&adap->sge, i)
4041                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4042         for_each_port(adap, i)
4043                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4044 }
4045
4046 static void process_db_drop(struct work_struct *work)
4047 {
4048         struct adapter *adap;
4049
4050         adap = container_of(work, struct adapter, db_drop_task);
4051
4052         if (is_t4(adap->params.chip)) {
4053                 drain_db_fifo(adap, dbfifo_drain_delay);
4054                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4055                 drain_db_fifo(adap, dbfifo_drain_delay);
4056                 recover_all_queues(adap);
4057                 drain_db_fifo(adap, dbfifo_drain_delay);
4058                 enable_dbs(adap);
4059                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4060         } else {
4061                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4062                 u16 qid = (dropped_db >> 15) & 0x1ffff;
4063                 u16 pidx_inc = dropped_db & 0x1fff;
4064                 unsigned int s_qpp;
4065                 unsigned short udb_density;
4066                 unsigned long qpshift;
4067                 int page;
4068                 u32 udb;
4069
4070                 dev_warn(adap->pdev_dev,
4071                          "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4072                          dropped_db, qid,
4073                          (dropped_db >> 14) & 1,
4074                          (dropped_db >> 13) & 1,
4075                          pidx_inc);
4076
4077                 drain_db_fifo(adap, 1);
4078
4079                 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4080                 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4081                                 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4082                 qpshift = PAGE_SHIFT - ilog2(udb_density);
4083                 udb = qid << qpshift;
4084                 udb &= PAGE_MASK;
4085                 page = udb / PAGE_SIZE;
4086                 udb += (qid - (page * udb_density)) * 128;
4087
4088                 writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
4089
4090                 /* Re-enable BAR2 WC */
4091                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4092         }
4093
4094         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4095 }
4096
4097 void t4_db_full(struct adapter *adap)
4098 {
4099         if (is_t4(adap->params.chip)) {
4100                 disable_dbs(adap);
4101                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4102                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4103                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4104                 queue_work(adap->workq, &adap->db_full_task);
4105         }
4106 }
4107
4108 void t4_db_dropped(struct adapter *adap)
4109 {
4110         if (is_t4(adap->params.chip)) {
4111                 disable_dbs(adap);
4112                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4113         }
4114         queue_work(adap->workq, &adap->db_drop_task);
4115 }
4116
4117 static void uld_attach(struct adapter *adap, unsigned int uld)
4118 {
4119         void *handle;
4120         struct cxgb4_lld_info lli;
4121         unsigned short i;
4122
4123         lli.pdev = adap->pdev;
4124         lli.pf = adap->fn;
4125         lli.l2t = adap->l2t;
4126         lli.tids = &adap->tids;
4127         lli.ports = adap->port;
4128         lli.vr = &adap->vres;
4129         lli.mtus = adap->params.mtus;
4130         if (uld == CXGB4_ULD_RDMA) {
4131                 lli.rxq_ids = adap->sge.rdma_rxq;
4132                 lli.ciq_ids = adap->sge.rdma_ciq;
4133                 lli.nrxq = adap->sge.rdmaqs;
4134                 lli.nciq = adap->sge.rdmaciqs;
4135         } else if (uld == CXGB4_ULD_ISCSI) {
4136                 lli.rxq_ids = adap->sge.ofld_rxq;
4137                 lli.nrxq = adap->sge.ofldqsets;
4138         }
4139         lli.ntxq = adap->sge.ofldqsets;
4140         lli.nchan = adap->params.nports;
4141         lli.nports = adap->params.nports;
4142         lli.wr_cred = adap->params.ofldq_wr_cred;
4143         lli.adapter_type = adap->params.chip;
4144         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4145         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4146         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4147                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4148                         (adap->fn * 4));
4149         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4150                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4151                         (adap->fn * 4));
4152         lli.filt_mode = adap->params.tp.vlan_pri_map;
4153         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4154         for (i = 0; i < NCHAN; i++)
4155                 lli.tx_modq[i] = i;
4156         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4157         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4158         lli.fw_vers = adap->params.fw_vers;
4159         lli.dbfifo_int_thresh = dbfifo_int_thresh;
4160         lli.sge_ingpadboundary = adap->sge.fl_align;
4161         lli.sge_egrstatuspagesize = adap->sge.stat_len;
4162         lli.sge_pktshift = adap->sge.pktshift;
4163         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4164         lli.max_ordird_qp = adap->params.max_ordird_qp;
4165         lli.max_ird_adapter = adap->params.max_ird_adapter;
4166         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4167
4168         handle = ulds[uld].add(&lli);
4169         if (IS_ERR(handle)) {
4170                 dev_warn(adap->pdev_dev,
4171                          "could not attach to the %s driver, error %ld\n",
4172                          uld_str[uld], PTR_ERR(handle));
4173                 return;
4174         }
4175
4176         adap->uld_handle[uld] = handle;
4177
4178         if (!netevent_registered) {
4179                 register_netevent_notifier(&cxgb4_netevent_nb);
4180                 netevent_registered = true;
4181         }
4182
4183         if (adap->flags & FULL_INIT_DONE)
4184                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4185 }
4186
4187 static void attach_ulds(struct adapter *adap)
4188 {
4189         unsigned int i;
4190
4191         spin_lock(&adap_rcu_lock);
4192         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4193         spin_unlock(&adap_rcu_lock);
4194
4195         mutex_lock(&uld_mutex);
4196         list_add_tail(&adap->list_node, &adapter_list);
4197         for (i = 0; i < CXGB4_ULD_MAX; i++)
4198                 if (ulds[i].add)
4199                         uld_attach(adap, i);
4200         mutex_unlock(&uld_mutex);
4201 }
4202
4203 static void detach_ulds(struct adapter *adap)
4204 {
4205         unsigned int i;
4206
4207         mutex_lock(&uld_mutex);
4208         list_del(&adap->list_node);
4209         for (i = 0; i < CXGB4_ULD_MAX; i++)
4210                 if (adap->uld_handle[i]) {
4211                         ulds[i].state_change(adap->uld_handle[i],
4212                                              CXGB4_STATE_DETACH);
4213                         adap->uld_handle[i] = NULL;
4214                 }
4215         if (netevent_registered && list_empty(&adapter_list)) {
4216                 unregister_netevent_notifier(&cxgb4_netevent_nb);
4217                 netevent_registered = false;
4218         }
4219         mutex_unlock(&uld_mutex);
4220
4221         spin_lock(&adap_rcu_lock);
4222         list_del_rcu(&adap->rcu_node);
4223         spin_unlock(&adap_rcu_lock);
4224 }
4225
4226 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4227 {
4228         unsigned int i;
4229
4230         mutex_lock(&uld_mutex);
4231         for (i = 0; i < CXGB4_ULD_MAX; i++)
4232                 if (adap->uld_handle[i])
4233                         ulds[i].state_change(adap->uld_handle[i], new_state);
4234         mutex_unlock(&uld_mutex);
4235 }
4236
4237 /**
4238  *      cxgb4_register_uld - register an upper-layer driver
4239  *      @type: the ULD type
4240  *      @p: the ULD methods
4241  *
4242  *      Registers an upper-layer driver with this driver and notifies the ULD
4243  *      about any presently available devices that support its type.  Returns
4244  *      %-EBUSY if a ULD of the same type is already registered.
4245  */
4246 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4247 {
4248         int ret = 0;
4249         struct adapter *adap;
4250
4251         if (type >= CXGB4_ULD_MAX)
4252                 return -EINVAL;
4253         mutex_lock(&uld_mutex);
4254         if (ulds[type].add) {
4255                 ret = -EBUSY;
4256                 goto out;
4257         }
4258         ulds[type] = *p;
4259         list_for_each_entry(adap, &adapter_list, list_node)
4260                 uld_attach(adap, type);
4261 out:    mutex_unlock(&uld_mutex);
4262         return ret;
4263 }
4264 EXPORT_SYMBOL(cxgb4_register_uld);
4265
4266 /**
4267  *      cxgb4_unregister_uld - unregister an upper-layer driver
4268  *      @type: the ULD type
4269  *
4270  *      Unregisters an existing upper-layer driver.
4271  */
4272 int cxgb4_unregister_uld(enum cxgb4_uld type)
4273 {
4274         struct adapter *adap;
4275
4276         if (type >= CXGB4_ULD_MAX)
4277                 return -EINVAL;
4278         mutex_lock(&uld_mutex);
4279         list_for_each_entry(adap, &adapter_list, list_node)
4280                 adap->uld_handle[type] = NULL;
4281         ulds[type].add = NULL;
4282         mutex_unlock(&uld_mutex);
4283         return 0;
4284 }
4285 EXPORT_SYMBOL(cxgb4_unregister_uld);
4286
4287 /* Check if netdev on which event is occured belongs to us or not. Return
4288  * success (true) if it belongs otherwise failure (false).
4289  * Called with rcu_read_lock() held.
4290  */
4291 #if IS_ENABLED(CONFIG_IPV6)
4292 static bool cxgb4_netdev(const struct net_device *netdev)
4293 {
4294         struct adapter *adap;
4295         int i;
4296
4297         list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4298                 for (i = 0; i < MAX_NPORTS; i++)
4299                         if (adap->port[i] == netdev)
4300                                 return true;
4301         return false;
4302 }
4303
4304 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4305                     unsigned long event)
4306 {
4307         int ret = NOTIFY_DONE;
4308
4309         rcu_read_lock();
4310         if (cxgb4_netdev(event_dev)) {
4311                 switch (event) {
4312                 case NETDEV_UP:
4313                         ret = cxgb4_clip_get(event_dev, &ifa->addr);
4314                         if (ret < 0) {
4315                                 rcu_read_unlock();
4316                                 return ret;
4317                         }
4318                         ret = NOTIFY_OK;
4319                         break;
4320                 case NETDEV_DOWN:
4321                         cxgb4_clip_release(event_dev, &ifa->addr);
4322                         ret = NOTIFY_OK;
4323                         break;
4324                 default:
4325                         break;
4326                 }
4327         }
4328         rcu_read_unlock();
4329         return ret;
4330 }
4331
4332 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4333                 unsigned long event, void *data)
4334 {
4335         struct inet6_ifaddr *ifa = data;
4336         struct net_device *event_dev;
4337         int ret = NOTIFY_DONE;
4338         struct bonding *bond = netdev_priv(ifa->idev->dev);
4339         struct list_head *iter;
4340         struct slave *slave;
4341         struct pci_dev *first_pdev = NULL;
4342
4343         if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4344                 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4345                 ret = clip_add(event_dev, ifa, event);
4346         } else if (ifa->idev->dev->flags & IFF_MASTER) {
4347                 /* It is possible that two different adapters are bonded in one
4348                  * bond. We need to find such different adapters and add clip
4349                  * in all of them only once.
4350                  */
4351                 bond_for_each_slave(bond, slave, iter) {
4352                         if (!first_pdev) {
4353                                 ret = clip_add(slave->dev, ifa, event);
4354                                 /* If clip_add is success then only initialize
4355                                  * first_pdev since it means it is our device
4356                                  */
4357                                 if (ret == NOTIFY_OK)
4358                                         first_pdev = to_pci_dev(
4359                                                         slave->dev->dev.parent);
4360                         } else if (first_pdev !=
4361                                    to_pci_dev(slave->dev->dev.parent))
4362                                         ret = clip_add(slave->dev, ifa, event);
4363                 }
4364         } else
4365                 ret = clip_add(ifa->idev->dev, ifa, event);
4366
4367         return ret;
4368 }
4369
4370 static struct notifier_block cxgb4_inet6addr_notifier = {
4371         .notifier_call = cxgb4_inet6addr_handler
4372 };
4373
4374 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4375  * a physical device.
4376  * The physical device reference is needed to send the actul CLIP command.
4377  */
4378 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4379 {
4380         struct inet6_dev *idev = NULL;
4381         struct inet6_ifaddr *ifa;
4382         int ret = 0;
4383
4384         idev = __in6_dev_get(root_dev);
4385         if (!idev)
4386                 return ret;
4387
4388         read_lock_bh(&idev->lock);
4389         list_for_each_entry(ifa, &idev->addr_list, if_list) {
4390                 ret = cxgb4_clip_get(dev, &ifa->addr);
4391                 if (ret < 0)
4392                         break;
4393         }
4394         read_unlock_bh(&idev->lock);
4395
4396         return ret;
4397 }
4398
4399 static int update_root_dev_clip(struct net_device *dev)
4400 {
4401         struct net_device *root_dev = NULL;
4402         int i, ret = 0;
4403
4404         /* First populate the real net device's IPv6 addresses */
4405         ret = update_dev_clip(dev, dev);
4406         if (ret)
4407                 return ret;
4408
4409         /* Parse all bond and vlan devices layered on top of the physical dev */
4410         root_dev = netdev_master_upper_dev_get_rcu(dev);
4411         if (root_dev) {
4412                 ret = update_dev_clip(root_dev, dev);
4413                 if (ret)
4414                         return ret;
4415         }
4416
4417         for (i = 0; i < VLAN_N_VID; i++) {
4418                 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4419                 if (!root_dev)
4420                         continue;
4421
4422                 ret = update_dev_clip(root_dev, dev);
4423                 if (ret)
4424                         break;
4425         }
4426         return ret;
4427 }
4428
4429 static void update_clip(const struct adapter *adap)
4430 {
4431         int i;
4432         struct net_device *dev;
4433         int ret;
4434
4435         rcu_read_lock();
4436
4437         for (i = 0; i < MAX_NPORTS; i++) {
4438                 dev = adap->port[i];
4439                 ret = 0;
4440
4441                 if (dev)
4442                         ret = update_root_dev_clip(dev);
4443
4444                 if (ret < 0)
4445                         break;
4446         }
4447         rcu_read_unlock();
4448 }
4449 #endif /* IS_ENABLED(CONFIG_IPV6) */
4450
4451 /**
4452  *      cxgb_up - enable the adapter
4453  *      @adap: adapter being enabled
4454  *
4455  *      Called when the first port is enabled, this function performs the
4456  *      actions necessary to make an adapter operational, such as completing
4457  *      the initialization of HW modules, and enabling interrupts.
4458  *
4459  *      Must be called with the rtnl lock held.
4460  */
4461 static int cxgb_up(struct adapter *adap)
4462 {
4463         int err;
4464
4465         err = setup_sge_queues(adap);
4466         if (err)
4467                 goto out;
4468         err = setup_rss(adap);
4469         if (err)
4470                 goto freeq;
4471
4472         if (adap->flags & USING_MSIX) {
4473                 name_msix_vecs(adap);
4474                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4475                                   adap->msix_info[0].desc, adap);
4476                 if (err)
4477                         goto irq_err;
4478
4479                 err = request_msix_queue_irqs(adap);
4480                 if (err) {
4481                         free_irq(adap->msix_info[0].vec, adap);
4482                         goto irq_err;
4483                 }
4484         } else {
4485                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4486                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4487                                   adap->port[0]->name, adap);
4488                 if (err)
4489                         goto irq_err;
4490         }
4491         enable_rx(adap);
4492         t4_sge_start(adap);
4493         t4_intr_enable(adap);
4494         adap->flags |= FULL_INIT_DONE;
4495         notify_ulds(adap, CXGB4_STATE_UP);
4496 #if IS_ENABLED(CONFIG_IPV6)
4497         update_clip(adap);
4498 #endif
4499  out:
4500         return err;
4501  irq_err:
4502         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4503  freeq:
4504         t4_free_sge_resources(adap);
4505         goto out;
4506 }
4507
4508 static void cxgb_down(struct adapter *adapter)
4509 {
4510         t4_intr_disable(adapter);
4511         cancel_work_sync(&adapter->tid_release_task);
4512         cancel_work_sync(&adapter->db_full_task);
4513         cancel_work_sync(&adapter->db_drop_task);
4514         adapter->tid_release_task_busy = false;
4515         adapter->tid_release_head = NULL;
4516
4517         if (adapter->flags & USING_MSIX) {
4518                 free_msix_queue_irqs(adapter);
4519                 free_irq(adapter->msix_info[0].vec, adapter);
4520         } else
4521                 free_irq(adapter->pdev->irq, adapter);
4522         quiesce_rx(adapter);
4523         t4_sge_stop(adapter);
4524         t4_free_sge_resources(adapter);
4525         adapter->flags &= ~FULL_INIT_DONE;
4526 }
4527
4528 /*
4529  * net_device operations
4530  */
4531 static int cxgb_open(struct net_device *dev)
4532 {
4533         int err;
4534         struct port_info *pi = netdev_priv(dev);
4535         struct adapter *adapter = pi->adapter;
4536
4537         netif_carrier_off(dev);
4538
4539         if (!(adapter->flags & FULL_INIT_DONE)) {
4540                 err = cxgb_up(adapter);
4541                 if (err < 0)
4542                         return err;
4543         }
4544
4545         err = link_start(dev);
4546         if (!err)
4547                 netif_tx_start_all_queues(dev);
4548         return err;
4549 }
4550
4551 static int cxgb_close(struct net_device *dev)
4552 {
4553         struct port_info *pi = netdev_priv(dev);
4554         struct adapter *adapter = pi->adapter;
4555
4556         netif_tx_stop_all_queues(dev);
4557         netif_carrier_off(dev);
4558         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4559 }
4560
4561 /* Return an error number if the indicated filter isn't writable ...
4562  */
4563 static int writable_filter(struct filter_entry *f)
4564 {
4565         if (f->locked)
4566                 return -EPERM;
4567         if (f->pending)
4568                 return -EBUSY;
4569
4570         return 0;
4571 }
4572
4573 /* Delete the filter at the specified index (if valid).  The checks for all
4574  * the common problems with doing this like the filter being locked, currently
4575  * pending in another operation, etc.
4576  */
4577 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4578 {
4579         struct filter_entry *f;
4580         int ret;
4581
4582         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4583                 return -EINVAL;
4584
4585         f = &adapter->tids.ftid_tab[fidx];
4586         ret = writable_filter(f);
4587         if (ret)
4588                 return ret;
4589         if (f->valid)
4590                 return del_filter_wr(adapter, fidx);
4591
4592         return 0;
4593 }
4594
4595 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4596                 __be32 sip, __be16 sport, __be16 vlan,
4597                 unsigned int queue, unsigned char port, unsigned char mask)
4598 {
4599         int ret;
4600         struct filter_entry *f;
4601         struct adapter *adap;
4602         int i;
4603         u8 *val;
4604
4605         adap = netdev2adap(dev);
4606
4607         /* Adjust stid to correct filter index */
4608         stid -= adap->tids.sftid_base;
4609         stid += adap->tids.nftids;
4610
4611         /* Check to make sure the filter requested is writable ...
4612          */
4613         f = &adap->tids.ftid_tab[stid];
4614         ret = writable_filter(f);
4615         if (ret)
4616                 return ret;
4617
4618         /* Clear out any old resources being used by the filter before
4619          * we start constructing the new filter.
4620          */
4621         if (f->valid)
4622                 clear_filter(adap, f);
4623
4624         /* Clear out filter specifications */
4625         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4626         f->fs.val.lport = cpu_to_be16(sport);
4627         f->fs.mask.lport  = ~0;
4628         val = (u8 *)&sip;
4629         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4630                 for (i = 0; i < 4; i++) {
4631                         f->fs.val.lip[i] = val[i];
4632                         f->fs.mask.lip[i] = ~0;
4633                 }
4634                 if (adap->params.tp.vlan_pri_map & F_PORT) {
4635                         f->fs.val.iport = port;
4636                         f->fs.mask.iport = mask;
4637                 }
4638         }
4639
4640         if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4641                 f->fs.val.proto = IPPROTO_TCP;
4642                 f->fs.mask.proto = ~0;
4643         }
4644
4645         f->fs.dirsteer = 1;
4646         f->fs.iq = queue;
4647         /* Mark filter as locked */
4648         f->locked = 1;
4649         f->fs.rpttid = 1;
4650
4651         ret = set_filter_wr(adap, stid);
4652         if (ret) {
4653                 clear_filter(adap, f);
4654                 return ret;
4655         }
4656
4657         return 0;
4658 }
4659 EXPORT_SYMBOL(cxgb4_create_server_filter);
4660
4661 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4662                 unsigned int queue, bool ipv6)
4663 {
4664         int ret;
4665         struct filter_entry *f;
4666         struct adapter *adap;
4667
4668         adap = netdev2adap(dev);
4669
4670         /* Adjust stid to correct filter index */
4671         stid -= adap->tids.sftid_base;
4672         stid += adap->tids.nftids;
4673
4674         f = &adap->tids.ftid_tab[stid];
4675         /* Unlock the filter */
4676         f->locked = 0;
4677
4678         ret = delete_filter(adap, stid);
4679         if (ret)
4680                 return ret;
4681
4682         return 0;
4683 }
4684 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4685
4686 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4687                                                 struct rtnl_link_stats64 *ns)
4688 {
4689         struct port_stats stats;
4690         struct port_info *p = netdev_priv(dev);
4691         struct adapter *adapter = p->adapter;
4692
4693         /* Block retrieving statistics during EEH error
4694          * recovery. Otherwise, the recovery might fail
4695          * and the PCI device will be removed permanently
4696          */
4697         spin_lock(&adapter->stats_lock);
4698         if (!netif_device_present(dev)) {
4699                 spin_unlock(&adapter->stats_lock);
4700                 return ns;
4701         }
4702         t4_get_port_stats(adapter, p->tx_chan, &stats);
4703         spin_unlock(&adapter->stats_lock);
4704
4705         ns->tx_bytes   = stats.tx_octets;
4706         ns->tx_packets = stats.tx_frames;
4707         ns->rx_bytes   = stats.rx_octets;
4708         ns->rx_packets = stats.rx_frames;
4709         ns->multicast  = stats.rx_mcast_frames;
4710
4711         /* detailed rx_errors */
4712         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4713                                stats.rx_runt;
4714         ns->rx_over_errors   = 0;
4715         ns->rx_crc_errors    = stats.rx_fcs_err;
4716         ns->rx_frame_errors  = stats.rx_symbol_err;
4717         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4718                                stats.rx_ovflow2 + stats.rx_ovflow3 +
4719                                stats.rx_trunc0 + stats.rx_trunc1 +
4720                                stats.rx_trunc2 + stats.rx_trunc3;
4721         ns->rx_missed_errors = 0;
4722
4723         /* detailed tx_errors */
4724         ns->tx_aborted_errors   = 0;
4725         ns->tx_carrier_errors   = 0;
4726         ns->tx_fifo_errors      = 0;
4727         ns->tx_heartbeat_errors = 0;
4728         ns->tx_window_errors    = 0;
4729
4730         ns->tx_errors = stats.tx_error_frames;
4731         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4732                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4733         return ns;
4734 }
4735
4736 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4737 {
4738         unsigned int mbox;
4739         int ret = 0, prtad, devad;
4740         struct port_info *pi = netdev_priv(dev);
4741         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4742
4743         switch (cmd) {
4744         case SIOCGMIIPHY:
4745                 if (pi->mdio_addr < 0)
4746                         return -EOPNOTSUPP;
4747                 data->phy_id = pi->mdio_addr;
4748                 break;
4749         case SIOCGMIIREG:
4750         case SIOCSMIIREG:
4751                 if (mdio_phy_id_is_c45(data->phy_id)) {
4752                         prtad = mdio_phy_id_prtad(data->phy_id);
4753                         devad = mdio_phy_id_devad(data->phy_id);
4754                 } else if (data->phy_id < 32) {
4755                         prtad = data->phy_id;
4756                         devad = 0;
4757                         data->reg_num &= 0x1f;
4758                 } else
4759                         return -EINVAL;
4760
4761                 mbox = pi->adapter->fn;
4762                 if (cmd == SIOCGMIIREG)
4763                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4764                                          data->reg_num, &data->val_out);
4765                 else
4766                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4767                                          data->reg_num, data->val_in);
4768                 break;
4769         default:
4770                 return -EOPNOTSUPP;
4771         }
4772         return ret;
4773 }
4774
4775 static void cxgb_set_rxmode(struct net_device *dev)
4776 {
4777         /* unfortunately we can't return errors to the stack */
4778         set_rxmode(dev, -1, false);
4779 }
4780
4781 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4782 {
4783         int ret;
4784         struct port_info *pi = netdev_priv(dev);
4785
4786         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4787                 return -EINVAL;
4788         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4789                             -1, -1, -1, true);
4790         if (!ret)
4791                 dev->mtu = new_mtu;
4792         return ret;
4793 }
4794
4795 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4796 {
4797         int ret;
4798         struct sockaddr *addr = p;
4799         struct port_info *pi = netdev_priv(dev);
4800
4801         if (!is_valid_ether_addr(addr->sa_data))
4802                 return -EADDRNOTAVAIL;
4803
4804         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4805                             pi->xact_addr_filt, addr->sa_data, true, true);
4806         if (ret < 0)
4807                 return ret;
4808
4809         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4810         pi->xact_addr_filt = ret;
4811         return 0;
4812 }
4813
4814 #ifdef CONFIG_NET_POLL_CONTROLLER
4815 static void cxgb_netpoll(struct net_device *dev)
4816 {
4817         struct port_info *pi = netdev_priv(dev);
4818         struct adapter *adap = pi->adapter;
4819
4820         if (adap->flags & USING_MSIX) {
4821                 int i;
4822                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4823
4824                 for (i = pi->nqsets; i; i--, rx++)
4825                         t4_sge_intr_msix(0, &rx->rspq);
4826         } else
4827                 t4_intr_handler(adap)(0, adap);
4828 }
4829 #endif
4830
4831 static const struct net_device_ops cxgb4_netdev_ops = {
4832         .ndo_open             = cxgb_open,
4833         .ndo_stop             = cxgb_close,
4834         .ndo_start_xmit       = t4_eth_xmit,
4835         .ndo_select_queue     = cxgb_select_queue,
4836         .ndo_get_stats64      = cxgb_get_stats,
4837         .ndo_set_rx_mode      = cxgb_set_rxmode,
4838         .ndo_set_mac_address  = cxgb_set_mac_addr,
4839         .ndo_set_features     = cxgb_set_features,
4840         .ndo_validate_addr    = eth_validate_addr,
4841         .ndo_do_ioctl         = cxgb_ioctl,
4842         .ndo_change_mtu       = cxgb_change_mtu,
4843 #ifdef CONFIG_NET_POLL_CONTROLLER
4844         .ndo_poll_controller  = cxgb_netpoll,
4845 #endif
4846 };
4847
4848 void t4_fatal_err(struct adapter *adap)
4849 {
4850         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4851         t4_intr_disable(adap);
4852         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4853 }
4854
4855 /* Return the specified PCI-E Configuration Space register from our Physical
4856  * Function.  We try first via a Firmware LDST Command since we prefer to let
4857  * the firmware own all of these registers, but if that fails we go for it
4858  * directly ourselves.
4859  */
4860 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4861 {
4862         struct fw_ldst_cmd ldst_cmd;
4863         u32 val;
4864         int ret;
4865
4866         /* Construct and send the Firmware LDST Command to retrieve the
4867          * specified PCI-E Configuration Space register.
4868          */
4869         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4870         ldst_cmd.op_to_addrspace =
4871                 htonl(FW_CMD_OP_V(FW_LDST_CMD) |
4872                       FW_CMD_REQUEST_F |
4873                       FW_CMD_READ_F |
4874                       FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4875         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4876         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4877         ldst_cmd.u.pcie.ctrl_to_fn =
4878                 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4879         ldst_cmd.u.pcie.r = reg;
4880         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4881                          &ldst_cmd);
4882
4883         /* If the LDST Command suucceeded, exctract the returned register
4884          * value.  Otherwise read it directly ourself.
4885          */
4886         if (ret == 0)
4887                 val = ntohl(ldst_cmd.u.pcie.data[0]);
4888         else
4889                 t4_hw_pci_read_cfg4(adap, reg, &val);
4890
4891         return val;
4892 }
4893
4894 static void setup_memwin(struct adapter *adap)
4895 {
4896         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4897
4898         if (is_t4(adap->params.chip)) {
4899                 u32 bar0;
4900
4901                 /* Truncation intentional: we only read the bottom 32-bits of
4902                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
4903                  * mechanism to read BAR0 instead of using
4904                  * pci_resource_start() because we could be operating from
4905                  * within a Virtual Machine which is trapping our accesses to
4906                  * our Configuration Space and we need to set up the PCI-E
4907                  * Memory Window decoders with the actual addresses which will
4908                  * be coming across the PCI-E link.
4909                  */
4910                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4911                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4912                 adap->t4_bar0 = bar0;
4913
4914                 mem_win0_base = bar0 + MEMWIN0_BASE;
4915                 mem_win1_base = bar0 + MEMWIN1_BASE;
4916                 mem_win2_base = bar0 + MEMWIN2_BASE;
4917                 mem_win2_aperture = MEMWIN2_APERTURE;
4918         } else {
4919                 /* For T5, only relative offset inside the PCIe BAR is passed */
4920                 mem_win0_base = MEMWIN0_BASE;
4921                 mem_win1_base = MEMWIN1_BASE;
4922                 mem_win2_base = MEMWIN2_BASE_T5;
4923                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
4924         }
4925         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4926                      mem_win0_base | BIR(0) |
4927                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4928         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4929                      mem_win1_base | BIR(0) |
4930                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4931         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4932                      mem_win2_base | BIR(0) |
4933                      WINDOW(ilog2(mem_win2_aperture) - 10));
4934         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
4935 }
4936
4937 static void setup_memwin_rdma(struct adapter *adap)
4938 {
4939         if (adap->vres.ocq.size) {
4940                 u32 start;
4941                 unsigned int sz_kb;
4942
4943                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4944                 start &= PCI_BASE_ADDRESS_MEM_MASK;
4945                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4946                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4947                 t4_write_reg(adap,
4948                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4949                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
4950                 t4_write_reg(adap,
4951                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4952                              adap->vres.ocq.start);
4953                 t4_read_reg(adap,
4954                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4955         }
4956 }
4957
4958 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4959 {
4960         u32 v;
4961         int ret;
4962
4963         /* get device capabilities */
4964         memset(c, 0, sizeof(*c));
4965         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4966                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
4967         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4968         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4969         if (ret < 0)
4970                 return ret;
4971
4972         /* select capabilities we'll be using */
4973         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4974                 if (!vf_acls)
4975                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4976                 else
4977                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4978         } else if (vf_acls) {
4979                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4980                 return ret;
4981         }
4982         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4983                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4984         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4985         if (ret < 0)
4986                 return ret;
4987
4988         ret = t4_config_glbl_rss(adap, adap->fn,
4989                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4990                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4991                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4992         if (ret < 0)
4993                 return ret;
4994
4995         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4996                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
4997         if (ret < 0)
4998                 return ret;
4999
5000         t4_sge_init(adap);
5001
5002         /* tweak some settings */
5003         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5004         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5005         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5006         v = t4_read_reg(adap, TP_PIO_DATA);
5007         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5008
5009         /* first 4 Tx modulation queues point to consecutive Tx channels */
5010         adap->params.tp.tx_modq_map = 0xE4;
5011         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5012                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5013
5014         /* associate each Tx modulation queue with consecutive Tx channels */
5015         v = 0x84218421;
5016         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5017                           &v, 1, A_TP_TX_SCHED_HDR);
5018         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5019                           &v, 1, A_TP_TX_SCHED_FIFO);
5020         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5021                           &v, 1, A_TP_TX_SCHED_PCMD);
5022
5023 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5024         if (is_offload(adap)) {
5025                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5026                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5027                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5028                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5029                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5030                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5031                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5032                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5033                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5034                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5035         }
5036
5037         /* get basic stuff going */
5038         return t4_early_init(adap, adap->fn);
5039 }
5040
5041 /*
5042  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
5043  */
5044 #define MAX_ATIDS 8192U
5045
5046 /*
5047  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5048  *
5049  * If the firmware we're dealing with has Configuration File support, then
5050  * we use that to perform all configuration
5051  */
5052
5053 /*
5054  * Tweak configuration based on module parameters, etc.  Most of these have
5055  * defaults assigned to them by Firmware Configuration Files (if we're using
5056  * them) but need to be explicitly set if we're using hard-coded
5057  * initialization.  But even in the case of using Firmware Configuration
5058  * Files, we'd like to expose the ability to change these via module
5059  * parameters so these are essentially common tweaks/settings for
5060  * Configuration Files and hard-coded initialization ...
5061  */
5062 static int adap_init0_tweaks(struct adapter *adapter)
5063 {
5064         /*
5065          * Fix up various Host-Dependent Parameters like Page Size, Cache
5066          * Line Size, etc.  The firmware default is for a 4KB Page Size and
5067          * 64B Cache Line Size ...
5068          */
5069         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5070
5071         /*
5072          * Process module parameters which affect early initialization.
5073          */
5074         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5075                 dev_err(&adapter->pdev->dev,
5076                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
5077                         rx_dma_offset);
5078                 rx_dma_offset = 2;
5079         }
5080         t4_set_reg_field(adapter, SGE_CONTROL,
5081                          PKTSHIFT_MASK,
5082                          PKTSHIFT(rx_dma_offset));
5083
5084         /*
5085          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5086          * adds the pseudo header itself.
5087          */
5088         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5089                                CSUM_HAS_PSEUDO_HDR, 0);
5090
5091         return 0;
5092 }
5093
5094 /*
5095  * Attempt to initialize the adapter via a Firmware Configuration File.
5096  */
5097 static int adap_init0_config(struct adapter *adapter, int reset)
5098 {
5099         struct fw_caps_config_cmd caps_cmd;
5100         const struct firmware *cf;
5101         unsigned long mtype = 0, maddr = 0;
5102         u32 finiver, finicsum, cfcsum;
5103         int ret;
5104         int config_issued = 0;
5105         char *fw_config_file, fw_config_file_path[256];
5106         char *config_name = NULL;
5107
5108         /*
5109          * Reset device if necessary.
5110          */
5111         if (reset) {
5112                 ret = t4_fw_reset(adapter, adapter->mbox,
5113                                   PIORSTMODE | PIORST);
5114                 if (ret < 0)
5115                         goto bye;
5116         }
5117
5118         /*
5119          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5120          * then use that.  Otherwise, use the configuration file stored
5121          * in the adapter flash ...
5122          */
5123         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5124         case CHELSIO_T4:
5125                 fw_config_file = FW4_CFNAME;
5126                 break;
5127         case CHELSIO_T5:
5128                 fw_config_file = FW5_CFNAME;
5129                 break;
5130         default:
5131                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5132                        adapter->pdev->device);
5133                 ret = -EINVAL;
5134                 goto bye;
5135         }
5136
5137         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5138         if (ret < 0) {
5139                 config_name = "On FLASH";
5140                 mtype = FW_MEMTYPE_CF_FLASH;
5141                 maddr = t4_flash_cfg_addr(adapter);
5142         } else {
5143                 u32 params[7], val[7];
5144
5145                 sprintf(fw_config_file_path,
5146                         "/lib/firmware/%s", fw_config_file);
5147                 config_name = fw_config_file_path;
5148
5149                 if (cf->size >= FLASH_CFG_MAX_SIZE)
5150                         ret = -ENOMEM;
5151                 else {
5152                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5153                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5154                         ret = t4_query_params(adapter, adapter->mbox,
5155                                               adapter->fn, 0, 1, params, val);
5156                         if (ret == 0) {
5157                                 /*
5158                                  * For t4_memory_rw() below addresses and
5159                                  * sizes have to be in terms of multiples of 4
5160                                  * bytes.  So, if the Configuration File isn't
5161                                  * a multiple of 4 bytes in length we'll have
5162                                  * to write that out separately since we can't
5163                                  * guarantee that the bytes following the
5164                                  * residual byte in the buffer returned by
5165                                  * request_firmware() are zeroed out ...
5166                                  */
5167                                 size_t resid = cf->size & 0x3;
5168                                 size_t size = cf->size & ~0x3;
5169                                 __be32 *data = (__be32 *)cf->data;
5170
5171                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5172                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5173
5174                                 spin_lock(&adapter->win0_lock);
5175                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5176                                                    size, data, T4_MEMORY_WRITE);
5177                                 if (ret == 0 && resid != 0) {
5178                                         union {
5179                                                 __be32 word;
5180                                                 char buf[4];
5181                                         } last;
5182                                         int i;
5183
5184                                         last.word = data[size >> 2];
5185                                         for (i = resid; i < 4; i++)
5186                                                 last.buf[i] = 0;
5187                                         ret = t4_memory_rw(adapter, 0, mtype,
5188                                                            maddr + size,
5189                                                            4, &last.word,
5190                                                            T4_MEMORY_WRITE);
5191                                 }
5192                                 spin_unlock(&adapter->win0_lock);
5193                         }
5194                 }
5195
5196                 release_firmware(cf);
5197                 if (ret)
5198                         goto bye;
5199         }
5200
5201         /*
5202          * Issue a Capability Configuration command to the firmware to get it
5203          * to parse the Configuration File.  We don't use t4_fw_config_file()
5204          * because we want the ability to modify various features after we've
5205          * processed the configuration file ...
5206          */
5207         memset(&caps_cmd, 0, sizeof(caps_cmd));
5208         caps_cmd.op_to_write =
5209                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5210                       FW_CMD_REQUEST_F |
5211                       FW_CMD_READ_F);
5212         caps_cmd.cfvalid_to_len16 =
5213                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5214                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5215                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5216                       FW_LEN16(caps_cmd));
5217         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5218                          &caps_cmd);
5219
5220         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5221          * Configuration File in FLASH), our last gasp effort is to use the
5222          * Firmware Configuration File which is embedded in the firmware.  A
5223          * very few early versions of the firmware didn't have one embedded
5224          * but we can ignore those.
5225          */
5226         if (ret == -ENOENT) {
5227                 memset(&caps_cmd, 0, sizeof(caps_cmd));
5228                 caps_cmd.op_to_write =
5229                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5230                                         FW_CMD_REQUEST_F |
5231                                         FW_CMD_READ_F);
5232                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5233                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5234                                 sizeof(caps_cmd), &caps_cmd);
5235                 config_name = "Firmware Default";
5236         }
5237
5238         config_issued = 1;
5239         if (ret < 0)
5240                 goto bye;
5241
5242         finiver = ntohl(caps_cmd.finiver);
5243         finicsum = ntohl(caps_cmd.finicsum);
5244         cfcsum = ntohl(caps_cmd.cfcsum);
5245         if (finicsum != cfcsum)
5246                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5247                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5248                          finicsum, cfcsum);
5249
5250         /*
5251          * And now tell the firmware to use the configuration we just loaded.
5252          */
5253         caps_cmd.op_to_write =
5254                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5255                       FW_CMD_REQUEST_F |
5256                       FW_CMD_WRITE_F);
5257         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5258         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5259                          NULL);
5260         if (ret < 0)
5261                 goto bye;
5262
5263         /*
5264          * Tweak configuration based on system architecture, module
5265          * parameters, etc.
5266          */
5267         ret = adap_init0_tweaks(adapter);
5268         if (ret < 0)
5269                 goto bye;
5270
5271         /*
5272          * And finally tell the firmware to initialize itself using the
5273          * parameters from the Configuration File.
5274          */
5275         ret = t4_fw_initialize(adapter, adapter->mbox);
5276         if (ret < 0)
5277                 goto bye;
5278
5279         /*
5280          * Return successfully and note that we're operating with parameters
5281          * not supplied by the driver, rather than from hard-wired
5282          * initialization constants burried in the driver.
5283          */
5284         adapter->flags |= USING_SOFT_PARAMS;
5285         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5286                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5287                  config_name, finiver, cfcsum);
5288         return 0;
5289
5290         /*
5291          * Something bad happened.  Return the error ...  (If the "error"
5292          * is that there's no Configuration File on the adapter we don't
5293          * want to issue a warning since this is fairly common.)
5294          */
5295 bye:
5296         if (config_issued && ret != -ENOENT)
5297                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5298                          config_name, -ret);
5299         return ret;
5300 }
5301
5302 /*
5303  * Attempt to initialize the adapter via hard-coded, driver supplied
5304  * parameters ...
5305  */
5306 static int adap_init0_no_config(struct adapter *adapter, int reset)
5307 {
5308         struct sge *s = &adapter->sge;
5309         struct fw_caps_config_cmd caps_cmd;
5310         u32 v;
5311         int i, ret;
5312
5313         /*
5314          * Reset device if necessary
5315          */
5316         if (reset) {
5317                 ret = t4_fw_reset(adapter, adapter->mbox,
5318                                   PIORSTMODE | PIORST);
5319                 if (ret < 0)
5320                         goto bye;
5321         }
5322
5323         /*
5324          * Get device capabilities and select which we'll be using.
5325          */
5326         memset(&caps_cmd, 0, sizeof(caps_cmd));
5327         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5328                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
5329         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5330         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5331                          &caps_cmd);
5332         if (ret < 0)
5333                 goto bye;
5334
5335         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5336                 if (!vf_acls)
5337                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5338                 else
5339                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5340         } else if (vf_acls) {
5341                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5342                 goto bye;
5343         }
5344         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5345                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5346         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5347                          NULL);
5348         if (ret < 0)
5349                 goto bye;
5350
5351         /*
5352          * Tweak configuration based on system architecture, module
5353          * parameters, etc.
5354          */
5355         ret = adap_init0_tweaks(adapter);
5356         if (ret < 0)
5357                 goto bye;
5358
5359         /*
5360          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5361          * mode which maps each Virtual Interface to its own section of
5362          * the RSS Table and we turn on all map and hash enables ...
5363          */
5364         adapter->flags |= RSS_TNLALLLOOKUP;
5365         ret = t4_config_glbl_rss(adapter, adapter->mbox,
5366                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5367                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5368                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5369                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
5370                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5371         if (ret < 0)
5372                 goto bye;
5373
5374         /*
5375          * Set up our own fundamental resource provisioning ...
5376          */
5377         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5378                           PFRES_NEQ, PFRES_NETHCTRL,
5379                           PFRES_NIQFLINT, PFRES_NIQ,
5380                           PFRES_TC, PFRES_NVI,
5381                           FW_PFVF_CMD_CMASK_MASK,
5382                           pfvfres_pmask(adapter, adapter->fn, 0),
5383                           PFRES_NEXACTF,
5384                           PFRES_R_CAPS, PFRES_WX_CAPS);
5385         if (ret < 0)
5386                 goto bye;
5387
5388         /*
5389          * Perform low level SGE initialization.  We need to do this before we
5390          * send the firmware the INITIALIZE command because that will cause
5391          * any other PF Drivers which are waiting for the Master
5392          * Initialization to proceed forward.
5393          */
5394         for (i = 0; i < SGE_NTIMERS - 1; i++)
5395                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5396         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5397         s->counter_val[0] = 1;
5398         for (i = 1; i < SGE_NCOUNTERS; i++)
5399                 s->counter_val[i] = min(intr_cnt[i - 1],
5400                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
5401         t4_sge_init(adapter);
5402
5403 #ifdef CONFIG_PCI_IOV
5404         /*
5405          * Provision resource limits for Virtual Functions.  We currently
5406          * grant them all the same static resource limits except for the Port
5407          * Access Rights Mask which we're assigning based on the PF.  All of
5408          * the static provisioning stuff for both the PF and VF really needs
5409          * to be managed in a persistent manner for each device which the
5410          * firmware controls.
5411          */
5412         {
5413                 int pf, vf;
5414
5415                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5416                         if (num_vf[pf] <= 0)
5417                                 continue;
5418
5419                         /* VF numbering starts at 1! */
5420                         for (vf = 1; vf <= num_vf[pf]; vf++) {
5421                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5422                                                   pf, vf,
5423                                                   VFRES_NEQ, VFRES_NETHCTRL,
5424                                                   VFRES_NIQFLINT, VFRES_NIQ,
5425                                                   VFRES_TC, VFRES_NVI,
5426                                                   FW_PFVF_CMD_CMASK_MASK,
5427                                                   pfvfres_pmask(
5428                                                   adapter, pf, vf),
5429                                                   VFRES_NEXACTF,
5430                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
5431                                 if (ret < 0)
5432                                         dev_warn(adapter->pdev_dev,
5433                                                  "failed to "\
5434                                                  "provision pf/vf=%d/%d; "
5435                                                  "err=%d\n", pf, vf, ret);
5436                         }
5437                 }
5438         }
5439 #endif
5440
5441         /*
5442          * Set up the default filter mode.  Later we'll want to implement this
5443          * via a firmware command, etc. ...  This needs to be done before the
5444          * firmare initialization command ...  If the selected set of fields
5445          * isn't equal to the default value, we'll need to make sure that the
5446          * field selections will fit in the 36-bit budget.
5447          */
5448         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5449                 int j, bits = 0;
5450
5451                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5452                         switch (tp_vlan_pri_map & (1 << j)) {
5453                         case 0:
5454                                 /* compressed filter field not enabled */
5455                                 break;
5456                         case FCOE_MASK:
5457                                 bits +=  1;
5458                                 break;
5459                         case PORT_MASK:
5460                                 bits +=  3;
5461                                 break;
5462                         case VNIC_ID_MASK:
5463                                 bits += 17;
5464                                 break;
5465                         case VLAN_MASK:
5466                                 bits += 17;
5467                                 break;
5468                         case TOS_MASK:
5469                                 bits +=  8;
5470                                 break;
5471                         case PROTOCOL_MASK:
5472                                 bits +=  8;
5473                                 break;
5474                         case ETHERTYPE_MASK:
5475                                 bits += 16;
5476                                 break;
5477                         case MACMATCH_MASK:
5478                                 bits +=  9;
5479                                 break;
5480                         case MPSHITTYPE_MASK:
5481                                 bits +=  3;
5482                                 break;
5483                         case FRAGMENTATION_MASK:
5484                                 bits +=  1;
5485                                 break;
5486                         }
5487
5488                 if (bits > 36) {
5489                         dev_err(adapter->pdev_dev,
5490                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5491                                 " using %#x\n", tp_vlan_pri_map, bits,
5492                                 TP_VLAN_PRI_MAP_DEFAULT);
5493                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5494                 }
5495         }
5496         v = tp_vlan_pri_map;
5497         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5498                           &v, 1, TP_VLAN_PRI_MAP);
5499
5500         /*
5501          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5502          * to support any of the compressed filter fields above.  Newer
5503          * versions of the firmware do this automatically but it doesn't hurt
5504          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5505          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5506          * since the firmware automatically turns this on and off when we have
5507          * a non-zero number of filters active (since it does have a
5508          * performance impact).
5509          */
5510         if (tp_vlan_pri_map)
5511                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5512                                  FIVETUPLELOOKUP_MASK,
5513                                  FIVETUPLELOOKUP_MASK);
5514
5515         /*
5516          * Tweak some settings.
5517          */
5518         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5519                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5520                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5521                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5522
5523         /*
5524          * Get basic stuff going by issuing the Firmware Initialize command.
5525          * Note that this _must_ be after all PFVF commands ...
5526          */
5527         ret = t4_fw_initialize(adapter, adapter->mbox);
5528         if (ret < 0)
5529                 goto bye;
5530
5531         /*
5532          * Return successfully!
5533          */
5534         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5535                  "driver parameters\n");
5536         return 0;
5537
5538         /*
5539          * Something bad happened.  Return the error ...
5540          */
5541 bye:
5542         return ret;
5543 }
5544
5545 static struct fw_info fw_info_array[] = {
5546         {
5547                 .chip = CHELSIO_T4,
5548                 .fs_name = FW4_CFNAME,
5549                 .fw_mod_name = FW4_FNAME,
5550                 .fw_hdr = {
5551                         .chip = FW_HDR_CHIP_T4,
5552                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5553                         .intfver_nic = FW_INTFVER(T4, NIC),
5554                         .intfver_vnic = FW_INTFVER(T4, VNIC),
5555                         .intfver_ri = FW_INTFVER(T4, RI),
5556                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5557                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
5558                 },
5559         }, {
5560                 .chip = CHELSIO_T5,
5561                 .fs_name = FW5_CFNAME,
5562                 .fw_mod_name = FW5_FNAME,
5563                 .fw_hdr = {
5564                         .chip = FW_HDR_CHIP_T5,
5565                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5566                         .intfver_nic = FW_INTFVER(T5, NIC),
5567                         .intfver_vnic = FW_INTFVER(T5, VNIC),
5568                         .intfver_ri = FW_INTFVER(T5, RI),
5569                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5570                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
5571                 },
5572         }
5573 };
5574
5575 static struct fw_info *find_fw_info(int chip)
5576 {
5577         int i;
5578
5579         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5580                 if (fw_info_array[i].chip == chip)
5581                         return &fw_info_array[i];
5582         }
5583         return NULL;
5584 }
5585
5586 /*
5587  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5588  */
5589 static int adap_init0(struct adapter *adap)
5590 {
5591         int ret;
5592         u32 v, port_vec;
5593         enum dev_state state;
5594         u32 params[7], val[7];
5595         struct fw_caps_config_cmd caps_cmd;
5596         int reset = 1;
5597
5598         /*
5599          * Contact FW, advertising Master capability (and potentially forcing
5600          * ourselves as the Master PF if our module parameter force_init is
5601          * set).
5602          */
5603         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5604                           force_init ? MASTER_MUST : MASTER_MAY,
5605                           &state);
5606         if (ret < 0) {
5607                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5608                         ret);
5609                 return ret;
5610         }
5611         if (ret == adap->mbox)
5612                 adap->flags |= MASTER_PF;
5613         if (force_init && state == DEV_STATE_INIT)
5614                 state = DEV_STATE_UNINIT;
5615
5616         /*
5617          * If we're the Master PF Driver and the device is uninitialized,
5618          * then let's consider upgrading the firmware ...  (We always want
5619          * to check the firmware version number in order to A. get it for
5620          * later reporting and B. to warn if the currently loaded firmware
5621          * is excessively mismatched relative to the driver.)
5622          */
5623         t4_get_fw_version(adap, &adap->params.fw_vers);
5624         t4_get_tp_version(adap, &adap->params.tp_vers);
5625         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5626                 struct fw_info *fw_info;
5627                 struct fw_hdr *card_fw;
5628                 const struct firmware *fw;
5629                 const u8 *fw_data = NULL;
5630                 unsigned int fw_size = 0;
5631
5632                 /* This is the firmware whose headers the driver was compiled
5633                  * against
5634                  */
5635                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5636                 if (fw_info == NULL) {
5637                         dev_err(adap->pdev_dev,
5638                                 "unable to get firmware info for chip %d.\n",
5639                                 CHELSIO_CHIP_VERSION(adap->params.chip));
5640                         return -EINVAL;
5641                 }
5642
5643                 /* allocate memory to read the header of the firmware on the
5644                  * card
5645                  */
5646                 card_fw = t4_alloc_mem(sizeof(*card_fw));
5647
5648                 /* Get FW from from /lib/firmware/ */
5649                 ret = request_firmware(&fw, fw_info->fw_mod_name,
5650                                        adap->pdev_dev);
5651                 if (ret < 0) {
5652                         dev_err(adap->pdev_dev,
5653                                 "unable to load firmware image %s, error %d\n",
5654                                 fw_info->fw_mod_name, ret);
5655                 } else {
5656                         fw_data = fw->data;
5657                         fw_size = fw->size;
5658                 }
5659
5660                 /* upgrade FW logic */
5661                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5662                                  state, &reset);
5663
5664                 /* Cleaning up */
5665                 if (fw != NULL)
5666                         release_firmware(fw);
5667                 t4_free_mem(card_fw);
5668
5669                 if (ret < 0)
5670                         goto bye;
5671         }
5672
5673         /*
5674          * Grab VPD parameters.  This should be done after we establish a
5675          * connection to the firmware since some of the VPD parameters
5676          * (notably the Core Clock frequency) are retrieved via requests to
5677          * the firmware.  On the other hand, we need these fairly early on
5678          * so we do this right after getting ahold of the firmware.
5679          */
5680         ret = get_vpd_params(adap, &adap->params.vpd);
5681         if (ret < 0)
5682                 goto bye;
5683
5684         /*
5685          * Find out what ports are available to us.  Note that we need to do
5686          * this before calling adap_init0_no_config() since it needs nports
5687          * and portvec ...
5688          */
5689         v =
5690             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5691             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5692         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5693         if (ret < 0)
5694                 goto bye;
5695
5696         adap->params.nports = hweight32(port_vec);
5697         adap->params.portvec = port_vec;
5698
5699         /*
5700          * If the firmware is initialized already (and we're not forcing a
5701          * master initialization), note that we're living with existing
5702          * adapter parameters.  Otherwise, it's time to try initializing the
5703          * adapter ...
5704          */
5705         if (state == DEV_STATE_INIT) {
5706                 dev_info(adap->pdev_dev, "Coming up as %s: "\
5707                          "Adapter already initialized\n",
5708                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5709                 adap->flags |= USING_SOFT_PARAMS;
5710         } else {
5711                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5712                          "Initializing adapter\n");
5713                 /*
5714                  * If the firmware doesn't support Configuration
5715                  * Files warn user and exit,
5716                  */
5717                 if (ret < 0)
5718                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
5719                                  "configuration file.\n");
5720                 if (force_old_init)
5721                         ret = adap_init0_no_config(adap, reset);
5722                 else {
5723                         /*
5724                          * Find out whether we're dealing with a version of
5725                          * the firmware which has configuration file support.
5726                          */
5727                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5728                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5729                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5730                                               params, val);
5731
5732                         /*
5733                          * If the firmware doesn't support Configuration
5734                          * Files, use the old Driver-based, hard-wired
5735                          * initialization.  Otherwise, try using the
5736                          * Configuration File support and fall back to the
5737                          * Driver-based initialization if there's no
5738                          * Configuration File found.
5739                          */
5740                         if (ret < 0)
5741                                 ret = adap_init0_no_config(adap, reset);
5742                         else {
5743                                 /*
5744                                  * The firmware provides us with a memory
5745                                  * buffer where we can load a Configuration
5746                                  * File from the host if we want to override
5747                                  * the Configuration File in flash.
5748                                  */
5749
5750                                 ret = adap_init0_config(adap, reset);
5751                                 if (ret == -ENOENT) {
5752                                         dev_info(adap->pdev_dev,
5753                                             "No Configuration File present "
5754                                             "on adapter. Using hard-wired "
5755                                             "configuration parameters.\n");
5756                                         goto bye;
5757                                         ret = adap_init0_no_config(adap, reset);
5758                                 }
5759                         }
5760                 }
5761                 if (ret < 0) {
5762                         dev_err(adap->pdev_dev,
5763                                 "could not initialize adapter, error %d\n",
5764                                 -ret);
5765                         goto bye;
5766                 }
5767         }
5768
5769         /*
5770          * If we're living with non-hard-coded parameters (either from a
5771          * Firmware Configuration File or values programmed by a different PF
5772          * Driver), give the SGE code a chance to pull in anything that it
5773          * needs ...  Note that this must be called after we retrieve our VPD
5774          * parameters in order to know how to convert core ticks to seconds.
5775          */
5776         if (adap->flags & USING_SOFT_PARAMS) {
5777                 ret = t4_sge_init(adap);
5778                 if (ret < 0)
5779                         goto bye;
5780         }
5781
5782         if (is_bypass_device(adap->pdev->device))
5783                 adap->params.bypass = 1;
5784
5785         /*
5786          * Grab some of our basic fundamental operating parameters.
5787          */
5788 #define FW_PARAM_DEV(param) \
5789         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5790         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5791
5792 #define FW_PARAM_PFVF(param) \
5793         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5794         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
5795         FW_PARAMS_PARAM_Y(0) | \
5796         FW_PARAMS_PARAM_Z(0)
5797
5798         params[0] = FW_PARAM_PFVF(EQ_START);
5799         params[1] = FW_PARAM_PFVF(L2T_START);
5800         params[2] = FW_PARAM_PFVF(L2T_END);
5801         params[3] = FW_PARAM_PFVF(FILTER_START);
5802         params[4] = FW_PARAM_PFVF(FILTER_END);
5803         params[5] = FW_PARAM_PFVF(IQFLINT_START);
5804         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5805         if (ret < 0)
5806                 goto bye;
5807         adap->sge.egr_start = val[0];
5808         adap->l2t_start = val[1];
5809         adap->l2t_end = val[2];
5810         adap->tids.ftid_base = val[3];
5811         adap->tids.nftids = val[4] - val[3] + 1;
5812         adap->sge.ingr_start = val[5];
5813
5814         /* query params related to active filter region */
5815         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5816         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5817         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5818         /* If Active filter size is set we enable establishing
5819          * offload connection through firmware work request
5820          */
5821         if ((val[0] != val[1]) && (ret >= 0)) {
5822                 adap->flags |= FW_OFLD_CONN;
5823                 adap->tids.aftid_base = val[0];
5824                 adap->tids.aftid_end = val[1];
5825         }
5826
5827         /* If we're running on newer firmware, let it know that we're
5828          * prepared to deal with encapsulated CPL messages.  Older
5829          * firmware won't understand this and we'll just get
5830          * unencapsulated messages ...
5831          */
5832         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5833         val[0] = 1;
5834         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5835
5836         /*
5837          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5838          * capability.  Earlier versions of the firmware didn't have the
5839          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5840          * permission to use ULPTX MEMWRITE DSGL.
5841          */
5842         if (is_t4(adap->params.chip)) {
5843                 adap->params.ulptx_memwrite_dsgl = false;
5844         } else {
5845                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5846                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5847                                       1, params, val);
5848                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5849         }
5850
5851         /*
5852          * Get device capabilities so we can determine what resources we need
5853          * to manage.
5854          */
5855         memset(&caps_cmd, 0, sizeof(caps_cmd));
5856         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5857                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
5858         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5859         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5860                          &caps_cmd);
5861         if (ret < 0)
5862                 goto bye;
5863
5864         if (caps_cmd.ofldcaps) {
5865                 /* query offload-related parameters */
5866                 params[0] = FW_PARAM_DEV(NTID);
5867                 params[1] = FW_PARAM_PFVF(SERVER_START);
5868                 params[2] = FW_PARAM_PFVF(SERVER_END);
5869                 params[3] = FW_PARAM_PFVF(TDDP_START);
5870                 params[4] = FW_PARAM_PFVF(TDDP_END);
5871                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5872                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5873                                       params, val);
5874                 if (ret < 0)
5875                         goto bye;
5876                 adap->tids.ntids = val[0];
5877                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5878                 adap->tids.stid_base = val[1];
5879                 adap->tids.nstids = val[2] - val[1] + 1;
5880                 /*
5881                  * Setup server filter region. Divide the availble filter
5882                  * region into two parts. Regular filters get 1/3rd and server
5883                  * filters get 2/3rd part. This is only enabled if workarond
5884                  * path is enabled.
5885                  * 1. For regular filters.
5886                  * 2. Server filter: This are special filters which are used
5887                  * to redirect SYN packets to offload queue.
5888                  */
5889                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5890                         adap->tids.sftid_base = adap->tids.ftid_base +
5891                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5892                         adap->tids.nsftids = adap->tids.nftids -
5893                                          DIV_ROUND_UP(adap->tids.nftids, 3);
5894                         adap->tids.nftids = adap->tids.sftid_base -
5895                                                 adap->tids.ftid_base;
5896                 }
5897                 adap->vres.ddp.start = val[3];
5898                 adap->vres.ddp.size = val[4] - val[3] + 1;
5899                 adap->params.ofldq_wr_cred = val[5];
5900
5901                 adap->params.offload = 1;
5902         }
5903         if (caps_cmd.rdmacaps) {
5904                 params[0] = FW_PARAM_PFVF(STAG_START);
5905                 params[1] = FW_PARAM_PFVF(STAG_END);
5906                 params[2] = FW_PARAM_PFVF(RQ_START);
5907                 params[3] = FW_PARAM_PFVF(RQ_END);
5908                 params[4] = FW_PARAM_PFVF(PBL_START);
5909                 params[5] = FW_PARAM_PFVF(PBL_END);
5910                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5911                                       params, val);
5912                 if (ret < 0)
5913                         goto bye;
5914                 adap->vres.stag.start = val[0];
5915                 adap->vres.stag.size = val[1] - val[0] + 1;
5916                 adap->vres.rq.start = val[2];
5917                 adap->vres.rq.size = val[3] - val[2] + 1;
5918                 adap->vres.pbl.start = val[4];
5919                 adap->vres.pbl.size = val[5] - val[4] + 1;
5920
5921                 params[0] = FW_PARAM_PFVF(SQRQ_START);
5922                 params[1] = FW_PARAM_PFVF(SQRQ_END);
5923                 params[2] = FW_PARAM_PFVF(CQ_START);
5924                 params[3] = FW_PARAM_PFVF(CQ_END);
5925                 params[4] = FW_PARAM_PFVF(OCQ_START);
5926                 params[5] = FW_PARAM_PFVF(OCQ_END);
5927                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
5928                                       val);
5929                 if (ret < 0)
5930                         goto bye;
5931                 adap->vres.qp.start = val[0];
5932                 adap->vres.qp.size = val[1] - val[0] + 1;
5933                 adap->vres.cq.start = val[2];
5934                 adap->vres.cq.size = val[3] - val[2] + 1;
5935                 adap->vres.ocq.start = val[4];
5936                 adap->vres.ocq.size = val[5] - val[4] + 1;
5937
5938                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5939                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5940                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
5941                                       val);
5942                 if (ret < 0) {
5943                         adap->params.max_ordird_qp = 8;
5944                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5945                         ret = 0;
5946                 } else {
5947                         adap->params.max_ordird_qp = val[0];
5948                         adap->params.max_ird_adapter = val[1];
5949                 }
5950                 dev_info(adap->pdev_dev,
5951                          "max_ordird_qp %d max_ird_adapter %d\n",
5952                          adap->params.max_ordird_qp,
5953                          adap->params.max_ird_adapter);
5954         }
5955         if (caps_cmd.iscsicaps) {
5956                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5957                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5958                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5959                                       params, val);
5960                 if (ret < 0)
5961                         goto bye;
5962                 adap->vres.iscsi.start = val[0];
5963                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5964         }
5965 #undef FW_PARAM_PFVF
5966 #undef FW_PARAM_DEV
5967
5968         /* The MTU/MSS Table is initialized by now, so load their values.  If
5969          * we're initializing the adapter, then we'll make any modifications
5970          * we want to the MTU/MSS Table and also initialize the congestion
5971          * parameters.
5972          */
5973         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5974         if (state != DEV_STATE_INIT) {
5975                 int i;
5976
5977                 /* The default MTU Table contains values 1492 and 1500.
5978                  * However, for TCP, it's better to have two values which are
5979                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5980                  * This allows us to have a TCP Data Payload which is a
5981                  * multiple of 8 regardless of what combination of TCP Options
5982                  * are in use (always a multiple of 4 bytes) which is
5983                  * important for performance reasons.  For instance, if no
5984                  * options are in use, then we have a 20-byte IP header and a
5985                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
5986                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5987                  * which is not a multiple of 8.  So using an MSS of 1488 in
5988                  * this case results in a TCP Data Payload of 1448 bytes which
5989                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5990                  * Stamps have been negotiated, then an MTU of 1500 bytes
5991                  * results in a TCP Data Payload of 1448 bytes which, as
5992                  * above, is a multiple of 8 bytes ...
5993                  */
5994                 for (i = 0; i < NMTUS; i++)
5995                         if (adap->params.mtus[i] == 1492) {
5996                                 adap->params.mtus[i] = 1488;
5997                                 break;
5998                         }
5999
6000                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6001                              adap->params.b_wnd);
6002         }
6003         t4_init_tp_params(adap);
6004         adap->flags |= FW_OK;
6005         return 0;
6006
6007         /*
6008          * Something bad happened.  If a command timed out or failed with EIO
6009          * FW does not operate within its spec or something catastrophic
6010          * happened to HW/FW, stop issuing commands.
6011          */
6012 bye:
6013         if (ret != -ETIMEDOUT && ret != -EIO)
6014                 t4_fw_bye(adap, adap->mbox);
6015         return ret;
6016 }
6017
6018 /* EEH callbacks */
6019
6020 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6021                                          pci_channel_state_t state)
6022 {
6023         int i;
6024         struct adapter *adap = pci_get_drvdata(pdev);
6025
6026         if (!adap)
6027                 goto out;
6028
6029         rtnl_lock();
6030         adap->flags &= ~FW_OK;
6031         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6032         spin_lock(&adap->stats_lock);
6033         for_each_port(adap, i) {
6034                 struct net_device *dev = adap->port[i];
6035
6036                 netif_device_detach(dev);
6037                 netif_carrier_off(dev);
6038         }
6039         spin_unlock(&adap->stats_lock);
6040         if (adap->flags & FULL_INIT_DONE)
6041                 cxgb_down(adap);
6042         rtnl_unlock();
6043         if ((adap->flags & DEV_ENABLED)) {
6044                 pci_disable_device(pdev);
6045                 adap->flags &= ~DEV_ENABLED;
6046         }
6047 out:    return state == pci_channel_io_perm_failure ?
6048                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6049 }
6050
6051 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6052 {
6053         int i, ret;
6054         struct fw_caps_config_cmd c;
6055         struct adapter *adap = pci_get_drvdata(pdev);
6056
6057         if (!adap) {
6058                 pci_restore_state(pdev);
6059                 pci_save_state(pdev);
6060                 return PCI_ERS_RESULT_RECOVERED;
6061         }
6062
6063         if (!(adap->flags & DEV_ENABLED)) {
6064                 if (pci_enable_device(pdev)) {
6065                         dev_err(&pdev->dev, "Cannot reenable PCI "
6066                                             "device after reset\n");
6067                         return PCI_ERS_RESULT_DISCONNECT;
6068                 }
6069                 adap->flags |= DEV_ENABLED;
6070         }
6071
6072         pci_set_master(pdev);
6073         pci_restore_state(pdev);
6074         pci_save_state(pdev);
6075         pci_cleanup_aer_uncorrect_error_status(pdev);
6076
6077         if (t4_wait_dev_ready(adap->regs) < 0)
6078                 return PCI_ERS_RESULT_DISCONNECT;
6079         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6080                 return PCI_ERS_RESULT_DISCONNECT;
6081         adap->flags |= FW_OK;
6082         if (adap_init1(adap, &c))
6083                 return PCI_ERS_RESULT_DISCONNECT;
6084
6085         for_each_port(adap, i) {
6086                 struct port_info *p = adap2pinfo(adap, i);
6087
6088                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6089                                   NULL, NULL);
6090                 if (ret < 0)
6091                         return PCI_ERS_RESULT_DISCONNECT;
6092                 p->viid = ret;
6093                 p->xact_addr_filt = -1;
6094         }
6095
6096         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6097                      adap->params.b_wnd);
6098         setup_memwin(adap);
6099         if (cxgb_up(adap))
6100                 return PCI_ERS_RESULT_DISCONNECT;
6101         return PCI_ERS_RESULT_RECOVERED;
6102 }
6103
6104 static void eeh_resume(struct pci_dev *pdev)
6105 {
6106         int i;
6107         struct adapter *adap = pci_get_drvdata(pdev);
6108
6109         if (!adap)
6110                 return;
6111
6112         rtnl_lock();
6113         for_each_port(adap, i) {
6114                 struct net_device *dev = adap->port[i];
6115
6116                 if (netif_running(dev)) {
6117                         link_start(dev);
6118                         cxgb_set_rxmode(dev);
6119                 }
6120                 netif_device_attach(dev);
6121         }
6122         rtnl_unlock();
6123 }
6124
6125 static const struct pci_error_handlers cxgb4_eeh = {
6126         .error_detected = eeh_err_detected,
6127         .slot_reset     = eeh_slot_reset,
6128         .resume         = eeh_resume,
6129 };
6130
6131 static inline bool is_x_10g_port(const struct link_config *lc)
6132 {
6133         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6134                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6135 }
6136
6137 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6138                              unsigned int us, unsigned int cnt,
6139                              unsigned int size, unsigned int iqe_size)
6140 {
6141         q->adap = adap;
6142         set_rspq_intr_params(q, us, cnt);
6143         q->iqe_len = iqe_size;
6144         q->size = size;
6145 }
6146
6147 /*
6148  * Perform default configuration of DMA queues depending on the number and type
6149  * of ports we found and the number of available CPUs.  Most settings can be
6150  * modified by the admin prior to actual use.
6151  */
6152 static void cfg_queues(struct adapter *adap)
6153 {
6154         struct sge *s = &adap->sge;
6155         int i, n10g = 0, qidx = 0;
6156 #ifndef CONFIG_CHELSIO_T4_DCB
6157         int q10g = 0;
6158 #endif
6159         int ciq_size;
6160
6161         for_each_port(adap, i)
6162                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6163 #ifdef CONFIG_CHELSIO_T4_DCB
6164         /* For Data Center Bridging support we need to be able to support up
6165          * to 8 Traffic Priorities; each of which will be assigned to its
6166          * own TX Queue in order to prevent Head-Of-Line Blocking.
6167          */
6168         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6169                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6170                         MAX_ETH_QSETS, adap->params.nports * 8);
6171                 BUG_ON(1);
6172         }
6173
6174         for_each_port(adap, i) {
6175                 struct port_info *pi = adap2pinfo(adap, i);
6176
6177                 pi->first_qset = qidx;
6178                 pi->nqsets = 8;
6179                 qidx += pi->nqsets;
6180         }
6181 #else /* !CONFIG_CHELSIO_T4_DCB */
6182         /*
6183          * We default to 1 queue per non-10G port and up to # of cores queues
6184          * per 10G port.
6185          */
6186         if (n10g)
6187                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6188         if (q10g > netif_get_num_default_rss_queues())
6189                 q10g = netif_get_num_default_rss_queues();
6190
6191         for_each_port(adap, i) {
6192                 struct port_info *pi = adap2pinfo(adap, i);
6193
6194                 pi->first_qset = qidx;
6195                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6196                 qidx += pi->nqsets;
6197         }
6198 #endif /* !CONFIG_CHELSIO_T4_DCB */
6199
6200         s->ethqsets = qidx;
6201         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
6202
6203         if (is_offload(adap)) {
6204                 /*
6205                  * For offload we use 1 queue/channel if all ports are up to 1G,
6206                  * otherwise we divide all available queues amongst the channels
6207                  * capped by the number of available cores.
6208                  */
6209                 if (n10g) {
6210                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6211                                   num_online_cpus());
6212                         s->ofldqsets = roundup(i, adap->params.nports);
6213                 } else
6214                         s->ofldqsets = adap->params.nports;
6215                 /* For RDMA one Rx queue per channel suffices */
6216                 s->rdmaqs = adap->params.nports;
6217                 s->rdmaciqs = adap->params.nports;
6218         }
6219
6220         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6221                 struct sge_eth_rxq *r = &s->ethrxq[i];
6222
6223                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6224                 r->fl.size = 72;
6225         }
6226
6227         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6228                 s->ethtxq[i].q.size = 1024;
6229
6230         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6231                 s->ctrlq[i].q.size = 512;
6232
6233         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6234                 s->ofldtxq[i].q.size = 1024;
6235
6236         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6237                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6238
6239                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6240                 r->rspq.uld = CXGB4_ULD_ISCSI;
6241                 r->fl.size = 72;
6242         }
6243
6244         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6245                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6246
6247                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6248                 r->rspq.uld = CXGB4_ULD_RDMA;
6249                 r->fl.size = 72;
6250         }
6251
6252         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6253         if (ciq_size > SGE_MAX_IQ_SIZE) {
6254                 CH_WARN(adap, "CIQ size too small for available IQs\n");
6255                 ciq_size = SGE_MAX_IQ_SIZE;
6256         }
6257
6258         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6259                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6260
6261                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6262                 r->rspq.uld = CXGB4_ULD_RDMA;
6263         }
6264
6265         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6266         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6267 }
6268
6269 /*
6270  * Reduce the number of Ethernet queues across all ports to at most n.
6271  * n provides at least one queue per port.
6272  */
6273 static void reduce_ethqs(struct adapter *adap, int n)
6274 {
6275         int i;
6276         struct port_info *pi;
6277
6278         while (n < adap->sge.ethqsets)
6279                 for_each_port(adap, i) {
6280                         pi = adap2pinfo(adap, i);
6281                         if (pi->nqsets > 1) {
6282                                 pi->nqsets--;
6283                                 adap->sge.ethqsets--;
6284                                 if (adap->sge.ethqsets <= n)
6285                                         break;
6286                         }
6287                 }
6288
6289         n = 0;
6290         for_each_port(adap, i) {
6291                 pi = adap2pinfo(adap, i);
6292                 pi->first_qset = n;
6293                 n += pi->nqsets;
6294         }
6295 }
6296
6297 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6298 #define EXTRA_VECS 2
6299
6300 static int enable_msix(struct adapter *adap)
6301 {
6302         int ofld_need = 0;
6303         int i, want, need;
6304         struct sge *s = &adap->sge;
6305         unsigned int nchan = adap->params.nports;
6306         struct msix_entry entries[MAX_INGQ + 1];
6307
6308         for (i = 0; i < ARRAY_SIZE(entries); ++i)
6309                 entries[i].entry = i;
6310
6311         want = s->max_ethqsets + EXTRA_VECS;
6312         if (is_offload(adap)) {
6313                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6314                 /* need nchan for each possible ULD */
6315                 ofld_need = 3 * nchan;
6316         }
6317 #ifdef CONFIG_CHELSIO_T4_DCB
6318         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6319          * each port.
6320          */
6321         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6322 #else
6323         need = adap->params.nports + EXTRA_VECS + ofld_need;
6324 #endif
6325         want = pci_enable_msix_range(adap->pdev, entries, need, want);
6326         if (want < 0)
6327                 return want;
6328
6329         /*
6330          * Distribute available vectors to the various queue groups.
6331          * Every group gets its minimum requirement and NIC gets top
6332          * priority for leftovers.
6333          */
6334         i = want - EXTRA_VECS - ofld_need;
6335         if (i < s->max_ethqsets) {
6336                 s->max_ethqsets = i;
6337                 if (i < s->ethqsets)
6338                         reduce_ethqs(adap, i);
6339         }
6340         if (is_offload(adap)) {
6341                 i = want - EXTRA_VECS - s->max_ethqsets;
6342                 i -= ofld_need - nchan;
6343                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
6344         }
6345         for (i = 0; i < want; ++i)
6346                 adap->msix_info[i].vec = entries[i].vector;
6347
6348         return 0;
6349 }
6350
6351 #undef EXTRA_VECS
6352
6353 static int init_rss(struct adapter *adap)
6354 {
6355         unsigned int i, j;
6356
6357         for_each_port(adap, i) {
6358                 struct port_info *pi = adap2pinfo(adap, i);
6359
6360                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6361                 if (!pi->rss)
6362                         return -ENOMEM;
6363                 for (j = 0; j < pi->rss_size; j++)
6364                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6365         }
6366         return 0;
6367 }
6368
6369 static void print_port_info(const struct net_device *dev)
6370 {
6371         char buf[80];
6372         char *bufp = buf;
6373         const char *spd = "";
6374         const struct port_info *pi = netdev_priv(dev);
6375         const struct adapter *adap = pi->adapter;
6376
6377         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6378                 spd = " 2.5 GT/s";
6379         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6380                 spd = " 5 GT/s";
6381         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6382                 spd = " 8 GT/s";
6383
6384         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6385                 bufp += sprintf(bufp, "100/");
6386         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6387                 bufp += sprintf(bufp, "1000/");
6388         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6389                 bufp += sprintf(bufp, "10G/");
6390         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6391                 bufp += sprintf(bufp, "40G/");
6392         if (bufp != buf)
6393                 --bufp;
6394         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6395
6396         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6397                     adap->params.vpd.id,
6398                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6399                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6400                     (adap->flags & USING_MSIX) ? " MSI-X" :
6401                     (adap->flags & USING_MSI) ? " MSI" : "");
6402         netdev_info(dev, "S/N: %s, P/N: %s\n",
6403                     adap->params.vpd.sn, adap->params.vpd.pn);
6404 }
6405
6406 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6407 {
6408         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6409 }
6410
6411 /*
6412  * Free the following resources:
6413  * - memory used for tables
6414  * - MSI/MSI-X
6415  * - net devices
6416  * - resources FW is holding for us
6417  */
6418 static void free_some_resources(struct adapter *adapter)
6419 {
6420         unsigned int i;
6421
6422         t4_free_mem(adapter->l2t);
6423         t4_free_mem(adapter->tids.tid_tab);
6424         disable_msi(adapter);
6425
6426         for_each_port(adapter, i)
6427                 if (adapter->port[i]) {
6428                         kfree(adap2pinfo(adapter, i)->rss);
6429                         free_netdev(adapter->port[i]);
6430                 }
6431         if (adapter->flags & FW_OK)
6432                 t4_fw_bye(adapter, adapter->fn);
6433 }
6434
6435 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6436 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6437                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6438 #define SEGMENT_SIZE 128
6439
6440 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6441 {
6442         int func, i, err, s_qpp, qpp, num_seg;
6443         struct port_info *pi;
6444         bool highdma = false;
6445         struct adapter *adapter = NULL;
6446         void __iomem *regs;
6447
6448         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6449
6450         err = pci_request_regions(pdev, KBUILD_MODNAME);
6451         if (err) {
6452                 /* Just info, some other driver may have claimed the device. */
6453                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6454                 return err;
6455         }
6456
6457         err = pci_enable_device(pdev);
6458         if (err) {
6459                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6460                 goto out_release_regions;
6461         }
6462
6463         regs = pci_ioremap_bar(pdev, 0);
6464         if (!regs) {
6465                 dev_err(&pdev->dev, "cannot map device registers\n");
6466                 err = -ENOMEM;
6467                 goto out_disable_device;
6468         }
6469
6470         err = t4_wait_dev_ready(regs);
6471         if (err < 0)
6472                 goto out_unmap_bar0;
6473
6474         /* We control everything through one PF */
6475         func = SOURCEPF_GET(readl(regs + PL_WHOAMI));
6476         if (func != ent->driver_data) {
6477                 iounmap(regs);
6478                 pci_disable_device(pdev);
6479                 pci_save_state(pdev);        /* to restore SR-IOV later */
6480                 goto sriov;
6481         }
6482
6483         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6484                 highdma = true;
6485                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6486                 if (err) {
6487                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6488                                 "coherent allocations\n");
6489                         goto out_unmap_bar0;
6490                 }
6491         } else {
6492                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6493                 if (err) {
6494                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6495                         goto out_unmap_bar0;
6496                 }
6497         }
6498
6499         pci_enable_pcie_error_reporting(pdev);
6500         enable_pcie_relaxed_ordering(pdev);
6501         pci_set_master(pdev);
6502         pci_save_state(pdev);
6503
6504         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6505         if (!adapter) {
6506                 err = -ENOMEM;
6507                 goto out_unmap_bar0;
6508         }
6509
6510         adapter->workq = create_singlethread_workqueue("cxgb4");
6511         if (!adapter->workq) {
6512                 err = -ENOMEM;
6513                 goto out_free_adapter;
6514         }
6515
6516         /* PCI device has been enabled */
6517         adapter->flags |= DEV_ENABLED;
6518
6519         adapter->regs = regs;
6520         adapter->pdev = pdev;
6521         adapter->pdev_dev = &pdev->dev;
6522         adapter->mbox = func;
6523         adapter->fn = func;
6524         adapter->msg_enable = dflt_msg_enable;
6525         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6526
6527         spin_lock_init(&adapter->stats_lock);
6528         spin_lock_init(&adapter->tid_release_lock);
6529         spin_lock_init(&adapter->win0_lock);
6530
6531         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6532         INIT_WORK(&adapter->db_full_task, process_db_full);
6533         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6534
6535         err = t4_prep_adapter(adapter);
6536         if (err)
6537                 goto out_free_adapter;
6538
6539
6540         if (!is_t4(adapter->params.chip)) {
6541                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6542                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6543                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6544                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6545
6546                 /* Each segment size is 128B. Write coalescing is enabled only
6547                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6548                  * queue is less no of segments that can be accommodated in
6549                  * a page size.
6550                  */
6551                 if (qpp > num_seg) {
6552                         dev_err(&pdev->dev,
6553                                 "Incorrect number of egress queues per page\n");
6554                         err = -EINVAL;
6555                         goto out_free_adapter;
6556                 }
6557                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6558                 pci_resource_len(pdev, 2));
6559                 if (!adapter->bar2) {
6560                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6561                         err = -ENOMEM;
6562                         goto out_free_adapter;
6563                 }
6564         }
6565
6566         setup_memwin(adapter);
6567         err = adap_init0(adapter);
6568         setup_memwin_rdma(adapter);
6569         if (err)
6570                 goto out_unmap_bar;
6571
6572         for_each_port(adapter, i) {
6573                 struct net_device *netdev;
6574
6575                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6576                                            MAX_ETH_QSETS);
6577                 if (!netdev) {
6578                         err = -ENOMEM;
6579                         goto out_free_dev;
6580                 }
6581
6582                 SET_NETDEV_DEV(netdev, &pdev->dev);
6583
6584                 adapter->port[i] = netdev;
6585                 pi = netdev_priv(netdev);
6586                 pi->adapter = adapter;
6587                 pi->xact_addr_filt = -1;
6588                 pi->port_id = i;
6589                 netdev->irq = pdev->irq;
6590
6591                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6592                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6593                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
6594                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6595                 if (highdma)
6596                         netdev->hw_features |= NETIF_F_HIGHDMA;
6597                 netdev->features |= netdev->hw_features;
6598                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6599
6600                 netdev->priv_flags |= IFF_UNICAST_FLT;
6601
6602                 netdev->netdev_ops = &cxgb4_netdev_ops;
6603 #ifdef CONFIG_CHELSIO_T4_DCB
6604                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6605                 cxgb4_dcb_state_init(netdev);
6606 #endif
6607                 netdev->ethtool_ops = &cxgb_ethtool_ops;
6608         }
6609
6610         pci_set_drvdata(pdev, adapter);
6611
6612         if (adapter->flags & FW_OK) {
6613                 err = t4_port_init(adapter, func, func, 0);
6614                 if (err)
6615                         goto out_free_dev;
6616         }
6617
6618         /*
6619          * Configure queues and allocate tables now, they can be needed as
6620          * soon as the first register_netdev completes.
6621          */
6622         cfg_queues(adapter);
6623
6624         adapter->l2t = t4_init_l2t();
6625         if (!adapter->l2t) {
6626                 /* We tolerate a lack of L2T, giving up some functionality */
6627                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6628                 adapter->params.offload = 0;
6629         }
6630
6631         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6632                 dev_warn(&pdev->dev, "could not allocate TID table, "
6633                          "continuing\n");
6634                 adapter->params.offload = 0;
6635         }
6636
6637         /* See what interrupts we'll be using */
6638         if (msi > 1 && enable_msix(adapter) == 0)
6639                 adapter->flags |= USING_MSIX;
6640         else if (msi > 0 && pci_enable_msi(pdev) == 0)
6641                 adapter->flags |= USING_MSI;
6642
6643         err = init_rss(adapter);
6644         if (err)
6645                 goto out_free_dev;
6646
6647         /*
6648          * The card is now ready to go.  If any errors occur during device
6649          * registration we do not fail the whole card but rather proceed only
6650          * with the ports we manage to register successfully.  However we must
6651          * register at least one net device.
6652          */
6653         for_each_port(adapter, i) {
6654                 pi = adap2pinfo(adapter, i);
6655                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6656                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6657
6658                 err = register_netdev(adapter->port[i]);
6659                 if (err)
6660                         break;
6661                 adapter->chan_map[pi->tx_chan] = i;
6662                 print_port_info(adapter->port[i]);
6663         }
6664         if (i == 0) {
6665                 dev_err(&pdev->dev, "could not register any net devices\n");
6666                 goto out_free_dev;
6667         }
6668         if (err) {
6669                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6670                 err = 0;
6671         }
6672
6673         if (cxgb4_debugfs_root) {
6674                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6675                                                            cxgb4_debugfs_root);
6676                 setup_debugfs(adapter);
6677         }
6678
6679         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6680         pdev->needs_freset = 1;
6681
6682         if (is_offload(adapter))
6683                 attach_ulds(adapter);
6684
6685 sriov:
6686 #ifdef CONFIG_PCI_IOV
6687         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6688                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6689                         dev_info(&pdev->dev,
6690                                  "instantiated %u virtual functions\n",
6691                                  num_vf[func]);
6692 #endif
6693         return 0;
6694
6695  out_free_dev:
6696         free_some_resources(adapter);
6697  out_unmap_bar:
6698         if (!is_t4(adapter->params.chip))
6699                 iounmap(adapter->bar2);
6700  out_free_adapter:
6701         if (adapter->workq)
6702                 destroy_workqueue(adapter->workq);
6703
6704         kfree(adapter);
6705  out_unmap_bar0:
6706         iounmap(regs);
6707  out_disable_device:
6708         pci_disable_pcie_error_reporting(pdev);
6709         pci_disable_device(pdev);
6710  out_release_regions:
6711         pci_release_regions(pdev);
6712         return err;
6713 }
6714
6715 static void remove_one(struct pci_dev *pdev)
6716 {
6717         struct adapter *adapter = pci_get_drvdata(pdev);
6718
6719 #ifdef CONFIG_PCI_IOV
6720         pci_disable_sriov(pdev);
6721
6722 #endif
6723
6724         if (adapter) {
6725                 int i;
6726
6727                 /* Tear down per-adapter Work Queue first since it can contain
6728                  * references to our adapter data structure.
6729                  */
6730                 destroy_workqueue(adapter->workq);
6731
6732                 if (is_offload(adapter))
6733                         detach_ulds(adapter);
6734
6735                 for_each_port(adapter, i)
6736                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6737                                 unregister_netdev(adapter->port[i]);
6738
6739                 debugfs_remove_recursive(adapter->debugfs_root);
6740
6741                 /* If we allocated filters, free up state associated with any
6742                  * valid filters ...
6743                  */
6744                 if (adapter->tids.ftid_tab) {
6745                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
6746                         for (i = 0; i < (adapter->tids.nftids +
6747                                         adapter->tids.nsftids); i++, f++)
6748                                 if (f->valid)
6749                                         clear_filter(adapter, f);
6750                 }
6751
6752                 if (adapter->flags & FULL_INIT_DONE)
6753                         cxgb_down(adapter);
6754
6755                 free_some_resources(adapter);
6756                 iounmap(adapter->regs);
6757                 if (!is_t4(adapter->params.chip))
6758                         iounmap(adapter->bar2);
6759                 pci_disable_pcie_error_reporting(pdev);
6760                 if ((adapter->flags & DEV_ENABLED)) {
6761                         pci_disable_device(pdev);
6762                         adapter->flags &= ~DEV_ENABLED;
6763                 }
6764                 pci_release_regions(pdev);
6765                 synchronize_rcu();
6766                 kfree(adapter);
6767         } else
6768                 pci_release_regions(pdev);
6769 }
6770
6771 static struct pci_driver cxgb4_driver = {
6772         .name     = KBUILD_MODNAME,
6773         .id_table = cxgb4_pci_tbl,
6774         .probe    = init_one,
6775         .remove   = remove_one,
6776         .shutdown = remove_one,
6777         .err_handler = &cxgb4_eeh,
6778 };
6779
6780 static int __init cxgb4_init_module(void)
6781 {
6782         int ret;
6783
6784         /* Debugfs support is optional, just warn if this fails */
6785         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6786         if (!cxgb4_debugfs_root)
6787                 pr_warn("could not create debugfs entry, continuing\n");
6788
6789         ret = pci_register_driver(&cxgb4_driver);
6790         if (ret < 0)
6791                 debugfs_remove(cxgb4_debugfs_root);
6792
6793 #if IS_ENABLED(CONFIG_IPV6)
6794         register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6795 #endif
6796
6797         return ret;
6798 }
6799
6800 static void __exit cxgb4_cleanup_module(void)
6801 {
6802 #if IS_ENABLED(CONFIG_IPV6)
6803         unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6804 #endif
6805         pci_unregister_driver(&cxgb4_driver);
6806         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6807 }
6808
6809 module_init(cxgb4_init_module);
6810 module_exit(cxgb4_cleanup_module);