]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ath/ath10k/ce.c
Merge remote-tracking branch 'sound-current/for-linus'
[karo-tx-linux.git] / drivers / net / wireless / ath / ath10k / ce.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63                                                        u32 ce_ctrl_addr,
64                                                        unsigned int n)
65 {
66         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70                                                       u32 ce_ctrl_addr)
71 {
72         return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76                                                       u32 ce_ctrl_addr,
77                                                       unsigned int n)
78 {
79         ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83                                                      u32 ce_ctrl_addr)
84 {
85         return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89                                                     u32 ce_ctrl_addr)
90 {
91         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95                                                     u32 ce_ctrl_addr,
96                                                     unsigned int addr)
97 {
98         ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102                                                u32 ce_ctrl_addr,
103                                                unsigned int n)
104 {
105         ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109                                                u32 ce_ctrl_addr,
110                                                unsigned int n)
111 {
112         u32 ctrl1_addr = ath10k_pci_read32((ar),
113                                            (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116                            (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117                            CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121                                                     u32 ce_ctrl_addr,
122                                                     unsigned int n)
123 {
124         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127                            (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128                            CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132                                                      u32 ce_ctrl_addr,
133                                                      unsigned int n)
134 {
135         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138                            (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139                            CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143                                                      u32 ce_ctrl_addr)
144 {
145         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149                                                      u32 ce_ctrl_addr,
150                                                      u32 addr)
151 {
152         ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156                                                 u32 ce_ctrl_addr,
157                                                 unsigned int n)
158 {
159         ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163                                                    u32 ce_ctrl_addr,
164                                                    unsigned int n)
165 {
166         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169                            (addr & ~SRC_WATERMARK_HIGH_MASK) |
170                            SRC_WATERMARK_HIGH_SET(n));
171 }
172
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174                                                   u32 ce_ctrl_addr,
175                                                   unsigned int n)
176 {
177         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180                            (addr & ~SRC_WATERMARK_LOW_MASK) |
181                            SRC_WATERMARK_LOW_SET(n));
182 }
183
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185                                                     u32 ce_ctrl_addr,
186                                                     unsigned int n)
187 {
188         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191                            (addr & ~DST_WATERMARK_HIGH_MASK) |
192                            DST_WATERMARK_HIGH_SET(n));
193 }
194
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196                                                    u32 ce_ctrl_addr,
197                                                    unsigned int n)
198 {
199         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202                            (addr & ~DST_WATERMARK_LOW_MASK) |
203                            DST_WATERMARK_LOW_SET(n));
204 }
205
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207                                                         u32 ce_ctrl_addr)
208 {
209         u32 host_ie_addr = ath10k_pci_read32(ar,
210                                              ce_ctrl_addr + HOST_IE_ADDRESS);
211
212         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213                            host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217                                                         u32 ce_ctrl_addr)
218 {
219         u32 host_ie_addr = ath10k_pci_read32(ar,
220                                              ce_ctrl_addr + HOST_IE_ADDRESS);
221
222         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223                            host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227                                                     u32 ce_ctrl_addr)
228 {
229         u32 host_ie_addr = ath10k_pci_read32(ar,
230                                              ce_ctrl_addr + HOST_IE_ADDRESS);
231
232         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233                            host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237                                                u32 ce_ctrl_addr)
238 {
239         u32 misc_ie_addr = ath10k_pci_read32(ar,
240                                              ce_ctrl_addr + MISC_IE_ADDRESS);
241
242         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243                            misc_ie_addr | CE_ERROR_MASK);
244 }
245
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247                                                 u32 ce_ctrl_addr)
248 {
249         u32 misc_ie_addr = ath10k_pci_read32(ar,
250                                              ce_ctrl_addr + MISC_IE_ADDRESS);
251
252         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253                            misc_ie_addr & ~CE_ERROR_MASK);
254 }
255
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257                                                      u32 ce_ctrl_addr,
258                                                      unsigned int mask)
259 {
260         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262
263 /*
264  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265  * ath10k_ce_sendlist_send.
266  * The caller takes responsibility for any needed locking.
267  */
268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269                           void *per_transfer_context,
270                           u32 buffer,
271                           unsigned int nbytes,
272                           unsigned int transfer_id,
273                           unsigned int flags)
274 {
275         struct ath10k *ar = ce_state->ar;
276         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277         struct ce_desc *desc, sdesc;
278         unsigned int nentries_mask = src_ring->nentries_mask;
279         unsigned int sw_index = src_ring->sw_index;
280         unsigned int write_index = src_ring->write_index;
281         u32 ctrl_addr = ce_state->ctrl_addr;
282         u32 desc_flags = 0;
283         int ret = 0;
284
285         if (nbytes > ce_state->src_sz_max)
286                 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287                             __func__, nbytes, ce_state->src_sz_max);
288
289         if (unlikely(CE_RING_DELTA(nentries_mask,
290                                    write_index, sw_index - 1) <= 0)) {
291                 ret = -ENOSR;
292                 goto exit;
293         }
294
295         desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296                                    write_index);
297
298         desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
299
300         if (flags & CE_SEND_FLAG_GATHER)
301                 desc_flags |= CE_DESC_FLAGS_GATHER;
302         if (flags & CE_SEND_FLAG_BYTE_SWAP)
303                 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
304
305         sdesc.addr   = __cpu_to_le32(buffer);
306         sdesc.nbytes = __cpu_to_le16(nbytes);
307         sdesc.flags  = __cpu_to_le16(desc_flags);
308
309         *desc = sdesc;
310
311         src_ring->per_transfer_context[write_index] = per_transfer_context;
312
313         /* Update Source Ring Write Index */
314         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
315
316         /* WORKAROUND */
317         if (!(flags & CE_SEND_FLAG_GATHER))
318                 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
319
320         src_ring->write_index = write_index;
321 exit:
322         return ret;
323 }
324
325 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
326 {
327         struct ath10k *ar = pipe->ar;
328         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
329         struct ath10k_ce_ring *src_ring = pipe->src_ring;
330         u32 ctrl_addr = pipe->ctrl_addr;
331
332         lockdep_assert_held(&ar_pci->ce_lock);
333
334         /*
335          * This function must be called only if there is an incomplete
336          * scatter-gather transfer (before index register is updated)
337          * that needs to be cleaned up.
338          */
339         if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
340                 return;
341
342         if (WARN_ON_ONCE(src_ring->write_index ==
343                          ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
344                 return;
345
346         src_ring->write_index--;
347         src_ring->write_index &= src_ring->nentries_mask;
348
349         src_ring->per_transfer_context[src_ring->write_index] = NULL;
350 }
351
352 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
353                    void *per_transfer_context,
354                    u32 buffer,
355                    unsigned int nbytes,
356                    unsigned int transfer_id,
357                    unsigned int flags)
358 {
359         struct ath10k *ar = ce_state->ar;
360         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
361         int ret;
362
363         spin_lock_bh(&ar_pci->ce_lock);
364         ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
365                                     buffer, nbytes, transfer_id, flags);
366         spin_unlock_bh(&ar_pci->ce_lock);
367
368         return ret;
369 }
370
371 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
372 {
373         struct ath10k *ar = pipe->ar;
374         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
375         int delta;
376
377         spin_lock_bh(&ar_pci->ce_lock);
378         delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
379                               pipe->src_ring->write_index,
380                               pipe->src_ring->sw_index - 1);
381         spin_unlock_bh(&ar_pci->ce_lock);
382
383         return delta;
384 }
385
386 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
387 {
388         struct ath10k *ar = pipe->ar;
389         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
390         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
391         unsigned int nentries_mask = dest_ring->nentries_mask;
392         unsigned int write_index = dest_ring->write_index;
393         unsigned int sw_index = dest_ring->sw_index;
394
395         lockdep_assert_held(&ar_pci->ce_lock);
396
397         return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
398 }
399
400 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
401 {
402         struct ath10k *ar = pipe->ar;
403         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
404         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
405         unsigned int nentries_mask = dest_ring->nentries_mask;
406         unsigned int write_index = dest_ring->write_index;
407         unsigned int sw_index = dest_ring->sw_index;
408         struct ce_desc *base = dest_ring->base_addr_owner_space;
409         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
410         u32 ctrl_addr = pipe->ctrl_addr;
411
412         lockdep_assert_held(&ar_pci->ce_lock);
413
414         if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
415                 return -ENOSPC;
416
417         desc->addr = __cpu_to_le32(paddr);
418         desc->nbytes = 0;
419
420         dest_ring->per_transfer_context[write_index] = ctx;
421         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
422         ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
423         dest_ring->write_index = write_index;
424
425         return 0;
426 }
427
428 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
429 {
430         struct ath10k *ar = pipe->ar;
431         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
432         int ret;
433
434         spin_lock_bh(&ar_pci->ce_lock);
435         ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
436         spin_unlock_bh(&ar_pci->ce_lock);
437
438         return ret;
439 }
440
441 /*
442  * Guts of ath10k_ce_completed_recv_next.
443  * The caller takes responsibility for any necessary locking.
444  */
445 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
446                                          void **per_transfer_contextp,
447                                          u32 *bufferp,
448                                          unsigned int *nbytesp,
449                                          unsigned int *transfer_idp,
450                                          unsigned int *flagsp)
451 {
452         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
453         unsigned int nentries_mask = dest_ring->nentries_mask;
454         struct ath10k *ar = ce_state->ar;
455         unsigned int sw_index = dest_ring->sw_index;
456
457         struct ce_desc *base = dest_ring->base_addr_owner_space;
458         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
459         struct ce_desc sdesc;
460         u16 nbytes;
461
462         /* Copy in one go for performance reasons */
463         sdesc = *desc;
464
465         nbytes = __le16_to_cpu(sdesc.nbytes);
466         if (nbytes == 0) {
467                 /*
468                  * This closes a relatively unusual race where the Host
469                  * sees the updated DRRI before the update to the
470                  * corresponding descriptor has completed. We treat this
471                  * as a descriptor that is not yet done.
472                  */
473                 return -EIO;
474         }
475
476         desc->nbytes = 0;
477
478         /* Return data from completed destination descriptor */
479         *bufferp = __le32_to_cpu(sdesc.addr);
480         *nbytesp = nbytes;
481         *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
482
483         if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
484                 *flagsp = CE_RECV_FLAG_SWAPPED;
485         else
486                 *flagsp = 0;
487
488         if (per_transfer_contextp)
489                 *per_transfer_contextp =
490                         dest_ring->per_transfer_context[sw_index];
491
492         /* sanity */
493         dest_ring->per_transfer_context[sw_index] = NULL;
494
495         /* Update sw_index */
496         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
497         dest_ring->sw_index = sw_index;
498
499         return 0;
500 }
501
502 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
503                                   void **per_transfer_contextp,
504                                   u32 *bufferp,
505                                   unsigned int *nbytesp,
506                                   unsigned int *transfer_idp,
507                                   unsigned int *flagsp)
508 {
509         struct ath10k *ar = ce_state->ar;
510         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
511         int ret;
512
513         spin_lock_bh(&ar_pci->ce_lock);
514         ret = ath10k_ce_completed_recv_next_nolock(ce_state,
515                                                    per_transfer_contextp,
516                                                    bufferp, nbytesp,
517                                                    transfer_idp, flagsp);
518         spin_unlock_bh(&ar_pci->ce_lock);
519
520         return ret;
521 }
522
523 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
524                                void **per_transfer_contextp,
525                                u32 *bufferp)
526 {
527         struct ath10k_ce_ring *dest_ring;
528         unsigned int nentries_mask;
529         unsigned int sw_index;
530         unsigned int write_index;
531         int ret;
532         struct ath10k *ar;
533         struct ath10k_pci *ar_pci;
534
535         dest_ring = ce_state->dest_ring;
536
537         if (!dest_ring)
538                 return -EIO;
539
540         ar = ce_state->ar;
541         ar_pci = ath10k_pci_priv(ar);
542
543         spin_lock_bh(&ar_pci->ce_lock);
544
545         nentries_mask = dest_ring->nentries_mask;
546         sw_index = dest_ring->sw_index;
547         write_index = dest_ring->write_index;
548         if (write_index != sw_index) {
549                 struct ce_desc *base = dest_ring->base_addr_owner_space;
550                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
551
552                 /* Return data from completed destination descriptor */
553                 *bufferp = __le32_to_cpu(desc->addr);
554
555                 if (per_transfer_contextp)
556                         *per_transfer_contextp =
557                                 dest_ring->per_transfer_context[sw_index];
558
559                 /* sanity */
560                 dest_ring->per_transfer_context[sw_index] = NULL;
561                 desc->nbytes = 0;
562
563                 /* Update sw_index */
564                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
565                 dest_ring->sw_index = sw_index;
566                 ret = 0;
567         } else {
568                 ret = -EIO;
569         }
570
571         spin_unlock_bh(&ar_pci->ce_lock);
572
573         return ret;
574 }
575
576 /*
577  * Guts of ath10k_ce_completed_send_next.
578  * The caller takes responsibility for any necessary locking.
579  */
580 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
581                                          void **per_transfer_contextp)
582 {
583         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
584         u32 ctrl_addr = ce_state->ctrl_addr;
585         struct ath10k *ar = ce_state->ar;
586         unsigned int nentries_mask = src_ring->nentries_mask;
587         unsigned int sw_index = src_ring->sw_index;
588         unsigned int read_index;
589
590         if (src_ring->hw_index == sw_index) {
591                 /*
592                  * The SW completion index has caught up with the cached
593                  * version of the HW completion index.
594                  * Update the cached HW completion index to see whether
595                  * the SW has really caught up to the HW, or if the cached
596                  * value of the HW index has become stale.
597                  */
598
599                 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
600                 if (read_index == 0xffffffff)
601                         return -ENODEV;
602
603                 read_index &= nentries_mask;
604                 src_ring->hw_index = read_index;
605         }
606
607         read_index = src_ring->hw_index;
608
609         if (read_index == sw_index)
610                 return -EIO;
611
612         if (per_transfer_contextp)
613                 *per_transfer_contextp =
614                         src_ring->per_transfer_context[sw_index];
615
616         /* sanity */
617         src_ring->per_transfer_context[sw_index] = NULL;
618
619         /* Update sw_index */
620         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
621         src_ring->sw_index = sw_index;
622
623         return 0;
624 }
625
626 /* NB: Modeled after ath10k_ce_completed_send_next */
627 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
628                                void **per_transfer_contextp,
629                                u32 *bufferp,
630                                unsigned int *nbytesp,
631                                unsigned int *transfer_idp)
632 {
633         struct ath10k_ce_ring *src_ring;
634         unsigned int nentries_mask;
635         unsigned int sw_index;
636         unsigned int write_index;
637         int ret;
638         struct ath10k *ar;
639         struct ath10k_pci *ar_pci;
640
641         src_ring = ce_state->src_ring;
642
643         if (!src_ring)
644                 return -EIO;
645
646         ar = ce_state->ar;
647         ar_pci = ath10k_pci_priv(ar);
648
649         spin_lock_bh(&ar_pci->ce_lock);
650
651         nentries_mask = src_ring->nentries_mask;
652         sw_index = src_ring->sw_index;
653         write_index = src_ring->write_index;
654
655         if (write_index != sw_index) {
656                 struct ce_desc *base = src_ring->base_addr_owner_space;
657                 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
658
659                 /* Return data from completed source descriptor */
660                 *bufferp = __le32_to_cpu(desc->addr);
661                 *nbytesp = __le16_to_cpu(desc->nbytes);
662                 *transfer_idp = MS(__le16_to_cpu(desc->flags),
663                                                 CE_DESC_FLAGS_META_DATA);
664
665                 if (per_transfer_contextp)
666                         *per_transfer_contextp =
667                                 src_ring->per_transfer_context[sw_index];
668
669                 /* sanity */
670                 src_ring->per_transfer_context[sw_index] = NULL;
671
672                 /* Update sw_index */
673                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
674                 src_ring->sw_index = sw_index;
675                 ret = 0;
676         } else {
677                 ret = -EIO;
678         }
679
680         spin_unlock_bh(&ar_pci->ce_lock);
681
682         return ret;
683 }
684
685 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
686                                   void **per_transfer_contextp)
687 {
688         struct ath10k *ar = ce_state->ar;
689         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
690         int ret;
691
692         spin_lock_bh(&ar_pci->ce_lock);
693         ret = ath10k_ce_completed_send_next_nolock(ce_state,
694                                                    per_transfer_contextp);
695         spin_unlock_bh(&ar_pci->ce_lock);
696
697         return ret;
698 }
699
700 /*
701  * Guts of interrupt handler for per-engine interrupts on a particular CE.
702  *
703  * Invokes registered callbacks for recv_complete,
704  * send_complete, and watermarks.
705  */
706 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
707 {
708         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
709         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
710         u32 ctrl_addr = ce_state->ctrl_addr;
711
712         spin_lock_bh(&ar_pci->ce_lock);
713
714         /* Clear the copy-complete interrupts that will be handled here. */
715         ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
716                                           HOST_IS_COPY_COMPLETE_MASK);
717
718         spin_unlock_bh(&ar_pci->ce_lock);
719
720         if (ce_state->recv_cb)
721                 ce_state->recv_cb(ce_state);
722
723         if (ce_state->send_cb)
724                 ce_state->send_cb(ce_state);
725
726         spin_lock_bh(&ar_pci->ce_lock);
727
728         /*
729          * Misc CE interrupts are not being handled, but still need
730          * to be cleared.
731          */
732         ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
733
734         spin_unlock_bh(&ar_pci->ce_lock);
735 }
736
737 /*
738  * Handler for per-engine interrupts on ALL active CEs.
739  * This is used in cases where the system is sharing a
740  * single interrput for all CEs
741  */
742
743 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
744 {
745         int ce_id;
746         u32 intr_summary;
747
748         intr_summary = CE_INTERRUPT_SUMMARY(ar);
749
750         for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
751                 if (intr_summary & (1 << ce_id))
752                         intr_summary &= ~(1 << ce_id);
753                 else
754                         /* no intr pending on this CE */
755                         continue;
756
757                 ath10k_ce_per_engine_service(ar, ce_id);
758         }
759 }
760
761 /*
762  * Adjust interrupts for the copy complete handler.
763  * If it's needed for either send or recv, then unmask
764  * this interrupt; otherwise, mask it.
765  *
766  * Called with ce_lock held.
767  */
768 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
769 {
770         u32 ctrl_addr = ce_state->ctrl_addr;
771         struct ath10k *ar = ce_state->ar;
772         bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
773
774         if ((!disable_copy_compl_intr) &&
775             (ce_state->send_cb || ce_state->recv_cb))
776                 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
777         else
778                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
779
780         ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
781 }
782
783 int ath10k_ce_disable_interrupts(struct ath10k *ar)
784 {
785         int ce_id;
786
787         for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
788                 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
789
790                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
791                 ath10k_ce_error_intr_disable(ar, ctrl_addr);
792                 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
793         }
794
795         return 0;
796 }
797
798 void ath10k_ce_enable_interrupts(struct ath10k *ar)
799 {
800         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
801         int ce_id;
802
803         /* Skip the last copy engine, CE7 the diagnostic window, as that
804          * uses polling and isn't initialized for interrupts.
805          */
806         for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
807                 ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
808 }
809
810 static int ath10k_ce_init_src_ring(struct ath10k *ar,
811                                    unsigned int ce_id,
812                                    const struct ce_attr *attr)
813 {
814         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
815         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
816         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
817         u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
818
819         nentries = roundup_pow_of_two(attr->src_nentries);
820
821         memset(src_ring->base_addr_owner_space, 0,
822                nentries * sizeof(struct ce_desc));
823
824         src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
825         src_ring->sw_index &= src_ring->nentries_mask;
826         src_ring->hw_index = src_ring->sw_index;
827
828         src_ring->write_index =
829                 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
830         src_ring->write_index &= src_ring->nentries_mask;
831
832         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
833                                          src_ring->base_addr_ce_space);
834         ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
835         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
836         ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
837         ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
838         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
839
840         ath10k_dbg(ar, ATH10K_DBG_BOOT,
841                    "boot init ce src ring id %d entries %d base_addr %p\n",
842                    ce_id, nentries, src_ring->base_addr_owner_space);
843
844         return 0;
845 }
846
847 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
848                                     unsigned int ce_id,
849                                     const struct ce_attr *attr)
850 {
851         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
852         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
853         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
854         u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
855
856         nentries = roundup_pow_of_two(attr->dest_nentries);
857
858         memset(dest_ring->base_addr_owner_space, 0,
859                nentries * sizeof(struct ce_desc));
860
861         dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
862         dest_ring->sw_index &= dest_ring->nentries_mask;
863         dest_ring->write_index =
864                 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
865         dest_ring->write_index &= dest_ring->nentries_mask;
866
867         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
868                                           dest_ring->base_addr_ce_space);
869         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
870         ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
871         ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
872         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
873
874         ath10k_dbg(ar, ATH10K_DBG_BOOT,
875                    "boot ce dest ring id %d entries %d base_addr %p\n",
876                    ce_id, nentries, dest_ring->base_addr_owner_space);
877
878         return 0;
879 }
880
881 static struct ath10k_ce_ring *
882 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
883                          const struct ce_attr *attr)
884 {
885         struct ath10k_ce_ring *src_ring;
886         u32 nentries = attr->src_nentries;
887         dma_addr_t base_addr;
888
889         nentries = roundup_pow_of_two(nentries);
890
891         src_ring = kzalloc(sizeof(*src_ring) +
892                            (nentries *
893                             sizeof(*src_ring->per_transfer_context)),
894                            GFP_KERNEL);
895         if (src_ring == NULL)
896                 return ERR_PTR(-ENOMEM);
897
898         src_ring->nentries = nentries;
899         src_ring->nentries_mask = nentries - 1;
900
901         /*
902          * Legacy platforms that do not support cache
903          * coherent DMA are unsupported
904          */
905         src_ring->base_addr_owner_space_unaligned =
906                 dma_alloc_coherent(ar->dev,
907                                    (nentries * sizeof(struct ce_desc) +
908                                     CE_DESC_RING_ALIGN),
909                                    &base_addr, GFP_KERNEL);
910         if (!src_ring->base_addr_owner_space_unaligned) {
911                 kfree(src_ring);
912                 return ERR_PTR(-ENOMEM);
913         }
914
915         src_ring->base_addr_ce_space_unaligned = base_addr;
916
917         src_ring->base_addr_owner_space = PTR_ALIGN(
918                         src_ring->base_addr_owner_space_unaligned,
919                         CE_DESC_RING_ALIGN);
920         src_ring->base_addr_ce_space = ALIGN(
921                         src_ring->base_addr_ce_space_unaligned,
922                         CE_DESC_RING_ALIGN);
923
924         return src_ring;
925 }
926
927 static struct ath10k_ce_ring *
928 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
929                           const struct ce_attr *attr)
930 {
931         struct ath10k_ce_ring *dest_ring;
932         u32 nentries;
933         dma_addr_t base_addr;
934
935         nentries = roundup_pow_of_two(attr->dest_nentries);
936
937         dest_ring = kzalloc(sizeof(*dest_ring) +
938                             (nentries *
939                              sizeof(*dest_ring->per_transfer_context)),
940                             GFP_KERNEL);
941         if (dest_ring == NULL)
942                 return ERR_PTR(-ENOMEM);
943
944         dest_ring->nentries = nentries;
945         dest_ring->nentries_mask = nentries - 1;
946
947         /*
948          * Legacy platforms that do not support cache
949          * coherent DMA are unsupported
950          */
951         dest_ring->base_addr_owner_space_unaligned =
952                 dma_alloc_coherent(ar->dev,
953                                    (nentries * sizeof(struct ce_desc) +
954                                     CE_DESC_RING_ALIGN),
955                                    &base_addr, GFP_KERNEL);
956         if (!dest_ring->base_addr_owner_space_unaligned) {
957                 kfree(dest_ring);
958                 return ERR_PTR(-ENOMEM);
959         }
960
961         dest_ring->base_addr_ce_space_unaligned = base_addr;
962
963         /*
964          * Correctly initialize memory to 0 to prevent garbage
965          * data crashing system when download firmware
966          */
967         memset(dest_ring->base_addr_owner_space_unaligned, 0,
968                nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
969
970         dest_ring->base_addr_owner_space = PTR_ALIGN(
971                         dest_ring->base_addr_owner_space_unaligned,
972                         CE_DESC_RING_ALIGN);
973         dest_ring->base_addr_ce_space = ALIGN(
974                         dest_ring->base_addr_ce_space_unaligned,
975                         CE_DESC_RING_ALIGN);
976
977         return dest_ring;
978 }
979
980 /*
981  * Initialize a Copy Engine based on caller-supplied attributes.
982  * This may be called once to initialize both source and destination
983  * rings or it may be called twice for separate source and destination
984  * initialization. It may be that only one side or the other is
985  * initialized by software/firmware.
986  */
987 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
988                         const struct ce_attr *attr)
989 {
990         int ret;
991
992         if (attr->src_nentries) {
993                 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
994                 if (ret) {
995                         ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
996                                    ce_id, ret);
997                         return ret;
998                 }
999         }
1000
1001         if (attr->dest_nentries) {
1002                 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1003                 if (ret) {
1004                         ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1005                                    ce_id, ret);
1006                         return ret;
1007                 }
1008         }
1009
1010         return 0;
1011 }
1012
1013 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1014 {
1015         u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1016
1017         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1018         ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1019         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1020         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1021 }
1022
1023 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1024 {
1025         u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1026
1027         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1028         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1029         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1030 }
1031
1032 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1033 {
1034         ath10k_ce_deinit_src_ring(ar, ce_id);
1035         ath10k_ce_deinit_dest_ring(ar, ce_id);
1036 }
1037
1038 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1039                          const struct ce_attr *attr)
1040 {
1041         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1042         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1043         int ret;
1044
1045         /*
1046          * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1047          * additional TX locking checks.
1048          *
1049          * For the lack of a better place do the check here.
1050          */
1051         BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1052                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1053         BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1054                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1055         BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC >
1056                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1057
1058         ce_state->ar = ar;
1059         ce_state->id = ce_id;
1060         ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1061         ce_state->attr_flags = attr->flags;
1062         ce_state->src_sz_max = attr->src_sz_max;
1063
1064         if (attr->src_nentries)
1065                 ce_state->send_cb = attr->send_cb;
1066
1067         if (attr->dest_nentries)
1068                 ce_state->recv_cb = attr->recv_cb;
1069
1070         if (attr->src_nentries) {
1071                 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1072                 if (IS_ERR(ce_state->src_ring)) {
1073                         ret = PTR_ERR(ce_state->src_ring);
1074                         ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1075                                    ce_id, ret);
1076                         ce_state->src_ring = NULL;
1077                         return ret;
1078                 }
1079         }
1080
1081         if (attr->dest_nentries) {
1082                 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1083                                                                 attr);
1084                 if (IS_ERR(ce_state->dest_ring)) {
1085                         ret = PTR_ERR(ce_state->dest_ring);
1086                         ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1087                                    ce_id, ret);
1088                         ce_state->dest_ring = NULL;
1089                         return ret;
1090                 }
1091         }
1092
1093         return 0;
1094 }
1095
1096 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1097 {
1098         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1099         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1100
1101         if (ce_state->src_ring) {
1102                 dma_free_coherent(ar->dev,
1103                                   (ce_state->src_ring->nentries *
1104                                    sizeof(struct ce_desc) +
1105                                    CE_DESC_RING_ALIGN),
1106                                   ce_state->src_ring->base_addr_owner_space,
1107                                   ce_state->src_ring->base_addr_ce_space);
1108                 kfree(ce_state->src_ring);
1109         }
1110
1111         if (ce_state->dest_ring) {
1112                 dma_free_coherent(ar->dev,
1113                                   (ce_state->dest_ring->nentries *
1114                                    sizeof(struct ce_desc) +
1115                                    CE_DESC_RING_ALIGN),
1116                                   ce_state->dest_ring->base_addr_owner_space,
1117                                   ce_state->dest_ring->base_addr_ce_space);
1118                 kfree(ce_state->dest_ring);
1119         }
1120
1121         ce_state->src_ring = NULL;
1122         ce_state->dest_ring = NULL;
1123 }