]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igb/igb_ethtool.c
Merge remote-tracking branch 'sound-current/for-linus'
[karo-tx-linux.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 /* ethtool support for igb */
25
26 #include <linux/vmalloc.h>
27 #include <linux/netdevice.h>
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/if_ether.h>
32 #include <linux/ethtool.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/highmem.h>
37 #include <linux/mdio.h>
38
39 #include "igb.h"
40
41 struct igb_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int sizeof_stat;
44         int stat_offset;
45 };
46
47 #define IGB_STAT(_name, _stat) { \
48         .stat_string = _name, \
49         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50         .stat_offset = offsetof(struct igb_adapter, _stat) \
51 }
52 static const struct igb_stats igb_gstrings_stats[] = {
53         IGB_STAT("rx_packets", stats.gprc),
54         IGB_STAT("tx_packets", stats.gptc),
55         IGB_STAT("rx_bytes", stats.gorc),
56         IGB_STAT("tx_bytes", stats.gotc),
57         IGB_STAT("rx_broadcast", stats.bprc),
58         IGB_STAT("tx_broadcast", stats.bptc),
59         IGB_STAT("rx_multicast", stats.mprc),
60         IGB_STAT("tx_multicast", stats.mptc),
61         IGB_STAT("multicast", stats.mprc),
62         IGB_STAT("collisions", stats.colc),
63         IGB_STAT("rx_crc_errors", stats.crcerrs),
64         IGB_STAT("rx_no_buffer_count", stats.rnbc),
65         IGB_STAT("rx_missed_errors", stats.mpc),
66         IGB_STAT("tx_aborted_errors", stats.ecol),
67         IGB_STAT("tx_carrier_errors", stats.tncrs),
68         IGB_STAT("tx_window_errors", stats.latecol),
69         IGB_STAT("tx_abort_late_coll", stats.latecol),
70         IGB_STAT("tx_deferred_ok", stats.dc),
71         IGB_STAT("tx_single_coll_ok", stats.scc),
72         IGB_STAT("tx_multi_coll_ok", stats.mcc),
73         IGB_STAT("tx_timeout_count", tx_timeout_count),
74         IGB_STAT("rx_long_length_errors", stats.roc),
75         IGB_STAT("rx_short_length_errors", stats.ruc),
76         IGB_STAT("rx_align_errors", stats.algnerrc),
77         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81         IGB_STAT("tx_flow_control_xon", stats.xontxc),
82         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83         IGB_STAT("rx_long_byte_count", stats.gorc),
84         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85         IGB_STAT("tx_smbus", stats.mgptc),
86         IGB_STAT("rx_smbus", stats.mgprc),
87         IGB_STAT("dropped_smbus", stats.mgpdc),
88         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92         IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93         IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 };
95
96 #define IGB_NETDEV_STAT(_net_stat) { \
97         .stat_string = __stringify(_net_stat), \
98         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102         IGB_NETDEV_STAT(rx_errors),
103         IGB_NETDEV_STAT(tx_errors),
104         IGB_NETDEV_STAT(tx_dropped),
105         IGB_NETDEV_STAT(rx_length_errors),
106         IGB_NETDEV_STAT(rx_over_errors),
107         IGB_NETDEV_STAT(rx_frame_errors),
108         IGB_NETDEV_STAT(rx_fifo_errors),
109         IGB_NETDEV_STAT(tx_fifo_errors),
110         IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112
113 #define IGB_GLOBAL_STATS_LEN    \
114         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN    \
116         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122 #define IGB_QUEUE_STATS_LEN \
123         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124           IGB_RX_QUEUE_STATS_LEN) + \
125          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126           IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131         "Register test  (offline)", "Eeprom test    (offline)",
132         "Interrupt test (offline)", "Loopback test  (offline)",
133         "Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139         struct igb_adapter *adapter = netdev_priv(netdev);
140         struct e1000_hw *hw = &adapter->hw;
141         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
142         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
143         u32 status;
144         u32 speed;
145
146         status = rd32(E1000_STATUS);
147         if (hw->phy.media_type == e1000_media_type_copper) {
148
149                 ecmd->supported = (SUPPORTED_10baseT_Half |
150                                    SUPPORTED_10baseT_Full |
151                                    SUPPORTED_100baseT_Half |
152                                    SUPPORTED_100baseT_Full |
153                                    SUPPORTED_1000baseT_Full|
154                                    SUPPORTED_Autoneg |
155                                    SUPPORTED_TP |
156                                    SUPPORTED_Pause);
157                 ecmd->advertising = ADVERTISED_TP;
158
159                 if (hw->mac.autoneg == 1) {
160                         ecmd->advertising |= ADVERTISED_Autoneg;
161                         /* the e1000 autoneg seems to match ethtool nicely */
162                         ecmd->advertising |= hw->phy.autoneg_advertised;
163                 }
164
165                 ecmd->port = PORT_TP;
166                 ecmd->phy_address = hw->phy.addr;
167                 ecmd->transceiver = XCVR_INTERNAL;
168         } else {
169                 ecmd->supported = (SUPPORTED_FIBRE |
170                                    SUPPORTED_1000baseKX_Full |
171                                    SUPPORTED_Autoneg |
172                                    SUPPORTED_Pause);
173                 ecmd->advertising = (ADVERTISED_FIBRE |
174                                      ADVERTISED_1000baseKX_Full);
175                 if (hw->mac.type == e1000_i354) {
176                         if ((hw->device_id ==
177                              E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
179                                 ecmd->supported |= SUPPORTED_2500baseX_Full;
180                                 ecmd->supported &=
181                                         ~SUPPORTED_1000baseKX_Full;
182                                 ecmd->advertising |= ADVERTISED_2500baseX_Full;
183                                 ecmd->advertising &=
184                                         ~ADVERTISED_1000baseKX_Full;
185                         }
186                 }
187                 if (eth_flags->e100_base_fx) {
188                         ecmd->supported |= SUPPORTED_100baseT_Full;
189                         ecmd->advertising |= ADVERTISED_100baseT_Full;
190                 }
191                 if (hw->mac.autoneg == 1)
192                         ecmd->advertising |= ADVERTISED_Autoneg;
193
194                 ecmd->port = PORT_FIBRE;
195                 ecmd->transceiver = XCVR_EXTERNAL;
196         }
197         if (hw->mac.autoneg != 1)
198                 ecmd->advertising &= ~(ADVERTISED_Pause |
199                                        ADVERTISED_Asym_Pause);
200
201         switch (hw->fc.requested_mode) {
202         case e1000_fc_full:
203                 ecmd->advertising |= ADVERTISED_Pause;
204                 break;
205         case e1000_fc_rx_pause:
206                 ecmd->advertising |= (ADVERTISED_Pause |
207                                       ADVERTISED_Asym_Pause);
208                 break;
209         case e1000_fc_tx_pause:
210                 ecmd->advertising |=  ADVERTISED_Asym_Pause;
211                 break;
212         default:
213                 ecmd->advertising &= ~(ADVERTISED_Pause |
214                                        ADVERTISED_Asym_Pause);
215         }
216         if (status & E1000_STATUS_LU) {
217                 if ((status & E1000_STATUS_2P5_SKU) &&
218                     !(status & E1000_STATUS_2P5_SKU_OVER)) {
219                         speed = SPEED_2500;
220                 } else if (status & E1000_STATUS_SPEED_1000) {
221                         speed = SPEED_1000;
222                 } else if (status & E1000_STATUS_SPEED_100) {
223                         speed = SPEED_100;
224                 } else {
225                         speed = SPEED_10;
226                 }
227                 if ((status & E1000_STATUS_FD) ||
228                     hw->phy.media_type != e1000_media_type_copper)
229                         ecmd->duplex = DUPLEX_FULL;
230                 else
231                         ecmd->duplex = DUPLEX_HALF;
232         } else {
233                 speed = SPEED_UNKNOWN;
234                 ecmd->duplex = DUPLEX_UNKNOWN;
235         }
236         ethtool_cmd_speed_set(ecmd, speed);
237         if ((hw->phy.media_type == e1000_media_type_fiber) ||
238             hw->mac.autoneg)
239                 ecmd->autoneg = AUTONEG_ENABLE;
240         else
241                 ecmd->autoneg = AUTONEG_DISABLE;
242
243         /* MDI-X => 2; MDI =>1; Invalid =>0 */
244         if (hw->phy.media_type == e1000_media_type_copper)
245                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
246                                                       ETH_TP_MDI;
247         else
248                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
249
250         if (hw->phy.mdix == AUTO_ALL_MODES)
251                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
252         else
253                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
254
255         return 0;
256 }
257
258 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
259 {
260         struct igb_adapter *adapter = netdev_priv(netdev);
261         struct e1000_hw *hw = &adapter->hw;
262
263         /* When SoL/IDER sessions are active, autoneg/speed/duplex
264          * cannot be changed
265          */
266         if (igb_check_reset_block(hw)) {
267                 dev_err(&adapter->pdev->dev,
268                         "Cannot change link characteristics when SoL/IDER is active.\n");
269                 return -EINVAL;
270         }
271
272         /* MDI setting is only allowed when autoneg enabled because
273          * some hardware doesn't allow MDI setting when speed or
274          * duplex is forced.
275          */
276         if (ecmd->eth_tp_mdix_ctrl) {
277                 if (hw->phy.media_type != e1000_media_type_copper)
278                         return -EOPNOTSUPP;
279
280                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
281                     (ecmd->autoneg != AUTONEG_ENABLE)) {
282                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
283                         return -EINVAL;
284                 }
285         }
286
287         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
288                 usleep_range(1000, 2000);
289
290         if (ecmd->autoneg == AUTONEG_ENABLE) {
291                 hw->mac.autoneg = 1;
292                 if (hw->phy.media_type == e1000_media_type_fiber) {
293                         hw->phy.autoneg_advertised = ecmd->advertising |
294                                                      ADVERTISED_FIBRE |
295                                                      ADVERTISED_Autoneg;
296                         switch (adapter->link_speed) {
297                         case SPEED_2500:
298                                 hw->phy.autoneg_advertised =
299                                         ADVERTISED_2500baseX_Full;
300                                 break;
301                         case SPEED_1000:
302                                 hw->phy.autoneg_advertised =
303                                         ADVERTISED_1000baseT_Full;
304                                 break;
305                         case SPEED_100:
306                                 hw->phy.autoneg_advertised =
307                                         ADVERTISED_100baseT_Full;
308                                 break;
309                         default:
310                                 break;
311                         }
312                 } else {
313                         hw->phy.autoneg_advertised = ecmd->advertising |
314                                                      ADVERTISED_TP |
315                                                      ADVERTISED_Autoneg;
316                 }
317                 ecmd->advertising = hw->phy.autoneg_advertised;
318                 if (adapter->fc_autoneg)
319                         hw->fc.requested_mode = e1000_fc_default;
320         } else {
321                 u32 speed = ethtool_cmd_speed(ecmd);
322                 /* calling this overrides forced MDI setting */
323                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
324                         clear_bit(__IGB_RESETTING, &adapter->state);
325                         return -EINVAL;
326                 }
327         }
328
329         /* MDI-X => 2; MDI => 1; Auto => 3 */
330         if (ecmd->eth_tp_mdix_ctrl) {
331                 /* fix up the value for auto (3 => 0) as zero is mapped
332                  * internally to auto
333                  */
334                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
335                         hw->phy.mdix = AUTO_ALL_MODES;
336                 else
337                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
338         }
339
340         /* reset the link */
341         if (netif_running(adapter->netdev)) {
342                 igb_down(adapter);
343                 igb_up(adapter);
344         } else
345                 igb_reset(adapter);
346
347         clear_bit(__IGB_RESETTING, &adapter->state);
348         return 0;
349 }
350
351 static u32 igb_get_link(struct net_device *netdev)
352 {
353         struct igb_adapter *adapter = netdev_priv(netdev);
354         struct e1000_mac_info *mac = &adapter->hw.mac;
355
356         /* If the link is not reported up to netdev, interrupts are disabled,
357          * and so the physical link state may have changed since we last
358          * looked. Set get_link_status to make sure that the true link
359          * state is interrogated, rather than pulling a cached and possibly
360          * stale link state from the driver.
361          */
362         if (!netif_carrier_ok(netdev))
363                 mac->get_link_status = 1;
364
365         return igb_has_link(adapter);
366 }
367
368 static void igb_get_pauseparam(struct net_device *netdev,
369                                struct ethtool_pauseparam *pause)
370 {
371         struct igb_adapter *adapter = netdev_priv(netdev);
372         struct e1000_hw *hw = &adapter->hw;
373
374         pause->autoneg =
375                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
376
377         if (hw->fc.current_mode == e1000_fc_rx_pause)
378                 pause->rx_pause = 1;
379         else if (hw->fc.current_mode == e1000_fc_tx_pause)
380                 pause->tx_pause = 1;
381         else if (hw->fc.current_mode == e1000_fc_full) {
382                 pause->rx_pause = 1;
383                 pause->tx_pause = 1;
384         }
385 }
386
387 static int igb_set_pauseparam(struct net_device *netdev,
388                               struct ethtool_pauseparam *pause)
389 {
390         struct igb_adapter *adapter = netdev_priv(netdev);
391         struct e1000_hw *hw = &adapter->hw;
392         int retval = 0;
393
394         /* 100basefx does not support setting link flow control */
395         if (hw->dev_spec._82575.eth_flags.e100_base_fx)
396                 return -EINVAL;
397
398         adapter->fc_autoneg = pause->autoneg;
399
400         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
401                 usleep_range(1000, 2000);
402
403         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
404                 hw->fc.requested_mode = e1000_fc_default;
405                 if (netif_running(adapter->netdev)) {
406                         igb_down(adapter);
407                         igb_up(adapter);
408                 } else {
409                         igb_reset(adapter);
410                 }
411         } else {
412                 if (pause->rx_pause && pause->tx_pause)
413                         hw->fc.requested_mode = e1000_fc_full;
414                 else if (pause->rx_pause && !pause->tx_pause)
415                         hw->fc.requested_mode = e1000_fc_rx_pause;
416                 else if (!pause->rx_pause && pause->tx_pause)
417                         hw->fc.requested_mode = e1000_fc_tx_pause;
418                 else if (!pause->rx_pause && !pause->tx_pause)
419                         hw->fc.requested_mode = e1000_fc_none;
420
421                 hw->fc.current_mode = hw->fc.requested_mode;
422
423                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
424                           igb_force_mac_fc(hw) : igb_setup_link(hw));
425         }
426
427         clear_bit(__IGB_RESETTING, &adapter->state);
428         return retval;
429 }
430
431 static u32 igb_get_msglevel(struct net_device *netdev)
432 {
433         struct igb_adapter *adapter = netdev_priv(netdev);
434         return adapter->msg_enable;
435 }
436
437 static void igb_set_msglevel(struct net_device *netdev, u32 data)
438 {
439         struct igb_adapter *adapter = netdev_priv(netdev);
440         adapter->msg_enable = data;
441 }
442
443 static int igb_get_regs_len(struct net_device *netdev)
444 {
445 #define IGB_REGS_LEN 739
446         return IGB_REGS_LEN * sizeof(u32);
447 }
448
449 static void igb_get_regs(struct net_device *netdev,
450                          struct ethtool_regs *regs, void *p)
451 {
452         struct igb_adapter *adapter = netdev_priv(netdev);
453         struct e1000_hw *hw = &adapter->hw;
454         u32 *regs_buff = p;
455         u8 i;
456
457         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
458
459         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
460
461         /* General Registers */
462         regs_buff[0] = rd32(E1000_CTRL);
463         regs_buff[1] = rd32(E1000_STATUS);
464         regs_buff[2] = rd32(E1000_CTRL_EXT);
465         regs_buff[3] = rd32(E1000_MDIC);
466         regs_buff[4] = rd32(E1000_SCTL);
467         regs_buff[5] = rd32(E1000_CONNSW);
468         regs_buff[6] = rd32(E1000_VET);
469         regs_buff[7] = rd32(E1000_LEDCTL);
470         regs_buff[8] = rd32(E1000_PBA);
471         regs_buff[9] = rd32(E1000_PBS);
472         regs_buff[10] = rd32(E1000_FRTIMER);
473         regs_buff[11] = rd32(E1000_TCPTIMER);
474
475         /* NVM Register */
476         regs_buff[12] = rd32(E1000_EECD);
477
478         /* Interrupt */
479         /* Reading EICS for EICR because they read the
480          * same but EICS does not clear on read
481          */
482         regs_buff[13] = rd32(E1000_EICS);
483         regs_buff[14] = rd32(E1000_EICS);
484         regs_buff[15] = rd32(E1000_EIMS);
485         regs_buff[16] = rd32(E1000_EIMC);
486         regs_buff[17] = rd32(E1000_EIAC);
487         regs_buff[18] = rd32(E1000_EIAM);
488         /* Reading ICS for ICR because they read the
489          * same but ICS does not clear on read
490          */
491         regs_buff[19] = rd32(E1000_ICS);
492         regs_buff[20] = rd32(E1000_ICS);
493         regs_buff[21] = rd32(E1000_IMS);
494         regs_buff[22] = rd32(E1000_IMC);
495         regs_buff[23] = rd32(E1000_IAC);
496         regs_buff[24] = rd32(E1000_IAM);
497         regs_buff[25] = rd32(E1000_IMIRVP);
498
499         /* Flow Control */
500         regs_buff[26] = rd32(E1000_FCAL);
501         regs_buff[27] = rd32(E1000_FCAH);
502         regs_buff[28] = rd32(E1000_FCTTV);
503         regs_buff[29] = rd32(E1000_FCRTL);
504         regs_buff[30] = rd32(E1000_FCRTH);
505         regs_buff[31] = rd32(E1000_FCRTV);
506
507         /* Receive */
508         regs_buff[32] = rd32(E1000_RCTL);
509         regs_buff[33] = rd32(E1000_RXCSUM);
510         regs_buff[34] = rd32(E1000_RLPML);
511         regs_buff[35] = rd32(E1000_RFCTL);
512         regs_buff[36] = rd32(E1000_MRQC);
513         regs_buff[37] = rd32(E1000_VT_CTL);
514
515         /* Transmit */
516         regs_buff[38] = rd32(E1000_TCTL);
517         regs_buff[39] = rd32(E1000_TCTL_EXT);
518         regs_buff[40] = rd32(E1000_TIPG);
519         regs_buff[41] = rd32(E1000_DTXCTL);
520
521         /* Wake Up */
522         regs_buff[42] = rd32(E1000_WUC);
523         regs_buff[43] = rd32(E1000_WUFC);
524         regs_buff[44] = rd32(E1000_WUS);
525         regs_buff[45] = rd32(E1000_IPAV);
526         regs_buff[46] = rd32(E1000_WUPL);
527
528         /* MAC */
529         regs_buff[47] = rd32(E1000_PCS_CFG0);
530         regs_buff[48] = rd32(E1000_PCS_LCTL);
531         regs_buff[49] = rd32(E1000_PCS_LSTAT);
532         regs_buff[50] = rd32(E1000_PCS_ANADV);
533         regs_buff[51] = rd32(E1000_PCS_LPAB);
534         regs_buff[52] = rd32(E1000_PCS_NPTX);
535         regs_buff[53] = rd32(E1000_PCS_LPABNP);
536
537         /* Statistics */
538         regs_buff[54] = adapter->stats.crcerrs;
539         regs_buff[55] = adapter->stats.algnerrc;
540         regs_buff[56] = adapter->stats.symerrs;
541         regs_buff[57] = adapter->stats.rxerrc;
542         regs_buff[58] = adapter->stats.mpc;
543         regs_buff[59] = adapter->stats.scc;
544         regs_buff[60] = adapter->stats.ecol;
545         regs_buff[61] = adapter->stats.mcc;
546         regs_buff[62] = adapter->stats.latecol;
547         regs_buff[63] = adapter->stats.colc;
548         regs_buff[64] = adapter->stats.dc;
549         regs_buff[65] = adapter->stats.tncrs;
550         regs_buff[66] = adapter->stats.sec;
551         regs_buff[67] = adapter->stats.htdpmc;
552         regs_buff[68] = adapter->stats.rlec;
553         regs_buff[69] = adapter->stats.xonrxc;
554         regs_buff[70] = adapter->stats.xontxc;
555         regs_buff[71] = adapter->stats.xoffrxc;
556         regs_buff[72] = adapter->stats.xofftxc;
557         regs_buff[73] = adapter->stats.fcruc;
558         regs_buff[74] = adapter->stats.prc64;
559         regs_buff[75] = adapter->stats.prc127;
560         regs_buff[76] = adapter->stats.prc255;
561         regs_buff[77] = adapter->stats.prc511;
562         regs_buff[78] = adapter->stats.prc1023;
563         regs_buff[79] = adapter->stats.prc1522;
564         regs_buff[80] = adapter->stats.gprc;
565         regs_buff[81] = adapter->stats.bprc;
566         regs_buff[82] = adapter->stats.mprc;
567         regs_buff[83] = adapter->stats.gptc;
568         regs_buff[84] = adapter->stats.gorc;
569         regs_buff[86] = adapter->stats.gotc;
570         regs_buff[88] = adapter->stats.rnbc;
571         regs_buff[89] = adapter->stats.ruc;
572         regs_buff[90] = adapter->stats.rfc;
573         regs_buff[91] = adapter->stats.roc;
574         regs_buff[92] = adapter->stats.rjc;
575         regs_buff[93] = adapter->stats.mgprc;
576         regs_buff[94] = adapter->stats.mgpdc;
577         regs_buff[95] = adapter->stats.mgptc;
578         regs_buff[96] = adapter->stats.tor;
579         regs_buff[98] = adapter->stats.tot;
580         regs_buff[100] = adapter->stats.tpr;
581         regs_buff[101] = adapter->stats.tpt;
582         regs_buff[102] = adapter->stats.ptc64;
583         regs_buff[103] = adapter->stats.ptc127;
584         regs_buff[104] = adapter->stats.ptc255;
585         regs_buff[105] = adapter->stats.ptc511;
586         regs_buff[106] = adapter->stats.ptc1023;
587         regs_buff[107] = adapter->stats.ptc1522;
588         regs_buff[108] = adapter->stats.mptc;
589         regs_buff[109] = adapter->stats.bptc;
590         regs_buff[110] = adapter->stats.tsctc;
591         regs_buff[111] = adapter->stats.iac;
592         regs_buff[112] = adapter->stats.rpthc;
593         regs_buff[113] = adapter->stats.hgptc;
594         regs_buff[114] = adapter->stats.hgorc;
595         regs_buff[116] = adapter->stats.hgotc;
596         regs_buff[118] = adapter->stats.lenerrs;
597         regs_buff[119] = adapter->stats.scvpc;
598         regs_buff[120] = adapter->stats.hrmpc;
599
600         for (i = 0; i < 4; i++)
601                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
602         for (i = 0; i < 4; i++)
603                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
604         for (i = 0; i < 4; i++)
605                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
606         for (i = 0; i < 4; i++)
607                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
608         for (i = 0; i < 4; i++)
609                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
610         for (i = 0; i < 4; i++)
611                 regs_buff[141 + i] = rd32(E1000_RDH(i));
612         for (i = 0; i < 4; i++)
613                 regs_buff[145 + i] = rd32(E1000_RDT(i));
614         for (i = 0; i < 4; i++)
615                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
616
617         for (i = 0; i < 10; i++)
618                 regs_buff[153 + i] = rd32(E1000_EITR(i));
619         for (i = 0; i < 8; i++)
620                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
621         for (i = 0; i < 8; i++)
622                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
623         for (i = 0; i < 16; i++)
624                 regs_buff[179 + i] = rd32(E1000_RAL(i));
625         for (i = 0; i < 16; i++)
626                 regs_buff[195 + i] = rd32(E1000_RAH(i));
627
628         for (i = 0; i < 4; i++)
629                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
630         for (i = 0; i < 4; i++)
631                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
632         for (i = 0; i < 4; i++)
633                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
634         for (i = 0; i < 4; i++)
635                 regs_buff[223 + i] = rd32(E1000_TDH(i));
636         for (i = 0; i < 4; i++)
637                 regs_buff[227 + i] = rd32(E1000_TDT(i));
638         for (i = 0; i < 4; i++)
639                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
640         for (i = 0; i < 4; i++)
641                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
642         for (i = 0; i < 4; i++)
643                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
644         for (i = 0; i < 4; i++)
645                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
646
647         for (i = 0; i < 4; i++)
648                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
649         for (i = 0; i < 4; i++)
650                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
651         for (i = 0; i < 32; i++)
652                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
653         for (i = 0; i < 128; i++)
654                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
655         for (i = 0; i < 128; i++)
656                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
657         for (i = 0; i < 4; i++)
658                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
659
660         regs_buff[547] = rd32(E1000_TDFH);
661         regs_buff[548] = rd32(E1000_TDFT);
662         regs_buff[549] = rd32(E1000_TDFHS);
663         regs_buff[550] = rd32(E1000_TDFPC);
664
665         if (hw->mac.type > e1000_82580) {
666                 regs_buff[551] = adapter->stats.o2bgptc;
667                 regs_buff[552] = adapter->stats.b2ospc;
668                 regs_buff[553] = adapter->stats.o2bspc;
669                 regs_buff[554] = adapter->stats.b2ogprc;
670         }
671
672         if (hw->mac.type != e1000_82576)
673                 return;
674         for (i = 0; i < 12; i++)
675                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
676         for (i = 0; i < 4; i++)
677                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
678         for (i = 0; i < 12; i++)
679                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
680         for (i = 0; i < 12; i++)
681                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
682         for (i = 0; i < 12; i++)
683                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
684         for (i = 0; i < 12; i++)
685                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
686         for (i = 0; i < 12; i++)
687                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
688         for (i = 0; i < 12; i++)
689                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
690
691         for (i = 0; i < 12; i++)
692                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
693         for (i = 0; i < 12; i++)
694                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
695         for (i = 0; i < 12; i++)
696                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
697         for (i = 0; i < 12; i++)
698                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
699         for (i = 0; i < 12; i++)
700                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
701         for (i = 0; i < 12; i++)
702                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
703         for (i = 0; i < 12; i++)
704                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
705         for (i = 0; i < 12; i++)
706                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
707 }
708
709 static int igb_get_eeprom_len(struct net_device *netdev)
710 {
711         struct igb_adapter *adapter = netdev_priv(netdev);
712         return adapter->hw.nvm.word_size * 2;
713 }
714
715 static int igb_get_eeprom(struct net_device *netdev,
716                           struct ethtool_eeprom *eeprom, u8 *bytes)
717 {
718         struct igb_adapter *adapter = netdev_priv(netdev);
719         struct e1000_hw *hw = &adapter->hw;
720         u16 *eeprom_buff;
721         int first_word, last_word;
722         int ret_val = 0;
723         u16 i;
724
725         if (eeprom->len == 0)
726                 return -EINVAL;
727
728         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
729
730         first_word = eeprom->offset >> 1;
731         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
732
733         eeprom_buff = kmalloc(sizeof(u16) *
734                         (last_word - first_word + 1), GFP_KERNEL);
735         if (!eeprom_buff)
736                 return -ENOMEM;
737
738         if (hw->nvm.type == e1000_nvm_eeprom_spi)
739                 ret_val = hw->nvm.ops.read(hw, first_word,
740                                            last_word - first_word + 1,
741                                            eeprom_buff);
742         else {
743                 for (i = 0; i < last_word - first_word + 1; i++) {
744                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
745                                                    &eeprom_buff[i]);
746                         if (ret_val)
747                                 break;
748                 }
749         }
750
751         /* Device's eeprom is always little-endian, word addressable */
752         for (i = 0; i < last_word - first_word + 1; i++)
753                 le16_to_cpus(&eeprom_buff[i]);
754
755         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
756                         eeprom->len);
757         kfree(eeprom_buff);
758
759         return ret_val;
760 }
761
762 static int igb_set_eeprom(struct net_device *netdev,
763                           struct ethtool_eeprom *eeprom, u8 *bytes)
764 {
765         struct igb_adapter *adapter = netdev_priv(netdev);
766         struct e1000_hw *hw = &adapter->hw;
767         u16 *eeprom_buff;
768         void *ptr;
769         int max_len, first_word, last_word, ret_val = 0;
770         u16 i;
771
772         if (eeprom->len == 0)
773                 return -EOPNOTSUPP;
774
775         if ((hw->mac.type >= e1000_i210) &&
776             !igb_get_flash_presence_i210(hw)) {
777                 return -EOPNOTSUPP;
778         }
779
780         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
781                 return -EFAULT;
782
783         max_len = hw->nvm.word_size * 2;
784
785         first_word = eeprom->offset >> 1;
786         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
787         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
788         if (!eeprom_buff)
789                 return -ENOMEM;
790
791         ptr = (void *)eeprom_buff;
792
793         if (eeprom->offset & 1) {
794                 /* need read/modify/write of first changed EEPROM word
795                  * only the second byte of the word is being modified
796                  */
797                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
798                                             &eeprom_buff[0]);
799                 ptr++;
800         }
801         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
802                 /* need read/modify/write of last changed EEPROM word
803                  * only the first byte of the word is being modified
804                  */
805                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
806                                    &eeprom_buff[last_word - first_word]);
807         }
808
809         /* Device's eeprom is always little-endian, word addressable */
810         for (i = 0; i < last_word - first_word + 1; i++)
811                 le16_to_cpus(&eeprom_buff[i]);
812
813         memcpy(ptr, bytes, eeprom->len);
814
815         for (i = 0; i < last_word - first_word + 1; i++)
816                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
817
818         ret_val = hw->nvm.ops.write(hw, first_word,
819                                     last_word - first_word + 1, eeprom_buff);
820
821         /* Update the checksum if nvm write succeeded */
822         if (ret_val == 0)
823                 hw->nvm.ops.update(hw);
824
825         igb_set_fw_version(adapter);
826         kfree(eeprom_buff);
827         return ret_val;
828 }
829
830 static void igb_get_drvinfo(struct net_device *netdev,
831                             struct ethtool_drvinfo *drvinfo)
832 {
833         struct igb_adapter *adapter = netdev_priv(netdev);
834
835         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
836         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
837
838         /* EEPROM image version # is reported as firmware version # for
839          * 82575 controllers
840          */
841         strlcpy(drvinfo->fw_version, adapter->fw_version,
842                 sizeof(drvinfo->fw_version));
843         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
844                 sizeof(drvinfo->bus_info));
845 }
846
847 static void igb_get_ringparam(struct net_device *netdev,
848                               struct ethtool_ringparam *ring)
849 {
850         struct igb_adapter *adapter = netdev_priv(netdev);
851
852         ring->rx_max_pending = IGB_MAX_RXD;
853         ring->tx_max_pending = IGB_MAX_TXD;
854         ring->rx_pending = adapter->rx_ring_count;
855         ring->tx_pending = adapter->tx_ring_count;
856 }
857
858 static int igb_set_ringparam(struct net_device *netdev,
859                              struct ethtool_ringparam *ring)
860 {
861         struct igb_adapter *adapter = netdev_priv(netdev);
862         struct igb_ring *temp_ring;
863         int i, err = 0;
864         u16 new_rx_count, new_tx_count;
865
866         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
867                 return -EINVAL;
868
869         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
870         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
871         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
872
873         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
874         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
875         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
876
877         if ((new_tx_count == adapter->tx_ring_count) &&
878             (new_rx_count == adapter->rx_ring_count)) {
879                 /* nothing to do */
880                 return 0;
881         }
882
883         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
884                 usleep_range(1000, 2000);
885
886         if (!netif_running(adapter->netdev)) {
887                 for (i = 0; i < adapter->num_tx_queues; i++)
888                         adapter->tx_ring[i]->count = new_tx_count;
889                 for (i = 0; i < adapter->num_rx_queues; i++)
890                         adapter->rx_ring[i]->count = new_rx_count;
891                 adapter->tx_ring_count = new_tx_count;
892                 adapter->rx_ring_count = new_rx_count;
893                 goto clear_reset;
894         }
895
896         if (adapter->num_tx_queues > adapter->num_rx_queues)
897                 temp_ring = vmalloc(adapter->num_tx_queues *
898                                     sizeof(struct igb_ring));
899         else
900                 temp_ring = vmalloc(adapter->num_rx_queues *
901                                     sizeof(struct igb_ring));
902
903         if (!temp_ring) {
904                 err = -ENOMEM;
905                 goto clear_reset;
906         }
907
908         igb_down(adapter);
909
910         /* We can't just free everything and then setup again,
911          * because the ISRs in MSI-X mode get passed pointers
912          * to the Tx and Rx ring structs.
913          */
914         if (new_tx_count != adapter->tx_ring_count) {
915                 for (i = 0; i < adapter->num_tx_queues; i++) {
916                         memcpy(&temp_ring[i], adapter->tx_ring[i],
917                                sizeof(struct igb_ring));
918
919                         temp_ring[i].count = new_tx_count;
920                         err = igb_setup_tx_resources(&temp_ring[i]);
921                         if (err) {
922                                 while (i) {
923                                         i--;
924                                         igb_free_tx_resources(&temp_ring[i]);
925                                 }
926                                 goto err_setup;
927                         }
928                 }
929
930                 for (i = 0; i < adapter->num_tx_queues; i++) {
931                         igb_free_tx_resources(adapter->tx_ring[i]);
932
933                         memcpy(adapter->tx_ring[i], &temp_ring[i],
934                                sizeof(struct igb_ring));
935                 }
936
937                 adapter->tx_ring_count = new_tx_count;
938         }
939
940         if (new_rx_count != adapter->rx_ring_count) {
941                 for (i = 0; i < adapter->num_rx_queues; i++) {
942                         memcpy(&temp_ring[i], adapter->rx_ring[i],
943                                sizeof(struct igb_ring));
944
945                         temp_ring[i].count = new_rx_count;
946                         err = igb_setup_rx_resources(&temp_ring[i]);
947                         if (err) {
948                                 while (i) {
949                                         i--;
950                                         igb_free_rx_resources(&temp_ring[i]);
951                                 }
952                                 goto err_setup;
953                         }
954
955                 }
956
957                 for (i = 0; i < adapter->num_rx_queues; i++) {
958                         igb_free_rx_resources(adapter->rx_ring[i]);
959
960                         memcpy(adapter->rx_ring[i], &temp_ring[i],
961                                sizeof(struct igb_ring));
962                 }
963
964                 adapter->rx_ring_count = new_rx_count;
965         }
966 err_setup:
967         igb_up(adapter);
968         vfree(temp_ring);
969 clear_reset:
970         clear_bit(__IGB_RESETTING, &adapter->state);
971         return err;
972 }
973
974 /* ethtool register test data */
975 struct igb_reg_test {
976         u16 reg;
977         u16 reg_offset;
978         u16 array_len;
979         u16 test_type;
980         u32 mask;
981         u32 write;
982 };
983
984 /* In the hardware, registers are laid out either singly, in arrays
985  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
986  * most tests take place on arrays or single registers (handled
987  * as a single-element array) and special-case the tables.
988  * Table tests are always pattern tests.
989  *
990  * We also make provision for some required setup steps by specifying
991  * registers to be written without any read-back testing.
992  */
993
994 #define PATTERN_TEST    1
995 #define SET_READ_TEST   2
996 #define WRITE_NO_TEST   3
997 #define TABLE32_TEST    4
998 #define TABLE64_TEST_LO 5
999 #define TABLE64_TEST_HI 6
1000
1001 /* i210 reg test */
1002 static struct igb_reg_test reg_test_i210[] = {
1003         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1004         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1005         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1006         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1007         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1008         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1009         /* RDH is read-only for i210, only test RDT. */
1010         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1011         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1012         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1013         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1014         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1015         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1016         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1017         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1018         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1019         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1020         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1021         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1022         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1023                                                 0xFFFFFFFF, 0xFFFFFFFF },
1024         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1025                                                 0x900FFFFF, 0xFFFFFFFF },
1026         { E1000_MTA,       0, 128, TABLE32_TEST,
1027                                                 0xFFFFFFFF, 0xFFFFFFFF },
1028         { 0, 0, 0, 0, 0 }
1029 };
1030
1031 /* i350 reg test */
1032 static struct igb_reg_test reg_test_i350[] = {
1033         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1035         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1036         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1037         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1041         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1042         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1043         /* RDH is read-only for i350, only test RDT. */
1044         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1045         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1046         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1047         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1048         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1049         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1053         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1054         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1055         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1058         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1059         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1060         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1061         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1062                                                 0xFFFFFFFF, 0xFFFFFFFF },
1063         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1064                                                 0xC3FFFFFF, 0xFFFFFFFF },
1065         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1066                                                 0xFFFFFFFF, 0xFFFFFFFF },
1067         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1068                                                 0xC3FFFFFF, 0xFFFFFFFF },
1069         { E1000_MTA,       0, 128, TABLE32_TEST,
1070                                                 0xFFFFFFFF, 0xFFFFFFFF },
1071         { 0, 0, 0, 0 }
1072 };
1073
1074 /* 82580 reg test */
1075 static struct igb_reg_test reg_test_82580[] = {
1076         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1078         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1079         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1081         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1083         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1084         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1085         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1086         /* RDH is read-only for 82580, only test RDT. */
1087         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1088         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1089         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1090         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1091         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1092         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1096         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1097         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1098         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1101         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1102         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1103         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1104         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1105                                                 0xFFFFFFFF, 0xFFFFFFFF },
1106         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1107                                                 0x83FFFFFF, 0xFFFFFFFF },
1108         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1109                                                 0xFFFFFFFF, 0xFFFFFFFF },
1110         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1111                                                 0x83FFFFFF, 0xFFFFFFFF },
1112         { E1000_MTA,       0, 128, TABLE32_TEST,
1113                                                 0xFFFFFFFF, 0xFFFFFFFF },
1114         { 0, 0, 0, 0 }
1115 };
1116
1117 /* 82576 reg test */
1118 static struct igb_reg_test reg_test_82576[] = {
1119         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1121         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1122         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1123         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1124         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1126         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1127         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1128         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1129         /* Enable all RX queues before testing. */
1130         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1131           E1000_RXDCTL_QUEUE_ENABLE },
1132         { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1133           E1000_RXDCTL_QUEUE_ENABLE },
1134         /* RDH is read-only for 82576, only test RDT. */
1135         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1137         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1138         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1139         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1140         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1141         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1142         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1143         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1144         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1145         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1146         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1147         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1148         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1149         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1150         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1151         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1152         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1153         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1154         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1155         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1156         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1157         { 0, 0, 0, 0 }
1158 };
1159
1160 /* 82575 register test */
1161 static struct igb_reg_test reg_test_82575[] = {
1162         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1163         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1164         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1165         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1166         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1167         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1168         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1169         /* Enable all four RX queues before testing. */
1170         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1171           E1000_RXDCTL_QUEUE_ENABLE },
1172         /* RDH is read-only for 82575, only test RDT. */
1173         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1174         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1175         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1176         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1177         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1178         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1179         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1180         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1181         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1182         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1183         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1184         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1185         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1186         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1187         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1188         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189         { 0, 0, 0, 0 }
1190 };
1191
1192 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1193                              int reg, u32 mask, u32 write)
1194 {
1195         struct e1000_hw *hw = &adapter->hw;
1196         u32 pat, val;
1197         static const u32 _test[] = {
1198                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1199         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1200                 wr32(reg, (_test[pat] & write));
1201                 val = rd32(reg) & mask;
1202                 if (val != (_test[pat] & write & mask)) {
1203                         dev_err(&adapter->pdev->dev,
1204                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1205                                 reg, val, (_test[pat] & write & mask));
1206                         *data = reg;
1207                         return true;
1208                 }
1209         }
1210
1211         return false;
1212 }
1213
1214 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1215                               int reg, u32 mask, u32 write)
1216 {
1217         struct e1000_hw *hw = &adapter->hw;
1218         u32 val;
1219
1220         wr32(reg, write & mask);
1221         val = rd32(reg);
1222         if ((write & mask) != (val & mask)) {
1223                 dev_err(&adapter->pdev->dev,
1224                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1225                         reg, (val & mask), (write & mask));
1226                 *data = reg;
1227                 return true;
1228         }
1229
1230         return false;
1231 }
1232
1233 #define REG_PATTERN_TEST(reg, mask, write) \
1234         do { \
1235                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1236                         return 1; \
1237         } while (0)
1238
1239 #define REG_SET_AND_CHECK(reg, mask, write) \
1240         do { \
1241                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1242                         return 1; \
1243         } while (0)
1244
1245 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1246 {
1247         struct e1000_hw *hw = &adapter->hw;
1248         struct igb_reg_test *test;
1249         u32 value, before, after;
1250         u32 i, toggle;
1251
1252         switch (adapter->hw.mac.type) {
1253         case e1000_i350:
1254         case e1000_i354:
1255                 test = reg_test_i350;
1256                 toggle = 0x7FEFF3FF;
1257                 break;
1258         case e1000_i210:
1259         case e1000_i211:
1260                 test = reg_test_i210;
1261                 toggle = 0x7FEFF3FF;
1262                 break;
1263         case e1000_82580:
1264                 test = reg_test_82580;
1265                 toggle = 0x7FEFF3FF;
1266                 break;
1267         case e1000_82576:
1268                 test = reg_test_82576;
1269                 toggle = 0x7FFFF3FF;
1270                 break;
1271         default:
1272                 test = reg_test_82575;
1273                 toggle = 0x7FFFF3FF;
1274                 break;
1275         }
1276
1277         /* Because the status register is such a special case,
1278          * we handle it separately from the rest of the register
1279          * tests.  Some bits are read-only, some toggle, and some
1280          * are writable on newer MACs.
1281          */
1282         before = rd32(E1000_STATUS);
1283         value = (rd32(E1000_STATUS) & toggle);
1284         wr32(E1000_STATUS, toggle);
1285         after = rd32(E1000_STATUS) & toggle;
1286         if (value != after) {
1287                 dev_err(&adapter->pdev->dev,
1288                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1289                         after, value);
1290                 *data = 1;
1291                 return 1;
1292         }
1293         /* restore previous status */
1294         wr32(E1000_STATUS, before);
1295
1296         /* Perform the remainder of the register test, looping through
1297          * the test table until we either fail or reach the null entry.
1298          */
1299         while (test->reg) {
1300                 for (i = 0; i < test->array_len; i++) {
1301                         switch (test->test_type) {
1302                         case PATTERN_TEST:
1303                                 REG_PATTERN_TEST(test->reg +
1304                                                 (i * test->reg_offset),
1305                                                 test->mask,
1306                                                 test->write);
1307                                 break;
1308                         case SET_READ_TEST:
1309                                 REG_SET_AND_CHECK(test->reg +
1310                                                 (i * test->reg_offset),
1311                                                 test->mask,
1312                                                 test->write);
1313                                 break;
1314                         case WRITE_NO_TEST:
1315                                 writel(test->write,
1316                                     (adapter->hw.hw_addr + test->reg)
1317                                         + (i * test->reg_offset));
1318                                 break;
1319                         case TABLE32_TEST:
1320                                 REG_PATTERN_TEST(test->reg + (i * 4),
1321                                                 test->mask,
1322                                                 test->write);
1323                                 break;
1324                         case TABLE64_TEST_LO:
1325                                 REG_PATTERN_TEST(test->reg + (i * 8),
1326                                                 test->mask,
1327                                                 test->write);
1328                                 break;
1329                         case TABLE64_TEST_HI:
1330                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1331                                                 test->mask,
1332                                                 test->write);
1333                                 break;
1334                         }
1335                 }
1336                 test++;
1337         }
1338
1339         *data = 0;
1340         return 0;
1341 }
1342
1343 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1344 {
1345         struct e1000_hw *hw = &adapter->hw;
1346
1347         *data = 0;
1348
1349         /* Validate eeprom on all parts but flashless */
1350         switch (hw->mac.type) {
1351         case e1000_i210:
1352         case e1000_i211:
1353                 if (igb_get_flash_presence_i210(hw)) {
1354                         if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1355                                 *data = 2;
1356                 }
1357                 break;
1358         default:
1359                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1360                         *data = 2;
1361                 break;
1362         }
1363
1364         return *data;
1365 }
1366
1367 static irqreturn_t igb_test_intr(int irq, void *data)
1368 {
1369         struct igb_adapter *adapter = (struct igb_adapter *) data;
1370         struct e1000_hw *hw = &adapter->hw;
1371
1372         adapter->test_icr |= rd32(E1000_ICR);
1373
1374         return IRQ_HANDLED;
1375 }
1376
1377 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1378 {
1379         struct e1000_hw *hw = &adapter->hw;
1380         struct net_device *netdev = adapter->netdev;
1381         u32 mask, ics_mask, i = 0, shared_int = true;
1382         u32 irq = adapter->pdev->irq;
1383
1384         *data = 0;
1385
1386         /* Hook up test interrupt handler just for this test */
1387         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1388                 if (request_irq(adapter->msix_entries[0].vector,
1389                                 igb_test_intr, 0, netdev->name, adapter)) {
1390                         *data = 1;
1391                         return -1;
1392                 }
1393         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1394                 shared_int = false;
1395                 if (request_irq(irq,
1396                                 igb_test_intr, 0, netdev->name, adapter)) {
1397                         *data = 1;
1398                         return -1;
1399                 }
1400         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1401                                 netdev->name, adapter)) {
1402                 shared_int = false;
1403         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1404                  netdev->name, adapter)) {
1405                 *data = 1;
1406                 return -1;
1407         }
1408         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1409                 (shared_int ? "shared" : "unshared"));
1410
1411         /* Disable all the interrupts */
1412         wr32(E1000_IMC, ~0);
1413         wrfl();
1414         usleep_range(10000, 11000);
1415
1416         /* Define all writable bits for ICS */
1417         switch (hw->mac.type) {
1418         case e1000_82575:
1419                 ics_mask = 0x37F47EDD;
1420                 break;
1421         case e1000_82576:
1422                 ics_mask = 0x77D4FBFD;
1423                 break;
1424         case e1000_82580:
1425                 ics_mask = 0x77DCFED5;
1426                 break;
1427         case e1000_i350:
1428         case e1000_i354:
1429         case e1000_i210:
1430         case e1000_i211:
1431                 ics_mask = 0x77DCFED5;
1432                 break;
1433         default:
1434                 ics_mask = 0x7FFFFFFF;
1435                 break;
1436         }
1437
1438         /* Test each interrupt */
1439         for (; i < 31; i++) {
1440                 /* Interrupt to test */
1441                 mask = 1 << i;
1442
1443                 if (!(mask & ics_mask))
1444                         continue;
1445
1446                 if (!shared_int) {
1447                         /* Disable the interrupt to be reported in
1448                          * the cause register and then force the same
1449                          * interrupt and see if one gets posted.  If
1450                          * an interrupt was posted to the bus, the
1451                          * test failed.
1452                          */
1453                         adapter->test_icr = 0;
1454
1455                         /* Flush any pending interrupts */
1456                         wr32(E1000_ICR, ~0);
1457
1458                         wr32(E1000_IMC, mask);
1459                         wr32(E1000_ICS, mask);
1460                         wrfl();
1461                         usleep_range(10000, 11000);
1462
1463                         if (adapter->test_icr & mask) {
1464                                 *data = 3;
1465                                 break;
1466                         }
1467                 }
1468
1469                 /* Enable the interrupt to be reported in
1470                  * the cause register and then force the same
1471                  * interrupt and see if one gets posted.  If
1472                  * an interrupt was not posted to the bus, the
1473                  * test failed.
1474                  */
1475                 adapter->test_icr = 0;
1476
1477                 /* Flush any pending interrupts */
1478                 wr32(E1000_ICR, ~0);
1479
1480                 wr32(E1000_IMS, mask);
1481                 wr32(E1000_ICS, mask);
1482                 wrfl();
1483                 usleep_range(10000, 11000);
1484
1485                 if (!(adapter->test_icr & mask)) {
1486                         *data = 4;
1487                         break;
1488                 }
1489
1490                 if (!shared_int) {
1491                         /* Disable the other interrupts to be reported in
1492                          * the cause register and then force the other
1493                          * interrupts and see if any get posted.  If
1494                          * an interrupt was posted to the bus, the
1495                          * test failed.
1496                          */
1497                         adapter->test_icr = 0;
1498
1499                         /* Flush any pending interrupts */
1500                         wr32(E1000_ICR, ~0);
1501
1502                         wr32(E1000_IMC, ~mask);
1503                         wr32(E1000_ICS, ~mask);
1504                         wrfl();
1505                         usleep_range(10000, 11000);
1506
1507                         if (adapter->test_icr & mask) {
1508                                 *data = 5;
1509                                 break;
1510                         }
1511                 }
1512         }
1513
1514         /* Disable all the interrupts */
1515         wr32(E1000_IMC, ~0);
1516         wrfl();
1517         usleep_range(10000, 11000);
1518
1519         /* Unhook test interrupt handler */
1520         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1521                 free_irq(adapter->msix_entries[0].vector, adapter);
1522         else
1523                 free_irq(irq, adapter);
1524
1525         return *data;
1526 }
1527
1528 static void igb_free_desc_rings(struct igb_adapter *adapter)
1529 {
1530         igb_free_tx_resources(&adapter->test_tx_ring);
1531         igb_free_rx_resources(&adapter->test_rx_ring);
1532 }
1533
1534 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1535 {
1536         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1537         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1538         struct e1000_hw *hw = &adapter->hw;
1539         int ret_val;
1540
1541         /* Setup Tx descriptor ring and Tx buffers */
1542         tx_ring->count = IGB_DEFAULT_TXD;
1543         tx_ring->dev = &adapter->pdev->dev;
1544         tx_ring->netdev = adapter->netdev;
1545         tx_ring->reg_idx = adapter->vfs_allocated_count;
1546
1547         if (igb_setup_tx_resources(tx_ring)) {
1548                 ret_val = 1;
1549                 goto err_nomem;
1550         }
1551
1552         igb_setup_tctl(adapter);
1553         igb_configure_tx_ring(adapter, tx_ring);
1554
1555         /* Setup Rx descriptor ring and Rx buffers */
1556         rx_ring->count = IGB_DEFAULT_RXD;
1557         rx_ring->dev = &adapter->pdev->dev;
1558         rx_ring->netdev = adapter->netdev;
1559         rx_ring->reg_idx = adapter->vfs_allocated_count;
1560
1561         if (igb_setup_rx_resources(rx_ring)) {
1562                 ret_val = 3;
1563                 goto err_nomem;
1564         }
1565
1566         /* set the default queue to queue 0 of PF */
1567         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1568
1569         /* enable receive ring */
1570         igb_setup_rctl(adapter);
1571         igb_configure_rx_ring(adapter, rx_ring);
1572
1573         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1574
1575         return 0;
1576
1577 err_nomem:
1578         igb_free_desc_rings(adapter);
1579         return ret_val;
1580 }
1581
1582 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1583 {
1584         struct e1000_hw *hw = &adapter->hw;
1585
1586         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1587         igb_write_phy_reg(hw, 29, 0x001F);
1588         igb_write_phy_reg(hw, 30, 0x8FFC);
1589         igb_write_phy_reg(hw, 29, 0x001A);
1590         igb_write_phy_reg(hw, 30, 0x8FF0);
1591 }
1592
1593 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1594 {
1595         struct e1000_hw *hw = &adapter->hw;
1596         u32 ctrl_reg = 0;
1597
1598         hw->mac.autoneg = false;
1599
1600         if (hw->phy.type == e1000_phy_m88) {
1601                 if (hw->phy.id != I210_I_PHY_ID) {
1602                         /* Auto-MDI/MDIX Off */
1603                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1604                         /* reset to update Auto-MDI/MDIX */
1605                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1606                         /* autoneg off */
1607                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1608                 } else {
1609                         /* force 1000, set loopback  */
1610                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1611                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1612                 }
1613         } else if (hw->phy.type == e1000_phy_82580) {
1614                 /* enable MII loopback */
1615                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1616         }
1617
1618         /* add small delay to avoid loopback test failure */
1619         msleep(50);
1620
1621         /* force 1000, set loopback */
1622         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1623
1624         /* Now set up the MAC to the same speed/duplex as the PHY. */
1625         ctrl_reg = rd32(E1000_CTRL);
1626         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1627         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1628                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1629                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1630                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1631                      E1000_CTRL_SLU);    /* Set link up enable bit */
1632
1633         if (hw->phy.type == e1000_phy_m88)
1634                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1635
1636         wr32(E1000_CTRL, ctrl_reg);
1637
1638         /* Disable the receiver on the PHY so when a cable is plugged in, the
1639          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1640          */
1641         if (hw->phy.type == e1000_phy_m88)
1642                 igb_phy_disable_receiver(adapter);
1643
1644         mdelay(500);
1645         return 0;
1646 }
1647
1648 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1649 {
1650         return igb_integrated_phy_loopback(adapter);
1651 }
1652
1653 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1654 {
1655         struct e1000_hw *hw = &adapter->hw;
1656         u32 reg;
1657
1658         reg = rd32(E1000_CTRL_EXT);
1659
1660         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1661         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1662                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1663                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1664                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1665                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1666                 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1667                 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1668                         /* Enable DH89xxCC MPHY for near end loopback */
1669                         reg = rd32(E1000_MPHY_ADDR_CTL);
1670                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1671                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1672                         wr32(E1000_MPHY_ADDR_CTL, reg);
1673
1674                         reg = rd32(E1000_MPHY_DATA);
1675                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1676                         wr32(E1000_MPHY_DATA, reg);
1677                 }
1678
1679                 reg = rd32(E1000_RCTL);
1680                 reg |= E1000_RCTL_LBM_TCVR;
1681                 wr32(E1000_RCTL, reg);
1682
1683                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1684
1685                 reg = rd32(E1000_CTRL);
1686                 reg &= ~(E1000_CTRL_RFCE |
1687                          E1000_CTRL_TFCE |
1688                          E1000_CTRL_LRST);
1689                 reg |= E1000_CTRL_SLU |
1690                        E1000_CTRL_FD;
1691                 wr32(E1000_CTRL, reg);
1692
1693                 /* Unset switch control to serdes energy detect */
1694                 reg = rd32(E1000_CONNSW);
1695                 reg &= ~E1000_CONNSW_ENRGSRC;
1696                 wr32(E1000_CONNSW, reg);
1697
1698                 /* Unset sigdetect for SERDES loopback on
1699                  * 82580 and newer devices.
1700                  */
1701                 if (hw->mac.type >= e1000_82580) {
1702                         reg = rd32(E1000_PCS_CFG0);
1703                         reg |= E1000_PCS_CFG_IGN_SD;
1704                         wr32(E1000_PCS_CFG0, reg);
1705                 }
1706
1707                 /* Set PCS register for forced speed */
1708                 reg = rd32(E1000_PCS_LCTL);
1709                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1710                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1711                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1712                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1713                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1714                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1715                 wr32(E1000_PCS_LCTL, reg);
1716
1717                 return 0;
1718         }
1719
1720         return igb_set_phy_loopback(adapter);
1721 }
1722
1723 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1724 {
1725         struct e1000_hw *hw = &adapter->hw;
1726         u32 rctl;
1727         u16 phy_reg;
1728
1729         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1730         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1731         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1732         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1733         (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1734                 u32 reg;
1735
1736                 /* Disable near end loopback on DH89xxCC */
1737                 reg = rd32(E1000_MPHY_ADDR_CTL);
1738                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1739                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1740                 wr32(E1000_MPHY_ADDR_CTL, reg);
1741
1742                 reg = rd32(E1000_MPHY_DATA);
1743                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1744                 wr32(E1000_MPHY_DATA, reg);
1745         }
1746
1747         rctl = rd32(E1000_RCTL);
1748         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1749         wr32(E1000_RCTL, rctl);
1750
1751         hw->mac.autoneg = true;
1752         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1753         if (phy_reg & MII_CR_LOOPBACK) {
1754                 phy_reg &= ~MII_CR_LOOPBACK;
1755                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1756                 igb_phy_sw_reset(hw);
1757         }
1758 }
1759
1760 static void igb_create_lbtest_frame(struct sk_buff *skb,
1761                                     unsigned int frame_size)
1762 {
1763         memset(skb->data, 0xFF, frame_size);
1764         frame_size /= 2;
1765         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1766         memset(&skb->data[frame_size + 10], 0xBE, 1);
1767         memset(&skb->data[frame_size + 12], 0xAF, 1);
1768 }
1769
1770 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1771                                   unsigned int frame_size)
1772 {
1773         unsigned char *data;
1774         bool match = true;
1775
1776         frame_size >>= 1;
1777
1778         data = kmap(rx_buffer->page);
1779
1780         if (data[3] != 0xFF ||
1781             data[frame_size + 10] != 0xBE ||
1782             data[frame_size + 12] != 0xAF)
1783                 match = false;
1784
1785         kunmap(rx_buffer->page);
1786
1787         return match;
1788 }
1789
1790 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1791                                 struct igb_ring *tx_ring,
1792                                 unsigned int size)
1793 {
1794         union e1000_adv_rx_desc *rx_desc;
1795         struct igb_rx_buffer *rx_buffer_info;
1796         struct igb_tx_buffer *tx_buffer_info;
1797         u16 rx_ntc, tx_ntc, count = 0;
1798
1799         /* initialize next to clean and descriptor values */
1800         rx_ntc = rx_ring->next_to_clean;
1801         tx_ntc = tx_ring->next_to_clean;
1802         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1803
1804         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1805                 /* check Rx buffer */
1806                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1807
1808                 /* sync Rx buffer for CPU read */
1809                 dma_sync_single_for_cpu(rx_ring->dev,
1810                                         rx_buffer_info->dma,
1811                                         IGB_RX_BUFSZ,
1812                                         DMA_FROM_DEVICE);
1813
1814                 /* verify contents of skb */
1815                 if (igb_check_lbtest_frame(rx_buffer_info, size))
1816                         count++;
1817
1818                 /* sync Rx buffer for device write */
1819                 dma_sync_single_for_device(rx_ring->dev,
1820                                            rx_buffer_info->dma,
1821                                            IGB_RX_BUFSZ,
1822                                            DMA_FROM_DEVICE);
1823
1824                 /* unmap buffer on Tx side */
1825                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1826                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1827
1828                 /* increment Rx/Tx next to clean counters */
1829                 rx_ntc++;
1830                 if (rx_ntc == rx_ring->count)
1831                         rx_ntc = 0;
1832                 tx_ntc++;
1833                 if (tx_ntc == tx_ring->count)
1834                         tx_ntc = 0;
1835
1836                 /* fetch next descriptor */
1837                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1838         }
1839
1840         netdev_tx_reset_queue(txring_txq(tx_ring));
1841
1842         /* re-map buffers to ring, store next to clean values */
1843         igb_alloc_rx_buffers(rx_ring, count);
1844         rx_ring->next_to_clean = rx_ntc;
1845         tx_ring->next_to_clean = tx_ntc;
1846
1847         return count;
1848 }
1849
1850 static int igb_run_loopback_test(struct igb_adapter *adapter)
1851 {
1852         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1853         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1854         u16 i, j, lc, good_cnt;
1855         int ret_val = 0;
1856         unsigned int size = IGB_RX_HDR_LEN;
1857         netdev_tx_t tx_ret_val;
1858         struct sk_buff *skb;
1859
1860         /* allocate test skb */
1861         skb = alloc_skb(size, GFP_KERNEL);
1862         if (!skb)
1863                 return 11;
1864
1865         /* place data into test skb */
1866         igb_create_lbtest_frame(skb, size);
1867         skb_put(skb, size);
1868
1869         /* Calculate the loop count based on the largest descriptor ring
1870          * The idea is to wrap the largest ring a number of times using 64
1871          * send/receive pairs during each loop
1872          */
1873
1874         if (rx_ring->count <= tx_ring->count)
1875                 lc = ((tx_ring->count / 64) * 2) + 1;
1876         else
1877                 lc = ((rx_ring->count / 64) * 2) + 1;
1878
1879         for (j = 0; j <= lc; j++) { /* loop count loop */
1880                 /* reset count of good packets */
1881                 good_cnt = 0;
1882
1883                 /* place 64 packets on the transmit queue*/
1884                 for (i = 0; i < 64; i++) {
1885                         skb_get(skb);
1886                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1887                         if (tx_ret_val == NETDEV_TX_OK)
1888                                 good_cnt++;
1889                 }
1890
1891                 if (good_cnt != 64) {
1892                         ret_val = 12;
1893                         break;
1894                 }
1895
1896                 /* allow 200 milliseconds for packets to go from Tx to Rx */
1897                 msleep(200);
1898
1899                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1900                 if (good_cnt != 64) {
1901                         ret_val = 13;
1902                         break;
1903                 }
1904         } /* end loop count loop */
1905
1906         /* free the original skb */
1907         kfree_skb(skb);
1908
1909         return ret_val;
1910 }
1911
1912 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1913 {
1914         /* PHY loopback cannot be performed if SoL/IDER
1915          * sessions are active
1916          */
1917         if (igb_check_reset_block(&adapter->hw)) {
1918                 dev_err(&adapter->pdev->dev,
1919                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1920                 *data = 0;
1921                 goto out;
1922         }
1923
1924         if (adapter->hw.mac.type == e1000_i354) {
1925                 dev_info(&adapter->pdev->dev,
1926                         "Loopback test not supported on i354.\n");
1927                 *data = 0;
1928                 goto out;
1929         }
1930         *data = igb_setup_desc_rings(adapter);
1931         if (*data)
1932                 goto out;
1933         *data = igb_setup_loopback_test(adapter);
1934         if (*data)
1935                 goto err_loopback;
1936         *data = igb_run_loopback_test(adapter);
1937         igb_loopback_cleanup(adapter);
1938
1939 err_loopback:
1940         igb_free_desc_rings(adapter);
1941 out:
1942         return *data;
1943 }
1944
1945 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1946 {
1947         struct e1000_hw *hw = &adapter->hw;
1948         *data = 0;
1949         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1950                 int i = 0;
1951
1952                 hw->mac.serdes_has_link = false;
1953
1954                 /* On some blade server designs, link establishment
1955                  * could take as long as 2-3 minutes
1956                  */
1957                 do {
1958                         hw->mac.ops.check_for_link(&adapter->hw);
1959                         if (hw->mac.serdes_has_link)
1960                                 return *data;
1961                         msleep(20);
1962                 } while (i++ < 3750);
1963
1964                 *data = 1;
1965         } else {
1966                 hw->mac.ops.check_for_link(&adapter->hw);
1967                 if (hw->mac.autoneg)
1968                         msleep(5000);
1969
1970                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1971                         *data = 1;
1972         }
1973         return *data;
1974 }
1975
1976 static void igb_diag_test(struct net_device *netdev,
1977                           struct ethtool_test *eth_test, u64 *data)
1978 {
1979         struct igb_adapter *adapter = netdev_priv(netdev);
1980         u16 autoneg_advertised;
1981         u8 forced_speed_duplex, autoneg;
1982         bool if_running = netif_running(netdev);
1983
1984         set_bit(__IGB_TESTING, &adapter->state);
1985
1986         /* can't do offline tests on media switching devices */
1987         if (adapter->hw.dev_spec._82575.mas_capable)
1988                 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1989         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1990                 /* Offline tests */
1991
1992                 /* save speed, duplex, autoneg settings */
1993                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1994                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1995                 autoneg = adapter->hw.mac.autoneg;
1996
1997                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1998
1999                 /* power up link for link test */
2000                 igb_power_up_link(adapter);
2001
2002                 /* Link test performed before hardware reset so autoneg doesn't
2003                  * interfere with test result
2004                  */
2005                 if (igb_link_test(adapter, &data[4]))
2006                         eth_test->flags |= ETH_TEST_FL_FAILED;
2007
2008                 if (if_running)
2009                         /* indicate we're in test mode */
2010                         dev_close(netdev);
2011                 else
2012                         igb_reset(adapter);
2013
2014                 if (igb_reg_test(adapter, &data[0]))
2015                         eth_test->flags |= ETH_TEST_FL_FAILED;
2016
2017                 igb_reset(adapter);
2018                 if (igb_eeprom_test(adapter, &data[1]))
2019                         eth_test->flags |= ETH_TEST_FL_FAILED;
2020
2021                 igb_reset(adapter);
2022                 if (igb_intr_test(adapter, &data[2]))
2023                         eth_test->flags |= ETH_TEST_FL_FAILED;
2024
2025                 igb_reset(adapter);
2026                 /* power up link for loopback test */
2027                 igb_power_up_link(adapter);
2028                 if (igb_loopback_test(adapter, &data[3]))
2029                         eth_test->flags |= ETH_TEST_FL_FAILED;
2030
2031                 /* restore speed, duplex, autoneg settings */
2032                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2033                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2034                 adapter->hw.mac.autoneg = autoneg;
2035
2036                 /* force this routine to wait until autoneg complete/timeout */
2037                 adapter->hw.phy.autoneg_wait_to_complete = true;
2038                 igb_reset(adapter);
2039                 adapter->hw.phy.autoneg_wait_to_complete = false;
2040
2041                 clear_bit(__IGB_TESTING, &adapter->state);
2042                 if (if_running)
2043                         dev_open(netdev);
2044         } else {
2045                 dev_info(&adapter->pdev->dev, "online testing starting\n");
2046
2047                 /* PHY is powered down when interface is down */
2048                 if (if_running && igb_link_test(adapter, &data[4]))
2049                         eth_test->flags |= ETH_TEST_FL_FAILED;
2050                 else
2051                         data[4] = 0;
2052
2053                 /* Online tests aren't run; pass by default */
2054                 data[0] = 0;
2055                 data[1] = 0;
2056                 data[2] = 0;
2057                 data[3] = 0;
2058
2059                 clear_bit(__IGB_TESTING, &adapter->state);
2060         }
2061         msleep_interruptible(4 * 1000);
2062 }
2063
2064 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2065 {
2066         struct igb_adapter *adapter = netdev_priv(netdev);
2067
2068         wol->wolopts = 0;
2069
2070         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2071                 return;
2072
2073         wol->supported = WAKE_UCAST | WAKE_MCAST |
2074                          WAKE_BCAST | WAKE_MAGIC |
2075                          WAKE_PHY;
2076
2077         /* apply any specific unsupported masks here */
2078         switch (adapter->hw.device_id) {
2079         default:
2080                 break;
2081         }
2082
2083         if (adapter->wol & E1000_WUFC_EX)
2084                 wol->wolopts |= WAKE_UCAST;
2085         if (adapter->wol & E1000_WUFC_MC)
2086                 wol->wolopts |= WAKE_MCAST;
2087         if (adapter->wol & E1000_WUFC_BC)
2088                 wol->wolopts |= WAKE_BCAST;
2089         if (adapter->wol & E1000_WUFC_MAG)
2090                 wol->wolopts |= WAKE_MAGIC;
2091         if (adapter->wol & E1000_WUFC_LNKC)
2092                 wol->wolopts |= WAKE_PHY;
2093 }
2094
2095 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2096 {
2097         struct igb_adapter *adapter = netdev_priv(netdev);
2098
2099         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2100                 return -EOPNOTSUPP;
2101
2102         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2103                 return wol->wolopts ? -EOPNOTSUPP : 0;
2104
2105         /* these settings will always override what we currently have */
2106         adapter->wol = 0;
2107
2108         if (wol->wolopts & WAKE_UCAST)
2109                 adapter->wol |= E1000_WUFC_EX;
2110         if (wol->wolopts & WAKE_MCAST)
2111                 adapter->wol |= E1000_WUFC_MC;
2112         if (wol->wolopts & WAKE_BCAST)
2113                 adapter->wol |= E1000_WUFC_BC;
2114         if (wol->wolopts & WAKE_MAGIC)
2115                 adapter->wol |= E1000_WUFC_MAG;
2116         if (wol->wolopts & WAKE_PHY)
2117                 adapter->wol |= E1000_WUFC_LNKC;
2118         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2119
2120         return 0;
2121 }
2122
2123 /* bit defines for adapter->led_status */
2124 #define IGB_LED_ON              0
2125
2126 static int igb_set_phys_id(struct net_device *netdev,
2127                            enum ethtool_phys_id_state state)
2128 {
2129         struct igb_adapter *adapter = netdev_priv(netdev);
2130         struct e1000_hw *hw = &adapter->hw;
2131
2132         switch (state) {
2133         case ETHTOOL_ID_ACTIVE:
2134                 igb_blink_led(hw);
2135                 return 2;
2136         case ETHTOOL_ID_ON:
2137                 igb_blink_led(hw);
2138                 break;
2139         case ETHTOOL_ID_OFF:
2140                 igb_led_off(hw);
2141                 break;
2142         case ETHTOOL_ID_INACTIVE:
2143                 igb_led_off(hw);
2144                 clear_bit(IGB_LED_ON, &adapter->led_status);
2145                 igb_cleanup_led(hw);
2146                 break;
2147         }
2148
2149         return 0;
2150 }
2151
2152 static int igb_set_coalesce(struct net_device *netdev,
2153                             struct ethtool_coalesce *ec)
2154 {
2155         struct igb_adapter *adapter = netdev_priv(netdev);
2156         int i;
2157
2158         if (ec->rx_max_coalesced_frames ||
2159             ec->rx_coalesce_usecs_irq ||
2160             ec->rx_max_coalesced_frames_irq ||
2161             ec->tx_max_coalesced_frames ||
2162             ec->tx_coalesce_usecs_irq ||
2163             ec->stats_block_coalesce_usecs ||
2164             ec->use_adaptive_rx_coalesce ||
2165             ec->use_adaptive_tx_coalesce ||
2166             ec->pkt_rate_low ||
2167             ec->rx_coalesce_usecs_low ||
2168             ec->rx_max_coalesced_frames_low ||
2169             ec->tx_coalesce_usecs_low ||
2170             ec->tx_max_coalesced_frames_low ||
2171             ec->pkt_rate_high ||
2172             ec->rx_coalesce_usecs_high ||
2173             ec->rx_max_coalesced_frames_high ||
2174             ec->tx_coalesce_usecs_high ||
2175             ec->tx_max_coalesced_frames_high ||
2176             ec->rate_sample_interval)
2177                 return -ENOTSUPP;
2178
2179         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2180             ((ec->rx_coalesce_usecs > 3) &&
2181              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2182             (ec->rx_coalesce_usecs == 2))
2183                 return -EINVAL;
2184
2185         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2186             ((ec->tx_coalesce_usecs > 3) &&
2187              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2188             (ec->tx_coalesce_usecs == 2))
2189                 return -EINVAL;
2190
2191         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2192                 return -EINVAL;
2193
2194         /* If ITR is disabled, disable DMAC */
2195         if (ec->rx_coalesce_usecs == 0) {
2196                 if (adapter->flags & IGB_FLAG_DMAC)
2197                         adapter->flags &= ~IGB_FLAG_DMAC;
2198         }
2199
2200         /* convert to rate of irq's per second */
2201         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2202                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2203         else
2204                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2205
2206         /* convert to rate of irq's per second */
2207         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2208                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2209         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2210                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2211         else
2212                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2213
2214         for (i = 0; i < adapter->num_q_vectors; i++) {
2215                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2216                 q_vector->tx.work_limit = adapter->tx_work_limit;
2217                 if (q_vector->rx.ring)
2218                         q_vector->itr_val = adapter->rx_itr_setting;
2219                 else
2220                         q_vector->itr_val = adapter->tx_itr_setting;
2221                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2222                         q_vector->itr_val = IGB_START_ITR;
2223                 q_vector->set_itr = 1;
2224         }
2225
2226         return 0;
2227 }
2228
2229 static int igb_get_coalesce(struct net_device *netdev,
2230                             struct ethtool_coalesce *ec)
2231 {
2232         struct igb_adapter *adapter = netdev_priv(netdev);
2233
2234         if (adapter->rx_itr_setting <= 3)
2235                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2236         else
2237                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2238
2239         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2240                 if (adapter->tx_itr_setting <= 3)
2241                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2242                 else
2243                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2244         }
2245
2246         return 0;
2247 }
2248
2249 static int igb_nway_reset(struct net_device *netdev)
2250 {
2251         struct igb_adapter *adapter = netdev_priv(netdev);
2252         if (netif_running(netdev))
2253                 igb_reinit_locked(adapter);
2254         return 0;
2255 }
2256
2257 static int igb_get_sset_count(struct net_device *netdev, int sset)
2258 {
2259         switch (sset) {
2260         case ETH_SS_STATS:
2261                 return IGB_STATS_LEN;
2262         case ETH_SS_TEST:
2263                 return IGB_TEST_LEN;
2264         default:
2265                 return -ENOTSUPP;
2266         }
2267 }
2268
2269 static void igb_get_ethtool_stats(struct net_device *netdev,
2270                                   struct ethtool_stats *stats, u64 *data)
2271 {
2272         struct igb_adapter *adapter = netdev_priv(netdev);
2273         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2274         unsigned int start;
2275         struct igb_ring *ring;
2276         int i, j;
2277         char *p;
2278
2279         spin_lock(&adapter->stats64_lock);
2280         igb_update_stats(adapter, net_stats);
2281
2282         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2283                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2284                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2285                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2286         }
2287         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2288                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2289                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2290                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2291         }
2292         for (j = 0; j < adapter->num_tx_queues; j++) {
2293                 u64     restart2;
2294
2295                 ring = adapter->tx_ring[j];
2296                 do {
2297                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2298                         data[i]   = ring->tx_stats.packets;
2299                         data[i+1] = ring->tx_stats.bytes;
2300                         data[i+2] = ring->tx_stats.restart_queue;
2301                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2302                 do {
2303                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2304                         restart2  = ring->tx_stats.restart_queue2;
2305                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2306                 data[i+2] += restart2;
2307
2308                 i += IGB_TX_QUEUE_STATS_LEN;
2309         }
2310         for (j = 0; j < adapter->num_rx_queues; j++) {
2311                 ring = adapter->rx_ring[j];
2312                 do {
2313                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2314                         data[i]   = ring->rx_stats.packets;
2315                         data[i+1] = ring->rx_stats.bytes;
2316                         data[i+2] = ring->rx_stats.drops;
2317                         data[i+3] = ring->rx_stats.csum_err;
2318                         data[i+4] = ring->rx_stats.alloc_failed;
2319                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2320                 i += IGB_RX_QUEUE_STATS_LEN;
2321         }
2322         spin_unlock(&adapter->stats64_lock);
2323 }
2324
2325 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2326 {
2327         struct igb_adapter *adapter = netdev_priv(netdev);
2328         u8 *p = data;
2329         int i;
2330
2331         switch (stringset) {
2332         case ETH_SS_TEST:
2333                 memcpy(data, *igb_gstrings_test,
2334                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2335                 break;
2336         case ETH_SS_STATS:
2337                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2338                         memcpy(p, igb_gstrings_stats[i].stat_string,
2339                                ETH_GSTRING_LEN);
2340                         p += ETH_GSTRING_LEN;
2341                 }
2342                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2343                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2344                                ETH_GSTRING_LEN);
2345                         p += ETH_GSTRING_LEN;
2346                 }
2347                 for (i = 0; i < adapter->num_tx_queues; i++) {
2348                         sprintf(p, "tx_queue_%u_packets", i);
2349                         p += ETH_GSTRING_LEN;
2350                         sprintf(p, "tx_queue_%u_bytes", i);
2351                         p += ETH_GSTRING_LEN;
2352                         sprintf(p, "tx_queue_%u_restart", i);
2353                         p += ETH_GSTRING_LEN;
2354                 }
2355                 for (i = 0; i < adapter->num_rx_queues; i++) {
2356                         sprintf(p, "rx_queue_%u_packets", i);
2357                         p += ETH_GSTRING_LEN;
2358                         sprintf(p, "rx_queue_%u_bytes", i);
2359                         p += ETH_GSTRING_LEN;
2360                         sprintf(p, "rx_queue_%u_drops", i);
2361                         p += ETH_GSTRING_LEN;
2362                         sprintf(p, "rx_queue_%u_csum_err", i);
2363                         p += ETH_GSTRING_LEN;
2364                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2365                         p += ETH_GSTRING_LEN;
2366                 }
2367                 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2368                 break;
2369         }
2370 }
2371
2372 static int igb_get_ts_info(struct net_device *dev,
2373                            struct ethtool_ts_info *info)
2374 {
2375         struct igb_adapter *adapter = netdev_priv(dev);
2376
2377         if (adapter->ptp_clock)
2378                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2379         else
2380                 info->phc_index = -1;
2381
2382         switch (adapter->hw.mac.type) {
2383         case e1000_82575:
2384                 info->so_timestamping =
2385                         SOF_TIMESTAMPING_TX_SOFTWARE |
2386                         SOF_TIMESTAMPING_RX_SOFTWARE |
2387                         SOF_TIMESTAMPING_SOFTWARE;
2388                 return 0;
2389         case e1000_82576:
2390         case e1000_82580:
2391         case e1000_i350:
2392         case e1000_i354:
2393         case e1000_i210:
2394         case e1000_i211:
2395                 info->so_timestamping =
2396                         SOF_TIMESTAMPING_TX_SOFTWARE |
2397                         SOF_TIMESTAMPING_RX_SOFTWARE |
2398                         SOF_TIMESTAMPING_SOFTWARE |
2399                         SOF_TIMESTAMPING_TX_HARDWARE |
2400                         SOF_TIMESTAMPING_RX_HARDWARE |
2401                         SOF_TIMESTAMPING_RAW_HARDWARE;
2402
2403                 info->tx_types =
2404                         (1 << HWTSTAMP_TX_OFF) |
2405                         (1 << HWTSTAMP_TX_ON);
2406
2407                 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2408
2409                 /* 82576 does not support timestamping all packets. */
2410                 if (adapter->hw.mac.type >= e1000_82580)
2411                         info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2412                 else
2413                         info->rx_filters |=
2414                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2415                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2416                                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2417
2418                 return 0;
2419         default:
2420                 return -EOPNOTSUPP;
2421         }
2422 }
2423
2424 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2425                                  struct ethtool_rxnfc *cmd)
2426 {
2427         cmd->data = 0;
2428
2429         /* Report default options for RSS on igb */
2430         switch (cmd->flow_type) {
2431         case TCP_V4_FLOW:
2432                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2433                 /* Fall through */
2434         case UDP_V4_FLOW:
2435                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2436                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2437                 /* Fall through */
2438         case SCTP_V4_FLOW:
2439         case AH_ESP_V4_FLOW:
2440         case AH_V4_FLOW:
2441         case ESP_V4_FLOW:
2442         case IPV4_FLOW:
2443                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2444                 break;
2445         case TCP_V6_FLOW:
2446                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2447                 /* Fall through */
2448         case UDP_V6_FLOW:
2449                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2450                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2451                 /* Fall through */
2452         case SCTP_V6_FLOW:
2453         case AH_ESP_V6_FLOW:
2454         case AH_V6_FLOW:
2455         case ESP_V6_FLOW:
2456         case IPV6_FLOW:
2457                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2458                 break;
2459         default:
2460                 return -EINVAL;
2461         }
2462
2463         return 0;
2464 }
2465
2466 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2467                          u32 *rule_locs)
2468 {
2469         struct igb_adapter *adapter = netdev_priv(dev);
2470         int ret = -EOPNOTSUPP;
2471
2472         switch (cmd->cmd) {
2473         case ETHTOOL_GRXRINGS:
2474                 cmd->data = adapter->num_rx_queues;
2475                 ret = 0;
2476                 break;
2477         case ETHTOOL_GRXFH:
2478                 ret = igb_get_rss_hash_opts(adapter, cmd);
2479                 break;
2480         default:
2481                 break;
2482         }
2483
2484         return ret;
2485 }
2486
2487 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2488                        IGB_FLAG_RSS_FIELD_IPV6_UDP)
2489 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2490                                 struct ethtool_rxnfc *nfc)
2491 {
2492         u32 flags = adapter->flags;
2493
2494         /* RSS does not support anything other than hashing
2495          * to queues on src and dst IPs and ports
2496          */
2497         if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2498                           RXH_L4_B_0_1 | RXH_L4_B_2_3))
2499                 return -EINVAL;
2500
2501         switch (nfc->flow_type) {
2502         case TCP_V4_FLOW:
2503         case TCP_V6_FLOW:
2504                 if (!(nfc->data & RXH_IP_SRC) ||
2505                     !(nfc->data & RXH_IP_DST) ||
2506                     !(nfc->data & RXH_L4_B_0_1) ||
2507                     !(nfc->data & RXH_L4_B_2_3))
2508                         return -EINVAL;
2509                 break;
2510         case UDP_V4_FLOW:
2511                 if (!(nfc->data & RXH_IP_SRC) ||
2512                     !(nfc->data & RXH_IP_DST))
2513                         return -EINVAL;
2514                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2515                 case 0:
2516                         flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2517                         break;
2518                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2519                         flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2520                         break;
2521                 default:
2522                         return -EINVAL;
2523                 }
2524                 break;
2525         case UDP_V6_FLOW:
2526                 if (!(nfc->data & RXH_IP_SRC) ||
2527                     !(nfc->data & RXH_IP_DST))
2528                         return -EINVAL;
2529                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2530                 case 0:
2531                         flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2532                         break;
2533                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2534                         flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2535                         break;
2536                 default:
2537                         return -EINVAL;
2538                 }
2539                 break;
2540         case AH_ESP_V4_FLOW:
2541         case AH_V4_FLOW:
2542         case ESP_V4_FLOW:
2543         case SCTP_V4_FLOW:
2544         case AH_ESP_V6_FLOW:
2545         case AH_V6_FLOW:
2546         case ESP_V6_FLOW:
2547         case SCTP_V6_FLOW:
2548                 if (!(nfc->data & RXH_IP_SRC) ||
2549                     !(nfc->data & RXH_IP_DST) ||
2550                     (nfc->data & RXH_L4_B_0_1) ||
2551                     (nfc->data & RXH_L4_B_2_3))
2552                         return -EINVAL;
2553                 break;
2554         default:
2555                 return -EINVAL;
2556         }
2557
2558         /* if we changed something we need to update flags */
2559         if (flags != adapter->flags) {
2560                 struct e1000_hw *hw = &adapter->hw;
2561                 u32 mrqc = rd32(E1000_MRQC);
2562
2563                 if ((flags & UDP_RSS_FLAGS) &&
2564                     !(adapter->flags & UDP_RSS_FLAGS))
2565                         dev_err(&adapter->pdev->dev,
2566                                 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2567
2568                 adapter->flags = flags;
2569
2570                 /* Perform hash on these packet types */
2571                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2572                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2573                         E1000_MRQC_RSS_FIELD_IPV6 |
2574                         E1000_MRQC_RSS_FIELD_IPV6_TCP;
2575
2576                 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2577                           E1000_MRQC_RSS_FIELD_IPV6_UDP);
2578
2579                 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2580                         mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2581
2582                 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2583                         mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2584
2585                 wr32(E1000_MRQC, mrqc);
2586         }
2587
2588         return 0;
2589 }
2590
2591 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2592 {
2593         struct igb_adapter *adapter = netdev_priv(dev);
2594         int ret = -EOPNOTSUPP;
2595
2596         switch (cmd->cmd) {
2597         case ETHTOOL_SRXFH:
2598                 ret = igb_set_rss_hash_opt(adapter, cmd);
2599                 break;
2600         default:
2601                 break;
2602         }
2603
2604         return ret;
2605 }
2606
2607 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2608 {
2609         struct igb_adapter *adapter = netdev_priv(netdev);
2610         struct e1000_hw *hw = &adapter->hw;
2611         u32 ret_val;
2612         u16 phy_data;
2613
2614         if ((hw->mac.type < e1000_i350) ||
2615             (hw->phy.media_type != e1000_media_type_copper))
2616                 return -EOPNOTSUPP;
2617
2618         edata->supported = (SUPPORTED_1000baseT_Full |
2619                             SUPPORTED_100baseT_Full);
2620         if (!hw->dev_spec._82575.eee_disable)
2621                 edata->advertised =
2622                         mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2623
2624         /* The IPCNFG and EEER registers are not supported on I354. */
2625         if (hw->mac.type == e1000_i354) {
2626                 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2627         } else {
2628                 u32 eeer;
2629
2630                 eeer = rd32(E1000_EEER);
2631
2632                 /* EEE status on negotiated link */
2633                 if (eeer & E1000_EEER_EEE_NEG)
2634                         edata->eee_active = true;
2635
2636                 if (eeer & E1000_EEER_TX_LPI_EN)
2637                         edata->tx_lpi_enabled = true;
2638         }
2639
2640         /* EEE Link Partner Advertised */
2641         switch (hw->mac.type) {
2642         case e1000_i350:
2643                 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2644                                            &phy_data);
2645                 if (ret_val)
2646                         return -ENODATA;
2647
2648                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2649                 break;
2650         case e1000_i354:
2651         case e1000_i210:
2652         case e1000_i211:
2653                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2654                                              E1000_EEE_LP_ADV_DEV_I210,
2655                                              &phy_data);
2656                 if (ret_val)
2657                         return -ENODATA;
2658
2659                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2660
2661                 break;
2662         default:
2663                 break;
2664         }
2665
2666         edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2667
2668         if ((hw->mac.type == e1000_i354) &&
2669             (edata->eee_enabled))
2670                 edata->tx_lpi_enabled = true;
2671
2672         /* Report correct negotiated EEE status for devices that
2673          * wrongly report EEE at half-duplex
2674          */
2675         if (adapter->link_duplex == HALF_DUPLEX) {
2676                 edata->eee_enabled = false;
2677                 edata->eee_active = false;
2678                 edata->tx_lpi_enabled = false;
2679                 edata->advertised &= ~edata->advertised;
2680         }
2681
2682         return 0;
2683 }
2684
2685 static int igb_set_eee(struct net_device *netdev,
2686                        struct ethtool_eee *edata)
2687 {
2688         struct igb_adapter *adapter = netdev_priv(netdev);
2689         struct e1000_hw *hw = &adapter->hw;
2690         struct ethtool_eee eee_curr;
2691         bool adv1g_eee = true, adv100m_eee = true;
2692         s32 ret_val;
2693
2694         if ((hw->mac.type < e1000_i350) ||
2695             (hw->phy.media_type != e1000_media_type_copper))
2696                 return -EOPNOTSUPP;
2697
2698         memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2699
2700         ret_val = igb_get_eee(netdev, &eee_curr);
2701         if (ret_val)
2702                 return ret_val;
2703
2704         if (eee_curr.eee_enabled) {
2705                 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2706                         dev_err(&adapter->pdev->dev,
2707                                 "Setting EEE tx-lpi is not supported\n");
2708                         return -EINVAL;
2709                 }
2710
2711                 /* Tx LPI timer is not implemented currently */
2712                 if (edata->tx_lpi_timer) {
2713                         dev_err(&adapter->pdev->dev,
2714                                 "Setting EEE Tx LPI timer is not supported\n");
2715                         return -EINVAL;
2716                 }
2717
2718                 if (!edata->advertised || (edata->advertised &
2719                     ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
2720                         dev_err(&adapter->pdev->dev,
2721                                 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
2722                         return -EINVAL;
2723                 }
2724                 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
2725                 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
2726
2727         } else if (!edata->eee_enabled) {
2728                 dev_err(&adapter->pdev->dev,
2729                         "Setting EEE options are not supported with EEE disabled\n");
2730                         return -EINVAL;
2731                 }
2732
2733         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2734         if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2735                 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2736                 adapter->flags |= IGB_FLAG_EEE;
2737
2738                 /* reset link */
2739                 if (netif_running(netdev))
2740                         igb_reinit_locked(adapter);
2741                 else
2742                         igb_reset(adapter);
2743         }
2744
2745         if (hw->mac.type == e1000_i354)
2746                 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
2747         else
2748                 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
2749
2750         if (ret_val) {
2751                 dev_err(&adapter->pdev->dev,
2752                         "Problem setting EEE advertisement options\n");
2753                 return -EINVAL;
2754         }
2755
2756         return 0;
2757 }
2758
2759 static int igb_get_module_info(struct net_device *netdev,
2760                                struct ethtool_modinfo *modinfo)
2761 {
2762         struct igb_adapter *adapter = netdev_priv(netdev);
2763         struct e1000_hw *hw = &adapter->hw;
2764         u32 status = 0;
2765         u16 sff8472_rev, addr_mode;
2766         bool page_swap = false;
2767
2768         if ((hw->phy.media_type == e1000_media_type_copper) ||
2769             (hw->phy.media_type == e1000_media_type_unknown))
2770                 return -EOPNOTSUPP;
2771
2772         /* Check whether we support SFF-8472 or not */
2773         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2774         if (status)
2775                 return -EIO;
2776
2777         /* addressing mode is not supported */
2778         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2779         if (status)
2780                 return -EIO;
2781
2782         /* addressing mode is not supported */
2783         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2784                 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2785                 page_swap = true;
2786         }
2787
2788         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2789                 /* We have an SFP, but it does not support SFF-8472 */
2790                 modinfo->type = ETH_MODULE_SFF_8079;
2791                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2792         } else {
2793                 /* We have an SFP which supports a revision of SFF-8472 */
2794                 modinfo->type = ETH_MODULE_SFF_8472;
2795                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2796         }
2797
2798         return 0;
2799 }
2800
2801 static int igb_get_module_eeprom(struct net_device *netdev,
2802                                  struct ethtool_eeprom *ee, u8 *data)
2803 {
2804         struct igb_adapter *adapter = netdev_priv(netdev);
2805         struct e1000_hw *hw = &adapter->hw;
2806         u32 status = 0;
2807         u16 *dataword;
2808         u16 first_word, last_word;
2809         int i = 0;
2810
2811         if (ee->len == 0)
2812                 return -EINVAL;
2813
2814         first_word = ee->offset >> 1;
2815         last_word = (ee->offset + ee->len - 1) >> 1;
2816
2817         dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2818                            GFP_KERNEL);
2819         if (!dataword)
2820                 return -ENOMEM;
2821
2822         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2823         for (i = 0; i < last_word - first_word + 1; i++) {
2824                 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2825                 if (status) {
2826                         /* Error occurred while reading module */
2827                         kfree(dataword);
2828                         return -EIO;
2829                 }
2830
2831                 be16_to_cpus(&dataword[i]);
2832         }
2833
2834         memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2835         kfree(dataword);
2836
2837         return 0;
2838 }
2839
2840 static int igb_ethtool_begin(struct net_device *netdev)
2841 {
2842         struct igb_adapter *adapter = netdev_priv(netdev);
2843         pm_runtime_get_sync(&adapter->pdev->dev);
2844         return 0;
2845 }
2846
2847 static void igb_ethtool_complete(struct net_device *netdev)
2848 {
2849         struct igb_adapter *adapter = netdev_priv(netdev);
2850         pm_runtime_put(&adapter->pdev->dev);
2851 }
2852
2853 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2854 {
2855         return IGB_RETA_SIZE;
2856 }
2857
2858 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
2859                         u8 *hfunc)
2860 {
2861         struct igb_adapter *adapter = netdev_priv(netdev);
2862         int i;
2863
2864         if (hfunc)
2865                 *hfunc = ETH_RSS_HASH_TOP;
2866         if (!indir)
2867                 return 0;
2868         for (i = 0; i < IGB_RETA_SIZE; i++)
2869                 indir[i] = adapter->rss_indir_tbl[i];
2870
2871         return 0;
2872 }
2873
2874 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2875 {
2876         struct e1000_hw *hw = &adapter->hw;
2877         u32 reg = E1000_RETA(0);
2878         u32 shift = 0;
2879         int i = 0;
2880
2881         switch (hw->mac.type) {
2882         case e1000_82575:
2883                 shift = 6;
2884                 break;
2885         case e1000_82576:
2886                 /* 82576 supports 2 RSS queues for SR-IOV */
2887                 if (adapter->vfs_allocated_count)
2888                         shift = 3;
2889                 break;
2890         default:
2891                 break;
2892         }
2893
2894         while (i < IGB_RETA_SIZE) {
2895                 u32 val = 0;
2896                 int j;
2897
2898                 for (j = 3; j >= 0; j--) {
2899                         val <<= 8;
2900                         val |= adapter->rss_indir_tbl[i + j];
2901                 }
2902
2903                 wr32(reg, val << shift);
2904                 reg += 4;
2905                 i += 4;
2906         }
2907 }
2908
2909 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
2910                         const u8 *key, const u8 hfunc)
2911 {
2912         struct igb_adapter *adapter = netdev_priv(netdev);
2913         struct e1000_hw *hw = &adapter->hw;
2914         int i;
2915         u32 num_queues;
2916
2917         /* We do not allow change in unsupported parameters */
2918         if (key ||
2919             (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
2920                 return -EOPNOTSUPP;
2921         if (!indir)
2922                 return 0;
2923
2924         num_queues = adapter->rss_queues;
2925
2926         switch (hw->mac.type) {
2927         case e1000_82576:
2928                 /* 82576 supports 2 RSS queues for SR-IOV */
2929                 if (adapter->vfs_allocated_count)
2930                         num_queues = 2;
2931                 break;
2932         default:
2933                 break;
2934         }
2935
2936         /* Verify user input. */
2937         for (i = 0; i < IGB_RETA_SIZE; i++)
2938                 if (indir[i] >= num_queues)
2939                         return -EINVAL;
2940
2941
2942         for (i = 0; i < IGB_RETA_SIZE; i++)
2943                 adapter->rss_indir_tbl[i] = indir[i];
2944
2945         igb_write_rss_indir_tbl(adapter);
2946
2947         return 0;
2948 }
2949
2950 static unsigned int igb_max_channels(struct igb_adapter *adapter)
2951 {
2952         struct e1000_hw *hw = &adapter->hw;
2953         unsigned int max_combined = 0;
2954
2955         switch (hw->mac.type) {
2956         case e1000_i211:
2957                 max_combined = IGB_MAX_RX_QUEUES_I211;
2958                 break;
2959         case e1000_82575:
2960         case e1000_i210:
2961                 max_combined = IGB_MAX_RX_QUEUES_82575;
2962                 break;
2963         case e1000_i350:
2964                 if (!!adapter->vfs_allocated_count) {
2965                         max_combined = 1;
2966                         break;
2967                 }
2968                 /* fall through */
2969         case e1000_82576:
2970                 if (!!adapter->vfs_allocated_count) {
2971                         max_combined = 2;
2972                         break;
2973                 }
2974                 /* fall through */
2975         case e1000_82580:
2976         case e1000_i354:
2977         default:
2978                 max_combined = IGB_MAX_RX_QUEUES;
2979                 break;
2980         }
2981
2982         return max_combined;
2983 }
2984
2985 static void igb_get_channels(struct net_device *netdev,
2986                              struct ethtool_channels *ch)
2987 {
2988         struct igb_adapter *adapter = netdev_priv(netdev);
2989
2990         /* Report maximum channels */
2991         ch->max_combined = igb_max_channels(adapter);
2992
2993         /* Report info for other vector */
2994         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2995                 ch->max_other = NON_Q_VECTORS;
2996                 ch->other_count = NON_Q_VECTORS;
2997         }
2998
2999         ch->combined_count = adapter->rss_queues;
3000 }
3001
3002 static int igb_set_channels(struct net_device *netdev,
3003                             struct ethtool_channels *ch)
3004 {
3005         struct igb_adapter *adapter = netdev_priv(netdev);
3006         unsigned int count = ch->combined_count;
3007         unsigned int max_combined = 0;
3008
3009         /* Verify they are not requesting separate vectors */
3010         if (!count || ch->rx_count || ch->tx_count)
3011                 return -EINVAL;
3012
3013         /* Verify other_count is valid and has not been changed */
3014         if (ch->other_count != NON_Q_VECTORS)
3015                 return -EINVAL;
3016
3017         /* Verify the number of channels doesn't exceed hw limits */
3018         max_combined = igb_max_channels(adapter);
3019         if (count > max_combined)
3020                 return -EINVAL;
3021
3022         if (count != adapter->rss_queues) {
3023                 adapter->rss_queues = count;
3024                 igb_set_flag_queue_pairs(adapter, max_combined);
3025
3026                 /* Hardware has to reinitialize queues and interrupts to
3027                  * match the new configuration.
3028                  */
3029                 return igb_reinit_queues(adapter);
3030         }
3031
3032         return 0;
3033 }
3034
3035 static const struct ethtool_ops igb_ethtool_ops = {
3036         .get_settings           = igb_get_settings,
3037         .set_settings           = igb_set_settings,
3038         .get_drvinfo            = igb_get_drvinfo,
3039         .get_regs_len           = igb_get_regs_len,
3040         .get_regs               = igb_get_regs,
3041         .get_wol                = igb_get_wol,
3042         .set_wol                = igb_set_wol,
3043         .get_msglevel           = igb_get_msglevel,
3044         .set_msglevel           = igb_set_msglevel,
3045         .nway_reset             = igb_nway_reset,
3046         .get_link               = igb_get_link,
3047         .get_eeprom_len         = igb_get_eeprom_len,
3048         .get_eeprom             = igb_get_eeprom,
3049         .set_eeprom             = igb_set_eeprom,
3050         .get_ringparam          = igb_get_ringparam,
3051         .set_ringparam          = igb_set_ringparam,
3052         .get_pauseparam         = igb_get_pauseparam,
3053         .set_pauseparam         = igb_set_pauseparam,
3054         .self_test              = igb_diag_test,
3055         .get_strings            = igb_get_strings,
3056         .set_phys_id            = igb_set_phys_id,
3057         .get_sset_count         = igb_get_sset_count,
3058         .get_ethtool_stats      = igb_get_ethtool_stats,
3059         .get_coalesce           = igb_get_coalesce,
3060         .set_coalesce           = igb_set_coalesce,
3061         .get_ts_info            = igb_get_ts_info,
3062         .get_rxnfc              = igb_get_rxnfc,
3063         .set_rxnfc              = igb_set_rxnfc,
3064         .get_eee                = igb_get_eee,
3065         .set_eee                = igb_set_eee,
3066         .get_module_info        = igb_get_module_info,
3067         .get_module_eeprom      = igb_get_module_eeprom,
3068         .get_rxfh_indir_size    = igb_get_rxfh_indir_size,
3069         .get_rxfh               = igb_get_rxfh,
3070         .set_rxfh               = igb_set_rxfh,
3071         .get_channels           = igb_get_channels,
3072         .set_channels           = igb_set_channels,
3073         .begin                  = igb_ethtool_begin,
3074         .complete               = igb_ethtool_complete,
3075 };
3076
3077 void igb_set_ethtool_ops(struct net_device *netdev)
3078 {
3079         netdev->ethtool_ops = &igb_ethtool_ops;
3080 }