]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ath/ath10k/htt_rx.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[karo-tx-linux.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25
26 #include <linux/log2.h>
27
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33
34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
35 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
36
37 static struct sk_buff *
38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
39 {
40         struct ath10k_skb_rxcb *rxcb;
41
42         hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
43                 if (rxcb->paddr == paddr)
44                         return ATH10K_RXCB_SKB(rxcb);
45
46         WARN_ON_ONCE(1);
47         return NULL;
48 }
49
50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
51 {
52         struct sk_buff *skb;
53         struct ath10k_skb_rxcb *rxcb;
54         struct hlist_node *n;
55         int i;
56
57         if (htt->rx_ring.in_ord_rx) {
58                 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
59                         skb = ATH10K_RXCB_SKB(rxcb);
60                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
61                                          skb->len + skb_tailroom(skb),
62                                          DMA_FROM_DEVICE);
63                         hash_del(&rxcb->hlist);
64                         dev_kfree_skb_any(skb);
65                 }
66         } else {
67                 for (i = 0; i < htt->rx_ring.size; i++) {
68                         skb = htt->rx_ring.netbufs_ring[i];
69                         if (!skb)
70                                 continue;
71
72                         rxcb = ATH10K_SKB_RXCB(skb);
73                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
74                                          skb->len + skb_tailroom(skb),
75                                          DMA_FROM_DEVICE);
76                         dev_kfree_skb_any(skb);
77                 }
78         }
79
80         htt->rx_ring.fill_cnt = 0;
81         hash_init(htt->rx_ring.skb_table);
82         memset(htt->rx_ring.netbufs_ring, 0,
83                htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
84 }
85
86 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
87 {
88         struct htt_rx_desc *rx_desc;
89         struct ath10k_skb_rxcb *rxcb;
90         struct sk_buff *skb;
91         dma_addr_t paddr;
92         int ret = 0, idx;
93
94         /* The Full Rx Reorder firmware has no way of telling the host
95          * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
96          * To keep things simple make sure ring is always half empty. This
97          * guarantees there'll be no replenishment overruns possible.
98          */
99         BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
100
101         idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
102         while (num > 0) {
103                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
104                 if (!skb) {
105                         ret = -ENOMEM;
106                         goto fail;
107                 }
108
109                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
110                         skb_pull(skb,
111                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
112                                  skb->data);
113
114                 /* Clear rx_desc attention word before posting to Rx ring */
115                 rx_desc = (struct htt_rx_desc *)skb->data;
116                 rx_desc->attention.flags = __cpu_to_le32(0);
117
118                 paddr = dma_map_single(htt->ar->dev, skb->data,
119                                        skb->len + skb_tailroom(skb),
120                                        DMA_FROM_DEVICE);
121
122                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
123                         dev_kfree_skb_any(skb);
124                         ret = -ENOMEM;
125                         goto fail;
126                 }
127
128                 rxcb = ATH10K_SKB_RXCB(skb);
129                 rxcb->paddr = paddr;
130                 htt->rx_ring.netbufs_ring[idx] = skb;
131                 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
132                 htt->rx_ring.fill_cnt++;
133
134                 if (htt->rx_ring.in_ord_rx) {
135                         hash_add(htt->rx_ring.skb_table,
136                                  &ATH10K_SKB_RXCB(skb)->hlist,
137                                  (u32)paddr);
138                 }
139
140                 num--;
141                 idx++;
142                 idx &= htt->rx_ring.size_mask;
143         }
144
145 fail:
146         /*
147          * Make sure the rx buffer is updated before available buffer
148          * index to avoid any potential rx ring corruption.
149          */
150         mb();
151         *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
152         return ret;
153 }
154
155 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
156 {
157         lockdep_assert_held(&htt->rx_ring.lock);
158         return __ath10k_htt_rx_ring_fill_n(htt, num);
159 }
160
161 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
162 {
163         int ret, num_deficit, num_to_fill;
164
165         /* Refilling the whole RX ring buffer proves to be a bad idea. The
166          * reason is RX may take up significant amount of CPU cycles and starve
167          * other tasks, e.g. TX on an ethernet device while acting as a bridge
168          * with ath10k wlan interface. This ended up with very poor performance
169          * once CPU the host system was overwhelmed with RX on ath10k.
170          *
171          * By limiting the number of refills the replenishing occurs
172          * progressively. This in turns makes use of the fact tasklets are
173          * processed in FIFO order. This means actual RX processing can starve
174          * out refilling. If there's not enough buffers on RX ring FW will not
175          * report RX until it is refilled with enough buffers. This
176          * automatically balances load wrt to CPU power.
177          *
178          * This probably comes at a cost of lower maximum throughput but
179          * improves the average and stability. */
180         spin_lock_bh(&htt->rx_ring.lock);
181         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
182         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
183         num_deficit -= num_to_fill;
184         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
185         if (ret == -ENOMEM) {
186                 /*
187                  * Failed to fill it to the desired level -
188                  * we'll start a timer and try again next time.
189                  * As long as enough buffers are left in the ring for
190                  * another A-MPDU rx, no special recovery is needed.
191                  */
192                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
193                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
194         } else if (num_deficit > 0) {
195                 tasklet_schedule(&htt->rx_replenish_task);
196         }
197         spin_unlock_bh(&htt->rx_ring.lock);
198 }
199
200 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
201 {
202         struct ath10k_htt *htt = (struct ath10k_htt *)arg;
203
204         ath10k_htt_rx_msdu_buff_replenish(htt);
205 }
206
207 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
208 {
209         struct ath10k_htt *htt = &ar->htt;
210         int ret;
211
212         spin_lock_bh(&htt->rx_ring.lock);
213         ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
214                                               htt->rx_ring.fill_cnt));
215         spin_unlock_bh(&htt->rx_ring.lock);
216
217         if (ret)
218                 ath10k_htt_rx_ring_free(htt);
219
220         return ret;
221 }
222
223 void ath10k_htt_rx_free(struct ath10k_htt *htt)
224 {
225         del_timer_sync(&htt->rx_ring.refill_retry_timer);
226         tasklet_kill(&htt->rx_replenish_task);
227         tasklet_kill(&htt->txrx_compl_task);
228
229         skb_queue_purge(&htt->tx_compl_q);
230         skb_queue_purge(&htt->rx_compl_q);
231         skb_queue_purge(&htt->rx_in_ord_compl_q);
232
233         ath10k_htt_rx_ring_free(htt);
234
235         dma_free_coherent(htt->ar->dev,
236                           (htt->rx_ring.size *
237                            sizeof(htt->rx_ring.paddrs_ring)),
238                           htt->rx_ring.paddrs_ring,
239                           htt->rx_ring.base_paddr);
240
241         dma_free_coherent(htt->ar->dev,
242                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
243                           htt->rx_ring.alloc_idx.vaddr,
244                           htt->rx_ring.alloc_idx.paddr);
245
246         kfree(htt->rx_ring.netbufs_ring);
247 }
248
249 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
250 {
251         struct ath10k *ar = htt->ar;
252         int idx;
253         struct sk_buff *msdu;
254
255         lockdep_assert_held(&htt->rx_ring.lock);
256
257         if (htt->rx_ring.fill_cnt == 0) {
258                 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
259                 return NULL;
260         }
261
262         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
263         msdu = htt->rx_ring.netbufs_ring[idx];
264         htt->rx_ring.netbufs_ring[idx] = NULL;
265         htt->rx_ring.paddrs_ring[idx] = 0;
266
267         idx++;
268         idx &= htt->rx_ring.size_mask;
269         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
270         htt->rx_ring.fill_cnt--;
271
272         dma_unmap_single(htt->ar->dev,
273                          ATH10K_SKB_RXCB(msdu)->paddr,
274                          msdu->len + skb_tailroom(msdu),
275                          DMA_FROM_DEVICE);
276         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
277                         msdu->data, msdu->len + skb_tailroom(msdu));
278
279         return msdu;
280 }
281
282 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
283 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
284                                    u8 **fw_desc, int *fw_desc_len,
285                                    struct sk_buff_head *amsdu)
286 {
287         struct ath10k *ar = htt->ar;
288         int msdu_len, msdu_chaining = 0;
289         struct sk_buff *msdu;
290         struct htt_rx_desc *rx_desc;
291
292         lockdep_assert_held(&htt->rx_ring.lock);
293
294         for (;;) {
295                 int last_msdu, msdu_len_invalid, msdu_chained;
296
297                 msdu = ath10k_htt_rx_netbuf_pop(htt);
298                 if (!msdu) {
299                         __skb_queue_purge(amsdu);
300                         return -ENOENT;
301                 }
302
303                 __skb_queue_tail(amsdu, msdu);
304
305                 rx_desc = (struct htt_rx_desc *)msdu->data;
306
307                 /* FIXME: we must report msdu payload since this is what caller
308                  *        expects now */
309                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
310                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311
312                 /*
313                  * Sanity check - confirm the HW is finished filling in the
314                  * rx data.
315                  * If the HW and SW are working correctly, then it's guaranteed
316                  * that the HW's MAC DMA is done before this point in the SW.
317                  * To prevent the case that we handle a stale Rx descriptor,
318                  * just assert for now until we have a way to recover.
319                  */
320                 if (!(__le32_to_cpu(rx_desc->attention.flags)
321                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
322                         __skb_queue_purge(amsdu);
323                         return -EIO;
324                 }
325
326                 /*
327                  * Copy the FW rx descriptor for this MSDU from the rx
328                  * indication message into the MSDU's netbuf. HL uses the
329                  * same rx indication message definition as LL, and simply
330                  * appends new info (fields from the HW rx desc, and the
331                  * MSDU payload itself). So, the offset into the rx
332                  * indication message only has to account for the standard
333                  * offset of the per-MSDU FW rx desc info within the
334                  * message, and how many bytes of the per-MSDU FW rx desc
335                  * info have already been consumed. (And the endianness of
336                  * the host, since for a big-endian host, the rx ind
337                  * message contents, including the per-MSDU rx desc bytes,
338                  * were byteswapped during upload.)
339                  */
340                 if (*fw_desc_len > 0) {
341                         rx_desc->fw_desc.info0 = **fw_desc;
342                         /*
343                          * The target is expected to only provide the basic
344                          * per-MSDU rx descriptors. Just to be sure, verify
345                          * that the target has not attached extension data
346                          * (e.g. LRO flow ID).
347                          */
348
349                         /* or more, if there's extension data */
350                         (*fw_desc)++;
351                         (*fw_desc_len)--;
352                 } else {
353                         /*
354                          * When an oversized AMSDU happened, FW will lost
355                          * some of MSDU status - in this case, the FW
356                          * descriptors provided will be less than the
357                          * actual MSDUs inside this MPDU. Mark the FW
358                          * descriptors so that it will still deliver to
359                          * upper stack, if no CRC error for this MPDU.
360                          *
361                          * FIX THIS - the FW descriptors are actually for
362                          * MSDUs in the end of this A-MSDU instead of the
363                          * beginning.
364                          */
365                         rx_desc->fw_desc.info0 = 0;
366                 }
367
368                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
369                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
370                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
371                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
372                               RX_MSDU_START_INFO0_MSDU_LENGTH);
373                 msdu_chained = rx_desc->frag_info.ring2_more_count;
374
375                 if (msdu_len_invalid)
376                         msdu_len = 0;
377
378                 skb_trim(msdu, 0);
379                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
380                 msdu_len -= msdu->len;
381
382                 /* Note: Chained buffers do not contain rx descriptor */
383                 while (msdu_chained--) {
384                         msdu = ath10k_htt_rx_netbuf_pop(htt);
385                         if (!msdu) {
386                                 __skb_queue_purge(amsdu);
387                                 return -ENOENT;
388                         }
389
390                         __skb_queue_tail(amsdu, msdu);
391                         skb_trim(msdu, 0);
392                         skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
393                         msdu_len -= msdu->len;
394                         msdu_chaining = 1;
395                 }
396
397                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
398                                 RX_MSDU_END_INFO0_LAST_MSDU;
399
400                 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
401                                          sizeof(*rx_desc) - sizeof(u32));
402
403                 if (last_msdu)
404                         break;
405         }
406
407         if (skb_queue_empty(amsdu))
408                 msdu_chaining = -1;
409
410         /*
411          * Don't refill the ring yet.
412          *
413          * First, the elements popped here are still in use - it is not
414          * safe to overwrite them until the matching call to
415          * mpdu_desc_list_next. Second, for efficiency it is preferable to
416          * refill the rx ring with 1 PPDU's worth of rx buffers (something
417          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
418          * (something like 3 buffers). Consequently, we'll rely on the txrx
419          * SW to tell us when it is done pulling all the PPDU's rx buffers
420          * out of the rx ring, and then refill it just once.
421          */
422
423         return msdu_chaining;
424 }
425
426 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
427 {
428         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
429
430         ath10k_htt_rx_msdu_buff_replenish(htt);
431 }
432
433 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
434                                                u32 paddr)
435 {
436         struct ath10k *ar = htt->ar;
437         struct ath10k_skb_rxcb *rxcb;
438         struct sk_buff *msdu;
439
440         lockdep_assert_held(&htt->rx_ring.lock);
441
442         msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
443         if (!msdu)
444                 return NULL;
445
446         rxcb = ATH10K_SKB_RXCB(msdu);
447         hash_del(&rxcb->hlist);
448         htt->rx_ring.fill_cnt--;
449
450         dma_unmap_single(htt->ar->dev, rxcb->paddr,
451                          msdu->len + skb_tailroom(msdu),
452                          DMA_FROM_DEVICE);
453         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
454                         msdu->data, msdu->len + skb_tailroom(msdu));
455
456         return msdu;
457 }
458
459 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
460                                         struct htt_rx_in_ord_ind *ev,
461                                         struct sk_buff_head *list)
462 {
463         struct ath10k *ar = htt->ar;
464         struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
465         struct htt_rx_desc *rxd;
466         struct sk_buff *msdu;
467         int msdu_count;
468         bool is_offload;
469         u32 paddr;
470
471         lockdep_assert_held(&htt->rx_ring.lock);
472
473         msdu_count = __le16_to_cpu(ev->msdu_count);
474         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
475
476         while (msdu_count--) {
477                 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
478
479                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
480                 if (!msdu) {
481                         __skb_queue_purge(list);
482                         return -ENOENT;
483                 }
484
485                 __skb_queue_tail(list, msdu);
486
487                 if (!is_offload) {
488                         rxd = (void *)msdu->data;
489
490                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
491
492                         skb_put(msdu, sizeof(*rxd));
493                         skb_pull(msdu, sizeof(*rxd));
494                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
495
496                         if (!(__le32_to_cpu(rxd->attention.flags) &
497                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
498                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
499                                 return -EIO;
500                         }
501                 }
502
503                 msdu_desc++;
504         }
505
506         return 0;
507 }
508
509 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
510 {
511         struct ath10k *ar = htt->ar;
512         dma_addr_t paddr;
513         void *vaddr;
514         size_t size;
515         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
516
517         htt->rx_confused = false;
518
519         /* XXX: The fill level could be changed during runtime in response to
520          * the host processing latency. Is this really worth it?
521          */
522         htt->rx_ring.size = HTT_RX_RING_SIZE;
523         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
524         htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
525
526         if (!is_power_of_2(htt->rx_ring.size)) {
527                 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
528                 return -EINVAL;
529         }
530
531         htt->rx_ring.netbufs_ring =
532                 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
533                         GFP_KERNEL);
534         if (!htt->rx_ring.netbufs_ring)
535                 goto err_netbuf;
536
537         size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
538
539         vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA);
540         if (!vaddr)
541                 goto err_dma_ring;
542
543         htt->rx_ring.paddrs_ring = vaddr;
544         htt->rx_ring.base_paddr = paddr;
545
546         vaddr = dma_alloc_coherent(htt->ar->dev,
547                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
548                                    &paddr, GFP_DMA);
549         if (!vaddr)
550                 goto err_dma_idx;
551
552         htt->rx_ring.alloc_idx.vaddr = vaddr;
553         htt->rx_ring.alloc_idx.paddr = paddr;
554         htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
555         *htt->rx_ring.alloc_idx.vaddr = 0;
556
557         /* Initialize the Rx refill retry timer */
558         setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
559
560         spin_lock_init(&htt->rx_ring.lock);
561
562         htt->rx_ring.fill_cnt = 0;
563         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
564         hash_init(htt->rx_ring.skb_table);
565
566         tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
567                      (unsigned long)htt);
568
569         skb_queue_head_init(&htt->tx_compl_q);
570         skb_queue_head_init(&htt->rx_compl_q);
571         skb_queue_head_init(&htt->rx_in_ord_compl_q);
572
573         tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
574                      (unsigned long)htt);
575
576         ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
577                    htt->rx_ring.size, htt->rx_ring.fill_level);
578         return 0;
579
580 err_dma_idx:
581         dma_free_coherent(htt->ar->dev,
582                           (htt->rx_ring.size *
583                            sizeof(htt->rx_ring.paddrs_ring)),
584                           htt->rx_ring.paddrs_ring,
585                           htt->rx_ring.base_paddr);
586 err_dma_ring:
587         kfree(htt->rx_ring.netbufs_ring);
588 err_netbuf:
589         return -ENOMEM;
590 }
591
592 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
593                                           enum htt_rx_mpdu_encrypt_type type)
594 {
595         switch (type) {
596         case HTT_RX_MPDU_ENCRYPT_NONE:
597                 return 0;
598         case HTT_RX_MPDU_ENCRYPT_WEP40:
599         case HTT_RX_MPDU_ENCRYPT_WEP104:
600                 return IEEE80211_WEP_IV_LEN;
601         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
602         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
603                 return IEEE80211_TKIP_IV_LEN;
604         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
605                 return IEEE80211_CCMP_HDR_LEN;
606         case HTT_RX_MPDU_ENCRYPT_WEP128:
607         case HTT_RX_MPDU_ENCRYPT_WAPI:
608                 break;
609         }
610
611         ath10k_warn(ar, "unsupported encryption type %d\n", type);
612         return 0;
613 }
614
615 #define MICHAEL_MIC_LEN 8
616
617 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
618                                          enum htt_rx_mpdu_encrypt_type type)
619 {
620         switch (type) {
621         case HTT_RX_MPDU_ENCRYPT_NONE:
622                 return 0;
623         case HTT_RX_MPDU_ENCRYPT_WEP40:
624         case HTT_RX_MPDU_ENCRYPT_WEP104:
625                 return IEEE80211_WEP_ICV_LEN;
626         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
627         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
628                 return IEEE80211_TKIP_ICV_LEN;
629         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
630                 return IEEE80211_CCMP_MIC_LEN;
631         case HTT_RX_MPDU_ENCRYPT_WEP128:
632         case HTT_RX_MPDU_ENCRYPT_WAPI:
633                 break;
634         }
635
636         ath10k_warn(ar, "unsupported encryption type %d\n", type);
637         return 0;
638 }
639
640 struct amsdu_subframe_hdr {
641         u8 dst[ETH_ALEN];
642         u8 src[ETH_ALEN];
643         __be16 len;
644 } __packed;
645
646 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
647
648 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
649                                   struct ieee80211_rx_status *status,
650                                   struct htt_rx_desc *rxd)
651 {
652         struct ieee80211_supported_band *sband;
653         u8 cck, rate, bw, sgi, mcs, nss;
654         u8 preamble = 0;
655         u8 group_id;
656         u32 info1, info2, info3;
657
658         info1 = __le32_to_cpu(rxd->ppdu_start.info1);
659         info2 = __le32_to_cpu(rxd->ppdu_start.info2);
660         info3 = __le32_to_cpu(rxd->ppdu_start.info3);
661
662         preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
663
664         switch (preamble) {
665         case HTT_RX_LEGACY:
666                 /* To get legacy rate index band is required. Since band can't
667                  * be undefined check if freq is non-zero.
668                  */
669                 if (!status->freq)
670                         return;
671
672                 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
673                 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
674                 rate &= ~RX_PPDU_START_RATE_FLAG;
675
676                 sband = &ar->mac.sbands[status->band];
677                 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate);
678                 break;
679         case HTT_RX_HT:
680         case HTT_RX_HT_WITH_TXBF:
681                 /* HT-SIG - Table 20-11 in info2 and info3 */
682                 mcs = info2 & 0x1F;
683                 nss = mcs >> 3;
684                 bw = (info2 >> 7) & 1;
685                 sgi = (info3 >> 7) & 1;
686
687                 status->rate_idx = mcs;
688                 status->flag |= RX_FLAG_HT;
689                 if (sgi)
690                         status->flag |= RX_FLAG_SHORT_GI;
691                 if (bw)
692                         status->flag |= RX_FLAG_40MHZ;
693                 break;
694         case HTT_RX_VHT:
695         case HTT_RX_VHT_WITH_TXBF:
696                 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
697                    TODO check this */
698                 bw = info2 & 3;
699                 sgi = info3 & 1;
700                 group_id = (info2 >> 4) & 0x3F;
701
702                 if (GROUP_ID_IS_SU_MIMO(group_id)) {
703                         mcs = (info3 >> 4) & 0x0F;
704                         nss = ((info2 >> 10) & 0x07) + 1;
705                 } else {
706                         /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
707                          * so it's impossible to decode MCS. Also since
708                          * firmware consumes Group Id Management frames host
709                          * has no knowledge regarding group/user position
710                          * mapping so it's impossible to pick the correct Nsts
711                          * from VHT-SIG-A1.
712                          *
713                          * Bandwidth and SGI are valid so report the rateinfo
714                          * on best-effort basis.
715                          */
716                         mcs = 0;
717                         nss = 1;
718                 }
719
720                 if (mcs > 0x09) {
721                         ath10k_warn(ar, "invalid MCS received %u\n", mcs);
722                         ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
723                                     __le32_to_cpu(rxd->attention.flags),
724                                     __le32_to_cpu(rxd->mpdu_start.info0),
725                                     __le32_to_cpu(rxd->mpdu_start.info1),
726                                     __le32_to_cpu(rxd->msdu_start.common.info0),
727                                     __le32_to_cpu(rxd->msdu_start.common.info1),
728                                     rxd->ppdu_start.info0,
729                                     __le32_to_cpu(rxd->ppdu_start.info1),
730                                     __le32_to_cpu(rxd->ppdu_start.info2),
731                                     __le32_to_cpu(rxd->ppdu_start.info3),
732                                     __le32_to_cpu(rxd->ppdu_start.info4));
733
734                         ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
735                                     __le32_to_cpu(rxd->msdu_end.common.info0),
736                                     __le32_to_cpu(rxd->mpdu_end.info0));
737
738                         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
739                                         "rx desc msdu payload: ",
740                                         rxd->msdu_payload, 50);
741                 }
742
743                 status->rate_idx = mcs;
744                 status->vht_nss = nss;
745
746                 if (sgi)
747                         status->flag |= RX_FLAG_SHORT_GI;
748
749                 switch (bw) {
750                 /* 20MHZ */
751                 case 0:
752                         break;
753                 /* 40MHZ */
754                 case 1:
755                         status->flag |= RX_FLAG_40MHZ;
756                         break;
757                 /* 80MHZ */
758                 case 2:
759                         status->vht_flag |= RX_VHT_FLAG_80MHZ;
760                 }
761
762                 status->flag |= RX_FLAG_VHT;
763                 break;
764         default:
765                 break;
766         }
767 }
768
769 static struct ieee80211_channel *
770 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
771 {
772         struct ath10k_peer *peer;
773         struct ath10k_vif *arvif;
774         struct cfg80211_chan_def def;
775         u16 peer_id;
776
777         lockdep_assert_held(&ar->data_lock);
778
779         if (!rxd)
780                 return NULL;
781
782         if (rxd->attention.flags &
783             __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
784                 return NULL;
785
786         if (!(rxd->msdu_end.common.info0 &
787               __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
788                 return NULL;
789
790         peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
791                      RX_MPDU_START_INFO0_PEER_IDX);
792
793         peer = ath10k_peer_find_by_id(ar, peer_id);
794         if (!peer)
795                 return NULL;
796
797         arvif = ath10k_get_arvif(ar, peer->vdev_id);
798         if (WARN_ON_ONCE(!arvif))
799                 return NULL;
800
801         if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
802                 return NULL;
803
804         return def.chan;
805 }
806
807 static struct ieee80211_channel *
808 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
809 {
810         struct ath10k_vif *arvif;
811         struct cfg80211_chan_def def;
812
813         lockdep_assert_held(&ar->data_lock);
814
815         list_for_each_entry(arvif, &ar->arvifs, list) {
816                 if (arvif->vdev_id == vdev_id &&
817                     ath10k_mac_vif_chan(arvif->vif, &def) == 0)
818                         return def.chan;
819         }
820
821         return NULL;
822 }
823
824 static void
825 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
826                               struct ieee80211_chanctx_conf *conf,
827                               void *data)
828 {
829         struct cfg80211_chan_def *def = data;
830
831         *def = conf->def;
832 }
833
834 static struct ieee80211_channel *
835 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
836 {
837         struct cfg80211_chan_def def = {};
838
839         ieee80211_iter_chan_contexts_atomic(ar->hw,
840                                             ath10k_htt_rx_h_any_chan_iter,
841                                             &def);
842
843         return def.chan;
844 }
845
846 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
847                                     struct ieee80211_rx_status *status,
848                                     struct htt_rx_desc *rxd,
849                                     u32 vdev_id)
850 {
851         struct ieee80211_channel *ch;
852
853         spin_lock_bh(&ar->data_lock);
854         ch = ar->scan_channel;
855         if (!ch)
856                 ch = ar->rx_channel;
857         if (!ch)
858                 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
859         if (!ch)
860                 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
861         if (!ch)
862                 ch = ath10k_htt_rx_h_any_channel(ar);
863         spin_unlock_bh(&ar->data_lock);
864
865         if (!ch)
866                 return false;
867
868         status->band = ch->band;
869         status->freq = ch->center_freq;
870
871         return true;
872 }
873
874 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
875                                    struct ieee80211_rx_status *status,
876                                    struct htt_rx_desc *rxd)
877 {
878         /* FIXME: Get real NF */
879         status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
880                          rxd->ppdu_start.rssi_comb;
881         status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
882 }
883
884 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
885                                     struct ieee80211_rx_status *status,
886                                     struct htt_rx_desc *rxd)
887 {
888         /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
889          * means all prior MSDUs in a PPDU are reported to mac80211 without the
890          * TSF. Is it worth holding frames until end of PPDU is known?
891          *
892          * FIXME: Can we get/compute 64bit TSF?
893          */
894         status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
895         status->flag |= RX_FLAG_MACTIME_END;
896 }
897
898 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
899                                  struct sk_buff_head *amsdu,
900                                  struct ieee80211_rx_status *status,
901                                  u32 vdev_id)
902 {
903         struct sk_buff *first;
904         struct htt_rx_desc *rxd;
905         bool is_first_ppdu;
906         bool is_last_ppdu;
907
908         if (skb_queue_empty(amsdu))
909                 return;
910
911         first = skb_peek(amsdu);
912         rxd = (void *)first->data - sizeof(*rxd);
913
914         is_first_ppdu = !!(rxd->attention.flags &
915                            __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
916         is_last_ppdu = !!(rxd->attention.flags &
917                           __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
918
919         if (is_first_ppdu) {
920                 /* New PPDU starts so clear out the old per-PPDU status. */
921                 status->freq = 0;
922                 status->rate_idx = 0;
923                 status->vht_nss = 0;
924                 status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
925                 status->flag &= ~(RX_FLAG_HT |
926                                   RX_FLAG_VHT |
927                                   RX_FLAG_SHORT_GI |
928                                   RX_FLAG_40MHZ |
929                                   RX_FLAG_MACTIME_END);
930                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
931
932                 ath10k_htt_rx_h_signal(ar, status, rxd);
933                 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
934                 ath10k_htt_rx_h_rates(ar, status, rxd);
935         }
936
937         if (is_last_ppdu)
938                 ath10k_htt_rx_h_mactime(ar, status, rxd);
939 }
940
941 static const char * const tid_to_ac[] = {
942         "BE",
943         "BK",
944         "BK",
945         "BE",
946         "VI",
947         "VI",
948         "VO",
949         "VO",
950 };
951
952 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
953 {
954         u8 *qc;
955         int tid;
956
957         if (!ieee80211_is_data_qos(hdr->frame_control))
958                 return "";
959
960         qc = ieee80211_get_qos_ctl(hdr);
961         tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
962         if (tid < 8)
963                 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
964         else
965                 snprintf(out, size, "tid %d", tid);
966
967         return out;
968 }
969
970 static void ath10k_process_rx(struct ath10k *ar,
971                               struct ieee80211_rx_status *rx_status,
972                               struct sk_buff *skb)
973 {
974         struct ieee80211_rx_status *status;
975         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
976         char tid[32];
977
978         status = IEEE80211_SKB_RXCB(skb);
979         *status = *rx_status;
980
981         ath10k_dbg(ar, ATH10K_DBG_DATA,
982                    "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
983                    skb,
984                    skb->len,
985                    ieee80211_get_SA(hdr),
986                    ath10k_get_tid(hdr, tid, sizeof(tid)),
987                    is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
988                                                         "mcast" : "ucast",
989                    (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
990                    status->flag == 0 ? "legacy" : "",
991                    status->flag & RX_FLAG_HT ? "ht" : "",
992                    status->flag & RX_FLAG_VHT ? "vht" : "",
993                    status->flag & RX_FLAG_40MHZ ? "40" : "",
994                    status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
995                    status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
996                    status->rate_idx,
997                    status->vht_nss,
998                    status->freq,
999                    status->band, status->flag,
1000                    !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1001                    !!(status->flag & RX_FLAG_MMIC_ERROR),
1002                    !!(status->flag & RX_FLAG_AMSDU_MORE));
1003         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1004                         skb->data, skb->len);
1005         trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1006         trace_ath10k_rx_payload(ar, skb->data, skb->len);
1007
1008         ieee80211_rx(ar->hw, skb);
1009 }
1010
1011 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1012                                       struct ieee80211_hdr *hdr)
1013 {
1014         int len = ieee80211_hdrlen(hdr->frame_control);
1015
1016         if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1017                       ar->fw_features))
1018                 len = round_up(len, 4);
1019
1020         return len;
1021 }
1022
1023 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1024                                         struct sk_buff *msdu,
1025                                         struct ieee80211_rx_status *status,
1026                                         enum htt_rx_mpdu_encrypt_type enctype,
1027                                         bool is_decrypted)
1028 {
1029         struct ieee80211_hdr *hdr;
1030         struct htt_rx_desc *rxd;
1031         size_t hdr_len;
1032         size_t crypto_len;
1033         bool is_first;
1034         bool is_last;
1035
1036         rxd = (void *)msdu->data - sizeof(*rxd);
1037         is_first = !!(rxd->msdu_end.common.info0 &
1038                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1039         is_last = !!(rxd->msdu_end.common.info0 &
1040                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1041
1042         /* Delivered decapped frame:
1043          * [802.11 header]
1044          * [crypto param] <-- can be trimmed if !fcs_err &&
1045          *                    !decrypt_err && !peer_idx_invalid
1046          * [amsdu header] <-- only if A-MSDU
1047          * [rfc1042/llc]
1048          * [payload]
1049          * [FCS] <-- at end, needs to be trimmed
1050          */
1051
1052         /* This probably shouldn't happen but warn just in case */
1053         if (unlikely(WARN_ON_ONCE(!is_first)))
1054                 return;
1055
1056         /* This probably shouldn't happen but warn just in case */
1057         if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1058                 return;
1059
1060         skb_trim(msdu, msdu->len - FCS_LEN);
1061
1062         /* In most cases this will be true for sniffed frames. It makes sense
1063          * to deliver them as-is without stripping the crypto param. This is
1064          * necessary for software based decryption.
1065          *
1066          * If there's no error then the frame is decrypted. At least that is
1067          * the case for frames that come in via fragmented rx indication.
1068          */
1069         if (!is_decrypted)
1070                 return;
1071
1072         /* The payload is decrypted so strip crypto params. Start from tail
1073          * since hdr is used to compute some stuff.
1074          */
1075
1076         hdr = (void *)msdu->data;
1077
1078         /* Tail */
1079         skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype));
1080
1081         /* MMIC */
1082         if (!ieee80211_has_morefrags(hdr->frame_control) &&
1083             enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1084                 skb_trim(msdu, msdu->len - 8);
1085
1086         /* Head */
1087         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1088         crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1089
1090         memmove((void *)msdu->data + crypto_len,
1091                 (void *)msdu->data, hdr_len);
1092         skb_pull(msdu, crypto_len);
1093 }
1094
1095 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1096                                           struct sk_buff *msdu,
1097                                           struct ieee80211_rx_status *status,
1098                                           const u8 first_hdr[64])
1099 {
1100         struct ieee80211_hdr *hdr;
1101         size_t hdr_len;
1102         u8 da[ETH_ALEN];
1103         u8 sa[ETH_ALEN];
1104
1105         /* Delivered decapped frame:
1106          * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1107          * [rfc1042/llc]
1108          *
1109          * Note: The nwifi header doesn't have QoS Control and is
1110          * (always?) a 3addr frame.
1111          *
1112          * Note2: There's no A-MSDU subframe header. Even if it's part
1113          * of an A-MSDU.
1114          */
1115
1116         /* pull decapped header and copy SA & DA */
1117         hdr = (struct ieee80211_hdr *)msdu->data;
1118         hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1119         ether_addr_copy(da, ieee80211_get_DA(hdr));
1120         ether_addr_copy(sa, ieee80211_get_SA(hdr));
1121         skb_pull(msdu, hdr_len);
1122
1123         /* push original 802.11 header */
1124         hdr = (struct ieee80211_hdr *)first_hdr;
1125         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1126         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1127
1128         /* original 802.11 header has a different DA and in
1129          * case of 4addr it may also have different SA
1130          */
1131         hdr = (struct ieee80211_hdr *)msdu->data;
1132         ether_addr_copy(ieee80211_get_DA(hdr), da);
1133         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1134 }
1135
1136 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1137                                           struct sk_buff *msdu,
1138                                           enum htt_rx_mpdu_encrypt_type enctype)
1139 {
1140         struct ieee80211_hdr *hdr;
1141         struct htt_rx_desc *rxd;
1142         size_t hdr_len, crypto_len;
1143         void *rfc1042;
1144         bool is_first, is_last, is_amsdu;
1145
1146         rxd = (void *)msdu->data - sizeof(*rxd);
1147         hdr = (void *)rxd->rx_hdr_status;
1148
1149         is_first = !!(rxd->msdu_end.common.info0 &
1150                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1151         is_last = !!(rxd->msdu_end.common.info0 &
1152                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1153         is_amsdu = !(is_first && is_last);
1154
1155         rfc1042 = hdr;
1156
1157         if (is_first) {
1158                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1159                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1160
1161                 rfc1042 += round_up(hdr_len, 4) +
1162                            round_up(crypto_len, 4);
1163         }
1164
1165         if (is_amsdu)
1166                 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1167
1168         return rfc1042;
1169 }
1170
1171 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1172                                         struct sk_buff *msdu,
1173                                         struct ieee80211_rx_status *status,
1174                                         const u8 first_hdr[64],
1175                                         enum htt_rx_mpdu_encrypt_type enctype)
1176 {
1177         struct ieee80211_hdr *hdr;
1178         struct ethhdr *eth;
1179         size_t hdr_len;
1180         void *rfc1042;
1181         u8 da[ETH_ALEN];
1182         u8 sa[ETH_ALEN];
1183
1184         /* Delivered decapped frame:
1185          * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1186          * [payload]
1187          */
1188
1189         rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1190         if (WARN_ON_ONCE(!rfc1042))
1191                 return;
1192
1193         /* pull decapped header and copy SA & DA */
1194         eth = (struct ethhdr *)msdu->data;
1195         ether_addr_copy(da, eth->h_dest);
1196         ether_addr_copy(sa, eth->h_source);
1197         skb_pull(msdu, sizeof(struct ethhdr));
1198
1199         /* push rfc1042/llc/snap */
1200         memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1201                sizeof(struct rfc1042_hdr));
1202
1203         /* push original 802.11 header */
1204         hdr = (struct ieee80211_hdr *)first_hdr;
1205         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1206         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1207
1208         /* original 802.11 header has a different DA and in
1209          * case of 4addr it may also have different SA
1210          */
1211         hdr = (struct ieee80211_hdr *)msdu->data;
1212         ether_addr_copy(ieee80211_get_DA(hdr), da);
1213         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1214 }
1215
1216 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1217                                          struct sk_buff *msdu,
1218                                          struct ieee80211_rx_status *status,
1219                                          const u8 first_hdr[64])
1220 {
1221         struct ieee80211_hdr *hdr;
1222         size_t hdr_len;
1223
1224         /* Delivered decapped frame:
1225          * [amsdu header] <-- replaced with 802.11 hdr
1226          * [rfc1042/llc]
1227          * [payload]
1228          */
1229
1230         skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1231
1232         hdr = (struct ieee80211_hdr *)first_hdr;
1233         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1234         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1235 }
1236
1237 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1238                                     struct sk_buff *msdu,
1239                                     struct ieee80211_rx_status *status,
1240                                     u8 first_hdr[64],
1241                                     enum htt_rx_mpdu_encrypt_type enctype,
1242                                     bool is_decrypted)
1243 {
1244         struct htt_rx_desc *rxd;
1245         enum rx_msdu_decap_format decap;
1246
1247         /* First msdu's decapped header:
1248          * [802.11 header] <-- padded to 4 bytes long
1249          * [crypto param] <-- padded to 4 bytes long
1250          * [amsdu header] <-- only if A-MSDU
1251          * [rfc1042/llc]
1252          *
1253          * Other (2nd, 3rd, ..) msdu's decapped header:
1254          * [amsdu header] <-- only if A-MSDU
1255          * [rfc1042/llc]
1256          */
1257
1258         rxd = (void *)msdu->data - sizeof(*rxd);
1259         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1260                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1261
1262         switch (decap) {
1263         case RX_MSDU_DECAP_RAW:
1264                 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1265                                             is_decrypted);
1266                 break;
1267         case RX_MSDU_DECAP_NATIVE_WIFI:
1268                 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1269                 break;
1270         case RX_MSDU_DECAP_ETHERNET2_DIX:
1271                 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1272                 break;
1273         case RX_MSDU_DECAP_8023_SNAP_LLC:
1274                 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1275                 break;
1276         }
1277 }
1278
1279 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1280 {
1281         struct htt_rx_desc *rxd;
1282         u32 flags, info;
1283         bool is_ip4, is_ip6;
1284         bool is_tcp, is_udp;
1285         bool ip_csum_ok, tcpudp_csum_ok;
1286
1287         rxd = (void *)skb->data - sizeof(*rxd);
1288         flags = __le32_to_cpu(rxd->attention.flags);
1289         info = __le32_to_cpu(rxd->msdu_start.common.info1);
1290
1291         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1292         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1293         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1294         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1295         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1296         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1297
1298         if (!is_ip4 && !is_ip6)
1299                 return CHECKSUM_NONE;
1300         if (!is_tcp && !is_udp)
1301                 return CHECKSUM_NONE;
1302         if (!ip_csum_ok)
1303                 return CHECKSUM_NONE;
1304         if (!tcpudp_csum_ok)
1305                 return CHECKSUM_NONE;
1306
1307         return CHECKSUM_UNNECESSARY;
1308 }
1309
1310 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1311 {
1312         msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1313 }
1314
1315 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1316                                  struct sk_buff_head *amsdu,
1317                                  struct ieee80211_rx_status *status)
1318 {
1319         struct sk_buff *first;
1320         struct sk_buff *last;
1321         struct sk_buff *msdu;
1322         struct htt_rx_desc *rxd;
1323         struct ieee80211_hdr *hdr;
1324         enum htt_rx_mpdu_encrypt_type enctype;
1325         u8 first_hdr[64];
1326         u8 *qos;
1327         size_t hdr_len;
1328         bool has_fcs_err;
1329         bool has_crypto_err;
1330         bool has_tkip_err;
1331         bool has_peer_idx_invalid;
1332         bool is_decrypted;
1333         u32 attention;
1334
1335         if (skb_queue_empty(amsdu))
1336                 return;
1337
1338         first = skb_peek(amsdu);
1339         rxd = (void *)first->data - sizeof(*rxd);
1340
1341         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1342                      RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1343
1344         /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1345          * decapped header. It'll be used for undecapping of each MSDU.
1346          */
1347         hdr = (void *)rxd->rx_hdr_status;
1348         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1349         memcpy(first_hdr, hdr, hdr_len);
1350
1351         /* Each A-MSDU subframe will use the original header as the base and be
1352          * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1353          */
1354         hdr = (void *)first_hdr;
1355         qos = ieee80211_get_qos_ctl(hdr);
1356         qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1357
1358         /* Some attention flags are valid only in the last MSDU. */
1359         last = skb_peek_tail(amsdu);
1360         rxd = (void *)last->data - sizeof(*rxd);
1361         attention = __le32_to_cpu(rxd->attention.flags);
1362
1363         has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1364         has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1365         has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1366         has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1367
1368         /* Note: If hardware captures an encrypted frame that it can't decrypt,
1369          * e.g. due to fcs error, missing peer or invalid key data it will
1370          * report the frame as raw.
1371          */
1372         is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1373                         !has_fcs_err &&
1374                         !has_crypto_err &&
1375                         !has_peer_idx_invalid);
1376
1377         /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1378         status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1379                           RX_FLAG_MMIC_ERROR |
1380                           RX_FLAG_DECRYPTED |
1381                           RX_FLAG_IV_STRIPPED |
1382                           RX_FLAG_MMIC_STRIPPED);
1383
1384         if (has_fcs_err)
1385                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1386
1387         if (has_tkip_err)
1388                 status->flag |= RX_FLAG_MMIC_ERROR;
1389
1390         if (is_decrypted)
1391                 status->flag |= RX_FLAG_DECRYPTED |
1392                                 RX_FLAG_IV_STRIPPED |
1393                                 RX_FLAG_MMIC_STRIPPED;
1394
1395         skb_queue_walk(amsdu, msdu) {
1396                 ath10k_htt_rx_h_csum_offload(msdu);
1397                 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1398                                         is_decrypted);
1399
1400                 /* Undecapping involves copying the original 802.11 header back
1401                  * to sk_buff. If frame is protected and hardware has decrypted
1402                  * it then remove the protected bit.
1403                  */
1404                 if (!is_decrypted)
1405                         continue;
1406
1407                 hdr = (void *)msdu->data;
1408                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1409         }
1410 }
1411
1412 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1413                                     struct sk_buff_head *amsdu,
1414                                     struct ieee80211_rx_status *status)
1415 {
1416         struct sk_buff *msdu;
1417
1418         while ((msdu = __skb_dequeue(amsdu))) {
1419                 /* Setup per-MSDU flags */
1420                 if (skb_queue_empty(amsdu))
1421                         status->flag &= ~RX_FLAG_AMSDU_MORE;
1422                 else
1423                         status->flag |= RX_FLAG_AMSDU_MORE;
1424
1425                 ath10k_process_rx(ar, status, msdu);
1426         }
1427 }
1428
1429 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1430 {
1431         struct sk_buff *skb, *first;
1432         int space;
1433         int total_len = 0;
1434
1435         /* TODO:  Might could optimize this by using
1436          * skb_try_coalesce or similar method to
1437          * decrease copying, or maybe get mac80211 to
1438          * provide a way to just receive a list of
1439          * skb?
1440          */
1441
1442         first = __skb_dequeue(amsdu);
1443
1444         /* Allocate total length all at once. */
1445         skb_queue_walk(amsdu, skb)
1446                 total_len += skb->len;
1447
1448         space = total_len - skb_tailroom(first);
1449         if ((space > 0) &&
1450             (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1451                 /* TODO:  bump some rx-oom error stat */
1452                 /* put it back together so we can free the
1453                  * whole list at once.
1454                  */
1455                 __skb_queue_head(amsdu, first);
1456                 return -1;
1457         }
1458
1459         /* Walk list again, copying contents into
1460          * msdu_head
1461          */
1462         while ((skb = __skb_dequeue(amsdu))) {
1463                 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1464                                           skb->len);
1465                 dev_kfree_skb_any(skb);
1466         }
1467
1468         __skb_queue_head(amsdu, first);
1469         return 0;
1470 }
1471
1472 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1473                                     struct sk_buff_head *amsdu,
1474                                     bool chained)
1475 {
1476         struct sk_buff *first;
1477         struct htt_rx_desc *rxd;
1478         enum rx_msdu_decap_format decap;
1479
1480         first = skb_peek(amsdu);
1481         rxd = (void *)first->data - sizeof(*rxd);
1482         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1483                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1484
1485         if (!chained)
1486                 return;
1487
1488         /* FIXME: Current unchaining logic can only handle simple case of raw
1489          * msdu chaining. If decapping is other than raw the chaining may be
1490          * more complex and this isn't handled by the current code. Don't even
1491          * try re-constructing such frames - it'll be pretty much garbage.
1492          */
1493         if (decap != RX_MSDU_DECAP_RAW ||
1494             skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1495                 __skb_queue_purge(amsdu);
1496                 return;
1497         }
1498
1499         ath10k_unchain_msdu(amsdu);
1500 }
1501
1502 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1503                                         struct sk_buff_head *amsdu,
1504                                         struct ieee80211_rx_status *rx_status)
1505 {
1506         struct sk_buff *msdu;
1507         struct htt_rx_desc *rxd;
1508         bool is_mgmt;
1509         bool has_fcs_err;
1510
1511         msdu = skb_peek(amsdu);
1512         rxd = (void *)msdu->data - sizeof(*rxd);
1513
1514         /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1515          * invalid/dangerous frames.
1516          */
1517
1518         if (!rx_status->freq) {
1519                 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1520                 return false;
1521         }
1522
1523         is_mgmt = !!(rxd->attention.flags &
1524                      __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1525         has_fcs_err = !!(rxd->attention.flags &
1526                          __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR));
1527
1528         /* Management frames are handled via WMI events. The pros of such
1529          * approach is that channel is explicitly provided in WMI events
1530          * whereas HTT doesn't provide channel information for Rxed frames.
1531          *
1532          * However some firmware revisions don't report corrupted frames via
1533          * WMI so don't drop them.
1534          */
1535         if (is_mgmt && !has_fcs_err) {
1536                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
1537                 return false;
1538         }
1539
1540         if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1541                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1542                 return false;
1543         }
1544
1545         return true;
1546 }
1547
1548 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1549                                    struct sk_buff_head *amsdu,
1550                                    struct ieee80211_rx_status *rx_status)
1551 {
1552         if (skb_queue_empty(amsdu))
1553                 return;
1554
1555         if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1556                 return;
1557
1558         __skb_queue_purge(amsdu);
1559 }
1560
1561 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1562                                   struct htt_rx_indication *rx)
1563 {
1564         struct ath10k *ar = htt->ar;
1565         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1566         struct htt_rx_indication_mpdu_range *mpdu_ranges;
1567         struct sk_buff_head amsdu;
1568         int num_mpdu_ranges;
1569         int fw_desc_len;
1570         u8 *fw_desc;
1571         int i, ret, mpdu_count = 0;
1572
1573         lockdep_assert_held(&htt->rx_ring.lock);
1574
1575         if (htt->rx_confused)
1576                 return;
1577
1578         fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1579         fw_desc = (u8 *)&rx->fw_desc;
1580
1581         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1582                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1583         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1584
1585         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1586                         rx, sizeof(*rx) +
1587                         (sizeof(struct htt_rx_indication_mpdu_range) *
1588                                 num_mpdu_ranges));
1589
1590         for (i = 0; i < num_mpdu_ranges; i++)
1591                 mpdu_count += mpdu_ranges[i].mpdu_count;
1592
1593         while (mpdu_count--) {
1594                 __skb_queue_head_init(&amsdu);
1595                 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
1596                                               &fw_desc_len, &amsdu);
1597                 if (ret < 0) {
1598                         ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1599                         __skb_queue_purge(&amsdu);
1600                         /* FIXME: It's probably a good idea to reboot the
1601                          * device instead of leaving it inoperable.
1602                          */
1603                         htt->rx_confused = true;
1604                         break;
1605                 }
1606
1607                 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1608                 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1609                 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1610                 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1611                 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1612         }
1613
1614         tasklet_schedule(&htt->rx_replenish_task);
1615 }
1616
1617 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1618                                        struct htt_rx_fragment_indication *frag)
1619 {
1620         struct ath10k *ar = htt->ar;
1621         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1622         struct sk_buff_head amsdu;
1623         int ret;
1624         u8 *fw_desc;
1625         int fw_desc_len;
1626
1627         fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1628         fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1629
1630         __skb_queue_head_init(&amsdu);
1631
1632         spin_lock_bh(&htt->rx_ring.lock);
1633         ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1634                                       &amsdu);
1635         spin_unlock_bh(&htt->rx_ring.lock);
1636
1637         tasklet_schedule(&htt->rx_replenish_task);
1638
1639         ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1640
1641         if (ret) {
1642                 ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
1643                             ret);
1644                 __skb_queue_purge(&amsdu);
1645                 return;
1646         }
1647
1648         if (skb_queue_len(&amsdu) != 1) {
1649                 ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
1650                 __skb_queue_purge(&amsdu);
1651                 return;
1652         }
1653
1654         ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1655         ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1656         ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1657         ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1658
1659         if (fw_desc_len > 0) {
1660                 ath10k_dbg(ar, ATH10K_DBG_HTT,
1661                            "expecting more fragmented rx in one indication %d\n",
1662                            fw_desc_len);
1663         }
1664 }
1665
1666 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1667                                        struct sk_buff *skb)
1668 {
1669         struct ath10k_htt *htt = &ar->htt;
1670         struct htt_resp *resp = (struct htt_resp *)skb->data;
1671         struct htt_tx_done tx_done = {};
1672         int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1673         __le16 msdu_id;
1674         int i;
1675
1676         switch (status) {
1677         case HTT_DATA_TX_STATUS_NO_ACK:
1678                 tx_done.no_ack = true;
1679                 break;
1680         case HTT_DATA_TX_STATUS_OK:
1681                 tx_done.success = true;
1682                 break;
1683         case HTT_DATA_TX_STATUS_DISCARD:
1684         case HTT_DATA_TX_STATUS_POSTPONE:
1685         case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1686                 tx_done.discard = true;
1687                 break;
1688         default:
1689                 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1690                 tx_done.discard = true;
1691                 break;
1692         }
1693
1694         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1695                    resp->data_tx_completion.num_msdus);
1696
1697         for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1698                 msdu_id = resp->data_tx_completion.msdus[i];
1699                 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1700                 ath10k_txrx_tx_unref(htt, &tx_done);
1701         }
1702 }
1703
1704 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1705 {
1706         struct htt_rx_addba *ev = &resp->rx_addba;
1707         struct ath10k_peer *peer;
1708         struct ath10k_vif *arvif;
1709         u16 info0, tid, peer_id;
1710
1711         info0 = __le16_to_cpu(ev->info0);
1712         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1713         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1714
1715         ath10k_dbg(ar, ATH10K_DBG_HTT,
1716                    "htt rx addba tid %hu peer_id %hu size %hhu\n",
1717                    tid, peer_id, ev->window_size);
1718
1719         spin_lock_bh(&ar->data_lock);
1720         peer = ath10k_peer_find_by_id(ar, peer_id);
1721         if (!peer) {
1722                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1723                             peer_id);
1724                 spin_unlock_bh(&ar->data_lock);
1725                 return;
1726         }
1727
1728         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1729         if (!arvif) {
1730                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1731                             peer->vdev_id);
1732                 spin_unlock_bh(&ar->data_lock);
1733                 return;
1734         }
1735
1736         ath10k_dbg(ar, ATH10K_DBG_HTT,
1737                    "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1738                    peer->addr, tid, ev->window_size);
1739
1740         ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1741         spin_unlock_bh(&ar->data_lock);
1742 }
1743
1744 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1745 {
1746         struct htt_rx_delba *ev = &resp->rx_delba;
1747         struct ath10k_peer *peer;
1748         struct ath10k_vif *arvif;
1749         u16 info0, tid, peer_id;
1750
1751         info0 = __le16_to_cpu(ev->info0);
1752         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1753         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1754
1755         ath10k_dbg(ar, ATH10K_DBG_HTT,
1756                    "htt rx delba tid %hu peer_id %hu\n",
1757                    tid, peer_id);
1758
1759         spin_lock_bh(&ar->data_lock);
1760         peer = ath10k_peer_find_by_id(ar, peer_id);
1761         if (!peer) {
1762                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1763                             peer_id);
1764                 spin_unlock_bh(&ar->data_lock);
1765                 return;
1766         }
1767
1768         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1769         if (!arvif) {
1770                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1771                             peer->vdev_id);
1772                 spin_unlock_bh(&ar->data_lock);
1773                 return;
1774         }
1775
1776         ath10k_dbg(ar, ATH10K_DBG_HTT,
1777                    "htt rx stop rx ba session sta %pM tid %hu\n",
1778                    peer->addr, tid);
1779
1780         ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1781         spin_unlock_bh(&ar->data_lock);
1782 }
1783
1784 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1785                                        struct sk_buff_head *amsdu)
1786 {
1787         struct sk_buff *msdu;
1788         struct htt_rx_desc *rxd;
1789
1790         if (skb_queue_empty(list))
1791                 return -ENOBUFS;
1792
1793         if (WARN_ON(!skb_queue_empty(amsdu)))
1794                 return -EINVAL;
1795
1796         while ((msdu = __skb_dequeue(list))) {
1797                 __skb_queue_tail(amsdu, msdu);
1798
1799                 rxd = (void *)msdu->data - sizeof(*rxd);
1800                 if (rxd->msdu_end.common.info0 &
1801                     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1802                         break;
1803         }
1804
1805         msdu = skb_peek_tail(amsdu);
1806         rxd = (void *)msdu->data - sizeof(*rxd);
1807         if (!(rxd->msdu_end.common.info0 &
1808               __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1809                 skb_queue_splice_init(amsdu, list);
1810                 return -EAGAIN;
1811         }
1812
1813         return 0;
1814 }
1815
1816 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1817                                             struct sk_buff *skb)
1818 {
1819         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1820
1821         if (!ieee80211_has_protected(hdr->frame_control))
1822                 return;
1823
1824         /* Offloaded frames are already decrypted but firmware insists they are
1825          * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
1826          * will drop the frame.
1827          */
1828
1829         hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1830         status->flag |= RX_FLAG_DECRYPTED |
1831                         RX_FLAG_IV_STRIPPED |
1832                         RX_FLAG_MMIC_STRIPPED;
1833 }
1834
1835 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1836                                        struct sk_buff_head *list)
1837 {
1838         struct ath10k_htt *htt = &ar->htt;
1839         struct ieee80211_rx_status *status = &htt->rx_status;
1840         struct htt_rx_offload_msdu *rx;
1841         struct sk_buff *msdu;
1842         size_t offset;
1843
1844         while ((msdu = __skb_dequeue(list))) {
1845                 /* Offloaded frames don't have Rx descriptor. Instead they have
1846                  * a short meta information header.
1847                  */
1848
1849                 rx = (void *)msdu->data;
1850
1851                 skb_put(msdu, sizeof(*rx));
1852                 skb_pull(msdu, sizeof(*rx));
1853
1854                 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1855                         ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1856                         dev_kfree_skb_any(msdu);
1857                         continue;
1858                 }
1859
1860                 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1861
1862                 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
1863                  * actual payload is unaligned. Align the frame.  Otherwise
1864                  * mac80211 complains.  This shouldn't reduce performance much
1865                  * because these offloaded frames are rare.
1866                  */
1867                 offset = 4 - ((unsigned long)msdu->data & 3);
1868                 skb_put(msdu, offset);
1869                 memmove(msdu->data + offset, msdu->data, msdu->len);
1870                 skb_pull(msdu, offset);
1871
1872                 /* FIXME: The frame is NWifi. Re-construct QoS Control
1873                  * if possible later.
1874                  */
1875
1876                 memset(status, 0, sizeof(*status));
1877                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1878
1879                 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1880                 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1881                 ath10k_process_rx(ar, status, msdu);
1882         }
1883 }
1884
1885 static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1886 {
1887         struct ath10k_htt *htt = &ar->htt;
1888         struct htt_resp *resp = (void *)skb->data;
1889         struct ieee80211_rx_status *status = &htt->rx_status;
1890         struct sk_buff_head list;
1891         struct sk_buff_head amsdu;
1892         u16 peer_id;
1893         u16 msdu_count;
1894         u8 vdev_id;
1895         u8 tid;
1896         bool offload;
1897         bool frag;
1898         int ret;
1899
1900         lockdep_assert_held(&htt->rx_ring.lock);
1901
1902         if (htt->rx_confused)
1903                 return;
1904
1905         skb_pull(skb, sizeof(resp->hdr));
1906         skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1907
1908         peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1909         msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1910         vdev_id = resp->rx_in_ord_ind.vdev_id;
1911         tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1912         offload = !!(resp->rx_in_ord_ind.info &
1913                         HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1914         frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1915
1916         ath10k_dbg(ar, ATH10K_DBG_HTT,
1917                    "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1918                    vdev_id, peer_id, tid, offload, frag, msdu_count);
1919
1920         if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1921                 ath10k_warn(ar, "dropping invalid in order rx indication\n");
1922                 return;
1923         }
1924
1925         /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1926          * extracted and processed.
1927          */
1928         __skb_queue_head_init(&list);
1929         ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1930         if (ret < 0) {
1931                 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1932                 htt->rx_confused = true;
1933                 return;
1934         }
1935
1936         /* Offloaded frames are very different and need to be handled
1937          * separately.
1938          */
1939         if (offload)
1940                 ath10k_htt_rx_h_rx_offload(ar, &list);
1941
1942         while (!skb_queue_empty(&list)) {
1943                 __skb_queue_head_init(&amsdu);
1944                 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1945                 switch (ret) {
1946                 case 0:
1947                         /* Note: The in-order indication may report interleaved
1948                          * frames from different PPDUs meaning reported rx rate
1949                          * to mac80211 isn't accurate/reliable. It's still
1950                          * better to report something than nothing though. This
1951                          * should still give an idea about rx rate to the user.
1952                          */
1953                         ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
1954                         ath10k_htt_rx_h_filter(ar, &amsdu, status);
1955                         ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1956                         ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1957                         break;
1958                 case -EAGAIN:
1959                         /* fall through */
1960                 default:
1961                         /* Should not happen. */
1962                         ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1963                         htt->rx_confused = true;
1964                         __skb_queue_purge(&list);
1965                         return;
1966                 }
1967         }
1968
1969         tasklet_schedule(&htt->rx_replenish_task);
1970 }
1971
1972 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1973 {
1974         struct ath10k_htt *htt = &ar->htt;
1975         struct htt_resp *resp = (struct htt_resp *)skb->data;
1976         enum htt_t2h_msg_type type;
1977
1978         /* confirm alignment */
1979         if (!IS_ALIGNED((unsigned long)skb->data, 4))
1980                 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
1981
1982         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
1983                    resp->hdr.msg_type);
1984
1985         if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
1986                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
1987                            resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
1988                 dev_kfree_skb_any(skb);
1989                 return;
1990         }
1991         type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
1992
1993         switch (type) {
1994         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1995                 htt->target_version_major = resp->ver_resp.major;
1996                 htt->target_version_minor = resp->ver_resp.minor;
1997                 complete(&htt->target_version_received);
1998                 break;
1999         }
2000         case HTT_T2H_MSG_TYPE_RX_IND:
2001                 spin_lock_bh(&htt->rx_ring.lock);
2002                 __skb_queue_tail(&htt->rx_compl_q, skb);
2003                 spin_unlock_bh(&htt->rx_ring.lock);
2004                 tasklet_schedule(&htt->txrx_compl_task);
2005                 return;
2006         case HTT_T2H_MSG_TYPE_PEER_MAP: {
2007                 struct htt_peer_map_event ev = {
2008                         .vdev_id = resp->peer_map.vdev_id,
2009                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2010                 };
2011                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2012                 ath10k_peer_map_event(htt, &ev);
2013                 break;
2014         }
2015         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2016                 struct htt_peer_unmap_event ev = {
2017                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2018                 };
2019                 ath10k_peer_unmap_event(htt, &ev);
2020                 break;
2021         }
2022         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2023                 struct htt_tx_done tx_done = {};
2024                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2025
2026                 tx_done.msdu_id =
2027                         __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2028
2029                 switch (status) {
2030                 case HTT_MGMT_TX_STATUS_OK:
2031                         tx_done.success = true;
2032                         break;
2033                 case HTT_MGMT_TX_STATUS_RETRY:
2034                         tx_done.no_ack = true;
2035                         break;
2036                 case HTT_MGMT_TX_STATUS_DROP:
2037                         tx_done.discard = true;
2038                         break;
2039                 }
2040
2041                 ath10k_txrx_tx_unref(htt, &tx_done);
2042                 break;
2043         }
2044         case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2045                 skb_queue_tail(&htt->tx_compl_q, skb);
2046                 tasklet_schedule(&htt->txrx_compl_task);
2047                 return;
2048         case HTT_T2H_MSG_TYPE_SEC_IND: {
2049                 struct ath10k *ar = htt->ar;
2050                 struct htt_security_indication *ev = &resp->security_indication;
2051
2052                 ath10k_dbg(ar, ATH10K_DBG_HTT,
2053                            "sec ind peer_id %d unicast %d type %d\n",
2054                           __le16_to_cpu(ev->peer_id),
2055                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2056                           MS(ev->flags, HTT_SECURITY_TYPE));
2057                 complete(&ar->install_key_done);
2058                 break;
2059         }
2060         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2061                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2062                                 skb->data, skb->len);
2063                 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
2064                 break;
2065         }
2066         case HTT_T2H_MSG_TYPE_TEST:
2067                 break;
2068         case HTT_T2H_MSG_TYPE_STATS_CONF:
2069                 trace_ath10k_htt_stats(ar, skb->data, skb->len);
2070                 break;
2071         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2072                 /* Firmware can return tx frames if it's unable to fully
2073                  * process them and suspects host may be able to fix it. ath10k
2074                  * sends all tx frames as already inspected so this shouldn't
2075                  * happen unless fw has a bug.
2076                  */
2077                 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2078                 break;
2079         case HTT_T2H_MSG_TYPE_RX_ADDBA:
2080                 ath10k_htt_rx_addba(ar, resp);
2081                 break;
2082         case HTT_T2H_MSG_TYPE_RX_DELBA:
2083                 ath10k_htt_rx_delba(ar, resp);
2084                 break;
2085         case HTT_T2H_MSG_TYPE_PKTLOG: {
2086                 struct ath10k_pktlog_hdr *hdr =
2087                         (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
2088
2089                 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2090                                         sizeof(*hdr) +
2091                                         __le16_to_cpu(hdr->size));
2092                 break;
2093         }
2094         case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2095                 /* Ignore this event because mac80211 takes care of Rx
2096                  * aggregation reordering.
2097                  */
2098                 break;
2099         }
2100         case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2101                 spin_lock_bh(&htt->rx_ring.lock);
2102                 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2103                 spin_unlock_bh(&htt->rx_ring.lock);
2104                 tasklet_schedule(&htt->txrx_compl_task);
2105                 return;
2106         }
2107         case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2108                 break;
2109         case HTT_T2H_MSG_TYPE_CHAN_CHANGE:
2110                 break;
2111         case HTT_T2H_MSG_TYPE_AGGR_CONF:
2112                 break;
2113         case HTT_T2H_MSG_TYPE_EN_STATS:
2114         case HTT_T2H_MSG_TYPE_TX_FETCH_IND:
2115         case HTT_T2H_MSG_TYPE_TX_FETCH_CONF:
2116         case HTT_T2H_MSG_TYPE_TX_LOW_LATENCY_IND:
2117         default:
2118                 ath10k_warn(ar, "htt event (%d) not handled\n",
2119                             resp->hdr.msg_type);
2120                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2121                                 skb->data, skb->len);
2122                 break;
2123         };
2124
2125         /* Free the indication buffer */
2126         dev_kfree_skb_any(skb);
2127 }
2128 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2129
2130 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
2131 {
2132         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
2133         struct ath10k *ar = htt->ar;
2134         struct htt_resp *resp;
2135         struct sk_buff *skb;
2136
2137         while ((skb = skb_dequeue(&htt->tx_compl_q))) {
2138                 ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
2139                 dev_kfree_skb_any(skb);
2140         }
2141
2142         spin_lock_bh(&htt->rx_ring.lock);
2143         while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
2144                 resp = (struct htt_resp *)skb->data;
2145                 ath10k_htt_rx_handler(htt, &resp->rx_ind);
2146                 dev_kfree_skb_any(skb);
2147         }
2148
2149         while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) {
2150                 ath10k_htt_rx_in_ord_ind(ar, skb);
2151                 dev_kfree_skb_any(skb);
2152         }
2153         spin_unlock_bh(&htt->rx_ring.lock);
2154 }