]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
cxgb4: Cleanup macros so they follow the same style and look consistent, part 2
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "cxgb4_debugfs.h"
72 #include "l2t.h"
73
74 #include <../drivers/net/bonding/bonding.h>
75
76 #ifdef DRV_VERSION
77 #undef DRV_VERSION
78 #endif
79 #define DRV_VERSION "2.0.0-ko"
80 #define DRV_DESC "Chelsio T4/T5 Network Driver"
81
82 /*
83  * Max interrupt hold-off timer value in us.  Queues fall back to this value
84  * under extreme memory pressure so it's largish to give the system time to
85  * recover.
86  */
87 #define MAX_SGE_TIMERVAL 200U
88
89 enum {
90         /*
91          * Physical Function provisioning constants.
92          */
93         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
94         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
95         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
96                                          */
97         PFRES_NEQ = 256,                /* # of egress queues */
98         PFRES_NIQ = 0,                  /* # of ingress queues */
99         PFRES_TC = 0,                   /* PCI-E traffic class */
100         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
101
102         PFRES_R_CAPS = FW_CMD_CAP_PF,
103         PFRES_WX_CAPS = FW_CMD_CAP_PF,
104
105 #ifdef CONFIG_PCI_IOV
106         /*
107          * Virtual Function provisioning constants.  We need two extra Ingress
108          * Queues with Interrupt capability to serve as the VF's Firmware
109          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
110          * neither will have Free Lists associated with them).  For each
111          * Ethernet/Control Egress Queue and for each Free List, we need an
112          * Egress Context.
113          */
114         VFRES_NPORTS = 1,               /* # of "ports" per VF */
115         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
116
117         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
118         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
119         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
120         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
121         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
122         VFRES_TC = 0,                   /* PCI-E traffic class */
123         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
124
125         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
126         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
127 #endif
128 };
129
130 /*
131  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
132  * static and likely not to be useful in the long run.  We really need to
133  * implement some form of persistent configuration which the firmware
134  * controls.
135  */
136 static unsigned int pfvfres_pmask(struct adapter *adapter,
137                                   unsigned int pf, unsigned int vf)
138 {
139         unsigned int portn, portvec;
140
141         /*
142          * Give PF's access to all of the ports.
143          */
144         if (vf == 0)
145                 return FW_PFVF_CMD_PMASK_MASK;
146
147         /*
148          * For VFs, we'll assign them access to the ports based purely on the
149          * PF.  We assign active ports in order, wrapping around if there are
150          * fewer active ports than PFs: e.g. active port[pf % nports].
151          * Unfortunately the adapter's port_info structs haven't been
152          * initialized yet so we have to compute this.
153          */
154         if (adapter->params.nports == 0)
155                 return 0;
156
157         portn = pf % adapter->params.nports;
158         portvec = adapter->params.portvec;
159         for (;;) {
160                 /*
161                  * Isolate the lowest set bit in the port vector.  If we're at
162                  * the port number that we want, return that as the pmask.
163                  * otherwise mask that bit out of the port vector and
164                  * decrement our port number ...
165                  */
166                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
167                 if (portn == 0)
168                         return pmask;
169                 portn--;
170                 portvec &= ~pmask;
171         }
172         /*NOTREACHED*/
173 }
174
175 enum {
176         MAX_TXQ_ENTRIES      = 16384,
177         MAX_CTRL_TXQ_ENTRIES = 1024,
178         MAX_RSPQ_ENTRIES     = 16384,
179         MAX_RX_BUFFERS       = 16384,
180         MIN_TXQ_ENTRIES      = 32,
181         MIN_CTRL_TXQ_ENTRIES = 32,
182         MIN_RSPQ_ENTRIES     = 128,
183         MIN_FL_ENTRIES       = 16
184 };
185
186 /* Host shadow copy of ingress filter entry.  This is in host native format
187  * and doesn't match the ordering or bit order, etc. of the hardware of the
188  * firmware command.  The use of bit-field structure elements is purely to
189  * remind ourselves of the field size limitations and save memory in the case
190  * where the filter table is large.
191  */
192 struct filter_entry {
193         /* Administrative fields for filter.
194          */
195         u32 valid:1;            /* filter allocated and valid */
196         u32 locked:1;           /* filter is administratively locked */
197
198         u32 pending:1;          /* filter action is pending firmware reply */
199         u32 smtidx:8;           /* Source MAC Table index for smac */
200         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
201
202         /* The filter itself.  Most of this is a straight copy of information
203          * provided by the extended ioctl().  Some fields are translated to
204          * internal forms -- for instance the Ingress Queue ID passed in from
205          * the ioctl() is translated into the Absolute Ingress Queue ID.
206          */
207         struct ch_filter_specification fs;
208 };
209
210 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
211                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
212                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
213
214 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
215
216 static const struct pci_device_id cxgb4_pci_tbl[] = {
217         CH_DEVICE(0xa000, 0),  /* PE10K */
218         CH_DEVICE(0x4001, -1),
219         CH_DEVICE(0x4002, -1),
220         CH_DEVICE(0x4003, -1),
221         CH_DEVICE(0x4004, -1),
222         CH_DEVICE(0x4005, -1),
223         CH_DEVICE(0x4006, -1),
224         CH_DEVICE(0x4007, -1),
225         CH_DEVICE(0x4008, -1),
226         CH_DEVICE(0x4009, -1),
227         CH_DEVICE(0x400a, -1),
228         CH_DEVICE(0x400d, -1),
229         CH_DEVICE(0x400e, -1),
230         CH_DEVICE(0x4080, -1),
231         CH_DEVICE(0x4081, -1),
232         CH_DEVICE(0x4082, -1),
233         CH_DEVICE(0x4083, -1),
234         CH_DEVICE(0x4084, -1),
235         CH_DEVICE(0x4085, -1),
236         CH_DEVICE(0x4086, -1),
237         CH_DEVICE(0x4087, -1),
238         CH_DEVICE(0x4088, -1),
239         CH_DEVICE(0x4401, 4),
240         CH_DEVICE(0x4402, 4),
241         CH_DEVICE(0x4403, 4),
242         CH_DEVICE(0x4404, 4),
243         CH_DEVICE(0x4405, 4),
244         CH_DEVICE(0x4406, 4),
245         CH_DEVICE(0x4407, 4),
246         CH_DEVICE(0x4408, 4),
247         CH_DEVICE(0x4409, 4),
248         CH_DEVICE(0x440a, 4),
249         CH_DEVICE(0x440d, 4),
250         CH_DEVICE(0x440e, 4),
251         CH_DEVICE(0x4480, 4),
252         CH_DEVICE(0x4481, 4),
253         CH_DEVICE(0x4482, 4),
254         CH_DEVICE(0x4483, 4),
255         CH_DEVICE(0x4484, 4),
256         CH_DEVICE(0x4485, 4),
257         CH_DEVICE(0x4486, 4),
258         CH_DEVICE(0x4487, 4),
259         CH_DEVICE(0x4488, 4),
260         CH_DEVICE(0x5001, 4),
261         CH_DEVICE(0x5002, 4),
262         CH_DEVICE(0x5003, 4),
263         CH_DEVICE(0x5004, 4),
264         CH_DEVICE(0x5005, 4),
265         CH_DEVICE(0x5006, 4),
266         CH_DEVICE(0x5007, 4),
267         CH_DEVICE(0x5008, 4),
268         CH_DEVICE(0x5009, 4),
269         CH_DEVICE(0x500A, 4),
270         CH_DEVICE(0x500B, 4),
271         CH_DEVICE(0x500C, 4),
272         CH_DEVICE(0x500D, 4),
273         CH_DEVICE(0x500E, 4),
274         CH_DEVICE(0x500F, 4),
275         CH_DEVICE(0x5010, 4),
276         CH_DEVICE(0x5011, 4),
277         CH_DEVICE(0x5012, 4),
278         CH_DEVICE(0x5013, 4),
279         CH_DEVICE(0x5014, 4),
280         CH_DEVICE(0x5015, 4),
281         CH_DEVICE(0x5080, 4),
282         CH_DEVICE(0x5081, 4),
283         CH_DEVICE(0x5082, 4),
284         CH_DEVICE(0x5083, 4),
285         CH_DEVICE(0x5084, 4),
286         CH_DEVICE(0x5085, 4),
287         CH_DEVICE(0x5086, 4),
288         CH_DEVICE(0x5087, 4),
289         CH_DEVICE(0x5088, 4),
290         CH_DEVICE(0x5401, 4),
291         CH_DEVICE(0x5402, 4),
292         CH_DEVICE(0x5403, 4),
293         CH_DEVICE(0x5404, 4),
294         CH_DEVICE(0x5405, 4),
295         CH_DEVICE(0x5406, 4),
296         CH_DEVICE(0x5407, 4),
297         CH_DEVICE(0x5408, 4),
298         CH_DEVICE(0x5409, 4),
299         CH_DEVICE(0x540A, 4),
300         CH_DEVICE(0x540B, 4),
301         CH_DEVICE(0x540C, 4),
302         CH_DEVICE(0x540D, 4),
303         CH_DEVICE(0x540E, 4),
304         CH_DEVICE(0x540F, 4),
305         CH_DEVICE(0x5410, 4),
306         CH_DEVICE(0x5411, 4),
307         CH_DEVICE(0x5412, 4),
308         CH_DEVICE(0x5413, 4),
309         CH_DEVICE(0x5414, 4),
310         CH_DEVICE(0x5415, 4),
311         CH_DEVICE(0x5480, 4),
312         CH_DEVICE(0x5481, 4),
313         CH_DEVICE(0x5482, 4),
314         CH_DEVICE(0x5483, 4),
315         CH_DEVICE(0x5484, 4),
316         CH_DEVICE(0x5485, 4),
317         CH_DEVICE(0x5486, 4),
318         CH_DEVICE(0x5487, 4),
319         CH_DEVICE(0x5488, 4),
320         { 0, }
321 };
322
323 #define FW4_FNAME "cxgb4/t4fw.bin"
324 #define FW5_FNAME "cxgb4/t5fw.bin"
325 #define FW4_CFNAME "cxgb4/t4-config.txt"
326 #define FW5_CFNAME "cxgb4/t5-config.txt"
327
328 MODULE_DESCRIPTION(DRV_DESC);
329 MODULE_AUTHOR("Chelsio Communications");
330 MODULE_LICENSE("Dual BSD/GPL");
331 MODULE_VERSION(DRV_VERSION);
332 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
333 MODULE_FIRMWARE(FW4_FNAME);
334 MODULE_FIRMWARE(FW5_FNAME);
335
336 /*
337  * Normally we're willing to become the firmware's Master PF but will be happy
338  * if another PF has already become the Master and initialized the adapter.
339  * Setting "force_init" will cause this driver to forcibly establish itself as
340  * the Master PF and initialize the adapter.
341  */
342 static uint force_init;
343
344 module_param(force_init, uint, 0644);
345 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
346
347 /*
348  * Normally if the firmware we connect to has Configuration File support, we
349  * use that and only fall back to the old Driver-based initialization if the
350  * Configuration File fails for some reason.  If force_old_init is set, then
351  * we'll always use the old Driver-based initialization sequence.
352  */
353 static uint force_old_init;
354
355 module_param(force_old_init, uint, 0644);
356 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
357
358 static int dflt_msg_enable = DFLT_MSG_ENABLE;
359
360 module_param(dflt_msg_enable, int, 0644);
361 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
362
363 /*
364  * The driver uses the best interrupt scheme available on a platform in the
365  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
366  * of these schemes the driver may consider as follows:
367  *
368  * msi = 2: choose from among all three options
369  * msi = 1: only consider MSI and INTx interrupts
370  * msi = 0: force INTx interrupts
371  */
372 static int msi = 2;
373
374 module_param(msi, int, 0644);
375 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
376
377 /*
378  * Queue interrupt hold-off timer values.  Queues default to the first of these
379  * upon creation.
380  */
381 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
382
383 module_param_array(intr_holdoff, uint, NULL, 0644);
384 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
385                  "0..4 in microseconds");
386
387 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
388
389 module_param_array(intr_cnt, uint, NULL, 0644);
390 MODULE_PARM_DESC(intr_cnt,
391                  "thresholds 1..3 for queue interrupt packet counters");
392
393 /*
394  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
395  * offset by 2 bytes in order to have the IP headers line up on 4-byte
396  * boundaries.  This is a requirement for many architectures which will throw
397  * a machine check fault if an attempt is made to access one of the 4-byte IP
398  * header fields on a non-4-byte boundary.  And it's a major performance issue
399  * even on some architectures which allow it like some implementations of the
400  * x86 ISA.  However, some architectures don't mind this and for some very
401  * edge-case performance sensitive applications (like forwarding large volumes
402  * of small packets), setting this DMA offset to 0 will decrease the number of
403  * PCI-E Bus transfers enough to measurably affect performance.
404  */
405 static int rx_dma_offset = 2;
406
407 static bool vf_acls;
408
409 #ifdef CONFIG_PCI_IOV
410 module_param(vf_acls, bool, 0644);
411 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
412
413 /* Configure the number of PCI-E Virtual Function which are to be instantiated
414  * on SR-IOV Capable Physical Functions.
415  */
416 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
417
418 module_param_array(num_vf, uint, NULL, 0644);
419 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
420 #endif
421
422 /* TX Queue select used to determine what algorithm to use for selecting TX
423  * queue. Select between the kernel provided function (select_queue=0) or user
424  * cxgb_select_queue function (select_queue=1)
425  *
426  * Default: select_queue=0
427  */
428 static int select_queue;
429 module_param(select_queue, int, 0644);
430 MODULE_PARM_DESC(select_queue,
431                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
432
433 /*
434  * The filter TCAM has a fixed portion and a variable portion.  The fixed
435  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
436  * ports.  The variable portion is 36 bits which can include things like Exact
437  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
438  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
439  * far exceed the 36-bit budget for this "compressed" header portion of the
440  * filter.  Thus, we have a scarce resource which must be carefully managed.
441  *
442  * By default we set this up to mostly match the set of filter matching
443  * capabilities of T3 but with accommodations for some of T4's more
444  * interesting features:
445  *
446  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
447  *     [Inner] VLAN (17), Port (3), FCoE (1) }
448  */
449 enum {
450         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
451         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
452         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
453 };
454
455 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
456
457 module_param(tp_vlan_pri_map, uint, 0644);
458 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
459
460 static struct dentry *cxgb4_debugfs_root;
461
462 static LIST_HEAD(adapter_list);
463 static DEFINE_MUTEX(uld_mutex);
464 /* Adapter list to be accessed from atomic context */
465 static LIST_HEAD(adap_rcu_list);
466 static DEFINE_SPINLOCK(adap_rcu_lock);
467 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
468 static const char *uld_str[] = { "RDMA", "iSCSI" };
469
470 static void link_report(struct net_device *dev)
471 {
472         if (!netif_carrier_ok(dev))
473                 netdev_info(dev, "link down\n");
474         else {
475                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
476
477                 const char *s = "10Mbps";
478                 const struct port_info *p = netdev_priv(dev);
479
480                 switch (p->link_cfg.speed) {
481                 case 10000:
482                         s = "10Gbps";
483                         break;
484                 case 1000:
485                         s = "1000Mbps";
486                         break;
487                 case 100:
488                         s = "100Mbps";
489                         break;
490                 case 40000:
491                         s = "40Gbps";
492                         break;
493                 }
494
495                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
496                             fc[p->link_cfg.fc]);
497         }
498 }
499
500 #ifdef CONFIG_CHELSIO_T4_DCB
501 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
502 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
503 {
504         struct port_info *pi = netdev_priv(dev);
505         struct adapter *adap = pi->adapter;
506         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
507         int i;
508
509         /* We use a simple mapping of Port TX Queue Index to DCB
510          * Priority when we're enabling DCB.
511          */
512         for (i = 0; i < pi->nqsets; i++, txq++) {
513                 u32 name, value;
514                 int err;
515
516                 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
517                         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
518                         FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
519                 value = enable ? i : 0xffffffff;
520
521                 /* Since we can be called while atomic (from "interrupt
522                  * level") we need to issue the Set Parameters Commannd
523                  * without sleeping (timeout < 0).
524                  */
525                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
526                                             &name, &value);
527
528                 if (err)
529                         dev_err(adap->pdev_dev,
530                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
531                                 enable ? "set" : "unset", pi->port_id, i, -err);
532                 else
533                         txq->dcb_prio = value;
534         }
535 }
536 #endif /* CONFIG_CHELSIO_T4_DCB */
537
538 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
539 {
540         struct net_device *dev = adapter->port[port_id];
541
542         /* Skip changes from disabled ports. */
543         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
544                 if (link_stat)
545                         netif_carrier_on(dev);
546                 else {
547 #ifdef CONFIG_CHELSIO_T4_DCB
548                         cxgb4_dcb_state_init(dev);
549                         dcb_tx_queue_prio_enable(dev, false);
550 #endif /* CONFIG_CHELSIO_T4_DCB */
551                         netif_carrier_off(dev);
552                 }
553
554                 link_report(dev);
555         }
556 }
557
558 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
559 {
560         static const char *mod_str[] = {
561                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
562         };
563
564         const struct net_device *dev = adap->port[port_id];
565         const struct port_info *pi = netdev_priv(dev);
566
567         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
568                 netdev_info(dev, "port module unplugged\n");
569         else if (pi->mod_type < ARRAY_SIZE(mod_str))
570                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
571 }
572
573 /*
574  * Configure the exact and hash address filters to handle a port's multicast
575  * and secondary unicast MAC addresses.
576  */
577 static int set_addr_filters(const struct net_device *dev, bool sleep)
578 {
579         u64 mhash = 0;
580         u64 uhash = 0;
581         bool free = true;
582         u16 filt_idx[7];
583         const u8 *addr[7];
584         int ret, naddr = 0;
585         const struct netdev_hw_addr *ha;
586         int uc_cnt = netdev_uc_count(dev);
587         int mc_cnt = netdev_mc_count(dev);
588         const struct port_info *pi = netdev_priv(dev);
589         unsigned int mb = pi->adapter->fn;
590
591         /* first do the secondary unicast addresses */
592         netdev_for_each_uc_addr(ha, dev) {
593                 addr[naddr++] = ha->addr;
594                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
595                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
596                                         naddr, addr, filt_idx, &uhash, sleep);
597                         if (ret < 0)
598                                 return ret;
599
600                         free = false;
601                         naddr = 0;
602                 }
603         }
604
605         /* next set up the multicast addresses */
606         netdev_for_each_mc_addr(ha, dev) {
607                 addr[naddr++] = ha->addr;
608                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
609                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
610                                         naddr, addr, filt_idx, &mhash, sleep);
611                         if (ret < 0)
612                                 return ret;
613
614                         free = false;
615                         naddr = 0;
616                 }
617         }
618
619         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
620                                 uhash | mhash, sleep);
621 }
622
623 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
624 module_param(dbfifo_int_thresh, int, 0644);
625 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
626
627 /*
628  * usecs to sleep while draining the dbfifo
629  */
630 static int dbfifo_drain_delay = 1000;
631 module_param(dbfifo_drain_delay, int, 0644);
632 MODULE_PARM_DESC(dbfifo_drain_delay,
633                  "usecs to sleep while draining the dbfifo");
634
635 /*
636  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
637  * If @mtu is -1 it is left unchanged.
638  */
639 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
640 {
641         int ret;
642         struct port_info *pi = netdev_priv(dev);
643
644         ret = set_addr_filters(dev, sleep_ok);
645         if (ret == 0)
646                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
647                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
648                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
649                                     sleep_ok);
650         return ret;
651 }
652
653 /**
654  *      link_start - enable a port
655  *      @dev: the port to enable
656  *
657  *      Performs the MAC and PHY actions needed to enable a port.
658  */
659 static int link_start(struct net_device *dev)
660 {
661         int ret;
662         struct port_info *pi = netdev_priv(dev);
663         unsigned int mb = pi->adapter->fn;
664
665         /*
666          * We do not set address filters and promiscuity here, the stack does
667          * that step explicitly.
668          */
669         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
670                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
671         if (ret == 0) {
672                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
673                                     pi->xact_addr_filt, dev->dev_addr, true,
674                                     true);
675                 if (ret >= 0) {
676                         pi->xact_addr_filt = ret;
677                         ret = 0;
678                 }
679         }
680         if (ret == 0)
681                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
682                                     &pi->link_cfg);
683         if (ret == 0) {
684                 local_bh_disable();
685                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
686                                           true, CXGB4_DCB_ENABLED);
687                 local_bh_enable();
688         }
689
690         return ret;
691 }
692
693 int cxgb4_dcb_enabled(const struct net_device *dev)
694 {
695 #ifdef CONFIG_CHELSIO_T4_DCB
696         struct port_info *pi = netdev_priv(dev);
697
698         if (!pi->dcb.enabled)
699                 return 0;
700
701         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
702                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
703 #else
704         return 0;
705 #endif
706 }
707 EXPORT_SYMBOL(cxgb4_dcb_enabled);
708
709 #ifdef CONFIG_CHELSIO_T4_DCB
710 /* Handle a Data Center Bridging update message from the firmware. */
711 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
712 {
713         int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
714         struct net_device *dev = adap->port[port];
715         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
716         int new_dcb_enabled;
717
718         cxgb4_dcb_handle_fw_update(adap, pcmd);
719         new_dcb_enabled = cxgb4_dcb_enabled(dev);
720
721         /* If the DCB has become enabled or disabled on the port then we're
722          * going to need to set up/tear down DCB Priority parameters for the
723          * TX Queues associated with the port.
724          */
725         if (new_dcb_enabled != old_dcb_enabled)
726                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
727 }
728 #endif /* CONFIG_CHELSIO_T4_DCB */
729
730 /* Clear a filter and release any of its resources that we own.  This also
731  * clears the filter's "pending" status.
732  */
733 static void clear_filter(struct adapter *adap, struct filter_entry *f)
734 {
735         /* If the new or old filter have loopback rewriteing rules then we'll
736          * need to free any existing Layer Two Table (L2T) entries of the old
737          * filter rule.  The firmware will handle freeing up any Source MAC
738          * Table (SMT) entries used for rewriting Source MAC Addresses in
739          * loopback rules.
740          */
741         if (f->l2t)
742                 cxgb4_l2t_release(f->l2t);
743
744         /* The zeroing of the filter rule below clears the filter valid,
745          * pending, locked flags, l2t pointer, etc. so it's all we need for
746          * this operation.
747          */
748         memset(f, 0, sizeof(*f));
749 }
750
751 /* Handle a filter write/deletion reply.
752  */
753 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
754 {
755         unsigned int idx = GET_TID(rpl);
756         unsigned int nidx = idx - adap->tids.ftid_base;
757         unsigned int ret;
758         struct filter_entry *f;
759
760         if (idx >= adap->tids.ftid_base && nidx <
761            (adap->tids.nftids + adap->tids.nsftids)) {
762                 idx = nidx;
763                 ret = GET_TCB_COOKIE(rpl->cookie);
764                 f = &adap->tids.ftid_tab[idx];
765
766                 if (ret == FW_FILTER_WR_FLT_DELETED) {
767                         /* Clear the filter when we get confirmation from the
768                          * hardware that the filter has been deleted.
769                          */
770                         clear_filter(adap, f);
771                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
772                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
773                                 idx);
774                         clear_filter(adap, f);
775                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
776                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
777                         f->pending = 0;  /* asynchronous setup completed */
778                         f->valid = 1;
779                 } else {
780                         /* Something went wrong.  Issue a warning about the
781                          * problem and clear everything out.
782                          */
783                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
784                                 idx, ret);
785                         clear_filter(adap, f);
786                 }
787         }
788 }
789
790 /* Response queue handler for the FW event queue.
791  */
792 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
793                           const struct pkt_gl *gl)
794 {
795         u8 opcode = ((const struct rss_header *)rsp)->opcode;
796
797         rsp++;                                          /* skip RSS header */
798
799         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
800          */
801         if (unlikely(opcode == CPL_FW4_MSG &&
802            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
803                 rsp++;
804                 opcode = ((const struct rss_header *)rsp)->opcode;
805                 rsp++;
806                 if (opcode != CPL_SGE_EGR_UPDATE) {
807                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
808                                 , opcode);
809                         goto out;
810                 }
811         }
812
813         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
814                 const struct cpl_sge_egr_update *p = (void *)rsp;
815                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
816                 struct sge_txq *txq;
817
818                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
819                 txq->restarts++;
820                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
821                         struct sge_eth_txq *eq;
822
823                         eq = container_of(txq, struct sge_eth_txq, q);
824                         netif_tx_wake_queue(eq->txq);
825                 } else {
826                         struct sge_ofld_txq *oq;
827
828                         oq = container_of(txq, struct sge_ofld_txq, q);
829                         tasklet_schedule(&oq->qresume_tsk);
830                 }
831         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
832                 const struct cpl_fw6_msg *p = (void *)rsp;
833
834 #ifdef CONFIG_CHELSIO_T4_DCB
835                 const struct fw_port_cmd *pcmd = (const void *)p->data;
836                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
837                 unsigned int action =
838                         FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
839
840                 if (cmd == FW_PORT_CMD &&
841                     action == FW_PORT_ACTION_GET_PORT_INFO) {
842                         int port = FW_PORT_CMD_PORTID_GET(
843                                         be32_to_cpu(pcmd->op_to_portid));
844                         struct net_device *dev = q->adap->port[port];
845                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
846                                             FW_PORT_CMD_DCBXDIS)
847                                            ? CXGB4_DCB_INPUT_FW_DISABLED
848                                            : CXGB4_DCB_INPUT_FW_ENABLED);
849
850                         cxgb4_dcb_state_fsm(dev, state_input);
851                 }
852
853                 if (cmd == FW_PORT_CMD &&
854                     action == FW_PORT_ACTION_L2_DCB_CFG)
855                         dcb_rpl(q->adap, pcmd);
856                 else
857 #endif
858                         if (p->type == 0)
859                                 t4_handle_fw_rpl(q->adap, p->data);
860         } else if (opcode == CPL_L2T_WRITE_RPL) {
861                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
862
863                 do_l2t_write_rpl(q->adap, p);
864         } else if (opcode == CPL_SET_TCB_RPL) {
865                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
866
867                 filter_rpl(q->adap, p);
868         } else
869                 dev_err(q->adap->pdev_dev,
870                         "unexpected CPL %#x on FW event queue\n", opcode);
871 out:
872         return 0;
873 }
874
875 /**
876  *      uldrx_handler - response queue handler for ULD queues
877  *      @q: the response queue that received the packet
878  *      @rsp: the response queue descriptor holding the offload message
879  *      @gl: the gather list of packet fragments
880  *
881  *      Deliver an ingress offload packet to a ULD.  All processing is done by
882  *      the ULD, we just maintain statistics.
883  */
884 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
885                          const struct pkt_gl *gl)
886 {
887         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
888
889         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
890          */
891         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
892             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
893                 rsp += 2;
894
895         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
896                 rxq->stats.nomem++;
897                 return -1;
898         }
899         if (gl == NULL)
900                 rxq->stats.imm++;
901         else if (gl == CXGB4_MSG_AN)
902                 rxq->stats.an++;
903         else
904                 rxq->stats.pkts++;
905         return 0;
906 }
907
908 static void disable_msi(struct adapter *adapter)
909 {
910         if (adapter->flags & USING_MSIX) {
911                 pci_disable_msix(adapter->pdev);
912                 adapter->flags &= ~USING_MSIX;
913         } else if (adapter->flags & USING_MSI) {
914                 pci_disable_msi(adapter->pdev);
915                 adapter->flags &= ~USING_MSI;
916         }
917 }
918
919 /*
920  * Interrupt handler for non-data events used with MSI-X.
921  */
922 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
923 {
924         struct adapter *adap = cookie;
925
926         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
927         if (v & PFSW) {
928                 adap->swintr = 1;
929                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
930         }
931         t4_slow_intr_handler(adap);
932         return IRQ_HANDLED;
933 }
934
935 /*
936  * Name the MSI-X interrupts.
937  */
938 static void name_msix_vecs(struct adapter *adap)
939 {
940         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
941
942         /* non-data interrupts */
943         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
944
945         /* FW events */
946         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
947                  adap->port[0]->name);
948
949         /* Ethernet queues */
950         for_each_port(adap, j) {
951                 struct net_device *d = adap->port[j];
952                 const struct port_info *pi = netdev_priv(d);
953
954                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
955                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
956                                  d->name, i);
957         }
958
959         /* offload queues */
960         for_each_ofldrxq(&adap->sge, i)
961                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
962                          adap->port[0]->name, i);
963
964         for_each_rdmarxq(&adap->sge, i)
965                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
966                          adap->port[0]->name, i);
967
968         for_each_rdmaciq(&adap->sge, i)
969                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
970                          adap->port[0]->name, i);
971 }
972
973 static int request_msix_queue_irqs(struct adapter *adap)
974 {
975         struct sge *s = &adap->sge;
976         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
977         int msi_index = 2;
978
979         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
980                           adap->msix_info[1].desc, &s->fw_evtq);
981         if (err)
982                 return err;
983
984         for_each_ethrxq(s, ethqidx) {
985                 err = request_irq(adap->msix_info[msi_index].vec,
986                                   t4_sge_intr_msix, 0,
987                                   adap->msix_info[msi_index].desc,
988                                   &s->ethrxq[ethqidx].rspq);
989                 if (err)
990                         goto unwind;
991                 msi_index++;
992         }
993         for_each_ofldrxq(s, ofldqidx) {
994                 err = request_irq(adap->msix_info[msi_index].vec,
995                                   t4_sge_intr_msix, 0,
996                                   adap->msix_info[msi_index].desc,
997                                   &s->ofldrxq[ofldqidx].rspq);
998                 if (err)
999                         goto unwind;
1000                 msi_index++;
1001         }
1002         for_each_rdmarxq(s, rdmaqidx) {
1003                 err = request_irq(adap->msix_info[msi_index].vec,
1004                                   t4_sge_intr_msix, 0,
1005                                   adap->msix_info[msi_index].desc,
1006                                   &s->rdmarxq[rdmaqidx].rspq);
1007                 if (err)
1008                         goto unwind;
1009                 msi_index++;
1010         }
1011         for_each_rdmaciq(s, rdmaciqqidx) {
1012                 err = request_irq(adap->msix_info[msi_index].vec,
1013                                   t4_sge_intr_msix, 0,
1014                                   adap->msix_info[msi_index].desc,
1015                                   &s->rdmaciq[rdmaciqqidx].rspq);
1016                 if (err)
1017                         goto unwind;
1018                 msi_index++;
1019         }
1020         return 0;
1021
1022 unwind:
1023         while (--rdmaciqqidx >= 0)
1024                 free_irq(adap->msix_info[--msi_index].vec,
1025                          &s->rdmaciq[rdmaciqqidx].rspq);
1026         while (--rdmaqidx >= 0)
1027                 free_irq(adap->msix_info[--msi_index].vec,
1028                          &s->rdmarxq[rdmaqidx].rspq);
1029         while (--ofldqidx >= 0)
1030                 free_irq(adap->msix_info[--msi_index].vec,
1031                          &s->ofldrxq[ofldqidx].rspq);
1032         while (--ethqidx >= 0)
1033                 free_irq(adap->msix_info[--msi_index].vec,
1034                          &s->ethrxq[ethqidx].rspq);
1035         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1036         return err;
1037 }
1038
1039 static void free_msix_queue_irqs(struct adapter *adap)
1040 {
1041         int i, msi_index = 2;
1042         struct sge *s = &adap->sge;
1043
1044         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1045         for_each_ethrxq(s, i)
1046                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1047         for_each_ofldrxq(s, i)
1048                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1049         for_each_rdmarxq(s, i)
1050                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1051         for_each_rdmaciq(s, i)
1052                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1053 }
1054
1055 /**
1056  *      write_rss - write the RSS table for a given port
1057  *      @pi: the port
1058  *      @queues: array of queue indices for RSS
1059  *
1060  *      Sets up the portion of the HW RSS table for the port's VI to distribute
1061  *      packets to the Rx queues in @queues.
1062  */
1063 static int write_rss(const struct port_info *pi, const u16 *queues)
1064 {
1065         u16 *rss;
1066         int i, err;
1067         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1068
1069         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1070         if (!rss)
1071                 return -ENOMEM;
1072
1073         /* map the queue indices to queue ids */
1074         for (i = 0; i < pi->rss_size; i++, queues++)
1075                 rss[i] = q[*queues].rspq.abs_id;
1076
1077         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1078                                   pi->rss_size, rss, pi->rss_size);
1079         kfree(rss);
1080         return err;
1081 }
1082
1083 /**
1084  *      setup_rss - configure RSS
1085  *      @adap: the adapter
1086  *
1087  *      Sets up RSS for each port.
1088  */
1089 static int setup_rss(struct adapter *adap)
1090 {
1091         int i, err;
1092
1093         for_each_port(adap, i) {
1094                 const struct port_info *pi = adap2pinfo(adap, i);
1095
1096                 err = write_rss(pi, pi->rss);
1097                 if (err)
1098                         return err;
1099         }
1100         return 0;
1101 }
1102
1103 /*
1104  * Return the channel of the ingress queue with the given qid.
1105  */
1106 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1107 {
1108         qid -= p->ingr_start;
1109         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1110 }
1111
1112 /*
1113  * Wait until all NAPI handlers are descheduled.
1114  */
1115 static void quiesce_rx(struct adapter *adap)
1116 {
1117         int i;
1118
1119         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1120                 struct sge_rspq *q = adap->sge.ingr_map[i];
1121
1122                 if (q && q->handler)
1123                         napi_disable(&q->napi);
1124         }
1125 }
1126
1127 /*
1128  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1129  */
1130 static void enable_rx(struct adapter *adap)
1131 {
1132         int i;
1133
1134         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1135                 struct sge_rspq *q = adap->sge.ingr_map[i];
1136
1137                 if (!q)
1138                         continue;
1139                 if (q->handler)
1140                         napi_enable(&q->napi);
1141                 /* 0-increment GTS to start the timer and enable interrupts */
1142                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1143                              SEINTARM(q->intr_params) |
1144                              INGRESSQID(q->cntxt_id));
1145         }
1146 }
1147
1148 /**
1149  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1150  *      @adap: the adapter
1151  *
1152  *      Determines how many sets of SGE queues to use and initializes them.
1153  *      We support multiple queue sets per port if we have MSI-X, otherwise
1154  *      just one queue set per port.
1155  */
1156 static int setup_sge_queues(struct adapter *adap)
1157 {
1158         int err, msi_idx, i, j;
1159         struct sge *s = &adap->sge;
1160
1161         bitmap_zero(s->starving_fl, MAX_EGRQ);
1162         bitmap_zero(s->txq_maperr, MAX_EGRQ);
1163
1164         if (adap->flags & USING_MSIX)
1165                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1166         else {
1167                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1168                                        NULL, NULL);
1169                 if (err)
1170                         return err;
1171                 msi_idx = -((int)s->intrq.abs_id + 1);
1172         }
1173
1174         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1175                                msi_idx, NULL, fwevtq_handler);
1176         if (err) {
1177 freeout:        t4_free_sge_resources(adap);
1178                 return err;
1179         }
1180
1181         for_each_port(adap, i) {
1182                 struct net_device *dev = adap->port[i];
1183                 struct port_info *pi = netdev_priv(dev);
1184                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1185                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1186
1187                 for (j = 0; j < pi->nqsets; j++, q++) {
1188                         if (msi_idx > 0)
1189                                 msi_idx++;
1190                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1191                                                msi_idx, &q->fl,
1192                                                t4_ethrx_handler);
1193                         if (err)
1194                                 goto freeout;
1195                         q->rspq.idx = j;
1196                         memset(&q->stats, 0, sizeof(q->stats));
1197                 }
1198                 for (j = 0; j < pi->nqsets; j++, t++) {
1199                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1200                                         netdev_get_tx_queue(dev, j),
1201                                         s->fw_evtq.cntxt_id);
1202                         if (err)
1203                                 goto freeout;
1204                 }
1205         }
1206
1207         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1208         for_each_ofldrxq(s, i) {
1209                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1210                 struct net_device *dev = adap->port[i / j];
1211
1212                 if (msi_idx > 0)
1213                         msi_idx++;
1214                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1215                                        q->fl.size ? &q->fl : NULL,
1216                                        uldrx_handler);
1217                 if (err)
1218                         goto freeout;
1219                 memset(&q->stats, 0, sizeof(q->stats));
1220                 s->ofld_rxq[i] = q->rspq.abs_id;
1221                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1222                                             s->fw_evtq.cntxt_id);
1223                 if (err)
1224                         goto freeout;
1225         }
1226
1227         for_each_rdmarxq(s, i) {
1228                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1229
1230                 if (msi_idx > 0)
1231                         msi_idx++;
1232                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1233                                        msi_idx, q->fl.size ? &q->fl : NULL,
1234                                        uldrx_handler);
1235                 if (err)
1236                         goto freeout;
1237                 memset(&q->stats, 0, sizeof(q->stats));
1238                 s->rdma_rxq[i] = q->rspq.abs_id;
1239         }
1240
1241         for_each_rdmaciq(s, i) {
1242                 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1243
1244                 if (msi_idx > 0)
1245                         msi_idx++;
1246                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1247                                        msi_idx, q->fl.size ? &q->fl : NULL,
1248                                        uldrx_handler);
1249                 if (err)
1250                         goto freeout;
1251                 memset(&q->stats, 0, sizeof(q->stats));
1252                 s->rdma_ciq[i] = q->rspq.abs_id;
1253         }
1254
1255         for_each_port(adap, i) {
1256                 /*
1257                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1258                  * have RDMA queues, and that's the right value.
1259                  */
1260                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1261                                             s->fw_evtq.cntxt_id,
1262                                             s->rdmarxq[i].rspq.cntxt_id);
1263                 if (err)
1264                         goto freeout;
1265         }
1266
1267         t4_write_reg(adap, is_t4(adap->params.chip) ?
1268                                 MPS_TRC_RSS_CONTROL :
1269                                 MPS_T5_TRC_RSS_CONTROL,
1270                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1271                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1272         return 0;
1273 }
1274
1275 /*
1276  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1277  * The allocated memory is cleared.
1278  */
1279 void *t4_alloc_mem(size_t size)
1280 {
1281         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1282
1283         if (!p)
1284                 p = vzalloc(size);
1285         return p;
1286 }
1287
1288 /*
1289  * Free memory allocated through alloc_mem().
1290  */
1291 void t4_free_mem(void *addr)
1292 {
1293         if (is_vmalloc_addr(addr))
1294                 vfree(addr);
1295         else
1296                 kfree(addr);
1297 }
1298
1299 /* Send a Work Request to write the filter at a specified index.  We construct
1300  * a Firmware Filter Work Request to have the work done and put the indicated
1301  * filter into "pending" mode which will prevent any further actions against
1302  * it till we get a reply from the firmware on the completion status of the
1303  * request.
1304  */
1305 static int set_filter_wr(struct adapter *adapter, int fidx)
1306 {
1307         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1308         struct sk_buff *skb;
1309         struct fw_filter_wr *fwr;
1310         unsigned int ftid;
1311
1312         /* If the new filter requires loopback Destination MAC and/or VLAN
1313          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1314          * the filter.
1315          */
1316         if (f->fs.newdmac || f->fs.newvlan) {
1317                 /* allocate L2T entry for new filter */
1318                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1319                 if (f->l2t == NULL)
1320                         return -EAGAIN;
1321                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1322                                         f->fs.eport, f->fs.dmac)) {
1323                         cxgb4_l2t_release(f->l2t);
1324                         f->l2t = NULL;
1325                         return -ENOMEM;
1326                 }
1327         }
1328
1329         ftid = adapter->tids.ftid_base + fidx;
1330
1331         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1332         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1333         memset(fwr, 0, sizeof(*fwr));
1334
1335         /* It would be nice to put most of the following in t4_hw.c but most
1336          * of the work is translating the cxgbtool ch_filter_specification
1337          * into the Work Request and the definition of that structure is
1338          * currently in cxgbtool.h which isn't appropriate to pull into the
1339          * common code.  We may eventually try to come up with a more neutral
1340          * filter specification structure but for now it's easiest to simply
1341          * put this fairly direct code in line ...
1342          */
1343         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1344         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1345         fwr->tid_to_iq =
1346                 htonl(V_FW_FILTER_WR_TID(ftid) |
1347                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1348                       V_FW_FILTER_WR_NOREPLY(0) |
1349                       V_FW_FILTER_WR_IQ(f->fs.iq));
1350         fwr->del_filter_to_l2tix =
1351                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1352                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1353                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1354                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1355                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1356                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1357                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1358                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1359                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1360                                              f->fs.newvlan == VLAN_REWRITE) |
1361                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1362                                             f->fs.newvlan == VLAN_REWRITE) |
1363                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1364                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1365                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1366                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1367         fwr->ethtype = htons(f->fs.val.ethtype);
1368         fwr->ethtypem = htons(f->fs.mask.ethtype);
1369         fwr->frag_to_ovlan_vldm =
1370                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1371                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1372                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1373                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1374                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1375                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1376         fwr->smac_sel = 0;
1377         fwr->rx_chan_rx_rpl_iq =
1378                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1379                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1380         fwr->maci_to_matchtypem =
1381                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1382                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1383                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1384                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1385                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1386                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1387                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1388                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1389         fwr->ptcl = f->fs.val.proto;
1390         fwr->ptclm = f->fs.mask.proto;
1391         fwr->ttyp = f->fs.val.tos;
1392         fwr->ttypm = f->fs.mask.tos;
1393         fwr->ivlan = htons(f->fs.val.ivlan);
1394         fwr->ivlanm = htons(f->fs.mask.ivlan);
1395         fwr->ovlan = htons(f->fs.val.ovlan);
1396         fwr->ovlanm = htons(f->fs.mask.ovlan);
1397         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1398         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1399         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1400         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1401         fwr->lp = htons(f->fs.val.lport);
1402         fwr->lpm = htons(f->fs.mask.lport);
1403         fwr->fp = htons(f->fs.val.fport);
1404         fwr->fpm = htons(f->fs.mask.fport);
1405         if (f->fs.newsmac)
1406                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1407
1408         /* Mark the filter as "pending" and ship off the Filter Work Request.
1409          * When we get the Work Request Reply we'll clear the pending status.
1410          */
1411         f->pending = 1;
1412         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1413         t4_ofld_send(adapter, skb);
1414         return 0;
1415 }
1416
1417 /* Delete the filter at a specified index.
1418  */
1419 static int del_filter_wr(struct adapter *adapter, int fidx)
1420 {
1421         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1422         struct sk_buff *skb;
1423         struct fw_filter_wr *fwr;
1424         unsigned int len, ftid;
1425
1426         len = sizeof(*fwr);
1427         ftid = adapter->tids.ftid_base + fidx;
1428
1429         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1430         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1431         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1432
1433         /* Mark the filter as "pending" and ship off the Filter Work Request.
1434          * When we get the Work Request Reply we'll clear the pending status.
1435          */
1436         f->pending = 1;
1437         t4_mgmt_tx(adapter, skb);
1438         return 0;
1439 }
1440
1441 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1442                              void *accel_priv, select_queue_fallback_t fallback)
1443 {
1444         int txq;
1445
1446 #ifdef CONFIG_CHELSIO_T4_DCB
1447         /* If a Data Center Bridging has been successfully negotiated on this
1448          * link then we'll use the skb's priority to map it to a TX Queue.
1449          * The skb's priority is determined via the VLAN Tag Priority Code
1450          * Point field.
1451          */
1452         if (cxgb4_dcb_enabled(dev)) {
1453                 u16 vlan_tci;
1454                 int err;
1455
1456                 err = vlan_get_tag(skb, &vlan_tci);
1457                 if (unlikely(err)) {
1458                         if (net_ratelimit())
1459                                 netdev_warn(dev,
1460                                             "TX Packet without VLAN Tag on DCB Link\n");
1461                         txq = 0;
1462                 } else {
1463                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1464                 }
1465                 return txq;
1466         }
1467 #endif /* CONFIG_CHELSIO_T4_DCB */
1468
1469         if (select_queue) {
1470                 txq = (skb_rx_queue_recorded(skb)
1471                         ? skb_get_rx_queue(skb)
1472                         : smp_processor_id());
1473
1474                 while (unlikely(txq >= dev->real_num_tx_queues))
1475                         txq -= dev->real_num_tx_queues;
1476
1477                 return txq;
1478         }
1479
1480         return fallback(dev, skb) % dev->real_num_tx_queues;
1481 }
1482
1483 static inline int is_offload(const struct adapter *adap)
1484 {
1485         return adap->params.offload;
1486 }
1487
1488 /*
1489  * Implementation of ethtool operations.
1490  */
1491
1492 static u32 get_msglevel(struct net_device *dev)
1493 {
1494         return netdev2adap(dev)->msg_enable;
1495 }
1496
1497 static void set_msglevel(struct net_device *dev, u32 val)
1498 {
1499         netdev2adap(dev)->msg_enable = val;
1500 }
1501
1502 static char stats_strings[][ETH_GSTRING_LEN] = {
1503         "TxOctetsOK         ",
1504         "TxFramesOK         ",
1505         "TxBroadcastFrames  ",
1506         "TxMulticastFrames  ",
1507         "TxUnicastFrames    ",
1508         "TxErrorFrames      ",
1509
1510         "TxFrames64         ",
1511         "TxFrames65To127    ",
1512         "TxFrames128To255   ",
1513         "TxFrames256To511   ",
1514         "TxFrames512To1023  ",
1515         "TxFrames1024To1518 ",
1516         "TxFrames1519ToMax  ",
1517
1518         "TxFramesDropped    ",
1519         "TxPauseFrames      ",
1520         "TxPPP0Frames       ",
1521         "TxPPP1Frames       ",
1522         "TxPPP2Frames       ",
1523         "TxPPP3Frames       ",
1524         "TxPPP4Frames       ",
1525         "TxPPP5Frames       ",
1526         "TxPPP6Frames       ",
1527         "TxPPP7Frames       ",
1528
1529         "RxOctetsOK         ",
1530         "RxFramesOK         ",
1531         "RxBroadcastFrames  ",
1532         "RxMulticastFrames  ",
1533         "RxUnicastFrames    ",
1534
1535         "RxFramesTooLong    ",
1536         "RxJabberErrors     ",
1537         "RxFCSErrors        ",
1538         "RxLengthErrors     ",
1539         "RxSymbolErrors     ",
1540         "RxRuntFrames       ",
1541
1542         "RxFrames64         ",
1543         "RxFrames65To127    ",
1544         "RxFrames128To255   ",
1545         "RxFrames256To511   ",
1546         "RxFrames512To1023  ",
1547         "RxFrames1024To1518 ",
1548         "RxFrames1519ToMax  ",
1549
1550         "RxPauseFrames      ",
1551         "RxPPP0Frames       ",
1552         "RxPPP1Frames       ",
1553         "RxPPP2Frames       ",
1554         "RxPPP3Frames       ",
1555         "RxPPP4Frames       ",
1556         "RxPPP5Frames       ",
1557         "RxPPP6Frames       ",
1558         "RxPPP7Frames       ",
1559
1560         "RxBG0FramesDropped ",
1561         "RxBG1FramesDropped ",
1562         "RxBG2FramesDropped ",
1563         "RxBG3FramesDropped ",
1564         "RxBG0FramesTrunc   ",
1565         "RxBG1FramesTrunc   ",
1566         "RxBG2FramesTrunc   ",
1567         "RxBG3FramesTrunc   ",
1568
1569         "TSO                ",
1570         "TxCsumOffload      ",
1571         "RxCsumGood         ",
1572         "VLANextractions    ",
1573         "VLANinsertions     ",
1574         "GROpackets         ",
1575         "GROmerged          ",
1576         "WriteCoalSuccess   ",
1577         "WriteCoalFail      ",
1578 };
1579
1580 static int get_sset_count(struct net_device *dev, int sset)
1581 {
1582         switch (sset) {
1583         case ETH_SS_STATS:
1584                 return ARRAY_SIZE(stats_strings);
1585         default:
1586                 return -EOPNOTSUPP;
1587         }
1588 }
1589
1590 #define T4_REGMAP_SIZE (160 * 1024)
1591 #define T5_REGMAP_SIZE (332 * 1024)
1592
1593 static int get_regs_len(struct net_device *dev)
1594 {
1595         struct adapter *adap = netdev2adap(dev);
1596         if (is_t4(adap->params.chip))
1597                 return T4_REGMAP_SIZE;
1598         else
1599                 return T5_REGMAP_SIZE;
1600 }
1601
1602 static int get_eeprom_len(struct net_device *dev)
1603 {
1604         return EEPROMSIZE;
1605 }
1606
1607 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1608 {
1609         struct adapter *adapter = netdev2adap(dev);
1610
1611         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1612         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1613         strlcpy(info->bus_info, pci_name(adapter->pdev),
1614                 sizeof(info->bus_info));
1615
1616         if (adapter->params.fw_vers)
1617                 snprintf(info->fw_version, sizeof(info->fw_version),
1618                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1619                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1620                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1621                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1622                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1623                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1624                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1625                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1626                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1627 }
1628
1629 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1630 {
1631         if (stringset == ETH_SS_STATS)
1632                 memcpy(data, stats_strings, sizeof(stats_strings));
1633 }
1634
1635 /*
1636  * port stats maintained per queue of the port.  They should be in the same
1637  * order as in stats_strings above.
1638  */
1639 struct queue_port_stats {
1640         u64 tso;
1641         u64 tx_csum;
1642         u64 rx_csum;
1643         u64 vlan_ex;
1644         u64 vlan_ins;
1645         u64 gro_pkts;
1646         u64 gro_merged;
1647 };
1648
1649 static void collect_sge_port_stats(const struct adapter *adap,
1650                 const struct port_info *p, struct queue_port_stats *s)
1651 {
1652         int i;
1653         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1654         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1655
1656         memset(s, 0, sizeof(*s));
1657         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1658                 s->tso += tx->tso;
1659                 s->tx_csum += tx->tx_cso;
1660                 s->rx_csum += rx->stats.rx_cso;
1661                 s->vlan_ex += rx->stats.vlan_ex;
1662                 s->vlan_ins += tx->vlan_ins;
1663                 s->gro_pkts += rx->stats.lro_pkts;
1664                 s->gro_merged += rx->stats.lro_merged;
1665         }
1666 }
1667
1668 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1669                       u64 *data)
1670 {
1671         struct port_info *pi = netdev_priv(dev);
1672         struct adapter *adapter = pi->adapter;
1673         u32 val1, val2;
1674
1675         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1676
1677         data += sizeof(struct port_stats) / sizeof(u64);
1678         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1679         data += sizeof(struct queue_port_stats) / sizeof(u64);
1680         if (!is_t4(adapter->params.chip)) {
1681                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1682                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1683                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1684                 *data = val1 - val2;
1685                 data++;
1686                 *data = val2;
1687                 data++;
1688         } else {
1689                 memset(data, 0, 2 * sizeof(u64));
1690                 *data += 2;
1691         }
1692 }
1693
1694 /*
1695  * Return a version number to identify the type of adapter.  The scheme is:
1696  * - bits 0..9: chip version
1697  * - bits 10..15: chip revision
1698  * - bits 16..23: register dump version
1699  */
1700 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1701 {
1702         return CHELSIO_CHIP_VERSION(ap->params.chip) |
1703                 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1704 }
1705
1706 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1707                            unsigned int end)
1708 {
1709         u32 *p = buf + start;
1710
1711         for ( ; start <= end; start += sizeof(u32))
1712                 *p++ = t4_read_reg(ap, start);
1713 }
1714
1715 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1716                      void *buf)
1717 {
1718         static const unsigned int t4_reg_ranges[] = {
1719                 0x1008, 0x1108,
1720                 0x1180, 0x11b4,
1721                 0x11fc, 0x123c,
1722                 0x1300, 0x173c,
1723                 0x1800, 0x18fc,
1724                 0x3000, 0x30d8,
1725                 0x30e0, 0x5924,
1726                 0x5960, 0x59d4,
1727                 0x5a00, 0x5af8,
1728                 0x6000, 0x6098,
1729                 0x6100, 0x6150,
1730                 0x6200, 0x6208,
1731                 0x6240, 0x6248,
1732                 0x6280, 0x6338,
1733                 0x6370, 0x638c,
1734                 0x6400, 0x643c,
1735                 0x6500, 0x6524,
1736                 0x6a00, 0x6a38,
1737                 0x6a60, 0x6a78,
1738                 0x6b00, 0x6b84,
1739                 0x6bf0, 0x6c84,
1740                 0x6cf0, 0x6d84,
1741                 0x6df0, 0x6e84,
1742                 0x6ef0, 0x6f84,
1743                 0x6ff0, 0x7084,
1744                 0x70f0, 0x7184,
1745                 0x71f0, 0x7284,
1746                 0x72f0, 0x7384,
1747                 0x73f0, 0x7450,
1748                 0x7500, 0x7530,
1749                 0x7600, 0x761c,
1750                 0x7680, 0x76cc,
1751                 0x7700, 0x7798,
1752                 0x77c0, 0x77fc,
1753                 0x7900, 0x79fc,
1754                 0x7b00, 0x7c38,
1755                 0x7d00, 0x7efc,
1756                 0x8dc0, 0x8e1c,
1757                 0x8e30, 0x8e78,
1758                 0x8ea0, 0x8f6c,
1759                 0x8fc0, 0x9074,
1760                 0x90fc, 0x90fc,
1761                 0x9400, 0x9458,
1762                 0x9600, 0x96bc,
1763                 0x9800, 0x9808,
1764                 0x9820, 0x983c,
1765                 0x9850, 0x9864,
1766                 0x9c00, 0x9c6c,
1767                 0x9c80, 0x9cec,
1768                 0x9d00, 0x9d6c,
1769                 0x9d80, 0x9dec,
1770                 0x9e00, 0x9e6c,
1771                 0x9e80, 0x9eec,
1772                 0x9f00, 0x9f6c,
1773                 0x9f80, 0x9fec,
1774                 0xd004, 0xd03c,
1775                 0xdfc0, 0xdfe0,
1776                 0xe000, 0xea7c,
1777                 0xf000, 0x11110,
1778                 0x11118, 0x11190,
1779                 0x19040, 0x1906c,
1780                 0x19078, 0x19080,
1781                 0x1908c, 0x19124,
1782                 0x19150, 0x191b0,
1783                 0x191d0, 0x191e8,
1784                 0x19238, 0x1924c,
1785                 0x193f8, 0x19474,
1786                 0x19490, 0x194f8,
1787                 0x19800, 0x19f30,
1788                 0x1a000, 0x1a06c,
1789                 0x1a0b0, 0x1a120,
1790                 0x1a128, 0x1a138,
1791                 0x1a190, 0x1a1c4,
1792                 0x1a1fc, 0x1a1fc,
1793                 0x1e040, 0x1e04c,
1794                 0x1e284, 0x1e28c,
1795                 0x1e2c0, 0x1e2c0,
1796                 0x1e2e0, 0x1e2e0,
1797                 0x1e300, 0x1e384,
1798                 0x1e3c0, 0x1e3c8,
1799                 0x1e440, 0x1e44c,
1800                 0x1e684, 0x1e68c,
1801                 0x1e6c0, 0x1e6c0,
1802                 0x1e6e0, 0x1e6e0,
1803                 0x1e700, 0x1e784,
1804                 0x1e7c0, 0x1e7c8,
1805                 0x1e840, 0x1e84c,
1806                 0x1ea84, 0x1ea8c,
1807                 0x1eac0, 0x1eac0,
1808                 0x1eae0, 0x1eae0,
1809                 0x1eb00, 0x1eb84,
1810                 0x1ebc0, 0x1ebc8,
1811                 0x1ec40, 0x1ec4c,
1812                 0x1ee84, 0x1ee8c,
1813                 0x1eec0, 0x1eec0,
1814                 0x1eee0, 0x1eee0,
1815                 0x1ef00, 0x1ef84,
1816                 0x1efc0, 0x1efc8,
1817                 0x1f040, 0x1f04c,
1818                 0x1f284, 0x1f28c,
1819                 0x1f2c0, 0x1f2c0,
1820                 0x1f2e0, 0x1f2e0,
1821                 0x1f300, 0x1f384,
1822                 0x1f3c0, 0x1f3c8,
1823                 0x1f440, 0x1f44c,
1824                 0x1f684, 0x1f68c,
1825                 0x1f6c0, 0x1f6c0,
1826                 0x1f6e0, 0x1f6e0,
1827                 0x1f700, 0x1f784,
1828                 0x1f7c0, 0x1f7c8,
1829                 0x1f840, 0x1f84c,
1830                 0x1fa84, 0x1fa8c,
1831                 0x1fac0, 0x1fac0,
1832                 0x1fae0, 0x1fae0,
1833                 0x1fb00, 0x1fb84,
1834                 0x1fbc0, 0x1fbc8,
1835                 0x1fc40, 0x1fc4c,
1836                 0x1fe84, 0x1fe8c,
1837                 0x1fec0, 0x1fec0,
1838                 0x1fee0, 0x1fee0,
1839                 0x1ff00, 0x1ff84,
1840                 0x1ffc0, 0x1ffc8,
1841                 0x20000, 0x2002c,
1842                 0x20100, 0x2013c,
1843                 0x20190, 0x201c8,
1844                 0x20200, 0x20318,
1845                 0x20400, 0x20528,
1846                 0x20540, 0x20614,
1847                 0x21000, 0x21040,
1848                 0x2104c, 0x21060,
1849                 0x210c0, 0x210ec,
1850                 0x21200, 0x21268,
1851                 0x21270, 0x21284,
1852                 0x212fc, 0x21388,
1853                 0x21400, 0x21404,
1854                 0x21500, 0x21518,
1855                 0x2152c, 0x2153c,
1856                 0x21550, 0x21554,
1857                 0x21600, 0x21600,
1858                 0x21608, 0x21628,
1859                 0x21630, 0x2163c,
1860                 0x21700, 0x2171c,
1861                 0x21780, 0x2178c,
1862                 0x21800, 0x21c38,
1863                 0x21c80, 0x21d7c,
1864                 0x21e00, 0x21e04,
1865                 0x22000, 0x2202c,
1866                 0x22100, 0x2213c,
1867                 0x22190, 0x221c8,
1868                 0x22200, 0x22318,
1869                 0x22400, 0x22528,
1870                 0x22540, 0x22614,
1871                 0x23000, 0x23040,
1872                 0x2304c, 0x23060,
1873                 0x230c0, 0x230ec,
1874                 0x23200, 0x23268,
1875                 0x23270, 0x23284,
1876                 0x232fc, 0x23388,
1877                 0x23400, 0x23404,
1878                 0x23500, 0x23518,
1879                 0x2352c, 0x2353c,
1880                 0x23550, 0x23554,
1881                 0x23600, 0x23600,
1882                 0x23608, 0x23628,
1883                 0x23630, 0x2363c,
1884                 0x23700, 0x2371c,
1885                 0x23780, 0x2378c,
1886                 0x23800, 0x23c38,
1887                 0x23c80, 0x23d7c,
1888                 0x23e00, 0x23e04,
1889                 0x24000, 0x2402c,
1890                 0x24100, 0x2413c,
1891                 0x24190, 0x241c8,
1892                 0x24200, 0x24318,
1893                 0x24400, 0x24528,
1894                 0x24540, 0x24614,
1895                 0x25000, 0x25040,
1896                 0x2504c, 0x25060,
1897                 0x250c0, 0x250ec,
1898                 0x25200, 0x25268,
1899                 0x25270, 0x25284,
1900                 0x252fc, 0x25388,
1901                 0x25400, 0x25404,
1902                 0x25500, 0x25518,
1903                 0x2552c, 0x2553c,
1904                 0x25550, 0x25554,
1905                 0x25600, 0x25600,
1906                 0x25608, 0x25628,
1907                 0x25630, 0x2563c,
1908                 0x25700, 0x2571c,
1909                 0x25780, 0x2578c,
1910                 0x25800, 0x25c38,
1911                 0x25c80, 0x25d7c,
1912                 0x25e00, 0x25e04,
1913                 0x26000, 0x2602c,
1914                 0x26100, 0x2613c,
1915                 0x26190, 0x261c8,
1916                 0x26200, 0x26318,
1917                 0x26400, 0x26528,
1918                 0x26540, 0x26614,
1919                 0x27000, 0x27040,
1920                 0x2704c, 0x27060,
1921                 0x270c0, 0x270ec,
1922                 0x27200, 0x27268,
1923                 0x27270, 0x27284,
1924                 0x272fc, 0x27388,
1925                 0x27400, 0x27404,
1926                 0x27500, 0x27518,
1927                 0x2752c, 0x2753c,
1928                 0x27550, 0x27554,
1929                 0x27600, 0x27600,
1930                 0x27608, 0x27628,
1931                 0x27630, 0x2763c,
1932                 0x27700, 0x2771c,
1933                 0x27780, 0x2778c,
1934                 0x27800, 0x27c38,
1935                 0x27c80, 0x27d7c,
1936                 0x27e00, 0x27e04
1937         };
1938
1939         static const unsigned int t5_reg_ranges[] = {
1940                 0x1008, 0x1148,
1941                 0x1180, 0x11b4,
1942                 0x11fc, 0x123c,
1943                 0x1280, 0x173c,
1944                 0x1800, 0x18fc,
1945                 0x3000, 0x3028,
1946                 0x3060, 0x30d8,
1947                 0x30e0, 0x30fc,
1948                 0x3140, 0x357c,
1949                 0x35a8, 0x35cc,
1950                 0x35ec, 0x35ec,
1951                 0x3600, 0x5624,
1952                 0x56cc, 0x575c,
1953                 0x580c, 0x5814,
1954                 0x5890, 0x58bc,
1955                 0x5940, 0x59dc,
1956                 0x59fc, 0x5a18,
1957                 0x5a60, 0x5a9c,
1958                 0x5b9c, 0x5bfc,
1959                 0x6000, 0x6040,
1960                 0x6058, 0x614c,
1961                 0x7700, 0x7798,
1962                 0x77c0, 0x78fc,
1963                 0x7b00, 0x7c54,
1964                 0x7d00, 0x7efc,
1965                 0x8dc0, 0x8de0,
1966                 0x8df8, 0x8e84,
1967                 0x8ea0, 0x8f84,
1968                 0x8fc0, 0x90f8,
1969                 0x9400, 0x9470,
1970                 0x9600, 0x96f4,
1971                 0x9800, 0x9808,
1972                 0x9820, 0x983c,
1973                 0x9850, 0x9864,
1974                 0x9c00, 0x9c6c,
1975                 0x9c80, 0x9cec,
1976                 0x9d00, 0x9d6c,
1977                 0x9d80, 0x9dec,
1978                 0x9e00, 0x9e6c,
1979                 0x9e80, 0x9eec,
1980                 0x9f00, 0x9f6c,
1981                 0x9f80, 0xa020,
1982                 0xd004, 0xd03c,
1983                 0xdfc0, 0xdfe0,
1984                 0xe000, 0x11088,
1985                 0x1109c, 0x11110,
1986                 0x11118, 0x1117c,
1987                 0x11190, 0x11204,
1988                 0x19040, 0x1906c,
1989                 0x19078, 0x19080,
1990                 0x1908c, 0x19124,
1991                 0x19150, 0x191b0,
1992                 0x191d0, 0x191e8,
1993                 0x19238, 0x19290,
1994                 0x193f8, 0x19474,
1995                 0x19490, 0x194cc,
1996                 0x194f0, 0x194f8,
1997                 0x19c00, 0x19c60,
1998                 0x19c94, 0x19e10,
1999                 0x19e50, 0x19f34,
2000                 0x19f40, 0x19f50,
2001                 0x19f90, 0x19fe4,
2002                 0x1a000, 0x1a06c,
2003                 0x1a0b0, 0x1a120,
2004                 0x1a128, 0x1a138,
2005                 0x1a190, 0x1a1c4,
2006                 0x1a1fc, 0x1a1fc,
2007                 0x1e008, 0x1e00c,
2008                 0x1e040, 0x1e04c,
2009                 0x1e284, 0x1e290,
2010                 0x1e2c0, 0x1e2c0,
2011                 0x1e2e0, 0x1e2e0,
2012                 0x1e300, 0x1e384,
2013                 0x1e3c0, 0x1e3c8,
2014                 0x1e408, 0x1e40c,
2015                 0x1e440, 0x1e44c,
2016                 0x1e684, 0x1e690,
2017                 0x1e6c0, 0x1e6c0,
2018                 0x1e6e0, 0x1e6e0,
2019                 0x1e700, 0x1e784,
2020                 0x1e7c0, 0x1e7c8,
2021                 0x1e808, 0x1e80c,
2022                 0x1e840, 0x1e84c,
2023                 0x1ea84, 0x1ea90,
2024                 0x1eac0, 0x1eac0,
2025                 0x1eae0, 0x1eae0,
2026                 0x1eb00, 0x1eb84,
2027                 0x1ebc0, 0x1ebc8,
2028                 0x1ec08, 0x1ec0c,
2029                 0x1ec40, 0x1ec4c,
2030                 0x1ee84, 0x1ee90,
2031                 0x1eec0, 0x1eec0,
2032                 0x1eee0, 0x1eee0,
2033                 0x1ef00, 0x1ef84,
2034                 0x1efc0, 0x1efc8,
2035                 0x1f008, 0x1f00c,
2036                 0x1f040, 0x1f04c,
2037                 0x1f284, 0x1f290,
2038                 0x1f2c0, 0x1f2c0,
2039                 0x1f2e0, 0x1f2e0,
2040                 0x1f300, 0x1f384,
2041                 0x1f3c0, 0x1f3c8,
2042                 0x1f408, 0x1f40c,
2043                 0x1f440, 0x1f44c,
2044                 0x1f684, 0x1f690,
2045                 0x1f6c0, 0x1f6c0,
2046                 0x1f6e0, 0x1f6e0,
2047                 0x1f700, 0x1f784,
2048                 0x1f7c0, 0x1f7c8,
2049                 0x1f808, 0x1f80c,
2050                 0x1f840, 0x1f84c,
2051                 0x1fa84, 0x1fa90,
2052                 0x1fac0, 0x1fac0,
2053                 0x1fae0, 0x1fae0,
2054                 0x1fb00, 0x1fb84,
2055                 0x1fbc0, 0x1fbc8,
2056                 0x1fc08, 0x1fc0c,
2057                 0x1fc40, 0x1fc4c,
2058                 0x1fe84, 0x1fe90,
2059                 0x1fec0, 0x1fec0,
2060                 0x1fee0, 0x1fee0,
2061                 0x1ff00, 0x1ff84,
2062                 0x1ffc0, 0x1ffc8,
2063                 0x30000, 0x30030,
2064                 0x30100, 0x30144,
2065                 0x30190, 0x301d0,
2066                 0x30200, 0x30318,
2067                 0x30400, 0x3052c,
2068                 0x30540, 0x3061c,
2069                 0x30800, 0x30834,
2070                 0x308c0, 0x30908,
2071                 0x30910, 0x309ac,
2072                 0x30a00, 0x30a04,
2073                 0x30a0c, 0x30a2c,
2074                 0x30a44, 0x30a50,
2075                 0x30a74, 0x30c24,
2076                 0x30d08, 0x30d14,
2077                 0x30d1c, 0x30d20,
2078                 0x30d3c, 0x30d50,
2079                 0x31200, 0x3120c,
2080                 0x31220, 0x31220,
2081                 0x31240, 0x31240,
2082                 0x31600, 0x31600,
2083                 0x31608, 0x3160c,
2084                 0x31a00, 0x31a1c,
2085                 0x31e04, 0x31e20,
2086                 0x31e38, 0x31e3c,
2087                 0x31e80, 0x31e80,
2088                 0x31e88, 0x31ea8,
2089                 0x31eb0, 0x31eb4,
2090                 0x31ec8, 0x31ed4,
2091                 0x31fb8, 0x32004,
2092                 0x32208, 0x3223c,
2093                 0x32600, 0x32630,
2094                 0x32a00, 0x32abc,
2095                 0x32b00, 0x32b70,
2096                 0x33000, 0x33048,
2097                 0x33060, 0x3309c,
2098                 0x330f0, 0x33148,
2099                 0x33160, 0x3319c,
2100                 0x331f0, 0x332e4,
2101                 0x332f8, 0x333e4,
2102                 0x333f8, 0x33448,
2103                 0x33460, 0x3349c,
2104                 0x334f0, 0x33548,
2105                 0x33560, 0x3359c,
2106                 0x335f0, 0x336e4,
2107                 0x336f8, 0x337e4,
2108                 0x337f8, 0x337fc,
2109                 0x33814, 0x33814,
2110                 0x3382c, 0x3382c,
2111                 0x33880, 0x3388c,
2112                 0x338e8, 0x338ec,
2113                 0x33900, 0x33948,
2114                 0x33960, 0x3399c,
2115                 0x339f0, 0x33ae4,
2116                 0x33af8, 0x33b10,
2117                 0x33b28, 0x33b28,
2118                 0x33b3c, 0x33b50,
2119                 0x33bf0, 0x33c10,
2120                 0x33c28, 0x33c28,
2121                 0x33c3c, 0x33c50,
2122                 0x33cf0, 0x33cfc,
2123                 0x34000, 0x34030,
2124                 0x34100, 0x34144,
2125                 0x34190, 0x341d0,
2126                 0x34200, 0x34318,
2127                 0x34400, 0x3452c,
2128                 0x34540, 0x3461c,
2129                 0x34800, 0x34834,
2130                 0x348c0, 0x34908,
2131                 0x34910, 0x349ac,
2132                 0x34a00, 0x34a04,
2133                 0x34a0c, 0x34a2c,
2134                 0x34a44, 0x34a50,
2135                 0x34a74, 0x34c24,
2136                 0x34d08, 0x34d14,
2137                 0x34d1c, 0x34d20,
2138                 0x34d3c, 0x34d50,
2139                 0x35200, 0x3520c,
2140                 0x35220, 0x35220,
2141                 0x35240, 0x35240,
2142                 0x35600, 0x35600,
2143                 0x35608, 0x3560c,
2144                 0x35a00, 0x35a1c,
2145                 0x35e04, 0x35e20,
2146                 0x35e38, 0x35e3c,
2147                 0x35e80, 0x35e80,
2148                 0x35e88, 0x35ea8,
2149                 0x35eb0, 0x35eb4,
2150                 0x35ec8, 0x35ed4,
2151                 0x35fb8, 0x36004,
2152                 0x36208, 0x3623c,
2153                 0x36600, 0x36630,
2154                 0x36a00, 0x36abc,
2155                 0x36b00, 0x36b70,
2156                 0x37000, 0x37048,
2157                 0x37060, 0x3709c,
2158                 0x370f0, 0x37148,
2159                 0x37160, 0x3719c,
2160                 0x371f0, 0x372e4,
2161                 0x372f8, 0x373e4,
2162                 0x373f8, 0x37448,
2163                 0x37460, 0x3749c,
2164                 0x374f0, 0x37548,
2165                 0x37560, 0x3759c,
2166                 0x375f0, 0x376e4,
2167                 0x376f8, 0x377e4,
2168                 0x377f8, 0x377fc,
2169                 0x37814, 0x37814,
2170                 0x3782c, 0x3782c,
2171                 0x37880, 0x3788c,
2172                 0x378e8, 0x378ec,
2173                 0x37900, 0x37948,
2174                 0x37960, 0x3799c,
2175                 0x379f0, 0x37ae4,
2176                 0x37af8, 0x37b10,
2177                 0x37b28, 0x37b28,
2178                 0x37b3c, 0x37b50,
2179                 0x37bf0, 0x37c10,
2180                 0x37c28, 0x37c28,
2181                 0x37c3c, 0x37c50,
2182                 0x37cf0, 0x37cfc,
2183                 0x38000, 0x38030,
2184                 0x38100, 0x38144,
2185                 0x38190, 0x381d0,
2186                 0x38200, 0x38318,
2187                 0x38400, 0x3852c,
2188                 0x38540, 0x3861c,
2189                 0x38800, 0x38834,
2190                 0x388c0, 0x38908,
2191                 0x38910, 0x389ac,
2192                 0x38a00, 0x38a04,
2193                 0x38a0c, 0x38a2c,
2194                 0x38a44, 0x38a50,
2195                 0x38a74, 0x38c24,
2196                 0x38d08, 0x38d14,
2197                 0x38d1c, 0x38d20,
2198                 0x38d3c, 0x38d50,
2199                 0x39200, 0x3920c,
2200                 0x39220, 0x39220,
2201                 0x39240, 0x39240,
2202                 0x39600, 0x39600,
2203                 0x39608, 0x3960c,
2204                 0x39a00, 0x39a1c,
2205                 0x39e04, 0x39e20,
2206                 0x39e38, 0x39e3c,
2207                 0x39e80, 0x39e80,
2208                 0x39e88, 0x39ea8,
2209                 0x39eb0, 0x39eb4,
2210                 0x39ec8, 0x39ed4,
2211                 0x39fb8, 0x3a004,
2212                 0x3a208, 0x3a23c,
2213                 0x3a600, 0x3a630,
2214                 0x3aa00, 0x3aabc,
2215                 0x3ab00, 0x3ab70,
2216                 0x3b000, 0x3b048,
2217                 0x3b060, 0x3b09c,
2218                 0x3b0f0, 0x3b148,
2219                 0x3b160, 0x3b19c,
2220                 0x3b1f0, 0x3b2e4,
2221                 0x3b2f8, 0x3b3e4,
2222                 0x3b3f8, 0x3b448,
2223                 0x3b460, 0x3b49c,
2224                 0x3b4f0, 0x3b548,
2225                 0x3b560, 0x3b59c,
2226                 0x3b5f0, 0x3b6e4,
2227                 0x3b6f8, 0x3b7e4,
2228                 0x3b7f8, 0x3b7fc,
2229                 0x3b814, 0x3b814,
2230                 0x3b82c, 0x3b82c,
2231                 0x3b880, 0x3b88c,
2232                 0x3b8e8, 0x3b8ec,
2233                 0x3b900, 0x3b948,
2234                 0x3b960, 0x3b99c,
2235                 0x3b9f0, 0x3bae4,
2236                 0x3baf8, 0x3bb10,
2237                 0x3bb28, 0x3bb28,
2238                 0x3bb3c, 0x3bb50,
2239                 0x3bbf0, 0x3bc10,
2240                 0x3bc28, 0x3bc28,
2241                 0x3bc3c, 0x3bc50,
2242                 0x3bcf0, 0x3bcfc,
2243                 0x3c000, 0x3c030,
2244                 0x3c100, 0x3c144,
2245                 0x3c190, 0x3c1d0,
2246                 0x3c200, 0x3c318,
2247                 0x3c400, 0x3c52c,
2248                 0x3c540, 0x3c61c,
2249                 0x3c800, 0x3c834,
2250                 0x3c8c0, 0x3c908,
2251                 0x3c910, 0x3c9ac,
2252                 0x3ca00, 0x3ca04,
2253                 0x3ca0c, 0x3ca2c,
2254                 0x3ca44, 0x3ca50,
2255                 0x3ca74, 0x3cc24,
2256                 0x3cd08, 0x3cd14,
2257                 0x3cd1c, 0x3cd20,
2258                 0x3cd3c, 0x3cd50,
2259                 0x3d200, 0x3d20c,
2260                 0x3d220, 0x3d220,
2261                 0x3d240, 0x3d240,
2262                 0x3d600, 0x3d600,
2263                 0x3d608, 0x3d60c,
2264                 0x3da00, 0x3da1c,
2265                 0x3de04, 0x3de20,
2266                 0x3de38, 0x3de3c,
2267                 0x3de80, 0x3de80,
2268                 0x3de88, 0x3dea8,
2269                 0x3deb0, 0x3deb4,
2270                 0x3dec8, 0x3ded4,
2271                 0x3dfb8, 0x3e004,
2272                 0x3e208, 0x3e23c,
2273                 0x3e600, 0x3e630,
2274                 0x3ea00, 0x3eabc,
2275                 0x3eb00, 0x3eb70,
2276                 0x3f000, 0x3f048,
2277                 0x3f060, 0x3f09c,
2278                 0x3f0f0, 0x3f148,
2279                 0x3f160, 0x3f19c,
2280                 0x3f1f0, 0x3f2e4,
2281                 0x3f2f8, 0x3f3e4,
2282                 0x3f3f8, 0x3f448,
2283                 0x3f460, 0x3f49c,
2284                 0x3f4f0, 0x3f548,
2285                 0x3f560, 0x3f59c,
2286                 0x3f5f0, 0x3f6e4,
2287                 0x3f6f8, 0x3f7e4,
2288                 0x3f7f8, 0x3f7fc,
2289                 0x3f814, 0x3f814,
2290                 0x3f82c, 0x3f82c,
2291                 0x3f880, 0x3f88c,
2292                 0x3f8e8, 0x3f8ec,
2293                 0x3f900, 0x3f948,
2294                 0x3f960, 0x3f99c,
2295                 0x3f9f0, 0x3fae4,
2296                 0x3faf8, 0x3fb10,
2297                 0x3fb28, 0x3fb28,
2298                 0x3fb3c, 0x3fb50,
2299                 0x3fbf0, 0x3fc10,
2300                 0x3fc28, 0x3fc28,
2301                 0x3fc3c, 0x3fc50,
2302                 0x3fcf0, 0x3fcfc,
2303                 0x40000, 0x4000c,
2304                 0x40040, 0x40068,
2305                 0x40080, 0x40144,
2306                 0x40180, 0x4018c,
2307                 0x40200, 0x40298,
2308                 0x402ac, 0x4033c,
2309                 0x403f8, 0x403fc,
2310                 0x41304, 0x413c4,
2311                 0x41400, 0x4141c,
2312                 0x41480, 0x414d0,
2313                 0x44000, 0x44078,
2314                 0x440c0, 0x44278,
2315                 0x442c0, 0x44478,
2316                 0x444c0, 0x44678,
2317                 0x446c0, 0x44878,
2318                 0x448c0, 0x449fc,
2319                 0x45000, 0x45068,
2320                 0x45080, 0x45084,
2321                 0x450a0, 0x450b0,
2322                 0x45200, 0x45268,
2323                 0x45280, 0x45284,
2324                 0x452a0, 0x452b0,
2325                 0x460c0, 0x460e4,
2326                 0x47000, 0x4708c,
2327                 0x47200, 0x47250,
2328                 0x47400, 0x47420,
2329                 0x47600, 0x47618,
2330                 0x47800, 0x47814,
2331                 0x48000, 0x4800c,
2332                 0x48040, 0x48068,
2333                 0x48080, 0x48144,
2334                 0x48180, 0x4818c,
2335                 0x48200, 0x48298,
2336                 0x482ac, 0x4833c,
2337                 0x483f8, 0x483fc,
2338                 0x49304, 0x493c4,
2339                 0x49400, 0x4941c,
2340                 0x49480, 0x494d0,
2341                 0x4c000, 0x4c078,
2342                 0x4c0c0, 0x4c278,
2343                 0x4c2c0, 0x4c478,
2344                 0x4c4c0, 0x4c678,
2345                 0x4c6c0, 0x4c878,
2346                 0x4c8c0, 0x4c9fc,
2347                 0x4d000, 0x4d068,
2348                 0x4d080, 0x4d084,
2349                 0x4d0a0, 0x4d0b0,
2350                 0x4d200, 0x4d268,
2351                 0x4d280, 0x4d284,
2352                 0x4d2a0, 0x4d2b0,
2353                 0x4e0c0, 0x4e0e4,
2354                 0x4f000, 0x4f08c,
2355                 0x4f200, 0x4f250,
2356                 0x4f400, 0x4f420,
2357                 0x4f600, 0x4f618,
2358                 0x4f800, 0x4f814,
2359                 0x50000, 0x500cc,
2360                 0x50400, 0x50400,
2361                 0x50800, 0x508cc,
2362                 0x50c00, 0x50c00,
2363                 0x51000, 0x5101c,
2364                 0x51300, 0x51308,
2365         };
2366
2367         int i;
2368         struct adapter *ap = netdev2adap(dev);
2369         static const unsigned int *reg_ranges;
2370         int arr_size = 0, buf_size = 0;
2371
2372         if (is_t4(ap->params.chip)) {
2373                 reg_ranges = &t4_reg_ranges[0];
2374                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2375                 buf_size = T4_REGMAP_SIZE;
2376         } else {
2377                 reg_ranges = &t5_reg_ranges[0];
2378                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2379                 buf_size = T5_REGMAP_SIZE;
2380         }
2381
2382         regs->version = mk_adap_vers(ap);
2383
2384         memset(buf, 0, buf_size);
2385         for (i = 0; i < arr_size; i += 2)
2386                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2387 }
2388
2389 static int restart_autoneg(struct net_device *dev)
2390 {
2391         struct port_info *p = netdev_priv(dev);
2392
2393         if (!netif_running(dev))
2394                 return -EAGAIN;
2395         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2396                 return -EINVAL;
2397         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2398         return 0;
2399 }
2400
2401 static int identify_port(struct net_device *dev,
2402                          enum ethtool_phys_id_state state)
2403 {
2404         unsigned int val;
2405         struct adapter *adap = netdev2adap(dev);
2406
2407         if (state == ETHTOOL_ID_ACTIVE)
2408                 val = 0xffff;
2409         else if (state == ETHTOOL_ID_INACTIVE)
2410                 val = 0;
2411         else
2412                 return -EINVAL;
2413
2414         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2415 }
2416
2417 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2418 {
2419         unsigned int v = 0;
2420
2421         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2422             type == FW_PORT_TYPE_BT_XAUI) {
2423                 v |= SUPPORTED_TP;
2424                 if (caps & FW_PORT_CAP_SPEED_100M)
2425                         v |= SUPPORTED_100baseT_Full;
2426                 if (caps & FW_PORT_CAP_SPEED_1G)
2427                         v |= SUPPORTED_1000baseT_Full;
2428                 if (caps & FW_PORT_CAP_SPEED_10G)
2429                         v |= SUPPORTED_10000baseT_Full;
2430         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2431                 v |= SUPPORTED_Backplane;
2432                 if (caps & FW_PORT_CAP_SPEED_1G)
2433                         v |= SUPPORTED_1000baseKX_Full;
2434                 if (caps & FW_PORT_CAP_SPEED_10G)
2435                         v |= SUPPORTED_10000baseKX4_Full;
2436         } else if (type == FW_PORT_TYPE_KR)
2437                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2438         else if (type == FW_PORT_TYPE_BP_AP)
2439                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2440                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2441         else if (type == FW_PORT_TYPE_BP4_AP)
2442                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2443                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2444                      SUPPORTED_10000baseKX4_Full;
2445         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2446                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2447                 v |= SUPPORTED_FIBRE;
2448         else if (type == FW_PORT_TYPE_BP40_BA)
2449                 v |= SUPPORTED_40000baseSR4_Full;
2450
2451         if (caps & FW_PORT_CAP_ANEG)
2452                 v |= SUPPORTED_Autoneg;
2453         return v;
2454 }
2455
2456 static unsigned int to_fw_linkcaps(unsigned int caps)
2457 {
2458         unsigned int v = 0;
2459
2460         if (caps & ADVERTISED_100baseT_Full)
2461                 v |= FW_PORT_CAP_SPEED_100M;
2462         if (caps & ADVERTISED_1000baseT_Full)
2463                 v |= FW_PORT_CAP_SPEED_1G;
2464         if (caps & ADVERTISED_10000baseT_Full)
2465                 v |= FW_PORT_CAP_SPEED_10G;
2466         if (caps & ADVERTISED_40000baseSR4_Full)
2467                 v |= FW_PORT_CAP_SPEED_40G;
2468         return v;
2469 }
2470
2471 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2472 {
2473         const struct port_info *p = netdev_priv(dev);
2474
2475         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2476             p->port_type == FW_PORT_TYPE_BT_XFI ||
2477             p->port_type == FW_PORT_TYPE_BT_XAUI)
2478                 cmd->port = PORT_TP;
2479         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2480                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2481                 cmd->port = PORT_FIBRE;
2482         else if (p->port_type == FW_PORT_TYPE_SFP ||
2483                  p->port_type == FW_PORT_TYPE_QSFP_10G ||
2484                  p->port_type == FW_PORT_TYPE_QSFP) {
2485                 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2486                     p->mod_type == FW_PORT_MOD_TYPE_SR ||
2487                     p->mod_type == FW_PORT_MOD_TYPE_ER ||
2488                     p->mod_type == FW_PORT_MOD_TYPE_LRM)
2489                         cmd->port = PORT_FIBRE;
2490                 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2491                          p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2492                         cmd->port = PORT_DA;
2493                 else
2494                         cmd->port = PORT_OTHER;
2495         } else
2496                 cmd->port = PORT_OTHER;
2497
2498         if (p->mdio_addr >= 0) {
2499                 cmd->phy_address = p->mdio_addr;
2500                 cmd->transceiver = XCVR_EXTERNAL;
2501                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2502                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2503         } else {
2504                 cmd->phy_address = 0;  /* not really, but no better option */
2505                 cmd->transceiver = XCVR_INTERNAL;
2506                 cmd->mdio_support = 0;
2507         }
2508
2509         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2510         cmd->advertising = from_fw_linkcaps(p->port_type,
2511                                             p->link_cfg.advertising);
2512         ethtool_cmd_speed_set(cmd,
2513                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2514         cmd->duplex = DUPLEX_FULL;
2515         cmd->autoneg = p->link_cfg.autoneg;
2516         cmd->maxtxpkt = 0;
2517         cmd->maxrxpkt = 0;
2518         return 0;
2519 }
2520
2521 static unsigned int speed_to_caps(int speed)
2522 {
2523         if (speed == 100)
2524                 return FW_PORT_CAP_SPEED_100M;
2525         if (speed == 1000)
2526                 return FW_PORT_CAP_SPEED_1G;
2527         if (speed == 10000)
2528                 return FW_PORT_CAP_SPEED_10G;
2529         if (speed == 40000)
2530                 return FW_PORT_CAP_SPEED_40G;
2531         return 0;
2532 }
2533
2534 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2535 {
2536         unsigned int cap;
2537         struct port_info *p = netdev_priv(dev);
2538         struct link_config *lc = &p->link_cfg;
2539         u32 speed = ethtool_cmd_speed(cmd);
2540
2541         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2542                 return -EINVAL;
2543
2544         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2545                 /*
2546                  * PHY offers a single speed.  See if that's what's
2547                  * being requested.
2548                  */
2549                 if (cmd->autoneg == AUTONEG_DISABLE &&
2550                     (lc->supported & speed_to_caps(speed)))
2551                         return 0;
2552                 return -EINVAL;
2553         }
2554
2555         if (cmd->autoneg == AUTONEG_DISABLE) {
2556                 cap = speed_to_caps(speed);
2557
2558                 if (!(lc->supported & cap) ||
2559                     (speed == 1000) ||
2560                     (speed == 10000) ||
2561                     (speed == 40000))
2562                         return -EINVAL;
2563                 lc->requested_speed = cap;
2564                 lc->advertising = 0;
2565         } else {
2566                 cap = to_fw_linkcaps(cmd->advertising);
2567                 if (!(lc->supported & cap))
2568                         return -EINVAL;
2569                 lc->requested_speed = 0;
2570                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2571         }
2572         lc->autoneg = cmd->autoneg;
2573
2574         if (netif_running(dev))
2575                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2576                                      lc);
2577         return 0;
2578 }
2579
2580 static void get_pauseparam(struct net_device *dev,
2581                            struct ethtool_pauseparam *epause)
2582 {
2583         struct port_info *p = netdev_priv(dev);
2584
2585         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2586         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2587         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2588 }
2589
2590 static int set_pauseparam(struct net_device *dev,
2591                           struct ethtool_pauseparam *epause)
2592 {
2593         struct port_info *p = netdev_priv(dev);
2594         struct link_config *lc = &p->link_cfg;
2595
2596         if (epause->autoneg == AUTONEG_DISABLE)
2597                 lc->requested_fc = 0;
2598         else if (lc->supported & FW_PORT_CAP_ANEG)
2599                 lc->requested_fc = PAUSE_AUTONEG;
2600         else
2601                 return -EINVAL;
2602
2603         if (epause->rx_pause)
2604                 lc->requested_fc |= PAUSE_RX;
2605         if (epause->tx_pause)
2606                 lc->requested_fc |= PAUSE_TX;
2607         if (netif_running(dev))
2608                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2609                                      lc);
2610         return 0;
2611 }
2612
2613 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2614 {
2615         const struct port_info *pi = netdev_priv(dev);
2616         const struct sge *s = &pi->adapter->sge;
2617
2618         e->rx_max_pending = MAX_RX_BUFFERS;
2619         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2620         e->rx_jumbo_max_pending = 0;
2621         e->tx_max_pending = MAX_TXQ_ENTRIES;
2622
2623         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2624         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2625         e->rx_jumbo_pending = 0;
2626         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2627 }
2628
2629 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2630 {
2631         int i;
2632         const struct port_info *pi = netdev_priv(dev);
2633         struct adapter *adapter = pi->adapter;
2634         struct sge *s = &adapter->sge;
2635
2636         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2637             e->tx_pending > MAX_TXQ_ENTRIES ||
2638             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2639             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2640             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2641                 return -EINVAL;
2642
2643         if (adapter->flags & FULL_INIT_DONE)
2644                 return -EBUSY;
2645
2646         for (i = 0; i < pi->nqsets; ++i) {
2647                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2648                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2649                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2650         }
2651         return 0;
2652 }
2653
2654 static int closest_timer(const struct sge *s, int time)
2655 {
2656         int i, delta, match = 0, min_delta = INT_MAX;
2657
2658         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2659                 delta = time - s->timer_val[i];
2660                 if (delta < 0)
2661                         delta = -delta;
2662                 if (delta < min_delta) {
2663                         min_delta = delta;
2664                         match = i;
2665                 }
2666         }
2667         return match;
2668 }
2669
2670 static int closest_thres(const struct sge *s, int thres)
2671 {
2672         int i, delta, match = 0, min_delta = INT_MAX;
2673
2674         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2675                 delta = thres - s->counter_val[i];
2676                 if (delta < 0)
2677                         delta = -delta;
2678                 if (delta < min_delta) {
2679                         min_delta = delta;
2680                         match = i;
2681                 }
2682         }
2683         return match;
2684 }
2685
2686 /*
2687  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2688  */
2689 static unsigned int qtimer_val(const struct adapter *adap,
2690                                const struct sge_rspq *q)
2691 {
2692         unsigned int idx = q->intr_params >> 1;
2693
2694         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2695 }
2696
2697 /**
2698  *      set_rspq_intr_params - set a queue's interrupt holdoff parameters
2699  *      @q: the Rx queue
2700  *      @us: the hold-off time in us, or 0 to disable timer
2701  *      @cnt: the hold-off packet count, or 0 to disable counter
2702  *
2703  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2704  *      one of the two needs to be enabled for the queue to generate interrupts.
2705  */
2706 static int set_rspq_intr_params(struct sge_rspq *q,
2707                                 unsigned int us, unsigned int cnt)
2708 {
2709         struct adapter *adap = q->adap;
2710
2711         if ((us | cnt) == 0)
2712                 cnt = 1;
2713
2714         if (cnt) {
2715                 int err;
2716                 u32 v, new_idx;
2717
2718                 new_idx = closest_thres(&adap->sge, cnt);
2719                 if (q->desc && q->pktcnt_idx != new_idx) {
2720                         /* the queue has already been created, update it */
2721                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2722                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2723                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
2724                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2725                                             &new_idx);
2726                         if (err)
2727                                 return err;
2728                 }
2729                 q->pktcnt_idx = new_idx;
2730         }
2731
2732         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2733         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2734         return 0;
2735 }
2736
2737 /**
2738  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2739  * @dev: the network device
2740  * @us: the hold-off time in us, or 0 to disable timer
2741  * @cnt: the hold-off packet count, or 0 to disable counter
2742  *
2743  * Set the RX interrupt hold-off parameters for a network device.
2744  */
2745 static int set_rx_intr_params(struct net_device *dev,
2746                               unsigned int us, unsigned int cnt)
2747 {
2748         int i, err;
2749         struct port_info *pi = netdev_priv(dev);
2750         struct adapter *adap = pi->adapter;
2751         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2752
2753         for (i = 0; i < pi->nqsets; i++, q++) {
2754                 err = set_rspq_intr_params(&q->rspq, us, cnt);
2755                 if (err)
2756                         return err;
2757         }
2758         return 0;
2759 }
2760
2761 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
2762 {
2763         int i;
2764         struct port_info *pi = netdev_priv(dev);
2765         struct adapter *adap = pi->adapter;
2766         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2767
2768         for (i = 0; i < pi->nqsets; i++, q++)
2769                 q->rspq.adaptive_rx = adaptive_rx;
2770
2771         return 0;
2772 }
2773
2774 static int get_adaptive_rx_setting(struct net_device *dev)
2775 {
2776         struct port_info *pi = netdev_priv(dev);
2777         struct adapter *adap = pi->adapter;
2778         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2779
2780         return q->rspq.adaptive_rx;
2781 }
2782
2783 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2784 {
2785         set_adaptive_rx_setting(dev, c->use_adaptive_rx_coalesce);
2786         return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2787                                   c->rx_max_coalesced_frames);
2788 }
2789
2790 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2791 {
2792         const struct port_info *pi = netdev_priv(dev);
2793         const struct adapter *adap = pi->adapter;
2794         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2795
2796         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2797         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2798                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2799         c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
2800         return 0;
2801 }
2802
2803 /**
2804  *      eeprom_ptov - translate a physical EEPROM address to virtual
2805  *      @phys_addr: the physical EEPROM address
2806  *      @fn: the PCI function number
2807  *      @sz: size of function-specific area
2808  *
2809  *      Translate a physical EEPROM address to virtual.  The first 1K is
2810  *      accessed through virtual addresses starting at 31K, the rest is
2811  *      accessed through virtual addresses starting at 0.
2812  *
2813  *      The mapping is as follows:
2814  *      [0..1K) -> [31K..32K)
2815  *      [1K..1K+A) -> [31K-A..31K)
2816  *      [1K+A..ES) -> [0..ES-A-1K)
2817  *
2818  *      where A = @fn * @sz, and ES = EEPROM size.
2819  */
2820 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2821 {
2822         fn *= sz;
2823         if (phys_addr < 1024)
2824                 return phys_addr + (31 << 10);
2825         if (phys_addr < 1024 + fn)
2826                 return 31744 - fn + phys_addr - 1024;
2827         if (phys_addr < EEPROMSIZE)
2828                 return phys_addr - 1024 - fn;
2829         return -EINVAL;
2830 }
2831
2832 /*
2833  * The next two routines implement eeprom read/write from physical addresses.
2834  */
2835 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2836 {
2837         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2838
2839         if (vaddr >= 0)
2840                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2841         return vaddr < 0 ? vaddr : 0;
2842 }
2843
2844 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2845 {
2846         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2847
2848         if (vaddr >= 0)
2849                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2850         return vaddr < 0 ? vaddr : 0;
2851 }
2852
2853 #define EEPROM_MAGIC 0x38E2F10C
2854
2855 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2856                       u8 *data)
2857 {
2858         int i, err = 0;
2859         struct adapter *adapter = netdev2adap(dev);
2860
2861         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2862         if (!buf)
2863                 return -ENOMEM;
2864
2865         e->magic = EEPROM_MAGIC;
2866         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2867                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2868
2869         if (!err)
2870                 memcpy(data, buf + e->offset, e->len);
2871         kfree(buf);
2872         return err;
2873 }
2874
2875 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2876                       u8 *data)
2877 {
2878         u8 *buf;
2879         int err = 0;
2880         u32 aligned_offset, aligned_len, *p;
2881         struct adapter *adapter = netdev2adap(dev);
2882
2883         if (eeprom->magic != EEPROM_MAGIC)
2884                 return -EINVAL;
2885
2886         aligned_offset = eeprom->offset & ~3;
2887         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2888
2889         if (adapter->fn > 0) {
2890                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2891
2892                 if (aligned_offset < start ||
2893                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2894                         return -EPERM;
2895         }
2896
2897         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2898                 /*
2899                  * RMW possibly needed for first or last words.
2900                  */
2901                 buf = kmalloc(aligned_len, GFP_KERNEL);
2902                 if (!buf)
2903                         return -ENOMEM;
2904                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2905                 if (!err && aligned_len > 4)
2906                         err = eeprom_rd_phys(adapter,
2907                                              aligned_offset + aligned_len - 4,
2908                                              (u32 *)&buf[aligned_len - 4]);
2909                 if (err)
2910                         goto out;
2911                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2912         } else
2913                 buf = data;
2914
2915         err = t4_seeprom_wp(adapter, false);
2916         if (err)
2917                 goto out;
2918
2919         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2920                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2921                 aligned_offset += 4;
2922         }
2923
2924         if (!err)
2925                 err = t4_seeprom_wp(adapter, true);
2926 out:
2927         if (buf != data)
2928                 kfree(buf);
2929         return err;
2930 }
2931
2932 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2933 {
2934         int ret;
2935         const struct firmware *fw;
2936         struct adapter *adap = netdev2adap(netdev);
2937         unsigned int mbox = FW_PCIE_FW_MASTER_MASK + 1;
2938
2939         ef->data[sizeof(ef->data) - 1] = '\0';
2940         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2941         if (ret < 0)
2942                 return ret;
2943
2944         /* If the adapter has been fully initialized then we'll go ahead and
2945          * try to get the firmware's cooperation in upgrading to the new
2946          * firmware image otherwise we'll try to do the entire job from the
2947          * host ... and we always "force" the operation in this path.
2948          */
2949         if (adap->flags & FULL_INIT_DONE)
2950                 mbox = adap->mbox;
2951
2952         ret = t4_fw_upgrade(adap, mbox, fw->data, fw->size, 1);
2953         release_firmware(fw);
2954         if (!ret)
2955                 dev_info(adap->pdev_dev, "loaded firmware %s,"
2956                          " reload cxgb4 driver\n", ef->data);
2957         return ret;
2958 }
2959
2960 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2961 #define BCAST_CRC 0xa0ccc1a6
2962
2963 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2964 {
2965         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2966         wol->wolopts = netdev2adap(dev)->wol;
2967         memset(&wol->sopass, 0, sizeof(wol->sopass));
2968 }
2969
2970 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2971 {
2972         int err = 0;
2973         struct port_info *pi = netdev_priv(dev);
2974
2975         if (wol->wolopts & ~WOL_SUPPORTED)
2976                 return -EINVAL;
2977         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2978                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2979         if (wol->wolopts & WAKE_BCAST) {
2980                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2981                                         ~0ULL, 0, false);
2982                 if (!err)
2983                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2984                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2985         } else
2986                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2987         return err;
2988 }
2989
2990 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2991 {
2992         const struct port_info *pi = netdev_priv(dev);
2993         netdev_features_t changed = dev->features ^ features;
2994         int err;
2995
2996         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2997                 return 0;
2998
2999         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
3000                             -1, -1, -1,
3001                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
3002         if (unlikely(err))
3003                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
3004         return err;
3005 }
3006
3007 static u32 get_rss_table_size(struct net_device *dev)
3008 {
3009         const struct port_info *pi = netdev_priv(dev);
3010
3011         return pi->rss_size;
3012 }
3013
3014 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
3015 {
3016         const struct port_info *pi = netdev_priv(dev);
3017         unsigned int n = pi->rss_size;
3018
3019         while (n--)
3020                 p[n] = pi->rss[n];
3021         return 0;
3022 }
3023
3024 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
3025 {
3026         unsigned int i;
3027         struct port_info *pi = netdev_priv(dev);
3028
3029         for (i = 0; i < pi->rss_size; i++)
3030                 pi->rss[i] = p[i];
3031         if (pi->adapter->flags & FULL_INIT_DONE)
3032                 return write_rss(pi, pi->rss);
3033         return 0;
3034 }
3035
3036 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
3037                      u32 *rules)
3038 {
3039         const struct port_info *pi = netdev_priv(dev);
3040
3041         switch (info->cmd) {
3042         case ETHTOOL_GRXFH: {
3043                 unsigned int v = pi->rss_mode;
3044
3045                 info->data = 0;
3046                 switch (info->flow_type) {
3047                 case TCP_V4_FLOW:
3048                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3049                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3050                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3051                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3052                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3053                         break;
3054                 case UDP_V4_FLOW:
3055                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3056                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3057                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3058                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3059                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3060                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3061                         break;
3062                 case SCTP_V4_FLOW:
3063                 case AH_ESP_V4_FLOW:
3064                 case IPV4_FLOW:
3065                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3066                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3067                         break;
3068                 case TCP_V6_FLOW:
3069                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3070                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3071                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3072                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3073                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3074                         break;
3075                 case UDP_V6_FLOW:
3076                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3077                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3078                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3079                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3080                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3081                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3082                         break;
3083                 case SCTP_V6_FLOW:
3084                 case AH_ESP_V6_FLOW:
3085                 case IPV6_FLOW:
3086                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3087                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3088                         break;
3089                 }
3090                 return 0;
3091         }
3092         case ETHTOOL_GRXRINGS:
3093                 info->data = pi->nqsets;
3094                 return 0;
3095         }
3096         return -EOPNOTSUPP;
3097 }
3098
3099 static const struct ethtool_ops cxgb_ethtool_ops = {
3100         .get_settings      = get_settings,
3101         .set_settings      = set_settings,
3102         .get_drvinfo       = get_drvinfo,
3103         .get_msglevel      = get_msglevel,
3104         .set_msglevel      = set_msglevel,
3105         .get_ringparam     = get_sge_param,
3106         .set_ringparam     = set_sge_param,
3107         .get_coalesce      = get_coalesce,
3108         .set_coalesce      = set_coalesce,
3109         .get_eeprom_len    = get_eeprom_len,
3110         .get_eeprom        = get_eeprom,
3111         .set_eeprom        = set_eeprom,
3112         .get_pauseparam    = get_pauseparam,
3113         .set_pauseparam    = set_pauseparam,
3114         .get_link          = ethtool_op_get_link,
3115         .get_strings       = get_strings,
3116         .set_phys_id       = identify_port,
3117         .nway_reset        = restart_autoneg,
3118         .get_sset_count    = get_sset_count,
3119         .get_ethtool_stats = get_stats,
3120         .get_regs_len      = get_regs_len,
3121         .get_regs          = get_regs,
3122         .get_wol           = get_wol,
3123         .set_wol           = set_wol,
3124         .get_rxnfc         = get_rxnfc,
3125         .get_rxfh_indir_size = get_rss_table_size,
3126         .get_rxfh          = get_rss_table,
3127         .set_rxfh          = set_rss_table,
3128         .flash_device      = set_flash,
3129 };
3130
3131 static int setup_debugfs(struct adapter *adap)
3132 {
3133         if (IS_ERR_OR_NULL(adap->debugfs_root))
3134                 return -1;
3135
3136 #ifdef CONFIG_DEBUG_FS
3137         t4_setup_debugfs(adap);
3138 #endif
3139         return 0;
3140 }
3141
3142 /*
3143  * upper-layer driver support
3144  */
3145
3146 /*
3147  * Allocate an active-open TID and set it to the supplied value.
3148  */
3149 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3150 {
3151         int atid = -1;
3152
3153         spin_lock_bh(&t->atid_lock);
3154         if (t->afree) {
3155                 union aopen_entry *p = t->afree;
3156
3157                 atid = (p - t->atid_tab) + t->atid_base;
3158                 t->afree = p->next;
3159                 p->data = data;
3160                 t->atids_in_use++;
3161         }
3162         spin_unlock_bh(&t->atid_lock);
3163         return atid;
3164 }
3165 EXPORT_SYMBOL(cxgb4_alloc_atid);
3166
3167 /*
3168  * Release an active-open TID.
3169  */
3170 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3171 {
3172         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3173
3174         spin_lock_bh(&t->atid_lock);
3175         p->next = t->afree;
3176         t->afree = p;
3177         t->atids_in_use--;
3178         spin_unlock_bh(&t->atid_lock);
3179 }
3180 EXPORT_SYMBOL(cxgb4_free_atid);
3181
3182 /*
3183  * Allocate a server TID and set it to the supplied value.
3184  */
3185 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3186 {
3187         int stid;
3188
3189         spin_lock_bh(&t->stid_lock);
3190         if (family == PF_INET) {
3191                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3192                 if (stid < t->nstids)
3193                         __set_bit(stid, t->stid_bmap);
3194                 else
3195                         stid = -1;
3196         } else {
3197                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3198                 if (stid < 0)
3199                         stid = -1;
3200         }
3201         if (stid >= 0) {
3202                 t->stid_tab[stid].data = data;
3203                 stid += t->stid_base;
3204                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3205                  * This is equivalent to 4 TIDs. With CLIP enabled it
3206                  * needs 2 TIDs.
3207                  */
3208                 if (family == PF_INET)
3209                         t->stids_in_use++;
3210                 else
3211                         t->stids_in_use += 4;
3212         }
3213         spin_unlock_bh(&t->stid_lock);
3214         return stid;
3215 }
3216 EXPORT_SYMBOL(cxgb4_alloc_stid);
3217
3218 /* Allocate a server filter TID and set it to the supplied value.
3219  */
3220 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3221 {
3222         int stid;
3223
3224         spin_lock_bh(&t->stid_lock);
3225         if (family == PF_INET) {
3226                 stid = find_next_zero_bit(t->stid_bmap,
3227                                 t->nstids + t->nsftids, t->nstids);
3228                 if (stid < (t->nstids + t->nsftids))
3229                         __set_bit(stid, t->stid_bmap);
3230                 else
3231                         stid = -1;
3232         } else {
3233                 stid = -1;
3234         }
3235         if (stid >= 0) {
3236                 t->stid_tab[stid].data = data;
3237                 stid -= t->nstids;
3238                 stid += t->sftid_base;
3239                 t->stids_in_use++;
3240         }
3241         spin_unlock_bh(&t->stid_lock);
3242         return stid;
3243 }
3244 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3245
3246 /* Release a server TID.
3247  */
3248 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3249 {
3250         /* Is it a server filter TID? */
3251         if (t->nsftids && (stid >= t->sftid_base)) {
3252                 stid -= t->sftid_base;
3253                 stid += t->nstids;
3254         } else {
3255                 stid -= t->stid_base;
3256         }
3257
3258         spin_lock_bh(&t->stid_lock);
3259         if (family == PF_INET)
3260                 __clear_bit(stid, t->stid_bmap);
3261         else
3262                 bitmap_release_region(t->stid_bmap, stid, 2);
3263         t->stid_tab[stid].data = NULL;
3264         if (family == PF_INET)
3265                 t->stids_in_use--;
3266         else
3267                 t->stids_in_use -= 4;
3268         spin_unlock_bh(&t->stid_lock);
3269 }
3270 EXPORT_SYMBOL(cxgb4_free_stid);
3271
3272 /*
3273  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3274  */
3275 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3276                            unsigned int tid)
3277 {
3278         struct cpl_tid_release *req;
3279
3280         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3281         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3282         INIT_TP_WR(req, tid);
3283         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3284 }
3285
3286 /*
3287  * Queue a TID release request and if necessary schedule a work queue to
3288  * process it.
3289  */
3290 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3291                                     unsigned int tid)
3292 {
3293         void **p = &t->tid_tab[tid];
3294         struct adapter *adap = container_of(t, struct adapter, tids);
3295
3296         spin_lock_bh(&adap->tid_release_lock);
3297         *p = adap->tid_release_head;
3298         /* Low 2 bits encode the Tx channel number */
3299         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3300         if (!adap->tid_release_task_busy) {
3301                 adap->tid_release_task_busy = true;
3302                 queue_work(adap->workq, &adap->tid_release_task);
3303         }
3304         spin_unlock_bh(&adap->tid_release_lock);
3305 }
3306
3307 /*
3308  * Process the list of pending TID release requests.
3309  */
3310 static void process_tid_release_list(struct work_struct *work)
3311 {
3312         struct sk_buff *skb;
3313         struct adapter *adap;
3314
3315         adap = container_of(work, struct adapter, tid_release_task);
3316
3317         spin_lock_bh(&adap->tid_release_lock);
3318         while (adap->tid_release_head) {
3319                 void **p = adap->tid_release_head;
3320                 unsigned int chan = (uintptr_t)p & 3;
3321                 p = (void *)p - chan;
3322
3323                 adap->tid_release_head = *p;
3324                 *p = NULL;
3325                 spin_unlock_bh(&adap->tid_release_lock);
3326
3327                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3328                                          GFP_KERNEL)))
3329                         schedule_timeout_uninterruptible(1);
3330
3331                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3332                 t4_ofld_send(adap, skb);
3333                 spin_lock_bh(&adap->tid_release_lock);
3334         }
3335         adap->tid_release_task_busy = false;
3336         spin_unlock_bh(&adap->tid_release_lock);
3337 }
3338
3339 /*
3340  * Release a TID and inform HW.  If we are unable to allocate the release
3341  * message we defer to a work queue.
3342  */
3343 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3344 {
3345         void *old;
3346         struct sk_buff *skb;
3347         struct adapter *adap = container_of(t, struct adapter, tids);
3348
3349         old = t->tid_tab[tid];
3350         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3351         if (likely(skb)) {
3352                 t->tid_tab[tid] = NULL;
3353                 mk_tid_release(skb, chan, tid);
3354                 t4_ofld_send(adap, skb);
3355         } else
3356                 cxgb4_queue_tid_release(t, chan, tid);
3357         if (old)
3358                 atomic_dec(&t->tids_in_use);
3359 }
3360 EXPORT_SYMBOL(cxgb4_remove_tid);
3361
3362 /*
3363  * Allocate and initialize the TID tables.  Returns 0 on success.
3364  */
3365 static int tid_init(struct tid_info *t)
3366 {
3367         size_t size;
3368         unsigned int stid_bmap_size;
3369         unsigned int natids = t->natids;
3370         struct adapter *adap = container_of(t, struct adapter, tids);
3371
3372         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3373         size = t->ntids * sizeof(*t->tid_tab) +
3374                natids * sizeof(*t->atid_tab) +
3375                t->nstids * sizeof(*t->stid_tab) +
3376                t->nsftids * sizeof(*t->stid_tab) +
3377                stid_bmap_size * sizeof(long) +
3378                t->nftids * sizeof(*t->ftid_tab) +
3379                t->nsftids * sizeof(*t->ftid_tab);
3380
3381         t->tid_tab = t4_alloc_mem(size);
3382         if (!t->tid_tab)
3383                 return -ENOMEM;
3384
3385         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3386         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3387         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3388         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3389         spin_lock_init(&t->stid_lock);
3390         spin_lock_init(&t->atid_lock);
3391
3392         t->stids_in_use = 0;
3393         t->afree = NULL;
3394         t->atids_in_use = 0;
3395         atomic_set(&t->tids_in_use, 0);
3396
3397         /* Setup the free list for atid_tab and clear the stid bitmap. */
3398         if (natids) {
3399                 while (--natids)
3400                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3401                 t->afree = t->atid_tab;
3402         }
3403         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3404         /* Reserve stid 0 for T4/T5 adapters */
3405         if (!t->stid_base &&
3406             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3407                 __set_bit(0, t->stid_bmap);
3408
3409         return 0;
3410 }
3411
3412 int cxgb4_clip_get(const struct net_device *dev,
3413                    const struct in6_addr *lip)
3414 {
3415         struct adapter *adap;
3416         struct fw_clip_cmd c;
3417
3418         adap = netdev2adap(dev);
3419         memset(&c, 0, sizeof(c));
3420         c.op_to_write = htonl(FW_CMD_OP_V(FW_CLIP_CMD) |
3421                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3422         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3423         c.ip_hi = *(__be64 *)(lip->s6_addr);
3424         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3425         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3426 }
3427 EXPORT_SYMBOL(cxgb4_clip_get);
3428
3429 int cxgb4_clip_release(const struct net_device *dev,
3430                        const struct in6_addr *lip)
3431 {
3432         struct adapter *adap;
3433         struct fw_clip_cmd c;
3434
3435         adap = netdev2adap(dev);
3436         memset(&c, 0, sizeof(c));
3437         c.op_to_write = htonl(FW_CMD_OP_V(FW_CLIP_CMD) |
3438                         FW_CMD_REQUEST_F | FW_CMD_READ_F);
3439         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3440         c.ip_hi = *(__be64 *)(lip->s6_addr);
3441         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3442         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3443 }
3444 EXPORT_SYMBOL(cxgb4_clip_release);
3445
3446 /**
3447  *      cxgb4_create_server - create an IP server
3448  *      @dev: the device
3449  *      @stid: the server TID
3450  *      @sip: local IP address to bind server to
3451  *      @sport: the server's TCP port
3452  *      @queue: queue to direct messages from this server to
3453  *
3454  *      Create an IP server for the given port and address.
3455  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3456  */
3457 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3458                         __be32 sip, __be16 sport, __be16 vlan,
3459                         unsigned int queue)
3460 {
3461         unsigned int chan;
3462         struct sk_buff *skb;
3463         struct adapter *adap;
3464         struct cpl_pass_open_req *req;
3465         int ret;
3466
3467         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3468         if (!skb)
3469                 return -ENOMEM;
3470
3471         adap = netdev2adap(dev);
3472         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3473         INIT_TP_WR(req, 0);
3474         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3475         req->local_port = sport;
3476         req->peer_port = htons(0);
3477         req->local_ip = sip;
3478         req->peer_ip = htonl(0);
3479         chan = rxq_to_chan(&adap->sge, queue);
3480         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3481         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3482                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3483         ret = t4_mgmt_tx(adap, skb);
3484         return net_xmit_eval(ret);
3485 }
3486 EXPORT_SYMBOL(cxgb4_create_server);
3487
3488 /*      cxgb4_create_server6 - create an IPv6 server
3489  *      @dev: the device
3490  *      @stid: the server TID
3491  *      @sip: local IPv6 address to bind server to
3492  *      @sport: the server's TCP port
3493  *      @queue: queue to direct messages from this server to
3494  *
3495  *      Create an IPv6 server for the given port and address.
3496  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3497  */
3498 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3499                          const struct in6_addr *sip, __be16 sport,
3500                          unsigned int queue)
3501 {
3502         unsigned int chan;
3503         struct sk_buff *skb;
3504         struct adapter *adap;
3505         struct cpl_pass_open_req6 *req;
3506         int ret;
3507
3508         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3509         if (!skb)
3510                 return -ENOMEM;
3511
3512         adap = netdev2adap(dev);
3513         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3514         INIT_TP_WR(req, 0);
3515         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3516         req->local_port = sport;
3517         req->peer_port = htons(0);
3518         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3519         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3520         req->peer_ip_hi = cpu_to_be64(0);
3521         req->peer_ip_lo = cpu_to_be64(0);
3522         chan = rxq_to_chan(&adap->sge, queue);
3523         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3524         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3525                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3526         ret = t4_mgmt_tx(adap, skb);
3527         return net_xmit_eval(ret);
3528 }
3529 EXPORT_SYMBOL(cxgb4_create_server6);
3530
3531 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3532                         unsigned int queue, bool ipv6)
3533 {
3534         struct sk_buff *skb;
3535         struct adapter *adap;
3536         struct cpl_close_listsvr_req *req;
3537         int ret;
3538
3539         adap = netdev2adap(dev);
3540
3541         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3542         if (!skb)
3543                 return -ENOMEM;
3544
3545         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3546         INIT_TP_WR(req, 0);
3547         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3548         req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3549                                 LISTSVR_IPV6(0)) | QUEUENO(queue));
3550         ret = t4_mgmt_tx(adap, skb);
3551         return net_xmit_eval(ret);
3552 }
3553 EXPORT_SYMBOL(cxgb4_remove_server);
3554
3555 /**
3556  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3557  *      @mtus: the HW MTU table
3558  *      @mtu: the target MTU
3559  *      @idx: index of selected entry in the MTU table
3560  *
3561  *      Returns the index and the value in the HW MTU table that is closest to
3562  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3563  *      table, in which case that smallest available value is selected.
3564  */
3565 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3566                             unsigned int *idx)
3567 {
3568         unsigned int i = 0;
3569
3570         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3571                 ++i;
3572         if (idx)
3573                 *idx = i;
3574         return mtus[i];
3575 }
3576 EXPORT_SYMBOL(cxgb4_best_mtu);
3577
3578 /**
3579  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3580  *     @mtus: the HW MTU table
3581  *     @header_size: Header Size
3582  *     @data_size_max: maximum Data Segment Size
3583  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3584  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3585  *
3586  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3587  *     MTU Table based solely on a Maximum MTU parameter, we break that
3588  *     parameter up into a Header Size and Maximum Data Segment Size, and
3589  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3590  *     the Hardware MTU Table which will result in a Data Segment Size with
3591  *     the requested alignment _and_ that MTU isn't "too far" from the
3592  *     closest MTU, then we'll return that rather than the closest MTU.
3593  */
3594 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3595                                     unsigned short header_size,
3596                                     unsigned short data_size_max,
3597                                     unsigned short data_size_align,
3598                                     unsigned int *mtu_idxp)
3599 {
3600         unsigned short max_mtu = header_size + data_size_max;
3601         unsigned short data_size_align_mask = data_size_align - 1;
3602         int mtu_idx, aligned_mtu_idx;
3603
3604         /* Scan the MTU Table till we find an MTU which is larger than our
3605          * Maximum MTU or we reach the end of the table.  Along the way,
3606          * record the last MTU found, if any, which will result in a Data
3607          * Segment Length matching the requested alignment.
3608          */
3609         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3610                 unsigned short data_size = mtus[mtu_idx] - header_size;
3611
3612                 /* If this MTU minus the Header Size would result in a
3613                  * Data Segment Size of the desired alignment, remember it.
3614                  */
3615                 if ((data_size & data_size_align_mask) == 0)
3616                         aligned_mtu_idx = mtu_idx;
3617
3618                 /* If we're not at the end of the Hardware MTU Table and the
3619                  * next element is larger than our Maximum MTU, drop out of
3620                  * the loop.
3621                  */
3622                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3623                         break;
3624         }
3625
3626         /* If we fell out of the loop because we ran to the end of the table,
3627          * then we just have to use the last [largest] entry.
3628          */
3629         if (mtu_idx == NMTUS)
3630                 mtu_idx--;
3631
3632         /* If we found an MTU which resulted in the requested Data Segment
3633          * Length alignment and that's "not far" from the largest MTU which is
3634          * less than or equal to the maximum MTU, then use that.
3635          */
3636         if (aligned_mtu_idx >= 0 &&
3637             mtu_idx - aligned_mtu_idx <= 1)
3638                 mtu_idx = aligned_mtu_idx;
3639
3640         /* If the caller has passed in an MTU Index pointer, pass the
3641          * MTU Index back.  Return the MTU value.
3642          */
3643         if (mtu_idxp)
3644                 *mtu_idxp = mtu_idx;
3645         return mtus[mtu_idx];
3646 }
3647 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3648
3649 /**
3650  *      cxgb4_port_chan - get the HW channel of a port
3651  *      @dev: the net device for the port
3652  *
3653  *      Return the HW Tx channel of the given port.
3654  */
3655 unsigned int cxgb4_port_chan(const struct net_device *dev)
3656 {
3657         return netdev2pinfo(dev)->tx_chan;
3658 }
3659 EXPORT_SYMBOL(cxgb4_port_chan);
3660
3661 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3662 {
3663         struct adapter *adap = netdev2adap(dev);
3664         u32 v1, v2, lp_count, hp_count;
3665
3666         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3667         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3668         if (is_t4(adap->params.chip)) {
3669                 lp_count = G_LP_COUNT(v1);
3670                 hp_count = G_HP_COUNT(v1);
3671         } else {
3672                 lp_count = G_LP_COUNT_T5(v1);
3673                 hp_count = G_HP_COUNT_T5(v2);
3674         }
3675         return lpfifo ? lp_count : hp_count;
3676 }
3677 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3678
3679 /**
3680  *      cxgb4_port_viid - get the VI id of a port
3681  *      @dev: the net device for the port
3682  *
3683  *      Return the VI id of the given port.
3684  */
3685 unsigned int cxgb4_port_viid(const struct net_device *dev)
3686 {
3687         return netdev2pinfo(dev)->viid;
3688 }
3689 EXPORT_SYMBOL(cxgb4_port_viid);
3690
3691 /**
3692  *      cxgb4_port_idx - get the index of a port
3693  *      @dev: the net device for the port
3694  *
3695  *      Return the index of the given port.
3696  */
3697 unsigned int cxgb4_port_idx(const struct net_device *dev)
3698 {
3699         return netdev2pinfo(dev)->port_id;
3700 }
3701 EXPORT_SYMBOL(cxgb4_port_idx);
3702
3703 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3704                          struct tp_tcp_stats *v6)
3705 {
3706         struct adapter *adap = pci_get_drvdata(pdev);
3707
3708         spin_lock(&adap->stats_lock);
3709         t4_tp_get_tcp_stats(adap, v4, v6);
3710         spin_unlock(&adap->stats_lock);
3711 }
3712 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3713
3714 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3715                       const unsigned int *pgsz_order)
3716 {
3717         struct adapter *adap = netdev2adap(dev);
3718
3719         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3720         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3721                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3722                      HPZ3(pgsz_order[3]));
3723 }
3724 EXPORT_SYMBOL(cxgb4_iscsi_init);
3725
3726 int cxgb4_flush_eq_cache(struct net_device *dev)
3727 {
3728         struct adapter *adap = netdev2adap(dev);
3729         int ret;
3730
3731         ret = t4_fwaddrspace_write(adap, adap->mbox,
3732                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3733         return ret;
3734 }
3735 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3736
3737 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3738 {
3739         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3740         __be64 indices;
3741         int ret;
3742
3743         spin_lock(&adap->win0_lock);
3744         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3745                            sizeof(indices), (__be32 *)&indices,
3746                            T4_MEMORY_READ);
3747         spin_unlock(&adap->win0_lock);
3748         if (!ret) {
3749                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3750                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3751         }
3752         return ret;
3753 }
3754
3755 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3756                         u16 size)
3757 {
3758         struct adapter *adap = netdev2adap(dev);
3759         u16 hw_pidx, hw_cidx;
3760         int ret;
3761
3762         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3763         if (ret)
3764                 goto out;
3765
3766         if (pidx != hw_pidx) {
3767                 u16 delta;
3768
3769                 if (pidx >= hw_pidx)
3770                         delta = pidx - hw_pidx;
3771                 else
3772                         delta = size - hw_pidx + pidx;
3773                 wmb();
3774                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3775                              QID(qid) | PIDX(delta));
3776         }
3777 out:
3778         return ret;
3779 }
3780 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3781
3782 void cxgb4_disable_db_coalescing(struct net_device *dev)
3783 {
3784         struct adapter *adap;
3785
3786         adap = netdev2adap(dev);
3787         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3788                          F_NOCOALESCE);
3789 }
3790 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3791
3792 void cxgb4_enable_db_coalescing(struct net_device *dev)
3793 {
3794         struct adapter *adap;
3795
3796         adap = netdev2adap(dev);
3797         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3798 }
3799 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3800
3801 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3802 {
3803         struct adapter *adap;
3804         u32 offset, memtype, memaddr;
3805         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
3806         u32 edc0_end, edc1_end, mc0_end, mc1_end;
3807         int ret;
3808
3809         adap = netdev2adap(dev);
3810
3811         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3812
3813         /* Figure out where the offset lands in the Memory Type/Address scheme.
3814          * This code assumes that the memory is laid out starting at offset 0
3815          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3816          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
3817          * MC0, and some have both MC0 and MC1.
3818          */
3819         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3820         edc0_size = EDRAM0_SIZE_G(size) << 20;
3821         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3822         edc1_size = EDRAM1_SIZE_G(size) << 20;
3823         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3824         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
3825
3826         edc0_end = edc0_size;
3827         edc1_end = edc0_end + edc1_size;
3828         mc0_end = edc1_end + mc0_size;
3829
3830         if (offset < edc0_end) {
3831                 memtype = MEM_EDC0;
3832                 memaddr = offset;
3833         } else if (offset < edc1_end) {
3834                 memtype = MEM_EDC1;
3835                 memaddr = offset - edc0_end;
3836         } else {
3837                 if (offset < mc0_end) {
3838                         memtype = MEM_MC0;
3839                         memaddr = offset - edc1_end;
3840                 } else if (is_t4(adap->params.chip)) {
3841                         /* T4 only has a single memory channel */
3842                         goto err;
3843                 } else {
3844                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3845                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
3846                         mc1_end = mc0_end + mc1_size;
3847                         if (offset < mc1_end) {
3848                                 memtype = MEM_MC1;
3849                                 memaddr = offset - mc0_end;
3850                         } else {
3851                                 /* offset beyond the end of any memory */
3852                                 goto err;
3853                         }
3854                 }
3855         }
3856
3857         spin_lock(&adap->win0_lock);
3858         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3859         spin_unlock(&adap->win0_lock);
3860         return ret;
3861
3862 err:
3863         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3864                 stag, offset);
3865         return -EINVAL;
3866 }
3867 EXPORT_SYMBOL(cxgb4_read_tpte);
3868
3869 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3870 {
3871         u32 hi, lo;
3872         struct adapter *adap;
3873
3874         adap = netdev2adap(dev);
3875         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3876         hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3877
3878         return ((u64)hi << 32) | (u64)lo;
3879 }
3880 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3881
3882 static struct pci_driver cxgb4_driver;
3883
3884 static void check_neigh_update(struct neighbour *neigh)
3885 {
3886         const struct device *parent;
3887         const struct net_device *netdev = neigh->dev;
3888
3889         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3890                 netdev = vlan_dev_real_dev(netdev);
3891         parent = netdev->dev.parent;
3892         if (parent && parent->driver == &cxgb4_driver.driver)
3893                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3894 }
3895
3896 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3897                        void *data)
3898 {
3899         switch (event) {
3900         case NETEVENT_NEIGH_UPDATE:
3901                 check_neigh_update(data);
3902                 break;
3903         case NETEVENT_REDIRECT:
3904         default:
3905                 break;
3906         }
3907         return 0;
3908 }
3909
3910 static bool netevent_registered;
3911 static struct notifier_block cxgb4_netevent_nb = {
3912         .notifier_call = netevent_cb
3913 };
3914
3915 static void drain_db_fifo(struct adapter *adap, int usecs)
3916 {
3917         u32 v1, v2, lp_count, hp_count;
3918
3919         do {
3920                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3921                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3922                 if (is_t4(adap->params.chip)) {
3923                         lp_count = G_LP_COUNT(v1);
3924                         hp_count = G_HP_COUNT(v1);
3925                 } else {
3926                         lp_count = G_LP_COUNT_T5(v1);
3927                         hp_count = G_HP_COUNT_T5(v2);
3928                 }
3929
3930                 if (lp_count == 0 && hp_count == 0)
3931                         break;
3932                 set_current_state(TASK_UNINTERRUPTIBLE);
3933                 schedule_timeout(usecs_to_jiffies(usecs));
3934         } while (1);
3935 }
3936
3937 static void disable_txq_db(struct sge_txq *q)
3938 {
3939         unsigned long flags;
3940
3941         spin_lock_irqsave(&q->db_lock, flags);
3942         q->db_disabled = 1;
3943         spin_unlock_irqrestore(&q->db_lock, flags);
3944 }
3945
3946 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3947 {
3948         spin_lock_irq(&q->db_lock);
3949         if (q->db_pidx_inc) {
3950                 /* Make sure that all writes to the TX descriptors
3951                  * are committed before we tell HW about them.
3952                  */
3953                 wmb();
3954                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3955                              QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3956                 q->db_pidx_inc = 0;
3957         }
3958         q->db_disabled = 0;
3959         spin_unlock_irq(&q->db_lock);
3960 }
3961
3962 static void disable_dbs(struct adapter *adap)
3963 {
3964         int i;
3965
3966         for_each_ethrxq(&adap->sge, i)
3967                 disable_txq_db(&adap->sge.ethtxq[i].q);
3968         for_each_ofldrxq(&adap->sge, i)
3969                 disable_txq_db(&adap->sge.ofldtxq[i].q);
3970         for_each_port(adap, i)
3971                 disable_txq_db(&adap->sge.ctrlq[i].q);
3972 }
3973
3974 static void enable_dbs(struct adapter *adap)
3975 {
3976         int i;
3977
3978         for_each_ethrxq(&adap->sge, i)
3979                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3980         for_each_ofldrxq(&adap->sge, i)
3981                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3982         for_each_port(adap, i)
3983                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
3984 }
3985
3986 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3987 {
3988         if (adap->uld_handle[CXGB4_ULD_RDMA])
3989                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3990                                 cmd);
3991 }
3992
3993 static void process_db_full(struct work_struct *work)
3994 {
3995         struct adapter *adap;
3996
3997         adap = container_of(work, struct adapter, db_full_task);
3998
3999         drain_db_fifo(adap, dbfifo_drain_delay);
4000         enable_dbs(adap);
4001         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4002         t4_set_reg_field(adap, SGE_INT_ENABLE3,
4003                          DBFIFO_HP_INT | DBFIFO_LP_INT,
4004                          DBFIFO_HP_INT | DBFIFO_LP_INT);
4005 }
4006
4007 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4008 {
4009         u16 hw_pidx, hw_cidx;
4010         int ret;
4011
4012         spin_lock_irq(&q->db_lock);
4013         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4014         if (ret)
4015                 goto out;
4016         if (q->db_pidx != hw_pidx) {
4017                 u16 delta;
4018
4019                 if (q->db_pidx >= hw_pidx)
4020                         delta = q->db_pidx - hw_pidx;
4021                 else
4022                         delta = q->size - hw_pidx + q->db_pidx;
4023                 wmb();
4024                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4025                              QID(q->cntxt_id) | PIDX(delta));
4026         }
4027 out:
4028         q->db_disabled = 0;
4029         q->db_pidx_inc = 0;
4030         spin_unlock_irq(&q->db_lock);
4031         if (ret)
4032                 CH_WARN(adap, "DB drop recovery failed.\n");
4033 }
4034 static void recover_all_queues(struct adapter *adap)
4035 {
4036         int i;
4037
4038         for_each_ethrxq(&adap->sge, i)
4039                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4040         for_each_ofldrxq(&adap->sge, i)
4041                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4042         for_each_port(adap, i)
4043                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4044 }
4045
4046 static void process_db_drop(struct work_struct *work)
4047 {
4048         struct adapter *adap;
4049
4050         adap = container_of(work, struct adapter, db_drop_task);
4051
4052         if (is_t4(adap->params.chip)) {
4053                 drain_db_fifo(adap, dbfifo_drain_delay);
4054                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4055                 drain_db_fifo(adap, dbfifo_drain_delay);
4056                 recover_all_queues(adap);
4057                 drain_db_fifo(adap, dbfifo_drain_delay);
4058                 enable_dbs(adap);
4059                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4060         } else {
4061                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4062                 u16 qid = (dropped_db >> 15) & 0x1ffff;
4063                 u16 pidx_inc = dropped_db & 0x1fff;
4064                 unsigned int s_qpp;
4065                 unsigned short udb_density;
4066                 unsigned long qpshift;
4067                 int page;
4068                 u32 udb;
4069
4070                 dev_warn(adap->pdev_dev,
4071                          "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4072                          dropped_db, qid,
4073                          (dropped_db >> 14) & 1,
4074                          (dropped_db >> 13) & 1,
4075                          pidx_inc);
4076
4077                 drain_db_fifo(adap, 1);
4078
4079                 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4080                 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4081                                 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4082                 qpshift = PAGE_SHIFT - ilog2(udb_density);
4083                 udb = qid << qpshift;
4084                 udb &= PAGE_MASK;
4085                 page = udb / PAGE_SIZE;
4086                 udb += (qid - (page * udb_density)) * 128;
4087
4088                 writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
4089
4090                 /* Re-enable BAR2 WC */
4091                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4092         }
4093
4094         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4095 }
4096
4097 void t4_db_full(struct adapter *adap)
4098 {
4099         if (is_t4(adap->params.chip)) {
4100                 disable_dbs(adap);
4101                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4102                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4103                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4104                 queue_work(adap->workq, &adap->db_full_task);
4105         }
4106 }
4107
4108 void t4_db_dropped(struct adapter *adap)
4109 {
4110         if (is_t4(adap->params.chip)) {
4111                 disable_dbs(adap);
4112                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4113         }
4114         queue_work(adap->workq, &adap->db_drop_task);
4115 }
4116
4117 static void uld_attach(struct adapter *adap, unsigned int uld)
4118 {
4119         void *handle;
4120         struct cxgb4_lld_info lli;
4121         unsigned short i;
4122
4123         lli.pdev = adap->pdev;
4124         lli.pf = adap->fn;
4125         lli.l2t = adap->l2t;
4126         lli.tids = &adap->tids;
4127         lli.ports = adap->port;
4128         lli.vr = &adap->vres;
4129         lli.mtus = adap->params.mtus;
4130         if (uld == CXGB4_ULD_RDMA) {
4131                 lli.rxq_ids = adap->sge.rdma_rxq;
4132                 lli.ciq_ids = adap->sge.rdma_ciq;
4133                 lli.nrxq = adap->sge.rdmaqs;
4134                 lli.nciq = adap->sge.rdmaciqs;
4135         } else if (uld == CXGB4_ULD_ISCSI) {
4136                 lli.rxq_ids = adap->sge.ofld_rxq;
4137                 lli.nrxq = adap->sge.ofldqsets;
4138         }
4139         lli.ntxq = adap->sge.ofldqsets;
4140         lli.nchan = adap->params.nports;
4141         lli.nports = adap->params.nports;
4142         lli.wr_cred = adap->params.ofldq_wr_cred;
4143         lli.adapter_type = adap->params.chip;
4144         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4145         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4146         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4147                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4148                         (adap->fn * 4));
4149         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4150                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4151                         (adap->fn * 4));
4152         lli.filt_mode = adap->params.tp.vlan_pri_map;
4153         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4154         for (i = 0; i < NCHAN; i++)
4155                 lli.tx_modq[i] = i;
4156         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4157         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4158         lli.fw_vers = adap->params.fw_vers;
4159         lli.dbfifo_int_thresh = dbfifo_int_thresh;
4160         lli.sge_ingpadboundary = adap->sge.fl_align;
4161         lli.sge_egrstatuspagesize = adap->sge.stat_len;
4162         lli.sge_pktshift = adap->sge.pktshift;
4163         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4164         lli.max_ordird_qp = adap->params.max_ordird_qp;
4165         lli.max_ird_adapter = adap->params.max_ird_adapter;
4166         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4167
4168         handle = ulds[uld].add(&lli);
4169         if (IS_ERR(handle)) {
4170                 dev_warn(adap->pdev_dev,
4171                          "could not attach to the %s driver, error %ld\n",
4172                          uld_str[uld], PTR_ERR(handle));
4173                 return;
4174         }
4175
4176         adap->uld_handle[uld] = handle;
4177
4178         if (!netevent_registered) {
4179                 register_netevent_notifier(&cxgb4_netevent_nb);
4180                 netevent_registered = true;
4181         }
4182
4183         if (adap->flags & FULL_INIT_DONE)
4184                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4185 }
4186
4187 static void attach_ulds(struct adapter *adap)
4188 {
4189         unsigned int i;
4190
4191         spin_lock(&adap_rcu_lock);
4192         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4193         spin_unlock(&adap_rcu_lock);
4194
4195         mutex_lock(&uld_mutex);
4196         list_add_tail(&adap->list_node, &adapter_list);
4197         for (i = 0; i < CXGB4_ULD_MAX; i++)
4198                 if (ulds[i].add)
4199                         uld_attach(adap, i);
4200         mutex_unlock(&uld_mutex);
4201 }
4202
4203 static void detach_ulds(struct adapter *adap)
4204 {
4205         unsigned int i;
4206
4207         mutex_lock(&uld_mutex);
4208         list_del(&adap->list_node);
4209         for (i = 0; i < CXGB4_ULD_MAX; i++)
4210                 if (adap->uld_handle[i]) {
4211                         ulds[i].state_change(adap->uld_handle[i],
4212                                              CXGB4_STATE_DETACH);
4213                         adap->uld_handle[i] = NULL;
4214                 }
4215         if (netevent_registered && list_empty(&adapter_list)) {
4216                 unregister_netevent_notifier(&cxgb4_netevent_nb);
4217                 netevent_registered = false;
4218         }
4219         mutex_unlock(&uld_mutex);
4220
4221         spin_lock(&adap_rcu_lock);
4222         list_del_rcu(&adap->rcu_node);
4223         spin_unlock(&adap_rcu_lock);
4224 }
4225
4226 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4227 {
4228         unsigned int i;
4229
4230         mutex_lock(&uld_mutex);
4231         for (i = 0; i < CXGB4_ULD_MAX; i++)
4232                 if (adap->uld_handle[i])
4233                         ulds[i].state_change(adap->uld_handle[i], new_state);
4234         mutex_unlock(&uld_mutex);
4235 }
4236
4237 /**
4238  *      cxgb4_register_uld - register an upper-layer driver
4239  *      @type: the ULD type
4240  *      @p: the ULD methods
4241  *
4242  *      Registers an upper-layer driver with this driver and notifies the ULD
4243  *      about any presently available devices that support its type.  Returns
4244  *      %-EBUSY if a ULD of the same type is already registered.
4245  */
4246 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4247 {
4248         int ret = 0;
4249         struct adapter *adap;
4250
4251         if (type >= CXGB4_ULD_MAX)
4252                 return -EINVAL;
4253         mutex_lock(&uld_mutex);
4254         if (ulds[type].add) {
4255                 ret = -EBUSY;
4256                 goto out;
4257         }
4258         ulds[type] = *p;
4259         list_for_each_entry(adap, &adapter_list, list_node)
4260                 uld_attach(adap, type);
4261 out:    mutex_unlock(&uld_mutex);
4262         return ret;
4263 }
4264 EXPORT_SYMBOL(cxgb4_register_uld);
4265
4266 /**
4267  *      cxgb4_unregister_uld - unregister an upper-layer driver
4268  *      @type: the ULD type
4269  *
4270  *      Unregisters an existing upper-layer driver.
4271  */
4272 int cxgb4_unregister_uld(enum cxgb4_uld type)
4273 {
4274         struct adapter *adap;
4275
4276         if (type >= CXGB4_ULD_MAX)
4277                 return -EINVAL;
4278         mutex_lock(&uld_mutex);
4279         list_for_each_entry(adap, &adapter_list, list_node)
4280                 adap->uld_handle[type] = NULL;
4281         ulds[type].add = NULL;
4282         mutex_unlock(&uld_mutex);
4283         return 0;
4284 }
4285 EXPORT_SYMBOL(cxgb4_unregister_uld);
4286
4287 /* Check if netdev on which event is occured belongs to us or not. Return
4288  * success (true) if it belongs otherwise failure (false).
4289  * Called with rcu_read_lock() held.
4290  */
4291 #if IS_ENABLED(CONFIG_IPV6)
4292 static bool cxgb4_netdev(const struct net_device *netdev)
4293 {
4294         struct adapter *adap;
4295         int i;
4296
4297         list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4298                 for (i = 0; i < MAX_NPORTS; i++)
4299                         if (adap->port[i] == netdev)
4300                                 return true;
4301         return false;
4302 }
4303
4304 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4305                     unsigned long event)
4306 {
4307         int ret = NOTIFY_DONE;
4308
4309         rcu_read_lock();
4310         if (cxgb4_netdev(event_dev)) {
4311                 switch (event) {
4312                 case NETDEV_UP:
4313                         ret = cxgb4_clip_get(event_dev,
4314                                 (const struct in6_addr *)ifa->addr.s6_addr);
4315                         if (ret < 0) {
4316                                 rcu_read_unlock();
4317                                 return ret;
4318                         }
4319                         ret = NOTIFY_OK;
4320                         break;
4321                 case NETDEV_DOWN:
4322                         cxgb4_clip_release(event_dev,
4323                                 (const struct in6_addr *)ifa->addr.s6_addr);
4324                         ret = NOTIFY_OK;
4325                         break;
4326                 default:
4327                         break;
4328                 }
4329         }
4330         rcu_read_unlock();
4331         return ret;
4332 }
4333
4334 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4335                 unsigned long event, void *data)
4336 {
4337         struct inet6_ifaddr *ifa = data;
4338         struct net_device *event_dev;
4339         int ret = NOTIFY_DONE;
4340         struct bonding *bond = netdev_priv(ifa->idev->dev);
4341         struct list_head *iter;
4342         struct slave *slave;
4343         struct pci_dev *first_pdev = NULL;
4344
4345         if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4346                 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4347                 ret = clip_add(event_dev, ifa, event);
4348         } else if (ifa->idev->dev->flags & IFF_MASTER) {
4349                 /* It is possible that two different adapters are bonded in one
4350                  * bond. We need to find such different adapters and add clip
4351                  * in all of them only once.
4352                  */
4353                 bond_for_each_slave(bond, slave, iter) {
4354                         if (!first_pdev) {
4355                                 ret = clip_add(slave->dev, ifa, event);
4356                                 /* If clip_add is success then only initialize
4357                                  * first_pdev since it means it is our device
4358                                  */
4359                                 if (ret == NOTIFY_OK)
4360                                         first_pdev = to_pci_dev(
4361                                                         slave->dev->dev.parent);
4362                         } else if (first_pdev !=
4363                                    to_pci_dev(slave->dev->dev.parent))
4364                                         ret = clip_add(slave->dev, ifa, event);
4365                 }
4366         } else
4367                 ret = clip_add(ifa->idev->dev, ifa, event);
4368
4369         return ret;
4370 }
4371
4372 static struct notifier_block cxgb4_inet6addr_notifier = {
4373         .notifier_call = cxgb4_inet6addr_handler
4374 };
4375
4376 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4377  * a physical device.
4378  * The physical device reference is needed to send the actul CLIP command.
4379  */
4380 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4381 {
4382         struct inet6_dev *idev = NULL;
4383         struct inet6_ifaddr *ifa;
4384         int ret = 0;
4385
4386         idev = __in6_dev_get(root_dev);
4387         if (!idev)
4388                 return ret;
4389
4390         read_lock_bh(&idev->lock);
4391         list_for_each_entry(ifa, &idev->addr_list, if_list) {
4392                 ret = cxgb4_clip_get(dev,
4393                                 (const struct in6_addr *)ifa->addr.s6_addr);
4394                 if (ret < 0)
4395                         break;
4396         }
4397         read_unlock_bh(&idev->lock);
4398
4399         return ret;
4400 }
4401
4402 static int update_root_dev_clip(struct net_device *dev)
4403 {
4404         struct net_device *root_dev = NULL;
4405         int i, ret = 0;
4406
4407         /* First populate the real net device's IPv6 addresses */
4408         ret = update_dev_clip(dev, dev);
4409         if (ret)
4410                 return ret;
4411
4412         /* Parse all bond and vlan devices layered on top of the physical dev */
4413         root_dev = netdev_master_upper_dev_get_rcu(dev);
4414         if (root_dev) {
4415                 ret = update_dev_clip(root_dev, dev);
4416                 if (ret)
4417                         return ret;
4418         }
4419
4420         for (i = 0; i < VLAN_N_VID; i++) {
4421                 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4422                 if (!root_dev)
4423                         continue;
4424
4425                 ret = update_dev_clip(root_dev, dev);
4426                 if (ret)
4427                         break;
4428         }
4429         return ret;
4430 }
4431
4432 static void update_clip(const struct adapter *adap)
4433 {
4434         int i;
4435         struct net_device *dev;
4436         int ret;
4437
4438         rcu_read_lock();
4439
4440         for (i = 0; i < MAX_NPORTS; i++) {
4441                 dev = adap->port[i];
4442                 ret = 0;
4443
4444                 if (dev)
4445                         ret = update_root_dev_clip(dev);
4446
4447                 if (ret < 0)
4448                         break;
4449         }
4450         rcu_read_unlock();
4451 }
4452 #endif /* IS_ENABLED(CONFIG_IPV6) */
4453
4454 /**
4455  *      cxgb_up - enable the adapter
4456  *      @adap: adapter being enabled
4457  *
4458  *      Called when the first port is enabled, this function performs the
4459  *      actions necessary to make an adapter operational, such as completing
4460  *      the initialization of HW modules, and enabling interrupts.
4461  *
4462  *      Must be called with the rtnl lock held.
4463  */
4464 static int cxgb_up(struct adapter *adap)
4465 {
4466         int err;
4467
4468         err = setup_sge_queues(adap);
4469         if (err)
4470                 goto out;
4471         err = setup_rss(adap);
4472         if (err)
4473                 goto freeq;
4474
4475         if (adap->flags & USING_MSIX) {
4476                 name_msix_vecs(adap);
4477                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4478                                   adap->msix_info[0].desc, adap);
4479                 if (err)
4480                         goto irq_err;
4481
4482                 err = request_msix_queue_irqs(adap);
4483                 if (err) {
4484                         free_irq(adap->msix_info[0].vec, adap);
4485                         goto irq_err;
4486                 }
4487         } else {
4488                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4489                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4490                                   adap->port[0]->name, adap);
4491                 if (err)
4492                         goto irq_err;
4493         }
4494         enable_rx(adap);
4495         t4_sge_start(adap);
4496         t4_intr_enable(adap);
4497         adap->flags |= FULL_INIT_DONE;
4498         notify_ulds(adap, CXGB4_STATE_UP);
4499 #if IS_ENABLED(CONFIG_IPV6)
4500         update_clip(adap);
4501 #endif
4502  out:
4503         return err;
4504  irq_err:
4505         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4506  freeq:
4507         t4_free_sge_resources(adap);
4508         goto out;
4509 }
4510
4511 static void cxgb_down(struct adapter *adapter)
4512 {
4513         t4_intr_disable(adapter);
4514         cancel_work_sync(&adapter->tid_release_task);
4515         cancel_work_sync(&adapter->db_full_task);
4516         cancel_work_sync(&adapter->db_drop_task);
4517         adapter->tid_release_task_busy = false;
4518         adapter->tid_release_head = NULL;
4519
4520         if (adapter->flags & USING_MSIX) {
4521                 free_msix_queue_irqs(adapter);
4522                 free_irq(adapter->msix_info[0].vec, adapter);
4523         } else
4524                 free_irq(adapter->pdev->irq, adapter);
4525         quiesce_rx(adapter);
4526         t4_sge_stop(adapter);
4527         t4_free_sge_resources(adapter);
4528         adapter->flags &= ~FULL_INIT_DONE;
4529 }
4530
4531 /*
4532  * net_device operations
4533  */
4534 static int cxgb_open(struct net_device *dev)
4535 {
4536         int err;
4537         struct port_info *pi = netdev_priv(dev);
4538         struct adapter *adapter = pi->adapter;
4539
4540         netif_carrier_off(dev);
4541
4542         if (!(adapter->flags & FULL_INIT_DONE)) {
4543                 err = cxgb_up(adapter);
4544                 if (err < 0)
4545                         return err;
4546         }
4547
4548         err = link_start(dev);
4549         if (!err)
4550                 netif_tx_start_all_queues(dev);
4551         return err;
4552 }
4553
4554 static int cxgb_close(struct net_device *dev)
4555 {
4556         struct port_info *pi = netdev_priv(dev);
4557         struct adapter *adapter = pi->adapter;
4558
4559         netif_tx_stop_all_queues(dev);
4560         netif_carrier_off(dev);
4561         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4562 }
4563
4564 /* Return an error number if the indicated filter isn't writable ...
4565  */
4566 static int writable_filter(struct filter_entry *f)
4567 {
4568         if (f->locked)
4569                 return -EPERM;
4570         if (f->pending)
4571                 return -EBUSY;
4572
4573         return 0;
4574 }
4575
4576 /* Delete the filter at the specified index (if valid).  The checks for all
4577  * the common problems with doing this like the filter being locked, currently
4578  * pending in another operation, etc.
4579  */
4580 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4581 {
4582         struct filter_entry *f;
4583         int ret;
4584
4585         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4586                 return -EINVAL;
4587
4588         f = &adapter->tids.ftid_tab[fidx];
4589         ret = writable_filter(f);
4590         if (ret)
4591                 return ret;
4592         if (f->valid)
4593                 return del_filter_wr(adapter, fidx);
4594
4595         return 0;
4596 }
4597
4598 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4599                 __be32 sip, __be16 sport, __be16 vlan,
4600                 unsigned int queue, unsigned char port, unsigned char mask)
4601 {
4602         int ret;
4603         struct filter_entry *f;
4604         struct adapter *adap;
4605         int i;
4606         u8 *val;
4607
4608         adap = netdev2adap(dev);
4609
4610         /* Adjust stid to correct filter index */
4611         stid -= adap->tids.sftid_base;
4612         stid += adap->tids.nftids;
4613
4614         /* Check to make sure the filter requested is writable ...
4615          */
4616         f = &adap->tids.ftid_tab[stid];
4617         ret = writable_filter(f);
4618         if (ret)
4619                 return ret;
4620
4621         /* Clear out any old resources being used by the filter before
4622          * we start constructing the new filter.
4623          */
4624         if (f->valid)
4625                 clear_filter(adap, f);
4626
4627         /* Clear out filter specifications */
4628         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4629         f->fs.val.lport = cpu_to_be16(sport);
4630         f->fs.mask.lport  = ~0;
4631         val = (u8 *)&sip;
4632         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4633                 for (i = 0; i < 4; i++) {
4634                         f->fs.val.lip[i] = val[i];
4635                         f->fs.mask.lip[i] = ~0;
4636                 }
4637                 if (adap->params.tp.vlan_pri_map & F_PORT) {
4638                         f->fs.val.iport = port;
4639                         f->fs.mask.iport = mask;
4640                 }
4641         }
4642
4643         if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4644                 f->fs.val.proto = IPPROTO_TCP;
4645                 f->fs.mask.proto = ~0;
4646         }
4647
4648         f->fs.dirsteer = 1;
4649         f->fs.iq = queue;
4650         /* Mark filter as locked */
4651         f->locked = 1;
4652         f->fs.rpttid = 1;
4653
4654         ret = set_filter_wr(adap, stid);
4655         if (ret) {
4656                 clear_filter(adap, f);
4657                 return ret;
4658         }
4659
4660         return 0;
4661 }
4662 EXPORT_SYMBOL(cxgb4_create_server_filter);
4663
4664 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4665                 unsigned int queue, bool ipv6)
4666 {
4667         int ret;
4668         struct filter_entry *f;
4669         struct adapter *adap;
4670
4671         adap = netdev2adap(dev);
4672
4673         /* Adjust stid to correct filter index */
4674         stid -= adap->tids.sftid_base;
4675         stid += adap->tids.nftids;
4676
4677         f = &adap->tids.ftid_tab[stid];
4678         /* Unlock the filter */
4679         f->locked = 0;
4680
4681         ret = delete_filter(adap, stid);
4682         if (ret)
4683                 return ret;
4684
4685         return 0;
4686 }
4687 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4688
4689 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4690                                                 struct rtnl_link_stats64 *ns)
4691 {
4692         struct port_stats stats;
4693         struct port_info *p = netdev_priv(dev);
4694         struct adapter *adapter = p->adapter;
4695
4696         /* Block retrieving statistics during EEH error
4697          * recovery. Otherwise, the recovery might fail
4698          * and the PCI device will be removed permanently
4699          */
4700         spin_lock(&adapter->stats_lock);
4701         if (!netif_device_present(dev)) {
4702                 spin_unlock(&adapter->stats_lock);
4703                 return ns;
4704         }
4705         t4_get_port_stats(adapter, p->tx_chan, &stats);
4706         spin_unlock(&adapter->stats_lock);
4707
4708         ns->tx_bytes   = stats.tx_octets;
4709         ns->tx_packets = stats.tx_frames;
4710         ns->rx_bytes   = stats.rx_octets;
4711         ns->rx_packets = stats.rx_frames;
4712         ns->multicast  = stats.rx_mcast_frames;
4713
4714         /* detailed rx_errors */
4715         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4716                                stats.rx_runt;
4717         ns->rx_over_errors   = 0;
4718         ns->rx_crc_errors    = stats.rx_fcs_err;
4719         ns->rx_frame_errors  = stats.rx_symbol_err;
4720         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4721                                stats.rx_ovflow2 + stats.rx_ovflow3 +
4722                                stats.rx_trunc0 + stats.rx_trunc1 +
4723                                stats.rx_trunc2 + stats.rx_trunc3;
4724         ns->rx_missed_errors = 0;
4725
4726         /* detailed tx_errors */
4727         ns->tx_aborted_errors   = 0;
4728         ns->tx_carrier_errors   = 0;
4729         ns->tx_fifo_errors      = 0;
4730         ns->tx_heartbeat_errors = 0;
4731         ns->tx_window_errors    = 0;
4732
4733         ns->tx_errors = stats.tx_error_frames;
4734         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4735                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4736         return ns;
4737 }
4738
4739 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4740 {
4741         unsigned int mbox;
4742         int ret = 0, prtad, devad;
4743         struct port_info *pi = netdev_priv(dev);
4744         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4745
4746         switch (cmd) {
4747         case SIOCGMIIPHY:
4748                 if (pi->mdio_addr < 0)
4749                         return -EOPNOTSUPP;
4750                 data->phy_id = pi->mdio_addr;
4751                 break;
4752         case SIOCGMIIREG:
4753         case SIOCSMIIREG:
4754                 if (mdio_phy_id_is_c45(data->phy_id)) {
4755                         prtad = mdio_phy_id_prtad(data->phy_id);
4756                         devad = mdio_phy_id_devad(data->phy_id);
4757                 } else if (data->phy_id < 32) {
4758                         prtad = data->phy_id;
4759                         devad = 0;
4760                         data->reg_num &= 0x1f;
4761                 } else
4762                         return -EINVAL;
4763
4764                 mbox = pi->adapter->fn;
4765                 if (cmd == SIOCGMIIREG)
4766                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4767                                          data->reg_num, &data->val_out);
4768                 else
4769                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4770                                          data->reg_num, data->val_in);
4771                 break;
4772         default:
4773                 return -EOPNOTSUPP;
4774         }
4775         return ret;
4776 }
4777
4778 static void cxgb_set_rxmode(struct net_device *dev)
4779 {
4780         /* unfortunately we can't return errors to the stack */
4781         set_rxmode(dev, -1, false);
4782 }
4783
4784 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4785 {
4786         int ret;
4787         struct port_info *pi = netdev_priv(dev);
4788
4789         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4790                 return -EINVAL;
4791         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4792                             -1, -1, -1, true);
4793         if (!ret)
4794                 dev->mtu = new_mtu;
4795         return ret;
4796 }
4797
4798 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4799 {
4800         int ret;
4801         struct sockaddr *addr = p;
4802         struct port_info *pi = netdev_priv(dev);
4803
4804         if (!is_valid_ether_addr(addr->sa_data))
4805                 return -EADDRNOTAVAIL;
4806
4807         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4808                             pi->xact_addr_filt, addr->sa_data, true, true);
4809         if (ret < 0)
4810                 return ret;
4811
4812         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4813         pi->xact_addr_filt = ret;
4814         return 0;
4815 }
4816
4817 #ifdef CONFIG_NET_POLL_CONTROLLER
4818 static void cxgb_netpoll(struct net_device *dev)
4819 {
4820         struct port_info *pi = netdev_priv(dev);
4821         struct adapter *adap = pi->adapter;
4822
4823         if (adap->flags & USING_MSIX) {
4824                 int i;
4825                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4826
4827                 for (i = pi->nqsets; i; i--, rx++)
4828                         t4_sge_intr_msix(0, &rx->rspq);
4829         } else
4830                 t4_intr_handler(adap)(0, adap);
4831 }
4832 #endif
4833
4834 static const struct net_device_ops cxgb4_netdev_ops = {
4835         .ndo_open             = cxgb_open,
4836         .ndo_stop             = cxgb_close,
4837         .ndo_start_xmit       = t4_eth_xmit,
4838         .ndo_select_queue     = cxgb_select_queue,
4839         .ndo_get_stats64      = cxgb_get_stats,
4840         .ndo_set_rx_mode      = cxgb_set_rxmode,
4841         .ndo_set_mac_address  = cxgb_set_mac_addr,
4842         .ndo_set_features     = cxgb_set_features,
4843         .ndo_validate_addr    = eth_validate_addr,
4844         .ndo_do_ioctl         = cxgb_ioctl,
4845         .ndo_change_mtu       = cxgb_change_mtu,
4846 #ifdef CONFIG_NET_POLL_CONTROLLER
4847         .ndo_poll_controller  = cxgb_netpoll,
4848 #endif
4849 };
4850
4851 void t4_fatal_err(struct adapter *adap)
4852 {
4853         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4854         t4_intr_disable(adap);
4855         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4856 }
4857
4858 /* Return the specified PCI-E Configuration Space register from our Physical
4859  * Function.  We try first via a Firmware LDST Command since we prefer to let
4860  * the firmware own all of these registers, but if that fails we go for it
4861  * directly ourselves.
4862  */
4863 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4864 {
4865         struct fw_ldst_cmd ldst_cmd;
4866         u32 val;
4867         int ret;
4868
4869         /* Construct and send the Firmware LDST Command to retrieve the
4870          * specified PCI-E Configuration Space register.
4871          */
4872         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4873         ldst_cmd.op_to_addrspace =
4874                 htonl(FW_CMD_OP_V(FW_LDST_CMD) |
4875                       FW_CMD_REQUEST_F |
4876                       FW_CMD_READ_F |
4877                       FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4878         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4879         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4880         ldst_cmd.u.pcie.ctrl_to_fn =
4881                 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4882         ldst_cmd.u.pcie.r = reg;
4883         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4884                          &ldst_cmd);
4885
4886         /* If the LDST Command suucceeded, exctract the returned register
4887          * value.  Otherwise read it directly ourself.
4888          */
4889         if (ret == 0)
4890                 val = ntohl(ldst_cmd.u.pcie.data[0]);
4891         else
4892                 t4_hw_pci_read_cfg4(adap, reg, &val);
4893
4894         return val;
4895 }
4896
4897 static void setup_memwin(struct adapter *adap)
4898 {
4899         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4900
4901         if (is_t4(adap->params.chip)) {
4902                 u32 bar0;
4903
4904                 /* Truncation intentional: we only read the bottom 32-bits of
4905                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
4906                  * mechanism to read BAR0 instead of using
4907                  * pci_resource_start() because we could be operating from
4908                  * within a Virtual Machine which is trapping our accesses to
4909                  * our Configuration Space and we need to set up the PCI-E
4910                  * Memory Window decoders with the actual addresses which will
4911                  * be coming across the PCI-E link.
4912                  */
4913                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4914                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4915                 adap->t4_bar0 = bar0;
4916
4917                 mem_win0_base = bar0 + MEMWIN0_BASE;
4918                 mem_win1_base = bar0 + MEMWIN1_BASE;
4919                 mem_win2_base = bar0 + MEMWIN2_BASE;
4920                 mem_win2_aperture = MEMWIN2_APERTURE;
4921         } else {
4922                 /* For T5, only relative offset inside the PCIe BAR is passed */
4923                 mem_win0_base = MEMWIN0_BASE;
4924                 mem_win1_base = MEMWIN1_BASE;
4925                 mem_win2_base = MEMWIN2_BASE_T5;
4926                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
4927         }
4928         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4929                      mem_win0_base | BIR(0) |
4930                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4931         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4932                      mem_win1_base | BIR(0) |
4933                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4934         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4935                      mem_win2_base | BIR(0) |
4936                      WINDOW(ilog2(mem_win2_aperture) - 10));
4937         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
4938 }
4939
4940 static void setup_memwin_rdma(struct adapter *adap)
4941 {
4942         if (adap->vres.ocq.size) {
4943                 u32 start;
4944                 unsigned int sz_kb;
4945
4946                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4947                 start &= PCI_BASE_ADDRESS_MEM_MASK;
4948                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4949                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4950                 t4_write_reg(adap,
4951                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4952                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
4953                 t4_write_reg(adap,
4954                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4955                              adap->vres.ocq.start);
4956                 t4_read_reg(adap,
4957                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4958         }
4959 }
4960
4961 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4962 {
4963         u32 v;
4964         int ret;
4965
4966         /* get device capabilities */
4967         memset(c, 0, sizeof(*c));
4968         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4969                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
4970         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4971         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4972         if (ret < 0)
4973                 return ret;
4974
4975         /* select capabilities we'll be using */
4976         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4977                 if (!vf_acls)
4978                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4979                 else
4980                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4981         } else if (vf_acls) {
4982                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4983                 return ret;
4984         }
4985         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4986                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4987         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4988         if (ret < 0)
4989                 return ret;
4990
4991         ret = t4_config_glbl_rss(adap, adap->fn,
4992                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4993                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4994                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4995         if (ret < 0)
4996                 return ret;
4997
4998         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4999                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
5000         if (ret < 0)
5001                 return ret;
5002
5003         t4_sge_init(adap);
5004
5005         /* tweak some settings */
5006         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5007         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5008         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5009         v = t4_read_reg(adap, TP_PIO_DATA);
5010         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5011
5012         /* first 4 Tx modulation queues point to consecutive Tx channels */
5013         adap->params.tp.tx_modq_map = 0xE4;
5014         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5015                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5016
5017         /* associate each Tx modulation queue with consecutive Tx channels */
5018         v = 0x84218421;
5019         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5020                           &v, 1, A_TP_TX_SCHED_HDR);
5021         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5022                           &v, 1, A_TP_TX_SCHED_FIFO);
5023         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5024                           &v, 1, A_TP_TX_SCHED_PCMD);
5025
5026 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5027         if (is_offload(adap)) {
5028                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5029                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5030                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5031                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5032                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5033                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5034                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5035                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5036                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5037                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5038         }
5039
5040         /* get basic stuff going */
5041         return t4_early_init(adap, adap->fn);
5042 }
5043
5044 /*
5045  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
5046  */
5047 #define MAX_ATIDS 8192U
5048
5049 /*
5050  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5051  *
5052  * If the firmware we're dealing with has Configuration File support, then
5053  * we use that to perform all configuration
5054  */
5055
5056 /*
5057  * Tweak configuration based on module parameters, etc.  Most of these have
5058  * defaults assigned to them by Firmware Configuration Files (if we're using
5059  * them) but need to be explicitly set if we're using hard-coded
5060  * initialization.  But even in the case of using Firmware Configuration
5061  * Files, we'd like to expose the ability to change these via module
5062  * parameters so these are essentially common tweaks/settings for
5063  * Configuration Files and hard-coded initialization ...
5064  */
5065 static int adap_init0_tweaks(struct adapter *adapter)
5066 {
5067         /*
5068          * Fix up various Host-Dependent Parameters like Page Size, Cache
5069          * Line Size, etc.  The firmware default is for a 4KB Page Size and
5070          * 64B Cache Line Size ...
5071          */
5072         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5073
5074         /*
5075          * Process module parameters which affect early initialization.
5076          */
5077         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5078                 dev_err(&adapter->pdev->dev,
5079                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
5080                         rx_dma_offset);
5081                 rx_dma_offset = 2;
5082         }
5083         t4_set_reg_field(adapter, SGE_CONTROL,
5084                          PKTSHIFT_MASK,
5085                          PKTSHIFT(rx_dma_offset));
5086
5087         /*
5088          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5089          * adds the pseudo header itself.
5090          */
5091         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5092                                CSUM_HAS_PSEUDO_HDR, 0);
5093
5094         return 0;
5095 }
5096
5097 /*
5098  * Attempt to initialize the adapter via a Firmware Configuration File.
5099  */
5100 static int adap_init0_config(struct adapter *adapter, int reset)
5101 {
5102         struct fw_caps_config_cmd caps_cmd;
5103         const struct firmware *cf;
5104         unsigned long mtype = 0, maddr = 0;
5105         u32 finiver, finicsum, cfcsum;
5106         int ret;
5107         int config_issued = 0;
5108         char *fw_config_file, fw_config_file_path[256];
5109         char *config_name = NULL;
5110
5111         /*
5112          * Reset device if necessary.
5113          */
5114         if (reset) {
5115                 ret = t4_fw_reset(adapter, adapter->mbox,
5116                                   PIORSTMODE | PIORST);
5117                 if (ret < 0)
5118                         goto bye;
5119         }
5120
5121         /*
5122          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5123          * then use that.  Otherwise, use the configuration file stored
5124          * in the adapter flash ...
5125          */
5126         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5127         case CHELSIO_T4:
5128                 fw_config_file = FW4_CFNAME;
5129                 break;
5130         case CHELSIO_T5:
5131                 fw_config_file = FW5_CFNAME;
5132                 break;
5133         default:
5134                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5135                        adapter->pdev->device);
5136                 ret = -EINVAL;
5137                 goto bye;
5138         }
5139
5140         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5141         if (ret < 0) {
5142                 config_name = "On FLASH";
5143                 mtype = FW_MEMTYPE_CF_FLASH;
5144                 maddr = t4_flash_cfg_addr(adapter);
5145         } else {
5146                 u32 params[7], val[7];
5147
5148                 sprintf(fw_config_file_path,
5149                         "/lib/firmware/%s", fw_config_file);
5150                 config_name = fw_config_file_path;
5151
5152                 if (cf->size >= FLASH_CFG_MAX_SIZE)
5153                         ret = -ENOMEM;
5154                 else {
5155                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5156                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5157                         ret = t4_query_params(adapter, adapter->mbox,
5158                                               adapter->fn, 0, 1, params, val);
5159                         if (ret == 0) {
5160                                 /*
5161                                  * For t4_memory_rw() below addresses and
5162                                  * sizes have to be in terms of multiples of 4
5163                                  * bytes.  So, if the Configuration File isn't
5164                                  * a multiple of 4 bytes in length we'll have
5165                                  * to write that out separately since we can't
5166                                  * guarantee that the bytes following the
5167                                  * residual byte in the buffer returned by
5168                                  * request_firmware() are zeroed out ...
5169                                  */
5170                                 size_t resid = cf->size & 0x3;
5171                                 size_t size = cf->size & ~0x3;
5172                                 __be32 *data = (__be32 *)cf->data;
5173
5174                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5175                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5176
5177                                 spin_lock(&adapter->win0_lock);
5178                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5179                                                    size, data, T4_MEMORY_WRITE);
5180                                 if (ret == 0 && resid != 0) {
5181                                         union {
5182                                                 __be32 word;
5183                                                 char buf[4];
5184                                         } last;
5185                                         int i;
5186
5187                                         last.word = data[size >> 2];
5188                                         for (i = resid; i < 4; i++)
5189                                                 last.buf[i] = 0;
5190                                         ret = t4_memory_rw(adapter, 0, mtype,
5191                                                            maddr + size,
5192                                                            4, &last.word,
5193                                                            T4_MEMORY_WRITE);
5194                                 }
5195                                 spin_unlock(&adapter->win0_lock);
5196                         }
5197                 }
5198
5199                 release_firmware(cf);
5200                 if (ret)
5201                         goto bye;
5202         }
5203
5204         /*
5205          * Issue a Capability Configuration command to the firmware to get it
5206          * to parse the Configuration File.  We don't use t4_fw_config_file()
5207          * because we want the ability to modify various features after we've
5208          * processed the configuration file ...
5209          */
5210         memset(&caps_cmd, 0, sizeof(caps_cmd));
5211         caps_cmd.op_to_write =
5212                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5213                       FW_CMD_REQUEST_F |
5214                       FW_CMD_READ_F);
5215         caps_cmd.cfvalid_to_len16 =
5216                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5217                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5218                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5219                       FW_LEN16(caps_cmd));
5220         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5221                          &caps_cmd);
5222
5223         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5224          * Configuration File in FLASH), our last gasp effort is to use the
5225          * Firmware Configuration File which is embedded in the firmware.  A
5226          * very few early versions of the firmware didn't have one embedded
5227          * but we can ignore those.
5228          */
5229         if (ret == -ENOENT) {
5230                 memset(&caps_cmd, 0, sizeof(caps_cmd));
5231                 caps_cmd.op_to_write =
5232                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5233                                         FW_CMD_REQUEST_F |
5234                                         FW_CMD_READ_F);
5235                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5236                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5237                                 sizeof(caps_cmd), &caps_cmd);
5238                 config_name = "Firmware Default";
5239         }
5240
5241         config_issued = 1;
5242         if (ret < 0)
5243                 goto bye;
5244
5245         finiver = ntohl(caps_cmd.finiver);
5246         finicsum = ntohl(caps_cmd.finicsum);
5247         cfcsum = ntohl(caps_cmd.cfcsum);
5248         if (finicsum != cfcsum)
5249                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5250                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5251                          finicsum, cfcsum);
5252
5253         /*
5254          * And now tell the firmware to use the configuration we just loaded.
5255          */
5256         caps_cmd.op_to_write =
5257                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5258                       FW_CMD_REQUEST_F |
5259                       FW_CMD_WRITE_F);
5260         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5261         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5262                          NULL);
5263         if (ret < 0)
5264                 goto bye;
5265
5266         /*
5267          * Tweak configuration based on system architecture, module
5268          * parameters, etc.
5269          */
5270         ret = adap_init0_tweaks(adapter);
5271         if (ret < 0)
5272                 goto bye;
5273
5274         /*
5275          * And finally tell the firmware to initialize itself using the
5276          * parameters from the Configuration File.
5277          */
5278         ret = t4_fw_initialize(adapter, adapter->mbox);
5279         if (ret < 0)
5280                 goto bye;
5281
5282         /*
5283          * Return successfully and note that we're operating with parameters
5284          * not supplied by the driver, rather than from hard-wired
5285          * initialization constants burried in the driver.
5286          */
5287         adapter->flags |= USING_SOFT_PARAMS;
5288         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5289                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5290                  config_name, finiver, cfcsum);
5291         return 0;
5292
5293         /*
5294          * Something bad happened.  Return the error ...  (If the "error"
5295          * is that there's no Configuration File on the adapter we don't
5296          * want to issue a warning since this is fairly common.)
5297          */
5298 bye:
5299         if (config_issued && ret != -ENOENT)
5300                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5301                          config_name, -ret);
5302         return ret;
5303 }
5304
5305 /*
5306  * Attempt to initialize the adapter via hard-coded, driver supplied
5307  * parameters ...
5308  */
5309 static int adap_init0_no_config(struct adapter *adapter, int reset)
5310 {
5311         struct sge *s = &adapter->sge;
5312         struct fw_caps_config_cmd caps_cmd;
5313         u32 v;
5314         int i, ret;
5315
5316         /*
5317          * Reset device if necessary
5318          */
5319         if (reset) {
5320                 ret = t4_fw_reset(adapter, adapter->mbox,
5321                                   PIORSTMODE | PIORST);
5322                 if (ret < 0)
5323                         goto bye;
5324         }
5325
5326         /*
5327          * Get device capabilities and select which we'll be using.
5328          */
5329         memset(&caps_cmd, 0, sizeof(caps_cmd));
5330         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5331                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
5332         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5333         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5334                          &caps_cmd);
5335         if (ret < 0)
5336                 goto bye;
5337
5338         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5339                 if (!vf_acls)
5340                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5341                 else
5342                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5343         } else if (vf_acls) {
5344                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5345                 goto bye;
5346         }
5347         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5348                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5349         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5350                          NULL);
5351         if (ret < 0)
5352                 goto bye;
5353
5354         /*
5355          * Tweak configuration based on system architecture, module
5356          * parameters, etc.
5357          */
5358         ret = adap_init0_tweaks(adapter);
5359         if (ret < 0)
5360                 goto bye;
5361
5362         /*
5363          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5364          * mode which maps each Virtual Interface to its own section of
5365          * the RSS Table and we turn on all map and hash enables ...
5366          */
5367         adapter->flags |= RSS_TNLALLLOOKUP;
5368         ret = t4_config_glbl_rss(adapter, adapter->mbox,
5369                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5370                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5371                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5372                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
5373                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5374         if (ret < 0)
5375                 goto bye;
5376
5377         /*
5378          * Set up our own fundamental resource provisioning ...
5379          */
5380         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5381                           PFRES_NEQ, PFRES_NETHCTRL,
5382                           PFRES_NIQFLINT, PFRES_NIQ,
5383                           PFRES_TC, PFRES_NVI,
5384                           FW_PFVF_CMD_CMASK_MASK,
5385                           pfvfres_pmask(adapter, adapter->fn, 0),
5386                           PFRES_NEXACTF,
5387                           PFRES_R_CAPS, PFRES_WX_CAPS);
5388         if (ret < 0)
5389                 goto bye;
5390
5391         /*
5392          * Perform low level SGE initialization.  We need to do this before we
5393          * send the firmware the INITIALIZE command because that will cause
5394          * any other PF Drivers which are waiting for the Master
5395          * Initialization to proceed forward.
5396          */
5397         for (i = 0; i < SGE_NTIMERS - 1; i++)
5398                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5399         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5400         s->counter_val[0] = 1;
5401         for (i = 1; i < SGE_NCOUNTERS; i++)
5402                 s->counter_val[i] = min(intr_cnt[i - 1],
5403                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
5404         t4_sge_init(adapter);
5405
5406 #ifdef CONFIG_PCI_IOV
5407         /*
5408          * Provision resource limits for Virtual Functions.  We currently
5409          * grant them all the same static resource limits except for the Port
5410          * Access Rights Mask which we're assigning based on the PF.  All of
5411          * the static provisioning stuff for both the PF and VF really needs
5412          * to be managed in a persistent manner for each device which the
5413          * firmware controls.
5414          */
5415         {
5416                 int pf, vf;
5417
5418                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5419                         if (num_vf[pf] <= 0)
5420                                 continue;
5421
5422                         /* VF numbering starts at 1! */
5423                         for (vf = 1; vf <= num_vf[pf]; vf++) {
5424                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5425                                                   pf, vf,
5426                                                   VFRES_NEQ, VFRES_NETHCTRL,
5427                                                   VFRES_NIQFLINT, VFRES_NIQ,
5428                                                   VFRES_TC, VFRES_NVI,
5429                                                   FW_PFVF_CMD_CMASK_MASK,
5430                                                   pfvfres_pmask(
5431                                                   adapter, pf, vf),
5432                                                   VFRES_NEXACTF,
5433                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
5434                                 if (ret < 0)
5435                                         dev_warn(adapter->pdev_dev,
5436                                                  "failed to "\
5437                                                  "provision pf/vf=%d/%d; "
5438                                                  "err=%d\n", pf, vf, ret);
5439                         }
5440                 }
5441         }
5442 #endif
5443
5444         /*
5445          * Set up the default filter mode.  Later we'll want to implement this
5446          * via a firmware command, etc. ...  This needs to be done before the
5447          * firmare initialization command ...  If the selected set of fields
5448          * isn't equal to the default value, we'll need to make sure that the
5449          * field selections will fit in the 36-bit budget.
5450          */
5451         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5452                 int j, bits = 0;
5453
5454                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5455                         switch (tp_vlan_pri_map & (1 << j)) {
5456                         case 0:
5457                                 /* compressed filter field not enabled */
5458                                 break;
5459                         case FCOE_MASK:
5460                                 bits +=  1;
5461                                 break;
5462                         case PORT_MASK:
5463                                 bits +=  3;
5464                                 break;
5465                         case VNIC_ID_MASK:
5466                                 bits += 17;
5467                                 break;
5468                         case VLAN_MASK:
5469                                 bits += 17;
5470                                 break;
5471                         case TOS_MASK:
5472                                 bits +=  8;
5473                                 break;
5474                         case PROTOCOL_MASK:
5475                                 bits +=  8;
5476                                 break;
5477                         case ETHERTYPE_MASK:
5478                                 bits += 16;
5479                                 break;
5480                         case MACMATCH_MASK:
5481                                 bits +=  9;
5482                                 break;
5483                         case MPSHITTYPE_MASK:
5484                                 bits +=  3;
5485                                 break;
5486                         case FRAGMENTATION_MASK:
5487                                 bits +=  1;
5488                                 break;
5489                         }
5490
5491                 if (bits > 36) {
5492                         dev_err(adapter->pdev_dev,
5493                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5494                                 " using %#x\n", tp_vlan_pri_map, bits,
5495                                 TP_VLAN_PRI_MAP_DEFAULT);
5496                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5497                 }
5498         }
5499         v = tp_vlan_pri_map;
5500         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5501                           &v, 1, TP_VLAN_PRI_MAP);
5502
5503         /*
5504          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5505          * to support any of the compressed filter fields above.  Newer
5506          * versions of the firmware do this automatically but it doesn't hurt
5507          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5508          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5509          * since the firmware automatically turns this on and off when we have
5510          * a non-zero number of filters active (since it does have a
5511          * performance impact).
5512          */
5513         if (tp_vlan_pri_map)
5514                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5515                                  FIVETUPLELOOKUP_MASK,
5516                                  FIVETUPLELOOKUP_MASK);
5517
5518         /*
5519          * Tweak some settings.
5520          */
5521         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5522                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5523                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5524                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5525
5526         /*
5527          * Get basic stuff going by issuing the Firmware Initialize command.
5528          * Note that this _must_ be after all PFVF commands ...
5529          */
5530         ret = t4_fw_initialize(adapter, adapter->mbox);
5531         if (ret < 0)
5532                 goto bye;
5533
5534         /*
5535          * Return successfully!
5536          */
5537         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5538                  "driver parameters\n");
5539         return 0;
5540
5541         /*
5542          * Something bad happened.  Return the error ...
5543          */
5544 bye:
5545         return ret;
5546 }
5547
5548 static struct fw_info fw_info_array[] = {
5549         {
5550                 .chip = CHELSIO_T4,
5551                 .fs_name = FW4_CFNAME,
5552                 .fw_mod_name = FW4_FNAME,
5553                 .fw_hdr = {
5554                         .chip = FW_HDR_CHIP_T4,
5555                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5556                         .intfver_nic = FW_INTFVER(T4, NIC),
5557                         .intfver_vnic = FW_INTFVER(T4, VNIC),
5558                         .intfver_ri = FW_INTFVER(T4, RI),
5559                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5560                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
5561                 },
5562         }, {
5563                 .chip = CHELSIO_T5,
5564                 .fs_name = FW5_CFNAME,
5565                 .fw_mod_name = FW5_FNAME,
5566                 .fw_hdr = {
5567                         .chip = FW_HDR_CHIP_T5,
5568                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5569                         .intfver_nic = FW_INTFVER(T5, NIC),
5570                         .intfver_vnic = FW_INTFVER(T5, VNIC),
5571                         .intfver_ri = FW_INTFVER(T5, RI),
5572                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5573                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
5574                 },
5575         }
5576 };
5577
5578 static struct fw_info *find_fw_info(int chip)
5579 {
5580         int i;
5581
5582         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5583                 if (fw_info_array[i].chip == chip)
5584                         return &fw_info_array[i];
5585         }
5586         return NULL;
5587 }
5588
5589 /*
5590  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5591  */
5592 static int adap_init0(struct adapter *adap)
5593 {
5594         int ret;
5595         u32 v, port_vec;
5596         enum dev_state state;
5597         u32 params[7], val[7];
5598         struct fw_caps_config_cmd caps_cmd;
5599         int reset = 1;
5600
5601         /*
5602          * Contact FW, advertising Master capability (and potentially forcing
5603          * ourselves as the Master PF if our module parameter force_init is
5604          * set).
5605          */
5606         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5607                           force_init ? MASTER_MUST : MASTER_MAY,
5608                           &state);
5609         if (ret < 0) {
5610                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5611                         ret);
5612                 return ret;
5613         }
5614         if (ret == adap->mbox)
5615                 adap->flags |= MASTER_PF;
5616         if (force_init && state == DEV_STATE_INIT)
5617                 state = DEV_STATE_UNINIT;
5618
5619         /*
5620          * If we're the Master PF Driver and the device is uninitialized,
5621          * then let's consider upgrading the firmware ...  (We always want
5622          * to check the firmware version number in order to A. get it for
5623          * later reporting and B. to warn if the currently loaded firmware
5624          * is excessively mismatched relative to the driver.)
5625          */
5626         t4_get_fw_version(adap, &adap->params.fw_vers);
5627         t4_get_tp_version(adap, &adap->params.tp_vers);
5628         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5629                 struct fw_info *fw_info;
5630                 struct fw_hdr *card_fw;
5631                 const struct firmware *fw;
5632                 const u8 *fw_data = NULL;
5633                 unsigned int fw_size = 0;
5634
5635                 /* This is the firmware whose headers the driver was compiled
5636                  * against
5637                  */
5638                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5639                 if (fw_info == NULL) {
5640                         dev_err(adap->pdev_dev,
5641                                 "unable to get firmware info for chip %d.\n",
5642                                 CHELSIO_CHIP_VERSION(adap->params.chip));
5643                         return -EINVAL;
5644                 }
5645
5646                 /* allocate memory to read the header of the firmware on the
5647                  * card
5648                  */
5649                 card_fw = t4_alloc_mem(sizeof(*card_fw));
5650
5651                 /* Get FW from from /lib/firmware/ */
5652                 ret = request_firmware(&fw, fw_info->fw_mod_name,
5653                                        adap->pdev_dev);
5654                 if (ret < 0) {
5655                         dev_err(adap->pdev_dev,
5656                                 "unable to load firmware image %s, error %d\n",
5657                                 fw_info->fw_mod_name, ret);
5658                 } else {
5659                         fw_data = fw->data;
5660                         fw_size = fw->size;
5661                 }
5662
5663                 /* upgrade FW logic */
5664                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5665                                  state, &reset);
5666
5667                 /* Cleaning up */
5668                 if (fw != NULL)
5669                         release_firmware(fw);
5670                 t4_free_mem(card_fw);
5671
5672                 if (ret < 0)
5673                         goto bye;
5674         }
5675
5676         /*
5677          * Grab VPD parameters.  This should be done after we establish a
5678          * connection to the firmware since some of the VPD parameters
5679          * (notably the Core Clock frequency) are retrieved via requests to
5680          * the firmware.  On the other hand, we need these fairly early on
5681          * so we do this right after getting ahold of the firmware.
5682          */
5683         ret = get_vpd_params(adap, &adap->params.vpd);
5684         if (ret < 0)
5685                 goto bye;
5686
5687         /*
5688          * Find out what ports are available to us.  Note that we need to do
5689          * this before calling adap_init0_no_config() since it needs nports
5690          * and portvec ...
5691          */
5692         v =
5693             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5694             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5695         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5696         if (ret < 0)
5697                 goto bye;
5698
5699         adap->params.nports = hweight32(port_vec);
5700         adap->params.portvec = port_vec;
5701
5702         /*
5703          * If the firmware is initialized already (and we're not forcing a
5704          * master initialization), note that we're living with existing
5705          * adapter parameters.  Otherwise, it's time to try initializing the
5706          * adapter ...
5707          */
5708         if (state == DEV_STATE_INIT) {
5709                 dev_info(adap->pdev_dev, "Coming up as %s: "\
5710                          "Adapter already initialized\n",
5711                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5712                 adap->flags |= USING_SOFT_PARAMS;
5713         } else {
5714                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5715                          "Initializing adapter\n");
5716                 /*
5717                  * If the firmware doesn't support Configuration
5718                  * Files warn user and exit,
5719                  */
5720                 if (ret < 0)
5721                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
5722                                  "configuration file.\n");
5723                 if (force_old_init)
5724                         ret = adap_init0_no_config(adap, reset);
5725                 else {
5726                         /*
5727                          * Find out whether we're dealing with a version of
5728                          * the firmware which has configuration file support.
5729                          */
5730                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5731                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5732                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5733                                               params, val);
5734
5735                         /*
5736                          * If the firmware doesn't support Configuration
5737                          * Files, use the old Driver-based, hard-wired
5738                          * initialization.  Otherwise, try using the
5739                          * Configuration File support and fall back to the
5740                          * Driver-based initialization if there's no
5741                          * Configuration File found.
5742                          */
5743                         if (ret < 0)
5744                                 ret = adap_init0_no_config(adap, reset);
5745                         else {
5746                                 /*
5747                                  * The firmware provides us with a memory
5748                                  * buffer where we can load a Configuration
5749                                  * File from the host if we want to override
5750                                  * the Configuration File in flash.
5751                                  */
5752
5753                                 ret = adap_init0_config(adap, reset);
5754                                 if (ret == -ENOENT) {
5755                                         dev_info(adap->pdev_dev,
5756                                             "No Configuration File present "
5757                                             "on adapter. Using hard-wired "
5758                                             "configuration parameters.\n");
5759                                         goto bye;
5760                                         ret = adap_init0_no_config(adap, reset);
5761                                 }
5762                         }
5763                 }
5764                 if (ret < 0) {
5765                         dev_err(adap->pdev_dev,
5766                                 "could not initialize adapter, error %d\n",
5767                                 -ret);
5768                         goto bye;
5769                 }
5770         }
5771
5772         /*
5773          * If we're living with non-hard-coded parameters (either from a
5774          * Firmware Configuration File or values programmed by a different PF
5775          * Driver), give the SGE code a chance to pull in anything that it
5776          * needs ...  Note that this must be called after we retrieve our VPD
5777          * parameters in order to know how to convert core ticks to seconds.
5778          */
5779         if (adap->flags & USING_SOFT_PARAMS) {
5780                 ret = t4_sge_init(adap);
5781                 if (ret < 0)
5782                         goto bye;
5783         }
5784
5785         if (is_bypass_device(adap->pdev->device))
5786                 adap->params.bypass = 1;
5787
5788         /*
5789          * Grab some of our basic fundamental operating parameters.
5790          */
5791 #define FW_PARAM_DEV(param) \
5792         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5793         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5794
5795 #define FW_PARAM_PFVF(param) \
5796         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5797         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
5798         FW_PARAMS_PARAM_Y(0) | \
5799         FW_PARAMS_PARAM_Z(0)
5800
5801         params[0] = FW_PARAM_PFVF(EQ_START);
5802         params[1] = FW_PARAM_PFVF(L2T_START);
5803         params[2] = FW_PARAM_PFVF(L2T_END);
5804         params[3] = FW_PARAM_PFVF(FILTER_START);
5805         params[4] = FW_PARAM_PFVF(FILTER_END);
5806         params[5] = FW_PARAM_PFVF(IQFLINT_START);
5807         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5808         if (ret < 0)
5809                 goto bye;
5810         adap->sge.egr_start = val[0];
5811         adap->l2t_start = val[1];
5812         adap->l2t_end = val[2];
5813         adap->tids.ftid_base = val[3];
5814         adap->tids.nftids = val[4] - val[3] + 1;
5815         adap->sge.ingr_start = val[5];
5816
5817         /* query params related to active filter region */
5818         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5819         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5820         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5821         /* If Active filter size is set we enable establishing
5822          * offload connection through firmware work request
5823          */
5824         if ((val[0] != val[1]) && (ret >= 0)) {
5825                 adap->flags |= FW_OFLD_CONN;
5826                 adap->tids.aftid_base = val[0];
5827                 adap->tids.aftid_end = val[1];
5828         }
5829
5830         /* If we're running on newer firmware, let it know that we're
5831          * prepared to deal with encapsulated CPL messages.  Older
5832          * firmware won't understand this and we'll just get
5833          * unencapsulated messages ...
5834          */
5835         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5836         val[0] = 1;
5837         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5838
5839         /*
5840          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5841          * capability.  Earlier versions of the firmware didn't have the
5842          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5843          * permission to use ULPTX MEMWRITE DSGL.
5844          */
5845         if (is_t4(adap->params.chip)) {
5846                 adap->params.ulptx_memwrite_dsgl = false;
5847         } else {
5848                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5849                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5850                                       1, params, val);
5851                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5852         }
5853
5854         /*
5855          * Get device capabilities so we can determine what resources we need
5856          * to manage.
5857          */
5858         memset(&caps_cmd, 0, sizeof(caps_cmd));
5859         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5860                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
5861         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5862         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5863                          &caps_cmd);
5864         if (ret < 0)
5865                 goto bye;
5866
5867         if (caps_cmd.ofldcaps) {
5868                 /* query offload-related parameters */
5869                 params[0] = FW_PARAM_DEV(NTID);
5870                 params[1] = FW_PARAM_PFVF(SERVER_START);
5871                 params[2] = FW_PARAM_PFVF(SERVER_END);
5872                 params[3] = FW_PARAM_PFVF(TDDP_START);
5873                 params[4] = FW_PARAM_PFVF(TDDP_END);
5874                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5875                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5876                                       params, val);
5877                 if (ret < 0)
5878                         goto bye;
5879                 adap->tids.ntids = val[0];
5880                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5881                 adap->tids.stid_base = val[1];
5882                 adap->tids.nstids = val[2] - val[1] + 1;
5883                 /*
5884                  * Setup server filter region. Divide the availble filter
5885                  * region into two parts. Regular filters get 1/3rd and server
5886                  * filters get 2/3rd part. This is only enabled if workarond
5887                  * path is enabled.
5888                  * 1. For regular filters.
5889                  * 2. Server filter: This are special filters which are used
5890                  * to redirect SYN packets to offload queue.
5891                  */
5892                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5893                         adap->tids.sftid_base = adap->tids.ftid_base +
5894                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5895                         adap->tids.nsftids = adap->tids.nftids -
5896                                          DIV_ROUND_UP(adap->tids.nftids, 3);
5897                         adap->tids.nftids = adap->tids.sftid_base -
5898                                                 adap->tids.ftid_base;
5899                 }
5900                 adap->vres.ddp.start = val[3];
5901                 adap->vres.ddp.size = val[4] - val[3] + 1;
5902                 adap->params.ofldq_wr_cred = val[5];
5903
5904                 adap->params.offload = 1;
5905         }
5906         if (caps_cmd.rdmacaps) {
5907                 params[0] = FW_PARAM_PFVF(STAG_START);
5908                 params[1] = FW_PARAM_PFVF(STAG_END);
5909                 params[2] = FW_PARAM_PFVF(RQ_START);
5910                 params[3] = FW_PARAM_PFVF(RQ_END);
5911                 params[4] = FW_PARAM_PFVF(PBL_START);
5912                 params[5] = FW_PARAM_PFVF(PBL_END);
5913                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5914                                       params, val);
5915                 if (ret < 0)
5916                         goto bye;
5917                 adap->vres.stag.start = val[0];
5918                 adap->vres.stag.size = val[1] - val[0] + 1;
5919                 adap->vres.rq.start = val[2];
5920                 adap->vres.rq.size = val[3] - val[2] + 1;
5921                 adap->vres.pbl.start = val[4];
5922                 adap->vres.pbl.size = val[5] - val[4] + 1;
5923
5924                 params[0] = FW_PARAM_PFVF(SQRQ_START);
5925                 params[1] = FW_PARAM_PFVF(SQRQ_END);
5926                 params[2] = FW_PARAM_PFVF(CQ_START);
5927                 params[3] = FW_PARAM_PFVF(CQ_END);
5928                 params[4] = FW_PARAM_PFVF(OCQ_START);
5929                 params[5] = FW_PARAM_PFVF(OCQ_END);
5930                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
5931                                       val);
5932                 if (ret < 0)
5933                         goto bye;
5934                 adap->vres.qp.start = val[0];
5935                 adap->vres.qp.size = val[1] - val[0] + 1;
5936                 adap->vres.cq.start = val[2];
5937                 adap->vres.cq.size = val[3] - val[2] + 1;
5938                 adap->vres.ocq.start = val[4];
5939                 adap->vres.ocq.size = val[5] - val[4] + 1;
5940
5941                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5942                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5943                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
5944                                       val);
5945                 if (ret < 0) {
5946                         adap->params.max_ordird_qp = 8;
5947                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5948                         ret = 0;
5949                 } else {
5950                         adap->params.max_ordird_qp = val[0];
5951                         adap->params.max_ird_adapter = val[1];
5952                 }
5953                 dev_info(adap->pdev_dev,
5954                          "max_ordird_qp %d max_ird_adapter %d\n",
5955                          adap->params.max_ordird_qp,
5956                          adap->params.max_ird_adapter);
5957         }
5958         if (caps_cmd.iscsicaps) {
5959                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5960                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5961                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5962                                       params, val);
5963                 if (ret < 0)
5964                         goto bye;
5965                 adap->vres.iscsi.start = val[0];
5966                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5967         }
5968 #undef FW_PARAM_PFVF
5969 #undef FW_PARAM_DEV
5970
5971         /* The MTU/MSS Table is initialized by now, so load their values.  If
5972          * we're initializing the adapter, then we'll make any modifications
5973          * we want to the MTU/MSS Table and also initialize the congestion
5974          * parameters.
5975          */
5976         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5977         if (state != DEV_STATE_INIT) {
5978                 int i;
5979
5980                 /* The default MTU Table contains values 1492 and 1500.
5981                  * However, for TCP, it's better to have two values which are
5982                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5983                  * This allows us to have a TCP Data Payload which is a
5984                  * multiple of 8 regardless of what combination of TCP Options
5985                  * are in use (always a multiple of 4 bytes) which is
5986                  * important for performance reasons.  For instance, if no
5987                  * options are in use, then we have a 20-byte IP header and a
5988                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
5989                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5990                  * which is not a multiple of 8.  So using an MSS of 1488 in
5991                  * this case results in a TCP Data Payload of 1448 bytes which
5992                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5993                  * Stamps have been negotiated, then an MTU of 1500 bytes
5994                  * results in a TCP Data Payload of 1448 bytes which, as
5995                  * above, is a multiple of 8 bytes ...
5996                  */
5997                 for (i = 0; i < NMTUS; i++)
5998                         if (adap->params.mtus[i] == 1492) {
5999                                 adap->params.mtus[i] = 1488;
6000                                 break;
6001                         }
6002
6003                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6004                              adap->params.b_wnd);
6005         }
6006         t4_init_tp_params(adap);
6007         adap->flags |= FW_OK;
6008         return 0;
6009
6010         /*
6011          * Something bad happened.  If a command timed out or failed with EIO
6012          * FW does not operate within its spec or something catastrophic
6013          * happened to HW/FW, stop issuing commands.
6014          */
6015 bye:
6016         if (ret != -ETIMEDOUT && ret != -EIO)
6017                 t4_fw_bye(adap, adap->mbox);
6018         return ret;
6019 }
6020
6021 /* EEH callbacks */
6022
6023 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6024                                          pci_channel_state_t state)
6025 {
6026         int i;
6027         struct adapter *adap = pci_get_drvdata(pdev);
6028
6029         if (!adap)
6030                 goto out;
6031
6032         rtnl_lock();
6033         adap->flags &= ~FW_OK;
6034         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6035         spin_lock(&adap->stats_lock);
6036         for_each_port(adap, i) {
6037                 struct net_device *dev = adap->port[i];
6038
6039                 netif_device_detach(dev);
6040                 netif_carrier_off(dev);
6041         }
6042         spin_unlock(&adap->stats_lock);
6043         if (adap->flags & FULL_INIT_DONE)
6044                 cxgb_down(adap);
6045         rtnl_unlock();
6046         if ((adap->flags & DEV_ENABLED)) {
6047                 pci_disable_device(pdev);
6048                 adap->flags &= ~DEV_ENABLED;
6049         }
6050 out:    return state == pci_channel_io_perm_failure ?
6051                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6052 }
6053
6054 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6055 {
6056         int i, ret;
6057         struct fw_caps_config_cmd c;
6058         struct adapter *adap = pci_get_drvdata(pdev);
6059
6060         if (!adap) {
6061                 pci_restore_state(pdev);
6062                 pci_save_state(pdev);
6063                 return PCI_ERS_RESULT_RECOVERED;
6064         }
6065
6066         if (!(adap->flags & DEV_ENABLED)) {
6067                 if (pci_enable_device(pdev)) {
6068                         dev_err(&pdev->dev, "Cannot reenable PCI "
6069                                             "device after reset\n");
6070                         return PCI_ERS_RESULT_DISCONNECT;
6071                 }
6072                 adap->flags |= DEV_ENABLED;
6073         }
6074
6075         pci_set_master(pdev);
6076         pci_restore_state(pdev);
6077         pci_save_state(pdev);
6078         pci_cleanup_aer_uncorrect_error_status(pdev);
6079
6080         if (t4_wait_dev_ready(adap->regs) < 0)
6081                 return PCI_ERS_RESULT_DISCONNECT;
6082         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6083                 return PCI_ERS_RESULT_DISCONNECT;
6084         adap->flags |= FW_OK;
6085         if (adap_init1(adap, &c))
6086                 return PCI_ERS_RESULT_DISCONNECT;
6087
6088         for_each_port(adap, i) {
6089                 struct port_info *p = adap2pinfo(adap, i);
6090
6091                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6092                                   NULL, NULL);
6093                 if (ret < 0)
6094                         return PCI_ERS_RESULT_DISCONNECT;
6095                 p->viid = ret;
6096                 p->xact_addr_filt = -1;
6097         }
6098
6099         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6100                      adap->params.b_wnd);
6101         setup_memwin(adap);
6102         if (cxgb_up(adap))
6103                 return PCI_ERS_RESULT_DISCONNECT;
6104         return PCI_ERS_RESULT_RECOVERED;
6105 }
6106
6107 static void eeh_resume(struct pci_dev *pdev)
6108 {
6109         int i;
6110         struct adapter *adap = pci_get_drvdata(pdev);
6111
6112         if (!adap)
6113                 return;
6114
6115         rtnl_lock();
6116         for_each_port(adap, i) {
6117                 struct net_device *dev = adap->port[i];
6118
6119                 if (netif_running(dev)) {
6120                         link_start(dev);
6121                         cxgb_set_rxmode(dev);
6122                 }
6123                 netif_device_attach(dev);
6124         }
6125         rtnl_unlock();
6126 }
6127
6128 static const struct pci_error_handlers cxgb4_eeh = {
6129         .error_detected = eeh_err_detected,
6130         .slot_reset     = eeh_slot_reset,
6131         .resume         = eeh_resume,
6132 };
6133
6134 static inline bool is_x_10g_port(const struct link_config *lc)
6135 {
6136         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6137                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6138 }
6139
6140 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6141                              unsigned int us, unsigned int cnt,
6142                              unsigned int size, unsigned int iqe_size)
6143 {
6144         q->adap = adap;
6145         set_rspq_intr_params(q, us, cnt);
6146         q->iqe_len = iqe_size;
6147         q->size = size;
6148 }
6149
6150 /*
6151  * Perform default configuration of DMA queues depending on the number and type
6152  * of ports we found and the number of available CPUs.  Most settings can be
6153  * modified by the admin prior to actual use.
6154  */
6155 static void cfg_queues(struct adapter *adap)
6156 {
6157         struct sge *s = &adap->sge;
6158         int i, n10g = 0, qidx = 0;
6159 #ifndef CONFIG_CHELSIO_T4_DCB
6160         int q10g = 0;
6161 #endif
6162         int ciq_size;
6163
6164         for_each_port(adap, i)
6165                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6166 #ifdef CONFIG_CHELSIO_T4_DCB
6167         /* For Data Center Bridging support we need to be able to support up
6168          * to 8 Traffic Priorities; each of which will be assigned to its
6169          * own TX Queue in order to prevent Head-Of-Line Blocking.
6170          */
6171         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6172                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6173                         MAX_ETH_QSETS, adap->params.nports * 8);
6174                 BUG_ON(1);
6175         }
6176
6177         for_each_port(adap, i) {
6178                 struct port_info *pi = adap2pinfo(adap, i);
6179
6180                 pi->first_qset = qidx;
6181                 pi->nqsets = 8;
6182                 qidx += pi->nqsets;
6183         }
6184 #else /* !CONFIG_CHELSIO_T4_DCB */
6185         /*
6186          * We default to 1 queue per non-10G port and up to # of cores queues
6187          * per 10G port.
6188          */
6189         if (n10g)
6190                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6191         if (q10g > netif_get_num_default_rss_queues())
6192                 q10g = netif_get_num_default_rss_queues();
6193
6194         for_each_port(adap, i) {
6195                 struct port_info *pi = adap2pinfo(adap, i);
6196
6197                 pi->first_qset = qidx;
6198                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6199                 qidx += pi->nqsets;
6200         }
6201 #endif /* !CONFIG_CHELSIO_T4_DCB */
6202
6203         s->ethqsets = qidx;
6204         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
6205
6206         if (is_offload(adap)) {
6207                 /*
6208                  * For offload we use 1 queue/channel if all ports are up to 1G,
6209                  * otherwise we divide all available queues amongst the channels
6210                  * capped by the number of available cores.
6211                  */
6212                 if (n10g) {
6213                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6214                                   num_online_cpus());
6215                         s->ofldqsets = roundup(i, adap->params.nports);
6216                 } else
6217                         s->ofldqsets = adap->params.nports;
6218                 /* For RDMA one Rx queue per channel suffices */
6219                 s->rdmaqs = adap->params.nports;
6220                 s->rdmaciqs = adap->params.nports;
6221         }
6222
6223         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6224                 struct sge_eth_rxq *r = &s->ethrxq[i];
6225
6226                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6227                 r->fl.size = 72;
6228         }
6229
6230         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6231                 s->ethtxq[i].q.size = 1024;
6232
6233         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6234                 s->ctrlq[i].q.size = 512;
6235
6236         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6237                 s->ofldtxq[i].q.size = 1024;
6238
6239         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6240                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6241
6242                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6243                 r->rspq.uld = CXGB4_ULD_ISCSI;
6244                 r->fl.size = 72;
6245         }
6246
6247         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6248                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6249
6250                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6251                 r->rspq.uld = CXGB4_ULD_RDMA;
6252                 r->fl.size = 72;
6253         }
6254
6255         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6256         if (ciq_size > SGE_MAX_IQ_SIZE) {
6257                 CH_WARN(adap, "CIQ size too small for available IQs\n");
6258                 ciq_size = SGE_MAX_IQ_SIZE;
6259         }
6260
6261         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6262                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6263
6264                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6265                 r->rspq.uld = CXGB4_ULD_RDMA;
6266         }
6267
6268         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6269         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6270 }
6271
6272 /*
6273  * Reduce the number of Ethernet queues across all ports to at most n.
6274  * n provides at least one queue per port.
6275  */
6276 static void reduce_ethqs(struct adapter *adap, int n)
6277 {
6278         int i;
6279         struct port_info *pi;
6280
6281         while (n < adap->sge.ethqsets)
6282                 for_each_port(adap, i) {
6283                         pi = adap2pinfo(adap, i);
6284                         if (pi->nqsets > 1) {
6285                                 pi->nqsets--;
6286                                 adap->sge.ethqsets--;
6287                                 if (adap->sge.ethqsets <= n)
6288                                         break;
6289                         }
6290                 }
6291
6292         n = 0;
6293         for_each_port(adap, i) {
6294                 pi = adap2pinfo(adap, i);
6295                 pi->first_qset = n;
6296                 n += pi->nqsets;
6297         }
6298 }
6299
6300 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6301 #define EXTRA_VECS 2
6302
6303 static int enable_msix(struct adapter *adap)
6304 {
6305         int ofld_need = 0;
6306         int i, want, need;
6307         struct sge *s = &adap->sge;
6308         unsigned int nchan = adap->params.nports;
6309         struct msix_entry entries[MAX_INGQ + 1];
6310
6311         for (i = 0; i < ARRAY_SIZE(entries); ++i)
6312                 entries[i].entry = i;
6313
6314         want = s->max_ethqsets + EXTRA_VECS;
6315         if (is_offload(adap)) {
6316                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6317                 /* need nchan for each possible ULD */
6318                 ofld_need = 3 * nchan;
6319         }
6320 #ifdef CONFIG_CHELSIO_T4_DCB
6321         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6322          * each port.
6323          */
6324         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6325 #else
6326         need = adap->params.nports + EXTRA_VECS + ofld_need;
6327 #endif
6328         want = pci_enable_msix_range(adap->pdev, entries, need, want);
6329         if (want < 0)
6330                 return want;
6331
6332         /*
6333          * Distribute available vectors to the various queue groups.
6334          * Every group gets its minimum requirement and NIC gets top
6335          * priority for leftovers.
6336          */
6337         i = want - EXTRA_VECS - ofld_need;
6338         if (i < s->max_ethqsets) {
6339                 s->max_ethqsets = i;
6340                 if (i < s->ethqsets)
6341                         reduce_ethqs(adap, i);
6342         }
6343         if (is_offload(adap)) {
6344                 i = want - EXTRA_VECS - s->max_ethqsets;
6345                 i -= ofld_need - nchan;
6346                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
6347         }
6348         for (i = 0; i < want; ++i)
6349                 adap->msix_info[i].vec = entries[i].vector;
6350
6351         return 0;
6352 }
6353
6354 #undef EXTRA_VECS
6355
6356 static int init_rss(struct adapter *adap)
6357 {
6358         unsigned int i, j;
6359
6360         for_each_port(adap, i) {
6361                 struct port_info *pi = adap2pinfo(adap, i);
6362
6363                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6364                 if (!pi->rss)
6365                         return -ENOMEM;
6366                 for (j = 0; j < pi->rss_size; j++)
6367                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6368         }
6369         return 0;
6370 }
6371
6372 static void print_port_info(const struct net_device *dev)
6373 {
6374         char buf[80];
6375         char *bufp = buf;
6376         const char *spd = "";
6377         const struct port_info *pi = netdev_priv(dev);
6378         const struct adapter *adap = pi->adapter;
6379
6380         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6381                 spd = " 2.5 GT/s";
6382         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6383                 spd = " 5 GT/s";
6384         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6385                 spd = " 8 GT/s";
6386
6387         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6388                 bufp += sprintf(bufp, "100/");
6389         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6390                 bufp += sprintf(bufp, "1000/");
6391         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6392                 bufp += sprintf(bufp, "10G/");
6393         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6394                 bufp += sprintf(bufp, "40G/");
6395         if (bufp != buf)
6396                 --bufp;
6397         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6398
6399         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6400                     adap->params.vpd.id,
6401                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6402                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6403                     (adap->flags & USING_MSIX) ? " MSI-X" :
6404                     (adap->flags & USING_MSI) ? " MSI" : "");
6405         netdev_info(dev, "S/N: %s, P/N: %s\n",
6406                     adap->params.vpd.sn, adap->params.vpd.pn);
6407 }
6408
6409 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6410 {
6411         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6412 }
6413
6414 /*
6415  * Free the following resources:
6416  * - memory used for tables
6417  * - MSI/MSI-X
6418  * - net devices
6419  * - resources FW is holding for us
6420  */
6421 static void free_some_resources(struct adapter *adapter)
6422 {
6423         unsigned int i;
6424
6425         t4_free_mem(adapter->l2t);
6426         t4_free_mem(adapter->tids.tid_tab);
6427         disable_msi(adapter);
6428
6429         for_each_port(adapter, i)
6430                 if (adapter->port[i]) {
6431                         kfree(adap2pinfo(adapter, i)->rss);
6432                         free_netdev(adapter->port[i]);
6433                 }
6434         if (adapter->flags & FW_OK)
6435                 t4_fw_bye(adapter, adapter->fn);
6436 }
6437
6438 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6439 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6440                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6441 #define SEGMENT_SIZE 128
6442
6443 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6444 {
6445         int func, i, err, s_qpp, qpp, num_seg;
6446         struct port_info *pi;
6447         bool highdma = false;
6448         struct adapter *adapter = NULL;
6449         void __iomem *regs;
6450
6451         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6452
6453         err = pci_request_regions(pdev, KBUILD_MODNAME);
6454         if (err) {
6455                 /* Just info, some other driver may have claimed the device. */
6456                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6457                 return err;
6458         }
6459
6460         err = pci_enable_device(pdev);
6461         if (err) {
6462                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6463                 goto out_release_regions;
6464         }
6465
6466         regs = pci_ioremap_bar(pdev, 0);
6467         if (!regs) {
6468                 dev_err(&pdev->dev, "cannot map device registers\n");
6469                 err = -ENOMEM;
6470                 goto out_disable_device;
6471         }
6472
6473         err = t4_wait_dev_ready(regs);
6474         if (err < 0)
6475                 goto out_unmap_bar0;
6476
6477         /* We control everything through one PF */
6478         func = SOURCEPF_GET(readl(regs + PL_WHOAMI));
6479         if (func != ent->driver_data) {
6480                 iounmap(regs);
6481                 pci_disable_device(pdev);
6482                 pci_save_state(pdev);        /* to restore SR-IOV later */
6483                 goto sriov;
6484         }
6485
6486         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6487                 highdma = true;
6488                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6489                 if (err) {
6490                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6491                                 "coherent allocations\n");
6492                         goto out_unmap_bar0;
6493                 }
6494         } else {
6495                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6496                 if (err) {
6497                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6498                         goto out_unmap_bar0;
6499                 }
6500         }
6501
6502         pci_enable_pcie_error_reporting(pdev);
6503         enable_pcie_relaxed_ordering(pdev);
6504         pci_set_master(pdev);
6505         pci_save_state(pdev);
6506
6507         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6508         if (!adapter) {
6509                 err = -ENOMEM;
6510                 goto out_unmap_bar0;
6511         }
6512
6513         adapter->workq = create_singlethread_workqueue("cxgb4");
6514         if (!adapter->workq) {
6515                 err = -ENOMEM;
6516                 goto out_free_adapter;
6517         }
6518
6519         /* PCI device has been enabled */
6520         adapter->flags |= DEV_ENABLED;
6521
6522         adapter->regs = regs;
6523         adapter->pdev = pdev;
6524         adapter->pdev_dev = &pdev->dev;
6525         adapter->mbox = func;
6526         adapter->fn = func;
6527         adapter->msg_enable = dflt_msg_enable;
6528         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6529
6530         spin_lock_init(&adapter->stats_lock);
6531         spin_lock_init(&adapter->tid_release_lock);
6532         spin_lock_init(&adapter->win0_lock);
6533
6534         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6535         INIT_WORK(&adapter->db_full_task, process_db_full);
6536         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6537
6538         err = t4_prep_adapter(adapter);
6539         if (err)
6540                 goto out_free_adapter;
6541
6542
6543         if (!is_t4(adapter->params.chip)) {
6544                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6545                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6546                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6547                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6548
6549                 /* Each segment size is 128B. Write coalescing is enabled only
6550                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6551                  * queue is less no of segments that can be accommodated in
6552                  * a page size.
6553                  */
6554                 if (qpp > num_seg) {
6555                         dev_err(&pdev->dev,
6556                                 "Incorrect number of egress queues per page\n");
6557                         err = -EINVAL;
6558                         goto out_free_adapter;
6559                 }
6560                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6561                 pci_resource_len(pdev, 2));
6562                 if (!adapter->bar2) {
6563                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6564                         err = -ENOMEM;
6565                         goto out_free_adapter;
6566                 }
6567         }
6568
6569         setup_memwin(adapter);
6570         err = adap_init0(adapter);
6571         setup_memwin_rdma(adapter);
6572         if (err)
6573                 goto out_unmap_bar;
6574
6575         for_each_port(adapter, i) {
6576                 struct net_device *netdev;
6577
6578                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6579                                            MAX_ETH_QSETS);
6580                 if (!netdev) {
6581                         err = -ENOMEM;
6582                         goto out_free_dev;
6583                 }
6584
6585                 SET_NETDEV_DEV(netdev, &pdev->dev);
6586
6587                 adapter->port[i] = netdev;
6588                 pi = netdev_priv(netdev);
6589                 pi->adapter = adapter;
6590                 pi->xact_addr_filt = -1;
6591                 pi->port_id = i;
6592                 netdev->irq = pdev->irq;
6593
6594                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6595                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6596                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
6597                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6598                 if (highdma)
6599                         netdev->hw_features |= NETIF_F_HIGHDMA;
6600                 netdev->features |= netdev->hw_features;
6601                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6602
6603                 netdev->priv_flags |= IFF_UNICAST_FLT;
6604
6605                 netdev->netdev_ops = &cxgb4_netdev_ops;
6606 #ifdef CONFIG_CHELSIO_T4_DCB
6607                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6608                 cxgb4_dcb_state_init(netdev);
6609 #endif
6610                 netdev->ethtool_ops = &cxgb_ethtool_ops;
6611         }
6612
6613         pci_set_drvdata(pdev, adapter);
6614
6615         if (adapter->flags & FW_OK) {
6616                 err = t4_port_init(adapter, func, func, 0);
6617                 if (err)
6618                         goto out_free_dev;
6619         }
6620
6621         /*
6622          * Configure queues and allocate tables now, they can be needed as
6623          * soon as the first register_netdev completes.
6624          */
6625         cfg_queues(adapter);
6626
6627         adapter->l2t = t4_init_l2t();
6628         if (!adapter->l2t) {
6629                 /* We tolerate a lack of L2T, giving up some functionality */
6630                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6631                 adapter->params.offload = 0;
6632         }
6633
6634         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6635                 dev_warn(&pdev->dev, "could not allocate TID table, "
6636                          "continuing\n");
6637                 adapter->params.offload = 0;
6638         }
6639
6640         /* See what interrupts we'll be using */
6641         if (msi > 1 && enable_msix(adapter) == 0)
6642                 adapter->flags |= USING_MSIX;
6643         else if (msi > 0 && pci_enable_msi(pdev) == 0)
6644                 adapter->flags |= USING_MSI;
6645
6646         err = init_rss(adapter);
6647         if (err)
6648                 goto out_free_dev;
6649
6650         /*
6651          * The card is now ready to go.  If any errors occur during device
6652          * registration we do not fail the whole card but rather proceed only
6653          * with the ports we manage to register successfully.  However we must
6654          * register at least one net device.
6655          */
6656         for_each_port(adapter, i) {
6657                 pi = adap2pinfo(adapter, i);
6658                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6659                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6660
6661                 err = register_netdev(adapter->port[i]);
6662                 if (err)
6663                         break;
6664                 adapter->chan_map[pi->tx_chan] = i;
6665                 print_port_info(adapter->port[i]);
6666         }
6667         if (i == 0) {
6668                 dev_err(&pdev->dev, "could not register any net devices\n");
6669                 goto out_free_dev;
6670         }
6671         if (err) {
6672                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6673                 err = 0;
6674         }
6675
6676         if (cxgb4_debugfs_root) {
6677                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6678                                                            cxgb4_debugfs_root);
6679                 setup_debugfs(adapter);
6680         }
6681
6682         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6683         pdev->needs_freset = 1;
6684
6685         if (is_offload(adapter))
6686                 attach_ulds(adapter);
6687
6688 sriov:
6689 #ifdef CONFIG_PCI_IOV
6690         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6691                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6692                         dev_info(&pdev->dev,
6693                                  "instantiated %u virtual functions\n",
6694                                  num_vf[func]);
6695 #endif
6696         return 0;
6697
6698  out_free_dev:
6699         free_some_resources(adapter);
6700  out_unmap_bar:
6701         if (!is_t4(adapter->params.chip))
6702                 iounmap(adapter->bar2);
6703  out_free_adapter:
6704         if (adapter->workq)
6705                 destroy_workqueue(adapter->workq);
6706
6707         kfree(adapter);
6708  out_unmap_bar0:
6709         iounmap(regs);
6710  out_disable_device:
6711         pci_disable_pcie_error_reporting(pdev);
6712         pci_disable_device(pdev);
6713  out_release_regions:
6714         pci_release_regions(pdev);
6715         return err;
6716 }
6717
6718 static void remove_one(struct pci_dev *pdev)
6719 {
6720         struct adapter *adapter = pci_get_drvdata(pdev);
6721
6722 #ifdef CONFIG_PCI_IOV
6723         pci_disable_sriov(pdev);
6724
6725 #endif
6726
6727         if (adapter) {
6728                 int i;
6729
6730                 /* Tear down per-adapter Work Queue first since it can contain
6731                  * references to our adapter data structure.
6732                  */
6733                 destroy_workqueue(adapter->workq);
6734
6735                 if (is_offload(adapter))
6736                         detach_ulds(adapter);
6737
6738                 for_each_port(adapter, i)
6739                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6740                                 unregister_netdev(adapter->port[i]);
6741
6742                 debugfs_remove_recursive(adapter->debugfs_root);
6743
6744                 /* If we allocated filters, free up state associated with any
6745                  * valid filters ...
6746                  */
6747                 if (adapter->tids.ftid_tab) {
6748                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
6749                         for (i = 0; i < (adapter->tids.nftids +
6750                                         adapter->tids.nsftids); i++, f++)
6751                                 if (f->valid)
6752                                         clear_filter(adapter, f);
6753                 }
6754
6755                 if (adapter->flags & FULL_INIT_DONE)
6756                         cxgb_down(adapter);
6757
6758                 free_some_resources(adapter);
6759                 iounmap(adapter->regs);
6760                 if (!is_t4(adapter->params.chip))
6761                         iounmap(adapter->bar2);
6762                 pci_disable_pcie_error_reporting(pdev);
6763                 if ((adapter->flags & DEV_ENABLED)) {
6764                         pci_disable_device(pdev);
6765                         adapter->flags &= ~DEV_ENABLED;
6766                 }
6767                 pci_release_regions(pdev);
6768                 synchronize_rcu();
6769                 kfree(adapter);
6770         } else
6771                 pci_release_regions(pdev);
6772 }
6773
6774 static struct pci_driver cxgb4_driver = {
6775         .name     = KBUILD_MODNAME,
6776         .id_table = cxgb4_pci_tbl,
6777         .probe    = init_one,
6778         .remove   = remove_one,
6779         .shutdown = remove_one,
6780         .err_handler = &cxgb4_eeh,
6781 };
6782
6783 static int __init cxgb4_init_module(void)
6784 {
6785         int ret;
6786
6787         /* Debugfs support is optional, just warn if this fails */
6788         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6789         if (!cxgb4_debugfs_root)
6790                 pr_warn("could not create debugfs entry, continuing\n");
6791
6792         ret = pci_register_driver(&cxgb4_driver);
6793         if (ret < 0)
6794                 debugfs_remove(cxgb4_debugfs_root);
6795
6796 #if IS_ENABLED(CONFIG_IPV6)
6797         register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6798 #endif
6799
6800         return ret;
6801 }
6802
6803 static void __exit cxgb4_cleanup_module(void)
6804 {
6805 #if IS_ENABLED(CONFIG_IPV6)
6806         unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6807 #endif
6808         pci_unregister_driver(&cxgb4_driver);
6809         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6810 }
6811
6812 module_init(cxgb4_init_module);
6813 module_exit(cxgb4_cleanup_module);