]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c
Merge tag 'for-3.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi/usb...
[karo-tx-linux.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/types.h>
36 #include <linux/bitops.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/ipv6.h>
46 #include <linux/slab.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/ethtool.h>
50 #include <linux/if.h>
51 #include <linux/if_vlan.h>
52 #include <linux/prefetch.h>
53
54 #include "ixgbevf.h"
55
56 const char ixgbevf_driver_name[] = "ixgbevf";
57 static const char ixgbevf_driver_string[] =
58         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59
60 #define DRV_VERSION "2.2.0-k"
61 const char ixgbevf_driver_version[] = DRV_VERSION;
62 static char ixgbevf_copyright[] =
63         "Copyright (c) 2009 - 2010 Intel Corporation.";
64
65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66         [board_82599_vf] = &ixgbevf_82599_vf_info,
67         [board_X540_vf]  = &ixgbevf_X540_vf_info,
68 };
69
70 /* ixgbevf_pci_tbl - PCI Device ID Table
71  *
72  * Wildcard entries (PCI_ANY_ID) should come last
73  * Last entry must be all 0s
74  *
75  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
76  *   Class, Class Mask, private data (not used) }
77  */
78 static struct pci_device_id ixgbevf_pci_tbl[] = {
79         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
80         board_82599_vf},
81         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
82         board_X540_vf},
83
84         /* required last entry */
85         {0, }
86 };
87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88
89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93
94 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
95
96 /* forward decls */
97 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
98 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
99                                u32 itr_reg);
100
101 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
102                                            struct ixgbevf_ring *rx_ring,
103                                            u32 val)
104 {
105         /*
106          * Force memory writes to complete before letting h/w
107          * know there are new descriptors to fetch.  (Only
108          * applicable for weak-ordered memory model archs,
109          * such as IA-64).
110          */
111         wmb();
112         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
113 }
114
115 /*
116  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
117  * @adapter: pointer to adapter struct
118  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
119  * @queue: queue to map the corresponding interrupt to
120  * @msix_vector: the vector to map to the corresponding queue
121  *
122  */
123 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
124                              u8 queue, u8 msix_vector)
125 {
126         u32 ivar, index;
127         struct ixgbe_hw *hw = &adapter->hw;
128         if (direction == -1) {
129                 /* other causes */
130                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
131                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
132                 ivar &= ~0xFF;
133                 ivar |= msix_vector;
134                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
135         } else {
136                 /* tx or rx causes */
137                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
138                 index = ((16 * (queue & 1)) + (8 * direction));
139                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
140                 ivar &= ~(0xFF << index);
141                 ivar |= (msix_vector << index);
142                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
143         }
144 }
145
146 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
147                                                struct ixgbevf_tx_buffer
148                                                *tx_buffer_info)
149 {
150         if (tx_buffer_info->dma) {
151                 if (tx_buffer_info->mapped_as_page)
152                         dma_unmap_page(&adapter->pdev->dev,
153                                        tx_buffer_info->dma,
154                                        tx_buffer_info->length,
155                                        DMA_TO_DEVICE);
156                 else
157                         dma_unmap_single(&adapter->pdev->dev,
158                                          tx_buffer_info->dma,
159                                          tx_buffer_info->length,
160                                          DMA_TO_DEVICE);
161                 tx_buffer_info->dma = 0;
162         }
163         if (tx_buffer_info->skb) {
164                 dev_kfree_skb_any(tx_buffer_info->skb);
165                 tx_buffer_info->skb = NULL;
166         }
167         tx_buffer_info->time_stamp = 0;
168         /* tx_buffer_info must be completely set up in the transmit path */
169 }
170
171 #define IXGBE_MAX_TXD_PWR       14
172 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
173
174 /* Tx Descriptors needed, worst case */
175 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
176                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
177 #ifdef MAX_SKB_FRAGS
178 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
179         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
180 #else
181 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
182 #endif
183
184 static void ixgbevf_tx_timeout(struct net_device *netdev);
185
186 /**
187  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
188  * @adapter: board private structure
189  * @tx_ring: tx ring to clean
190  **/
191 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
192                                  struct ixgbevf_ring *tx_ring)
193 {
194         struct net_device *netdev = adapter->netdev;
195         struct ixgbe_hw *hw = &adapter->hw;
196         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
197         struct ixgbevf_tx_buffer *tx_buffer_info;
198         unsigned int i, eop, count = 0;
199         unsigned int total_bytes = 0, total_packets = 0;
200
201         i = tx_ring->next_to_clean;
202         eop = tx_ring->tx_buffer_info[i].next_to_watch;
203         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
204
205         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
206                (count < tx_ring->work_limit)) {
207                 bool cleaned = false;
208                 rmb(); /* read buffer_info after eop_desc */
209                 /* eop could change between read and DD-check */
210                 if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
211                         goto cont_loop;
212                 for ( ; !cleaned; count++) {
213                         struct sk_buff *skb;
214                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
215                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
216                         cleaned = (i == eop);
217                         skb = tx_buffer_info->skb;
218
219                         if (cleaned && skb) {
220                                 unsigned int segs, bytecount;
221
222                                 /* gso_segs is currently only valid for tcp */
223                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
224                                 /* multiply data chunks by size of headers */
225                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
226                                             skb->len;
227                                 total_packets += segs;
228                                 total_bytes += bytecount;
229                         }
230
231                         ixgbevf_unmap_and_free_tx_resource(adapter,
232                                                            tx_buffer_info);
233
234                         tx_desc->wb.status = 0;
235
236                         i++;
237                         if (i == tx_ring->count)
238                                 i = 0;
239                 }
240
241 cont_loop:
242                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
243                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
244         }
245
246         tx_ring->next_to_clean = i;
247
248 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
249         if (unlikely(count && netif_carrier_ok(netdev) &&
250                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
251                 /* Make sure that anybody stopping the queue after this
252                  * sees the new next_to_clean.
253                  */
254                 smp_mb();
255 #ifdef HAVE_TX_MQ
256                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
257                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
258                         netif_wake_subqueue(netdev, tx_ring->queue_index);
259                         ++adapter->restart_queue;
260                 }
261 #else
262                 if (netif_queue_stopped(netdev) &&
263                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
264                         netif_wake_queue(netdev);
265                         ++adapter->restart_queue;
266                 }
267 #endif
268         }
269
270         /* re-arm the interrupt */
271         if ((count >= tx_ring->work_limit) &&
272             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
273                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
274         }
275
276         u64_stats_update_begin(&tx_ring->syncp);
277         tx_ring->total_bytes += total_bytes;
278         tx_ring->total_packets += total_packets;
279         u64_stats_update_end(&tx_ring->syncp);
280
281         return count < tx_ring->work_limit;
282 }
283
284 /**
285  * ixgbevf_receive_skb - Send a completed packet up the stack
286  * @q_vector: structure containing interrupt and ring information
287  * @skb: packet to send up
288  * @status: hardware indication of status of receive
289  * @rx_ring: rx descriptor ring (for a specific queue) to setup
290  * @rx_desc: rx descriptor
291  **/
292 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
293                                 struct sk_buff *skb, u8 status,
294                                 struct ixgbevf_ring *ring,
295                                 union ixgbe_adv_rx_desc *rx_desc)
296 {
297         struct ixgbevf_adapter *adapter = q_vector->adapter;
298         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
299         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
300
301         if (is_vlan && test_bit(tag, adapter->active_vlans))
302                 __vlan_hwaccel_put_tag(skb, tag);
303
304         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
305                         napi_gro_receive(&q_vector->napi, skb);
306         else
307                         netif_rx(skb);
308 }
309
310 /**
311  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
312  * @adapter: address of board private structure
313  * @status_err: hardware indication of status of receive
314  * @skb: skb currently being received and modified
315  **/
316 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
317                                        u32 status_err, struct sk_buff *skb)
318 {
319         skb_checksum_none_assert(skb);
320
321         /* Rx csum disabled */
322         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
323                 return;
324
325         /* if IP and error */
326         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
327             (status_err & IXGBE_RXDADV_ERR_IPE)) {
328                 adapter->hw_csum_rx_error++;
329                 return;
330         }
331
332         if (!(status_err & IXGBE_RXD_STAT_L4CS))
333                 return;
334
335         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
336                 adapter->hw_csum_rx_error++;
337                 return;
338         }
339
340         /* It must be a TCP or UDP packet with a valid checksum */
341         skb->ip_summed = CHECKSUM_UNNECESSARY;
342         adapter->hw_csum_rx_good++;
343 }
344
345 /**
346  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
347  * @adapter: address of board private structure
348  **/
349 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
350                                      struct ixgbevf_ring *rx_ring,
351                                      int cleaned_count)
352 {
353         struct pci_dev *pdev = adapter->pdev;
354         union ixgbe_adv_rx_desc *rx_desc;
355         struct ixgbevf_rx_buffer *bi;
356         struct sk_buff *skb;
357         unsigned int i;
358         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
359
360         i = rx_ring->next_to_use;
361         bi = &rx_ring->rx_buffer_info[i];
362
363         while (cleaned_count--) {
364                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
365
366                 if (!bi->page_dma &&
367                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
368                         if (!bi->page) {
369                                 bi->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
370                                 if (!bi->page) {
371                                         adapter->alloc_rx_page_failed++;
372                                         goto no_buffers;
373                                 }
374                                 bi->page_offset = 0;
375                         } else {
376                                 /* use a half page if we're re-using */
377                                 bi->page_offset ^= (PAGE_SIZE / 2);
378                         }
379
380                         bi->page_dma = dma_map_page(&pdev->dev, bi->page,
381                                                     bi->page_offset,
382                                                     (PAGE_SIZE / 2),
383                                                     DMA_FROM_DEVICE);
384                 }
385
386                 skb = bi->skb;
387                 if (!skb) {
388                         skb = netdev_alloc_skb(adapter->netdev,
389                                                                bufsz);
390
391                         if (!skb) {
392                                 adapter->alloc_rx_buff_failed++;
393                                 goto no_buffers;
394                         }
395
396                         /*
397                          * Make buffer alignment 2 beyond a 16 byte boundary
398                          * this will result in a 16 byte aligned IP header after
399                          * the 14 byte MAC header is removed
400                          */
401                         skb_reserve(skb, NET_IP_ALIGN);
402
403                         bi->skb = skb;
404                 }
405                 if (!bi->dma) {
406                         bi->dma = dma_map_single(&pdev->dev, skb->data,
407                                                  rx_ring->rx_buf_len,
408                                                  DMA_FROM_DEVICE);
409                 }
410                 /* Refresh the desc even if buffer_addrs didn't change because
411                  * each write-back erases this info. */
412                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
413                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
414                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
415                 } else {
416                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
417                 }
418
419                 i++;
420                 if (i == rx_ring->count)
421                         i = 0;
422                 bi = &rx_ring->rx_buffer_info[i];
423         }
424
425 no_buffers:
426         if (rx_ring->next_to_use != i) {
427                 rx_ring->next_to_use = i;
428                 if (i-- == 0)
429                         i = (rx_ring->count - 1);
430
431                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
432         }
433 }
434
435 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
436                                              u64 qmask)
437 {
438         u32 mask;
439         struct ixgbe_hw *hw = &adapter->hw;
440
441         mask = (qmask & 0xFFFFFFFF);
442         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
443 }
444
445 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
446 {
447         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
448 }
449
450 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
451 {
452         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
453 }
454
455 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
456                                  struct ixgbevf_ring *rx_ring,
457                                  int *work_done, int work_to_do)
458 {
459         struct ixgbevf_adapter *adapter = q_vector->adapter;
460         struct pci_dev *pdev = adapter->pdev;
461         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
462         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
463         struct sk_buff *skb;
464         unsigned int i;
465         u32 len, staterr;
466         u16 hdr_info;
467         bool cleaned = false;
468         int cleaned_count = 0;
469         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
470
471         i = rx_ring->next_to_clean;
472         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
473         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
474         rx_buffer_info = &rx_ring->rx_buffer_info[i];
475
476         while (staterr & IXGBE_RXD_STAT_DD) {
477                 u32 upper_len = 0;
478                 if (*work_done >= work_to_do)
479                         break;
480                 (*work_done)++;
481
482                 rmb(); /* read descriptor and rx_buffer_info after status DD */
483                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
484                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
485                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
486                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
487                         if (hdr_info & IXGBE_RXDADV_SPH)
488                                 adapter->rx_hdr_split++;
489                         if (len > IXGBEVF_RX_HDR_SIZE)
490                                 len = IXGBEVF_RX_HDR_SIZE;
491                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
492                 } else {
493                         len = le16_to_cpu(rx_desc->wb.upper.length);
494                 }
495                 cleaned = true;
496                 skb = rx_buffer_info->skb;
497                 prefetch(skb->data - NET_IP_ALIGN);
498                 rx_buffer_info->skb = NULL;
499
500                 if (rx_buffer_info->dma) {
501                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
502                                          rx_ring->rx_buf_len,
503                                          DMA_FROM_DEVICE);
504                         rx_buffer_info->dma = 0;
505                         skb_put(skb, len);
506                 }
507
508                 if (upper_len) {
509                         dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
510                                        PAGE_SIZE / 2, DMA_FROM_DEVICE);
511                         rx_buffer_info->page_dma = 0;
512                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
513                                            rx_buffer_info->page,
514                                            rx_buffer_info->page_offset,
515                                            upper_len);
516
517                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
518                             (page_count(rx_buffer_info->page) != 1))
519                                 rx_buffer_info->page = NULL;
520                         else
521                                 get_page(rx_buffer_info->page);
522
523                         skb->len += upper_len;
524                         skb->data_len += upper_len;
525                         skb->truesize += upper_len;
526                 }
527
528                 i++;
529                 if (i == rx_ring->count)
530                         i = 0;
531
532                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
533                 prefetch(next_rxd);
534                 cleaned_count++;
535
536                 next_buffer = &rx_ring->rx_buffer_info[i];
537
538                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
539                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
540                                 rx_buffer_info->skb = next_buffer->skb;
541                                 rx_buffer_info->dma = next_buffer->dma;
542                                 next_buffer->skb = skb;
543                                 next_buffer->dma = 0;
544                         } else {
545                                 skb->next = next_buffer->skb;
546                                 skb->next->prev = skb;
547                         }
548                         adapter->non_eop_descs++;
549                         goto next_desc;
550                 }
551
552                 /* ERR_MASK will only have valid bits if EOP set */
553                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
554                         dev_kfree_skb_irq(skb);
555                         goto next_desc;
556                 }
557
558                 ixgbevf_rx_checksum(adapter, staterr, skb);
559
560                 /* probably a little skewed due to removing CRC */
561                 total_rx_bytes += skb->len;
562                 total_rx_packets++;
563
564                 /*
565                  * Work around issue of some types of VM to VM loop back
566                  * packets not getting split correctly
567                  */
568                 if (staterr & IXGBE_RXD_STAT_LB) {
569                         u32 header_fixup_len = skb_headlen(skb);
570                         if (header_fixup_len < 14)
571                                 skb_push(skb, header_fixup_len);
572                 }
573                 skb->protocol = eth_type_trans(skb, adapter->netdev);
574
575                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
576
577 next_desc:
578                 rx_desc->wb.upper.status_error = 0;
579
580                 /* return some buffers to hardware, one at a time is too slow */
581                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
582                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
583                                                  cleaned_count);
584                         cleaned_count = 0;
585                 }
586
587                 /* use prefetched values */
588                 rx_desc = next_rxd;
589                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
590
591                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
592         }
593
594         rx_ring->next_to_clean = i;
595         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
596
597         if (cleaned_count)
598                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
599
600         u64_stats_update_begin(&rx_ring->syncp);
601         rx_ring->total_packets += total_rx_packets;
602         rx_ring->total_bytes += total_rx_bytes;
603         u64_stats_update_end(&rx_ring->syncp);
604
605         return cleaned;
606 }
607
608 /**
609  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
610  * @napi: napi struct with our devices info in it
611  * @budget: amount of work driver is allowed to do this pass, in packets
612  *
613  * This function is optimized for cleaning one queue only on a single
614  * q_vector!!!
615  **/
616 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
617 {
618         struct ixgbevf_q_vector *q_vector =
619                 container_of(napi, struct ixgbevf_q_vector, napi);
620         struct ixgbevf_adapter *adapter = q_vector->adapter;
621         struct ixgbevf_ring *rx_ring = NULL;
622         int work_done = 0;
623         long r_idx;
624
625         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
626         rx_ring = &(adapter->rx_ring[r_idx]);
627
628         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
629
630         /* If all Rx work done, exit the polling mode */
631         if (work_done < budget) {
632                 napi_complete(napi);
633                 if (adapter->itr_setting & 1)
634                         ixgbevf_set_itr_msix(q_vector);
635                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
636                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
637         }
638
639         return work_done;
640 }
641
642 /**
643  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
644  * @napi: napi struct with our devices info in it
645  * @budget: amount of work driver is allowed to do this pass, in packets
646  *
647  * This function will clean more than one rx queue associated with a
648  * q_vector.
649  **/
650 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
651 {
652         struct ixgbevf_q_vector *q_vector =
653                 container_of(napi, struct ixgbevf_q_vector, napi);
654         struct ixgbevf_adapter *adapter = q_vector->adapter;
655         struct ixgbevf_ring *rx_ring = NULL;
656         int work_done = 0, i;
657         long r_idx;
658         u64 enable_mask = 0;
659
660         /* attempt to distribute budget to each queue fairly, but don't allow
661          * the budget to go below 1 because we'll exit polling */
662         budget /= (q_vector->rxr_count ?: 1);
663         budget = max(budget, 1);
664         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
665         for (i = 0; i < q_vector->rxr_count; i++) {
666                 rx_ring = &(adapter->rx_ring[r_idx]);
667                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
668                 enable_mask |= rx_ring->v_idx;
669                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
670                                       r_idx + 1);
671         }
672
673 #ifndef HAVE_NETDEV_NAPI_LIST
674         if (!netif_running(adapter->netdev))
675                 work_done = 0;
676
677 #endif
678         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
679         rx_ring = &(adapter->rx_ring[r_idx]);
680
681         /* If all Rx work done, exit the polling mode */
682         if (work_done < budget) {
683                 napi_complete(napi);
684                 if (adapter->itr_setting & 1)
685                         ixgbevf_set_itr_msix(q_vector);
686                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
687                         ixgbevf_irq_enable_queues(adapter, enable_mask);
688         }
689
690         return work_done;
691 }
692
693
694 /**
695  * ixgbevf_configure_msix - Configure MSI-X hardware
696  * @adapter: board private structure
697  *
698  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
699  * interrupts.
700  **/
701 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
702 {
703         struct ixgbevf_q_vector *q_vector;
704         struct ixgbe_hw *hw = &adapter->hw;
705         int i, j, q_vectors, v_idx, r_idx;
706         u32 mask;
707
708         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
709
710         /*
711          * Populate the IVAR table and set the ITR values to the
712          * corresponding register.
713          */
714         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
715                 q_vector = adapter->q_vector[v_idx];
716                 /* XXX for_each_set_bit(...) */
717                 r_idx = find_first_bit(q_vector->rxr_idx,
718                                        adapter->num_rx_queues);
719
720                 for (i = 0; i < q_vector->rxr_count; i++) {
721                         j = adapter->rx_ring[r_idx].reg_idx;
722                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
723                         r_idx = find_next_bit(q_vector->rxr_idx,
724                                               adapter->num_rx_queues,
725                                               r_idx + 1);
726                 }
727                 r_idx = find_first_bit(q_vector->txr_idx,
728                                        adapter->num_tx_queues);
729
730                 for (i = 0; i < q_vector->txr_count; i++) {
731                         j = adapter->tx_ring[r_idx].reg_idx;
732                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
733                         r_idx = find_next_bit(q_vector->txr_idx,
734                                               adapter->num_tx_queues,
735                                               r_idx + 1);
736                 }
737
738                 /* if this is a tx only vector halve the interrupt rate */
739                 if (q_vector->txr_count && !q_vector->rxr_count)
740                         q_vector->eitr = (adapter->eitr_param >> 1);
741                 else if (q_vector->rxr_count)
742                         /* rx only */
743                         q_vector->eitr = adapter->eitr_param;
744
745                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
746         }
747
748         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
749
750         /* set up to autoclear timer, and the vectors */
751         mask = IXGBE_EIMS_ENABLE_MASK;
752         mask &= ~IXGBE_EIMS_OTHER;
753         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
754 }
755
756 enum latency_range {
757         lowest_latency = 0,
758         low_latency = 1,
759         bulk_latency = 2,
760         latency_invalid = 255
761 };
762
763 /**
764  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
765  * @adapter: pointer to adapter
766  * @eitr: eitr setting (ints per sec) to give last timeslice
767  * @itr_setting: current throttle rate in ints/second
768  * @packets: the number of packets during this measurement interval
769  * @bytes: the number of bytes during this measurement interval
770  *
771  *      Stores a new ITR value based on packets and byte
772  *      counts during the last interrupt.  The advantage of per interrupt
773  *      computation is faster updates and more accurate ITR for the current
774  *      traffic pattern.  Constants in this function were computed
775  *      based on theoretical maximum wire speed and thresholds were set based
776  *      on testing data as well as attempting to minimize response time
777  *      while increasing bulk throughput.
778  **/
779 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
780                              u32 eitr, u8 itr_setting,
781                              int packets, int bytes)
782 {
783         unsigned int retval = itr_setting;
784         u32 timepassed_us;
785         u64 bytes_perint;
786
787         if (packets == 0)
788                 goto update_itr_done;
789
790
791         /* simple throttlerate management
792          *    0-20MB/s lowest (100000 ints/s)
793          *   20-100MB/s low   (20000 ints/s)
794          *  100-1249MB/s bulk (8000 ints/s)
795          */
796         /* what was last interrupt timeslice? */
797         timepassed_us = 1000000/eitr;
798         bytes_perint = bytes / timepassed_us; /* bytes/usec */
799
800         switch (itr_setting) {
801         case lowest_latency:
802                 if (bytes_perint > adapter->eitr_low)
803                         retval = low_latency;
804                 break;
805         case low_latency:
806                 if (bytes_perint > adapter->eitr_high)
807                         retval = bulk_latency;
808                 else if (bytes_perint <= adapter->eitr_low)
809                         retval = lowest_latency;
810                 break;
811         case bulk_latency:
812                 if (bytes_perint <= adapter->eitr_high)
813                         retval = low_latency;
814                 break;
815         }
816
817 update_itr_done:
818         return retval;
819 }
820
821 /**
822  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
823  * @adapter: pointer to adapter struct
824  * @v_idx: vector index into q_vector array
825  * @itr_reg: new value to be written in *register* format, not ints/s
826  *
827  * This function is made to be called by ethtool and by the driver
828  * when it needs to update VTEITR registers at runtime.  Hardware
829  * specific quirks/differences are taken care of here.
830  */
831 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
832                                u32 itr_reg)
833 {
834         struct ixgbe_hw *hw = &adapter->hw;
835
836         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
837
838         /*
839          * set the WDIS bit to not clear the timer bits and cause an
840          * immediate assertion of the interrupt
841          */
842         itr_reg |= IXGBE_EITR_CNT_WDIS;
843
844         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
845 }
846
847 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
848 {
849         struct ixgbevf_adapter *adapter = q_vector->adapter;
850         u32 new_itr;
851         u8 current_itr, ret_itr;
852         int i, r_idx, v_idx = q_vector->v_idx;
853         struct ixgbevf_ring *rx_ring, *tx_ring;
854
855         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
856         for (i = 0; i < q_vector->txr_count; i++) {
857                 tx_ring = &(adapter->tx_ring[r_idx]);
858                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
859                                              q_vector->tx_itr,
860                                              tx_ring->total_packets,
861                                              tx_ring->total_bytes);
862                 /* if the result for this queue would decrease interrupt
863                  * rate for this vector then use that result */
864                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
865                                     q_vector->tx_itr - 1 : ret_itr);
866                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
867                                       r_idx + 1);
868         }
869
870         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
871         for (i = 0; i < q_vector->rxr_count; i++) {
872                 rx_ring = &(adapter->rx_ring[r_idx]);
873                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
874                                              q_vector->rx_itr,
875                                              rx_ring->total_packets,
876                                              rx_ring->total_bytes);
877                 /* if the result for this queue would decrease interrupt
878                  * rate for this vector then use that result */
879                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
880                                     q_vector->rx_itr - 1 : ret_itr);
881                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
882                                       r_idx + 1);
883         }
884
885         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
886
887         switch (current_itr) {
888         /* counts and packets in update_itr are dependent on these numbers */
889         case lowest_latency:
890                 new_itr = 100000;
891                 break;
892         case low_latency:
893                 new_itr = 20000; /* aka hwitr = ~200 */
894                 break;
895         case bulk_latency:
896         default:
897                 new_itr = 8000;
898                 break;
899         }
900
901         if (new_itr != q_vector->eitr) {
902                 u32 itr_reg;
903
904                 /* save the algorithm value here, not the smoothed one */
905                 q_vector->eitr = new_itr;
906                 /* do an exponential smoothing */
907                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
908                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
909                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
910         }
911 }
912
913 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
914 {
915         struct net_device *netdev = data;
916         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
917         struct ixgbe_hw *hw = &adapter->hw;
918         u32 eicr;
919         u32 msg;
920         bool got_ack = false;
921
922         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
923         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
924
925         if (!hw->mbx.ops.check_for_ack(hw))
926                 got_ack = true;
927
928         if (!hw->mbx.ops.check_for_msg(hw)) {
929                 hw->mbx.ops.read(hw, &msg, 1);
930
931                 if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
932                         mod_timer(&adapter->watchdog_timer,
933                                   round_jiffies(jiffies + 1));
934
935                 if (msg & IXGBE_VT_MSGTYPE_NACK)
936                         pr_warn("Last Request of type %2.2x to PF Nacked\n",
937                                 msg & 0xFF);
938                 goto out;
939         }
940
941         /*
942          * checking for the ack clears the PFACK bit.  Place
943          * it back in the v2p_mailbox cache so that anyone
944          * polling for an ack will not miss it
945          */
946         if (got_ack)
947                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
948 out:
949         return IRQ_HANDLED;
950 }
951
952 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
953 {
954         struct ixgbevf_q_vector *q_vector = data;
955         struct ixgbevf_adapter  *adapter = q_vector->adapter;
956         struct ixgbevf_ring     *tx_ring;
957         int i, r_idx;
958
959         if (!q_vector->txr_count)
960                 return IRQ_HANDLED;
961
962         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
963         for (i = 0; i < q_vector->txr_count; i++) {
964                 tx_ring = &(adapter->tx_ring[r_idx]);
965                 tx_ring->total_bytes = 0;
966                 tx_ring->total_packets = 0;
967                 ixgbevf_clean_tx_irq(adapter, tx_ring);
968                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
969                                       r_idx + 1);
970         }
971
972         if (adapter->itr_setting & 1)
973                 ixgbevf_set_itr_msix(q_vector);
974
975         return IRQ_HANDLED;
976 }
977
978 /**
979  * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
980  * @irq: unused
981  * @data: pointer to our q_vector struct for this interrupt vector
982  **/
983 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
984 {
985         struct ixgbevf_q_vector *q_vector = data;
986         struct ixgbevf_adapter  *adapter = q_vector->adapter;
987         struct ixgbe_hw *hw = &adapter->hw;
988         struct ixgbevf_ring  *rx_ring;
989         int r_idx;
990         int i;
991
992         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
993         for (i = 0; i < q_vector->rxr_count; i++) {
994                 rx_ring = &(adapter->rx_ring[r_idx]);
995                 rx_ring->total_bytes = 0;
996                 rx_ring->total_packets = 0;
997                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
998                                       r_idx + 1);
999         }
1000
1001         if (!q_vector->rxr_count)
1002                 return IRQ_HANDLED;
1003
1004         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1005         rx_ring = &(adapter->rx_ring[r_idx]);
1006         /* disable interrupts on this vector only */
1007         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1008         napi_schedule(&q_vector->napi);
1009
1010
1011         return IRQ_HANDLED;
1012 }
1013
1014 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1015 {
1016         ixgbevf_msix_clean_rx(irq, data);
1017         ixgbevf_msix_clean_tx(irq, data);
1018
1019         return IRQ_HANDLED;
1020 }
1021
1022 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1023                                      int r_idx)
1024 {
1025         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1026
1027         set_bit(r_idx, q_vector->rxr_idx);
1028         q_vector->rxr_count++;
1029         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1030 }
1031
1032 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1033                                      int t_idx)
1034 {
1035         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1036
1037         set_bit(t_idx, q_vector->txr_idx);
1038         q_vector->txr_count++;
1039         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1040 }
1041
1042 /**
1043  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1044  * @adapter: board private structure to initialize
1045  *
1046  * This function maps descriptor rings to the queue-specific vectors
1047  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1048  * one vector per ring/queue, but on a constrained vector budget, we
1049  * group the rings as "efficiently" as possible.  You would add new
1050  * mapping configurations in here.
1051  **/
1052 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1053 {
1054         int q_vectors;
1055         int v_start = 0;
1056         int rxr_idx = 0, txr_idx = 0;
1057         int rxr_remaining = adapter->num_rx_queues;
1058         int txr_remaining = adapter->num_tx_queues;
1059         int i, j;
1060         int rqpv, tqpv;
1061         int err = 0;
1062
1063         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1064
1065         /*
1066          * The ideal configuration...
1067          * We have enough vectors to map one per queue.
1068          */
1069         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1070                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1071                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1072
1073                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1074                         map_vector_to_txq(adapter, v_start, txr_idx);
1075                 goto out;
1076         }
1077
1078         /*
1079          * If we don't have enough vectors for a 1-to-1
1080          * mapping, we'll have to group them so there are
1081          * multiple queues per vector.
1082          */
1083         /* Re-adjusting *qpv takes care of the remainder. */
1084         for (i = v_start; i < q_vectors; i++) {
1085                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1086                 for (j = 0; j < rqpv; j++) {
1087                         map_vector_to_rxq(adapter, i, rxr_idx);
1088                         rxr_idx++;
1089                         rxr_remaining--;
1090                 }
1091         }
1092         for (i = v_start; i < q_vectors; i++) {
1093                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1094                 for (j = 0; j < tqpv; j++) {
1095                         map_vector_to_txq(adapter, i, txr_idx);
1096                         txr_idx++;
1097                         txr_remaining--;
1098                 }
1099         }
1100
1101 out:
1102         return err;
1103 }
1104
1105 /**
1106  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1107  * @adapter: board private structure
1108  *
1109  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1110  * interrupts from the kernel.
1111  **/
1112 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1113 {
1114         struct net_device *netdev = adapter->netdev;
1115         irqreturn_t (*handler)(int, void *);
1116         int i, vector, q_vectors, err;
1117         int ri = 0, ti = 0;
1118
1119         /* Decrement for Other and TCP Timer vectors */
1120         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1121
1122 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1123                                           ? &ixgbevf_msix_clean_many : \
1124                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1125                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1126                           NULL)
1127         for (vector = 0; vector < q_vectors; vector++) {
1128                 handler = SET_HANDLER(adapter->q_vector[vector]);
1129
1130                 if (handler == &ixgbevf_msix_clean_rx) {
1131                         sprintf(adapter->name[vector], "%s-%s-%d",
1132                                 netdev->name, "rx", ri++);
1133                 } else if (handler == &ixgbevf_msix_clean_tx) {
1134                         sprintf(adapter->name[vector], "%s-%s-%d",
1135                                 netdev->name, "tx", ti++);
1136                 } else if (handler == &ixgbevf_msix_clean_many) {
1137                         sprintf(adapter->name[vector], "%s-%s-%d",
1138                                 netdev->name, "TxRx", vector);
1139                 } else {
1140                         /* skip this unused q_vector */
1141                         continue;
1142                 }
1143                 err = request_irq(adapter->msix_entries[vector].vector,
1144                                   handler, 0, adapter->name[vector],
1145                                   adapter->q_vector[vector]);
1146                 if (err) {
1147                         hw_dbg(&adapter->hw,
1148                                "request_irq failed for MSIX interrupt "
1149                                "Error: %d\n", err);
1150                         goto free_queue_irqs;
1151                 }
1152         }
1153
1154         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1155         err = request_irq(adapter->msix_entries[vector].vector,
1156                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1157         if (err) {
1158                 hw_dbg(&adapter->hw,
1159                        "request_irq for msix_mbx failed: %d\n", err);
1160                 goto free_queue_irqs;
1161         }
1162
1163         return 0;
1164
1165 free_queue_irqs:
1166         for (i = vector - 1; i >= 0; i--)
1167                 free_irq(adapter->msix_entries[--vector].vector,
1168                          &(adapter->q_vector[i]));
1169         pci_disable_msix(adapter->pdev);
1170         kfree(adapter->msix_entries);
1171         adapter->msix_entries = NULL;
1172         return err;
1173 }
1174
1175 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1176 {
1177         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1178
1179         for (i = 0; i < q_vectors; i++) {
1180                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1181                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1182                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1183                 q_vector->rxr_count = 0;
1184                 q_vector->txr_count = 0;
1185                 q_vector->eitr = adapter->eitr_param;
1186         }
1187 }
1188
1189 /**
1190  * ixgbevf_request_irq - initialize interrupts
1191  * @adapter: board private structure
1192  *
1193  * Attempts to configure interrupts using the best available
1194  * capabilities of the hardware and kernel.
1195  **/
1196 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1197 {
1198         int err = 0;
1199
1200         err = ixgbevf_request_msix_irqs(adapter);
1201
1202         if (err)
1203                 hw_dbg(&adapter->hw,
1204                        "request_irq failed, Error %d\n", err);
1205
1206         return err;
1207 }
1208
1209 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1210 {
1211         struct net_device *netdev = adapter->netdev;
1212         int i, q_vectors;
1213
1214         q_vectors = adapter->num_msix_vectors;
1215
1216         i = q_vectors - 1;
1217
1218         free_irq(adapter->msix_entries[i].vector, netdev);
1219         i--;
1220
1221         for (; i >= 0; i--) {
1222                 free_irq(adapter->msix_entries[i].vector,
1223                          adapter->q_vector[i]);
1224         }
1225
1226         ixgbevf_reset_q_vectors(adapter);
1227 }
1228
1229 /**
1230  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1231  * @adapter: board private structure
1232  **/
1233 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1234 {
1235         int i;
1236         struct ixgbe_hw *hw = &adapter->hw;
1237
1238         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1239
1240         IXGBE_WRITE_FLUSH(hw);
1241
1242         for (i = 0; i < adapter->num_msix_vectors; i++)
1243                 synchronize_irq(adapter->msix_entries[i].vector);
1244 }
1245
1246 /**
1247  * ixgbevf_irq_enable - Enable default interrupt generation settings
1248  * @adapter: board private structure
1249  **/
1250 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1251                                       bool queues, bool flush)
1252 {
1253         struct ixgbe_hw *hw = &adapter->hw;
1254         u32 mask;
1255         u64 qmask;
1256
1257         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1258         qmask = ~0;
1259
1260         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1261
1262         if (queues)
1263                 ixgbevf_irq_enable_queues(adapter, qmask);
1264
1265         if (flush)
1266                 IXGBE_WRITE_FLUSH(hw);
1267 }
1268
1269 /**
1270  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1271  * @adapter: board private structure
1272  *
1273  * Configure the Tx unit of the MAC after a reset.
1274  **/
1275 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1276 {
1277         u64 tdba;
1278         struct ixgbe_hw *hw = &adapter->hw;
1279         u32 i, j, tdlen, txctrl;
1280
1281         /* Setup the HW Tx Head and Tail descriptor pointers */
1282         for (i = 0; i < adapter->num_tx_queues; i++) {
1283                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1284                 j = ring->reg_idx;
1285                 tdba = ring->dma;
1286                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1287                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1288                                 (tdba & DMA_BIT_MASK(32)));
1289                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1290                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1291                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1292                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1293                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1294                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1295                 /* Disable Tx Head Writeback RO bit, since this hoses
1296                  * bookkeeping if things aren't delivered in order.
1297                  */
1298                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1299                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1300                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1301         }
1302 }
1303
1304 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1305
1306 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1307 {
1308         struct ixgbevf_ring *rx_ring;
1309         struct ixgbe_hw *hw = &adapter->hw;
1310         u32 srrctl;
1311
1312         rx_ring = &adapter->rx_ring[index];
1313
1314         srrctl = IXGBE_SRRCTL_DROP_EN;
1315
1316         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1317                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1318                 /* grow the amount we can receive on large page machines */
1319                 if (bufsz < (PAGE_SIZE / 2))
1320                         bufsz = (PAGE_SIZE / 2);
1321                 /* cap the bufsz at our largest descriptor size */
1322                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1323
1324                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1325                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1326                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1327                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1328                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1329         } else {
1330                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1331
1332                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1333                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1334                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1335                 else
1336                         srrctl |= rx_ring->rx_buf_len >>
1337                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1338         }
1339         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1340 }
1341
1342 /**
1343  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1344  * @adapter: board private structure
1345  *
1346  * Configure the Rx unit of the MAC after a reset.
1347  **/
1348 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1349 {
1350         u64 rdba;
1351         struct ixgbe_hw *hw = &adapter->hw;
1352         struct net_device *netdev = adapter->netdev;
1353         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1354         int i, j;
1355         u32 rdlen;
1356         int rx_buf_len;
1357
1358         /* Decide whether to use packet split mode or not */
1359         if (netdev->mtu > ETH_DATA_LEN) {
1360                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1361                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1362                 else
1363                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1364         } else {
1365                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1366                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1367                 else
1368                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1369         }
1370
1371         /* Set the RX buffer length according to the mode */
1372         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1373                 /* PSRTYPE must be initialized in 82599 */
1374                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1375                         IXGBE_PSRTYPE_UDPHDR |
1376                         IXGBE_PSRTYPE_IPV4HDR |
1377                         IXGBE_PSRTYPE_IPV6HDR |
1378                         IXGBE_PSRTYPE_L2HDR;
1379                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1380                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1381         } else {
1382                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1383                 if (netdev->mtu <= ETH_DATA_LEN)
1384                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1385                 else
1386                         rx_buf_len = ALIGN(max_frame, 1024);
1387         }
1388
1389         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1390         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1391          * the Base and Length of the Rx Descriptor Ring */
1392         for (i = 0; i < adapter->num_rx_queues; i++) {
1393                 rdba = adapter->rx_ring[i].dma;
1394                 j = adapter->rx_ring[i].reg_idx;
1395                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1396                                 (rdba & DMA_BIT_MASK(32)));
1397                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1398                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1399                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1400                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1401                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1402                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1403                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1404
1405                 ixgbevf_configure_srrctl(adapter, j);
1406         }
1407 }
1408
1409 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1410 {
1411         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1412         struct ixgbe_hw *hw = &adapter->hw;
1413
1414         /* add VID to filter table */
1415         if (hw->mac.ops.set_vfta)
1416                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1417         set_bit(vid, adapter->active_vlans);
1418
1419         return 0;
1420 }
1421
1422 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1423 {
1424         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1425         struct ixgbe_hw *hw = &adapter->hw;
1426
1427         /* remove VID from filter table */
1428         if (hw->mac.ops.set_vfta)
1429                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1430         clear_bit(vid, adapter->active_vlans);
1431
1432         return 0;
1433 }
1434
1435 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1436 {
1437         u16 vid;
1438
1439         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1440                 ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1441 }
1442
1443 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1444 {
1445         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1446         struct ixgbe_hw *hw = &adapter->hw;
1447         int count = 0;
1448
1449         if ((netdev_uc_count(netdev)) > 10) {
1450                 pr_err("Too many unicast filters - No Space\n");
1451                 return -ENOSPC;
1452         }
1453
1454         if (!netdev_uc_empty(netdev)) {
1455                 struct netdev_hw_addr *ha;
1456                 netdev_for_each_uc_addr(ha, netdev) {
1457                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1458                         udelay(200);
1459                 }
1460         } else {
1461                 /*
1462                  * If the list is empty then send message to PF driver to
1463                  * clear all macvlans on this VF.
1464                  */
1465                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1466         }
1467
1468         return count;
1469 }
1470
1471 /**
1472  * ixgbevf_set_rx_mode - Multicast set
1473  * @netdev: network interface device structure
1474  *
1475  * The set_rx_method entry point is called whenever the multicast address
1476  * list or the network interface flags are updated.  This routine is
1477  * responsible for configuring the hardware for proper multicast mode.
1478  **/
1479 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1480 {
1481         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1482         struct ixgbe_hw *hw = &adapter->hw;
1483
1484         /* reprogram multicast list */
1485         if (hw->mac.ops.update_mc_addr_list)
1486                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1487
1488         ixgbevf_write_uc_addr_list(netdev);
1489 }
1490
1491 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1492 {
1493         int q_idx;
1494         struct ixgbevf_q_vector *q_vector;
1495         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1496
1497         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1498                 struct napi_struct *napi;
1499                 q_vector = adapter->q_vector[q_idx];
1500                 if (!q_vector->rxr_count)
1501                         continue;
1502                 napi = &q_vector->napi;
1503                 if (q_vector->rxr_count > 1)
1504                         napi->poll = &ixgbevf_clean_rxonly_many;
1505
1506                 napi_enable(napi);
1507         }
1508 }
1509
1510 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1511 {
1512         int q_idx;
1513         struct ixgbevf_q_vector *q_vector;
1514         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1515
1516         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1517                 q_vector = adapter->q_vector[q_idx];
1518                 if (!q_vector->rxr_count)
1519                         continue;
1520                 napi_disable(&q_vector->napi);
1521         }
1522 }
1523
1524 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1525 {
1526         struct net_device *netdev = adapter->netdev;
1527         int i;
1528
1529         ixgbevf_set_rx_mode(netdev);
1530
1531         ixgbevf_restore_vlan(adapter);
1532
1533         ixgbevf_configure_tx(adapter);
1534         ixgbevf_configure_rx(adapter);
1535         for (i = 0; i < adapter->num_rx_queues; i++) {
1536                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1537                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1538                 ring->next_to_use = ring->count - 1;
1539                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1540         }
1541 }
1542
1543 #define IXGBE_MAX_RX_DESC_POLL 10
1544 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1545                                                 int rxr)
1546 {
1547         struct ixgbe_hw *hw = &adapter->hw;
1548         int j = adapter->rx_ring[rxr].reg_idx;
1549         int k;
1550
1551         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1552                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1553                         break;
1554                 else
1555                         msleep(1);
1556         }
1557         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1558                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1559                        "not set within the polling period\n", rxr);
1560         }
1561
1562         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1563                                 (adapter->rx_ring[rxr].count - 1));
1564 }
1565
1566 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1567 {
1568         /* Only save pre-reset stats if there are some */
1569         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1570                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1571                         adapter->stats.base_vfgprc;
1572                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1573                         adapter->stats.base_vfgptc;
1574                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1575                         adapter->stats.base_vfgorc;
1576                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1577                         adapter->stats.base_vfgotc;
1578                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1579                         adapter->stats.base_vfmprc;
1580         }
1581 }
1582
1583 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1584 {
1585         struct ixgbe_hw *hw = &adapter->hw;
1586
1587         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1588         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1589         adapter->stats.last_vfgorc |=
1590                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1591         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1592         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1593         adapter->stats.last_vfgotc |=
1594                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1595         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1596
1597         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1598         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1599         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1600         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1601         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1602 }
1603
1604 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1605 {
1606         struct net_device *netdev = adapter->netdev;
1607         struct ixgbe_hw *hw = &adapter->hw;
1608         int i, j = 0;
1609         int num_rx_rings = adapter->num_rx_queues;
1610         u32 txdctl, rxdctl;
1611
1612         for (i = 0; i < adapter->num_tx_queues; i++) {
1613                 j = adapter->tx_ring[i].reg_idx;
1614                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1615                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1616                 txdctl |= (8 << 16);
1617                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1618         }
1619
1620         for (i = 0; i < adapter->num_tx_queues; i++) {
1621                 j = adapter->tx_ring[i].reg_idx;
1622                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1623                 txdctl |= IXGBE_TXDCTL_ENABLE;
1624                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1625         }
1626
1627         for (i = 0; i < num_rx_rings; i++) {
1628                 j = adapter->rx_ring[i].reg_idx;
1629                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1630                 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1631                 if (hw->mac.type == ixgbe_mac_X540_vf) {
1632                         rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1633                         rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1634                                    IXGBE_RXDCTL_RLPML_EN);
1635                 }
1636                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1637                 ixgbevf_rx_desc_queue_enable(adapter, i);
1638         }
1639
1640         ixgbevf_configure_msix(adapter);
1641
1642         if (hw->mac.ops.set_rar) {
1643                 if (is_valid_ether_addr(hw->mac.addr))
1644                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1645                 else
1646                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1647         }
1648
1649         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1650         ixgbevf_napi_enable_all(adapter);
1651
1652         /* enable transmits */
1653         netif_tx_start_all_queues(netdev);
1654
1655         ixgbevf_save_reset_stats(adapter);
1656         ixgbevf_init_last_counter_stats(adapter);
1657
1658         /* bring the link up in the watchdog, this could race with our first
1659          * link up interrupt but shouldn't be a problem */
1660         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1661         adapter->link_check_timeout = jiffies;
1662         mod_timer(&adapter->watchdog_timer, jiffies);
1663         return 0;
1664 }
1665
1666 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1667 {
1668         int err;
1669         struct ixgbe_hw *hw = &adapter->hw;
1670
1671         ixgbevf_configure(adapter);
1672
1673         err = ixgbevf_up_complete(adapter);
1674
1675         /* clear any pending interrupts, may auto mask */
1676         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1677
1678         ixgbevf_irq_enable(adapter, true, true);
1679
1680         return err;
1681 }
1682
1683 /**
1684  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1685  * @adapter: board private structure
1686  * @rx_ring: ring to free buffers from
1687  **/
1688 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1689                                   struct ixgbevf_ring *rx_ring)
1690 {
1691         struct pci_dev *pdev = adapter->pdev;
1692         unsigned long size;
1693         unsigned int i;
1694
1695         if (!rx_ring->rx_buffer_info)
1696                 return;
1697
1698         /* Free all the Rx ring sk_buffs */
1699         for (i = 0; i < rx_ring->count; i++) {
1700                 struct ixgbevf_rx_buffer *rx_buffer_info;
1701
1702                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1703                 if (rx_buffer_info->dma) {
1704                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1705                                          rx_ring->rx_buf_len,
1706                                          DMA_FROM_DEVICE);
1707                         rx_buffer_info->dma = 0;
1708                 }
1709                 if (rx_buffer_info->skb) {
1710                         struct sk_buff *skb = rx_buffer_info->skb;
1711                         rx_buffer_info->skb = NULL;
1712                         do {
1713                                 struct sk_buff *this = skb;
1714                                 skb = skb->prev;
1715                                 dev_kfree_skb(this);
1716                         } while (skb);
1717                 }
1718                 if (!rx_buffer_info->page)
1719                         continue;
1720                 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1721                                PAGE_SIZE / 2, DMA_FROM_DEVICE);
1722                 rx_buffer_info->page_dma = 0;
1723                 put_page(rx_buffer_info->page);
1724                 rx_buffer_info->page = NULL;
1725                 rx_buffer_info->page_offset = 0;
1726         }
1727
1728         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1729         memset(rx_ring->rx_buffer_info, 0, size);
1730
1731         /* Zero out the descriptor ring */
1732         memset(rx_ring->desc, 0, rx_ring->size);
1733
1734         rx_ring->next_to_clean = 0;
1735         rx_ring->next_to_use = 0;
1736
1737         if (rx_ring->head)
1738                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1739         if (rx_ring->tail)
1740                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1741 }
1742
1743 /**
1744  * ixgbevf_clean_tx_ring - Free Tx Buffers
1745  * @adapter: board private structure
1746  * @tx_ring: ring to be cleaned
1747  **/
1748 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1749                                   struct ixgbevf_ring *tx_ring)
1750 {
1751         struct ixgbevf_tx_buffer *tx_buffer_info;
1752         unsigned long size;
1753         unsigned int i;
1754
1755         if (!tx_ring->tx_buffer_info)
1756                 return;
1757
1758         /* Free all the Tx ring sk_buffs */
1759
1760         for (i = 0; i < tx_ring->count; i++) {
1761                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1762                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1763         }
1764
1765         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1766         memset(tx_ring->tx_buffer_info, 0, size);
1767
1768         memset(tx_ring->desc, 0, tx_ring->size);
1769
1770         tx_ring->next_to_use = 0;
1771         tx_ring->next_to_clean = 0;
1772
1773         if (tx_ring->head)
1774                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1775         if (tx_ring->tail)
1776                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1777 }
1778
1779 /**
1780  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1781  * @adapter: board private structure
1782  **/
1783 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1784 {
1785         int i;
1786
1787         for (i = 0; i < adapter->num_rx_queues; i++)
1788                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1789 }
1790
1791 /**
1792  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1793  * @adapter: board private structure
1794  **/
1795 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1796 {
1797         int i;
1798
1799         for (i = 0; i < adapter->num_tx_queues; i++)
1800                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1801 }
1802
1803 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1804 {
1805         struct net_device *netdev = adapter->netdev;
1806         struct ixgbe_hw *hw = &adapter->hw;
1807         u32 txdctl;
1808         int i, j;
1809
1810         /* signal that we are down to the interrupt handler */
1811         set_bit(__IXGBEVF_DOWN, &adapter->state);
1812         /* disable receives */
1813
1814         netif_tx_disable(netdev);
1815
1816         msleep(10);
1817
1818         netif_tx_stop_all_queues(netdev);
1819
1820         ixgbevf_irq_disable(adapter);
1821
1822         ixgbevf_napi_disable_all(adapter);
1823
1824         del_timer_sync(&adapter->watchdog_timer);
1825         /* can't call flush scheduled work here because it can deadlock
1826          * if linkwatch_event tries to acquire the rtnl_lock which we are
1827          * holding */
1828         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1829                 msleep(1);
1830
1831         /* disable transmits in the hardware now that interrupts are off */
1832         for (i = 0; i < adapter->num_tx_queues; i++) {
1833                 j = adapter->tx_ring[i].reg_idx;
1834                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1835                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1836                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1837         }
1838
1839         netif_carrier_off(netdev);
1840
1841         if (!pci_channel_offline(adapter->pdev))
1842                 ixgbevf_reset(adapter);
1843
1844         ixgbevf_clean_all_tx_rings(adapter);
1845         ixgbevf_clean_all_rx_rings(adapter);
1846 }
1847
1848 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1849 {
1850         struct ixgbe_hw *hw = &adapter->hw;
1851
1852         WARN_ON(in_interrupt());
1853
1854         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1855                 msleep(1);
1856
1857         /*
1858          * Check if PF is up before re-init.  If not then skip until
1859          * later when the PF is up and ready to service requests from
1860          * the VF via mailbox.  If the VF is up and running then the
1861          * watchdog task will continue to schedule reset tasks until
1862          * the PF is up and running.
1863          */
1864         if (!hw->mac.ops.reset_hw(hw)) {
1865                 ixgbevf_down(adapter);
1866                 ixgbevf_up(adapter);
1867         }
1868
1869         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1870 }
1871
1872 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1873 {
1874         struct ixgbe_hw *hw = &adapter->hw;
1875         struct net_device *netdev = adapter->netdev;
1876
1877         if (hw->mac.ops.reset_hw(hw))
1878                 hw_dbg(hw, "PF still resetting\n");
1879         else
1880                 hw->mac.ops.init_hw(hw);
1881
1882         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1883                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1884                        netdev->addr_len);
1885                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1886                        netdev->addr_len);
1887         }
1888 }
1889
1890 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1891                                          int vectors)
1892 {
1893         int err, vector_threshold;
1894
1895         /* We'll want at least 3 (vector_threshold):
1896          * 1) TxQ[0] Cleanup
1897          * 2) RxQ[0] Cleanup
1898          * 3) Other (Link Status Change, etc.)
1899          */
1900         vector_threshold = MIN_MSIX_COUNT;
1901
1902         /* The more we get, the more we will assign to Tx/Rx Cleanup
1903          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1904          * Right now, we simply care about how many we'll get; we'll
1905          * set them up later while requesting irq's.
1906          */
1907         while (vectors >= vector_threshold) {
1908                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1909                                       vectors);
1910                 if (!err) /* Success in acquiring all requested vectors. */
1911                         break;
1912                 else if (err < 0)
1913                         vectors = 0; /* Nasty failure, quit now */
1914                 else /* err == number of vectors we should try again with */
1915                         vectors = err;
1916         }
1917
1918         if (vectors < vector_threshold) {
1919                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1920                  * This just means we'll go with either a single MSI
1921                  * vector or fall back to legacy interrupts.
1922                  */
1923                 hw_dbg(&adapter->hw,
1924                        "Unable to allocate MSI-X interrupts\n");
1925                 kfree(adapter->msix_entries);
1926                 adapter->msix_entries = NULL;
1927         } else {
1928                 /*
1929                  * Adjust for only the vectors we'll use, which is minimum
1930                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1931                  * vectors we were allocated.
1932                  */
1933                 adapter->num_msix_vectors = vectors;
1934         }
1935 }
1936
1937 /*
1938  * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
1939  * @adapter: board private structure to initialize
1940  *
1941  * This is the top level queue allocation routine.  The order here is very
1942  * important, starting with the "most" number of features turned on at once,
1943  * and ending with the smallest set of features.  This way large combinations
1944  * can be allocated if they're turned on, and smaller combinations are the
1945  * fallthrough conditions.
1946  *
1947  **/
1948 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1949 {
1950         /* Start with base case */
1951         adapter->num_rx_queues = 1;
1952         adapter->num_tx_queues = 1;
1953         adapter->num_rx_pools = adapter->num_rx_queues;
1954         adapter->num_rx_queues_per_pool = 1;
1955 }
1956
1957 /**
1958  * ixgbevf_alloc_queues - Allocate memory for all rings
1959  * @adapter: board private structure to initialize
1960  *
1961  * We allocate one ring per queue at run-time since we don't know the
1962  * number of queues at compile-time.  The polling_netdev array is
1963  * intended for Multiqueue, but should work fine with a single queue.
1964  **/
1965 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1966 {
1967         int i;
1968
1969         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1970                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1971         if (!adapter->tx_ring)
1972                 goto err_tx_ring_allocation;
1973
1974         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1975                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1976         if (!adapter->rx_ring)
1977                 goto err_rx_ring_allocation;
1978
1979         for (i = 0; i < adapter->num_tx_queues; i++) {
1980                 adapter->tx_ring[i].count = adapter->tx_ring_count;
1981                 adapter->tx_ring[i].queue_index = i;
1982                 adapter->tx_ring[i].reg_idx = i;
1983         }
1984
1985         for (i = 0; i < adapter->num_rx_queues; i++) {
1986                 adapter->rx_ring[i].count = adapter->rx_ring_count;
1987                 adapter->rx_ring[i].queue_index = i;
1988                 adapter->rx_ring[i].reg_idx = i;
1989         }
1990
1991         return 0;
1992
1993 err_rx_ring_allocation:
1994         kfree(adapter->tx_ring);
1995 err_tx_ring_allocation:
1996         return -ENOMEM;
1997 }
1998
1999 /**
2000  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2001  * @adapter: board private structure to initialize
2002  *
2003  * Attempt to configure the interrupts using the best available
2004  * capabilities of the hardware and the kernel.
2005  **/
2006 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2007 {
2008         int err = 0;
2009         int vector, v_budget;
2010
2011         /*
2012          * It's easy to be greedy for MSI-X vectors, but it really
2013          * doesn't do us much good if we have a lot more vectors
2014          * than CPU's.  So let's be conservative and only ask for
2015          * (roughly) twice the number of vectors as there are CPU's.
2016          */
2017         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2018                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2019
2020         /* A failure in MSI-X entry allocation isn't fatal, but it does
2021          * mean we disable MSI-X capabilities of the adapter. */
2022         adapter->msix_entries = kcalloc(v_budget,
2023                                         sizeof(struct msix_entry), GFP_KERNEL);
2024         if (!adapter->msix_entries) {
2025                 err = -ENOMEM;
2026                 goto out;
2027         }
2028
2029         for (vector = 0; vector < v_budget; vector++)
2030                 adapter->msix_entries[vector].entry = vector;
2031
2032         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2033
2034 out:
2035         return err;
2036 }
2037
2038 /**
2039  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2040  * @adapter: board private structure to initialize
2041  *
2042  * We allocate one q_vector per queue interrupt.  If allocation fails we
2043  * return -ENOMEM.
2044  **/
2045 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2046 {
2047         int q_idx, num_q_vectors;
2048         struct ixgbevf_q_vector *q_vector;
2049         int napi_vectors;
2050         int (*poll)(struct napi_struct *, int);
2051
2052         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2053         napi_vectors = adapter->num_rx_queues;
2054         poll = &ixgbevf_clean_rxonly;
2055
2056         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2057                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2058                 if (!q_vector)
2059                         goto err_out;
2060                 q_vector->adapter = adapter;
2061                 q_vector->v_idx = q_idx;
2062                 q_vector->eitr = adapter->eitr_param;
2063                 if (q_idx < napi_vectors)
2064                         netif_napi_add(adapter->netdev, &q_vector->napi,
2065                                        (*poll), 64);
2066                 adapter->q_vector[q_idx] = q_vector;
2067         }
2068
2069         return 0;
2070
2071 err_out:
2072         while (q_idx) {
2073                 q_idx--;
2074                 q_vector = adapter->q_vector[q_idx];
2075                 netif_napi_del(&q_vector->napi);
2076                 kfree(q_vector);
2077                 adapter->q_vector[q_idx] = NULL;
2078         }
2079         return -ENOMEM;
2080 }
2081
2082 /**
2083  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2084  * @adapter: board private structure to initialize
2085  *
2086  * This function frees the memory allocated to the q_vectors.  In addition if
2087  * NAPI is enabled it will delete any references to the NAPI struct prior
2088  * to freeing the q_vector.
2089  **/
2090 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2091 {
2092         int q_idx, num_q_vectors;
2093         int napi_vectors;
2094
2095         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2096         napi_vectors = adapter->num_rx_queues;
2097
2098         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2099                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2100
2101                 adapter->q_vector[q_idx] = NULL;
2102                 if (q_idx < napi_vectors)
2103                         netif_napi_del(&q_vector->napi);
2104                 kfree(q_vector);
2105         }
2106 }
2107
2108 /**
2109  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2110  * @adapter: board private structure
2111  *
2112  **/
2113 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2114 {
2115         pci_disable_msix(adapter->pdev);
2116         kfree(adapter->msix_entries);
2117         adapter->msix_entries = NULL;
2118 }
2119
2120 /**
2121  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2122  * @adapter: board private structure to initialize
2123  *
2124  **/
2125 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2126 {
2127         int err;
2128
2129         /* Number of supported queues */
2130         ixgbevf_set_num_queues(adapter);
2131
2132         err = ixgbevf_set_interrupt_capability(adapter);
2133         if (err) {
2134                 hw_dbg(&adapter->hw,
2135                        "Unable to setup interrupt capabilities\n");
2136                 goto err_set_interrupt;
2137         }
2138
2139         err = ixgbevf_alloc_q_vectors(adapter);
2140         if (err) {
2141                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2142                        "vectors\n");
2143                 goto err_alloc_q_vectors;
2144         }
2145
2146         err = ixgbevf_alloc_queues(adapter);
2147         if (err) {
2148                 pr_err("Unable to allocate memory for queues\n");
2149                 goto err_alloc_queues;
2150         }
2151
2152         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2153                "Tx Queue count = %u\n",
2154                (adapter->num_rx_queues > 1) ? "Enabled" :
2155                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2156
2157         set_bit(__IXGBEVF_DOWN, &adapter->state);
2158
2159         return 0;
2160 err_alloc_queues:
2161         ixgbevf_free_q_vectors(adapter);
2162 err_alloc_q_vectors:
2163         ixgbevf_reset_interrupt_capability(adapter);
2164 err_set_interrupt:
2165         return err;
2166 }
2167
2168 /**
2169  * ixgbevf_sw_init - Initialize general software structures
2170  * (struct ixgbevf_adapter)
2171  * @adapter: board private structure to initialize
2172  *
2173  * ixgbevf_sw_init initializes the Adapter private data structure.
2174  * Fields are initialized based on PCI device information and
2175  * OS network device settings (MTU size).
2176  **/
2177 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2178 {
2179         struct ixgbe_hw *hw = &adapter->hw;
2180         struct pci_dev *pdev = adapter->pdev;
2181         int err;
2182
2183         /* PCI config space info */
2184
2185         hw->vendor_id = pdev->vendor;
2186         hw->device_id = pdev->device;
2187         hw->revision_id = pdev->revision;
2188         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2189         hw->subsystem_device_id = pdev->subsystem_device;
2190
2191         hw->mbx.ops.init_params(hw);
2192         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2193         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2194         err = hw->mac.ops.reset_hw(hw);
2195         if (err) {
2196                 dev_info(&pdev->dev,
2197                          "PF still in reset state, assigning new address\n");
2198                 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2199         } else {
2200                 err = hw->mac.ops.init_hw(hw);
2201                 if (err) {
2202                         pr_err("init_shared_code failed: %d\n", err);
2203                         goto out;
2204                 }
2205         }
2206
2207         /* Enable dynamic interrupt throttling rates */
2208         adapter->eitr_param = 20000;
2209         adapter->itr_setting = 1;
2210
2211         /* set defaults for eitr in MegaBytes */
2212         adapter->eitr_low = 10;
2213         adapter->eitr_high = 20;
2214
2215         /* set default ring sizes */
2216         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2217         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2218
2219         /* enable rx csum by default */
2220         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2221
2222         set_bit(__IXGBEVF_DOWN, &adapter->state);
2223
2224 out:
2225         return err;
2226 }
2227
2228 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2229         {                                                       \
2230                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2231                 if (current_counter < last_counter)             \
2232                         counter += 0x100000000LL;               \
2233                 last_counter = current_counter;                 \
2234                 counter &= 0xFFFFFFFF00000000LL;                \
2235                 counter |= current_counter;                     \
2236         }
2237
2238 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2239         {                                                                \
2240                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2241                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2242                 u64 current_counter = (current_counter_msb << 32) |      \
2243                         current_counter_lsb;                             \
2244                 if (current_counter < last_counter)                      \
2245                         counter += 0x1000000000LL;                       \
2246                 last_counter = current_counter;                          \
2247                 counter &= 0xFFFFFFF000000000LL;                         \
2248                 counter |= current_counter;                              \
2249         }
2250 /**
2251  * ixgbevf_update_stats - Update the board statistics counters.
2252  * @adapter: board private structure
2253  **/
2254 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2255 {
2256         struct ixgbe_hw *hw = &adapter->hw;
2257
2258         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2259                                 adapter->stats.vfgprc);
2260         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2261                                 adapter->stats.vfgptc);
2262         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2263                                 adapter->stats.last_vfgorc,
2264                                 adapter->stats.vfgorc);
2265         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2266                                 adapter->stats.last_vfgotc,
2267                                 adapter->stats.vfgotc);
2268         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2269                                 adapter->stats.vfmprc);
2270 }
2271
2272 /**
2273  * ixgbevf_watchdog - Timer Call-back
2274  * @data: pointer to adapter cast into an unsigned long
2275  **/
2276 static void ixgbevf_watchdog(unsigned long data)
2277 {
2278         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2279         struct ixgbe_hw *hw = &adapter->hw;
2280         u64 eics = 0;
2281         int i;
2282
2283         /*
2284          * Do the watchdog outside of interrupt context due to the lovely
2285          * delays that some of the newer hardware requires
2286          */
2287
2288         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2289                 goto watchdog_short_circuit;
2290
2291         /* get one bit for every active tx/rx interrupt vector */
2292         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2293                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2294                 if (qv->rxr_count || qv->txr_count)
2295                         eics |= (1 << i);
2296         }
2297
2298         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2299
2300 watchdog_short_circuit:
2301         schedule_work(&adapter->watchdog_task);
2302 }
2303
2304 /**
2305  * ixgbevf_tx_timeout - Respond to a Tx Hang
2306  * @netdev: network interface device structure
2307  **/
2308 static void ixgbevf_tx_timeout(struct net_device *netdev)
2309 {
2310         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2311
2312         /* Do the reset outside of interrupt context */
2313         schedule_work(&adapter->reset_task);
2314 }
2315
2316 static void ixgbevf_reset_task(struct work_struct *work)
2317 {
2318         struct ixgbevf_adapter *adapter;
2319         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2320
2321         /* If we're already down or resetting, just bail */
2322         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2323             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2324                 return;
2325
2326         adapter->tx_timeout_count++;
2327
2328         ixgbevf_reinit_locked(adapter);
2329 }
2330
2331 /**
2332  * ixgbevf_watchdog_task - worker thread to bring link up
2333  * @work: pointer to work_struct containing our data
2334  **/
2335 static void ixgbevf_watchdog_task(struct work_struct *work)
2336 {
2337         struct ixgbevf_adapter *adapter = container_of(work,
2338                                                        struct ixgbevf_adapter,
2339                                                        watchdog_task);
2340         struct net_device *netdev = adapter->netdev;
2341         struct ixgbe_hw *hw = &adapter->hw;
2342         u32 link_speed = adapter->link_speed;
2343         bool link_up = adapter->link_up;
2344
2345         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2346
2347         /*
2348          * Always check the link on the watchdog because we have
2349          * no LSC interrupt
2350          */
2351         if (hw->mac.ops.check_link) {
2352                 if ((hw->mac.ops.check_link(hw, &link_speed,
2353                                             &link_up, false)) != 0) {
2354                         adapter->link_up = link_up;
2355                         adapter->link_speed = link_speed;
2356                         netif_carrier_off(netdev);
2357                         netif_tx_stop_all_queues(netdev);
2358                         schedule_work(&adapter->reset_task);
2359                         goto pf_has_reset;
2360                 }
2361         } else {
2362                 /* always assume link is up, if no check link
2363                  * function */
2364                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2365                 link_up = true;
2366         }
2367         adapter->link_up = link_up;
2368         adapter->link_speed = link_speed;
2369
2370         if (link_up) {
2371                 if (!netif_carrier_ok(netdev)) {
2372                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2373                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2374                                10 : 1);
2375                         netif_carrier_on(netdev);
2376                         netif_tx_wake_all_queues(netdev);
2377                 }
2378         } else {
2379                 adapter->link_up = false;
2380                 adapter->link_speed = 0;
2381                 if (netif_carrier_ok(netdev)) {
2382                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2383                         netif_carrier_off(netdev);
2384                         netif_tx_stop_all_queues(netdev);
2385                 }
2386         }
2387
2388         ixgbevf_update_stats(adapter);
2389
2390 pf_has_reset:
2391         /* Reset the timer */
2392         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2393                 mod_timer(&adapter->watchdog_timer,
2394                           round_jiffies(jiffies + (2 * HZ)));
2395
2396         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2397 }
2398
2399 /**
2400  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2401  * @adapter: board private structure
2402  * @tx_ring: Tx descriptor ring for a specific queue
2403  *
2404  * Free all transmit software resources
2405  **/
2406 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2407                                struct ixgbevf_ring *tx_ring)
2408 {
2409         struct pci_dev *pdev = adapter->pdev;
2410
2411         ixgbevf_clean_tx_ring(adapter, tx_ring);
2412
2413         vfree(tx_ring->tx_buffer_info);
2414         tx_ring->tx_buffer_info = NULL;
2415
2416         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2417                           tx_ring->dma);
2418
2419         tx_ring->desc = NULL;
2420 }
2421
2422 /**
2423  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2424  * @adapter: board private structure
2425  *
2426  * Free all transmit software resources
2427  **/
2428 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2429 {
2430         int i;
2431
2432         for (i = 0; i < adapter->num_tx_queues; i++)
2433                 if (adapter->tx_ring[i].desc)
2434                         ixgbevf_free_tx_resources(adapter,
2435                                                   &adapter->tx_ring[i]);
2436
2437 }
2438
2439 /**
2440  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2441  * @adapter: board private structure
2442  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2443  *
2444  * Return 0 on success, negative on failure
2445  **/
2446 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2447                                struct ixgbevf_ring *tx_ring)
2448 {
2449         struct pci_dev *pdev = adapter->pdev;
2450         int size;
2451
2452         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2453         tx_ring->tx_buffer_info = vzalloc(size);
2454         if (!tx_ring->tx_buffer_info)
2455                 goto err;
2456
2457         /* round up to nearest 4K */
2458         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2459         tx_ring->size = ALIGN(tx_ring->size, 4096);
2460
2461         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2462                                            &tx_ring->dma, GFP_KERNEL);
2463         if (!tx_ring->desc)
2464                 goto err;
2465
2466         tx_ring->next_to_use = 0;
2467         tx_ring->next_to_clean = 0;
2468         tx_ring->work_limit = tx_ring->count;
2469         return 0;
2470
2471 err:
2472         vfree(tx_ring->tx_buffer_info);
2473         tx_ring->tx_buffer_info = NULL;
2474         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2475                "descriptor ring\n");
2476         return -ENOMEM;
2477 }
2478
2479 /**
2480  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2481  * @adapter: board private structure
2482  *
2483  * If this function returns with an error, then it's possible one or
2484  * more of the rings is populated (while the rest are not).  It is the
2485  * callers duty to clean those orphaned rings.
2486  *
2487  * Return 0 on success, negative on failure
2488  **/
2489 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2490 {
2491         int i, err = 0;
2492
2493         for (i = 0; i < adapter->num_tx_queues; i++) {
2494                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2495                 if (!err)
2496                         continue;
2497                 hw_dbg(&adapter->hw,
2498                        "Allocation for Tx Queue %u failed\n", i);
2499                 break;
2500         }
2501
2502         return err;
2503 }
2504
2505 /**
2506  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2507  * @adapter: board private structure
2508  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2509  *
2510  * Returns 0 on success, negative on failure
2511  **/
2512 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2513                                struct ixgbevf_ring *rx_ring)
2514 {
2515         struct pci_dev *pdev = adapter->pdev;
2516         int size;
2517
2518         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2519         rx_ring->rx_buffer_info = vzalloc(size);
2520         if (!rx_ring->rx_buffer_info) {
2521                 hw_dbg(&adapter->hw,
2522                        "Unable to vmalloc buffer memory for "
2523                        "the receive descriptor ring\n");
2524                 goto alloc_failed;
2525         }
2526
2527         /* Round up to nearest 4K */
2528         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2529         rx_ring->size = ALIGN(rx_ring->size, 4096);
2530
2531         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2532                                            &rx_ring->dma, GFP_KERNEL);
2533
2534         if (!rx_ring->desc) {
2535                 hw_dbg(&adapter->hw,
2536                        "Unable to allocate memory for "
2537                        "the receive descriptor ring\n");
2538                 vfree(rx_ring->rx_buffer_info);
2539                 rx_ring->rx_buffer_info = NULL;
2540                 goto alloc_failed;
2541         }
2542
2543         rx_ring->next_to_clean = 0;
2544         rx_ring->next_to_use = 0;
2545
2546         return 0;
2547 alloc_failed:
2548         return -ENOMEM;
2549 }
2550
2551 /**
2552  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2553  * @adapter: board private structure
2554  *
2555  * If this function returns with an error, then it's possible one or
2556  * more of the rings is populated (while the rest are not).  It is the
2557  * callers duty to clean those orphaned rings.
2558  *
2559  * Return 0 on success, negative on failure
2560  **/
2561 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2562 {
2563         int i, err = 0;
2564
2565         for (i = 0; i < adapter->num_rx_queues; i++) {
2566                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2567                 if (!err)
2568                         continue;
2569                 hw_dbg(&adapter->hw,
2570                        "Allocation for Rx Queue %u failed\n", i);
2571                 break;
2572         }
2573         return err;
2574 }
2575
2576 /**
2577  * ixgbevf_free_rx_resources - Free Rx Resources
2578  * @adapter: board private structure
2579  * @rx_ring: ring to clean the resources from
2580  *
2581  * Free all receive software resources
2582  **/
2583 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2584                                struct ixgbevf_ring *rx_ring)
2585 {
2586         struct pci_dev *pdev = adapter->pdev;
2587
2588         ixgbevf_clean_rx_ring(adapter, rx_ring);
2589
2590         vfree(rx_ring->rx_buffer_info);
2591         rx_ring->rx_buffer_info = NULL;
2592
2593         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2594                           rx_ring->dma);
2595
2596         rx_ring->desc = NULL;
2597 }
2598
2599 /**
2600  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2601  * @adapter: board private structure
2602  *
2603  * Free all receive software resources
2604  **/
2605 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2606 {
2607         int i;
2608
2609         for (i = 0; i < adapter->num_rx_queues; i++)
2610                 if (adapter->rx_ring[i].desc)
2611                         ixgbevf_free_rx_resources(adapter,
2612                                                   &adapter->rx_ring[i]);
2613 }
2614
2615 /**
2616  * ixgbevf_open - Called when a network interface is made active
2617  * @netdev: network interface device structure
2618  *
2619  * Returns 0 on success, negative value on failure
2620  *
2621  * The open entry point is called when a network interface is made
2622  * active by the system (IFF_UP).  At this point all resources needed
2623  * for transmit and receive operations are allocated, the interrupt
2624  * handler is registered with the OS, the watchdog timer is started,
2625  * and the stack is notified that the interface is ready.
2626  **/
2627 static int ixgbevf_open(struct net_device *netdev)
2628 {
2629         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2630         struct ixgbe_hw *hw = &adapter->hw;
2631         int err;
2632
2633         /* disallow open during test */
2634         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2635                 return -EBUSY;
2636
2637         if (hw->adapter_stopped) {
2638                 ixgbevf_reset(adapter);
2639                 /* if adapter is still stopped then PF isn't up and
2640                  * the vf can't start. */
2641                 if (hw->adapter_stopped) {
2642                         err = IXGBE_ERR_MBX;
2643                         pr_err("Unable to start - perhaps the PF Driver isn't "
2644                                "up yet\n");
2645                         goto err_setup_reset;
2646                 }
2647         }
2648
2649         /* allocate transmit descriptors */
2650         err = ixgbevf_setup_all_tx_resources(adapter);
2651         if (err)
2652                 goto err_setup_tx;
2653
2654         /* allocate receive descriptors */
2655         err = ixgbevf_setup_all_rx_resources(adapter);
2656         if (err)
2657                 goto err_setup_rx;
2658
2659         ixgbevf_configure(adapter);
2660
2661         /*
2662          * Map the Tx/Rx rings to the vectors we were allotted.
2663          * if request_irq will be called in this function map_rings
2664          * must be called *before* up_complete
2665          */
2666         ixgbevf_map_rings_to_vectors(adapter);
2667
2668         err = ixgbevf_up_complete(adapter);
2669         if (err)
2670                 goto err_up;
2671
2672         /* clear any pending interrupts, may auto mask */
2673         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2674         err = ixgbevf_request_irq(adapter);
2675         if (err)
2676                 goto err_req_irq;
2677
2678         ixgbevf_irq_enable(adapter, true, true);
2679
2680         return 0;
2681
2682 err_req_irq:
2683         ixgbevf_down(adapter);
2684 err_up:
2685         ixgbevf_free_irq(adapter);
2686 err_setup_rx:
2687         ixgbevf_free_all_rx_resources(adapter);
2688 err_setup_tx:
2689         ixgbevf_free_all_tx_resources(adapter);
2690         ixgbevf_reset(adapter);
2691
2692 err_setup_reset:
2693
2694         return err;
2695 }
2696
2697 /**
2698  * ixgbevf_close - Disables a network interface
2699  * @netdev: network interface device structure
2700  *
2701  * Returns 0, this is not allowed to fail
2702  *
2703  * The close entry point is called when an interface is de-activated
2704  * by the OS.  The hardware is still under the drivers control, but
2705  * needs to be disabled.  A global MAC reset is issued to stop the
2706  * hardware, and all transmit and receive resources are freed.
2707  **/
2708 static int ixgbevf_close(struct net_device *netdev)
2709 {
2710         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2711
2712         ixgbevf_down(adapter);
2713         ixgbevf_free_irq(adapter);
2714
2715         ixgbevf_free_all_tx_resources(adapter);
2716         ixgbevf_free_all_rx_resources(adapter);
2717
2718         return 0;
2719 }
2720
2721 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2722                        struct ixgbevf_ring *tx_ring,
2723                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2724 {
2725         struct ixgbe_adv_tx_context_desc *context_desc;
2726         unsigned int i;
2727         int err;
2728         struct ixgbevf_tx_buffer *tx_buffer_info;
2729         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2730         u32 mss_l4len_idx, l4len;
2731
2732         if (skb_is_gso(skb)) {
2733                 if (skb_header_cloned(skb)) {
2734                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2735                         if (err)
2736                                 return err;
2737                 }
2738                 l4len = tcp_hdrlen(skb);
2739                 *hdr_len += l4len;
2740
2741                 if (skb->protocol == htons(ETH_P_IP)) {
2742                         struct iphdr *iph = ip_hdr(skb);
2743                         iph->tot_len = 0;
2744                         iph->check = 0;
2745                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2746                                                                  iph->daddr, 0,
2747                                                                  IPPROTO_TCP,
2748                                                                  0);
2749                         adapter->hw_tso_ctxt++;
2750                 } else if (skb_is_gso_v6(skb)) {
2751                         ipv6_hdr(skb)->payload_len = 0;
2752                         tcp_hdr(skb)->check =
2753                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2754                                              &ipv6_hdr(skb)->daddr,
2755                                              0, IPPROTO_TCP, 0);
2756                         adapter->hw_tso6_ctxt++;
2757                 }
2758
2759                 i = tx_ring->next_to_use;
2760
2761                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2762                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2763
2764                 /* VLAN MACLEN IPLEN */
2765                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2766                         vlan_macip_lens |=
2767                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2768                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2769                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2770                 *hdr_len += skb_network_offset(skb);
2771                 vlan_macip_lens |=
2772                         (skb_transport_header(skb) - skb_network_header(skb));
2773                 *hdr_len +=
2774                         (skb_transport_header(skb) - skb_network_header(skb));
2775                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2776                 context_desc->seqnum_seed = 0;
2777
2778                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2779                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2780                                     IXGBE_ADVTXD_DTYP_CTXT);
2781
2782                 if (skb->protocol == htons(ETH_P_IP))
2783                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2784                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2785                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2786
2787                 /* MSS L4LEN IDX */
2788                 mss_l4len_idx =
2789                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2790                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2791                 /* use index 1 for TSO */
2792                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2793                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2794
2795                 tx_buffer_info->time_stamp = jiffies;
2796                 tx_buffer_info->next_to_watch = i;
2797
2798                 i++;
2799                 if (i == tx_ring->count)
2800                         i = 0;
2801                 tx_ring->next_to_use = i;
2802
2803                 return true;
2804         }
2805
2806         return false;
2807 }
2808
2809 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2810                             struct ixgbevf_ring *tx_ring,
2811                             struct sk_buff *skb, u32 tx_flags)
2812 {
2813         struct ixgbe_adv_tx_context_desc *context_desc;
2814         unsigned int i;
2815         struct ixgbevf_tx_buffer *tx_buffer_info;
2816         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2817
2818         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2819             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2820                 i = tx_ring->next_to_use;
2821                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2822                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2823
2824                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2825                         vlan_macip_lens |= (tx_flags &
2826                                             IXGBE_TX_FLAGS_VLAN_MASK);
2827                 vlan_macip_lens |= (skb_network_offset(skb) <<
2828                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2829                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2830                         vlan_macip_lens |= (skb_transport_header(skb) -
2831                                             skb_network_header(skb));
2832
2833                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2834                 context_desc->seqnum_seed = 0;
2835
2836                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2837                                     IXGBE_ADVTXD_DTYP_CTXT);
2838
2839                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2840                         switch (skb->protocol) {
2841                         case __constant_htons(ETH_P_IP):
2842                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2843                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2844                                         type_tucmd_mlhl |=
2845                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2846                                 break;
2847                         case __constant_htons(ETH_P_IPV6):
2848                                 /* XXX what about other V6 headers?? */
2849                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2850                                         type_tucmd_mlhl |=
2851                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2852                                 break;
2853                         default:
2854                                 if (unlikely(net_ratelimit())) {
2855                                         pr_warn("partial checksum but "
2856                                                 "proto=%x!\n", skb->protocol);
2857                                 }
2858                                 break;
2859                         }
2860                 }
2861
2862                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2863                 /* use index zero for tx checksum offload */
2864                 context_desc->mss_l4len_idx = 0;
2865
2866                 tx_buffer_info->time_stamp = jiffies;
2867                 tx_buffer_info->next_to_watch = i;
2868
2869                 adapter->hw_csum_tx_good++;
2870                 i++;
2871                 if (i == tx_ring->count)
2872                         i = 0;
2873                 tx_ring->next_to_use = i;
2874
2875                 return true;
2876         }
2877
2878         return false;
2879 }
2880
2881 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2882                           struct ixgbevf_ring *tx_ring,
2883                           struct sk_buff *skb, u32 tx_flags,
2884                           unsigned int first)
2885 {
2886         struct pci_dev *pdev = adapter->pdev;
2887         struct ixgbevf_tx_buffer *tx_buffer_info;
2888         unsigned int len;
2889         unsigned int total = skb->len;
2890         unsigned int offset = 0, size;
2891         int count = 0;
2892         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2893         unsigned int f;
2894         int i;
2895
2896         i = tx_ring->next_to_use;
2897
2898         len = min(skb_headlen(skb), total);
2899         while (len) {
2900                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2901                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2902
2903                 tx_buffer_info->length = size;
2904                 tx_buffer_info->mapped_as_page = false;
2905                 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2906                                                      skb->data + offset,
2907                                                      size, DMA_TO_DEVICE);
2908                 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2909                         goto dma_error;
2910                 tx_buffer_info->time_stamp = jiffies;
2911                 tx_buffer_info->next_to_watch = i;
2912
2913                 len -= size;
2914                 total -= size;
2915                 offset += size;
2916                 count++;
2917                 i++;
2918                 if (i == tx_ring->count)
2919                         i = 0;
2920         }
2921
2922         for (f = 0; f < nr_frags; f++) {
2923                 const struct skb_frag_struct *frag;
2924
2925                 frag = &skb_shinfo(skb)->frags[f];
2926                 len = min((unsigned int)skb_frag_size(frag), total);
2927                 offset = 0;
2928
2929                 while (len) {
2930                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2931                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2932
2933                         tx_buffer_info->length = size;
2934                         tx_buffer_info->dma =
2935                                 skb_frag_dma_map(&adapter->pdev->dev, frag,
2936                                                  offset, size, DMA_TO_DEVICE);
2937                         tx_buffer_info->mapped_as_page = true;
2938                         if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2939                                 goto dma_error;
2940                         tx_buffer_info->time_stamp = jiffies;
2941                         tx_buffer_info->next_to_watch = i;
2942
2943                         len -= size;
2944                         total -= size;
2945                         offset += size;
2946                         count++;
2947                         i++;
2948                         if (i == tx_ring->count)
2949                                 i = 0;
2950                 }
2951                 if (total == 0)
2952                         break;
2953         }
2954
2955         if (i == 0)
2956                 i = tx_ring->count - 1;
2957         else
2958                 i = i - 1;
2959         tx_ring->tx_buffer_info[i].skb = skb;
2960         tx_ring->tx_buffer_info[first].next_to_watch = i;
2961
2962         return count;
2963
2964 dma_error:
2965         dev_err(&pdev->dev, "TX DMA map failed\n");
2966
2967         /* clear timestamp and dma mappings for failed tx_buffer_info map */
2968         tx_buffer_info->dma = 0;
2969         tx_buffer_info->time_stamp = 0;
2970         tx_buffer_info->next_to_watch = 0;
2971         count--;
2972
2973         /* clear timestamp and dma mappings for remaining portion of packet */
2974         while (count >= 0) {
2975                 count--;
2976                 i--;
2977                 if (i < 0)
2978                         i += tx_ring->count;
2979                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2980                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2981         }
2982
2983         return count;
2984 }
2985
2986 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2987                              struct ixgbevf_ring *tx_ring, int tx_flags,
2988                              int count, u32 paylen, u8 hdr_len)
2989 {
2990         union ixgbe_adv_tx_desc *tx_desc = NULL;
2991         struct ixgbevf_tx_buffer *tx_buffer_info;
2992         u32 olinfo_status = 0, cmd_type_len = 0;
2993         unsigned int i;
2994
2995         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
2996
2997         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
2998
2999         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3000
3001         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3002                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3003
3004         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3005                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3006
3007                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3008                         IXGBE_ADVTXD_POPTS_SHIFT;
3009
3010                 /* use index 1 context for tso */
3011                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3012                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3013                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3014                                 IXGBE_ADVTXD_POPTS_SHIFT;
3015
3016         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3017                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3018                         IXGBE_ADVTXD_POPTS_SHIFT;
3019
3020         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3021
3022         i = tx_ring->next_to_use;
3023         while (count--) {
3024                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3025                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3026                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3027                 tx_desc->read.cmd_type_len =
3028                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3029                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3030                 i++;
3031                 if (i == tx_ring->count)
3032                         i = 0;
3033         }
3034
3035         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3036
3037         /*
3038          * Force memory writes to complete before letting h/w
3039          * know there are new descriptors to fetch.  (Only
3040          * applicable for weak-ordered memory model archs,
3041          * such as IA-64).
3042          */
3043         wmb();
3044
3045         tx_ring->next_to_use = i;
3046         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3047 }
3048
3049 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3050                                    struct ixgbevf_ring *tx_ring, int size)
3051 {
3052         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3053
3054         netif_stop_subqueue(netdev, tx_ring->queue_index);
3055         /* Herbert's original patch had:
3056          *  smp_mb__after_netif_stop_queue();
3057          * but since that doesn't exist yet, just open code it. */
3058         smp_mb();
3059
3060         /* We need to check again in a case another CPU has just
3061          * made room available. */
3062         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3063                 return -EBUSY;
3064
3065         /* A reprieve! - use start_queue because it doesn't call schedule */
3066         netif_start_subqueue(netdev, tx_ring->queue_index);
3067         ++adapter->restart_queue;
3068         return 0;
3069 }
3070
3071 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3072                                  struct ixgbevf_ring *tx_ring, int size)
3073 {
3074         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3075                 return 0;
3076         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3077 }
3078
3079 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3080 {
3081         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3082         struct ixgbevf_ring *tx_ring;
3083         unsigned int first;
3084         unsigned int tx_flags = 0;
3085         u8 hdr_len = 0;
3086         int r_idx = 0, tso;
3087         int count = 0;
3088
3089         unsigned int f;
3090
3091         tx_ring = &adapter->tx_ring[r_idx];
3092
3093         if (vlan_tx_tag_present(skb)) {
3094                 tx_flags |= vlan_tx_tag_get(skb);
3095                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3096                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3097         }
3098
3099         /* four things can cause us to need a context descriptor */
3100         if (skb_is_gso(skb) ||
3101             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3102             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3103                 count++;
3104
3105         count += TXD_USE_COUNT(skb_headlen(skb));
3106         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3107                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]));
3108
3109         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3110                 adapter->tx_busy++;
3111                 return NETDEV_TX_BUSY;
3112         }
3113
3114         first = tx_ring->next_to_use;
3115
3116         if (skb->protocol == htons(ETH_P_IP))
3117                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3118         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3119         if (tso < 0) {
3120                 dev_kfree_skb_any(skb);
3121                 return NETDEV_TX_OK;
3122         }
3123
3124         if (tso)
3125                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3126         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3127                  (skb->ip_summed == CHECKSUM_PARTIAL))
3128                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3129
3130         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3131                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3132                          skb->len, hdr_len);
3133
3134         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3135
3136         return NETDEV_TX_OK;
3137 }
3138
3139 /**
3140  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3141  * @netdev: network interface device structure
3142  * @p: pointer to an address structure
3143  *
3144  * Returns 0 on success, negative on failure
3145  **/
3146 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3147 {
3148         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3149         struct ixgbe_hw *hw = &adapter->hw;
3150         struct sockaddr *addr = p;
3151
3152         if (!is_valid_ether_addr(addr->sa_data))
3153                 return -EADDRNOTAVAIL;
3154
3155         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3156         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3157
3158         if (hw->mac.ops.set_rar)
3159                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3160
3161         return 0;
3162 }
3163
3164 /**
3165  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3166  * @netdev: network interface device structure
3167  * @new_mtu: new value for maximum frame size
3168  *
3169  * Returns 0 on success, negative on failure
3170  **/
3171 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3172 {
3173         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3174         struct ixgbe_hw *hw = &adapter->hw;
3175         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3176         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3177         u32 msg[2];
3178
3179         if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3180                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3181
3182         /* MTU < 68 is an error and causes problems on some kernels */
3183         if ((new_mtu < 68) || (max_frame > max_possible_frame))
3184                 return -EINVAL;
3185
3186         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3187                netdev->mtu, new_mtu);
3188         /* must set new MTU before calling down or up */
3189         netdev->mtu = new_mtu;
3190
3191         msg[0] = IXGBE_VF_SET_LPE;
3192         msg[1] = max_frame;
3193         hw->mbx.ops.write_posted(hw, msg, 2);
3194
3195         if (netif_running(netdev))
3196                 ixgbevf_reinit_locked(adapter);
3197
3198         return 0;
3199 }
3200
3201 static void ixgbevf_shutdown(struct pci_dev *pdev)
3202 {
3203         struct net_device *netdev = pci_get_drvdata(pdev);
3204         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3205
3206         netif_device_detach(netdev);
3207
3208         if (netif_running(netdev)) {
3209                 ixgbevf_down(adapter);
3210                 ixgbevf_free_irq(adapter);
3211                 ixgbevf_free_all_tx_resources(adapter);
3212                 ixgbevf_free_all_rx_resources(adapter);
3213         }
3214
3215 #ifdef CONFIG_PM
3216         pci_save_state(pdev);
3217 #endif
3218
3219         pci_disable_device(pdev);
3220 }
3221
3222 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3223                                                 struct rtnl_link_stats64 *stats)
3224 {
3225         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3226         unsigned int start;
3227         u64 bytes, packets;
3228         const struct ixgbevf_ring *ring;
3229         int i;
3230
3231         ixgbevf_update_stats(adapter);
3232
3233         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3234
3235         for (i = 0; i < adapter->num_rx_queues; i++) {
3236                 ring = &adapter->rx_ring[i];
3237                 do {
3238                         start = u64_stats_fetch_begin_bh(&ring->syncp);
3239                         bytes = ring->total_bytes;
3240                         packets = ring->total_packets;
3241                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3242                 stats->rx_bytes += bytes;
3243                 stats->rx_packets += packets;
3244         }
3245
3246         for (i = 0; i < adapter->num_tx_queues; i++) {
3247                 ring = &adapter->tx_ring[i];
3248                 do {
3249                         start = u64_stats_fetch_begin_bh(&ring->syncp);
3250                         bytes = ring->total_bytes;
3251                         packets = ring->total_packets;
3252                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3253                 stats->tx_bytes += bytes;
3254                 stats->tx_packets += packets;
3255         }
3256
3257         return stats;
3258 }
3259
3260 static int ixgbevf_set_features(struct net_device *netdev,
3261         netdev_features_t features)
3262 {
3263         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3264
3265         if (features & NETIF_F_RXCSUM)
3266                 adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3267         else
3268                 adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3269
3270         return 0;
3271 }
3272
3273 static const struct net_device_ops ixgbe_netdev_ops = {
3274         .ndo_open               = ixgbevf_open,
3275         .ndo_stop               = ixgbevf_close,
3276         .ndo_start_xmit         = ixgbevf_xmit_frame,
3277         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
3278         .ndo_get_stats64        = ixgbevf_get_stats,
3279         .ndo_validate_addr      = eth_validate_addr,
3280         .ndo_set_mac_address    = ixgbevf_set_mac,
3281         .ndo_change_mtu         = ixgbevf_change_mtu,
3282         .ndo_tx_timeout         = ixgbevf_tx_timeout,
3283         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
3284         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
3285         .ndo_set_features       = ixgbevf_set_features,
3286 };
3287
3288 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3289 {
3290         dev->netdev_ops = &ixgbe_netdev_ops;
3291         ixgbevf_set_ethtool_ops(dev);
3292         dev->watchdog_timeo = 5 * HZ;
3293 }
3294
3295 /**
3296  * ixgbevf_probe - Device Initialization Routine
3297  * @pdev: PCI device information struct
3298  * @ent: entry in ixgbevf_pci_tbl
3299  *
3300  * Returns 0 on success, negative on failure
3301  *
3302  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3303  * The OS initialization, configuring of the adapter private structure,
3304  * and a hardware reset occur.
3305  **/
3306 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3307                                    const struct pci_device_id *ent)
3308 {
3309         struct net_device *netdev;
3310         struct ixgbevf_adapter *adapter = NULL;
3311         struct ixgbe_hw *hw = NULL;
3312         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3313         static int cards_found;
3314         int err, pci_using_dac;
3315
3316         err = pci_enable_device(pdev);
3317         if (err)
3318                 return err;
3319
3320         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3321             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3322                 pci_using_dac = 1;
3323         } else {
3324                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3325                 if (err) {
3326                         err = dma_set_coherent_mask(&pdev->dev,
3327                                                     DMA_BIT_MASK(32));
3328                         if (err) {
3329                                 dev_err(&pdev->dev, "No usable DMA "
3330                                         "configuration, aborting\n");
3331                                 goto err_dma;
3332                         }
3333                 }
3334                 pci_using_dac = 0;
3335         }
3336
3337         err = pci_request_regions(pdev, ixgbevf_driver_name);
3338         if (err) {
3339                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3340                 goto err_pci_reg;
3341         }
3342
3343         pci_set_master(pdev);
3344
3345 #ifdef HAVE_TX_MQ
3346         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3347                                    MAX_TX_QUEUES);
3348 #else
3349         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3350 #endif
3351         if (!netdev) {
3352                 err = -ENOMEM;
3353                 goto err_alloc_etherdev;
3354         }
3355
3356         SET_NETDEV_DEV(netdev, &pdev->dev);
3357
3358         pci_set_drvdata(pdev, netdev);
3359         adapter = netdev_priv(netdev);
3360
3361         adapter->netdev = netdev;
3362         adapter->pdev = pdev;
3363         hw = &adapter->hw;
3364         hw->back = adapter;
3365         adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3366
3367         /*
3368          * call save state here in standalone driver because it relies on
3369          * adapter struct to exist, and needs to call netdev_priv
3370          */
3371         pci_save_state(pdev);
3372
3373         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3374                               pci_resource_len(pdev, 0));
3375         if (!hw->hw_addr) {
3376                 err = -EIO;
3377                 goto err_ioremap;
3378         }
3379
3380         ixgbevf_assign_netdev_ops(netdev);
3381
3382         adapter->bd_number = cards_found;
3383
3384         /* Setup hw api */
3385         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3386         hw->mac.type  = ii->mac;
3387
3388         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3389                sizeof(struct ixgbe_mbx_operations));
3390
3391         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3392         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3393         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3394
3395         /* setup the private structure */
3396         err = ixgbevf_sw_init(adapter);
3397
3398         netdev->hw_features = NETIF_F_SG |
3399                            NETIF_F_IP_CSUM |
3400                            NETIF_F_IPV6_CSUM |
3401                            NETIF_F_TSO |
3402                            NETIF_F_TSO6 |
3403                            NETIF_F_RXCSUM;
3404
3405         netdev->features = netdev->hw_features |
3406                            NETIF_F_HW_VLAN_TX |
3407                            NETIF_F_HW_VLAN_RX |
3408                            NETIF_F_HW_VLAN_FILTER;
3409
3410         netdev->vlan_features |= NETIF_F_TSO;
3411         netdev->vlan_features |= NETIF_F_TSO6;
3412         netdev->vlan_features |= NETIF_F_IP_CSUM;
3413         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3414         netdev->vlan_features |= NETIF_F_SG;
3415
3416         if (pci_using_dac)
3417                 netdev->features |= NETIF_F_HIGHDMA;
3418
3419         netdev->priv_flags |= IFF_UNICAST_FLT;
3420
3421         /* The HW MAC address was set and/or determined in sw_init */
3422         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3423         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3424
3425         if (!is_valid_ether_addr(netdev->dev_addr)) {
3426                 pr_err("invalid MAC address\n");
3427                 err = -EIO;
3428                 goto err_sw_init;
3429         }
3430
3431         init_timer(&adapter->watchdog_timer);
3432         adapter->watchdog_timer.function = ixgbevf_watchdog;
3433         adapter->watchdog_timer.data = (unsigned long)adapter;
3434
3435         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3436         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3437
3438         err = ixgbevf_init_interrupt_scheme(adapter);
3439         if (err)
3440                 goto err_sw_init;
3441
3442         /* pick up the PCI bus settings for reporting later */
3443         if (hw->mac.ops.get_bus_info)
3444                 hw->mac.ops.get_bus_info(hw);
3445
3446         strcpy(netdev->name, "eth%d");
3447
3448         err = register_netdev(netdev);
3449         if (err)
3450                 goto err_register;
3451
3452         adapter->netdev_registered = true;
3453
3454         netif_carrier_off(netdev);
3455
3456         ixgbevf_init_last_counter_stats(adapter);
3457
3458         /* print the MAC address */
3459         hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3460                netdev->dev_addr[0],
3461                netdev->dev_addr[1],
3462                netdev->dev_addr[2],
3463                netdev->dev_addr[3],
3464                netdev->dev_addr[4],
3465                netdev->dev_addr[5]);
3466
3467         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3468
3469         hw_dbg(hw, "LRO is disabled\n");
3470
3471         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3472         cards_found++;
3473         return 0;
3474
3475 err_register:
3476 err_sw_init:
3477         ixgbevf_reset_interrupt_capability(adapter);
3478         iounmap(hw->hw_addr);
3479 err_ioremap:
3480         free_netdev(netdev);
3481 err_alloc_etherdev:
3482         pci_release_regions(pdev);
3483 err_pci_reg:
3484 err_dma:
3485         pci_disable_device(pdev);
3486         return err;
3487 }
3488
3489 /**
3490  * ixgbevf_remove - Device Removal Routine
3491  * @pdev: PCI device information struct
3492  *
3493  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3494  * that it should release a PCI device.  The could be caused by a
3495  * Hot-Plug event, or because the driver is going to be removed from
3496  * memory.
3497  **/
3498 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3499 {
3500         struct net_device *netdev = pci_get_drvdata(pdev);
3501         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3502
3503         set_bit(__IXGBEVF_DOWN, &adapter->state);
3504
3505         del_timer_sync(&adapter->watchdog_timer);
3506
3507         cancel_work_sync(&adapter->reset_task);
3508         cancel_work_sync(&adapter->watchdog_task);
3509
3510         if (adapter->netdev_registered) {
3511                 unregister_netdev(netdev);
3512                 adapter->netdev_registered = false;
3513         }
3514
3515         ixgbevf_reset_interrupt_capability(adapter);
3516
3517         iounmap(adapter->hw.hw_addr);
3518         pci_release_regions(pdev);
3519
3520         hw_dbg(&adapter->hw, "Remove complete\n");
3521
3522         kfree(adapter->tx_ring);
3523         kfree(adapter->rx_ring);
3524
3525         free_netdev(netdev);
3526
3527         pci_disable_device(pdev);
3528 }
3529
3530 static struct pci_driver ixgbevf_driver = {
3531         .name     = ixgbevf_driver_name,
3532         .id_table = ixgbevf_pci_tbl,
3533         .probe    = ixgbevf_probe,
3534         .remove   = __devexit_p(ixgbevf_remove),
3535         .shutdown = ixgbevf_shutdown,
3536 };
3537
3538 /**
3539  * ixgbevf_init_module - Driver Registration Routine
3540  *
3541  * ixgbevf_init_module is the first routine called when the driver is
3542  * loaded. All it does is register with the PCI subsystem.
3543  **/
3544 static int __init ixgbevf_init_module(void)
3545 {
3546         int ret;
3547         pr_info("%s - version %s\n", ixgbevf_driver_string,
3548                 ixgbevf_driver_version);
3549
3550         pr_info("%s\n", ixgbevf_copyright);
3551
3552         ret = pci_register_driver(&ixgbevf_driver);
3553         return ret;
3554 }
3555
3556 module_init(ixgbevf_init_module);
3557
3558 /**
3559  * ixgbevf_exit_module - Driver Exit Cleanup Routine
3560  *
3561  * ixgbevf_exit_module is called just before the driver is removed
3562  * from memory.
3563  **/
3564 static void __exit ixgbevf_exit_module(void)
3565 {
3566         pci_unregister_driver(&ixgbevf_driver);
3567 }
3568
3569 #ifdef DEBUG
3570 /**
3571  * ixgbevf_get_hw_dev_name - return device name string
3572  * used by hardware layer to print debugging information
3573  **/
3574 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3575 {
3576         struct ixgbevf_adapter *adapter = hw->back;
3577         return adapter->netdev->name;
3578 }
3579
3580 #endif
3581 module_exit(ixgbevf_exit_module);
3582
3583 /* ixgbevf_main.c */