]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/sfc/nic.h
Merge tag 'v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[karo-tx-linux.git] / drivers / net / ethernet / sfc / nic.h
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19
20 enum {
21         EFX_REV_SIENA_A0 = 0,
22         EFX_REV_HUNT_A0 = 1,
23 };
24
25 static inline int efx_nic_rev(struct efx_nic *efx)
26 {
27         return efx->type->revision;
28 }
29
30 u32 efx_farch_fpga_ver(struct efx_nic *efx);
31
32 /* Read the current event from the event queue */
33 static inline efx_qword_t *efx_event(struct efx_channel *channel,
34                                      unsigned int index)
35 {
36         return ((efx_qword_t *) (channel->eventq.buf.addr)) +
37                 (index & channel->eventq_mask);
38 }
39
40 /* See if an event is present
41  *
42  * We check both the high and low dword of the event for all ones.  We
43  * wrote all ones when we cleared the event, and no valid event can
44  * have all ones in either its high or low dwords.  This approach is
45  * robust against reordering.
46  *
47  * Note that using a single 64-bit comparison is incorrect; even
48  * though the CPU read will be atomic, the DMA write may not be.
49  */
50 static inline int efx_event_present(efx_qword_t *event)
51 {
52         return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
53                   EFX_DWORD_IS_ALL_ONES(event->dword[1]));
54 }
55
56 /* Returns a pointer to the specified transmit descriptor in the TX
57  * descriptor queue belonging to the specified channel.
58  */
59 static inline efx_qword_t *
60 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
61 {
62         return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
63 }
64
65 /* Get partner of a TX queue, seen as part of the same net core queue */
66 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
67 {
68         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
69                 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
70         else
71                 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
72 }
73
74 /* Report whether this TX queue would be empty for the given write_count.
75  * May return false negative.
76  */
77 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
78                                          unsigned int write_count)
79 {
80         unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
81
82         if (empty_read_count == 0)
83                 return false;
84
85         return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
86 }
87
88 /* Decide whether we can use TX PIO, ie. write packet data directly into
89  * a buffer on the device.  This can reduce latency at the expense of
90  * throughput, so we only do this if both hardware and software TX rings
91  * are empty.  This also ensures that only one packet at a time can be
92  * using the PIO buffer.
93  */
94 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
95 {
96         struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
97         return tx_queue->piobuf &&
98                __efx_nic_tx_is_empty(tx_queue, tx_queue->insert_count) &&
99                __efx_nic_tx_is_empty(partner, partner->insert_count);
100 }
101
102 /* Decide whether to push a TX descriptor to the NIC vs merely writing
103  * the doorbell.  This can reduce latency when we are adding a single
104  * descriptor to an empty queue, but is otherwise pointless.  Further,
105  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
106  * triggered if we don't check this.
107  * We use the write_count used for the last doorbell push, to get the
108  * NIC's view of the tx queue.
109  */
110 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
111                                             unsigned int write_count)
112 {
113         bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
114
115         tx_queue->empty_read_count = 0;
116         return was_empty && tx_queue->write_count - write_count == 1;
117 }
118
119 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
120 static inline efx_qword_t *
121 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
122 {
123         return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
124 }
125
126 enum {
127         PHY_TYPE_NONE = 0,
128         PHY_TYPE_TXC43128 = 1,
129         PHY_TYPE_88E1111 = 2,
130         PHY_TYPE_SFX7101 = 3,
131         PHY_TYPE_QT2022C2 = 4,
132         PHY_TYPE_PM8358 = 6,
133         PHY_TYPE_SFT9001A = 8,
134         PHY_TYPE_QT2025C = 9,
135         PHY_TYPE_SFT9001B = 10,
136 };
137
138 /* Alignment of PCIe DMA boundaries (4KB) */
139 #define EFX_PAGE_SIZE   4096
140 /* Size and alignment of buffer table entries (same) */
141 #define EFX_BUF_SIZE    EFX_PAGE_SIZE
142
143 /* NIC-generic software stats */
144 enum {
145         GENERIC_STAT_rx_noskb_drops,
146         GENERIC_STAT_rx_nodesc_trunc,
147         GENERIC_STAT_COUNT
148 };
149
150 enum {
151         SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
152         SIENA_STAT_tx_good_bytes,
153         SIENA_STAT_tx_bad_bytes,
154         SIENA_STAT_tx_packets,
155         SIENA_STAT_tx_bad,
156         SIENA_STAT_tx_pause,
157         SIENA_STAT_tx_control,
158         SIENA_STAT_tx_unicast,
159         SIENA_STAT_tx_multicast,
160         SIENA_STAT_tx_broadcast,
161         SIENA_STAT_tx_lt64,
162         SIENA_STAT_tx_64,
163         SIENA_STAT_tx_65_to_127,
164         SIENA_STAT_tx_128_to_255,
165         SIENA_STAT_tx_256_to_511,
166         SIENA_STAT_tx_512_to_1023,
167         SIENA_STAT_tx_1024_to_15xx,
168         SIENA_STAT_tx_15xx_to_jumbo,
169         SIENA_STAT_tx_gtjumbo,
170         SIENA_STAT_tx_collision,
171         SIENA_STAT_tx_single_collision,
172         SIENA_STAT_tx_multiple_collision,
173         SIENA_STAT_tx_excessive_collision,
174         SIENA_STAT_tx_deferred,
175         SIENA_STAT_tx_late_collision,
176         SIENA_STAT_tx_excessive_deferred,
177         SIENA_STAT_tx_non_tcpudp,
178         SIENA_STAT_tx_mac_src_error,
179         SIENA_STAT_tx_ip_src_error,
180         SIENA_STAT_rx_bytes,
181         SIENA_STAT_rx_good_bytes,
182         SIENA_STAT_rx_bad_bytes,
183         SIENA_STAT_rx_packets,
184         SIENA_STAT_rx_good,
185         SIENA_STAT_rx_bad,
186         SIENA_STAT_rx_pause,
187         SIENA_STAT_rx_control,
188         SIENA_STAT_rx_unicast,
189         SIENA_STAT_rx_multicast,
190         SIENA_STAT_rx_broadcast,
191         SIENA_STAT_rx_lt64,
192         SIENA_STAT_rx_64,
193         SIENA_STAT_rx_65_to_127,
194         SIENA_STAT_rx_128_to_255,
195         SIENA_STAT_rx_256_to_511,
196         SIENA_STAT_rx_512_to_1023,
197         SIENA_STAT_rx_1024_to_15xx,
198         SIENA_STAT_rx_15xx_to_jumbo,
199         SIENA_STAT_rx_gtjumbo,
200         SIENA_STAT_rx_bad_gtjumbo,
201         SIENA_STAT_rx_overflow,
202         SIENA_STAT_rx_false_carrier,
203         SIENA_STAT_rx_symbol_error,
204         SIENA_STAT_rx_align_error,
205         SIENA_STAT_rx_length_error,
206         SIENA_STAT_rx_internal_error,
207         SIENA_STAT_rx_nodesc_drop_cnt,
208         SIENA_STAT_COUNT
209 };
210
211 /**
212  * struct siena_nic_data - Siena NIC state
213  * @efx: Pointer back to main interface structure
214  * @wol_filter_id: Wake-on-LAN packet filter id
215  * @stats: Hardware statistics
216  * @vf: Array of &struct siena_vf objects
217  * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
218  * @vfdi_status: Common VFDI status page to be dmad to VF address space.
219  * @local_addr_list: List of local addresses. Protected by %local_lock.
220  * @local_page_list: List of DMA addressable pages used to broadcast
221  *      %local_addr_list. Protected by %local_lock.
222  * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
223  * @peer_work: Work item to broadcast peer addresses to VMs.
224  */
225 struct siena_nic_data {
226         struct efx_nic *efx;
227         int wol_filter_id;
228         u64 stats[SIENA_STAT_COUNT];
229 #ifdef CONFIG_SFC_SRIOV
230         struct siena_vf *vf;
231         struct efx_channel *vfdi_channel;
232         unsigned vf_buftbl_base;
233         struct efx_buffer vfdi_status;
234         struct list_head local_addr_list;
235         struct list_head local_page_list;
236         struct mutex local_lock;
237         struct work_struct peer_work;
238 #endif
239 };
240
241 enum {
242         EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
243         EF10_STAT_port_tx_packets,
244         EF10_STAT_port_tx_pause,
245         EF10_STAT_port_tx_control,
246         EF10_STAT_port_tx_unicast,
247         EF10_STAT_port_tx_multicast,
248         EF10_STAT_port_tx_broadcast,
249         EF10_STAT_port_tx_lt64,
250         EF10_STAT_port_tx_64,
251         EF10_STAT_port_tx_65_to_127,
252         EF10_STAT_port_tx_128_to_255,
253         EF10_STAT_port_tx_256_to_511,
254         EF10_STAT_port_tx_512_to_1023,
255         EF10_STAT_port_tx_1024_to_15xx,
256         EF10_STAT_port_tx_15xx_to_jumbo,
257         EF10_STAT_port_rx_bytes,
258         EF10_STAT_port_rx_bytes_minus_good_bytes,
259         EF10_STAT_port_rx_good_bytes,
260         EF10_STAT_port_rx_bad_bytes,
261         EF10_STAT_port_rx_packets,
262         EF10_STAT_port_rx_good,
263         EF10_STAT_port_rx_bad,
264         EF10_STAT_port_rx_pause,
265         EF10_STAT_port_rx_control,
266         EF10_STAT_port_rx_unicast,
267         EF10_STAT_port_rx_multicast,
268         EF10_STAT_port_rx_broadcast,
269         EF10_STAT_port_rx_lt64,
270         EF10_STAT_port_rx_64,
271         EF10_STAT_port_rx_65_to_127,
272         EF10_STAT_port_rx_128_to_255,
273         EF10_STAT_port_rx_256_to_511,
274         EF10_STAT_port_rx_512_to_1023,
275         EF10_STAT_port_rx_1024_to_15xx,
276         EF10_STAT_port_rx_15xx_to_jumbo,
277         EF10_STAT_port_rx_gtjumbo,
278         EF10_STAT_port_rx_bad_gtjumbo,
279         EF10_STAT_port_rx_overflow,
280         EF10_STAT_port_rx_align_error,
281         EF10_STAT_port_rx_length_error,
282         EF10_STAT_port_rx_nodesc_drops,
283         EF10_STAT_port_rx_pm_trunc_bb_overflow,
284         EF10_STAT_port_rx_pm_discard_bb_overflow,
285         EF10_STAT_port_rx_pm_trunc_vfifo_full,
286         EF10_STAT_port_rx_pm_discard_vfifo_full,
287         EF10_STAT_port_rx_pm_trunc_qbb,
288         EF10_STAT_port_rx_pm_discard_qbb,
289         EF10_STAT_port_rx_pm_discard_mapping,
290         EF10_STAT_port_rx_dp_q_disabled_packets,
291         EF10_STAT_port_rx_dp_di_dropped_packets,
292         EF10_STAT_port_rx_dp_streaming_packets,
293         EF10_STAT_port_rx_dp_hlb_fetch,
294         EF10_STAT_port_rx_dp_hlb_wait,
295         EF10_STAT_rx_unicast,
296         EF10_STAT_rx_unicast_bytes,
297         EF10_STAT_rx_multicast,
298         EF10_STAT_rx_multicast_bytes,
299         EF10_STAT_rx_broadcast,
300         EF10_STAT_rx_broadcast_bytes,
301         EF10_STAT_rx_bad,
302         EF10_STAT_rx_bad_bytes,
303         EF10_STAT_rx_overflow,
304         EF10_STAT_tx_unicast,
305         EF10_STAT_tx_unicast_bytes,
306         EF10_STAT_tx_multicast,
307         EF10_STAT_tx_multicast_bytes,
308         EF10_STAT_tx_broadcast,
309         EF10_STAT_tx_broadcast_bytes,
310         EF10_STAT_tx_bad,
311         EF10_STAT_tx_bad_bytes,
312         EF10_STAT_tx_overflow,
313         EF10_STAT_COUNT
314 };
315
316 /* Maximum number of TX PIO buffers we may allocate to a function.
317  * This matches the total number of buffers on each SFC9100-family
318  * controller.
319  */
320 #define EF10_TX_PIOBUF_COUNT 16
321
322 /**
323  * struct efx_ef10_nic_data - EF10 architecture NIC state
324  * @mcdi_buf: DMA buffer for MCDI
325  * @warm_boot_count: Last seen MC warm boot count
326  * @vi_base: Absolute index of first VI in this function
327  * @n_allocated_vis: Number of VIs allocated to this function
328  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
329  * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
330  * @n_piobufs: Number of PIO buffers allocated to this function
331  * @wc_membase: Base address of write-combining mapping of the memory BAR
332  * @pio_write_base: Base address for writing PIO buffers
333  * @pio_write_vi_base: Relative VI number for @pio_write_base
334  * @piobuf_handle: Handle of each PIO buffer allocated
335  * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
336  *      reboot
337  * @rx_rss_context: Firmware handle for our RSS context
338  * @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared
339  * @stats: Hardware statistics
340  * @workaround_35388: Flag: firmware supports workaround for bug 35388
341  * @workaround_26807: Flag: firmware supports workaround for bug 26807
342  * @workaround_61265: Flag: firmware supports workaround for bug 61265
343  * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
344  *      after MC reboot
345  * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
346  *      %MC_CMD_GET_CAPABILITIES response)
347  * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
348  * %MC_CMD_GET_CAPABILITIES response)
349  * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
350  * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
351  * @vport_id: The function's vport ID, only relevant for PFs
352  * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
353  * @pf_index: The number for this PF, or the parent PF if this is a VF
354 #ifdef CONFIG_SFC_SRIOV
355  * @vf: Pointer to VF data structure
356 #endif
357  * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
358  * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
359  * @vlan_lock: Lock to serialize access to vlan_list.
360  */
361 struct efx_ef10_nic_data {
362         struct efx_buffer mcdi_buf;
363         u16 warm_boot_count;
364         unsigned int vi_base;
365         unsigned int n_allocated_vis;
366         bool must_realloc_vis;
367         bool must_restore_filters;
368         unsigned int n_piobufs;
369         void __iomem *wc_membase, *pio_write_base;
370         unsigned int pio_write_vi_base;
371         unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
372         bool must_restore_piobufs;
373         u32 rx_rss_context;
374         bool rx_rss_context_exclusive;
375         u64 stats[EF10_STAT_COUNT];
376         bool workaround_35388;
377         bool workaround_26807;
378         bool workaround_61265;
379         bool must_check_datapath_caps;
380         u32 datapath_caps;
381         u32 datapath_caps2;
382         unsigned int rx_dpcpu_fw_id;
383         unsigned int tx_dpcpu_fw_id;
384         unsigned int vport_id;
385         bool must_probe_vswitching;
386         unsigned int pf_index;
387         u8 port_id[ETH_ALEN];
388 #ifdef CONFIG_SFC_SRIOV
389         unsigned int vf_index;
390         struct ef10_vf *vf;
391 #endif
392         u8 vport_mac[ETH_ALEN];
393         struct list_head vlan_list;
394         struct mutex vlan_lock;
395 };
396
397 int efx_init_sriov(void);
398 void efx_fini_sriov(void);
399
400 struct ethtool_ts_info;
401 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
402 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
403 void efx_ptp_remove(struct efx_nic *efx);
404 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
405 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
406 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
407 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
408 int efx_ptp_get_mode(struct efx_nic *efx);
409 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
410                         unsigned int new_mode);
411 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
412 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
413 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
414 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
415 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
416 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
417                                    struct sk_buff *skb);
418 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
419                                                struct sk_buff *skb)
420 {
421         if (channel->sync_events_state == SYNC_EVENTS_VALID)
422                 __efx_rx_skb_attach_timestamp(channel, skb);
423 }
424 void efx_ptp_start_datapath(struct efx_nic *efx);
425 void efx_ptp_stop_datapath(struct efx_nic *efx);
426
427 extern const struct efx_nic_type falcon_a1_nic_type;
428 extern const struct efx_nic_type falcon_b0_nic_type;
429 extern const struct efx_nic_type siena_a0_nic_type;
430 extern const struct efx_nic_type efx_hunt_a0_nic_type;
431 extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
432
433 /**************************************************************************
434  *
435  * Externs
436  *
437  **************************************************************************
438  */
439
440 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
441
442 /* TX data path */
443 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
444 {
445         return tx_queue->efx->type->tx_probe(tx_queue);
446 }
447 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
448 {
449         tx_queue->efx->type->tx_init(tx_queue);
450 }
451 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
452 {
453         tx_queue->efx->type->tx_remove(tx_queue);
454 }
455 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
456 {
457         tx_queue->efx->type->tx_write(tx_queue);
458 }
459
460 /* RX data path */
461 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
462 {
463         return rx_queue->efx->type->rx_probe(rx_queue);
464 }
465 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
466 {
467         rx_queue->efx->type->rx_init(rx_queue);
468 }
469 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
470 {
471         rx_queue->efx->type->rx_remove(rx_queue);
472 }
473 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
474 {
475         rx_queue->efx->type->rx_write(rx_queue);
476 }
477 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
478 {
479         rx_queue->efx->type->rx_defer_refill(rx_queue);
480 }
481
482 /* Event data path */
483 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
484 {
485         return channel->efx->type->ev_probe(channel);
486 }
487 static inline int efx_nic_init_eventq(struct efx_channel *channel)
488 {
489         return channel->efx->type->ev_init(channel);
490 }
491 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
492 {
493         channel->efx->type->ev_fini(channel);
494 }
495 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
496 {
497         channel->efx->type->ev_remove(channel);
498 }
499 static inline int
500 efx_nic_process_eventq(struct efx_channel *channel, int quota)
501 {
502         return channel->efx->type->ev_process(channel, quota);
503 }
504 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
505 {
506         channel->efx->type->ev_read_ack(channel);
507 }
508 void efx_nic_event_test_start(struct efx_channel *channel);
509
510 /* Falcon/Siena queue operations */
511 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
512 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
513 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
514 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
515 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
516 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
517                                     dma_addr_t dma_addr, unsigned int len);
518 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
519 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
520 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
521 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
522 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
523 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
524 int efx_farch_ev_probe(struct efx_channel *channel);
525 int efx_farch_ev_init(struct efx_channel *channel);
526 void efx_farch_ev_fini(struct efx_channel *channel);
527 void efx_farch_ev_remove(struct efx_channel *channel);
528 int efx_farch_ev_process(struct efx_channel *channel, int quota);
529 void efx_farch_ev_read_ack(struct efx_channel *channel);
530 void efx_farch_ev_test_generate(struct efx_channel *channel);
531
532 /* Falcon/Siena filter operations */
533 int efx_farch_filter_table_probe(struct efx_nic *efx);
534 void efx_farch_filter_table_restore(struct efx_nic *efx);
535 void efx_farch_filter_table_remove(struct efx_nic *efx);
536 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
537 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
538                             bool replace);
539 int efx_farch_filter_remove_safe(struct efx_nic *efx,
540                                  enum efx_filter_priority priority,
541                                  u32 filter_id);
542 int efx_farch_filter_get_safe(struct efx_nic *efx,
543                               enum efx_filter_priority priority, u32 filter_id,
544                               struct efx_filter_spec *);
545 int efx_farch_filter_clear_rx(struct efx_nic *efx,
546                               enum efx_filter_priority priority);
547 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
548                                    enum efx_filter_priority priority);
549 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
550 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
551                                 enum efx_filter_priority priority, u32 *buf,
552                                 u32 size);
553 #ifdef CONFIG_RFS_ACCEL
554 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
555                                 struct efx_filter_spec *spec);
556 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
557                                      unsigned int index);
558 #endif
559 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
560
561 bool efx_nic_event_present(struct efx_channel *channel);
562
563 /* Some statistics are computed as A - B where A and B each increase
564  * linearly with some hardware counter(s) and the counters are read
565  * asynchronously.  If the counters contributing to B are always read
566  * after those contributing to A, the computed value may be lower than
567  * the true value by some variable amount, and may decrease between
568  * subsequent computations.
569  *
570  * We should never allow statistics to decrease or to exceed the true
571  * value.  Since the computed value will never be greater than the
572  * true value, we can achieve this by only storing the computed value
573  * when it increases.
574  */
575 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
576 {
577         if ((s64)(diff - *stat) > 0)
578                 *stat = diff;
579 }
580
581 /* Interrupts */
582 int efx_nic_init_interrupt(struct efx_nic *efx);
583 int efx_nic_irq_test_start(struct efx_nic *efx);
584 void efx_nic_fini_interrupt(struct efx_nic *efx);
585
586 /* Falcon/Siena interrupts */
587 void efx_farch_irq_enable_master(struct efx_nic *efx);
588 int efx_farch_irq_test_generate(struct efx_nic *efx);
589 void efx_farch_irq_disable_master(struct efx_nic *efx);
590 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
591 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
592 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
593
594 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
595 {
596         return ACCESS_ONCE(channel->event_test_cpu);
597 }
598 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
599 {
600         return ACCESS_ONCE(efx->last_irq_cpu);
601 }
602
603 /* Global Resources */
604 int efx_nic_flush_queues(struct efx_nic *efx);
605 void siena_prepare_flush(struct efx_nic *efx);
606 int efx_farch_fini_dmaq(struct efx_nic *efx);
607 void efx_farch_finish_flr(struct efx_nic *efx);
608 void siena_finish_flush(struct efx_nic *efx);
609 void falcon_start_nic_stats(struct efx_nic *efx);
610 void falcon_stop_nic_stats(struct efx_nic *efx);
611 int falcon_reset_xaui(struct efx_nic *efx);
612 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
613 void efx_farch_init_common(struct efx_nic *efx);
614 void efx_ef10_handle_drain_event(struct efx_nic *efx);
615 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
616
617 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
618                          unsigned int len, gfp_t gfp_flags);
619 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
620
621 /* Tests */
622 struct efx_farch_register_test {
623         unsigned address;
624         efx_oword_t mask;
625 };
626 int efx_farch_test_registers(struct efx_nic *efx,
627                              const struct efx_farch_register_test *regs,
628                              size_t n_regs);
629
630 size_t efx_nic_get_regs_len(struct efx_nic *efx);
631 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
632
633 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
634                               const unsigned long *mask, u8 *names);
635 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
636                           const unsigned long *mask, u64 *stats,
637                           const void *dma_buf, bool accumulate);
638 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
639
640 #define EFX_MAX_FLUSH_TIME 5000
641
642 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
643                               efx_qword_t *event);
644
645 #endif /* EFX_NIC_H */