]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge branch 'for-3.18-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "l2t.h"
72
73 #include <../drivers/net/bonding/bonding.h>
74
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80
81 /*
82  * Max interrupt hold-off timer value in us.  Queues fall back to this value
83  * under extreme memory pressure so it's largish to give the system time to
84  * recover.
85  */
86 #define MAX_SGE_TIMERVAL 200U
87
88 enum {
89         /*
90          * Physical Function provisioning constants.
91          */
92         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
93         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
94         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
95                                          */
96         PFRES_NEQ = 256,                /* # of egress queues */
97         PFRES_NIQ = 0,                  /* # of ingress queues */
98         PFRES_TC = 0,                   /* PCI-E traffic class */
99         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
100
101         PFRES_R_CAPS = FW_CMD_CAP_PF,
102         PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104 #ifdef CONFIG_PCI_IOV
105         /*
106          * Virtual Function provisioning constants.  We need two extra Ingress
107          * Queues with Interrupt capability to serve as the VF's Firmware
108          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109          * neither will have Free Lists associated with them).  For each
110          * Ethernet/Control Egress Queue and for each Free List, we need an
111          * Egress Context.
112          */
113         VFRES_NPORTS = 1,               /* # of "ports" per VF */
114         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
115
116         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
117         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
118         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
120         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
121         VFRES_TC = 0,                   /* PCI-E traffic class */
122         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
123
124         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128
129 /*
130  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
131  * static and likely not to be useful in the long run.  We really need to
132  * implement some form of persistent configuration which the firmware
133  * controls.
134  */
135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136                                   unsigned int pf, unsigned int vf)
137 {
138         unsigned int portn, portvec;
139
140         /*
141          * Give PF's access to all of the ports.
142          */
143         if (vf == 0)
144                 return FW_PFVF_CMD_PMASK_MASK;
145
146         /*
147          * For VFs, we'll assign them access to the ports based purely on the
148          * PF.  We assign active ports in order, wrapping around if there are
149          * fewer active ports than PFs: e.g. active port[pf % nports].
150          * Unfortunately the adapter's port_info structs haven't been
151          * initialized yet so we have to compute this.
152          */
153         if (adapter->params.nports == 0)
154                 return 0;
155
156         portn = pf % adapter->params.nports;
157         portvec = adapter->params.portvec;
158         for (;;) {
159                 /*
160                  * Isolate the lowest set bit in the port vector.  If we're at
161                  * the port number that we want, return that as the pmask.
162                  * otherwise mask that bit out of the port vector and
163                  * decrement our port number ...
164                  */
165                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166                 if (portn == 0)
167                         return pmask;
168                 portn--;
169                 portvec &= ~pmask;
170         }
171         /*NOTREACHED*/
172 }
173
174 enum {
175         MAX_TXQ_ENTRIES      = 16384,
176         MAX_CTRL_TXQ_ENTRIES = 1024,
177         MAX_RSPQ_ENTRIES     = 16384,
178         MAX_RX_BUFFERS       = 16384,
179         MIN_TXQ_ENTRIES      = 32,
180         MIN_CTRL_TXQ_ENTRIES = 32,
181         MIN_RSPQ_ENTRIES     = 128,
182         MIN_FL_ENTRIES       = 16
183 };
184
185 /* Host shadow copy of ingress filter entry.  This is in host native format
186  * and doesn't match the ordering or bit order, etc. of the hardware of the
187  * firmware command.  The use of bit-field structure elements is purely to
188  * remind ourselves of the field size limitations and save memory in the case
189  * where the filter table is large.
190  */
191 struct filter_entry {
192         /* Administrative fields for filter.
193          */
194         u32 valid:1;            /* filter allocated and valid */
195         u32 locked:1;           /* filter is administratively locked */
196
197         u32 pending:1;          /* filter action is pending firmware reply */
198         u32 smtidx:8;           /* Source MAC Table index for smac */
199         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
200
201         /* The filter itself.  Most of this is a straight copy of information
202          * provided by the extended ioctl().  Some fields are translated to
203          * internal forms -- for instance the Ingress Queue ID passed in from
204          * the ioctl() is translated into the Absolute Ingress Queue ID.
205          */
206         struct ch_filter_specification fs;
207 };
208
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
213 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
214
215 static const struct pci_device_id cxgb4_pci_tbl[] = {
216         CH_DEVICE(0xa000, 0),  /* PE10K */
217         CH_DEVICE(0x4001, -1),
218         CH_DEVICE(0x4002, -1),
219         CH_DEVICE(0x4003, -1),
220         CH_DEVICE(0x4004, -1),
221         CH_DEVICE(0x4005, -1),
222         CH_DEVICE(0x4006, -1),
223         CH_DEVICE(0x4007, -1),
224         CH_DEVICE(0x4008, -1),
225         CH_DEVICE(0x4009, -1),
226         CH_DEVICE(0x400a, -1),
227         CH_DEVICE(0x400d, -1),
228         CH_DEVICE(0x400e, -1),
229         CH_DEVICE(0x4080, -1),
230         CH_DEVICE(0x4081, -1),
231         CH_DEVICE(0x4082, -1),
232         CH_DEVICE(0x4083, -1),
233         CH_DEVICE(0x4084, -1),
234         CH_DEVICE(0x4085, -1),
235         CH_DEVICE(0x4086, -1),
236         CH_DEVICE(0x4087, -1),
237         CH_DEVICE(0x4088, -1),
238         CH_DEVICE(0x4401, 4),
239         CH_DEVICE(0x4402, 4),
240         CH_DEVICE(0x4403, 4),
241         CH_DEVICE(0x4404, 4),
242         CH_DEVICE(0x4405, 4),
243         CH_DEVICE(0x4406, 4),
244         CH_DEVICE(0x4407, 4),
245         CH_DEVICE(0x4408, 4),
246         CH_DEVICE(0x4409, 4),
247         CH_DEVICE(0x440a, 4),
248         CH_DEVICE(0x440d, 4),
249         CH_DEVICE(0x440e, 4),
250         CH_DEVICE(0x4480, 4),
251         CH_DEVICE(0x4481, 4),
252         CH_DEVICE(0x4482, 4),
253         CH_DEVICE(0x4483, 4),
254         CH_DEVICE(0x4484, 4),
255         CH_DEVICE(0x4485, 4),
256         CH_DEVICE(0x4486, 4),
257         CH_DEVICE(0x4487, 4),
258         CH_DEVICE(0x4488, 4),
259         CH_DEVICE(0x5001, 4),
260         CH_DEVICE(0x5002, 4),
261         CH_DEVICE(0x5003, 4),
262         CH_DEVICE(0x5004, 4),
263         CH_DEVICE(0x5005, 4),
264         CH_DEVICE(0x5006, 4),
265         CH_DEVICE(0x5007, 4),
266         CH_DEVICE(0x5008, 4),
267         CH_DEVICE(0x5009, 4),
268         CH_DEVICE(0x500A, 4),
269         CH_DEVICE(0x500B, 4),
270         CH_DEVICE(0x500C, 4),
271         CH_DEVICE(0x500D, 4),
272         CH_DEVICE(0x500E, 4),
273         CH_DEVICE(0x500F, 4),
274         CH_DEVICE(0x5010, 4),
275         CH_DEVICE(0x5011, 4),
276         CH_DEVICE(0x5012, 4),
277         CH_DEVICE(0x5013, 4),
278         CH_DEVICE(0x5014, 4),
279         CH_DEVICE(0x5015, 4),
280         CH_DEVICE(0x5080, 4),
281         CH_DEVICE(0x5081, 4),
282         CH_DEVICE(0x5082, 4),
283         CH_DEVICE(0x5083, 4),
284         CH_DEVICE(0x5084, 4),
285         CH_DEVICE(0x5085, 4),
286         CH_DEVICE(0x5086, 4),
287         CH_DEVICE(0x5087, 4),
288         CH_DEVICE(0x5088, 4),
289         CH_DEVICE(0x5401, 4),
290         CH_DEVICE(0x5402, 4),
291         CH_DEVICE(0x5403, 4),
292         CH_DEVICE(0x5404, 4),
293         CH_DEVICE(0x5405, 4),
294         CH_DEVICE(0x5406, 4),
295         CH_DEVICE(0x5407, 4),
296         CH_DEVICE(0x5408, 4),
297         CH_DEVICE(0x5409, 4),
298         CH_DEVICE(0x540A, 4),
299         CH_DEVICE(0x540B, 4),
300         CH_DEVICE(0x540C, 4),
301         CH_DEVICE(0x540D, 4),
302         CH_DEVICE(0x540E, 4),
303         CH_DEVICE(0x540F, 4),
304         CH_DEVICE(0x5410, 4),
305         CH_DEVICE(0x5411, 4),
306         CH_DEVICE(0x5412, 4),
307         CH_DEVICE(0x5413, 4),
308         CH_DEVICE(0x5414, 4),
309         CH_DEVICE(0x5415, 4),
310         CH_DEVICE(0x5480, 4),
311         CH_DEVICE(0x5481, 4),
312         CH_DEVICE(0x5482, 4),
313         CH_DEVICE(0x5483, 4),
314         CH_DEVICE(0x5484, 4),
315         CH_DEVICE(0x5485, 4),
316         CH_DEVICE(0x5486, 4),
317         CH_DEVICE(0x5487, 4),
318         CH_DEVICE(0x5488, 4),
319         { 0, }
320 };
321
322 #define FW4_FNAME "cxgb4/t4fw.bin"
323 #define FW5_FNAME "cxgb4/t5fw.bin"
324 #define FW4_CFNAME "cxgb4/t4-config.txt"
325 #define FW5_CFNAME "cxgb4/t5-config.txt"
326
327 MODULE_DESCRIPTION(DRV_DESC);
328 MODULE_AUTHOR("Chelsio Communications");
329 MODULE_LICENSE("Dual BSD/GPL");
330 MODULE_VERSION(DRV_VERSION);
331 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
332 MODULE_FIRMWARE(FW4_FNAME);
333 MODULE_FIRMWARE(FW5_FNAME);
334
335 /*
336  * Normally we're willing to become the firmware's Master PF but will be happy
337  * if another PF has already become the Master and initialized the adapter.
338  * Setting "force_init" will cause this driver to forcibly establish itself as
339  * the Master PF and initialize the adapter.
340  */
341 static uint force_init;
342
343 module_param(force_init, uint, 0644);
344 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
345
346 /*
347  * Normally if the firmware we connect to has Configuration File support, we
348  * use that and only fall back to the old Driver-based initialization if the
349  * Configuration File fails for some reason.  If force_old_init is set, then
350  * we'll always use the old Driver-based initialization sequence.
351  */
352 static uint force_old_init;
353
354 module_param(force_old_init, uint, 0644);
355 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
356
357 static int dflt_msg_enable = DFLT_MSG_ENABLE;
358
359 module_param(dflt_msg_enable, int, 0644);
360 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
361
362 /*
363  * The driver uses the best interrupt scheme available on a platform in the
364  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
365  * of these schemes the driver may consider as follows:
366  *
367  * msi = 2: choose from among all three options
368  * msi = 1: only consider MSI and INTx interrupts
369  * msi = 0: force INTx interrupts
370  */
371 static int msi = 2;
372
373 module_param(msi, int, 0644);
374 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
375
376 /*
377  * Queue interrupt hold-off timer values.  Queues default to the first of these
378  * upon creation.
379  */
380 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
381
382 module_param_array(intr_holdoff, uint, NULL, 0644);
383 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
384                  "0..4 in microseconds");
385
386 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
387
388 module_param_array(intr_cnt, uint, NULL, 0644);
389 MODULE_PARM_DESC(intr_cnt,
390                  "thresholds 1..3 for queue interrupt packet counters");
391
392 /*
393  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
394  * offset by 2 bytes in order to have the IP headers line up on 4-byte
395  * boundaries.  This is a requirement for many architectures which will throw
396  * a machine check fault if an attempt is made to access one of the 4-byte IP
397  * header fields on a non-4-byte boundary.  And it's a major performance issue
398  * even on some architectures which allow it like some implementations of the
399  * x86 ISA.  However, some architectures don't mind this and for some very
400  * edge-case performance sensitive applications (like forwarding large volumes
401  * of small packets), setting this DMA offset to 0 will decrease the number of
402  * PCI-E Bus transfers enough to measurably affect performance.
403  */
404 static int rx_dma_offset = 2;
405
406 static bool vf_acls;
407
408 #ifdef CONFIG_PCI_IOV
409 module_param(vf_acls, bool, 0644);
410 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
411
412 /* Configure the number of PCI-E Virtual Function which are to be instantiated
413  * on SR-IOV Capable Physical Functions.
414  */
415 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
416
417 module_param_array(num_vf, uint, NULL, 0644);
418 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
419 #endif
420
421 /* TX Queue select used to determine what algorithm to use for selecting TX
422  * queue. Select between the kernel provided function (select_queue=0) or user
423  * cxgb_select_queue function (select_queue=1)
424  *
425  * Default: select_queue=0
426  */
427 static int select_queue;
428 module_param(select_queue, int, 0644);
429 MODULE_PARM_DESC(select_queue,
430                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
431
432 /*
433  * The filter TCAM has a fixed portion and a variable portion.  The fixed
434  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
435  * ports.  The variable portion is 36 bits which can include things like Exact
436  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
437  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
438  * far exceed the 36-bit budget for this "compressed" header portion of the
439  * filter.  Thus, we have a scarce resource which must be carefully managed.
440  *
441  * By default we set this up to mostly match the set of filter matching
442  * capabilities of T3 but with accommodations for some of T4's more
443  * interesting features:
444  *
445  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
446  *     [Inner] VLAN (17), Port (3), FCoE (1) }
447  */
448 enum {
449         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
450         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
451         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
452 };
453
454 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
455
456 module_param(tp_vlan_pri_map, uint, 0644);
457 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
458
459 static struct dentry *cxgb4_debugfs_root;
460
461 static LIST_HEAD(adapter_list);
462 static DEFINE_MUTEX(uld_mutex);
463 /* Adapter list to be accessed from atomic context */
464 static LIST_HEAD(adap_rcu_list);
465 static DEFINE_SPINLOCK(adap_rcu_lock);
466 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
467 static const char *uld_str[] = { "RDMA", "iSCSI" };
468
469 static void link_report(struct net_device *dev)
470 {
471         if (!netif_carrier_ok(dev))
472                 netdev_info(dev, "link down\n");
473         else {
474                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
475
476                 const char *s = "10Mbps";
477                 const struct port_info *p = netdev_priv(dev);
478
479                 switch (p->link_cfg.speed) {
480                 case 10000:
481                         s = "10Gbps";
482                         break;
483                 case 1000:
484                         s = "1000Mbps";
485                         break;
486                 case 100:
487                         s = "100Mbps";
488                         break;
489                 case 40000:
490                         s = "40Gbps";
491                         break;
492                 }
493
494                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
495                             fc[p->link_cfg.fc]);
496         }
497 }
498
499 #ifdef CONFIG_CHELSIO_T4_DCB
500 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
501 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
502 {
503         struct port_info *pi = netdev_priv(dev);
504         struct adapter *adap = pi->adapter;
505         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
506         int i;
507
508         /* We use a simple mapping of Port TX Queue Index to DCB
509          * Priority when we're enabling DCB.
510          */
511         for (i = 0; i < pi->nqsets; i++, txq++) {
512                 u32 name, value;
513                 int err;
514
515                 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
516                         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
517                         FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
518                 value = enable ? i : 0xffffffff;
519
520                 /* Since we can be called while atomic (from "interrupt
521                  * level") we need to issue the Set Parameters Commannd
522                  * without sleeping (timeout < 0).
523                  */
524                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
525                                             &name, &value);
526
527                 if (err)
528                         dev_err(adap->pdev_dev,
529                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
530                                 enable ? "set" : "unset", pi->port_id, i, -err);
531                 else
532                         txq->dcb_prio = value;
533         }
534 }
535 #endif /* CONFIG_CHELSIO_T4_DCB */
536
537 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
538 {
539         struct net_device *dev = adapter->port[port_id];
540
541         /* Skip changes from disabled ports. */
542         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
543                 if (link_stat)
544                         netif_carrier_on(dev);
545                 else {
546 #ifdef CONFIG_CHELSIO_T4_DCB
547                         cxgb4_dcb_state_init(dev);
548                         dcb_tx_queue_prio_enable(dev, false);
549 #endif /* CONFIG_CHELSIO_T4_DCB */
550                         netif_carrier_off(dev);
551                 }
552
553                 link_report(dev);
554         }
555 }
556
557 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
558 {
559         static const char *mod_str[] = {
560                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
561         };
562
563         const struct net_device *dev = adap->port[port_id];
564         const struct port_info *pi = netdev_priv(dev);
565
566         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
567                 netdev_info(dev, "port module unplugged\n");
568         else if (pi->mod_type < ARRAY_SIZE(mod_str))
569                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
570 }
571
572 /*
573  * Configure the exact and hash address filters to handle a port's multicast
574  * and secondary unicast MAC addresses.
575  */
576 static int set_addr_filters(const struct net_device *dev, bool sleep)
577 {
578         u64 mhash = 0;
579         u64 uhash = 0;
580         bool free = true;
581         u16 filt_idx[7];
582         const u8 *addr[7];
583         int ret, naddr = 0;
584         const struct netdev_hw_addr *ha;
585         int uc_cnt = netdev_uc_count(dev);
586         int mc_cnt = netdev_mc_count(dev);
587         const struct port_info *pi = netdev_priv(dev);
588         unsigned int mb = pi->adapter->fn;
589
590         /* first do the secondary unicast addresses */
591         netdev_for_each_uc_addr(ha, dev) {
592                 addr[naddr++] = ha->addr;
593                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
594                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
595                                         naddr, addr, filt_idx, &uhash, sleep);
596                         if (ret < 0)
597                                 return ret;
598
599                         free = false;
600                         naddr = 0;
601                 }
602         }
603
604         /* next set up the multicast addresses */
605         netdev_for_each_mc_addr(ha, dev) {
606                 addr[naddr++] = ha->addr;
607                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
608                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
609                                         naddr, addr, filt_idx, &mhash, sleep);
610                         if (ret < 0)
611                                 return ret;
612
613                         free = false;
614                         naddr = 0;
615                 }
616         }
617
618         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
619                                 uhash | mhash, sleep);
620 }
621
622 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
623 module_param(dbfifo_int_thresh, int, 0644);
624 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
625
626 /*
627  * usecs to sleep while draining the dbfifo
628  */
629 static int dbfifo_drain_delay = 1000;
630 module_param(dbfifo_drain_delay, int, 0644);
631 MODULE_PARM_DESC(dbfifo_drain_delay,
632                  "usecs to sleep while draining the dbfifo");
633
634 /*
635  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
636  * If @mtu is -1 it is left unchanged.
637  */
638 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
639 {
640         int ret;
641         struct port_info *pi = netdev_priv(dev);
642
643         ret = set_addr_filters(dev, sleep_ok);
644         if (ret == 0)
645                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
646                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
647                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
648                                     sleep_ok);
649         return ret;
650 }
651
652 /**
653  *      link_start - enable a port
654  *      @dev: the port to enable
655  *
656  *      Performs the MAC and PHY actions needed to enable a port.
657  */
658 static int link_start(struct net_device *dev)
659 {
660         int ret;
661         struct port_info *pi = netdev_priv(dev);
662         unsigned int mb = pi->adapter->fn;
663
664         /*
665          * We do not set address filters and promiscuity here, the stack does
666          * that step explicitly.
667          */
668         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
669                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
670         if (ret == 0) {
671                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
672                                     pi->xact_addr_filt, dev->dev_addr, true,
673                                     true);
674                 if (ret >= 0) {
675                         pi->xact_addr_filt = ret;
676                         ret = 0;
677                 }
678         }
679         if (ret == 0)
680                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
681                                     &pi->link_cfg);
682         if (ret == 0) {
683                 local_bh_disable();
684                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
685                                           true, CXGB4_DCB_ENABLED);
686                 local_bh_enable();
687         }
688
689         return ret;
690 }
691
692 int cxgb4_dcb_enabled(const struct net_device *dev)
693 {
694 #ifdef CONFIG_CHELSIO_T4_DCB
695         struct port_info *pi = netdev_priv(dev);
696
697         if (!pi->dcb.enabled)
698                 return 0;
699
700         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
701                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
702 #else
703         return 0;
704 #endif
705 }
706 EXPORT_SYMBOL(cxgb4_dcb_enabled);
707
708 #ifdef CONFIG_CHELSIO_T4_DCB
709 /* Handle a Data Center Bridging update message from the firmware. */
710 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
711 {
712         int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
713         struct net_device *dev = adap->port[port];
714         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
715         int new_dcb_enabled;
716
717         cxgb4_dcb_handle_fw_update(adap, pcmd);
718         new_dcb_enabled = cxgb4_dcb_enabled(dev);
719
720         /* If the DCB has become enabled or disabled on the port then we're
721          * going to need to set up/tear down DCB Priority parameters for the
722          * TX Queues associated with the port.
723          */
724         if (new_dcb_enabled != old_dcb_enabled)
725                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
726 }
727 #endif /* CONFIG_CHELSIO_T4_DCB */
728
729 /* Clear a filter and release any of its resources that we own.  This also
730  * clears the filter's "pending" status.
731  */
732 static void clear_filter(struct adapter *adap, struct filter_entry *f)
733 {
734         /* If the new or old filter have loopback rewriteing rules then we'll
735          * need to free any existing Layer Two Table (L2T) entries of the old
736          * filter rule.  The firmware will handle freeing up any Source MAC
737          * Table (SMT) entries used for rewriting Source MAC Addresses in
738          * loopback rules.
739          */
740         if (f->l2t)
741                 cxgb4_l2t_release(f->l2t);
742
743         /* The zeroing of the filter rule below clears the filter valid,
744          * pending, locked flags, l2t pointer, etc. so it's all we need for
745          * this operation.
746          */
747         memset(f, 0, sizeof(*f));
748 }
749
750 /* Handle a filter write/deletion reply.
751  */
752 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
753 {
754         unsigned int idx = GET_TID(rpl);
755         unsigned int nidx = idx - adap->tids.ftid_base;
756         unsigned int ret;
757         struct filter_entry *f;
758
759         if (idx >= adap->tids.ftid_base && nidx <
760            (adap->tids.nftids + adap->tids.nsftids)) {
761                 idx = nidx;
762                 ret = GET_TCB_COOKIE(rpl->cookie);
763                 f = &adap->tids.ftid_tab[idx];
764
765                 if (ret == FW_FILTER_WR_FLT_DELETED) {
766                         /* Clear the filter when we get confirmation from the
767                          * hardware that the filter has been deleted.
768                          */
769                         clear_filter(adap, f);
770                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
771                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
772                                 idx);
773                         clear_filter(adap, f);
774                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
775                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
776                         f->pending = 0;  /* asynchronous setup completed */
777                         f->valid = 1;
778                 } else {
779                         /* Something went wrong.  Issue a warning about the
780                          * problem and clear everything out.
781                          */
782                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
783                                 idx, ret);
784                         clear_filter(adap, f);
785                 }
786         }
787 }
788
789 /* Response queue handler for the FW event queue.
790  */
791 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
792                           const struct pkt_gl *gl)
793 {
794         u8 opcode = ((const struct rss_header *)rsp)->opcode;
795
796         rsp++;                                          /* skip RSS header */
797
798         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
799          */
800         if (unlikely(opcode == CPL_FW4_MSG &&
801            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
802                 rsp++;
803                 opcode = ((const struct rss_header *)rsp)->opcode;
804                 rsp++;
805                 if (opcode != CPL_SGE_EGR_UPDATE) {
806                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
807                                 , opcode);
808                         goto out;
809                 }
810         }
811
812         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
813                 const struct cpl_sge_egr_update *p = (void *)rsp;
814                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
815                 struct sge_txq *txq;
816
817                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
818                 txq->restarts++;
819                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
820                         struct sge_eth_txq *eq;
821
822                         eq = container_of(txq, struct sge_eth_txq, q);
823                         netif_tx_wake_queue(eq->txq);
824                 } else {
825                         struct sge_ofld_txq *oq;
826
827                         oq = container_of(txq, struct sge_ofld_txq, q);
828                         tasklet_schedule(&oq->qresume_tsk);
829                 }
830         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
831                 const struct cpl_fw6_msg *p = (void *)rsp;
832
833 #ifdef CONFIG_CHELSIO_T4_DCB
834                 const struct fw_port_cmd *pcmd = (const void *)p->data;
835                 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
836                 unsigned int action =
837                         FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
838
839                 if (cmd == FW_PORT_CMD &&
840                     action == FW_PORT_ACTION_GET_PORT_INFO) {
841                         int port = FW_PORT_CMD_PORTID_GET(
842                                         be32_to_cpu(pcmd->op_to_portid));
843                         struct net_device *dev = q->adap->port[port];
844                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
845                                             FW_PORT_CMD_DCBXDIS)
846                                            ? CXGB4_DCB_INPUT_FW_DISABLED
847                                            : CXGB4_DCB_INPUT_FW_ENABLED);
848
849                         cxgb4_dcb_state_fsm(dev, state_input);
850                 }
851
852                 if (cmd == FW_PORT_CMD &&
853                     action == FW_PORT_ACTION_L2_DCB_CFG)
854                         dcb_rpl(q->adap, pcmd);
855                 else
856 #endif
857                         if (p->type == 0)
858                                 t4_handle_fw_rpl(q->adap, p->data);
859         } else if (opcode == CPL_L2T_WRITE_RPL) {
860                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
861
862                 do_l2t_write_rpl(q->adap, p);
863         } else if (opcode == CPL_SET_TCB_RPL) {
864                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
865
866                 filter_rpl(q->adap, p);
867         } else
868                 dev_err(q->adap->pdev_dev,
869                         "unexpected CPL %#x on FW event queue\n", opcode);
870 out:
871         return 0;
872 }
873
874 /**
875  *      uldrx_handler - response queue handler for ULD queues
876  *      @q: the response queue that received the packet
877  *      @rsp: the response queue descriptor holding the offload message
878  *      @gl: the gather list of packet fragments
879  *
880  *      Deliver an ingress offload packet to a ULD.  All processing is done by
881  *      the ULD, we just maintain statistics.
882  */
883 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
884                          const struct pkt_gl *gl)
885 {
886         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
887
888         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
889          */
890         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
891             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
892                 rsp += 2;
893
894         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
895                 rxq->stats.nomem++;
896                 return -1;
897         }
898         if (gl == NULL)
899                 rxq->stats.imm++;
900         else if (gl == CXGB4_MSG_AN)
901                 rxq->stats.an++;
902         else
903                 rxq->stats.pkts++;
904         return 0;
905 }
906
907 static void disable_msi(struct adapter *adapter)
908 {
909         if (adapter->flags & USING_MSIX) {
910                 pci_disable_msix(adapter->pdev);
911                 adapter->flags &= ~USING_MSIX;
912         } else if (adapter->flags & USING_MSI) {
913                 pci_disable_msi(adapter->pdev);
914                 adapter->flags &= ~USING_MSI;
915         }
916 }
917
918 /*
919  * Interrupt handler for non-data events used with MSI-X.
920  */
921 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
922 {
923         struct adapter *adap = cookie;
924
925         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
926         if (v & PFSW) {
927                 adap->swintr = 1;
928                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
929         }
930         t4_slow_intr_handler(adap);
931         return IRQ_HANDLED;
932 }
933
934 /*
935  * Name the MSI-X interrupts.
936  */
937 static void name_msix_vecs(struct adapter *adap)
938 {
939         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
940
941         /* non-data interrupts */
942         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
943
944         /* FW events */
945         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
946                  adap->port[0]->name);
947
948         /* Ethernet queues */
949         for_each_port(adap, j) {
950                 struct net_device *d = adap->port[j];
951                 const struct port_info *pi = netdev_priv(d);
952
953                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
954                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
955                                  d->name, i);
956         }
957
958         /* offload queues */
959         for_each_ofldrxq(&adap->sge, i)
960                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
961                          adap->port[0]->name, i);
962
963         for_each_rdmarxq(&adap->sge, i)
964                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
965                          adap->port[0]->name, i);
966
967         for_each_rdmaciq(&adap->sge, i)
968                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
969                          adap->port[0]->name, i);
970 }
971
972 static int request_msix_queue_irqs(struct adapter *adap)
973 {
974         struct sge *s = &adap->sge;
975         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
976         int msi_index = 2;
977
978         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
979                           adap->msix_info[1].desc, &s->fw_evtq);
980         if (err)
981                 return err;
982
983         for_each_ethrxq(s, ethqidx) {
984                 err = request_irq(adap->msix_info[msi_index].vec,
985                                   t4_sge_intr_msix, 0,
986                                   adap->msix_info[msi_index].desc,
987                                   &s->ethrxq[ethqidx].rspq);
988                 if (err)
989                         goto unwind;
990                 msi_index++;
991         }
992         for_each_ofldrxq(s, ofldqidx) {
993                 err = request_irq(adap->msix_info[msi_index].vec,
994                                   t4_sge_intr_msix, 0,
995                                   adap->msix_info[msi_index].desc,
996                                   &s->ofldrxq[ofldqidx].rspq);
997                 if (err)
998                         goto unwind;
999                 msi_index++;
1000         }
1001         for_each_rdmarxq(s, rdmaqidx) {
1002                 err = request_irq(adap->msix_info[msi_index].vec,
1003                                   t4_sge_intr_msix, 0,
1004                                   adap->msix_info[msi_index].desc,
1005                                   &s->rdmarxq[rdmaqidx].rspq);
1006                 if (err)
1007                         goto unwind;
1008                 msi_index++;
1009         }
1010         for_each_rdmaciq(s, rdmaciqqidx) {
1011                 err = request_irq(adap->msix_info[msi_index].vec,
1012                                   t4_sge_intr_msix, 0,
1013                                   adap->msix_info[msi_index].desc,
1014                                   &s->rdmaciq[rdmaciqqidx].rspq);
1015                 if (err)
1016                         goto unwind;
1017                 msi_index++;
1018         }
1019         return 0;
1020
1021 unwind:
1022         while (--rdmaciqqidx >= 0)
1023                 free_irq(adap->msix_info[--msi_index].vec,
1024                          &s->rdmaciq[rdmaciqqidx].rspq);
1025         while (--rdmaqidx >= 0)
1026                 free_irq(adap->msix_info[--msi_index].vec,
1027                          &s->rdmarxq[rdmaqidx].rspq);
1028         while (--ofldqidx >= 0)
1029                 free_irq(adap->msix_info[--msi_index].vec,
1030                          &s->ofldrxq[ofldqidx].rspq);
1031         while (--ethqidx >= 0)
1032                 free_irq(adap->msix_info[--msi_index].vec,
1033                          &s->ethrxq[ethqidx].rspq);
1034         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1035         return err;
1036 }
1037
1038 static void free_msix_queue_irqs(struct adapter *adap)
1039 {
1040         int i, msi_index = 2;
1041         struct sge *s = &adap->sge;
1042
1043         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1044         for_each_ethrxq(s, i)
1045                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1046         for_each_ofldrxq(s, i)
1047                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1048         for_each_rdmarxq(s, i)
1049                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1050         for_each_rdmaciq(s, i)
1051                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1052 }
1053
1054 /**
1055  *      write_rss - write the RSS table for a given port
1056  *      @pi: the port
1057  *      @queues: array of queue indices for RSS
1058  *
1059  *      Sets up the portion of the HW RSS table for the port's VI to distribute
1060  *      packets to the Rx queues in @queues.
1061  */
1062 static int write_rss(const struct port_info *pi, const u16 *queues)
1063 {
1064         u16 *rss;
1065         int i, err;
1066         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1067
1068         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1069         if (!rss)
1070                 return -ENOMEM;
1071
1072         /* map the queue indices to queue ids */
1073         for (i = 0; i < pi->rss_size; i++, queues++)
1074                 rss[i] = q[*queues].rspq.abs_id;
1075
1076         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1077                                   pi->rss_size, rss, pi->rss_size);
1078         kfree(rss);
1079         return err;
1080 }
1081
1082 /**
1083  *      setup_rss - configure RSS
1084  *      @adap: the adapter
1085  *
1086  *      Sets up RSS for each port.
1087  */
1088 static int setup_rss(struct adapter *adap)
1089 {
1090         int i, err;
1091
1092         for_each_port(adap, i) {
1093                 const struct port_info *pi = adap2pinfo(adap, i);
1094
1095                 err = write_rss(pi, pi->rss);
1096                 if (err)
1097                         return err;
1098         }
1099         return 0;
1100 }
1101
1102 /*
1103  * Return the channel of the ingress queue with the given qid.
1104  */
1105 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1106 {
1107         qid -= p->ingr_start;
1108         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1109 }
1110
1111 /*
1112  * Wait until all NAPI handlers are descheduled.
1113  */
1114 static void quiesce_rx(struct adapter *adap)
1115 {
1116         int i;
1117
1118         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1119                 struct sge_rspq *q = adap->sge.ingr_map[i];
1120
1121                 if (q && q->handler)
1122                         napi_disable(&q->napi);
1123         }
1124 }
1125
1126 /*
1127  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1128  */
1129 static void enable_rx(struct adapter *adap)
1130 {
1131         int i;
1132
1133         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1134                 struct sge_rspq *q = adap->sge.ingr_map[i];
1135
1136                 if (!q)
1137                         continue;
1138                 if (q->handler)
1139                         napi_enable(&q->napi);
1140                 /* 0-increment GTS to start the timer and enable interrupts */
1141                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1142                              SEINTARM(q->intr_params) |
1143                              INGRESSQID(q->cntxt_id));
1144         }
1145 }
1146
1147 /**
1148  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1149  *      @adap: the adapter
1150  *
1151  *      Determines how many sets of SGE queues to use and initializes them.
1152  *      We support multiple queue sets per port if we have MSI-X, otherwise
1153  *      just one queue set per port.
1154  */
1155 static int setup_sge_queues(struct adapter *adap)
1156 {
1157         int err, msi_idx, i, j;
1158         struct sge *s = &adap->sge;
1159
1160         bitmap_zero(s->starving_fl, MAX_EGRQ);
1161         bitmap_zero(s->txq_maperr, MAX_EGRQ);
1162
1163         if (adap->flags & USING_MSIX)
1164                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1165         else {
1166                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1167                                        NULL, NULL);
1168                 if (err)
1169                         return err;
1170                 msi_idx = -((int)s->intrq.abs_id + 1);
1171         }
1172
1173         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1174                                msi_idx, NULL, fwevtq_handler);
1175         if (err) {
1176 freeout:        t4_free_sge_resources(adap);
1177                 return err;
1178         }
1179
1180         for_each_port(adap, i) {
1181                 struct net_device *dev = adap->port[i];
1182                 struct port_info *pi = netdev_priv(dev);
1183                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1184                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1185
1186                 for (j = 0; j < pi->nqsets; j++, q++) {
1187                         if (msi_idx > 0)
1188                                 msi_idx++;
1189                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1190                                                msi_idx, &q->fl,
1191                                                t4_ethrx_handler);
1192                         if (err)
1193                                 goto freeout;
1194                         q->rspq.idx = j;
1195                         memset(&q->stats, 0, sizeof(q->stats));
1196                 }
1197                 for (j = 0; j < pi->nqsets; j++, t++) {
1198                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1199                                         netdev_get_tx_queue(dev, j),
1200                                         s->fw_evtq.cntxt_id);
1201                         if (err)
1202                                 goto freeout;
1203                 }
1204         }
1205
1206         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1207         for_each_ofldrxq(s, i) {
1208                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1209                 struct net_device *dev = adap->port[i / j];
1210
1211                 if (msi_idx > 0)
1212                         msi_idx++;
1213                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1214                                        q->fl.size ? &q->fl : NULL,
1215                                        uldrx_handler);
1216                 if (err)
1217                         goto freeout;
1218                 memset(&q->stats, 0, sizeof(q->stats));
1219                 s->ofld_rxq[i] = q->rspq.abs_id;
1220                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1221                                             s->fw_evtq.cntxt_id);
1222                 if (err)
1223                         goto freeout;
1224         }
1225
1226         for_each_rdmarxq(s, i) {
1227                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1228
1229                 if (msi_idx > 0)
1230                         msi_idx++;
1231                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1232                                        msi_idx, q->fl.size ? &q->fl : NULL,
1233                                        uldrx_handler);
1234                 if (err)
1235                         goto freeout;
1236                 memset(&q->stats, 0, sizeof(q->stats));
1237                 s->rdma_rxq[i] = q->rspq.abs_id;
1238         }
1239
1240         for_each_rdmaciq(s, i) {
1241                 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1242
1243                 if (msi_idx > 0)
1244                         msi_idx++;
1245                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1246                                        msi_idx, q->fl.size ? &q->fl : NULL,
1247                                        uldrx_handler);
1248                 if (err)
1249                         goto freeout;
1250                 memset(&q->stats, 0, sizeof(q->stats));
1251                 s->rdma_ciq[i] = q->rspq.abs_id;
1252         }
1253
1254         for_each_port(adap, i) {
1255                 /*
1256                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1257                  * have RDMA queues, and that's the right value.
1258                  */
1259                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1260                                             s->fw_evtq.cntxt_id,
1261                                             s->rdmarxq[i].rspq.cntxt_id);
1262                 if (err)
1263                         goto freeout;
1264         }
1265
1266         t4_write_reg(adap, is_t4(adap->params.chip) ?
1267                                 MPS_TRC_RSS_CONTROL :
1268                                 MPS_T5_TRC_RSS_CONTROL,
1269                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1270                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1271         return 0;
1272 }
1273
1274 /*
1275  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1276  * The allocated memory is cleared.
1277  */
1278 void *t4_alloc_mem(size_t size)
1279 {
1280         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1281
1282         if (!p)
1283                 p = vzalloc(size);
1284         return p;
1285 }
1286
1287 /*
1288  * Free memory allocated through alloc_mem().
1289  */
1290 static void t4_free_mem(void *addr)
1291 {
1292         if (is_vmalloc_addr(addr))
1293                 vfree(addr);
1294         else
1295                 kfree(addr);
1296 }
1297
1298 /* Send a Work Request to write the filter at a specified index.  We construct
1299  * a Firmware Filter Work Request to have the work done and put the indicated
1300  * filter into "pending" mode which will prevent any further actions against
1301  * it till we get a reply from the firmware on the completion status of the
1302  * request.
1303  */
1304 static int set_filter_wr(struct adapter *adapter, int fidx)
1305 {
1306         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1307         struct sk_buff *skb;
1308         struct fw_filter_wr *fwr;
1309         unsigned int ftid;
1310
1311         /* If the new filter requires loopback Destination MAC and/or VLAN
1312          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1313          * the filter.
1314          */
1315         if (f->fs.newdmac || f->fs.newvlan) {
1316                 /* allocate L2T entry for new filter */
1317                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1318                 if (f->l2t == NULL)
1319                         return -EAGAIN;
1320                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1321                                         f->fs.eport, f->fs.dmac)) {
1322                         cxgb4_l2t_release(f->l2t);
1323                         f->l2t = NULL;
1324                         return -ENOMEM;
1325                 }
1326         }
1327
1328         ftid = adapter->tids.ftid_base + fidx;
1329
1330         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1331         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1332         memset(fwr, 0, sizeof(*fwr));
1333
1334         /* It would be nice to put most of the following in t4_hw.c but most
1335          * of the work is translating the cxgbtool ch_filter_specification
1336          * into the Work Request and the definition of that structure is
1337          * currently in cxgbtool.h which isn't appropriate to pull into the
1338          * common code.  We may eventually try to come up with a more neutral
1339          * filter specification structure but for now it's easiest to simply
1340          * put this fairly direct code in line ...
1341          */
1342         fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1343         fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1344         fwr->tid_to_iq =
1345                 htonl(V_FW_FILTER_WR_TID(ftid) |
1346                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1347                       V_FW_FILTER_WR_NOREPLY(0) |
1348                       V_FW_FILTER_WR_IQ(f->fs.iq));
1349         fwr->del_filter_to_l2tix =
1350                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1351                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1352                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1353                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1354                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1355                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1356                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1357                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1358                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1359                                              f->fs.newvlan == VLAN_REWRITE) |
1360                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1361                                             f->fs.newvlan == VLAN_REWRITE) |
1362                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1363                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1364                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1365                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1366         fwr->ethtype = htons(f->fs.val.ethtype);
1367         fwr->ethtypem = htons(f->fs.mask.ethtype);
1368         fwr->frag_to_ovlan_vldm =
1369                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1370                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1371                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1372                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1373                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1374                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1375         fwr->smac_sel = 0;
1376         fwr->rx_chan_rx_rpl_iq =
1377                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1378                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1379         fwr->maci_to_matchtypem =
1380                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1381                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1382                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1383                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1384                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1385                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1386                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1387                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1388         fwr->ptcl = f->fs.val.proto;
1389         fwr->ptclm = f->fs.mask.proto;
1390         fwr->ttyp = f->fs.val.tos;
1391         fwr->ttypm = f->fs.mask.tos;
1392         fwr->ivlan = htons(f->fs.val.ivlan);
1393         fwr->ivlanm = htons(f->fs.mask.ivlan);
1394         fwr->ovlan = htons(f->fs.val.ovlan);
1395         fwr->ovlanm = htons(f->fs.mask.ovlan);
1396         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1397         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1398         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1399         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1400         fwr->lp = htons(f->fs.val.lport);
1401         fwr->lpm = htons(f->fs.mask.lport);
1402         fwr->fp = htons(f->fs.val.fport);
1403         fwr->fpm = htons(f->fs.mask.fport);
1404         if (f->fs.newsmac)
1405                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1406
1407         /* Mark the filter as "pending" and ship off the Filter Work Request.
1408          * When we get the Work Request Reply we'll clear the pending status.
1409          */
1410         f->pending = 1;
1411         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1412         t4_ofld_send(adapter, skb);
1413         return 0;
1414 }
1415
1416 /* Delete the filter at a specified index.
1417  */
1418 static int del_filter_wr(struct adapter *adapter, int fidx)
1419 {
1420         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1421         struct sk_buff *skb;
1422         struct fw_filter_wr *fwr;
1423         unsigned int len, ftid;
1424
1425         len = sizeof(*fwr);
1426         ftid = adapter->tids.ftid_base + fidx;
1427
1428         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1429         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1430         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1431
1432         /* Mark the filter as "pending" and ship off the Filter Work Request.
1433          * When we get the Work Request Reply we'll clear the pending status.
1434          */
1435         f->pending = 1;
1436         t4_mgmt_tx(adapter, skb);
1437         return 0;
1438 }
1439
1440 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1441                              void *accel_priv, select_queue_fallback_t fallback)
1442 {
1443         int txq;
1444
1445 #ifdef CONFIG_CHELSIO_T4_DCB
1446         /* If a Data Center Bridging has been successfully negotiated on this
1447          * link then we'll use the skb's priority to map it to a TX Queue.
1448          * The skb's priority is determined via the VLAN Tag Priority Code
1449          * Point field.
1450          */
1451         if (cxgb4_dcb_enabled(dev)) {
1452                 u16 vlan_tci;
1453                 int err;
1454
1455                 err = vlan_get_tag(skb, &vlan_tci);
1456                 if (unlikely(err)) {
1457                         if (net_ratelimit())
1458                                 netdev_warn(dev,
1459                                             "TX Packet without VLAN Tag on DCB Link\n");
1460                         txq = 0;
1461                 } else {
1462                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1463                 }
1464                 return txq;
1465         }
1466 #endif /* CONFIG_CHELSIO_T4_DCB */
1467
1468         if (select_queue) {
1469                 txq = (skb_rx_queue_recorded(skb)
1470                         ? skb_get_rx_queue(skb)
1471                         : smp_processor_id());
1472
1473                 while (unlikely(txq >= dev->real_num_tx_queues))
1474                         txq -= dev->real_num_tx_queues;
1475
1476                 return txq;
1477         }
1478
1479         return fallback(dev, skb) % dev->real_num_tx_queues;
1480 }
1481
1482 static inline int is_offload(const struct adapter *adap)
1483 {
1484         return adap->params.offload;
1485 }
1486
1487 /*
1488  * Implementation of ethtool operations.
1489  */
1490
1491 static u32 get_msglevel(struct net_device *dev)
1492 {
1493         return netdev2adap(dev)->msg_enable;
1494 }
1495
1496 static void set_msglevel(struct net_device *dev, u32 val)
1497 {
1498         netdev2adap(dev)->msg_enable = val;
1499 }
1500
1501 static char stats_strings[][ETH_GSTRING_LEN] = {
1502         "TxOctetsOK         ",
1503         "TxFramesOK         ",
1504         "TxBroadcastFrames  ",
1505         "TxMulticastFrames  ",
1506         "TxUnicastFrames    ",
1507         "TxErrorFrames      ",
1508
1509         "TxFrames64         ",
1510         "TxFrames65To127    ",
1511         "TxFrames128To255   ",
1512         "TxFrames256To511   ",
1513         "TxFrames512To1023  ",
1514         "TxFrames1024To1518 ",
1515         "TxFrames1519ToMax  ",
1516
1517         "TxFramesDropped    ",
1518         "TxPauseFrames      ",
1519         "TxPPP0Frames       ",
1520         "TxPPP1Frames       ",
1521         "TxPPP2Frames       ",
1522         "TxPPP3Frames       ",
1523         "TxPPP4Frames       ",
1524         "TxPPP5Frames       ",
1525         "TxPPP6Frames       ",
1526         "TxPPP7Frames       ",
1527
1528         "RxOctetsOK         ",
1529         "RxFramesOK         ",
1530         "RxBroadcastFrames  ",
1531         "RxMulticastFrames  ",
1532         "RxUnicastFrames    ",
1533
1534         "RxFramesTooLong    ",
1535         "RxJabberErrors     ",
1536         "RxFCSErrors        ",
1537         "RxLengthErrors     ",
1538         "RxSymbolErrors     ",
1539         "RxRuntFrames       ",
1540
1541         "RxFrames64         ",
1542         "RxFrames65To127    ",
1543         "RxFrames128To255   ",
1544         "RxFrames256To511   ",
1545         "RxFrames512To1023  ",
1546         "RxFrames1024To1518 ",
1547         "RxFrames1519ToMax  ",
1548
1549         "RxPauseFrames      ",
1550         "RxPPP0Frames       ",
1551         "RxPPP1Frames       ",
1552         "RxPPP2Frames       ",
1553         "RxPPP3Frames       ",
1554         "RxPPP4Frames       ",
1555         "RxPPP5Frames       ",
1556         "RxPPP6Frames       ",
1557         "RxPPP7Frames       ",
1558
1559         "RxBG0FramesDropped ",
1560         "RxBG1FramesDropped ",
1561         "RxBG2FramesDropped ",
1562         "RxBG3FramesDropped ",
1563         "RxBG0FramesTrunc   ",
1564         "RxBG1FramesTrunc   ",
1565         "RxBG2FramesTrunc   ",
1566         "RxBG3FramesTrunc   ",
1567
1568         "TSO                ",
1569         "TxCsumOffload      ",
1570         "RxCsumGood         ",
1571         "VLANextractions    ",
1572         "VLANinsertions     ",
1573         "GROpackets         ",
1574         "GROmerged          ",
1575         "WriteCoalSuccess   ",
1576         "WriteCoalFail      ",
1577 };
1578
1579 static int get_sset_count(struct net_device *dev, int sset)
1580 {
1581         switch (sset) {
1582         case ETH_SS_STATS:
1583                 return ARRAY_SIZE(stats_strings);
1584         default:
1585                 return -EOPNOTSUPP;
1586         }
1587 }
1588
1589 #define T4_REGMAP_SIZE (160 * 1024)
1590 #define T5_REGMAP_SIZE (332 * 1024)
1591
1592 static int get_regs_len(struct net_device *dev)
1593 {
1594         struct adapter *adap = netdev2adap(dev);
1595         if (is_t4(adap->params.chip))
1596                 return T4_REGMAP_SIZE;
1597         else
1598                 return T5_REGMAP_SIZE;
1599 }
1600
1601 static int get_eeprom_len(struct net_device *dev)
1602 {
1603         return EEPROMSIZE;
1604 }
1605
1606 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1607 {
1608         struct adapter *adapter = netdev2adap(dev);
1609
1610         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1611         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1612         strlcpy(info->bus_info, pci_name(adapter->pdev),
1613                 sizeof(info->bus_info));
1614
1615         if (adapter->params.fw_vers)
1616                 snprintf(info->fw_version, sizeof(info->fw_version),
1617                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1618                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1619                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1620                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1621                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1622                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1623                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1624                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1625                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1626 }
1627
1628 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1629 {
1630         if (stringset == ETH_SS_STATS)
1631                 memcpy(data, stats_strings, sizeof(stats_strings));
1632 }
1633
1634 /*
1635  * port stats maintained per queue of the port.  They should be in the same
1636  * order as in stats_strings above.
1637  */
1638 struct queue_port_stats {
1639         u64 tso;
1640         u64 tx_csum;
1641         u64 rx_csum;
1642         u64 vlan_ex;
1643         u64 vlan_ins;
1644         u64 gro_pkts;
1645         u64 gro_merged;
1646 };
1647
1648 static void collect_sge_port_stats(const struct adapter *adap,
1649                 const struct port_info *p, struct queue_port_stats *s)
1650 {
1651         int i;
1652         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1653         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1654
1655         memset(s, 0, sizeof(*s));
1656         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1657                 s->tso += tx->tso;
1658                 s->tx_csum += tx->tx_cso;
1659                 s->rx_csum += rx->stats.rx_cso;
1660                 s->vlan_ex += rx->stats.vlan_ex;
1661                 s->vlan_ins += tx->vlan_ins;
1662                 s->gro_pkts += rx->stats.lro_pkts;
1663                 s->gro_merged += rx->stats.lro_merged;
1664         }
1665 }
1666
1667 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1668                       u64 *data)
1669 {
1670         struct port_info *pi = netdev_priv(dev);
1671         struct adapter *adapter = pi->adapter;
1672         u32 val1, val2;
1673
1674         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1675
1676         data += sizeof(struct port_stats) / sizeof(u64);
1677         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1678         data += sizeof(struct queue_port_stats) / sizeof(u64);
1679         if (!is_t4(adapter->params.chip)) {
1680                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1681                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1682                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1683                 *data = val1 - val2;
1684                 data++;
1685                 *data = val2;
1686                 data++;
1687         } else {
1688                 memset(data, 0, 2 * sizeof(u64));
1689                 *data += 2;
1690         }
1691 }
1692
1693 /*
1694  * Return a version number to identify the type of adapter.  The scheme is:
1695  * - bits 0..9: chip version
1696  * - bits 10..15: chip revision
1697  * - bits 16..23: register dump version
1698  */
1699 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1700 {
1701         return CHELSIO_CHIP_VERSION(ap->params.chip) |
1702                 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1703 }
1704
1705 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1706                            unsigned int end)
1707 {
1708         u32 *p = buf + start;
1709
1710         for ( ; start <= end; start += sizeof(u32))
1711                 *p++ = t4_read_reg(ap, start);
1712 }
1713
1714 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1715                      void *buf)
1716 {
1717         static const unsigned int t4_reg_ranges[] = {
1718                 0x1008, 0x1108,
1719                 0x1180, 0x11b4,
1720                 0x11fc, 0x123c,
1721                 0x1300, 0x173c,
1722                 0x1800, 0x18fc,
1723                 0x3000, 0x30d8,
1724                 0x30e0, 0x5924,
1725                 0x5960, 0x59d4,
1726                 0x5a00, 0x5af8,
1727                 0x6000, 0x6098,
1728                 0x6100, 0x6150,
1729                 0x6200, 0x6208,
1730                 0x6240, 0x6248,
1731                 0x6280, 0x6338,
1732                 0x6370, 0x638c,
1733                 0x6400, 0x643c,
1734                 0x6500, 0x6524,
1735                 0x6a00, 0x6a38,
1736                 0x6a60, 0x6a78,
1737                 0x6b00, 0x6b84,
1738                 0x6bf0, 0x6c84,
1739                 0x6cf0, 0x6d84,
1740                 0x6df0, 0x6e84,
1741                 0x6ef0, 0x6f84,
1742                 0x6ff0, 0x7084,
1743                 0x70f0, 0x7184,
1744                 0x71f0, 0x7284,
1745                 0x72f0, 0x7384,
1746                 0x73f0, 0x7450,
1747                 0x7500, 0x7530,
1748                 0x7600, 0x761c,
1749                 0x7680, 0x76cc,
1750                 0x7700, 0x7798,
1751                 0x77c0, 0x77fc,
1752                 0x7900, 0x79fc,
1753                 0x7b00, 0x7c38,
1754                 0x7d00, 0x7efc,
1755                 0x8dc0, 0x8e1c,
1756                 0x8e30, 0x8e78,
1757                 0x8ea0, 0x8f6c,
1758                 0x8fc0, 0x9074,
1759                 0x90fc, 0x90fc,
1760                 0x9400, 0x9458,
1761                 0x9600, 0x96bc,
1762                 0x9800, 0x9808,
1763                 0x9820, 0x983c,
1764                 0x9850, 0x9864,
1765                 0x9c00, 0x9c6c,
1766                 0x9c80, 0x9cec,
1767                 0x9d00, 0x9d6c,
1768                 0x9d80, 0x9dec,
1769                 0x9e00, 0x9e6c,
1770                 0x9e80, 0x9eec,
1771                 0x9f00, 0x9f6c,
1772                 0x9f80, 0x9fec,
1773                 0xd004, 0xd03c,
1774                 0xdfc0, 0xdfe0,
1775                 0xe000, 0xea7c,
1776                 0xf000, 0x11110,
1777                 0x11118, 0x11190,
1778                 0x19040, 0x1906c,
1779                 0x19078, 0x19080,
1780                 0x1908c, 0x19124,
1781                 0x19150, 0x191b0,
1782                 0x191d0, 0x191e8,
1783                 0x19238, 0x1924c,
1784                 0x193f8, 0x19474,
1785                 0x19490, 0x194f8,
1786                 0x19800, 0x19f30,
1787                 0x1a000, 0x1a06c,
1788                 0x1a0b0, 0x1a120,
1789                 0x1a128, 0x1a138,
1790                 0x1a190, 0x1a1c4,
1791                 0x1a1fc, 0x1a1fc,
1792                 0x1e040, 0x1e04c,
1793                 0x1e284, 0x1e28c,
1794                 0x1e2c0, 0x1e2c0,
1795                 0x1e2e0, 0x1e2e0,
1796                 0x1e300, 0x1e384,
1797                 0x1e3c0, 0x1e3c8,
1798                 0x1e440, 0x1e44c,
1799                 0x1e684, 0x1e68c,
1800                 0x1e6c0, 0x1e6c0,
1801                 0x1e6e0, 0x1e6e0,
1802                 0x1e700, 0x1e784,
1803                 0x1e7c0, 0x1e7c8,
1804                 0x1e840, 0x1e84c,
1805                 0x1ea84, 0x1ea8c,
1806                 0x1eac0, 0x1eac0,
1807                 0x1eae0, 0x1eae0,
1808                 0x1eb00, 0x1eb84,
1809                 0x1ebc0, 0x1ebc8,
1810                 0x1ec40, 0x1ec4c,
1811                 0x1ee84, 0x1ee8c,
1812                 0x1eec0, 0x1eec0,
1813                 0x1eee0, 0x1eee0,
1814                 0x1ef00, 0x1ef84,
1815                 0x1efc0, 0x1efc8,
1816                 0x1f040, 0x1f04c,
1817                 0x1f284, 0x1f28c,
1818                 0x1f2c0, 0x1f2c0,
1819                 0x1f2e0, 0x1f2e0,
1820                 0x1f300, 0x1f384,
1821                 0x1f3c0, 0x1f3c8,
1822                 0x1f440, 0x1f44c,
1823                 0x1f684, 0x1f68c,
1824                 0x1f6c0, 0x1f6c0,
1825                 0x1f6e0, 0x1f6e0,
1826                 0x1f700, 0x1f784,
1827                 0x1f7c0, 0x1f7c8,
1828                 0x1f840, 0x1f84c,
1829                 0x1fa84, 0x1fa8c,
1830                 0x1fac0, 0x1fac0,
1831                 0x1fae0, 0x1fae0,
1832                 0x1fb00, 0x1fb84,
1833                 0x1fbc0, 0x1fbc8,
1834                 0x1fc40, 0x1fc4c,
1835                 0x1fe84, 0x1fe8c,
1836                 0x1fec0, 0x1fec0,
1837                 0x1fee0, 0x1fee0,
1838                 0x1ff00, 0x1ff84,
1839                 0x1ffc0, 0x1ffc8,
1840                 0x20000, 0x2002c,
1841                 0x20100, 0x2013c,
1842                 0x20190, 0x201c8,
1843                 0x20200, 0x20318,
1844                 0x20400, 0x20528,
1845                 0x20540, 0x20614,
1846                 0x21000, 0x21040,
1847                 0x2104c, 0x21060,
1848                 0x210c0, 0x210ec,
1849                 0x21200, 0x21268,
1850                 0x21270, 0x21284,
1851                 0x212fc, 0x21388,
1852                 0x21400, 0x21404,
1853                 0x21500, 0x21518,
1854                 0x2152c, 0x2153c,
1855                 0x21550, 0x21554,
1856                 0x21600, 0x21600,
1857                 0x21608, 0x21628,
1858                 0x21630, 0x2163c,
1859                 0x21700, 0x2171c,
1860                 0x21780, 0x2178c,
1861                 0x21800, 0x21c38,
1862                 0x21c80, 0x21d7c,
1863                 0x21e00, 0x21e04,
1864                 0x22000, 0x2202c,
1865                 0x22100, 0x2213c,
1866                 0x22190, 0x221c8,
1867                 0x22200, 0x22318,
1868                 0x22400, 0x22528,
1869                 0x22540, 0x22614,
1870                 0x23000, 0x23040,
1871                 0x2304c, 0x23060,
1872                 0x230c0, 0x230ec,
1873                 0x23200, 0x23268,
1874                 0x23270, 0x23284,
1875                 0x232fc, 0x23388,
1876                 0x23400, 0x23404,
1877                 0x23500, 0x23518,
1878                 0x2352c, 0x2353c,
1879                 0x23550, 0x23554,
1880                 0x23600, 0x23600,
1881                 0x23608, 0x23628,
1882                 0x23630, 0x2363c,
1883                 0x23700, 0x2371c,
1884                 0x23780, 0x2378c,
1885                 0x23800, 0x23c38,
1886                 0x23c80, 0x23d7c,
1887                 0x23e00, 0x23e04,
1888                 0x24000, 0x2402c,
1889                 0x24100, 0x2413c,
1890                 0x24190, 0x241c8,
1891                 0x24200, 0x24318,
1892                 0x24400, 0x24528,
1893                 0x24540, 0x24614,
1894                 0x25000, 0x25040,
1895                 0x2504c, 0x25060,
1896                 0x250c0, 0x250ec,
1897                 0x25200, 0x25268,
1898                 0x25270, 0x25284,
1899                 0x252fc, 0x25388,
1900                 0x25400, 0x25404,
1901                 0x25500, 0x25518,
1902                 0x2552c, 0x2553c,
1903                 0x25550, 0x25554,
1904                 0x25600, 0x25600,
1905                 0x25608, 0x25628,
1906                 0x25630, 0x2563c,
1907                 0x25700, 0x2571c,
1908                 0x25780, 0x2578c,
1909                 0x25800, 0x25c38,
1910                 0x25c80, 0x25d7c,
1911                 0x25e00, 0x25e04,
1912                 0x26000, 0x2602c,
1913                 0x26100, 0x2613c,
1914                 0x26190, 0x261c8,
1915                 0x26200, 0x26318,
1916                 0x26400, 0x26528,
1917                 0x26540, 0x26614,
1918                 0x27000, 0x27040,
1919                 0x2704c, 0x27060,
1920                 0x270c0, 0x270ec,
1921                 0x27200, 0x27268,
1922                 0x27270, 0x27284,
1923                 0x272fc, 0x27388,
1924                 0x27400, 0x27404,
1925                 0x27500, 0x27518,
1926                 0x2752c, 0x2753c,
1927                 0x27550, 0x27554,
1928                 0x27600, 0x27600,
1929                 0x27608, 0x27628,
1930                 0x27630, 0x2763c,
1931                 0x27700, 0x2771c,
1932                 0x27780, 0x2778c,
1933                 0x27800, 0x27c38,
1934                 0x27c80, 0x27d7c,
1935                 0x27e00, 0x27e04
1936         };
1937
1938         static const unsigned int t5_reg_ranges[] = {
1939                 0x1008, 0x1148,
1940                 0x1180, 0x11b4,
1941                 0x11fc, 0x123c,
1942                 0x1280, 0x173c,
1943                 0x1800, 0x18fc,
1944                 0x3000, 0x3028,
1945                 0x3060, 0x30d8,
1946                 0x30e0, 0x30fc,
1947                 0x3140, 0x357c,
1948                 0x35a8, 0x35cc,
1949                 0x35ec, 0x35ec,
1950                 0x3600, 0x5624,
1951                 0x56cc, 0x575c,
1952                 0x580c, 0x5814,
1953                 0x5890, 0x58bc,
1954                 0x5940, 0x59dc,
1955                 0x59fc, 0x5a18,
1956                 0x5a60, 0x5a9c,
1957                 0x5b9c, 0x5bfc,
1958                 0x6000, 0x6040,
1959                 0x6058, 0x614c,
1960                 0x7700, 0x7798,
1961                 0x77c0, 0x78fc,
1962                 0x7b00, 0x7c54,
1963                 0x7d00, 0x7efc,
1964                 0x8dc0, 0x8de0,
1965                 0x8df8, 0x8e84,
1966                 0x8ea0, 0x8f84,
1967                 0x8fc0, 0x90f8,
1968                 0x9400, 0x9470,
1969                 0x9600, 0x96f4,
1970                 0x9800, 0x9808,
1971                 0x9820, 0x983c,
1972                 0x9850, 0x9864,
1973                 0x9c00, 0x9c6c,
1974                 0x9c80, 0x9cec,
1975                 0x9d00, 0x9d6c,
1976                 0x9d80, 0x9dec,
1977                 0x9e00, 0x9e6c,
1978                 0x9e80, 0x9eec,
1979                 0x9f00, 0x9f6c,
1980                 0x9f80, 0xa020,
1981                 0xd004, 0xd03c,
1982                 0xdfc0, 0xdfe0,
1983                 0xe000, 0x11088,
1984                 0x1109c, 0x11110,
1985                 0x11118, 0x1117c,
1986                 0x11190, 0x11204,
1987                 0x19040, 0x1906c,
1988                 0x19078, 0x19080,
1989                 0x1908c, 0x19124,
1990                 0x19150, 0x191b0,
1991                 0x191d0, 0x191e8,
1992                 0x19238, 0x19290,
1993                 0x193f8, 0x19474,
1994                 0x19490, 0x194cc,
1995                 0x194f0, 0x194f8,
1996                 0x19c00, 0x19c60,
1997                 0x19c94, 0x19e10,
1998                 0x19e50, 0x19f34,
1999                 0x19f40, 0x19f50,
2000                 0x19f90, 0x19fe4,
2001                 0x1a000, 0x1a06c,
2002                 0x1a0b0, 0x1a120,
2003                 0x1a128, 0x1a138,
2004                 0x1a190, 0x1a1c4,
2005                 0x1a1fc, 0x1a1fc,
2006                 0x1e008, 0x1e00c,
2007                 0x1e040, 0x1e04c,
2008                 0x1e284, 0x1e290,
2009                 0x1e2c0, 0x1e2c0,
2010                 0x1e2e0, 0x1e2e0,
2011                 0x1e300, 0x1e384,
2012                 0x1e3c0, 0x1e3c8,
2013                 0x1e408, 0x1e40c,
2014                 0x1e440, 0x1e44c,
2015                 0x1e684, 0x1e690,
2016                 0x1e6c0, 0x1e6c0,
2017                 0x1e6e0, 0x1e6e0,
2018                 0x1e700, 0x1e784,
2019                 0x1e7c0, 0x1e7c8,
2020                 0x1e808, 0x1e80c,
2021                 0x1e840, 0x1e84c,
2022                 0x1ea84, 0x1ea90,
2023                 0x1eac0, 0x1eac0,
2024                 0x1eae0, 0x1eae0,
2025                 0x1eb00, 0x1eb84,
2026                 0x1ebc0, 0x1ebc8,
2027                 0x1ec08, 0x1ec0c,
2028                 0x1ec40, 0x1ec4c,
2029                 0x1ee84, 0x1ee90,
2030                 0x1eec0, 0x1eec0,
2031                 0x1eee0, 0x1eee0,
2032                 0x1ef00, 0x1ef84,
2033                 0x1efc0, 0x1efc8,
2034                 0x1f008, 0x1f00c,
2035                 0x1f040, 0x1f04c,
2036                 0x1f284, 0x1f290,
2037                 0x1f2c0, 0x1f2c0,
2038                 0x1f2e0, 0x1f2e0,
2039                 0x1f300, 0x1f384,
2040                 0x1f3c0, 0x1f3c8,
2041                 0x1f408, 0x1f40c,
2042                 0x1f440, 0x1f44c,
2043                 0x1f684, 0x1f690,
2044                 0x1f6c0, 0x1f6c0,
2045                 0x1f6e0, 0x1f6e0,
2046                 0x1f700, 0x1f784,
2047                 0x1f7c0, 0x1f7c8,
2048                 0x1f808, 0x1f80c,
2049                 0x1f840, 0x1f84c,
2050                 0x1fa84, 0x1fa90,
2051                 0x1fac0, 0x1fac0,
2052                 0x1fae0, 0x1fae0,
2053                 0x1fb00, 0x1fb84,
2054                 0x1fbc0, 0x1fbc8,
2055                 0x1fc08, 0x1fc0c,
2056                 0x1fc40, 0x1fc4c,
2057                 0x1fe84, 0x1fe90,
2058                 0x1fec0, 0x1fec0,
2059                 0x1fee0, 0x1fee0,
2060                 0x1ff00, 0x1ff84,
2061                 0x1ffc0, 0x1ffc8,
2062                 0x30000, 0x30030,
2063                 0x30100, 0x30144,
2064                 0x30190, 0x301d0,
2065                 0x30200, 0x30318,
2066                 0x30400, 0x3052c,
2067                 0x30540, 0x3061c,
2068                 0x30800, 0x30834,
2069                 0x308c0, 0x30908,
2070                 0x30910, 0x309ac,
2071                 0x30a00, 0x30a04,
2072                 0x30a0c, 0x30a2c,
2073                 0x30a44, 0x30a50,
2074                 0x30a74, 0x30c24,
2075                 0x30d08, 0x30d14,
2076                 0x30d1c, 0x30d20,
2077                 0x30d3c, 0x30d50,
2078                 0x31200, 0x3120c,
2079                 0x31220, 0x31220,
2080                 0x31240, 0x31240,
2081                 0x31600, 0x31600,
2082                 0x31608, 0x3160c,
2083                 0x31a00, 0x31a1c,
2084                 0x31e04, 0x31e20,
2085                 0x31e38, 0x31e3c,
2086                 0x31e80, 0x31e80,
2087                 0x31e88, 0x31ea8,
2088                 0x31eb0, 0x31eb4,
2089                 0x31ec8, 0x31ed4,
2090                 0x31fb8, 0x32004,
2091                 0x32208, 0x3223c,
2092                 0x32600, 0x32630,
2093                 0x32a00, 0x32abc,
2094                 0x32b00, 0x32b70,
2095                 0x33000, 0x33048,
2096                 0x33060, 0x3309c,
2097                 0x330f0, 0x33148,
2098                 0x33160, 0x3319c,
2099                 0x331f0, 0x332e4,
2100                 0x332f8, 0x333e4,
2101                 0x333f8, 0x33448,
2102                 0x33460, 0x3349c,
2103                 0x334f0, 0x33548,
2104                 0x33560, 0x3359c,
2105                 0x335f0, 0x336e4,
2106                 0x336f8, 0x337e4,
2107                 0x337f8, 0x337fc,
2108                 0x33814, 0x33814,
2109                 0x3382c, 0x3382c,
2110                 0x33880, 0x3388c,
2111                 0x338e8, 0x338ec,
2112                 0x33900, 0x33948,
2113                 0x33960, 0x3399c,
2114                 0x339f0, 0x33ae4,
2115                 0x33af8, 0x33b10,
2116                 0x33b28, 0x33b28,
2117                 0x33b3c, 0x33b50,
2118                 0x33bf0, 0x33c10,
2119                 0x33c28, 0x33c28,
2120                 0x33c3c, 0x33c50,
2121                 0x33cf0, 0x33cfc,
2122                 0x34000, 0x34030,
2123                 0x34100, 0x34144,
2124                 0x34190, 0x341d0,
2125                 0x34200, 0x34318,
2126                 0x34400, 0x3452c,
2127                 0x34540, 0x3461c,
2128                 0x34800, 0x34834,
2129                 0x348c0, 0x34908,
2130                 0x34910, 0x349ac,
2131                 0x34a00, 0x34a04,
2132                 0x34a0c, 0x34a2c,
2133                 0x34a44, 0x34a50,
2134                 0x34a74, 0x34c24,
2135                 0x34d08, 0x34d14,
2136                 0x34d1c, 0x34d20,
2137                 0x34d3c, 0x34d50,
2138                 0x35200, 0x3520c,
2139                 0x35220, 0x35220,
2140                 0x35240, 0x35240,
2141                 0x35600, 0x35600,
2142                 0x35608, 0x3560c,
2143                 0x35a00, 0x35a1c,
2144                 0x35e04, 0x35e20,
2145                 0x35e38, 0x35e3c,
2146                 0x35e80, 0x35e80,
2147                 0x35e88, 0x35ea8,
2148                 0x35eb0, 0x35eb4,
2149                 0x35ec8, 0x35ed4,
2150                 0x35fb8, 0x36004,
2151                 0x36208, 0x3623c,
2152                 0x36600, 0x36630,
2153                 0x36a00, 0x36abc,
2154                 0x36b00, 0x36b70,
2155                 0x37000, 0x37048,
2156                 0x37060, 0x3709c,
2157                 0x370f0, 0x37148,
2158                 0x37160, 0x3719c,
2159                 0x371f0, 0x372e4,
2160                 0x372f8, 0x373e4,
2161                 0x373f8, 0x37448,
2162                 0x37460, 0x3749c,
2163                 0x374f0, 0x37548,
2164                 0x37560, 0x3759c,
2165                 0x375f0, 0x376e4,
2166                 0x376f8, 0x377e4,
2167                 0x377f8, 0x377fc,
2168                 0x37814, 0x37814,
2169                 0x3782c, 0x3782c,
2170                 0x37880, 0x3788c,
2171                 0x378e8, 0x378ec,
2172                 0x37900, 0x37948,
2173                 0x37960, 0x3799c,
2174                 0x379f0, 0x37ae4,
2175                 0x37af8, 0x37b10,
2176                 0x37b28, 0x37b28,
2177                 0x37b3c, 0x37b50,
2178                 0x37bf0, 0x37c10,
2179                 0x37c28, 0x37c28,
2180                 0x37c3c, 0x37c50,
2181                 0x37cf0, 0x37cfc,
2182                 0x38000, 0x38030,
2183                 0x38100, 0x38144,
2184                 0x38190, 0x381d0,
2185                 0x38200, 0x38318,
2186                 0x38400, 0x3852c,
2187                 0x38540, 0x3861c,
2188                 0x38800, 0x38834,
2189                 0x388c0, 0x38908,
2190                 0x38910, 0x389ac,
2191                 0x38a00, 0x38a04,
2192                 0x38a0c, 0x38a2c,
2193                 0x38a44, 0x38a50,
2194                 0x38a74, 0x38c24,
2195                 0x38d08, 0x38d14,
2196                 0x38d1c, 0x38d20,
2197                 0x38d3c, 0x38d50,
2198                 0x39200, 0x3920c,
2199                 0x39220, 0x39220,
2200                 0x39240, 0x39240,
2201                 0x39600, 0x39600,
2202                 0x39608, 0x3960c,
2203                 0x39a00, 0x39a1c,
2204                 0x39e04, 0x39e20,
2205                 0x39e38, 0x39e3c,
2206                 0x39e80, 0x39e80,
2207                 0x39e88, 0x39ea8,
2208                 0x39eb0, 0x39eb4,
2209                 0x39ec8, 0x39ed4,
2210                 0x39fb8, 0x3a004,
2211                 0x3a208, 0x3a23c,
2212                 0x3a600, 0x3a630,
2213                 0x3aa00, 0x3aabc,
2214                 0x3ab00, 0x3ab70,
2215                 0x3b000, 0x3b048,
2216                 0x3b060, 0x3b09c,
2217                 0x3b0f0, 0x3b148,
2218                 0x3b160, 0x3b19c,
2219                 0x3b1f0, 0x3b2e4,
2220                 0x3b2f8, 0x3b3e4,
2221                 0x3b3f8, 0x3b448,
2222                 0x3b460, 0x3b49c,
2223                 0x3b4f0, 0x3b548,
2224                 0x3b560, 0x3b59c,
2225                 0x3b5f0, 0x3b6e4,
2226                 0x3b6f8, 0x3b7e4,
2227                 0x3b7f8, 0x3b7fc,
2228                 0x3b814, 0x3b814,
2229                 0x3b82c, 0x3b82c,
2230                 0x3b880, 0x3b88c,
2231                 0x3b8e8, 0x3b8ec,
2232                 0x3b900, 0x3b948,
2233                 0x3b960, 0x3b99c,
2234                 0x3b9f0, 0x3bae4,
2235                 0x3baf8, 0x3bb10,
2236                 0x3bb28, 0x3bb28,
2237                 0x3bb3c, 0x3bb50,
2238                 0x3bbf0, 0x3bc10,
2239                 0x3bc28, 0x3bc28,
2240                 0x3bc3c, 0x3bc50,
2241                 0x3bcf0, 0x3bcfc,
2242                 0x3c000, 0x3c030,
2243                 0x3c100, 0x3c144,
2244                 0x3c190, 0x3c1d0,
2245                 0x3c200, 0x3c318,
2246                 0x3c400, 0x3c52c,
2247                 0x3c540, 0x3c61c,
2248                 0x3c800, 0x3c834,
2249                 0x3c8c0, 0x3c908,
2250                 0x3c910, 0x3c9ac,
2251                 0x3ca00, 0x3ca04,
2252                 0x3ca0c, 0x3ca2c,
2253                 0x3ca44, 0x3ca50,
2254                 0x3ca74, 0x3cc24,
2255                 0x3cd08, 0x3cd14,
2256                 0x3cd1c, 0x3cd20,
2257                 0x3cd3c, 0x3cd50,
2258                 0x3d200, 0x3d20c,
2259                 0x3d220, 0x3d220,
2260                 0x3d240, 0x3d240,
2261                 0x3d600, 0x3d600,
2262                 0x3d608, 0x3d60c,
2263                 0x3da00, 0x3da1c,
2264                 0x3de04, 0x3de20,
2265                 0x3de38, 0x3de3c,
2266                 0x3de80, 0x3de80,
2267                 0x3de88, 0x3dea8,
2268                 0x3deb0, 0x3deb4,
2269                 0x3dec8, 0x3ded4,
2270                 0x3dfb8, 0x3e004,
2271                 0x3e208, 0x3e23c,
2272                 0x3e600, 0x3e630,
2273                 0x3ea00, 0x3eabc,
2274                 0x3eb00, 0x3eb70,
2275                 0x3f000, 0x3f048,
2276                 0x3f060, 0x3f09c,
2277                 0x3f0f0, 0x3f148,
2278                 0x3f160, 0x3f19c,
2279                 0x3f1f0, 0x3f2e4,
2280                 0x3f2f8, 0x3f3e4,
2281                 0x3f3f8, 0x3f448,
2282                 0x3f460, 0x3f49c,
2283                 0x3f4f0, 0x3f548,
2284                 0x3f560, 0x3f59c,
2285                 0x3f5f0, 0x3f6e4,
2286                 0x3f6f8, 0x3f7e4,
2287                 0x3f7f8, 0x3f7fc,
2288                 0x3f814, 0x3f814,
2289                 0x3f82c, 0x3f82c,
2290                 0x3f880, 0x3f88c,
2291                 0x3f8e8, 0x3f8ec,
2292                 0x3f900, 0x3f948,
2293                 0x3f960, 0x3f99c,
2294                 0x3f9f0, 0x3fae4,
2295                 0x3faf8, 0x3fb10,
2296                 0x3fb28, 0x3fb28,
2297                 0x3fb3c, 0x3fb50,
2298                 0x3fbf0, 0x3fc10,
2299                 0x3fc28, 0x3fc28,
2300                 0x3fc3c, 0x3fc50,
2301                 0x3fcf0, 0x3fcfc,
2302                 0x40000, 0x4000c,
2303                 0x40040, 0x40068,
2304                 0x40080, 0x40144,
2305                 0x40180, 0x4018c,
2306                 0x40200, 0x40298,
2307                 0x402ac, 0x4033c,
2308                 0x403f8, 0x403fc,
2309                 0x41304, 0x413c4,
2310                 0x41400, 0x4141c,
2311                 0x41480, 0x414d0,
2312                 0x44000, 0x44078,
2313                 0x440c0, 0x44278,
2314                 0x442c0, 0x44478,
2315                 0x444c0, 0x44678,
2316                 0x446c0, 0x44878,
2317                 0x448c0, 0x449fc,
2318                 0x45000, 0x45068,
2319                 0x45080, 0x45084,
2320                 0x450a0, 0x450b0,
2321                 0x45200, 0x45268,
2322                 0x45280, 0x45284,
2323                 0x452a0, 0x452b0,
2324                 0x460c0, 0x460e4,
2325                 0x47000, 0x4708c,
2326                 0x47200, 0x47250,
2327                 0x47400, 0x47420,
2328                 0x47600, 0x47618,
2329                 0x47800, 0x47814,
2330                 0x48000, 0x4800c,
2331                 0x48040, 0x48068,
2332                 0x48080, 0x48144,
2333                 0x48180, 0x4818c,
2334                 0x48200, 0x48298,
2335                 0x482ac, 0x4833c,
2336                 0x483f8, 0x483fc,
2337                 0x49304, 0x493c4,
2338                 0x49400, 0x4941c,
2339                 0x49480, 0x494d0,
2340                 0x4c000, 0x4c078,
2341                 0x4c0c0, 0x4c278,
2342                 0x4c2c0, 0x4c478,
2343                 0x4c4c0, 0x4c678,
2344                 0x4c6c0, 0x4c878,
2345                 0x4c8c0, 0x4c9fc,
2346                 0x4d000, 0x4d068,
2347                 0x4d080, 0x4d084,
2348                 0x4d0a0, 0x4d0b0,
2349                 0x4d200, 0x4d268,
2350                 0x4d280, 0x4d284,
2351                 0x4d2a0, 0x4d2b0,
2352                 0x4e0c0, 0x4e0e4,
2353                 0x4f000, 0x4f08c,
2354                 0x4f200, 0x4f250,
2355                 0x4f400, 0x4f420,
2356                 0x4f600, 0x4f618,
2357                 0x4f800, 0x4f814,
2358                 0x50000, 0x500cc,
2359                 0x50400, 0x50400,
2360                 0x50800, 0x508cc,
2361                 0x50c00, 0x50c00,
2362                 0x51000, 0x5101c,
2363                 0x51300, 0x51308,
2364         };
2365
2366         int i;
2367         struct adapter *ap = netdev2adap(dev);
2368         static const unsigned int *reg_ranges;
2369         int arr_size = 0, buf_size = 0;
2370
2371         if (is_t4(ap->params.chip)) {
2372                 reg_ranges = &t4_reg_ranges[0];
2373                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2374                 buf_size = T4_REGMAP_SIZE;
2375         } else {
2376                 reg_ranges = &t5_reg_ranges[0];
2377                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2378                 buf_size = T5_REGMAP_SIZE;
2379         }
2380
2381         regs->version = mk_adap_vers(ap);
2382
2383         memset(buf, 0, buf_size);
2384         for (i = 0; i < arr_size; i += 2)
2385                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2386 }
2387
2388 static int restart_autoneg(struct net_device *dev)
2389 {
2390         struct port_info *p = netdev_priv(dev);
2391
2392         if (!netif_running(dev))
2393                 return -EAGAIN;
2394         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2395                 return -EINVAL;
2396         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2397         return 0;
2398 }
2399
2400 static int identify_port(struct net_device *dev,
2401                          enum ethtool_phys_id_state state)
2402 {
2403         unsigned int val;
2404         struct adapter *adap = netdev2adap(dev);
2405
2406         if (state == ETHTOOL_ID_ACTIVE)
2407                 val = 0xffff;
2408         else if (state == ETHTOOL_ID_INACTIVE)
2409                 val = 0;
2410         else
2411                 return -EINVAL;
2412
2413         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2414 }
2415
2416 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2417 {
2418         unsigned int v = 0;
2419
2420         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2421             type == FW_PORT_TYPE_BT_XAUI) {
2422                 v |= SUPPORTED_TP;
2423                 if (caps & FW_PORT_CAP_SPEED_100M)
2424                         v |= SUPPORTED_100baseT_Full;
2425                 if (caps & FW_PORT_CAP_SPEED_1G)
2426                         v |= SUPPORTED_1000baseT_Full;
2427                 if (caps & FW_PORT_CAP_SPEED_10G)
2428                         v |= SUPPORTED_10000baseT_Full;
2429         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2430                 v |= SUPPORTED_Backplane;
2431                 if (caps & FW_PORT_CAP_SPEED_1G)
2432                         v |= SUPPORTED_1000baseKX_Full;
2433                 if (caps & FW_PORT_CAP_SPEED_10G)
2434                         v |= SUPPORTED_10000baseKX4_Full;
2435         } else if (type == FW_PORT_TYPE_KR)
2436                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2437         else if (type == FW_PORT_TYPE_BP_AP)
2438                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2439                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2440         else if (type == FW_PORT_TYPE_BP4_AP)
2441                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2442                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2443                      SUPPORTED_10000baseKX4_Full;
2444         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2445                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2446                 v |= SUPPORTED_FIBRE;
2447         else if (type == FW_PORT_TYPE_BP40_BA)
2448                 v |= SUPPORTED_40000baseSR4_Full;
2449
2450         if (caps & FW_PORT_CAP_ANEG)
2451                 v |= SUPPORTED_Autoneg;
2452         return v;
2453 }
2454
2455 static unsigned int to_fw_linkcaps(unsigned int caps)
2456 {
2457         unsigned int v = 0;
2458
2459         if (caps & ADVERTISED_100baseT_Full)
2460                 v |= FW_PORT_CAP_SPEED_100M;
2461         if (caps & ADVERTISED_1000baseT_Full)
2462                 v |= FW_PORT_CAP_SPEED_1G;
2463         if (caps & ADVERTISED_10000baseT_Full)
2464                 v |= FW_PORT_CAP_SPEED_10G;
2465         if (caps & ADVERTISED_40000baseSR4_Full)
2466                 v |= FW_PORT_CAP_SPEED_40G;
2467         return v;
2468 }
2469
2470 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2471 {
2472         const struct port_info *p = netdev_priv(dev);
2473
2474         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2475             p->port_type == FW_PORT_TYPE_BT_XFI ||
2476             p->port_type == FW_PORT_TYPE_BT_XAUI)
2477                 cmd->port = PORT_TP;
2478         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2479                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2480                 cmd->port = PORT_FIBRE;
2481         else if (p->port_type == FW_PORT_TYPE_SFP ||
2482                  p->port_type == FW_PORT_TYPE_QSFP_10G ||
2483                  p->port_type == FW_PORT_TYPE_QSFP) {
2484                 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2485                     p->mod_type == FW_PORT_MOD_TYPE_SR ||
2486                     p->mod_type == FW_PORT_MOD_TYPE_ER ||
2487                     p->mod_type == FW_PORT_MOD_TYPE_LRM)
2488                         cmd->port = PORT_FIBRE;
2489                 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2490                          p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2491                         cmd->port = PORT_DA;
2492                 else
2493                         cmd->port = PORT_OTHER;
2494         } else
2495                 cmd->port = PORT_OTHER;
2496
2497         if (p->mdio_addr >= 0) {
2498                 cmd->phy_address = p->mdio_addr;
2499                 cmd->transceiver = XCVR_EXTERNAL;
2500                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2501                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2502         } else {
2503                 cmd->phy_address = 0;  /* not really, but no better option */
2504                 cmd->transceiver = XCVR_INTERNAL;
2505                 cmd->mdio_support = 0;
2506         }
2507
2508         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2509         cmd->advertising = from_fw_linkcaps(p->port_type,
2510                                             p->link_cfg.advertising);
2511         ethtool_cmd_speed_set(cmd,
2512                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2513         cmd->duplex = DUPLEX_FULL;
2514         cmd->autoneg = p->link_cfg.autoneg;
2515         cmd->maxtxpkt = 0;
2516         cmd->maxrxpkt = 0;
2517         return 0;
2518 }
2519
2520 static unsigned int speed_to_caps(int speed)
2521 {
2522         if (speed == 100)
2523                 return FW_PORT_CAP_SPEED_100M;
2524         if (speed == 1000)
2525                 return FW_PORT_CAP_SPEED_1G;
2526         if (speed == 10000)
2527                 return FW_PORT_CAP_SPEED_10G;
2528         if (speed == 40000)
2529                 return FW_PORT_CAP_SPEED_40G;
2530         return 0;
2531 }
2532
2533 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2534 {
2535         unsigned int cap;
2536         struct port_info *p = netdev_priv(dev);
2537         struct link_config *lc = &p->link_cfg;
2538         u32 speed = ethtool_cmd_speed(cmd);
2539
2540         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2541                 return -EINVAL;
2542
2543         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2544                 /*
2545                  * PHY offers a single speed.  See if that's what's
2546                  * being requested.
2547                  */
2548                 if (cmd->autoneg == AUTONEG_DISABLE &&
2549                     (lc->supported & speed_to_caps(speed)))
2550                         return 0;
2551                 return -EINVAL;
2552         }
2553
2554         if (cmd->autoneg == AUTONEG_DISABLE) {
2555                 cap = speed_to_caps(speed);
2556
2557                 if (!(lc->supported & cap) ||
2558                     (speed == 1000) ||
2559                     (speed == 10000) ||
2560                     (speed == 40000))
2561                         return -EINVAL;
2562                 lc->requested_speed = cap;
2563                 lc->advertising = 0;
2564         } else {
2565                 cap = to_fw_linkcaps(cmd->advertising);
2566                 if (!(lc->supported & cap))
2567                         return -EINVAL;
2568                 lc->requested_speed = 0;
2569                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2570         }
2571         lc->autoneg = cmd->autoneg;
2572
2573         if (netif_running(dev))
2574                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2575                                      lc);
2576         return 0;
2577 }
2578
2579 static void get_pauseparam(struct net_device *dev,
2580                            struct ethtool_pauseparam *epause)
2581 {
2582         struct port_info *p = netdev_priv(dev);
2583
2584         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2585         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2586         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2587 }
2588
2589 static int set_pauseparam(struct net_device *dev,
2590                           struct ethtool_pauseparam *epause)
2591 {
2592         struct port_info *p = netdev_priv(dev);
2593         struct link_config *lc = &p->link_cfg;
2594
2595         if (epause->autoneg == AUTONEG_DISABLE)
2596                 lc->requested_fc = 0;
2597         else if (lc->supported & FW_PORT_CAP_ANEG)
2598                 lc->requested_fc = PAUSE_AUTONEG;
2599         else
2600                 return -EINVAL;
2601
2602         if (epause->rx_pause)
2603                 lc->requested_fc |= PAUSE_RX;
2604         if (epause->tx_pause)
2605                 lc->requested_fc |= PAUSE_TX;
2606         if (netif_running(dev))
2607                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2608                                      lc);
2609         return 0;
2610 }
2611
2612 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2613 {
2614         const struct port_info *pi = netdev_priv(dev);
2615         const struct sge *s = &pi->adapter->sge;
2616
2617         e->rx_max_pending = MAX_RX_BUFFERS;
2618         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2619         e->rx_jumbo_max_pending = 0;
2620         e->tx_max_pending = MAX_TXQ_ENTRIES;
2621
2622         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2623         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2624         e->rx_jumbo_pending = 0;
2625         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2626 }
2627
2628 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2629 {
2630         int i;
2631         const struct port_info *pi = netdev_priv(dev);
2632         struct adapter *adapter = pi->adapter;
2633         struct sge *s = &adapter->sge;
2634
2635         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2636             e->tx_pending > MAX_TXQ_ENTRIES ||
2637             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2638             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2639             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2640                 return -EINVAL;
2641
2642         if (adapter->flags & FULL_INIT_DONE)
2643                 return -EBUSY;
2644
2645         for (i = 0; i < pi->nqsets; ++i) {
2646                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2647                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2648                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2649         }
2650         return 0;
2651 }
2652
2653 static int closest_timer(const struct sge *s, int time)
2654 {
2655         int i, delta, match = 0, min_delta = INT_MAX;
2656
2657         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2658                 delta = time - s->timer_val[i];
2659                 if (delta < 0)
2660                         delta = -delta;
2661                 if (delta < min_delta) {
2662                         min_delta = delta;
2663                         match = i;
2664                 }
2665         }
2666         return match;
2667 }
2668
2669 static int closest_thres(const struct sge *s, int thres)
2670 {
2671         int i, delta, match = 0, min_delta = INT_MAX;
2672
2673         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2674                 delta = thres - s->counter_val[i];
2675                 if (delta < 0)
2676                         delta = -delta;
2677                 if (delta < min_delta) {
2678                         min_delta = delta;
2679                         match = i;
2680                 }
2681         }
2682         return match;
2683 }
2684
2685 /*
2686  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2687  */
2688 static unsigned int qtimer_val(const struct adapter *adap,
2689                                const struct sge_rspq *q)
2690 {
2691         unsigned int idx = q->intr_params >> 1;
2692
2693         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2694 }
2695
2696 /**
2697  *      set_rspq_intr_params - set a queue's interrupt holdoff parameters
2698  *      @q: the Rx queue
2699  *      @us: the hold-off time in us, or 0 to disable timer
2700  *      @cnt: the hold-off packet count, or 0 to disable counter
2701  *
2702  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2703  *      one of the two needs to be enabled for the queue to generate interrupts.
2704  */
2705 static int set_rspq_intr_params(struct sge_rspq *q,
2706                                 unsigned int us, unsigned int cnt)
2707 {
2708         struct adapter *adap = q->adap;
2709
2710         if ((us | cnt) == 0)
2711                 cnt = 1;
2712
2713         if (cnt) {
2714                 int err;
2715                 u32 v, new_idx;
2716
2717                 new_idx = closest_thres(&adap->sge, cnt);
2718                 if (q->desc && q->pktcnt_idx != new_idx) {
2719                         /* the queue has already been created, update it */
2720                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2721                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2722                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
2723                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2724                                             &new_idx);
2725                         if (err)
2726                                 return err;
2727                 }
2728                 q->pktcnt_idx = new_idx;
2729         }
2730
2731         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2732         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2733         return 0;
2734 }
2735
2736 /**
2737  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2738  * @dev: the network device
2739  * @us: the hold-off time in us, or 0 to disable timer
2740  * @cnt: the hold-off packet count, or 0 to disable counter
2741  *
2742  * Set the RX interrupt hold-off parameters for a network device.
2743  */
2744 static int set_rx_intr_params(struct net_device *dev,
2745                               unsigned int us, unsigned int cnt)
2746 {
2747         int i, err;
2748         struct port_info *pi = netdev_priv(dev);
2749         struct adapter *adap = pi->adapter;
2750         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2751
2752         for (i = 0; i < pi->nqsets; i++, q++) {
2753                 err = set_rspq_intr_params(&q->rspq, us, cnt);
2754                 if (err)
2755                         return err;
2756         }
2757         return 0;
2758 }
2759
2760 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
2761 {
2762         int i;
2763         struct port_info *pi = netdev_priv(dev);
2764         struct adapter *adap = pi->adapter;
2765         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2766
2767         for (i = 0; i < pi->nqsets; i++, q++)
2768                 q->rspq.adaptive_rx = adaptive_rx;
2769
2770         return 0;
2771 }
2772
2773 static int get_adaptive_rx_setting(struct net_device *dev)
2774 {
2775         struct port_info *pi = netdev_priv(dev);
2776         struct adapter *adap = pi->adapter;
2777         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2778
2779         return q->rspq.adaptive_rx;
2780 }
2781
2782 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2783 {
2784         set_adaptive_rx_setting(dev, c->use_adaptive_rx_coalesce);
2785         return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2786                                   c->rx_max_coalesced_frames);
2787 }
2788
2789 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2790 {
2791         const struct port_info *pi = netdev_priv(dev);
2792         const struct adapter *adap = pi->adapter;
2793         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2794
2795         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2796         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2797                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2798         c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
2799         return 0;
2800 }
2801
2802 /**
2803  *      eeprom_ptov - translate a physical EEPROM address to virtual
2804  *      @phys_addr: the physical EEPROM address
2805  *      @fn: the PCI function number
2806  *      @sz: size of function-specific area
2807  *
2808  *      Translate a physical EEPROM address to virtual.  The first 1K is
2809  *      accessed through virtual addresses starting at 31K, the rest is
2810  *      accessed through virtual addresses starting at 0.
2811  *
2812  *      The mapping is as follows:
2813  *      [0..1K) -> [31K..32K)
2814  *      [1K..1K+A) -> [31K-A..31K)
2815  *      [1K+A..ES) -> [0..ES-A-1K)
2816  *
2817  *      where A = @fn * @sz, and ES = EEPROM size.
2818  */
2819 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2820 {
2821         fn *= sz;
2822         if (phys_addr < 1024)
2823                 return phys_addr + (31 << 10);
2824         if (phys_addr < 1024 + fn)
2825                 return 31744 - fn + phys_addr - 1024;
2826         if (phys_addr < EEPROMSIZE)
2827                 return phys_addr - 1024 - fn;
2828         return -EINVAL;
2829 }
2830
2831 /*
2832  * The next two routines implement eeprom read/write from physical addresses.
2833  */
2834 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2835 {
2836         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2837
2838         if (vaddr >= 0)
2839                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2840         return vaddr < 0 ? vaddr : 0;
2841 }
2842
2843 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2844 {
2845         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2846
2847         if (vaddr >= 0)
2848                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2849         return vaddr < 0 ? vaddr : 0;
2850 }
2851
2852 #define EEPROM_MAGIC 0x38E2F10C
2853
2854 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2855                       u8 *data)
2856 {
2857         int i, err = 0;
2858         struct adapter *adapter = netdev2adap(dev);
2859
2860         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2861         if (!buf)
2862                 return -ENOMEM;
2863
2864         e->magic = EEPROM_MAGIC;
2865         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2866                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2867
2868         if (!err)
2869                 memcpy(data, buf + e->offset, e->len);
2870         kfree(buf);
2871         return err;
2872 }
2873
2874 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2875                       u8 *data)
2876 {
2877         u8 *buf;
2878         int err = 0;
2879         u32 aligned_offset, aligned_len, *p;
2880         struct adapter *adapter = netdev2adap(dev);
2881
2882         if (eeprom->magic != EEPROM_MAGIC)
2883                 return -EINVAL;
2884
2885         aligned_offset = eeprom->offset & ~3;
2886         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2887
2888         if (adapter->fn > 0) {
2889                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2890
2891                 if (aligned_offset < start ||
2892                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2893                         return -EPERM;
2894         }
2895
2896         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2897                 /*
2898                  * RMW possibly needed for first or last words.
2899                  */
2900                 buf = kmalloc(aligned_len, GFP_KERNEL);
2901                 if (!buf)
2902                         return -ENOMEM;
2903                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2904                 if (!err && aligned_len > 4)
2905                         err = eeprom_rd_phys(adapter,
2906                                              aligned_offset + aligned_len - 4,
2907                                              (u32 *)&buf[aligned_len - 4]);
2908                 if (err)
2909                         goto out;
2910                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2911         } else
2912                 buf = data;
2913
2914         err = t4_seeprom_wp(adapter, false);
2915         if (err)
2916                 goto out;
2917
2918         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2919                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2920                 aligned_offset += 4;
2921         }
2922
2923         if (!err)
2924                 err = t4_seeprom_wp(adapter, true);
2925 out:
2926         if (buf != data)
2927                 kfree(buf);
2928         return err;
2929 }
2930
2931 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2932 {
2933         int ret;
2934         const struct firmware *fw;
2935         struct adapter *adap = netdev2adap(netdev);
2936         unsigned int mbox = FW_PCIE_FW_MASTER_MASK + 1;
2937
2938         ef->data[sizeof(ef->data) - 1] = '\0';
2939         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2940         if (ret < 0)
2941                 return ret;
2942
2943         /* If the adapter has been fully initialized then we'll go ahead and
2944          * try to get the firmware's cooperation in upgrading to the new
2945          * firmware image otherwise we'll try to do the entire job from the
2946          * host ... and we always "force" the operation in this path.
2947          */
2948         if (adap->flags & FULL_INIT_DONE)
2949                 mbox = adap->mbox;
2950
2951         ret = t4_fw_upgrade(adap, mbox, fw->data, fw->size, 1);
2952         release_firmware(fw);
2953         if (!ret)
2954                 dev_info(adap->pdev_dev, "loaded firmware %s,"
2955                          " reload cxgb4 driver\n", ef->data);
2956         return ret;
2957 }
2958
2959 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2960 #define BCAST_CRC 0xa0ccc1a6
2961
2962 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2963 {
2964         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2965         wol->wolopts = netdev2adap(dev)->wol;
2966         memset(&wol->sopass, 0, sizeof(wol->sopass));
2967 }
2968
2969 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2970 {
2971         int err = 0;
2972         struct port_info *pi = netdev_priv(dev);
2973
2974         if (wol->wolopts & ~WOL_SUPPORTED)
2975                 return -EINVAL;
2976         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2977                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2978         if (wol->wolopts & WAKE_BCAST) {
2979                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2980                                         ~0ULL, 0, false);
2981                 if (!err)
2982                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2983                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2984         } else
2985                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2986         return err;
2987 }
2988
2989 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2990 {
2991         const struct port_info *pi = netdev_priv(dev);
2992         netdev_features_t changed = dev->features ^ features;
2993         int err;
2994
2995         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2996                 return 0;
2997
2998         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2999                             -1, -1, -1,
3000                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
3001         if (unlikely(err))
3002                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
3003         return err;
3004 }
3005
3006 static u32 get_rss_table_size(struct net_device *dev)
3007 {
3008         const struct port_info *pi = netdev_priv(dev);
3009
3010         return pi->rss_size;
3011 }
3012
3013 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
3014 {
3015         const struct port_info *pi = netdev_priv(dev);
3016         unsigned int n = pi->rss_size;
3017
3018         while (n--)
3019                 p[n] = pi->rss[n];
3020         return 0;
3021 }
3022
3023 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
3024 {
3025         unsigned int i;
3026         struct port_info *pi = netdev_priv(dev);
3027
3028         for (i = 0; i < pi->rss_size; i++)
3029                 pi->rss[i] = p[i];
3030         if (pi->adapter->flags & FULL_INIT_DONE)
3031                 return write_rss(pi, pi->rss);
3032         return 0;
3033 }
3034
3035 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
3036                      u32 *rules)
3037 {
3038         const struct port_info *pi = netdev_priv(dev);
3039
3040         switch (info->cmd) {
3041         case ETHTOOL_GRXFH: {
3042                 unsigned int v = pi->rss_mode;
3043
3044                 info->data = 0;
3045                 switch (info->flow_type) {
3046                 case TCP_V4_FLOW:
3047                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3048                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3049                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3050                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3051                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3052                         break;
3053                 case UDP_V4_FLOW:
3054                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3055                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3056                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3057                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3058                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3059                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3060                         break;
3061                 case SCTP_V4_FLOW:
3062                 case AH_ESP_V4_FLOW:
3063                 case IPV4_FLOW:
3064                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3065                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3066                         break;
3067                 case TCP_V6_FLOW:
3068                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3069                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3070                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3071                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3072                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3073                         break;
3074                 case UDP_V6_FLOW:
3075                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3076                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3077                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3078                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3079                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3080                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3081                         break;
3082                 case SCTP_V6_FLOW:
3083                 case AH_ESP_V6_FLOW:
3084                 case IPV6_FLOW:
3085                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3086                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3087                         break;
3088                 }
3089                 return 0;
3090         }
3091         case ETHTOOL_GRXRINGS:
3092                 info->data = pi->nqsets;
3093                 return 0;
3094         }
3095         return -EOPNOTSUPP;
3096 }
3097
3098 static const struct ethtool_ops cxgb_ethtool_ops = {
3099         .get_settings      = get_settings,
3100         .set_settings      = set_settings,
3101         .get_drvinfo       = get_drvinfo,
3102         .get_msglevel      = get_msglevel,
3103         .set_msglevel      = set_msglevel,
3104         .get_ringparam     = get_sge_param,
3105         .set_ringparam     = set_sge_param,
3106         .get_coalesce      = get_coalesce,
3107         .set_coalesce      = set_coalesce,
3108         .get_eeprom_len    = get_eeprom_len,
3109         .get_eeprom        = get_eeprom,
3110         .set_eeprom        = set_eeprom,
3111         .get_pauseparam    = get_pauseparam,
3112         .set_pauseparam    = set_pauseparam,
3113         .get_link          = ethtool_op_get_link,
3114         .get_strings       = get_strings,
3115         .set_phys_id       = identify_port,
3116         .nway_reset        = restart_autoneg,
3117         .get_sset_count    = get_sset_count,
3118         .get_ethtool_stats = get_stats,
3119         .get_regs_len      = get_regs_len,
3120         .get_regs          = get_regs,
3121         .get_wol           = get_wol,
3122         .set_wol           = set_wol,
3123         .get_rxnfc         = get_rxnfc,
3124         .get_rxfh_indir_size = get_rss_table_size,
3125         .get_rxfh          = get_rss_table,
3126         .set_rxfh          = set_rss_table,
3127         .flash_device      = set_flash,
3128 };
3129
3130 /*
3131  * debugfs support
3132  */
3133 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3134                         loff_t *ppos)
3135 {
3136         loff_t pos = *ppos;
3137         loff_t avail = file_inode(file)->i_size;
3138         unsigned int mem = (uintptr_t)file->private_data & 3;
3139         struct adapter *adap = file->private_data - mem;
3140         __be32 *data;
3141         int ret;
3142
3143         if (pos < 0)
3144                 return -EINVAL;
3145         if (pos >= avail)
3146                 return 0;
3147         if (count > avail - pos)
3148                 count = avail - pos;
3149
3150         data = t4_alloc_mem(count);
3151         if (!data)
3152                 return -ENOMEM;
3153
3154         spin_lock(&adap->win0_lock);
3155         ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3156         spin_unlock(&adap->win0_lock);
3157         if (ret) {
3158                 t4_free_mem(data);
3159                 return ret;
3160         }
3161         ret = copy_to_user(buf, data, count);
3162
3163         t4_free_mem(data);
3164         if (ret)
3165                 return -EFAULT;
3166
3167         *ppos = pos + count;
3168         return count;
3169 }
3170
3171 static const struct file_operations mem_debugfs_fops = {
3172         .owner   = THIS_MODULE,
3173         .open    = simple_open,
3174         .read    = mem_read,
3175         .llseek  = default_llseek,
3176 };
3177
3178 static void add_debugfs_mem(struct adapter *adap, const char *name,
3179                             unsigned int idx, unsigned int size_mb)
3180 {
3181         struct dentry *de;
3182
3183         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3184                                  (void *)adap + idx, &mem_debugfs_fops);
3185         if (de && de->d_inode)
3186                 de->d_inode->i_size = size_mb << 20;
3187 }
3188
3189 static int setup_debugfs(struct adapter *adap)
3190 {
3191         int i;
3192         u32 size;
3193
3194         if (IS_ERR_OR_NULL(adap->debugfs_root))
3195                 return -1;
3196
3197         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
3198         if (i & EDRAM0_ENABLE) {
3199                 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3200                 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3201         }
3202         if (i & EDRAM1_ENABLE) {
3203                 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3204                 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3205         }
3206         if (is_t4(adap->params.chip)) {
3207                 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3208                 if (i & EXT_MEM_ENABLE)
3209                         add_debugfs_mem(adap, "mc", MEM_MC,
3210                                         EXT_MEM_SIZE_GET(size));
3211         } else {
3212                 if (i & EXT_MEM_ENABLE) {
3213                         size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3214                         add_debugfs_mem(adap, "mc0", MEM_MC0,
3215                                         EXT_MEM_SIZE_GET(size));
3216                 }
3217                 if (i & EXT_MEM1_ENABLE) {
3218                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3219                         add_debugfs_mem(adap, "mc1", MEM_MC1,
3220                                         EXT_MEM_SIZE_GET(size));
3221                 }
3222         }
3223         if (adap->l2t)
3224                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3225                                     &t4_l2t_fops);
3226         return 0;
3227 }
3228
3229 /*
3230  * upper-layer driver support
3231  */
3232
3233 /*
3234  * Allocate an active-open TID and set it to the supplied value.
3235  */
3236 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3237 {
3238         int atid = -1;
3239
3240         spin_lock_bh(&t->atid_lock);
3241         if (t->afree) {
3242                 union aopen_entry *p = t->afree;
3243
3244                 atid = (p - t->atid_tab) + t->atid_base;
3245                 t->afree = p->next;
3246                 p->data = data;
3247                 t->atids_in_use++;
3248         }
3249         spin_unlock_bh(&t->atid_lock);
3250         return atid;
3251 }
3252 EXPORT_SYMBOL(cxgb4_alloc_atid);
3253
3254 /*
3255  * Release an active-open TID.
3256  */
3257 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3258 {
3259         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3260
3261         spin_lock_bh(&t->atid_lock);
3262         p->next = t->afree;
3263         t->afree = p;
3264         t->atids_in_use--;
3265         spin_unlock_bh(&t->atid_lock);
3266 }
3267 EXPORT_SYMBOL(cxgb4_free_atid);
3268
3269 /*
3270  * Allocate a server TID and set it to the supplied value.
3271  */
3272 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3273 {
3274         int stid;
3275
3276         spin_lock_bh(&t->stid_lock);
3277         if (family == PF_INET) {
3278                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3279                 if (stid < t->nstids)
3280                         __set_bit(stid, t->stid_bmap);
3281                 else
3282                         stid = -1;
3283         } else {
3284                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3285                 if (stid < 0)
3286                         stid = -1;
3287         }
3288         if (stid >= 0) {
3289                 t->stid_tab[stid].data = data;
3290                 stid += t->stid_base;
3291                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3292                  * This is equivalent to 4 TIDs. With CLIP enabled it
3293                  * needs 2 TIDs.
3294                  */
3295                 if (family == PF_INET)
3296                         t->stids_in_use++;
3297                 else
3298                         t->stids_in_use += 4;
3299         }
3300         spin_unlock_bh(&t->stid_lock);
3301         return stid;
3302 }
3303 EXPORT_SYMBOL(cxgb4_alloc_stid);
3304
3305 /* Allocate a server filter TID and set it to the supplied value.
3306  */
3307 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3308 {
3309         int stid;
3310
3311         spin_lock_bh(&t->stid_lock);
3312         if (family == PF_INET) {
3313                 stid = find_next_zero_bit(t->stid_bmap,
3314                                 t->nstids + t->nsftids, t->nstids);
3315                 if (stid < (t->nstids + t->nsftids))
3316                         __set_bit(stid, t->stid_bmap);
3317                 else
3318                         stid = -1;
3319         } else {
3320                 stid = -1;
3321         }
3322         if (stid >= 0) {
3323                 t->stid_tab[stid].data = data;
3324                 stid -= t->nstids;
3325                 stid += t->sftid_base;
3326                 t->stids_in_use++;
3327         }
3328         spin_unlock_bh(&t->stid_lock);
3329         return stid;
3330 }
3331 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3332
3333 /* Release a server TID.
3334  */
3335 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3336 {
3337         /* Is it a server filter TID? */
3338         if (t->nsftids && (stid >= t->sftid_base)) {
3339                 stid -= t->sftid_base;
3340                 stid += t->nstids;
3341         } else {
3342                 stid -= t->stid_base;
3343         }
3344
3345         spin_lock_bh(&t->stid_lock);
3346         if (family == PF_INET)
3347                 __clear_bit(stid, t->stid_bmap);
3348         else
3349                 bitmap_release_region(t->stid_bmap, stid, 2);
3350         t->stid_tab[stid].data = NULL;
3351         if (family == PF_INET)
3352                 t->stids_in_use--;
3353         else
3354                 t->stids_in_use -= 4;
3355         spin_unlock_bh(&t->stid_lock);
3356 }
3357 EXPORT_SYMBOL(cxgb4_free_stid);
3358
3359 /*
3360  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3361  */
3362 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3363                            unsigned int tid)
3364 {
3365         struct cpl_tid_release *req;
3366
3367         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3368         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3369         INIT_TP_WR(req, tid);
3370         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3371 }
3372
3373 /*
3374  * Queue a TID release request and if necessary schedule a work queue to
3375  * process it.
3376  */
3377 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3378                                     unsigned int tid)
3379 {
3380         void **p = &t->tid_tab[tid];
3381         struct adapter *adap = container_of(t, struct adapter, tids);
3382
3383         spin_lock_bh(&adap->tid_release_lock);
3384         *p = adap->tid_release_head;
3385         /* Low 2 bits encode the Tx channel number */
3386         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3387         if (!adap->tid_release_task_busy) {
3388                 adap->tid_release_task_busy = true;
3389                 queue_work(adap->workq, &adap->tid_release_task);
3390         }
3391         spin_unlock_bh(&adap->tid_release_lock);
3392 }
3393
3394 /*
3395  * Process the list of pending TID release requests.
3396  */
3397 static void process_tid_release_list(struct work_struct *work)
3398 {
3399         struct sk_buff *skb;
3400         struct adapter *adap;
3401
3402         adap = container_of(work, struct adapter, tid_release_task);
3403
3404         spin_lock_bh(&adap->tid_release_lock);
3405         while (adap->tid_release_head) {
3406                 void **p = adap->tid_release_head;
3407                 unsigned int chan = (uintptr_t)p & 3;
3408                 p = (void *)p - chan;
3409
3410                 adap->tid_release_head = *p;
3411                 *p = NULL;
3412                 spin_unlock_bh(&adap->tid_release_lock);
3413
3414                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3415                                          GFP_KERNEL)))
3416                         schedule_timeout_uninterruptible(1);
3417
3418                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3419                 t4_ofld_send(adap, skb);
3420                 spin_lock_bh(&adap->tid_release_lock);
3421         }
3422         adap->tid_release_task_busy = false;
3423         spin_unlock_bh(&adap->tid_release_lock);
3424 }
3425
3426 /*
3427  * Release a TID and inform HW.  If we are unable to allocate the release
3428  * message we defer to a work queue.
3429  */
3430 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3431 {
3432         void *old;
3433         struct sk_buff *skb;
3434         struct adapter *adap = container_of(t, struct adapter, tids);
3435
3436         old = t->tid_tab[tid];
3437         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3438         if (likely(skb)) {
3439                 t->tid_tab[tid] = NULL;
3440                 mk_tid_release(skb, chan, tid);
3441                 t4_ofld_send(adap, skb);
3442         } else
3443                 cxgb4_queue_tid_release(t, chan, tid);
3444         if (old)
3445                 atomic_dec(&t->tids_in_use);
3446 }
3447 EXPORT_SYMBOL(cxgb4_remove_tid);
3448
3449 /*
3450  * Allocate and initialize the TID tables.  Returns 0 on success.
3451  */
3452 static int tid_init(struct tid_info *t)
3453 {
3454         size_t size;
3455         unsigned int stid_bmap_size;
3456         unsigned int natids = t->natids;
3457         struct adapter *adap = container_of(t, struct adapter, tids);
3458
3459         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3460         size = t->ntids * sizeof(*t->tid_tab) +
3461                natids * sizeof(*t->atid_tab) +
3462                t->nstids * sizeof(*t->stid_tab) +
3463                t->nsftids * sizeof(*t->stid_tab) +
3464                stid_bmap_size * sizeof(long) +
3465                t->nftids * sizeof(*t->ftid_tab) +
3466                t->nsftids * sizeof(*t->ftid_tab);
3467
3468         t->tid_tab = t4_alloc_mem(size);
3469         if (!t->tid_tab)
3470                 return -ENOMEM;
3471
3472         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3473         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3474         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3475         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3476         spin_lock_init(&t->stid_lock);
3477         spin_lock_init(&t->atid_lock);
3478
3479         t->stids_in_use = 0;
3480         t->afree = NULL;
3481         t->atids_in_use = 0;
3482         atomic_set(&t->tids_in_use, 0);
3483
3484         /* Setup the free list for atid_tab and clear the stid bitmap. */
3485         if (natids) {
3486                 while (--natids)
3487                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3488                 t->afree = t->atid_tab;
3489         }
3490         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3491         /* Reserve stid 0 for T4/T5 adapters */
3492         if (!t->stid_base &&
3493             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3494                 __set_bit(0, t->stid_bmap);
3495
3496         return 0;
3497 }
3498
3499 int cxgb4_clip_get(const struct net_device *dev,
3500                    const struct in6_addr *lip)
3501 {
3502         struct adapter *adap;
3503         struct fw_clip_cmd c;
3504
3505         adap = netdev2adap(dev);
3506         memset(&c, 0, sizeof(c));
3507         c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3508                         FW_CMD_REQUEST | FW_CMD_WRITE);
3509         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3510         c.ip_hi = *(__be64 *)(lip->s6_addr);
3511         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3512         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3513 }
3514 EXPORT_SYMBOL(cxgb4_clip_get);
3515
3516 int cxgb4_clip_release(const struct net_device *dev,
3517                        const struct in6_addr *lip)
3518 {
3519         struct adapter *adap;
3520         struct fw_clip_cmd c;
3521
3522         adap = netdev2adap(dev);
3523         memset(&c, 0, sizeof(c));
3524         c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3525                         FW_CMD_REQUEST | FW_CMD_READ);
3526         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3527         c.ip_hi = *(__be64 *)(lip->s6_addr);
3528         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3529         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3530 }
3531 EXPORT_SYMBOL(cxgb4_clip_release);
3532
3533 /**
3534  *      cxgb4_create_server - create an IP server
3535  *      @dev: the device
3536  *      @stid: the server TID
3537  *      @sip: local IP address to bind server to
3538  *      @sport: the server's TCP port
3539  *      @queue: queue to direct messages from this server to
3540  *
3541  *      Create an IP server for the given port and address.
3542  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3543  */
3544 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3545                         __be32 sip, __be16 sport, __be16 vlan,
3546                         unsigned int queue)
3547 {
3548         unsigned int chan;
3549         struct sk_buff *skb;
3550         struct adapter *adap;
3551         struct cpl_pass_open_req *req;
3552         int ret;
3553
3554         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3555         if (!skb)
3556                 return -ENOMEM;
3557
3558         adap = netdev2adap(dev);
3559         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3560         INIT_TP_WR(req, 0);
3561         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3562         req->local_port = sport;
3563         req->peer_port = htons(0);
3564         req->local_ip = sip;
3565         req->peer_ip = htonl(0);
3566         chan = rxq_to_chan(&adap->sge, queue);
3567         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3568         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3569                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3570         ret = t4_mgmt_tx(adap, skb);
3571         return net_xmit_eval(ret);
3572 }
3573 EXPORT_SYMBOL(cxgb4_create_server);
3574
3575 /*      cxgb4_create_server6 - create an IPv6 server
3576  *      @dev: the device
3577  *      @stid: the server TID
3578  *      @sip: local IPv6 address to bind server to
3579  *      @sport: the server's TCP port
3580  *      @queue: queue to direct messages from this server to
3581  *
3582  *      Create an IPv6 server for the given port and address.
3583  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3584  */
3585 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3586                          const struct in6_addr *sip, __be16 sport,
3587                          unsigned int queue)
3588 {
3589         unsigned int chan;
3590         struct sk_buff *skb;
3591         struct adapter *adap;
3592         struct cpl_pass_open_req6 *req;
3593         int ret;
3594
3595         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3596         if (!skb)
3597                 return -ENOMEM;
3598
3599         adap = netdev2adap(dev);
3600         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3601         INIT_TP_WR(req, 0);
3602         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3603         req->local_port = sport;
3604         req->peer_port = htons(0);
3605         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3606         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3607         req->peer_ip_hi = cpu_to_be64(0);
3608         req->peer_ip_lo = cpu_to_be64(0);
3609         chan = rxq_to_chan(&adap->sge, queue);
3610         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3611         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3612                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3613         ret = t4_mgmt_tx(adap, skb);
3614         return net_xmit_eval(ret);
3615 }
3616 EXPORT_SYMBOL(cxgb4_create_server6);
3617
3618 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3619                         unsigned int queue, bool ipv6)
3620 {
3621         struct sk_buff *skb;
3622         struct adapter *adap;
3623         struct cpl_close_listsvr_req *req;
3624         int ret;
3625
3626         adap = netdev2adap(dev);
3627
3628         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3629         if (!skb)
3630                 return -ENOMEM;
3631
3632         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3633         INIT_TP_WR(req, 0);
3634         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3635         req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3636                                 LISTSVR_IPV6(0)) | QUEUENO(queue));
3637         ret = t4_mgmt_tx(adap, skb);
3638         return net_xmit_eval(ret);
3639 }
3640 EXPORT_SYMBOL(cxgb4_remove_server);
3641
3642 /**
3643  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3644  *      @mtus: the HW MTU table
3645  *      @mtu: the target MTU
3646  *      @idx: index of selected entry in the MTU table
3647  *
3648  *      Returns the index and the value in the HW MTU table that is closest to
3649  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3650  *      table, in which case that smallest available value is selected.
3651  */
3652 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3653                             unsigned int *idx)
3654 {
3655         unsigned int i = 0;
3656
3657         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3658                 ++i;
3659         if (idx)
3660                 *idx = i;
3661         return mtus[i];
3662 }
3663 EXPORT_SYMBOL(cxgb4_best_mtu);
3664
3665 /**
3666  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3667  *     @mtus: the HW MTU table
3668  *     @header_size: Header Size
3669  *     @data_size_max: maximum Data Segment Size
3670  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3671  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3672  *
3673  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3674  *     MTU Table based solely on a Maximum MTU parameter, we break that
3675  *     parameter up into a Header Size and Maximum Data Segment Size, and
3676  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3677  *     the Hardware MTU Table which will result in a Data Segment Size with
3678  *     the requested alignment _and_ that MTU isn't "too far" from the
3679  *     closest MTU, then we'll return that rather than the closest MTU.
3680  */
3681 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3682                                     unsigned short header_size,
3683                                     unsigned short data_size_max,
3684                                     unsigned short data_size_align,
3685                                     unsigned int *mtu_idxp)
3686 {
3687         unsigned short max_mtu = header_size + data_size_max;
3688         unsigned short data_size_align_mask = data_size_align - 1;
3689         int mtu_idx, aligned_mtu_idx;
3690
3691         /* Scan the MTU Table till we find an MTU which is larger than our
3692          * Maximum MTU or we reach the end of the table.  Along the way,
3693          * record the last MTU found, if any, which will result in a Data
3694          * Segment Length matching the requested alignment.
3695          */
3696         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3697                 unsigned short data_size = mtus[mtu_idx] - header_size;
3698
3699                 /* If this MTU minus the Header Size would result in a
3700                  * Data Segment Size of the desired alignment, remember it.
3701                  */
3702                 if ((data_size & data_size_align_mask) == 0)
3703                         aligned_mtu_idx = mtu_idx;
3704
3705                 /* If we're not at the end of the Hardware MTU Table and the
3706                  * next element is larger than our Maximum MTU, drop out of
3707                  * the loop.
3708                  */
3709                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3710                         break;
3711         }
3712
3713         /* If we fell out of the loop because we ran to the end of the table,
3714          * then we just have to use the last [largest] entry.
3715          */
3716         if (mtu_idx == NMTUS)
3717                 mtu_idx--;
3718
3719         /* If we found an MTU which resulted in the requested Data Segment
3720          * Length alignment and that's "not far" from the largest MTU which is
3721          * less than or equal to the maximum MTU, then use that.
3722          */
3723         if (aligned_mtu_idx >= 0 &&
3724             mtu_idx - aligned_mtu_idx <= 1)
3725                 mtu_idx = aligned_mtu_idx;
3726
3727         /* If the caller has passed in an MTU Index pointer, pass the
3728          * MTU Index back.  Return the MTU value.
3729          */
3730         if (mtu_idxp)
3731                 *mtu_idxp = mtu_idx;
3732         return mtus[mtu_idx];
3733 }
3734 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3735
3736 /**
3737  *      cxgb4_port_chan - get the HW channel of a port
3738  *      @dev: the net device for the port
3739  *
3740  *      Return the HW Tx channel of the given port.
3741  */
3742 unsigned int cxgb4_port_chan(const struct net_device *dev)
3743 {
3744         return netdev2pinfo(dev)->tx_chan;
3745 }
3746 EXPORT_SYMBOL(cxgb4_port_chan);
3747
3748 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3749 {
3750         struct adapter *adap = netdev2adap(dev);
3751         u32 v1, v2, lp_count, hp_count;
3752
3753         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3754         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3755         if (is_t4(adap->params.chip)) {
3756                 lp_count = G_LP_COUNT(v1);
3757                 hp_count = G_HP_COUNT(v1);
3758         } else {
3759                 lp_count = G_LP_COUNT_T5(v1);
3760                 hp_count = G_HP_COUNT_T5(v2);
3761         }
3762         return lpfifo ? lp_count : hp_count;
3763 }
3764 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3765
3766 /**
3767  *      cxgb4_port_viid - get the VI id of a port
3768  *      @dev: the net device for the port
3769  *
3770  *      Return the VI id of the given port.
3771  */
3772 unsigned int cxgb4_port_viid(const struct net_device *dev)
3773 {
3774         return netdev2pinfo(dev)->viid;
3775 }
3776 EXPORT_SYMBOL(cxgb4_port_viid);
3777
3778 /**
3779  *      cxgb4_port_idx - get the index of a port
3780  *      @dev: the net device for the port
3781  *
3782  *      Return the index of the given port.
3783  */
3784 unsigned int cxgb4_port_idx(const struct net_device *dev)
3785 {
3786         return netdev2pinfo(dev)->port_id;
3787 }
3788 EXPORT_SYMBOL(cxgb4_port_idx);
3789
3790 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3791                          struct tp_tcp_stats *v6)
3792 {
3793         struct adapter *adap = pci_get_drvdata(pdev);
3794
3795         spin_lock(&adap->stats_lock);
3796         t4_tp_get_tcp_stats(adap, v4, v6);
3797         spin_unlock(&adap->stats_lock);
3798 }
3799 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3800
3801 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3802                       const unsigned int *pgsz_order)
3803 {
3804         struct adapter *adap = netdev2adap(dev);
3805
3806         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3807         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3808                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3809                      HPZ3(pgsz_order[3]));
3810 }
3811 EXPORT_SYMBOL(cxgb4_iscsi_init);
3812
3813 int cxgb4_flush_eq_cache(struct net_device *dev)
3814 {
3815         struct adapter *adap = netdev2adap(dev);
3816         int ret;
3817
3818         ret = t4_fwaddrspace_write(adap, adap->mbox,
3819                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3820         return ret;
3821 }
3822 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3823
3824 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3825 {
3826         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3827         __be64 indices;
3828         int ret;
3829
3830         spin_lock(&adap->win0_lock);
3831         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3832                            sizeof(indices), (__be32 *)&indices,
3833                            T4_MEMORY_READ);
3834         spin_unlock(&adap->win0_lock);
3835         if (!ret) {
3836                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3837                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3838         }
3839         return ret;
3840 }
3841
3842 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3843                         u16 size)
3844 {
3845         struct adapter *adap = netdev2adap(dev);
3846         u16 hw_pidx, hw_cidx;
3847         int ret;
3848
3849         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3850         if (ret)
3851                 goto out;
3852
3853         if (pidx != hw_pidx) {
3854                 u16 delta;
3855
3856                 if (pidx >= hw_pidx)
3857                         delta = pidx - hw_pidx;
3858                 else
3859                         delta = size - hw_pidx + pidx;
3860                 wmb();
3861                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3862                              QID(qid) | PIDX(delta));
3863         }
3864 out:
3865         return ret;
3866 }
3867 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3868
3869 void cxgb4_disable_db_coalescing(struct net_device *dev)
3870 {
3871         struct adapter *adap;
3872
3873         adap = netdev2adap(dev);
3874         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3875                          F_NOCOALESCE);
3876 }
3877 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3878
3879 void cxgb4_enable_db_coalescing(struct net_device *dev)
3880 {
3881         struct adapter *adap;
3882
3883         adap = netdev2adap(dev);
3884         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3885 }
3886 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3887
3888 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3889 {
3890         struct adapter *adap;
3891         u32 offset, memtype, memaddr;
3892         u32 edc0_size, edc1_size, mc0_size, mc1_size;
3893         u32 edc0_end, edc1_end, mc0_end, mc1_end;
3894         int ret;
3895
3896         adap = netdev2adap(dev);
3897
3898         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3899
3900         /* Figure out where the offset lands in the Memory Type/Address scheme.
3901          * This code assumes that the memory is laid out starting at offset 0
3902          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3903          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
3904          * MC0, and some have both MC0 and MC1.
3905          */
3906         edc0_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)) << 20;
3907         edc1_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM1_BAR)) << 20;
3908         mc0_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)) << 20;
3909
3910         edc0_end = edc0_size;
3911         edc1_end = edc0_end + edc1_size;
3912         mc0_end = edc1_end + mc0_size;
3913
3914         if (offset < edc0_end) {
3915                 memtype = MEM_EDC0;
3916                 memaddr = offset;
3917         } else if (offset < edc1_end) {
3918                 memtype = MEM_EDC1;
3919                 memaddr = offset - edc0_end;
3920         } else {
3921                 if (offset < mc0_end) {
3922                         memtype = MEM_MC0;
3923                         memaddr = offset - edc1_end;
3924                 } else if (is_t4(adap->params.chip)) {
3925                         /* T4 only has a single memory channel */
3926                         goto err;
3927                 } else {
3928                         mc1_size = EXT_MEM_SIZE_GET(
3929                                         t4_read_reg(adap,
3930                                                     MA_EXT_MEMORY1_BAR)) << 20;
3931                         mc1_end = mc0_end + mc1_size;
3932                         if (offset < mc1_end) {
3933                                 memtype = MEM_MC1;
3934                                 memaddr = offset - mc0_end;
3935                         } else {
3936                                 /* offset beyond the end of any memory */
3937                                 goto err;
3938                         }
3939                 }
3940         }
3941
3942         spin_lock(&adap->win0_lock);
3943         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3944         spin_unlock(&adap->win0_lock);
3945         return ret;
3946
3947 err:
3948         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3949                 stag, offset);
3950         return -EINVAL;
3951 }
3952 EXPORT_SYMBOL(cxgb4_read_tpte);
3953
3954 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3955 {
3956         u32 hi, lo;
3957         struct adapter *adap;
3958
3959         adap = netdev2adap(dev);
3960         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3961         hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3962
3963         return ((u64)hi << 32) | (u64)lo;
3964 }
3965 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3966
3967 static struct pci_driver cxgb4_driver;
3968
3969 static void check_neigh_update(struct neighbour *neigh)
3970 {
3971         const struct device *parent;
3972         const struct net_device *netdev = neigh->dev;
3973
3974         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3975                 netdev = vlan_dev_real_dev(netdev);
3976         parent = netdev->dev.parent;
3977         if (parent && parent->driver == &cxgb4_driver.driver)
3978                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3979 }
3980
3981 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3982                        void *data)
3983 {
3984         switch (event) {
3985         case NETEVENT_NEIGH_UPDATE:
3986                 check_neigh_update(data);
3987                 break;
3988         case NETEVENT_REDIRECT:
3989         default:
3990                 break;
3991         }
3992         return 0;
3993 }
3994
3995 static bool netevent_registered;
3996 static struct notifier_block cxgb4_netevent_nb = {
3997         .notifier_call = netevent_cb
3998 };
3999
4000 static void drain_db_fifo(struct adapter *adap, int usecs)
4001 {
4002         u32 v1, v2, lp_count, hp_count;
4003
4004         do {
4005                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
4006                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
4007                 if (is_t4(adap->params.chip)) {
4008                         lp_count = G_LP_COUNT(v1);
4009                         hp_count = G_HP_COUNT(v1);
4010                 } else {
4011                         lp_count = G_LP_COUNT_T5(v1);
4012                         hp_count = G_HP_COUNT_T5(v2);
4013                 }
4014
4015                 if (lp_count == 0 && hp_count == 0)
4016                         break;
4017                 set_current_state(TASK_UNINTERRUPTIBLE);
4018                 schedule_timeout(usecs_to_jiffies(usecs));
4019         } while (1);
4020 }
4021
4022 static void disable_txq_db(struct sge_txq *q)
4023 {
4024         unsigned long flags;
4025
4026         spin_lock_irqsave(&q->db_lock, flags);
4027         q->db_disabled = 1;
4028         spin_unlock_irqrestore(&q->db_lock, flags);
4029 }
4030
4031 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
4032 {
4033         spin_lock_irq(&q->db_lock);
4034         if (q->db_pidx_inc) {
4035                 /* Make sure that all writes to the TX descriptors
4036                  * are committed before we tell HW about them.
4037                  */
4038                 wmb();
4039                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4040                              QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
4041                 q->db_pidx_inc = 0;
4042         }
4043         q->db_disabled = 0;
4044         spin_unlock_irq(&q->db_lock);
4045 }
4046
4047 static void disable_dbs(struct adapter *adap)
4048 {
4049         int i;
4050
4051         for_each_ethrxq(&adap->sge, i)
4052                 disable_txq_db(&adap->sge.ethtxq[i].q);
4053         for_each_ofldrxq(&adap->sge, i)
4054                 disable_txq_db(&adap->sge.ofldtxq[i].q);
4055         for_each_port(adap, i)
4056                 disable_txq_db(&adap->sge.ctrlq[i].q);
4057 }
4058
4059 static void enable_dbs(struct adapter *adap)
4060 {
4061         int i;
4062
4063         for_each_ethrxq(&adap->sge, i)
4064                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
4065         for_each_ofldrxq(&adap->sge, i)
4066                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
4067         for_each_port(adap, i)
4068                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
4069 }
4070
4071 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
4072 {
4073         if (adap->uld_handle[CXGB4_ULD_RDMA])
4074                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
4075                                 cmd);
4076 }
4077
4078 static void process_db_full(struct work_struct *work)
4079 {
4080         struct adapter *adap;
4081
4082         adap = container_of(work, struct adapter, db_full_task);
4083
4084         drain_db_fifo(adap, dbfifo_drain_delay);
4085         enable_dbs(adap);
4086         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4087         t4_set_reg_field(adap, SGE_INT_ENABLE3,
4088                          DBFIFO_HP_INT | DBFIFO_LP_INT,
4089                          DBFIFO_HP_INT | DBFIFO_LP_INT);
4090 }
4091
4092 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4093 {
4094         u16 hw_pidx, hw_cidx;
4095         int ret;
4096
4097         spin_lock_irq(&q->db_lock);
4098         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4099         if (ret)
4100                 goto out;
4101         if (q->db_pidx != hw_pidx) {
4102                 u16 delta;
4103
4104                 if (q->db_pidx >= hw_pidx)
4105                         delta = q->db_pidx - hw_pidx;
4106                 else
4107                         delta = q->size - hw_pidx + q->db_pidx;
4108                 wmb();
4109                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4110                              QID(q->cntxt_id) | PIDX(delta));
4111         }
4112 out:
4113         q->db_disabled = 0;
4114         q->db_pidx_inc = 0;
4115         spin_unlock_irq(&q->db_lock);
4116         if (ret)
4117                 CH_WARN(adap, "DB drop recovery failed.\n");
4118 }
4119 static void recover_all_queues(struct adapter *adap)
4120 {
4121         int i;
4122
4123         for_each_ethrxq(&adap->sge, i)
4124                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4125         for_each_ofldrxq(&adap->sge, i)
4126                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4127         for_each_port(adap, i)
4128                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4129 }
4130
4131 static void process_db_drop(struct work_struct *work)
4132 {
4133         struct adapter *adap;
4134
4135         adap = container_of(work, struct adapter, db_drop_task);
4136
4137         if (is_t4(adap->params.chip)) {
4138                 drain_db_fifo(adap, dbfifo_drain_delay);
4139                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4140                 drain_db_fifo(adap, dbfifo_drain_delay);
4141                 recover_all_queues(adap);
4142                 drain_db_fifo(adap, dbfifo_drain_delay);
4143                 enable_dbs(adap);
4144                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4145         } else {
4146                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4147                 u16 qid = (dropped_db >> 15) & 0x1ffff;
4148                 u16 pidx_inc = dropped_db & 0x1fff;
4149                 unsigned int s_qpp;
4150                 unsigned short udb_density;
4151                 unsigned long qpshift;
4152                 int page;
4153                 u32 udb;
4154
4155                 dev_warn(adap->pdev_dev,
4156                          "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4157                          dropped_db, qid,
4158                          (dropped_db >> 14) & 1,
4159                          (dropped_db >> 13) & 1,
4160                          pidx_inc);
4161
4162                 drain_db_fifo(adap, 1);
4163
4164                 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4165                 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4166                                 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4167                 qpshift = PAGE_SHIFT - ilog2(udb_density);
4168                 udb = qid << qpshift;
4169                 udb &= PAGE_MASK;
4170                 page = udb / PAGE_SIZE;
4171                 udb += (qid - (page * udb_density)) * 128;
4172
4173                 writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
4174
4175                 /* Re-enable BAR2 WC */
4176                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4177         }
4178
4179         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4180 }
4181
4182 void t4_db_full(struct adapter *adap)
4183 {
4184         if (is_t4(adap->params.chip)) {
4185                 disable_dbs(adap);
4186                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4187                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4188                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4189                 queue_work(adap->workq, &adap->db_full_task);
4190         }
4191 }
4192
4193 void t4_db_dropped(struct adapter *adap)
4194 {
4195         if (is_t4(adap->params.chip)) {
4196                 disable_dbs(adap);
4197                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4198         }
4199         queue_work(adap->workq, &adap->db_drop_task);
4200 }
4201
4202 static void uld_attach(struct adapter *adap, unsigned int uld)
4203 {
4204         void *handle;
4205         struct cxgb4_lld_info lli;
4206         unsigned short i;
4207
4208         lli.pdev = adap->pdev;
4209         lli.pf = adap->fn;
4210         lli.l2t = adap->l2t;
4211         lli.tids = &adap->tids;
4212         lli.ports = adap->port;
4213         lli.vr = &adap->vres;
4214         lli.mtus = adap->params.mtus;
4215         if (uld == CXGB4_ULD_RDMA) {
4216                 lli.rxq_ids = adap->sge.rdma_rxq;
4217                 lli.ciq_ids = adap->sge.rdma_ciq;
4218                 lli.nrxq = adap->sge.rdmaqs;
4219                 lli.nciq = adap->sge.rdmaciqs;
4220         } else if (uld == CXGB4_ULD_ISCSI) {
4221                 lli.rxq_ids = adap->sge.ofld_rxq;
4222                 lli.nrxq = adap->sge.ofldqsets;
4223         }
4224         lli.ntxq = adap->sge.ofldqsets;
4225         lli.nchan = adap->params.nports;
4226         lli.nports = adap->params.nports;
4227         lli.wr_cred = adap->params.ofldq_wr_cred;
4228         lli.adapter_type = adap->params.chip;
4229         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4230         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4231         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4232                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4233                         (adap->fn * 4));
4234         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4235                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4236                         (adap->fn * 4));
4237         lli.filt_mode = adap->params.tp.vlan_pri_map;
4238         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4239         for (i = 0; i < NCHAN; i++)
4240                 lli.tx_modq[i] = i;
4241         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4242         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4243         lli.fw_vers = adap->params.fw_vers;
4244         lli.dbfifo_int_thresh = dbfifo_int_thresh;
4245         lli.sge_ingpadboundary = adap->sge.fl_align;
4246         lli.sge_egrstatuspagesize = adap->sge.stat_len;
4247         lli.sge_pktshift = adap->sge.pktshift;
4248         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4249         lli.max_ordird_qp = adap->params.max_ordird_qp;
4250         lli.max_ird_adapter = adap->params.max_ird_adapter;
4251         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4252
4253         handle = ulds[uld].add(&lli);
4254         if (IS_ERR(handle)) {
4255                 dev_warn(adap->pdev_dev,
4256                          "could not attach to the %s driver, error %ld\n",
4257                          uld_str[uld], PTR_ERR(handle));
4258                 return;
4259         }
4260
4261         adap->uld_handle[uld] = handle;
4262
4263         if (!netevent_registered) {
4264                 register_netevent_notifier(&cxgb4_netevent_nb);
4265                 netevent_registered = true;
4266         }
4267
4268         if (adap->flags & FULL_INIT_DONE)
4269                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4270 }
4271
4272 static void attach_ulds(struct adapter *adap)
4273 {
4274         unsigned int i;
4275
4276         spin_lock(&adap_rcu_lock);
4277         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4278         spin_unlock(&adap_rcu_lock);
4279
4280         mutex_lock(&uld_mutex);
4281         list_add_tail(&adap->list_node, &adapter_list);
4282         for (i = 0; i < CXGB4_ULD_MAX; i++)
4283                 if (ulds[i].add)
4284                         uld_attach(adap, i);
4285         mutex_unlock(&uld_mutex);
4286 }
4287
4288 static void detach_ulds(struct adapter *adap)
4289 {
4290         unsigned int i;
4291
4292         mutex_lock(&uld_mutex);
4293         list_del(&adap->list_node);
4294         for (i = 0; i < CXGB4_ULD_MAX; i++)
4295                 if (adap->uld_handle[i]) {
4296                         ulds[i].state_change(adap->uld_handle[i],
4297                                              CXGB4_STATE_DETACH);
4298                         adap->uld_handle[i] = NULL;
4299                 }
4300         if (netevent_registered && list_empty(&adapter_list)) {
4301                 unregister_netevent_notifier(&cxgb4_netevent_nb);
4302                 netevent_registered = false;
4303         }
4304         mutex_unlock(&uld_mutex);
4305
4306         spin_lock(&adap_rcu_lock);
4307         list_del_rcu(&adap->rcu_node);
4308         spin_unlock(&adap_rcu_lock);
4309 }
4310
4311 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4312 {
4313         unsigned int i;
4314
4315         mutex_lock(&uld_mutex);
4316         for (i = 0; i < CXGB4_ULD_MAX; i++)
4317                 if (adap->uld_handle[i])
4318                         ulds[i].state_change(adap->uld_handle[i], new_state);
4319         mutex_unlock(&uld_mutex);
4320 }
4321
4322 /**
4323  *      cxgb4_register_uld - register an upper-layer driver
4324  *      @type: the ULD type
4325  *      @p: the ULD methods
4326  *
4327  *      Registers an upper-layer driver with this driver and notifies the ULD
4328  *      about any presently available devices that support its type.  Returns
4329  *      %-EBUSY if a ULD of the same type is already registered.
4330  */
4331 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4332 {
4333         int ret = 0;
4334         struct adapter *adap;
4335
4336         if (type >= CXGB4_ULD_MAX)
4337                 return -EINVAL;
4338         mutex_lock(&uld_mutex);
4339         if (ulds[type].add) {
4340                 ret = -EBUSY;
4341                 goto out;
4342         }
4343         ulds[type] = *p;
4344         list_for_each_entry(adap, &adapter_list, list_node)
4345                 uld_attach(adap, type);
4346 out:    mutex_unlock(&uld_mutex);
4347         return ret;
4348 }
4349 EXPORT_SYMBOL(cxgb4_register_uld);
4350
4351 /**
4352  *      cxgb4_unregister_uld - unregister an upper-layer driver
4353  *      @type: the ULD type
4354  *
4355  *      Unregisters an existing upper-layer driver.
4356  */
4357 int cxgb4_unregister_uld(enum cxgb4_uld type)
4358 {
4359         struct adapter *adap;
4360
4361         if (type >= CXGB4_ULD_MAX)
4362                 return -EINVAL;
4363         mutex_lock(&uld_mutex);
4364         list_for_each_entry(adap, &adapter_list, list_node)
4365                 adap->uld_handle[type] = NULL;
4366         ulds[type].add = NULL;
4367         mutex_unlock(&uld_mutex);
4368         return 0;
4369 }
4370 EXPORT_SYMBOL(cxgb4_unregister_uld);
4371
4372 /* Check if netdev on which event is occured belongs to us or not. Return
4373  * success (true) if it belongs otherwise failure (false).
4374  * Called with rcu_read_lock() held.
4375  */
4376 #if IS_ENABLED(CONFIG_IPV6)
4377 static bool cxgb4_netdev(const struct net_device *netdev)
4378 {
4379         struct adapter *adap;
4380         int i;
4381
4382         list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4383                 for (i = 0; i < MAX_NPORTS; i++)
4384                         if (adap->port[i] == netdev)
4385                                 return true;
4386         return false;
4387 }
4388
4389 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4390                     unsigned long event)
4391 {
4392         int ret = NOTIFY_DONE;
4393
4394         rcu_read_lock();
4395         if (cxgb4_netdev(event_dev)) {
4396                 switch (event) {
4397                 case NETDEV_UP:
4398                         ret = cxgb4_clip_get(event_dev,
4399                                 (const struct in6_addr *)ifa->addr.s6_addr);
4400                         if (ret < 0) {
4401                                 rcu_read_unlock();
4402                                 return ret;
4403                         }
4404                         ret = NOTIFY_OK;
4405                         break;
4406                 case NETDEV_DOWN:
4407                         cxgb4_clip_release(event_dev,
4408                                 (const struct in6_addr *)ifa->addr.s6_addr);
4409                         ret = NOTIFY_OK;
4410                         break;
4411                 default:
4412                         break;
4413                 }
4414         }
4415         rcu_read_unlock();
4416         return ret;
4417 }
4418
4419 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4420                 unsigned long event, void *data)
4421 {
4422         struct inet6_ifaddr *ifa = data;
4423         struct net_device *event_dev;
4424         int ret = NOTIFY_DONE;
4425         struct bonding *bond = netdev_priv(ifa->idev->dev);
4426         struct list_head *iter;
4427         struct slave *slave;
4428         struct pci_dev *first_pdev = NULL;
4429
4430         if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4431                 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4432                 ret = clip_add(event_dev, ifa, event);
4433         } else if (ifa->idev->dev->flags & IFF_MASTER) {
4434                 /* It is possible that two different adapters are bonded in one
4435                  * bond. We need to find such different adapters and add clip
4436                  * in all of them only once.
4437                  */
4438                 bond_for_each_slave(bond, slave, iter) {
4439                         if (!first_pdev) {
4440                                 ret = clip_add(slave->dev, ifa, event);
4441                                 /* If clip_add is success then only initialize
4442                                  * first_pdev since it means it is our device
4443                                  */
4444                                 if (ret == NOTIFY_OK)
4445                                         first_pdev = to_pci_dev(
4446                                                         slave->dev->dev.parent);
4447                         } else if (first_pdev !=
4448                                    to_pci_dev(slave->dev->dev.parent))
4449                                         ret = clip_add(slave->dev, ifa, event);
4450                 }
4451         } else
4452                 ret = clip_add(ifa->idev->dev, ifa, event);
4453
4454         return ret;
4455 }
4456
4457 static struct notifier_block cxgb4_inet6addr_notifier = {
4458         .notifier_call = cxgb4_inet6addr_handler
4459 };
4460
4461 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4462  * a physical device.
4463  * The physical device reference is needed to send the actul CLIP command.
4464  */
4465 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4466 {
4467         struct inet6_dev *idev = NULL;
4468         struct inet6_ifaddr *ifa;
4469         int ret = 0;
4470
4471         idev = __in6_dev_get(root_dev);
4472         if (!idev)
4473                 return ret;
4474
4475         read_lock_bh(&idev->lock);
4476         list_for_each_entry(ifa, &idev->addr_list, if_list) {
4477                 ret = cxgb4_clip_get(dev,
4478                                 (const struct in6_addr *)ifa->addr.s6_addr);
4479                 if (ret < 0)
4480                         break;
4481         }
4482         read_unlock_bh(&idev->lock);
4483
4484         return ret;
4485 }
4486
4487 static int update_root_dev_clip(struct net_device *dev)
4488 {
4489         struct net_device *root_dev = NULL;
4490         int i, ret = 0;
4491
4492         /* First populate the real net device's IPv6 addresses */
4493         ret = update_dev_clip(dev, dev);
4494         if (ret)
4495                 return ret;
4496
4497         /* Parse all bond and vlan devices layered on top of the physical dev */
4498         root_dev = netdev_master_upper_dev_get_rcu(dev);
4499         if (root_dev) {
4500                 ret = update_dev_clip(root_dev, dev);
4501                 if (ret)
4502                         return ret;
4503         }
4504
4505         for (i = 0; i < VLAN_N_VID; i++) {
4506                 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4507                 if (!root_dev)
4508                         continue;
4509
4510                 ret = update_dev_clip(root_dev, dev);
4511                 if (ret)
4512                         break;
4513         }
4514         return ret;
4515 }
4516
4517 static void update_clip(const struct adapter *adap)
4518 {
4519         int i;
4520         struct net_device *dev;
4521         int ret;
4522
4523         rcu_read_lock();
4524
4525         for (i = 0; i < MAX_NPORTS; i++) {
4526                 dev = adap->port[i];
4527                 ret = 0;
4528
4529                 if (dev)
4530                         ret = update_root_dev_clip(dev);
4531
4532                 if (ret < 0)
4533                         break;
4534         }
4535         rcu_read_unlock();
4536 }
4537 #endif /* IS_ENABLED(CONFIG_IPV6) */
4538
4539 /**
4540  *      cxgb_up - enable the adapter
4541  *      @adap: adapter being enabled
4542  *
4543  *      Called when the first port is enabled, this function performs the
4544  *      actions necessary to make an adapter operational, such as completing
4545  *      the initialization of HW modules, and enabling interrupts.
4546  *
4547  *      Must be called with the rtnl lock held.
4548  */
4549 static int cxgb_up(struct adapter *adap)
4550 {
4551         int err;
4552
4553         err = setup_sge_queues(adap);
4554         if (err)
4555                 goto out;
4556         err = setup_rss(adap);
4557         if (err)
4558                 goto freeq;
4559
4560         if (adap->flags & USING_MSIX) {
4561                 name_msix_vecs(adap);
4562                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4563                                   adap->msix_info[0].desc, adap);
4564                 if (err)
4565                         goto irq_err;
4566
4567                 err = request_msix_queue_irqs(adap);
4568                 if (err) {
4569                         free_irq(adap->msix_info[0].vec, adap);
4570                         goto irq_err;
4571                 }
4572         } else {
4573                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4574                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4575                                   adap->port[0]->name, adap);
4576                 if (err)
4577                         goto irq_err;
4578         }
4579         enable_rx(adap);
4580         t4_sge_start(adap);
4581         t4_intr_enable(adap);
4582         adap->flags |= FULL_INIT_DONE;
4583         notify_ulds(adap, CXGB4_STATE_UP);
4584 #if IS_ENABLED(CONFIG_IPV6)
4585         update_clip(adap);
4586 #endif
4587  out:
4588         return err;
4589  irq_err:
4590         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4591  freeq:
4592         t4_free_sge_resources(adap);
4593         goto out;
4594 }
4595
4596 static void cxgb_down(struct adapter *adapter)
4597 {
4598         t4_intr_disable(adapter);
4599         cancel_work_sync(&adapter->tid_release_task);
4600         cancel_work_sync(&adapter->db_full_task);
4601         cancel_work_sync(&adapter->db_drop_task);
4602         adapter->tid_release_task_busy = false;
4603         adapter->tid_release_head = NULL;
4604
4605         if (adapter->flags & USING_MSIX) {
4606                 free_msix_queue_irqs(adapter);
4607                 free_irq(adapter->msix_info[0].vec, adapter);
4608         } else
4609                 free_irq(adapter->pdev->irq, adapter);
4610         quiesce_rx(adapter);
4611         t4_sge_stop(adapter);
4612         t4_free_sge_resources(adapter);
4613         adapter->flags &= ~FULL_INIT_DONE;
4614 }
4615
4616 /*
4617  * net_device operations
4618  */
4619 static int cxgb_open(struct net_device *dev)
4620 {
4621         int err;
4622         struct port_info *pi = netdev_priv(dev);
4623         struct adapter *adapter = pi->adapter;
4624
4625         netif_carrier_off(dev);
4626
4627         if (!(adapter->flags & FULL_INIT_DONE)) {
4628                 err = cxgb_up(adapter);
4629                 if (err < 0)
4630                         return err;
4631         }
4632
4633         err = link_start(dev);
4634         if (!err)
4635                 netif_tx_start_all_queues(dev);
4636         return err;
4637 }
4638
4639 static int cxgb_close(struct net_device *dev)
4640 {
4641         struct port_info *pi = netdev_priv(dev);
4642         struct adapter *adapter = pi->adapter;
4643
4644         netif_tx_stop_all_queues(dev);
4645         netif_carrier_off(dev);
4646         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4647 }
4648
4649 /* Return an error number if the indicated filter isn't writable ...
4650  */
4651 static int writable_filter(struct filter_entry *f)
4652 {
4653         if (f->locked)
4654                 return -EPERM;
4655         if (f->pending)
4656                 return -EBUSY;
4657
4658         return 0;
4659 }
4660
4661 /* Delete the filter at the specified index (if valid).  The checks for all
4662  * the common problems with doing this like the filter being locked, currently
4663  * pending in another operation, etc.
4664  */
4665 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4666 {
4667         struct filter_entry *f;
4668         int ret;
4669
4670         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4671                 return -EINVAL;
4672
4673         f = &adapter->tids.ftid_tab[fidx];
4674         ret = writable_filter(f);
4675         if (ret)
4676                 return ret;
4677         if (f->valid)
4678                 return del_filter_wr(adapter, fidx);
4679
4680         return 0;
4681 }
4682
4683 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4684                 __be32 sip, __be16 sport, __be16 vlan,
4685                 unsigned int queue, unsigned char port, unsigned char mask)
4686 {
4687         int ret;
4688         struct filter_entry *f;
4689         struct adapter *adap;
4690         int i;
4691         u8 *val;
4692
4693         adap = netdev2adap(dev);
4694
4695         /* Adjust stid to correct filter index */
4696         stid -= adap->tids.sftid_base;
4697         stid += adap->tids.nftids;
4698
4699         /* Check to make sure the filter requested is writable ...
4700          */
4701         f = &adap->tids.ftid_tab[stid];
4702         ret = writable_filter(f);
4703         if (ret)
4704                 return ret;
4705
4706         /* Clear out any old resources being used by the filter before
4707          * we start constructing the new filter.
4708          */
4709         if (f->valid)
4710                 clear_filter(adap, f);
4711
4712         /* Clear out filter specifications */
4713         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4714         f->fs.val.lport = cpu_to_be16(sport);
4715         f->fs.mask.lport  = ~0;
4716         val = (u8 *)&sip;
4717         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4718                 for (i = 0; i < 4; i++) {
4719                         f->fs.val.lip[i] = val[i];
4720                         f->fs.mask.lip[i] = ~0;
4721                 }
4722                 if (adap->params.tp.vlan_pri_map & F_PORT) {
4723                         f->fs.val.iport = port;
4724                         f->fs.mask.iport = mask;
4725                 }
4726         }
4727
4728         if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4729                 f->fs.val.proto = IPPROTO_TCP;
4730                 f->fs.mask.proto = ~0;
4731         }
4732
4733         f->fs.dirsteer = 1;
4734         f->fs.iq = queue;
4735         /* Mark filter as locked */
4736         f->locked = 1;
4737         f->fs.rpttid = 1;
4738
4739         ret = set_filter_wr(adap, stid);
4740         if (ret) {
4741                 clear_filter(adap, f);
4742                 return ret;
4743         }
4744
4745         return 0;
4746 }
4747 EXPORT_SYMBOL(cxgb4_create_server_filter);
4748
4749 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4750                 unsigned int queue, bool ipv6)
4751 {
4752         int ret;
4753         struct filter_entry *f;
4754         struct adapter *adap;
4755
4756         adap = netdev2adap(dev);
4757
4758         /* Adjust stid to correct filter index */
4759         stid -= adap->tids.sftid_base;
4760         stid += adap->tids.nftids;
4761
4762         f = &adap->tids.ftid_tab[stid];
4763         /* Unlock the filter */
4764         f->locked = 0;
4765
4766         ret = delete_filter(adap, stid);
4767         if (ret)
4768                 return ret;
4769
4770         return 0;
4771 }
4772 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4773
4774 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4775                                                 struct rtnl_link_stats64 *ns)
4776 {
4777         struct port_stats stats;
4778         struct port_info *p = netdev_priv(dev);
4779         struct adapter *adapter = p->adapter;
4780
4781         /* Block retrieving statistics during EEH error
4782          * recovery. Otherwise, the recovery might fail
4783          * and the PCI device will be removed permanently
4784          */
4785         spin_lock(&adapter->stats_lock);
4786         if (!netif_device_present(dev)) {
4787                 spin_unlock(&adapter->stats_lock);
4788                 return ns;
4789         }
4790         t4_get_port_stats(adapter, p->tx_chan, &stats);
4791         spin_unlock(&adapter->stats_lock);
4792
4793         ns->tx_bytes   = stats.tx_octets;
4794         ns->tx_packets = stats.tx_frames;
4795         ns->rx_bytes   = stats.rx_octets;
4796         ns->rx_packets = stats.rx_frames;
4797         ns->multicast  = stats.rx_mcast_frames;
4798
4799         /* detailed rx_errors */
4800         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4801                                stats.rx_runt;
4802         ns->rx_over_errors   = 0;
4803         ns->rx_crc_errors    = stats.rx_fcs_err;
4804         ns->rx_frame_errors  = stats.rx_symbol_err;
4805         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4806                                stats.rx_ovflow2 + stats.rx_ovflow3 +
4807                                stats.rx_trunc0 + stats.rx_trunc1 +
4808                                stats.rx_trunc2 + stats.rx_trunc3;
4809         ns->rx_missed_errors = 0;
4810
4811         /* detailed tx_errors */
4812         ns->tx_aborted_errors   = 0;
4813         ns->tx_carrier_errors   = 0;
4814         ns->tx_fifo_errors      = 0;
4815         ns->tx_heartbeat_errors = 0;
4816         ns->tx_window_errors    = 0;
4817
4818         ns->tx_errors = stats.tx_error_frames;
4819         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4820                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4821         return ns;
4822 }
4823
4824 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4825 {
4826         unsigned int mbox;
4827         int ret = 0, prtad, devad;
4828         struct port_info *pi = netdev_priv(dev);
4829         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4830
4831         switch (cmd) {
4832         case SIOCGMIIPHY:
4833                 if (pi->mdio_addr < 0)
4834                         return -EOPNOTSUPP;
4835                 data->phy_id = pi->mdio_addr;
4836                 break;
4837         case SIOCGMIIREG:
4838         case SIOCSMIIREG:
4839                 if (mdio_phy_id_is_c45(data->phy_id)) {
4840                         prtad = mdio_phy_id_prtad(data->phy_id);
4841                         devad = mdio_phy_id_devad(data->phy_id);
4842                 } else if (data->phy_id < 32) {
4843                         prtad = data->phy_id;
4844                         devad = 0;
4845                         data->reg_num &= 0x1f;
4846                 } else
4847                         return -EINVAL;
4848
4849                 mbox = pi->adapter->fn;
4850                 if (cmd == SIOCGMIIREG)
4851                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4852                                          data->reg_num, &data->val_out);
4853                 else
4854                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4855                                          data->reg_num, data->val_in);
4856                 break;
4857         default:
4858                 return -EOPNOTSUPP;
4859         }
4860         return ret;
4861 }
4862
4863 static void cxgb_set_rxmode(struct net_device *dev)
4864 {
4865         /* unfortunately we can't return errors to the stack */
4866         set_rxmode(dev, -1, false);
4867 }
4868
4869 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4870 {
4871         int ret;
4872         struct port_info *pi = netdev_priv(dev);
4873
4874         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4875                 return -EINVAL;
4876         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4877                             -1, -1, -1, true);
4878         if (!ret)
4879                 dev->mtu = new_mtu;
4880         return ret;
4881 }
4882
4883 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4884 {
4885         int ret;
4886         struct sockaddr *addr = p;
4887         struct port_info *pi = netdev_priv(dev);
4888
4889         if (!is_valid_ether_addr(addr->sa_data))
4890                 return -EADDRNOTAVAIL;
4891
4892         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4893                             pi->xact_addr_filt, addr->sa_data, true, true);
4894         if (ret < 0)
4895                 return ret;
4896
4897         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4898         pi->xact_addr_filt = ret;
4899         return 0;
4900 }
4901
4902 #ifdef CONFIG_NET_POLL_CONTROLLER
4903 static void cxgb_netpoll(struct net_device *dev)
4904 {
4905         struct port_info *pi = netdev_priv(dev);
4906         struct adapter *adap = pi->adapter;
4907
4908         if (adap->flags & USING_MSIX) {
4909                 int i;
4910                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4911
4912                 for (i = pi->nqsets; i; i--, rx++)
4913                         t4_sge_intr_msix(0, &rx->rspq);
4914         } else
4915                 t4_intr_handler(adap)(0, adap);
4916 }
4917 #endif
4918
4919 static const struct net_device_ops cxgb4_netdev_ops = {
4920         .ndo_open             = cxgb_open,
4921         .ndo_stop             = cxgb_close,
4922         .ndo_start_xmit       = t4_eth_xmit,
4923         .ndo_select_queue     = cxgb_select_queue,
4924         .ndo_get_stats64      = cxgb_get_stats,
4925         .ndo_set_rx_mode      = cxgb_set_rxmode,
4926         .ndo_set_mac_address  = cxgb_set_mac_addr,
4927         .ndo_set_features     = cxgb_set_features,
4928         .ndo_validate_addr    = eth_validate_addr,
4929         .ndo_do_ioctl         = cxgb_ioctl,
4930         .ndo_change_mtu       = cxgb_change_mtu,
4931 #ifdef CONFIG_NET_POLL_CONTROLLER
4932         .ndo_poll_controller  = cxgb_netpoll,
4933 #endif
4934 };
4935
4936 void t4_fatal_err(struct adapter *adap)
4937 {
4938         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4939         t4_intr_disable(adap);
4940         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4941 }
4942
4943 /* Return the specified PCI-E Configuration Space register from our Physical
4944  * Function.  We try first via a Firmware LDST Command since we prefer to let
4945  * the firmware own all of these registers, but if that fails we go for it
4946  * directly ourselves.
4947  */
4948 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4949 {
4950         struct fw_ldst_cmd ldst_cmd;
4951         u32 val;
4952         int ret;
4953
4954         /* Construct and send the Firmware LDST Command to retrieve the
4955          * specified PCI-E Configuration Space register.
4956          */
4957         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4958         ldst_cmd.op_to_addrspace =
4959                 htonl(FW_CMD_OP(FW_LDST_CMD) |
4960                       FW_CMD_REQUEST |
4961                       FW_CMD_READ |
4962                       FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4963         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4964         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4965         ldst_cmd.u.pcie.ctrl_to_fn =
4966                 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4967         ldst_cmd.u.pcie.r = reg;
4968         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4969                          &ldst_cmd);
4970
4971         /* If the LDST Command suucceeded, exctract the returned register
4972          * value.  Otherwise read it directly ourself.
4973          */
4974         if (ret == 0)
4975                 val = ntohl(ldst_cmd.u.pcie.data[0]);
4976         else
4977                 t4_hw_pci_read_cfg4(adap, reg, &val);
4978
4979         return val;
4980 }
4981
4982 static void setup_memwin(struct adapter *adap)
4983 {
4984         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4985
4986         if (is_t4(adap->params.chip)) {
4987                 u32 bar0;
4988
4989                 /* Truncation intentional: we only read the bottom 32-bits of
4990                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
4991                  * mechanism to read BAR0 instead of using
4992                  * pci_resource_start() because we could be operating from
4993                  * within a Virtual Machine which is trapping our accesses to
4994                  * our Configuration Space and we need to set up the PCI-E
4995                  * Memory Window decoders with the actual addresses which will
4996                  * be coming across the PCI-E link.
4997                  */
4998                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4999                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
5000                 adap->t4_bar0 = bar0;
5001
5002                 mem_win0_base = bar0 + MEMWIN0_BASE;
5003                 mem_win1_base = bar0 + MEMWIN1_BASE;
5004                 mem_win2_base = bar0 + MEMWIN2_BASE;
5005                 mem_win2_aperture = MEMWIN2_APERTURE;
5006         } else {
5007                 /* For T5, only relative offset inside the PCIe BAR is passed */
5008                 mem_win0_base = MEMWIN0_BASE;
5009                 mem_win1_base = MEMWIN1_BASE;
5010                 mem_win2_base = MEMWIN2_BASE_T5;
5011                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
5012         }
5013         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
5014                      mem_win0_base | BIR(0) |
5015                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
5016         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
5017                      mem_win1_base | BIR(0) |
5018                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
5019         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
5020                      mem_win2_base | BIR(0) |
5021                      WINDOW(ilog2(mem_win2_aperture) - 10));
5022         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
5023 }
5024
5025 static void setup_memwin_rdma(struct adapter *adap)
5026 {
5027         if (adap->vres.ocq.size) {
5028                 u32 start;
5029                 unsigned int sz_kb;
5030
5031                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
5032                 start &= PCI_BASE_ADDRESS_MEM_MASK;
5033                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
5034                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
5035                 t4_write_reg(adap,
5036                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
5037                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
5038                 t4_write_reg(adap,
5039                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
5040                              adap->vres.ocq.start);
5041                 t4_read_reg(adap,
5042                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
5043         }
5044 }
5045
5046 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
5047 {
5048         u32 v;
5049         int ret;
5050
5051         /* get device capabilities */
5052         memset(c, 0, sizeof(*c));
5053         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5054                                FW_CMD_REQUEST | FW_CMD_READ);
5055         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
5056         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
5057         if (ret < 0)
5058                 return ret;
5059
5060         /* select capabilities we'll be using */
5061         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5062                 if (!vf_acls)
5063                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5064                 else
5065                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5066         } else if (vf_acls) {
5067                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
5068                 return ret;
5069         }
5070         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5071                                FW_CMD_REQUEST | FW_CMD_WRITE);
5072         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
5073         if (ret < 0)
5074                 return ret;
5075
5076         ret = t4_config_glbl_rss(adap, adap->fn,
5077                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5078                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5079                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
5080         if (ret < 0)
5081                 return ret;
5082
5083         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
5084                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
5085         if (ret < 0)
5086                 return ret;
5087
5088         t4_sge_init(adap);
5089
5090         /* tweak some settings */
5091         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5092         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5093         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5094         v = t4_read_reg(adap, TP_PIO_DATA);
5095         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5096
5097         /* first 4 Tx modulation queues point to consecutive Tx channels */
5098         adap->params.tp.tx_modq_map = 0xE4;
5099         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5100                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5101
5102         /* associate each Tx modulation queue with consecutive Tx channels */
5103         v = 0x84218421;
5104         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5105                           &v, 1, A_TP_TX_SCHED_HDR);
5106         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5107                           &v, 1, A_TP_TX_SCHED_FIFO);
5108         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5109                           &v, 1, A_TP_TX_SCHED_PCMD);
5110
5111 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5112         if (is_offload(adap)) {
5113                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5114                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5115                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5116                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5117                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5118                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5119                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5120                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5121                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5122                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5123         }
5124
5125         /* get basic stuff going */
5126         return t4_early_init(adap, adap->fn);
5127 }
5128
5129 /*
5130  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
5131  */
5132 #define MAX_ATIDS 8192U
5133
5134 /*
5135  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5136  *
5137  * If the firmware we're dealing with has Configuration File support, then
5138  * we use that to perform all configuration
5139  */
5140
5141 /*
5142  * Tweak configuration based on module parameters, etc.  Most of these have
5143  * defaults assigned to them by Firmware Configuration Files (if we're using
5144  * them) but need to be explicitly set if we're using hard-coded
5145  * initialization.  But even in the case of using Firmware Configuration
5146  * Files, we'd like to expose the ability to change these via module
5147  * parameters so these are essentially common tweaks/settings for
5148  * Configuration Files and hard-coded initialization ...
5149  */
5150 static int adap_init0_tweaks(struct adapter *adapter)
5151 {
5152         /*
5153          * Fix up various Host-Dependent Parameters like Page Size, Cache
5154          * Line Size, etc.  The firmware default is for a 4KB Page Size and
5155          * 64B Cache Line Size ...
5156          */
5157         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5158
5159         /*
5160          * Process module parameters which affect early initialization.
5161          */
5162         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5163                 dev_err(&adapter->pdev->dev,
5164                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
5165                         rx_dma_offset);
5166                 rx_dma_offset = 2;
5167         }
5168         t4_set_reg_field(adapter, SGE_CONTROL,
5169                          PKTSHIFT_MASK,
5170                          PKTSHIFT(rx_dma_offset));
5171
5172         /*
5173          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5174          * adds the pseudo header itself.
5175          */
5176         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5177                                CSUM_HAS_PSEUDO_HDR, 0);
5178
5179         return 0;
5180 }
5181
5182 /*
5183  * Attempt to initialize the adapter via a Firmware Configuration File.
5184  */
5185 static int adap_init0_config(struct adapter *adapter, int reset)
5186 {
5187         struct fw_caps_config_cmd caps_cmd;
5188         const struct firmware *cf;
5189         unsigned long mtype = 0, maddr = 0;
5190         u32 finiver, finicsum, cfcsum;
5191         int ret;
5192         int config_issued = 0;
5193         char *fw_config_file, fw_config_file_path[256];
5194         char *config_name = NULL;
5195
5196         /*
5197          * Reset device if necessary.
5198          */
5199         if (reset) {
5200                 ret = t4_fw_reset(adapter, adapter->mbox,
5201                                   PIORSTMODE | PIORST);
5202                 if (ret < 0)
5203                         goto bye;
5204         }
5205
5206         /*
5207          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5208          * then use that.  Otherwise, use the configuration file stored
5209          * in the adapter flash ...
5210          */
5211         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5212         case CHELSIO_T4:
5213                 fw_config_file = FW4_CFNAME;
5214                 break;
5215         case CHELSIO_T5:
5216                 fw_config_file = FW5_CFNAME;
5217                 break;
5218         default:
5219                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5220                        adapter->pdev->device);
5221                 ret = -EINVAL;
5222                 goto bye;
5223         }
5224
5225         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5226         if (ret < 0) {
5227                 config_name = "On FLASH";
5228                 mtype = FW_MEMTYPE_CF_FLASH;
5229                 maddr = t4_flash_cfg_addr(adapter);
5230         } else {
5231                 u32 params[7], val[7];
5232
5233                 sprintf(fw_config_file_path,
5234                         "/lib/firmware/%s", fw_config_file);
5235                 config_name = fw_config_file_path;
5236
5237                 if (cf->size >= FLASH_CFG_MAX_SIZE)
5238                         ret = -ENOMEM;
5239                 else {
5240                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5241                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5242                         ret = t4_query_params(adapter, adapter->mbox,
5243                                               adapter->fn, 0, 1, params, val);
5244                         if (ret == 0) {
5245                                 /*
5246                                  * For t4_memory_rw() below addresses and
5247                                  * sizes have to be in terms of multiples of 4
5248                                  * bytes.  So, if the Configuration File isn't
5249                                  * a multiple of 4 bytes in length we'll have
5250                                  * to write that out separately since we can't
5251                                  * guarantee that the bytes following the
5252                                  * residual byte in the buffer returned by
5253                                  * request_firmware() are zeroed out ...
5254                                  */
5255                                 size_t resid = cf->size & 0x3;
5256                                 size_t size = cf->size & ~0x3;
5257                                 __be32 *data = (__be32 *)cf->data;
5258
5259                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5260                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5261
5262                                 spin_lock(&adapter->win0_lock);
5263                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5264                                                    size, data, T4_MEMORY_WRITE);
5265                                 if (ret == 0 && resid != 0) {
5266                                         union {
5267                                                 __be32 word;
5268                                                 char buf[4];
5269                                         } last;
5270                                         int i;
5271
5272                                         last.word = data[size >> 2];
5273                                         for (i = resid; i < 4; i++)
5274                                                 last.buf[i] = 0;
5275                                         ret = t4_memory_rw(adapter, 0, mtype,
5276                                                            maddr + size,
5277                                                            4, &last.word,
5278                                                            T4_MEMORY_WRITE);
5279                                 }
5280                                 spin_unlock(&adapter->win0_lock);
5281                         }
5282                 }
5283
5284                 release_firmware(cf);
5285                 if (ret)
5286                         goto bye;
5287         }
5288
5289         /*
5290          * Issue a Capability Configuration command to the firmware to get it
5291          * to parse the Configuration File.  We don't use t4_fw_config_file()
5292          * because we want the ability to modify various features after we've
5293          * processed the configuration file ...
5294          */
5295         memset(&caps_cmd, 0, sizeof(caps_cmd));
5296         caps_cmd.op_to_write =
5297                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5298                       FW_CMD_REQUEST |
5299                       FW_CMD_READ);
5300         caps_cmd.cfvalid_to_len16 =
5301                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5302                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5303                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5304                       FW_LEN16(caps_cmd));
5305         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5306                          &caps_cmd);
5307
5308         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5309          * Configuration File in FLASH), our last gasp effort is to use the
5310          * Firmware Configuration File which is embedded in the firmware.  A
5311          * very few early versions of the firmware didn't have one embedded
5312          * but we can ignore those.
5313          */
5314         if (ret == -ENOENT) {
5315                 memset(&caps_cmd, 0, sizeof(caps_cmd));
5316                 caps_cmd.op_to_write =
5317                         htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5318                                         FW_CMD_REQUEST |
5319                                         FW_CMD_READ);
5320                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5321                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5322                                 sizeof(caps_cmd), &caps_cmd);
5323                 config_name = "Firmware Default";
5324         }
5325
5326         config_issued = 1;
5327         if (ret < 0)
5328                 goto bye;
5329
5330         finiver = ntohl(caps_cmd.finiver);
5331         finicsum = ntohl(caps_cmd.finicsum);
5332         cfcsum = ntohl(caps_cmd.cfcsum);
5333         if (finicsum != cfcsum)
5334                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5335                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5336                          finicsum, cfcsum);
5337
5338         /*
5339          * And now tell the firmware to use the configuration we just loaded.
5340          */
5341         caps_cmd.op_to_write =
5342                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5343                       FW_CMD_REQUEST |
5344                       FW_CMD_WRITE);
5345         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5346         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5347                          NULL);
5348         if (ret < 0)
5349                 goto bye;
5350
5351         /*
5352          * Tweak configuration based on system architecture, module
5353          * parameters, etc.
5354          */
5355         ret = adap_init0_tweaks(adapter);
5356         if (ret < 0)
5357                 goto bye;
5358
5359         /*
5360          * And finally tell the firmware to initialize itself using the
5361          * parameters from the Configuration File.
5362          */
5363         ret = t4_fw_initialize(adapter, adapter->mbox);
5364         if (ret < 0)
5365                 goto bye;
5366
5367         /*
5368          * Return successfully and note that we're operating with parameters
5369          * not supplied by the driver, rather than from hard-wired
5370          * initialization constants burried in the driver.
5371          */
5372         adapter->flags |= USING_SOFT_PARAMS;
5373         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5374                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5375                  config_name, finiver, cfcsum);
5376         return 0;
5377
5378         /*
5379          * Something bad happened.  Return the error ...  (If the "error"
5380          * is that there's no Configuration File on the adapter we don't
5381          * want to issue a warning since this is fairly common.)
5382          */
5383 bye:
5384         if (config_issued && ret != -ENOENT)
5385                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5386                          config_name, -ret);
5387         return ret;
5388 }
5389
5390 /*
5391  * Attempt to initialize the adapter via hard-coded, driver supplied
5392  * parameters ...
5393  */
5394 static int adap_init0_no_config(struct adapter *adapter, int reset)
5395 {
5396         struct sge *s = &adapter->sge;
5397         struct fw_caps_config_cmd caps_cmd;
5398         u32 v;
5399         int i, ret;
5400
5401         /*
5402          * Reset device if necessary
5403          */
5404         if (reset) {
5405                 ret = t4_fw_reset(adapter, adapter->mbox,
5406                                   PIORSTMODE | PIORST);
5407                 if (ret < 0)
5408                         goto bye;
5409         }
5410
5411         /*
5412          * Get device capabilities and select which we'll be using.
5413          */
5414         memset(&caps_cmd, 0, sizeof(caps_cmd));
5415         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5416                                      FW_CMD_REQUEST | FW_CMD_READ);
5417         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5418         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5419                          &caps_cmd);
5420         if (ret < 0)
5421                 goto bye;
5422
5423         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5424                 if (!vf_acls)
5425                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5426                 else
5427                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5428         } else if (vf_acls) {
5429                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5430                 goto bye;
5431         }
5432         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5433                               FW_CMD_REQUEST | FW_CMD_WRITE);
5434         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5435                          NULL);
5436         if (ret < 0)
5437                 goto bye;
5438
5439         /*
5440          * Tweak configuration based on system architecture, module
5441          * parameters, etc.
5442          */
5443         ret = adap_init0_tweaks(adapter);
5444         if (ret < 0)
5445                 goto bye;
5446
5447         /*
5448          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5449          * mode which maps each Virtual Interface to its own section of
5450          * the RSS Table and we turn on all map and hash enables ...
5451          */
5452         adapter->flags |= RSS_TNLALLLOOKUP;
5453         ret = t4_config_glbl_rss(adapter, adapter->mbox,
5454                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5455                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5456                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5457                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
5458                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5459         if (ret < 0)
5460                 goto bye;
5461
5462         /*
5463          * Set up our own fundamental resource provisioning ...
5464          */
5465         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5466                           PFRES_NEQ, PFRES_NETHCTRL,
5467                           PFRES_NIQFLINT, PFRES_NIQ,
5468                           PFRES_TC, PFRES_NVI,
5469                           FW_PFVF_CMD_CMASK_MASK,
5470                           pfvfres_pmask(adapter, adapter->fn, 0),
5471                           PFRES_NEXACTF,
5472                           PFRES_R_CAPS, PFRES_WX_CAPS);
5473         if (ret < 0)
5474                 goto bye;
5475
5476         /*
5477          * Perform low level SGE initialization.  We need to do this before we
5478          * send the firmware the INITIALIZE command because that will cause
5479          * any other PF Drivers which are waiting for the Master
5480          * Initialization to proceed forward.
5481          */
5482         for (i = 0; i < SGE_NTIMERS - 1; i++)
5483                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5484         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5485         s->counter_val[0] = 1;
5486         for (i = 1; i < SGE_NCOUNTERS; i++)
5487                 s->counter_val[i] = min(intr_cnt[i - 1],
5488                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
5489         t4_sge_init(adapter);
5490
5491 #ifdef CONFIG_PCI_IOV
5492         /*
5493          * Provision resource limits for Virtual Functions.  We currently
5494          * grant them all the same static resource limits except for the Port
5495          * Access Rights Mask which we're assigning based on the PF.  All of
5496          * the static provisioning stuff for both the PF and VF really needs
5497          * to be managed in a persistent manner for each device which the
5498          * firmware controls.
5499          */
5500         {
5501                 int pf, vf;
5502
5503                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5504                         if (num_vf[pf] <= 0)
5505                                 continue;
5506
5507                         /* VF numbering starts at 1! */
5508                         for (vf = 1; vf <= num_vf[pf]; vf++) {
5509                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5510                                                   pf, vf,
5511                                                   VFRES_NEQ, VFRES_NETHCTRL,
5512                                                   VFRES_NIQFLINT, VFRES_NIQ,
5513                                                   VFRES_TC, VFRES_NVI,
5514                                                   FW_PFVF_CMD_CMASK_MASK,
5515                                                   pfvfres_pmask(
5516                                                   adapter, pf, vf),
5517                                                   VFRES_NEXACTF,
5518                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
5519                                 if (ret < 0)
5520                                         dev_warn(adapter->pdev_dev,
5521                                                  "failed to "\
5522                                                  "provision pf/vf=%d/%d; "
5523                                                  "err=%d\n", pf, vf, ret);
5524                         }
5525                 }
5526         }
5527 #endif
5528
5529         /*
5530          * Set up the default filter mode.  Later we'll want to implement this
5531          * via a firmware command, etc. ...  This needs to be done before the
5532          * firmare initialization command ...  If the selected set of fields
5533          * isn't equal to the default value, we'll need to make sure that the
5534          * field selections will fit in the 36-bit budget.
5535          */
5536         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5537                 int j, bits = 0;
5538
5539                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5540                         switch (tp_vlan_pri_map & (1 << j)) {
5541                         case 0:
5542                                 /* compressed filter field not enabled */
5543                                 break;
5544                         case FCOE_MASK:
5545                                 bits +=  1;
5546                                 break;
5547                         case PORT_MASK:
5548                                 bits +=  3;
5549                                 break;
5550                         case VNIC_ID_MASK:
5551                                 bits += 17;
5552                                 break;
5553                         case VLAN_MASK:
5554                                 bits += 17;
5555                                 break;
5556                         case TOS_MASK:
5557                                 bits +=  8;
5558                                 break;
5559                         case PROTOCOL_MASK:
5560                                 bits +=  8;
5561                                 break;
5562                         case ETHERTYPE_MASK:
5563                                 bits += 16;
5564                                 break;
5565                         case MACMATCH_MASK:
5566                                 bits +=  9;
5567                                 break;
5568                         case MPSHITTYPE_MASK:
5569                                 bits +=  3;
5570                                 break;
5571                         case FRAGMENTATION_MASK:
5572                                 bits +=  1;
5573                                 break;
5574                         }
5575
5576                 if (bits > 36) {
5577                         dev_err(adapter->pdev_dev,
5578                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5579                                 " using %#x\n", tp_vlan_pri_map, bits,
5580                                 TP_VLAN_PRI_MAP_DEFAULT);
5581                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5582                 }
5583         }
5584         v = tp_vlan_pri_map;
5585         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5586                           &v, 1, TP_VLAN_PRI_MAP);
5587
5588         /*
5589          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5590          * to support any of the compressed filter fields above.  Newer
5591          * versions of the firmware do this automatically but it doesn't hurt
5592          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5593          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5594          * since the firmware automatically turns this on and off when we have
5595          * a non-zero number of filters active (since it does have a
5596          * performance impact).
5597          */
5598         if (tp_vlan_pri_map)
5599                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5600                                  FIVETUPLELOOKUP_MASK,
5601                                  FIVETUPLELOOKUP_MASK);
5602
5603         /*
5604          * Tweak some settings.
5605          */
5606         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5607                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5608                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5609                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5610
5611         /*
5612          * Get basic stuff going by issuing the Firmware Initialize command.
5613          * Note that this _must_ be after all PFVF commands ...
5614          */
5615         ret = t4_fw_initialize(adapter, adapter->mbox);
5616         if (ret < 0)
5617                 goto bye;
5618
5619         /*
5620          * Return successfully!
5621          */
5622         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5623                  "driver parameters\n");
5624         return 0;
5625
5626         /*
5627          * Something bad happened.  Return the error ...
5628          */
5629 bye:
5630         return ret;
5631 }
5632
5633 static struct fw_info fw_info_array[] = {
5634         {
5635                 .chip = CHELSIO_T4,
5636                 .fs_name = FW4_CFNAME,
5637                 .fw_mod_name = FW4_FNAME,
5638                 .fw_hdr = {
5639                         .chip = FW_HDR_CHIP_T4,
5640                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5641                         .intfver_nic = FW_INTFVER(T4, NIC),
5642                         .intfver_vnic = FW_INTFVER(T4, VNIC),
5643                         .intfver_ri = FW_INTFVER(T4, RI),
5644                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5645                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
5646                 },
5647         }, {
5648                 .chip = CHELSIO_T5,
5649                 .fs_name = FW5_CFNAME,
5650                 .fw_mod_name = FW5_FNAME,
5651                 .fw_hdr = {
5652                         .chip = FW_HDR_CHIP_T5,
5653                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5654                         .intfver_nic = FW_INTFVER(T5, NIC),
5655                         .intfver_vnic = FW_INTFVER(T5, VNIC),
5656                         .intfver_ri = FW_INTFVER(T5, RI),
5657                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5658                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
5659                 },
5660         }
5661 };
5662
5663 static struct fw_info *find_fw_info(int chip)
5664 {
5665         int i;
5666
5667         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5668                 if (fw_info_array[i].chip == chip)
5669                         return &fw_info_array[i];
5670         }
5671         return NULL;
5672 }
5673
5674 /*
5675  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5676  */
5677 static int adap_init0(struct adapter *adap)
5678 {
5679         int ret;
5680         u32 v, port_vec;
5681         enum dev_state state;
5682         u32 params[7], val[7];
5683         struct fw_caps_config_cmd caps_cmd;
5684         int reset = 1;
5685
5686         /*
5687          * Contact FW, advertising Master capability (and potentially forcing
5688          * ourselves as the Master PF if our module parameter force_init is
5689          * set).
5690          */
5691         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5692                           force_init ? MASTER_MUST : MASTER_MAY,
5693                           &state);
5694         if (ret < 0) {
5695                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5696                         ret);
5697                 return ret;
5698         }
5699         if (ret == adap->mbox)
5700                 adap->flags |= MASTER_PF;
5701         if (force_init && state == DEV_STATE_INIT)
5702                 state = DEV_STATE_UNINIT;
5703
5704         /*
5705          * If we're the Master PF Driver and the device is uninitialized,
5706          * then let's consider upgrading the firmware ...  (We always want
5707          * to check the firmware version number in order to A. get it for
5708          * later reporting and B. to warn if the currently loaded firmware
5709          * is excessively mismatched relative to the driver.)
5710          */
5711         t4_get_fw_version(adap, &adap->params.fw_vers);
5712         t4_get_tp_version(adap, &adap->params.tp_vers);
5713         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5714                 struct fw_info *fw_info;
5715                 struct fw_hdr *card_fw;
5716                 const struct firmware *fw;
5717                 const u8 *fw_data = NULL;
5718                 unsigned int fw_size = 0;
5719
5720                 /* This is the firmware whose headers the driver was compiled
5721                  * against
5722                  */
5723                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5724                 if (fw_info == NULL) {
5725                         dev_err(adap->pdev_dev,
5726                                 "unable to get firmware info for chip %d.\n",
5727                                 CHELSIO_CHIP_VERSION(adap->params.chip));
5728                         return -EINVAL;
5729                 }
5730
5731                 /* allocate memory to read the header of the firmware on the
5732                  * card
5733                  */
5734                 card_fw = t4_alloc_mem(sizeof(*card_fw));
5735
5736                 /* Get FW from from /lib/firmware/ */
5737                 ret = request_firmware(&fw, fw_info->fw_mod_name,
5738                                        adap->pdev_dev);
5739                 if (ret < 0) {
5740                         dev_err(adap->pdev_dev,
5741                                 "unable to load firmware image %s, error %d\n",
5742                                 fw_info->fw_mod_name, ret);
5743                 } else {
5744                         fw_data = fw->data;
5745                         fw_size = fw->size;
5746                 }
5747
5748                 /* upgrade FW logic */
5749                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5750                                  state, &reset);
5751
5752                 /* Cleaning up */
5753                 if (fw != NULL)
5754                         release_firmware(fw);
5755                 t4_free_mem(card_fw);
5756
5757                 if (ret < 0)
5758                         goto bye;
5759         }
5760
5761         /*
5762          * Grab VPD parameters.  This should be done after we establish a
5763          * connection to the firmware since some of the VPD parameters
5764          * (notably the Core Clock frequency) are retrieved via requests to
5765          * the firmware.  On the other hand, we need these fairly early on
5766          * so we do this right after getting ahold of the firmware.
5767          */
5768         ret = get_vpd_params(adap, &adap->params.vpd);
5769         if (ret < 0)
5770                 goto bye;
5771
5772         /*
5773          * Find out what ports are available to us.  Note that we need to do
5774          * this before calling adap_init0_no_config() since it needs nports
5775          * and portvec ...
5776          */
5777         v =
5778             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5779             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5780         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5781         if (ret < 0)
5782                 goto bye;
5783
5784         adap->params.nports = hweight32(port_vec);
5785         adap->params.portvec = port_vec;
5786
5787         /*
5788          * If the firmware is initialized already (and we're not forcing a
5789          * master initialization), note that we're living with existing
5790          * adapter parameters.  Otherwise, it's time to try initializing the
5791          * adapter ...
5792          */
5793         if (state == DEV_STATE_INIT) {
5794                 dev_info(adap->pdev_dev, "Coming up as %s: "\
5795                          "Adapter already initialized\n",
5796                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5797                 adap->flags |= USING_SOFT_PARAMS;
5798         } else {
5799                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5800                          "Initializing adapter\n");
5801
5802                 /*
5803                  * If the firmware doesn't support Configuration
5804                  * Files warn user and exit,
5805                  */
5806                 if (ret < 0)
5807                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
5808                                  "configuration file.\n");
5809                 if (force_old_init)
5810                         ret = adap_init0_no_config(adap, reset);
5811                 else {
5812                         /*
5813                          * Find out whether we're dealing with a version of
5814                          * the firmware which has configuration file support.
5815                          */
5816                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5817                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5818                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5819                                               params, val);
5820
5821                         /*
5822                          * If the firmware doesn't support Configuration
5823                          * Files, use the old Driver-based, hard-wired
5824                          * initialization.  Otherwise, try using the
5825                          * Configuration File support and fall back to the
5826                          * Driver-based initialization if there's no
5827                          * Configuration File found.
5828                          */
5829                         if (ret < 0)
5830                                 ret = adap_init0_no_config(adap, reset);
5831                         else {
5832                                 /*
5833                                  * The firmware provides us with a memory
5834                                  * buffer where we can load a Configuration
5835                                  * File from the host if we want to override
5836                                  * the Configuration File in flash.
5837                                  */
5838
5839                                 ret = adap_init0_config(adap, reset);
5840                                 if (ret == -ENOENT) {
5841                                         dev_info(adap->pdev_dev,
5842                                             "No Configuration File present "
5843                                             "on adapter. Using hard-wired "
5844                                             "configuration parameters.\n");
5845                                         ret = adap_init0_no_config(adap, reset);
5846                                 }
5847                         }
5848                 }
5849                 if (ret < 0) {
5850                         dev_err(adap->pdev_dev,
5851                                 "could not initialize adapter, error %d\n",
5852                                 -ret);
5853                         goto bye;
5854                 }
5855         }
5856
5857         /*
5858          * If we're living with non-hard-coded parameters (either from a
5859          * Firmware Configuration File or values programmed by a different PF
5860          * Driver), give the SGE code a chance to pull in anything that it
5861          * needs ...  Note that this must be called after we retrieve our VPD
5862          * parameters in order to know how to convert core ticks to seconds.
5863          */
5864         if (adap->flags & USING_SOFT_PARAMS) {
5865                 ret = t4_sge_init(adap);
5866                 if (ret < 0)
5867                         goto bye;
5868         }
5869
5870         if (is_bypass_device(adap->pdev->device))
5871                 adap->params.bypass = 1;
5872
5873         /*
5874          * Grab some of our basic fundamental operating parameters.
5875          */
5876 #define FW_PARAM_DEV(param) \
5877         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5878         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5879
5880 #define FW_PARAM_PFVF(param) \
5881         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5882         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
5883         FW_PARAMS_PARAM_Y(0) | \
5884         FW_PARAMS_PARAM_Z(0)
5885
5886         params[0] = FW_PARAM_PFVF(EQ_START);
5887         params[1] = FW_PARAM_PFVF(L2T_START);
5888         params[2] = FW_PARAM_PFVF(L2T_END);
5889         params[3] = FW_PARAM_PFVF(FILTER_START);
5890         params[4] = FW_PARAM_PFVF(FILTER_END);
5891         params[5] = FW_PARAM_PFVF(IQFLINT_START);
5892         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5893         if (ret < 0)
5894                 goto bye;
5895         adap->sge.egr_start = val[0];
5896         adap->l2t_start = val[1];
5897         adap->l2t_end = val[2];
5898         adap->tids.ftid_base = val[3];
5899         adap->tids.nftids = val[4] - val[3] + 1;
5900         adap->sge.ingr_start = val[5];
5901
5902         /* query params related to active filter region */
5903         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5904         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5905         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5906         /* If Active filter size is set we enable establishing
5907          * offload connection through firmware work request
5908          */
5909         if ((val[0] != val[1]) && (ret >= 0)) {
5910                 adap->flags |= FW_OFLD_CONN;
5911                 adap->tids.aftid_base = val[0];
5912                 adap->tids.aftid_end = val[1];
5913         }
5914
5915         /* If we're running on newer firmware, let it know that we're
5916          * prepared to deal with encapsulated CPL messages.  Older
5917          * firmware won't understand this and we'll just get
5918          * unencapsulated messages ...
5919          */
5920         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5921         val[0] = 1;
5922         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5923
5924         /*
5925          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5926          * capability.  Earlier versions of the firmware didn't have the
5927          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5928          * permission to use ULPTX MEMWRITE DSGL.
5929          */
5930         if (is_t4(adap->params.chip)) {
5931                 adap->params.ulptx_memwrite_dsgl = false;
5932         } else {
5933                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5934                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5935                                       1, params, val);
5936                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5937         }
5938
5939         /*
5940          * Get device capabilities so we can determine what resources we need
5941          * to manage.
5942          */
5943         memset(&caps_cmd, 0, sizeof(caps_cmd));
5944         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5945                                      FW_CMD_REQUEST | FW_CMD_READ);
5946         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5947         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5948                          &caps_cmd);
5949         if (ret < 0)
5950                 goto bye;
5951
5952         if (caps_cmd.ofldcaps) {
5953                 /* query offload-related parameters */
5954                 params[0] = FW_PARAM_DEV(NTID);
5955                 params[1] = FW_PARAM_PFVF(SERVER_START);
5956                 params[2] = FW_PARAM_PFVF(SERVER_END);
5957                 params[3] = FW_PARAM_PFVF(TDDP_START);
5958                 params[4] = FW_PARAM_PFVF(TDDP_END);
5959                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5960                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5961                                       params, val);
5962                 if (ret < 0)
5963                         goto bye;
5964                 adap->tids.ntids = val[0];
5965                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5966                 adap->tids.stid_base = val[1];
5967                 adap->tids.nstids = val[2] - val[1] + 1;
5968                 /*
5969                  * Setup server filter region. Divide the availble filter
5970                  * region into two parts. Regular filters get 1/3rd and server
5971                  * filters get 2/3rd part. This is only enabled if workarond
5972                  * path is enabled.
5973                  * 1. For regular filters.
5974                  * 2. Server filter: This are special filters which are used
5975                  * to redirect SYN packets to offload queue.
5976                  */
5977                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5978                         adap->tids.sftid_base = adap->tids.ftid_base +
5979                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5980                         adap->tids.nsftids = adap->tids.nftids -
5981                                          DIV_ROUND_UP(adap->tids.nftids, 3);
5982                         adap->tids.nftids = adap->tids.sftid_base -
5983                                                 adap->tids.ftid_base;
5984                 }
5985                 adap->vres.ddp.start = val[3];
5986                 adap->vres.ddp.size = val[4] - val[3] + 1;
5987                 adap->params.ofldq_wr_cred = val[5];
5988
5989                 adap->params.offload = 1;
5990         }
5991         if (caps_cmd.rdmacaps) {
5992                 params[0] = FW_PARAM_PFVF(STAG_START);
5993                 params[1] = FW_PARAM_PFVF(STAG_END);
5994                 params[2] = FW_PARAM_PFVF(RQ_START);
5995                 params[3] = FW_PARAM_PFVF(RQ_END);
5996                 params[4] = FW_PARAM_PFVF(PBL_START);
5997                 params[5] = FW_PARAM_PFVF(PBL_END);
5998                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5999                                       params, val);
6000                 if (ret < 0)
6001                         goto bye;
6002                 adap->vres.stag.start = val[0];
6003                 adap->vres.stag.size = val[1] - val[0] + 1;
6004                 adap->vres.rq.start = val[2];
6005                 adap->vres.rq.size = val[3] - val[2] + 1;
6006                 adap->vres.pbl.start = val[4];
6007                 adap->vres.pbl.size = val[5] - val[4] + 1;
6008
6009                 params[0] = FW_PARAM_PFVF(SQRQ_START);
6010                 params[1] = FW_PARAM_PFVF(SQRQ_END);
6011                 params[2] = FW_PARAM_PFVF(CQ_START);
6012                 params[3] = FW_PARAM_PFVF(CQ_END);
6013                 params[4] = FW_PARAM_PFVF(OCQ_START);
6014                 params[5] = FW_PARAM_PFVF(OCQ_END);
6015                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
6016                                       val);
6017                 if (ret < 0)
6018                         goto bye;
6019                 adap->vres.qp.start = val[0];
6020                 adap->vres.qp.size = val[1] - val[0] + 1;
6021                 adap->vres.cq.start = val[2];
6022                 adap->vres.cq.size = val[3] - val[2] + 1;
6023                 adap->vres.ocq.start = val[4];
6024                 adap->vres.ocq.size = val[5] - val[4] + 1;
6025
6026                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
6027                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
6028                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
6029                                       val);
6030                 if (ret < 0) {
6031                         adap->params.max_ordird_qp = 8;
6032                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
6033                         ret = 0;
6034                 } else {
6035                         adap->params.max_ordird_qp = val[0];
6036                         adap->params.max_ird_adapter = val[1];
6037                 }
6038                 dev_info(adap->pdev_dev,
6039                          "max_ordird_qp %d max_ird_adapter %d\n",
6040                          adap->params.max_ordird_qp,
6041                          adap->params.max_ird_adapter);
6042         }
6043         if (caps_cmd.iscsicaps) {
6044                 params[0] = FW_PARAM_PFVF(ISCSI_START);
6045                 params[1] = FW_PARAM_PFVF(ISCSI_END);
6046                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
6047                                       params, val);
6048                 if (ret < 0)
6049                         goto bye;
6050                 adap->vres.iscsi.start = val[0];
6051                 adap->vres.iscsi.size = val[1] - val[0] + 1;
6052         }
6053 #undef FW_PARAM_PFVF
6054 #undef FW_PARAM_DEV
6055
6056         /* The MTU/MSS Table is initialized by now, so load their values.  If
6057          * we're initializing the adapter, then we'll make any modifications
6058          * we want to the MTU/MSS Table and also initialize the congestion
6059          * parameters.
6060          */
6061         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
6062         if (state != DEV_STATE_INIT) {
6063                 int i;
6064
6065                 /* The default MTU Table contains values 1492 and 1500.
6066                  * However, for TCP, it's better to have two values which are
6067                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
6068                  * This allows us to have a TCP Data Payload which is a
6069                  * multiple of 8 regardless of what combination of TCP Options
6070                  * are in use (always a multiple of 4 bytes) which is
6071                  * important for performance reasons.  For instance, if no
6072                  * options are in use, then we have a 20-byte IP header and a
6073                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
6074                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
6075                  * which is not a multiple of 8.  So using an MSS of 1488 in
6076                  * this case results in a TCP Data Payload of 1448 bytes which
6077                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
6078                  * Stamps have been negotiated, then an MTU of 1500 bytes
6079                  * results in a TCP Data Payload of 1448 bytes which, as
6080                  * above, is a multiple of 8 bytes ...
6081                  */
6082                 for (i = 0; i < NMTUS; i++)
6083                         if (adap->params.mtus[i] == 1492) {
6084                                 adap->params.mtus[i] = 1488;
6085                                 break;
6086                         }
6087
6088                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6089                              adap->params.b_wnd);
6090         }
6091         t4_init_tp_params(adap);
6092         adap->flags |= FW_OK;
6093         return 0;
6094
6095         /*
6096          * Something bad happened.  If a command timed out or failed with EIO
6097          * FW does not operate within its spec or something catastrophic
6098          * happened to HW/FW, stop issuing commands.
6099          */
6100 bye:
6101         if (ret != -ETIMEDOUT && ret != -EIO)
6102                 t4_fw_bye(adap, adap->mbox);
6103         return ret;
6104 }
6105
6106 /* EEH callbacks */
6107
6108 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6109                                          pci_channel_state_t state)
6110 {
6111         int i;
6112         struct adapter *adap = pci_get_drvdata(pdev);
6113
6114         if (!adap)
6115                 goto out;
6116
6117         rtnl_lock();
6118         adap->flags &= ~FW_OK;
6119         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6120         spin_lock(&adap->stats_lock);
6121         for_each_port(adap, i) {
6122                 struct net_device *dev = adap->port[i];
6123
6124                 netif_device_detach(dev);
6125                 netif_carrier_off(dev);
6126         }
6127         spin_unlock(&adap->stats_lock);
6128         if (adap->flags & FULL_INIT_DONE)
6129                 cxgb_down(adap);
6130         rtnl_unlock();
6131         if ((adap->flags & DEV_ENABLED)) {
6132                 pci_disable_device(pdev);
6133                 adap->flags &= ~DEV_ENABLED;
6134         }
6135 out:    return state == pci_channel_io_perm_failure ?
6136                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6137 }
6138
6139 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6140 {
6141         int i, ret;
6142         struct fw_caps_config_cmd c;
6143         struct adapter *adap = pci_get_drvdata(pdev);
6144
6145         if (!adap) {
6146                 pci_restore_state(pdev);
6147                 pci_save_state(pdev);
6148                 return PCI_ERS_RESULT_RECOVERED;
6149         }
6150
6151         if (!(adap->flags & DEV_ENABLED)) {
6152                 if (pci_enable_device(pdev)) {
6153                         dev_err(&pdev->dev, "Cannot reenable PCI "
6154                                             "device after reset\n");
6155                         return PCI_ERS_RESULT_DISCONNECT;
6156                 }
6157                 adap->flags |= DEV_ENABLED;
6158         }
6159
6160         pci_set_master(pdev);
6161         pci_restore_state(pdev);
6162         pci_save_state(pdev);
6163         pci_cleanup_aer_uncorrect_error_status(pdev);
6164
6165         if (t4_wait_dev_ready(adap->regs) < 0)
6166                 return PCI_ERS_RESULT_DISCONNECT;
6167         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6168                 return PCI_ERS_RESULT_DISCONNECT;
6169         adap->flags |= FW_OK;
6170         if (adap_init1(adap, &c))
6171                 return PCI_ERS_RESULT_DISCONNECT;
6172
6173         for_each_port(adap, i) {
6174                 struct port_info *p = adap2pinfo(adap, i);
6175
6176                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6177                                   NULL, NULL);
6178                 if (ret < 0)
6179                         return PCI_ERS_RESULT_DISCONNECT;
6180                 p->viid = ret;
6181                 p->xact_addr_filt = -1;
6182         }
6183
6184         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6185                      adap->params.b_wnd);
6186         setup_memwin(adap);
6187         if (cxgb_up(adap))
6188                 return PCI_ERS_RESULT_DISCONNECT;
6189         return PCI_ERS_RESULT_RECOVERED;
6190 }
6191
6192 static void eeh_resume(struct pci_dev *pdev)
6193 {
6194         int i;
6195         struct adapter *adap = pci_get_drvdata(pdev);
6196
6197         if (!adap)
6198                 return;
6199
6200         rtnl_lock();
6201         for_each_port(adap, i) {
6202                 struct net_device *dev = adap->port[i];
6203
6204                 if (netif_running(dev)) {
6205                         link_start(dev);
6206                         cxgb_set_rxmode(dev);
6207                 }
6208                 netif_device_attach(dev);
6209         }
6210         rtnl_unlock();
6211 }
6212
6213 static const struct pci_error_handlers cxgb4_eeh = {
6214         .error_detected = eeh_err_detected,
6215         .slot_reset     = eeh_slot_reset,
6216         .resume         = eeh_resume,
6217 };
6218
6219 static inline bool is_x_10g_port(const struct link_config *lc)
6220 {
6221         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6222                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6223 }
6224
6225 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6226                              unsigned int us, unsigned int cnt,
6227                              unsigned int size, unsigned int iqe_size)
6228 {
6229         q->adap = adap;
6230         set_rspq_intr_params(q, us, cnt);
6231         q->iqe_len = iqe_size;
6232         q->size = size;
6233 }
6234
6235 /*
6236  * Perform default configuration of DMA queues depending on the number and type
6237  * of ports we found and the number of available CPUs.  Most settings can be
6238  * modified by the admin prior to actual use.
6239  */
6240 static void cfg_queues(struct adapter *adap)
6241 {
6242         struct sge *s = &adap->sge;
6243         int i, n10g = 0, qidx = 0;
6244 #ifndef CONFIG_CHELSIO_T4_DCB
6245         int q10g = 0;
6246 #endif
6247         int ciq_size;
6248
6249         for_each_port(adap, i)
6250                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6251 #ifdef CONFIG_CHELSIO_T4_DCB
6252         /* For Data Center Bridging support we need to be able to support up
6253          * to 8 Traffic Priorities; each of which will be assigned to its
6254          * own TX Queue in order to prevent Head-Of-Line Blocking.
6255          */
6256         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6257                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6258                         MAX_ETH_QSETS, adap->params.nports * 8);
6259                 BUG_ON(1);
6260         }
6261
6262         for_each_port(adap, i) {
6263                 struct port_info *pi = adap2pinfo(adap, i);
6264
6265                 pi->first_qset = qidx;
6266                 pi->nqsets = 8;
6267                 qidx += pi->nqsets;
6268         }
6269 #else /* !CONFIG_CHELSIO_T4_DCB */
6270         /*
6271          * We default to 1 queue per non-10G port and up to # of cores queues
6272          * per 10G port.
6273          */
6274         if (n10g)
6275                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6276         if (q10g > netif_get_num_default_rss_queues())
6277                 q10g = netif_get_num_default_rss_queues();
6278
6279         for_each_port(adap, i) {
6280                 struct port_info *pi = adap2pinfo(adap, i);
6281
6282                 pi->first_qset = qidx;
6283                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6284                 qidx += pi->nqsets;
6285         }
6286 #endif /* !CONFIG_CHELSIO_T4_DCB */
6287
6288         s->ethqsets = qidx;
6289         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
6290
6291         if (is_offload(adap)) {
6292                 /*
6293                  * For offload we use 1 queue/channel if all ports are up to 1G,
6294                  * otherwise we divide all available queues amongst the channels
6295                  * capped by the number of available cores.
6296                  */
6297                 if (n10g) {
6298                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6299                                   num_online_cpus());
6300                         s->ofldqsets = roundup(i, adap->params.nports);
6301                 } else
6302                         s->ofldqsets = adap->params.nports;
6303                 /* For RDMA one Rx queue per channel suffices */
6304                 s->rdmaqs = adap->params.nports;
6305                 s->rdmaciqs = adap->params.nports;
6306         }
6307
6308         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6309                 struct sge_eth_rxq *r = &s->ethrxq[i];
6310
6311                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6312                 r->fl.size = 72;
6313         }
6314
6315         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6316                 s->ethtxq[i].q.size = 1024;
6317
6318         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6319                 s->ctrlq[i].q.size = 512;
6320
6321         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6322                 s->ofldtxq[i].q.size = 1024;
6323
6324         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6325                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6326
6327                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6328                 r->rspq.uld = CXGB4_ULD_ISCSI;
6329                 r->fl.size = 72;
6330         }
6331
6332         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6333                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6334
6335                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6336                 r->rspq.uld = CXGB4_ULD_RDMA;
6337                 r->fl.size = 72;
6338         }
6339
6340         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6341         if (ciq_size > SGE_MAX_IQ_SIZE) {
6342                 CH_WARN(adap, "CIQ size too small for available IQs\n");
6343                 ciq_size = SGE_MAX_IQ_SIZE;
6344         }
6345
6346         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6347                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6348
6349                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6350                 r->rspq.uld = CXGB4_ULD_RDMA;
6351         }
6352
6353         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6354         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6355 }
6356
6357 /*
6358  * Reduce the number of Ethernet queues across all ports to at most n.
6359  * n provides at least one queue per port.
6360  */
6361 static void reduce_ethqs(struct adapter *adap, int n)
6362 {
6363         int i;
6364         struct port_info *pi;
6365
6366         while (n < adap->sge.ethqsets)
6367                 for_each_port(adap, i) {
6368                         pi = adap2pinfo(adap, i);
6369                         if (pi->nqsets > 1) {
6370                                 pi->nqsets--;
6371                                 adap->sge.ethqsets--;
6372                                 if (adap->sge.ethqsets <= n)
6373                                         break;
6374                         }
6375                 }
6376
6377         n = 0;
6378         for_each_port(adap, i) {
6379                 pi = adap2pinfo(adap, i);
6380                 pi->first_qset = n;
6381                 n += pi->nqsets;
6382         }
6383 }
6384
6385 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6386 #define EXTRA_VECS 2
6387
6388 static int enable_msix(struct adapter *adap)
6389 {
6390         int ofld_need = 0;
6391         int i, want, need;
6392         struct sge *s = &adap->sge;
6393         unsigned int nchan = adap->params.nports;
6394         struct msix_entry entries[MAX_INGQ + 1];
6395
6396         for (i = 0; i < ARRAY_SIZE(entries); ++i)
6397                 entries[i].entry = i;
6398
6399         want = s->max_ethqsets + EXTRA_VECS;
6400         if (is_offload(adap)) {
6401                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6402                 /* need nchan for each possible ULD */
6403                 ofld_need = 3 * nchan;
6404         }
6405 #ifdef CONFIG_CHELSIO_T4_DCB
6406         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6407          * each port.
6408          */
6409         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6410 #else
6411         need = adap->params.nports + EXTRA_VECS + ofld_need;
6412 #endif
6413         want = pci_enable_msix_range(adap->pdev, entries, need, want);
6414         if (want < 0)
6415                 return want;
6416
6417         /*
6418          * Distribute available vectors to the various queue groups.
6419          * Every group gets its minimum requirement and NIC gets top
6420          * priority for leftovers.
6421          */
6422         i = want - EXTRA_VECS - ofld_need;
6423         if (i < s->max_ethqsets) {
6424                 s->max_ethqsets = i;
6425                 if (i < s->ethqsets)
6426                         reduce_ethqs(adap, i);
6427         }
6428         if (is_offload(adap)) {
6429                 i = want - EXTRA_VECS - s->max_ethqsets;
6430                 i -= ofld_need - nchan;
6431                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
6432         }
6433         for (i = 0; i < want; ++i)
6434                 adap->msix_info[i].vec = entries[i].vector;
6435
6436         return 0;
6437 }
6438
6439 #undef EXTRA_VECS
6440
6441 static int init_rss(struct adapter *adap)
6442 {
6443         unsigned int i, j;
6444
6445         for_each_port(adap, i) {
6446                 struct port_info *pi = adap2pinfo(adap, i);
6447
6448                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6449                 if (!pi->rss)
6450                         return -ENOMEM;
6451                 for (j = 0; j < pi->rss_size; j++)
6452                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6453         }
6454         return 0;
6455 }
6456
6457 static void print_port_info(const struct net_device *dev)
6458 {
6459         char buf[80];
6460         char *bufp = buf;
6461         const char *spd = "";
6462         const struct port_info *pi = netdev_priv(dev);
6463         const struct adapter *adap = pi->adapter;
6464
6465         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6466                 spd = " 2.5 GT/s";
6467         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6468                 spd = " 5 GT/s";
6469         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6470                 spd = " 8 GT/s";
6471
6472         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6473                 bufp += sprintf(bufp, "100/");
6474         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6475                 bufp += sprintf(bufp, "1000/");
6476         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6477                 bufp += sprintf(bufp, "10G/");
6478         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6479                 bufp += sprintf(bufp, "40G/");
6480         if (bufp != buf)
6481                 --bufp;
6482         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6483
6484         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6485                     adap->params.vpd.id,
6486                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6487                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6488                     (adap->flags & USING_MSIX) ? " MSI-X" :
6489                     (adap->flags & USING_MSI) ? " MSI" : "");
6490         netdev_info(dev, "S/N: %s, P/N: %s\n",
6491                     adap->params.vpd.sn, adap->params.vpd.pn);
6492 }
6493
6494 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6495 {
6496         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6497 }
6498
6499 /*
6500  * Free the following resources:
6501  * - memory used for tables
6502  * - MSI/MSI-X
6503  * - net devices
6504  * - resources FW is holding for us
6505  */
6506 static void free_some_resources(struct adapter *adapter)
6507 {
6508         unsigned int i;
6509
6510         t4_free_mem(adapter->l2t);
6511         t4_free_mem(adapter->tids.tid_tab);
6512         disable_msi(adapter);
6513
6514         for_each_port(adapter, i)
6515                 if (adapter->port[i]) {
6516                         kfree(adap2pinfo(adapter, i)->rss);
6517                         free_netdev(adapter->port[i]);
6518                 }
6519         if (adapter->flags & FW_OK)
6520                 t4_fw_bye(adapter, adapter->fn);
6521 }
6522
6523 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6524 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6525                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6526 #define SEGMENT_SIZE 128
6527
6528 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6529 {
6530         int func, i, err, s_qpp, qpp, num_seg;
6531         struct port_info *pi;
6532         bool highdma = false;
6533         struct adapter *adapter = NULL;
6534         void __iomem *regs;
6535
6536         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6537
6538         err = pci_request_regions(pdev, KBUILD_MODNAME);
6539         if (err) {
6540                 /* Just info, some other driver may have claimed the device. */
6541                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6542                 return err;
6543         }
6544
6545         err = pci_enable_device(pdev);
6546         if (err) {
6547                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6548                 goto out_release_regions;
6549         }
6550
6551         regs = pci_ioremap_bar(pdev, 0);
6552         if (!regs) {
6553                 dev_err(&pdev->dev, "cannot map device registers\n");
6554                 err = -ENOMEM;
6555                 goto out_disable_device;
6556         }
6557
6558         err = t4_wait_dev_ready(regs);
6559         if (err < 0)
6560                 goto out_unmap_bar0;
6561
6562         /* We control everything through one PF */
6563         func = SOURCEPF_GET(readl(regs + PL_WHOAMI));
6564         if (func != ent->driver_data) {
6565                 iounmap(regs);
6566                 pci_disable_device(pdev);
6567                 pci_save_state(pdev);        /* to restore SR-IOV later */
6568                 goto sriov;
6569         }
6570
6571         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6572                 highdma = true;
6573                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6574                 if (err) {
6575                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6576                                 "coherent allocations\n");
6577                         goto out_unmap_bar0;
6578                 }
6579         } else {
6580                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6581                 if (err) {
6582                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6583                         goto out_unmap_bar0;
6584                 }
6585         }
6586
6587         pci_enable_pcie_error_reporting(pdev);
6588         enable_pcie_relaxed_ordering(pdev);
6589         pci_set_master(pdev);
6590         pci_save_state(pdev);
6591
6592         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6593         if (!adapter) {
6594                 err = -ENOMEM;
6595                 goto out_unmap_bar0;
6596         }
6597
6598         adapter->workq = create_singlethread_workqueue("cxgb4");
6599         if (!adapter->workq) {
6600                 err = -ENOMEM;
6601                 goto out_free_adapter;
6602         }
6603
6604         /* PCI device has been enabled */
6605         adapter->flags |= DEV_ENABLED;
6606
6607         adapter->regs = regs;
6608         adapter->pdev = pdev;
6609         adapter->pdev_dev = &pdev->dev;
6610         adapter->mbox = func;
6611         adapter->fn = func;
6612         adapter->msg_enable = dflt_msg_enable;
6613         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6614
6615         spin_lock_init(&adapter->stats_lock);
6616         spin_lock_init(&adapter->tid_release_lock);
6617         spin_lock_init(&adapter->win0_lock);
6618
6619         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6620         INIT_WORK(&adapter->db_full_task, process_db_full);
6621         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6622
6623         err = t4_prep_adapter(adapter);
6624         if (err)
6625                 goto out_free_adapter;
6626
6627
6628         if (!is_t4(adapter->params.chip)) {
6629                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6630                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6631                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6632                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6633
6634                 /* Each segment size is 128B. Write coalescing is enabled only
6635                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6636                  * queue is less no of segments that can be accommodated in
6637                  * a page size.
6638                  */
6639                 if (qpp > num_seg) {
6640                         dev_err(&pdev->dev,
6641                                 "Incorrect number of egress queues per page\n");
6642                         err = -EINVAL;
6643                         goto out_free_adapter;
6644                 }
6645                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6646                 pci_resource_len(pdev, 2));
6647                 if (!adapter->bar2) {
6648                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6649                         err = -ENOMEM;
6650                         goto out_free_adapter;
6651                 }
6652         }
6653
6654         setup_memwin(adapter);
6655         err = adap_init0(adapter);
6656         setup_memwin_rdma(adapter);
6657         if (err)
6658                 goto out_unmap_bar;
6659
6660         for_each_port(adapter, i) {
6661                 struct net_device *netdev;
6662
6663                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6664                                            MAX_ETH_QSETS);
6665                 if (!netdev) {
6666                         err = -ENOMEM;
6667                         goto out_free_dev;
6668                 }
6669
6670                 SET_NETDEV_DEV(netdev, &pdev->dev);
6671
6672                 adapter->port[i] = netdev;
6673                 pi = netdev_priv(netdev);
6674                 pi->adapter = adapter;
6675                 pi->xact_addr_filt = -1;
6676                 pi->port_id = i;
6677                 netdev->irq = pdev->irq;
6678
6679                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6680                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6681                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
6682                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6683                 if (highdma)
6684                         netdev->hw_features |= NETIF_F_HIGHDMA;
6685                 netdev->features |= netdev->hw_features;
6686                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6687
6688                 netdev->priv_flags |= IFF_UNICAST_FLT;
6689
6690                 netdev->netdev_ops = &cxgb4_netdev_ops;
6691 #ifdef CONFIG_CHELSIO_T4_DCB
6692                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6693                 cxgb4_dcb_state_init(netdev);
6694 #endif
6695                 netdev->ethtool_ops = &cxgb_ethtool_ops;
6696         }
6697
6698         pci_set_drvdata(pdev, adapter);
6699
6700         if (adapter->flags & FW_OK) {
6701                 err = t4_port_init(adapter, func, func, 0);
6702                 if (err)
6703                         goto out_free_dev;
6704         }
6705
6706         /*
6707          * Configure queues and allocate tables now, they can be needed as
6708          * soon as the first register_netdev completes.
6709          */
6710         cfg_queues(adapter);
6711
6712         adapter->l2t = t4_init_l2t();
6713         if (!adapter->l2t) {
6714                 /* We tolerate a lack of L2T, giving up some functionality */
6715                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6716                 adapter->params.offload = 0;
6717         }
6718
6719         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6720                 dev_warn(&pdev->dev, "could not allocate TID table, "
6721                          "continuing\n");
6722                 adapter->params.offload = 0;
6723         }
6724
6725         /* See what interrupts we'll be using */
6726         if (msi > 1 && enable_msix(adapter) == 0)
6727                 adapter->flags |= USING_MSIX;
6728         else if (msi > 0 && pci_enable_msi(pdev) == 0)
6729                 adapter->flags |= USING_MSI;
6730
6731         err = init_rss(adapter);
6732         if (err)
6733                 goto out_free_dev;
6734
6735         /*
6736          * The card is now ready to go.  If any errors occur during device
6737          * registration we do not fail the whole card but rather proceed only
6738          * with the ports we manage to register successfully.  However we must
6739          * register at least one net device.
6740          */
6741         for_each_port(adapter, i) {
6742                 pi = adap2pinfo(adapter, i);
6743                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6744                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6745
6746                 err = register_netdev(adapter->port[i]);
6747                 if (err)
6748                         break;
6749                 adapter->chan_map[pi->tx_chan] = i;
6750                 print_port_info(adapter->port[i]);
6751         }
6752         if (i == 0) {
6753                 dev_err(&pdev->dev, "could not register any net devices\n");
6754                 goto out_free_dev;
6755         }
6756         if (err) {
6757                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6758                 err = 0;
6759         }
6760
6761         if (cxgb4_debugfs_root) {
6762                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6763                                                            cxgb4_debugfs_root);
6764                 setup_debugfs(adapter);
6765         }
6766
6767         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6768         pdev->needs_freset = 1;
6769
6770         if (is_offload(adapter))
6771                 attach_ulds(adapter);
6772
6773 sriov:
6774 #ifdef CONFIG_PCI_IOV
6775         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6776                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6777                         dev_info(&pdev->dev,
6778                                  "instantiated %u virtual functions\n",
6779                                  num_vf[func]);
6780 #endif
6781         return 0;
6782
6783  out_free_dev:
6784         free_some_resources(adapter);
6785  out_unmap_bar:
6786         if (!is_t4(adapter->params.chip))
6787                 iounmap(adapter->bar2);
6788  out_free_adapter:
6789         if (adapter->workq)
6790                 destroy_workqueue(adapter->workq);
6791
6792         kfree(adapter);
6793  out_unmap_bar0:
6794         iounmap(regs);
6795  out_disable_device:
6796         pci_disable_pcie_error_reporting(pdev);
6797         pci_disable_device(pdev);
6798  out_release_regions:
6799         pci_release_regions(pdev);
6800         return err;
6801 }
6802
6803 static void remove_one(struct pci_dev *pdev)
6804 {
6805         struct adapter *adapter = pci_get_drvdata(pdev);
6806
6807 #ifdef CONFIG_PCI_IOV
6808         pci_disable_sriov(pdev);
6809
6810 #endif
6811
6812         if (adapter) {
6813                 int i;
6814
6815                 /* Tear down per-adapter Work Queue first since it can contain
6816                  * references to our adapter data structure.
6817                  */
6818                 destroy_workqueue(adapter->workq);
6819
6820                 if (is_offload(adapter))
6821                         detach_ulds(adapter);
6822
6823                 for_each_port(adapter, i)
6824                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6825                                 unregister_netdev(adapter->port[i]);
6826
6827                 debugfs_remove_recursive(adapter->debugfs_root);
6828
6829                 /* If we allocated filters, free up state associated with any
6830                  * valid filters ...
6831                  */
6832                 if (adapter->tids.ftid_tab) {
6833                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
6834                         for (i = 0; i < (adapter->tids.nftids +
6835                                         adapter->tids.nsftids); i++, f++)
6836                                 if (f->valid)
6837                                         clear_filter(adapter, f);
6838                 }
6839
6840                 if (adapter->flags & FULL_INIT_DONE)
6841                         cxgb_down(adapter);
6842
6843                 free_some_resources(adapter);
6844                 iounmap(adapter->regs);
6845                 if (!is_t4(adapter->params.chip))
6846                         iounmap(adapter->bar2);
6847                 pci_disable_pcie_error_reporting(pdev);
6848                 if ((adapter->flags & DEV_ENABLED)) {
6849                         pci_disable_device(pdev);
6850                         adapter->flags &= ~DEV_ENABLED;
6851                 }
6852                 pci_release_regions(pdev);
6853                 synchronize_rcu();
6854                 kfree(adapter);
6855         } else
6856                 pci_release_regions(pdev);
6857 }
6858
6859 static struct pci_driver cxgb4_driver = {
6860         .name     = KBUILD_MODNAME,
6861         .id_table = cxgb4_pci_tbl,
6862         .probe    = init_one,
6863         .remove   = remove_one,
6864         .shutdown = remove_one,
6865         .err_handler = &cxgb4_eeh,
6866 };
6867
6868 static int __init cxgb4_init_module(void)
6869 {
6870         int ret;
6871
6872         /* Debugfs support is optional, just warn if this fails */
6873         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6874         if (!cxgb4_debugfs_root)
6875                 pr_warn("could not create debugfs entry, continuing\n");
6876
6877         ret = pci_register_driver(&cxgb4_driver);
6878         if (ret < 0)
6879                 debugfs_remove(cxgb4_debugfs_root);
6880
6881 #if IS_ENABLED(CONFIG_IPV6)
6882         register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6883 #endif
6884
6885         return ret;
6886 }
6887
6888 static void __exit cxgb4_cleanup_module(void)
6889 {
6890 #if IS_ENABLED(CONFIG_IPV6)
6891         unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6892 #endif
6893         pci_unregister_driver(&cxgb4_driver);
6894         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6895 }
6896
6897 module_init(cxgb4_init_module);
6898 module_exit(cxgb4_cleanup_module);