]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ath/ath10k/ce.c
Merge tag 'iwlwifi-next-for-kalle-2015-09-21' of git://git.kernel.org/pub/scm/linux...
[karo-tx-linux.git] / drivers / net / wireless / ath / ath10k / ce.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63                                                        u32 ce_ctrl_addr,
64                                                        unsigned int n)
65 {
66         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70                                                       u32 ce_ctrl_addr)
71 {
72         return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76                                                       u32 ce_ctrl_addr,
77                                                       unsigned int n)
78 {
79         ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83                                                      u32 ce_ctrl_addr)
84 {
85         return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89                                                     u32 ce_ctrl_addr)
90 {
91         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95                                                     u32 ce_ctrl_addr,
96                                                     unsigned int addr)
97 {
98         ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102                                                u32 ce_ctrl_addr,
103                                                unsigned int n)
104 {
105         ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109                                                u32 ce_ctrl_addr,
110                                                unsigned int n)
111 {
112         u32 ctrl1_addr = ath10k_pci_read32((ar),
113                                            (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116                            (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117                            CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121                                                     u32 ce_ctrl_addr,
122                                                     unsigned int n)
123 {
124         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127                            (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128                            CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132                                                      u32 ce_ctrl_addr,
133                                                      unsigned int n)
134 {
135         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138                            (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139                            CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143                                                      u32 ce_ctrl_addr)
144 {
145         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149                                                      u32 ce_ctrl_addr,
150                                                      u32 addr)
151 {
152         ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156                                                 u32 ce_ctrl_addr,
157                                                 unsigned int n)
158 {
159         ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163                                                    u32 ce_ctrl_addr,
164                                                    unsigned int n)
165 {
166         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169                            (addr & ~SRC_WATERMARK_HIGH_MASK) |
170                            SRC_WATERMARK_HIGH_SET(n));
171 }
172
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174                                                   u32 ce_ctrl_addr,
175                                                   unsigned int n)
176 {
177         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180                            (addr & ~SRC_WATERMARK_LOW_MASK) |
181                            SRC_WATERMARK_LOW_SET(n));
182 }
183
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185                                                     u32 ce_ctrl_addr,
186                                                     unsigned int n)
187 {
188         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191                            (addr & ~DST_WATERMARK_HIGH_MASK) |
192                            DST_WATERMARK_HIGH_SET(n));
193 }
194
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196                                                    u32 ce_ctrl_addr,
197                                                    unsigned int n)
198 {
199         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202                            (addr & ~DST_WATERMARK_LOW_MASK) |
203                            DST_WATERMARK_LOW_SET(n));
204 }
205
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207                                                         u32 ce_ctrl_addr)
208 {
209         u32 host_ie_addr = ath10k_pci_read32(ar,
210                                              ce_ctrl_addr + HOST_IE_ADDRESS);
211
212         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213                            host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217                                                         u32 ce_ctrl_addr)
218 {
219         u32 host_ie_addr = ath10k_pci_read32(ar,
220                                              ce_ctrl_addr + HOST_IE_ADDRESS);
221
222         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223                            host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227                                                     u32 ce_ctrl_addr)
228 {
229         u32 host_ie_addr = ath10k_pci_read32(ar,
230                                              ce_ctrl_addr + HOST_IE_ADDRESS);
231
232         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233                            host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237                                                u32 ce_ctrl_addr)
238 {
239         u32 misc_ie_addr = ath10k_pci_read32(ar,
240                                              ce_ctrl_addr + MISC_IE_ADDRESS);
241
242         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243                            misc_ie_addr | CE_ERROR_MASK);
244 }
245
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247                                                 u32 ce_ctrl_addr)
248 {
249         u32 misc_ie_addr = ath10k_pci_read32(ar,
250                                              ce_ctrl_addr + MISC_IE_ADDRESS);
251
252         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253                            misc_ie_addr & ~CE_ERROR_MASK);
254 }
255
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257                                                      u32 ce_ctrl_addr,
258                                                      unsigned int mask)
259 {
260         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262
263 /*
264  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265  * ath10k_ce_sendlist_send.
266  * The caller takes responsibility for any needed locking.
267  */
268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269                           void *per_transfer_context,
270                           u32 buffer,
271                           unsigned int nbytes,
272                           unsigned int transfer_id,
273                           unsigned int flags)
274 {
275         struct ath10k *ar = ce_state->ar;
276         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277         struct ce_desc *desc, *sdesc;
278         unsigned int nentries_mask = src_ring->nentries_mask;
279         unsigned int sw_index = src_ring->sw_index;
280         unsigned int write_index = src_ring->write_index;
281         u32 ctrl_addr = ce_state->ctrl_addr;
282         u32 desc_flags = 0;
283         int ret = 0;
284
285         if (nbytes > ce_state->src_sz_max)
286                 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287                             __func__, nbytes, ce_state->src_sz_max);
288
289         if (unlikely(CE_RING_DELTA(nentries_mask,
290                                    write_index, sw_index - 1) <= 0)) {
291                 ret = -ENOSR;
292                 goto exit;
293         }
294
295         desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296                                    write_index);
297         sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
298
299         desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
300
301         if (flags & CE_SEND_FLAG_GATHER)
302                 desc_flags |= CE_DESC_FLAGS_GATHER;
303         if (flags & CE_SEND_FLAG_BYTE_SWAP)
304                 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
305
306         sdesc->addr   = __cpu_to_le32(buffer);
307         sdesc->nbytes = __cpu_to_le16(nbytes);
308         sdesc->flags  = __cpu_to_le16(desc_flags);
309
310         *desc = *sdesc;
311
312         src_ring->per_transfer_context[write_index] = per_transfer_context;
313
314         /* Update Source Ring Write Index */
315         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
316
317         /* WORKAROUND */
318         if (!(flags & CE_SEND_FLAG_GATHER))
319                 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
320
321         src_ring->write_index = write_index;
322 exit:
323         return ret;
324 }
325
326 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
327 {
328         struct ath10k *ar = pipe->ar;
329         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
330         struct ath10k_ce_ring *src_ring = pipe->src_ring;
331         u32 ctrl_addr = pipe->ctrl_addr;
332
333         lockdep_assert_held(&ar_pci->ce_lock);
334
335         /*
336          * This function must be called only if there is an incomplete
337          * scatter-gather transfer (before index register is updated)
338          * that needs to be cleaned up.
339          */
340         if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
341                 return;
342
343         if (WARN_ON_ONCE(src_ring->write_index ==
344                          ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
345                 return;
346
347         src_ring->write_index--;
348         src_ring->write_index &= src_ring->nentries_mask;
349
350         src_ring->per_transfer_context[src_ring->write_index] = NULL;
351 }
352
353 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
354                    void *per_transfer_context,
355                    u32 buffer,
356                    unsigned int nbytes,
357                    unsigned int transfer_id,
358                    unsigned int flags)
359 {
360         struct ath10k *ar = ce_state->ar;
361         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
362         int ret;
363
364         spin_lock_bh(&ar_pci->ce_lock);
365         ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
366                                     buffer, nbytes, transfer_id, flags);
367         spin_unlock_bh(&ar_pci->ce_lock);
368
369         return ret;
370 }
371
372 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
373 {
374         struct ath10k *ar = pipe->ar;
375         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
376         int delta;
377
378         spin_lock_bh(&ar_pci->ce_lock);
379         delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
380                               pipe->src_ring->write_index,
381                               pipe->src_ring->sw_index - 1);
382         spin_unlock_bh(&ar_pci->ce_lock);
383
384         return delta;
385 }
386
387 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
388 {
389         struct ath10k *ar = pipe->ar;
390         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
391         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
392         unsigned int nentries_mask = dest_ring->nentries_mask;
393         unsigned int write_index = dest_ring->write_index;
394         unsigned int sw_index = dest_ring->sw_index;
395
396         lockdep_assert_held(&ar_pci->ce_lock);
397
398         return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
399 }
400
401 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
402 {
403         struct ath10k *ar = pipe->ar;
404         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
405         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
406         unsigned int nentries_mask = dest_ring->nentries_mask;
407         unsigned int write_index = dest_ring->write_index;
408         unsigned int sw_index = dest_ring->sw_index;
409         struct ce_desc *base = dest_ring->base_addr_owner_space;
410         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
411         u32 ctrl_addr = pipe->ctrl_addr;
412
413         lockdep_assert_held(&ar_pci->ce_lock);
414
415         if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
416                 return -EIO;
417
418         desc->addr = __cpu_to_le32(paddr);
419         desc->nbytes = 0;
420
421         dest_ring->per_transfer_context[write_index] = ctx;
422         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
423         ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
424         dest_ring->write_index = write_index;
425
426         return 0;
427 }
428
429 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
430 {
431         struct ath10k *ar = pipe->ar;
432         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433         int ret;
434
435         spin_lock_bh(&ar_pci->ce_lock);
436         ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
437         spin_unlock_bh(&ar_pci->ce_lock);
438
439         return ret;
440 }
441
442 /*
443  * Guts of ath10k_ce_completed_recv_next.
444  * The caller takes responsibility for any necessary locking.
445  */
446 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
447                                          void **per_transfer_contextp,
448                                          u32 *bufferp,
449                                          unsigned int *nbytesp,
450                                          unsigned int *transfer_idp,
451                                          unsigned int *flagsp)
452 {
453         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
454         unsigned int nentries_mask = dest_ring->nentries_mask;
455         struct ath10k *ar = ce_state->ar;
456         unsigned int sw_index = dest_ring->sw_index;
457
458         struct ce_desc *base = dest_ring->base_addr_owner_space;
459         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
460         struct ce_desc sdesc;
461         u16 nbytes;
462
463         /* Copy in one go for performance reasons */
464         sdesc = *desc;
465
466         nbytes = __le16_to_cpu(sdesc.nbytes);
467         if (nbytes == 0) {
468                 /*
469                  * This closes a relatively unusual race where the Host
470                  * sees the updated DRRI before the update to the
471                  * corresponding descriptor has completed. We treat this
472                  * as a descriptor that is not yet done.
473                  */
474                 return -EIO;
475         }
476
477         desc->nbytes = 0;
478
479         /* Return data from completed destination descriptor */
480         *bufferp = __le32_to_cpu(sdesc.addr);
481         *nbytesp = nbytes;
482         *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
483
484         if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
485                 *flagsp = CE_RECV_FLAG_SWAPPED;
486         else
487                 *flagsp = 0;
488
489         if (per_transfer_contextp)
490                 *per_transfer_contextp =
491                         dest_ring->per_transfer_context[sw_index];
492
493         /* sanity */
494         dest_ring->per_transfer_context[sw_index] = NULL;
495
496         /* Update sw_index */
497         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
498         dest_ring->sw_index = sw_index;
499
500         return 0;
501 }
502
503 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
504                                   void **per_transfer_contextp,
505                                   u32 *bufferp,
506                                   unsigned int *nbytesp,
507                                   unsigned int *transfer_idp,
508                                   unsigned int *flagsp)
509 {
510         struct ath10k *ar = ce_state->ar;
511         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
512         int ret;
513
514         spin_lock_bh(&ar_pci->ce_lock);
515         ret = ath10k_ce_completed_recv_next_nolock(ce_state,
516                                                    per_transfer_contextp,
517                                                    bufferp, nbytesp,
518                                                    transfer_idp, flagsp);
519         spin_unlock_bh(&ar_pci->ce_lock);
520
521         return ret;
522 }
523
524 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
525                                void **per_transfer_contextp,
526                                u32 *bufferp)
527 {
528         struct ath10k_ce_ring *dest_ring;
529         unsigned int nentries_mask;
530         unsigned int sw_index;
531         unsigned int write_index;
532         int ret;
533         struct ath10k *ar;
534         struct ath10k_pci *ar_pci;
535
536         dest_ring = ce_state->dest_ring;
537
538         if (!dest_ring)
539                 return -EIO;
540
541         ar = ce_state->ar;
542         ar_pci = ath10k_pci_priv(ar);
543
544         spin_lock_bh(&ar_pci->ce_lock);
545
546         nentries_mask = dest_ring->nentries_mask;
547         sw_index = dest_ring->sw_index;
548         write_index = dest_ring->write_index;
549         if (write_index != sw_index) {
550                 struct ce_desc *base = dest_ring->base_addr_owner_space;
551                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
552
553                 /* Return data from completed destination descriptor */
554                 *bufferp = __le32_to_cpu(desc->addr);
555
556                 if (per_transfer_contextp)
557                         *per_transfer_contextp =
558                                 dest_ring->per_transfer_context[sw_index];
559
560                 /* sanity */
561                 dest_ring->per_transfer_context[sw_index] = NULL;
562                 desc->nbytes = 0;
563
564                 /* Update sw_index */
565                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
566                 dest_ring->sw_index = sw_index;
567                 ret = 0;
568         } else {
569                 ret = -EIO;
570         }
571
572         spin_unlock_bh(&ar_pci->ce_lock);
573
574         return ret;
575 }
576
577 /*
578  * Guts of ath10k_ce_completed_send_next.
579  * The caller takes responsibility for any necessary locking.
580  */
581 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
582                                          void **per_transfer_contextp,
583                                          u32 *bufferp,
584                                          unsigned int *nbytesp,
585                                          unsigned int *transfer_idp)
586 {
587         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
588         u32 ctrl_addr = ce_state->ctrl_addr;
589         struct ath10k *ar = ce_state->ar;
590         unsigned int nentries_mask = src_ring->nentries_mask;
591         unsigned int sw_index = src_ring->sw_index;
592         struct ce_desc *sdesc, *sbase;
593         unsigned int read_index;
594
595         if (src_ring->hw_index == sw_index) {
596                 /*
597                  * The SW completion index has caught up with the cached
598                  * version of the HW completion index.
599                  * Update the cached HW completion index to see whether
600                  * the SW has really caught up to the HW, or if the cached
601                  * value of the HW index has become stale.
602                  */
603
604                 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
605                 if (read_index == 0xffffffff)
606                         return -ENODEV;
607
608                 read_index &= nentries_mask;
609                 src_ring->hw_index = read_index;
610         }
611
612         read_index = src_ring->hw_index;
613
614         if (read_index == sw_index)
615                 return -EIO;
616
617         sbase = src_ring->shadow_base;
618         sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
619
620         /* Return data from completed source descriptor */
621         *bufferp = __le32_to_cpu(sdesc->addr);
622         *nbytesp = __le16_to_cpu(sdesc->nbytes);
623         *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
624                            CE_DESC_FLAGS_META_DATA);
625
626         if (per_transfer_contextp)
627                 *per_transfer_contextp =
628                         src_ring->per_transfer_context[sw_index];
629
630         /* sanity */
631         src_ring->per_transfer_context[sw_index] = NULL;
632
633         /* Update sw_index */
634         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
635         src_ring->sw_index = sw_index;
636
637         return 0;
638 }
639
640 /* NB: Modeled after ath10k_ce_completed_send_next */
641 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
642                                void **per_transfer_contextp,
643                                u32 *bufferp,
644                                unsigned int *nbytesp,
645                                unsigned int *transfer_idp)
646 {
647         struct ath10k_ce_ring *src_ring;
648         unsigned int nentries_mask;
649         unsigned int sw_index;
650         unsigned int write_index;
651         int ret;
652         struct ath10k *ar;
653         struct ath10k_pci *ar_pci;
654
655         src_ring = ce_state->src_ring;
656
657         if (!src_ring)
658                 return -EIO;
659
660         ar = ce_state->ar;
661         ar_pci = ath10k_pci_priv(ar);
662
663         spin_lock_bh(&ar_pci->ce_lock);
664
665         nentries_mask = src_ring->nentries_mask;
666         sw_index = src_ring->sw_index;
667         write_index = src_ring->write_index;
668
669         if (write_index != sw_index) {
670                 struct ce_desc *base = src_ring->base_addr_owner_space;
671                 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
672
673                 /* Return data from completed source descriptor */
674                 *bufferp = __le32_to_cpu(desc->addr);
675                 *nbytesp = __le16_to_cpu(desc->nbytes);
676                 *transfer_idp = MS(__le16_to_cpu(desc->flags),
677                                                 CE_DESC_FLAGS_META_DATA);
678
679                 if (per_transfer_contextp)
680                         *per_transfer_contextp =
681                                 src_ring->per_transfer_context[sw_index];
682
683                 /* sanity */
684                 src_ring->per_transfer_context[sw_index] = NULL;
685
686                 /* Update sw_index */
687                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
688                 src_ring->sw_index = sw_index;
689                 ret = 0;
690         } else {
691                 ret = -EIO;
692         }
693
694         spin_unlock_bh(&ar_pci->ce_lock);
695
696         return ret;
697 }
698
699 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
700                                   void **per_transfer_contextp,
701                                   u32 *bufferp,
702                                   unsigned int *nbytesp,
703                                   unsigned int *transfer_idp)
704 {
705         struct ath10k *ar = ce_state->ar;
706         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
707         int ret;
708
709         spin_lock_bh(&ar_pci->ce_lock);
710         ret = ath10k_ce_completed_send_next_nolock(ce_state,
711                                                    per_transfer_contextp,
712                                                    bufferp, nbytesp,
713                                                    transfer_idp);
714         spin_unlock_bh(&ar_pci->ce_lock);
715
716         return ret;
717 }
718
719 /*
720  * Guts of interrupt handler for per-engine interrupts on a particular CE.
721  *
722  * Invokes registered callbacks for recv_complete,
723  * send_complete, and watermarks.
724  */
725 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
726 {
727         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
728         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
729         u32 ctrl_addr = ce_state->ctrl_addr;
730
731         spin_lock_bh(&ar_pci->ce_lock);
732
733         /* Clear the copy-complete interrupts that will be handled here. */
734         ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
735                                           HOST_IS_COPY_COMPLETE_MASK);
736
737         spin_unlock_bh(&ar_pci->ce_lock);
738
739         if (ce_state->recv_cb)
740                 ce_state->recv_cb(ce_state);
741
742         if (ce_state->send_cb)
743                 ce_state->send_cb(ce_state);
744
745         spin_lock_bh(&ar_pci->ce_lock);
746
747         /*
748          * Misc CE interrupts are not being handled, but still need
749          * to be cleared.
750          */
751         ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
752
753         spin_unlock_bh(&ar_pci->ce_lock);
754 }
755
756 /*
757  * Handler for per-engine interrupts on ALL active CEs.
758  * This is used in cases where the system is sharing a
759  * single interrput for all CEs
760  */
761
762 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
763 {
764         int ce_id;
765         u32 intr_summary;
766
767         intr_summary = CE_INTERRUPT_SUMMARY(ar);
768
769         for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
770                 if (intr_summary & (1 << ce_id))
771                         intr_summary &= ~(1 << ce_id);
772                 else
773                         /* no intr pending on this CE */
774                         continue;
775
776                 ath10k_ce_per_engine_service(ar, ce_id);
777         }
778 }
779
780 /*
781  * Adjust interrupts for the copy complete handler.
782  * If it's needed for either send or recv, then unmask
783  * this interrupt; otherwise, mask it.
784  *
785  * Called with ce_lock held.
786  */
787 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
788 {
789         u32 ctrl_addr = ce_state->ctrl_addr;
790         struct ath10k *ar = ce_state->ar;
791         bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
792
793         if ((!disable_copy_compl_intr) &&
794             (ce_state->send_cb || ce_state->recv_cb))
795                 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
796         else
797                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
798
799         ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
800 }
801
802 int ath10k_ce_disable_interrupts(struct ath10k *ar)
803 {
804         int ce_id;
805
806         for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
807                 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
808
809                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
810                 ath10k_ce_error_intr_disable(ar, ctrl_addr);
811                 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
812         }
813
814         return 0;
815 }
816
817 void ath10k_ce_enable_interrupts(struct ath10k *ar)
818 {
819         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
820         int ce_id;
821
822         /* Skip the last copy engine, CE7 the diagnostic window, as that
823          * uses polling and isn't initialized for interrupts.
824          */
825         for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
826                 ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
827 }
828
829 static int ath10k_ce_init_src_ring(struct ath10k *ar,
830                                    unsigned int ce_id,
831                                    const struct ce_attr *attr)
832 {
833         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
834         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
835         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
836         u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
837
838         nentries = roundup_pow_of_two(attr->src_nentries);
839
840         memset(src_ring->base_addr_owner_space, 0,
841                nentries * sizeof(struct ce_desc));
842
843         src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
844         src_ring->sw_index &= src_ring->nentries_mask;
845         src_ring->hw_index = src_ring->sw_index;
846
847         src_ring->write_index =
848                 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
849         src_ring->write_index &= src_ring->nentries_mask;
850
851         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
852                                          src_ring->base_addr_ce_space);
853         ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
854         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
855         ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
856         ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
857         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
858
859         ath10k_dbg(ar, ATH10K_DBG_BOOT,
860                    "boot init ce src ring id %d entries %d base_addr %p\n",
861                    ce_id, nentries, src_ring->base_addr_owner_space);
862
863         return 0;
864 }
865
866 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
867                                     unsigned int ce_id,
868                                     const struct ce_attr *attr)
869 {
870         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
871         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
872         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
873         u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
874
875         nentries = roundup_pow_of_two(attr->dest_nentries);
876
877         memset(dest_ring->base_addr_owner_space, 0,
878                nentries * sizeof(struct ce_desc));
879
880         dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
881         dest_ring->sw_index &= dest_ring->nentries_mask;
882         dest_ring->write_index =
883                 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
884         dest_ring->write_index &= dest_ring->nentries_mask;
885
886         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
887                                           dest_ring->base_addr_ce_space);
888         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
889         ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
890         ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
891         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
892
893         ath10k_dbg(ar, ATH10K_DBG_BOOT,
894                    "boot ce dest ring id %d entries %d base_addr %p\n",
895                    ce_id, nentries, dest_ring->base_addr_owner_space);
896
897         return 0;
898 }
899
900 static struct ath10k_ce_ring *
901 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
902                          const struct ce_attr *attr)
903 {
904         struct ath10k_ce_ring *src_ring;
905         u32 nentries = attr->src_nentries;
906         dma_addr_t base_addr;
907
908         nentries = roundup_pow_of_two(nentries);
909
910         src_ring = kzalloc(sizeof(*src_ring) +
911                            (nentries *
912                             sizeof(*src_ring->per_transfer_context)),
913                            GFP_KERNEL);
914         if (src_ring == NULL)
915                 return ERR_PTR(-ENOMEM);
916
917         src_ring->nentries = nentries;
918         src_ring->nentries_mask = nentries - 1;
919
920         /*
921          * Legacy platforms that do not support cache
922          * coherent DMA are unsupported
923          */
924         src_ring->base_addr_owner_space_unaligned =
925                 dma_alloc_coherent(ar->dev,
926                                    (nentries * sizeof(struct ce_desc) +
927                                     CE_DESC_RING_ALIGN),
928                                    &base_addr, GFP_KERNEL);
929         if (!src_ring->base_addr_owner_space_unaligned) {
930                 kfree(src_ring);
931                 return ERR_PTR(-ENOMEM);
932         }
933
934         src_ring->base_addr_ce_space_unaligned = base_addr;
935
936         src_ring->base_addr_owner_space = PTR_ALIGN(
937                         src_ring->base_addr_owner_space_unaligned,
938                         CE_DESC_RING_ALIGN);
939         src_ring->base_addr_ce_space = ALIGN(
940                         src_ring->base_addr_ce_space_unaligned,
941                         CE_DESC_RING_ALIGN);
942
943         /*
944          * Also allocate a shadow src ring in regular
945          * mem to use for faster access.
946          */
947         src_ring->shadow_base_unaligned =
948                 kmalloc((nentries * sizeof(struct ce_desc) +
949                          CE_DESC_RING_ALIGN), GFP_KERNEL);
950         if (!src_ring->shadow_base_unaligned) {
951                 dma_free_coherent(ar->dev,
952                                   (nentries * sizeof(struct ce_desc) +
953                                    CE_DESC_RING_ALIGN),
954                                   src_ring->base_addr_owner_space,
955                                   src_ring->base_addr_ce_space);
956                 kfree(src_ring);
957                 return ERR_PTR(-ENOMEM);
958         }
959
960         src_ring->shadow_base = PTR_ALIGN(
961                         src_ring->shadow_base_unaligned,
962                         CE_DESC_RING_ALIGN);
963
964         return src_ring;
965 }
966
967 static struct ath10k_ce_ring *
968 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
969                           const struct ce_attr *attr)
970 {
971         struct ath10k_ce_ring *dest_ring;
972         u32 nentries;
973         dma_addr_t base_addr;
974
975         nentries = roundup_pow_of_two(attr->dest_nentries);
976
977         dest_ring = kzalloc(sizeof(*dest_ring) +
978                             (nentries *
979                              sizeof(*dest_ring->per_transfer_context)),
980                             GFP_KERNEL);
981         if (dest_ring == NULL)
982                 return ERR_PTR(-ENOMEM);
983
984         dest_ring->nentries = nentries;
985         dest_ring->nentries_mask = nentries - 1;
986
987         /*
988          * Legacy platforms that do not support cache
989          * coherent DMA are unsupported
990          */
991         dest_ring->base_addr_owner_space_unaligned =
992                 dma_alloc_coherent(ar->dev,
993                                    (nentries * sizeof(struct ce_desc) +
994                                     CE_DESC_RING_ALIGN),
995                                    &base_addr, GFP_KERNEL);
996         if (!dest_ring->base_addr_owner_space_unaligned) {
997                 kfree(dest_ring);
998                 return ERR_PTR(-ENOMEM);
999         }
1000
1001         dest_ring->base_addr_ce_space_unaligned = base_addr;
1002
1003         /*
1004          * Correctly initialize memory to 0 to prevent garbage
1005          * data crashing system when download firmware
1006          */
1007         memset(dest_ring->base_addr_owner_space_unaligned, 0,
1008                nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1009
1010         dest_ring->base_addr_owner_space = PTR_ALIGN(
1011                         dest_ring->base_addr_owner_space_unaligned,
1012                         CE_DESC_RING_ALIGN);
1013         dest_ring->base_addr_ce_space = ALIGN(
1014                         dest_ring->base_addr_ce_space_unaligned,
1015                         CE_DESC_RING_ALIGN);
1016
1017         return dest_ring;
1018 }
1019
1020 /*
1021  * Initialize a Copy Engine based on caller-supplied attributes.
1022  * This may be called once to initialize both source and destination
1023  * rings or it may be called twice for separate source and destination
1024  * initialization. It may be that only one side or the other is
1025  * initialized by software/firmware.
1026  */
1027 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1028                         const struct ce_attr *attr)
1029 {
1030         int ret;
1031
1032         if (attr->src_nentries) {
1033                 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1034                 if (ret) {
1035                         ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1036                                    ce_id, ret);
1037                         return ret;
1038                 }
1039         }
1040
1041         if (attr->dest_nentries) {
1042                 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1043                 if (ret) {
1044                         ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1045                                    ce_id, ret);
1046                         return ret;
1047                 }
1048         }
1049
1050         return 0;
1051 }
1052
1053 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1054 {
1055         u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1056
1057         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1058         ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1059         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1060         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1061 }
1062
1063 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1064 {
1065         u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1066
1067         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1068         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1069         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1070 }
1071
1072 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1073 {
1074         ath10k_ce_deinit_src_ring(ar, ce_id);
1075         ath10k_ce_deinit_dest_ring(ar, ce_id);
1076 }
1077
1078 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1079                          const struct ce_attr *attr,
1080                          void (*send_cb)(struct ath10k_ce_pipe *),
1081                          void (*recv_cb)(struct ath10k_ce_pipe *))
1082 {
1083         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1084         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1085         int ret;
1086
1087         /*
1088          * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1089          * additional TX locking checks.
1090          *
1091          * For the lack of a better place do the check here.
1092          */
1093         BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1094                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1095         BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1096                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1097         BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC >
1098                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1099
1100         ce_state->ar = ar;
1101         ce_state->id = ce_id;
1102         ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1103         ce_state->attr_flags = attr->flags;
1104         ce_state->src_sz_max = attr->src_sz_max;
1105
1106         if (attr->src_nentries)
1107                 ce_state->send_cb = send_cb;
1108
1109         if (attr->dest_nentries)
1110                 ce_state->recv_cb = recv_cb;
1111
1112         if (attr->src_nentries) {
1113                 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1114                 if (IS_ERR(ce_state->src_ring)) {
1115                         ret = PTR_ERR(ce_state->src_ring);
1116                         ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1117                                    ce_id, ret);
1118                         ce_state->src_ring = NULL;
1119                         return ret;
1120                 }
1121         }
1122
1123         if (attr->dest_nentries) {
1124                 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1125                                                                 attr);
1126                 if (IS_ERR(ce_state->dest_ring)) {
1127                         ret = PTR_ERR(ce_state->dest_ring);
1128                         ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1129                                    ce_id, ret);
1130                         ce_state->dest_ring = NULL;
1131                         return ret;
1132                 }
1133         }
1134
1135         return 0;
1136 }
1137
1138 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1139 {
1140         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1141         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1142
1143         if (ce_state->src_ring) {
1144                 kfree(ce_state->src_ring->shadow_base_unaligned);
1145                 dma_free_coherent(ar->dev,
1146                                   (ce_state->src_ring->nentries *
1147                                    sizeof(struct ce_desc) +
1148                                    CE_DESC_RING_ALIGN),
1149                                   ce_state->src_ring->base_addr_owner_space,
1150                                   ce_state->src_ring->base_addr_ce_space);
1151                 kfree(ce_state->src_ring);
1152         }
1153
1154         if (ce_state->dest_ring) {
1155                 dma_free_coherent(ar->dev,
1156                                   (ce_state->dest_ring->nentries *
1157                                    sizeof(struct ce_desc) +
1158                                    CE_DESC_RING_ALIGN),
1159                                   ce_state->dest_ring->base_addr_owner_space,
1160                                   ce_state->dest_ring->base_addr_ce_space);
1161                 kfree(ce_state->dest_ring);
1162         }
1163
1164         ce_state->src_ring = NULL;
1165         ce_state->dest_ring = NULL;
1166 }