]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/ntb/ntb_transport.c
Merge tag 'kvm-4.13-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[karo-tx-linux.git] / drivers / ntb / ntb_transport.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION   4
66 #define NTB_TRANSPORT_VER       "4"
67 #define NTB_TRANSPORT_NAME      "ntb_transport"
68 #define NTB_TRANSPORT_DESC      "Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95
96 static struct dentry *nt_debugfs_dir;
97
98 /* Only two-ports NTB devices are supported */
99 #define PIDX            NTB_DEF_PEER_IDX
100
101 struct ntb_queue_entry {
102         /* ntb_queue list reference */
103         struct list_head entry;
104         /* pointers to data to be transferred */
105         void *cb_data;
106         void *buf;
107         unsigned int len;
108         unsigned int flags;
109         int retries;
110         int errors;
111         unsigned int tx_index;
112         unsigned int rx_index;
113
114         struct ntb_transport_qp *qp;
115         union {
116                 struct ntb_payload_header __iomem *tx_hdr;
117                 struct ntb_payload_header *rx_hdr;
118         };
119 };
120
121 struct ntb_rx_info {
122         unsigned int entry;
123 };
124
125 struct ntb_transport_qp {
126         struct ntb_transport_ctx *transport;
127         struct ntb_dev *ndev;
128         void *cb_data;
129         struct dma_chan *tx_dma_chan;
130         struct dma_chan *rx_dma_chan;
131
132         bool client_ready;
133         bool link_is_up;
134         bool active;
135
136         u8 qp_num;      /* Only 64 QP's are allowed.  0-63 */
137         u64 qp_bit;
138
139         struct ntb_rx_info __iomem *rx_info;
140         struct ntb_rx_info *remote_rx_info;
141
142         void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
143                            void *data, int len);
144         struct list_head tx_free_q;
145         spinlock_t ntb_tx_free_q_lock;
146         void __iomem *tx_mw;
147         dma_addr_t tx_mw_phys;
148         unsigned int tx_index;
149         unsigned int tx_max_entry;
150         unsigned int tx_max_frame;
151
152         void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
153                            void *data, int len);
154         struct list_head rx_post_q;
155         struct list_head rx_pend_q;
156         struct list_head rx_free_q;
157         /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
158         spinlock_t ntb_rx_q_lock;
159         void *rx_buff;
160         unsigned int rx_index;
161         unsigned int rx_max_entry;
162         unsigned int rx_max_frame;
163         unsigned int rx_alloc_entry;
164         dma_cookie_t last_cookie;
165         struct tasklet_struct rxc_db_work;
166
167         void (*event_handler)(void *data, int status);
168         struct delayed_work link_work;
169         struct work_struct link_cleanup;
170
171         struct dentry *debugfs_dir;
172         struct dentry *debugfs_stats;
173
174         /* Stats */
175         u64 rx_bytes;
176         u64 rx_pkts;
177         u64 rx_ring_empty;
178         u64 rx_err_no_buf;
179         u64 rx_err_oflow;
180         u64 rx_err_ver;
181         u64 rx_memcpy;
182         u64 rx_async;
183         u64 tx_bytes;
184         u64 tx_pkts;
185         u64 tx_ring_full;
186         u64 tx_err_no_buf;
187         u64 tx_memcpy;
188         u64 tx_async;
189 };
190
191 struct ntb_transport_mw {
192         phys_addr_t phys_addr;
193         resource_size_t phys_size;
194         resource_size_t xlat_align;
195         resource_size_t xlat_align_size;
196         void __iomem *vbase;
197         size_t xlat_size;
198         size_t buff_size;
199         void *virt_addr;
200         dma_addr_t dma_addr;
201 };
202
203 struct ntb_transport_client_dev {
204         struct list_head entry;
205         struct ntb_transport_ctx *nt;
206         struct device dev;
207 };
208
209 struct ntb_transport_ctx {
210         struct list_head entry;
211         struct list_head client_devs;
212
213         struct ntb_dev *ndev;
214
215         struct ntb_transport_mw *mw_vec;
216         struct ntb_transport_qp *qp_vec;
217         unsigned int mw_count;
218         unsigned int qp_count;
219         u64 qp_bitmap;
220         u64 qp_bitmap_free;
221
222         bool link_is_up;
223         struct delayed_work link_work;
224         struct work_struct link_cleanup;
225
226         struct dentry *debugfs_node_dir;
227 };
228
229 enum {
230         DESC_DONE_FLAG = BIT(0),
231         LINK_DOWN_FLAG = BIT(1),
232 };
233
234 struct ntb_payload_header {
235         unsigned int ver;
236         unsigned int len;
237         unsigned int flags;
238 };
239
240 enum {
241         VERSION = 0,
242         QP_LINKS,
243         NUM_QPS,
244         NUM_MWS,
245         MW0_SZ_HIGH,
246         MW0_SZ_LOW,
247 };
248
249 #define dev_client_dev(__dev) \
250         container_of((__dev), struct ntb_transport_client_dev, dev)
251
252 #define drv_client(__drv) \
253         container_of((__drv), struct ntb_transport_client, driver)
254
255 #define QP_TO_MW(nt, qp)        ((qp) % nt->mw_count)
256 #define NTB_QP_DEF_NUM_ENTRIES  100
257 #define NTB_LINK_DOWN_TIMEOUT   10
258
259 static void ntb_transport_rxc_db(unsigned long data);
260 static const struct ntb_ctx_ops ntb_transport_ops;
261 static struct ntb_client ntb_transport_client;
262 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
263                                struct ntb_queue_entry *entry);
264 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
265 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
266 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
267
268
269 static int ntb_transport_bus_match(struct device *dev,
270                                    struct device_driver *drv)
271 {
272         return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
273 }
274
275 static int ntb_transport_bus_probe(struct device *dev)
276 {
277         const struct ntb_transport_client *client;
278         int rc = -EINVAL;
279
280         get_device(dev);
281
282         client = drv_client(dev->driver);
283         rc = client->probe(dev);
284         if (rc)
285                 put_device(dev);
286
287         return rc;
288 }
289
290 static int ntb_transport_bus_remove(struct device *dev)
291 {
292         const struct ntb_transport_client *client;
293
294         client = drv_client(dev->driver);
295         client->remove(dev);
296
297         put_device(dev);
298
299         return 0;
300 }
301
302 static struct bus_type ntb_transport_bus = {
303         .name = "ntb_transport",
304         .match = ntb_transport_bus_match,
305         .probe = ntb_transport_bus_probe,
306         .remove = ntb_transport_bus_remove,
307 };
308
309 static LIST_HEAD(ntb_transport_list);
310
311 static int ntb_bus_init(struct ntb_transport_ctx *nt)
312 {
313         list_add_tail(&nt->entry, &ntb_transport_list);
314         return 0;
315 }
316
317 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
318 {
319         struct ntb_transport_client_dev *client_dev, *cd;
320
321         list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
322                 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
323                         dev_name(&client_dev->dev));
324                 list_del(&client_dev->entry);
325                 device_unregister(&client_dev->dev);
326         }
327
328         list_del(&nt->entry);
329 }
330
331 static void ntb_transport_client_release(struct device *dev)
332 {
333         struct ntb_transport_client_dev *client_dev;
334
335         client_dev = dev_client_dev(dev);
336         kfree(client_dev);
337 }
338
339 /**
340  * ntb_transport_unregister_client_dev - Unregister NTB client device
341  * @device_name: Name of NTB client device
342  *
343  * Unregister an NTB client device with the NTB transport layer
344  */
345 void ntb_transport_unregister_client_dev(char *device_name)
346 {
347         struct ntb_transport_client_dev *client, *cd;
348         struct ntb_transport_ctx *nt;
349
350         list_for_each_entry(nt, &ntb_transport_list, entry)
351                 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
352                         if (!strncmp(dev_name(&client->dev), device_name,
353                                      strlen(device_name))) {
354                                 list_del(&client->entry);
355                                 device_unregister(&client->dev);
356                         }
357 }
358 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
359
360 /**
361  * ntb_transport_register_client_dev - Register NTB client device
362  * @device_name: Name of NTB client device
363  *
364  * Register an NTB client device with the NTB transport layer
365  */
366 int ntb_transport_register_client_dev(char *device_name)
367 {
368         struct ntb_transport_client_dev *client_dev;
369         struct ntb_transport_ctx *nt;
370         int node;
371         int rc, i = 0;
372
373         if (list_empty(&ntb_transport_list))
374                 return -ENODEV;
375
376         list_for_each_entry(nt, &ntb_transport_list, entry) {
377                 struct device *dev;
378
379                 node = dev_to_node(&nt->ndev->dev);
380
381                 client_dev = kzalloc_node(sizeof(*client_dev),
382                                           GFP_KERNEL, node);
383                 if (!client_dev) {
384                         rc = -ENOMEM;
385                         goto err;
386                 }
387
388                 dev = &client_dev->dev;
389
390                 /* setup and register client devices */
391                 dev_set_name(dev, "%s%d", device_name, i);
392                 dev->bus = &ntb_transport_bus;
393                 dev->release = ntb_transport_client_release;
394                 dev->parent = &nt->ndev->dev;
395
396                 rc = device_register(dev);
397                 if (rc) {
398                         kfree(client_dev);
399                         goto err;
400                 }
401
402                 list_add_tail(&client_dev->entry, &nt->client_devs);
403                 i++;
404         }
405
406         return 0;
407
408 err:
409         ntb_transport_unregister_client_dev(device_name);
410
411         return rc;
412 }
413 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
414
415 /**
416  * ntb_transport_register_client - Register NTB client driver
417  * @drv: NTB client driver to be registered
418  *
419  * Register an NTB client driver with the NTB transport layer
420  *
421  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
422  */
423 int ntb_transport_register_client(struct ntb_transport_client *drv)
424 {
425         drv->driver.bus = &ntb_transport_bus;
426
427         if (list_empty(&ntb_transport_list))
428                 return -ENODEV;
429
430         return driver_register(&drv->driver);
431 }
432 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
433
434 /**
435  * ntb_transport_unregister_client - Unregister NTB client driver
436  * @drv: NTB client driver to be unregistered
437  *
438  * Unregister an NTB client driver with the NTB transport layer
439  *
440  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
441  */
442 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
443 {
444         driver_unregister(&drv->driver);
445 }
446 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
447
448 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
449                             loff_t *offp)
450 {
451         struct ntb_transport_qp *qp;
452         char *buf;
453         ssize_t ret, out_offset, out_count;
454
455         qp = filp->private_data;
456
457         if (!qp || !qp->link_is_up)
458                 return 0;
459
460         out_count = 1000;
461
462         buf = kmalloc(out_count, GFP_KERNEL);
463         if (!buf)
464                 return -ENOMEM;
465
466         out_offset = 0;
467         out_offset += snprintf(buf + out_offset, out_count - out_offset,
468                                "\nNTB QP stats:\n\n");
469         out_offset += snprintf(buf + out_offset, out_count - out_offset,
470                                "rx_bytes - \t%llu\n", qp->rx_bytes);
471         out_offset += snprintf(buf + out_offset, out_count - out_offset,
472                                "rx_pkts - \t%llu\n", qp->rx_pkts);
473         out_offset += snprintf(buf + out_offset, out_count - out_offset,
474                                "rx_memcpy - \t%llu\n", qp->rx_memcpy);
475         out_offset += snprintf(buf + out_offset, out_count - out_offset,
476                                "rx_async - \t%llu\n", qp->rx_async);
477         out_offset += snprintf(buf + out_offset, out_count - out_offset,
478                                "rx_ring_empty - %llu\n", qp->rx_ring_empty);
479         out_offset += snprintf(buf + out_offset, out_count - out_offset,
480                                "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
481         out_offset += snprintf(buf + out_offset, out_count - out_offset,
482                                "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
483         out_offset += snprintf(buf + out_offset, out_count - out_offset,
484                                "rx_err_ver - \t%llu\n", qp->rx_err_ver);
485         out_offset += snprintf(buf + out_offset, out_count - out_offset,
486                                "rx_buff - \t0x%p\n", qp->rx_buff);
487         out_offset += snprintf(buf + out_offset, out_count - out_offset,
488                                "rx_index - \t%u\n", qp->rx_index);
489         out_offset += snprintf(buf + out_offset, out_count - out_offset,
490                                "rx_max_entry - \t%u\n", qp->rx_max_entry);
491         out_offset += snprintf(buf + out_offset, out_count - out_offset,
492                                "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
493
494         out_offset += snprintf(buf + out_offset, out_count - out_offset,
495                                "tx_bytes - \t%llu\n", qp->tx_bytes);
496         out_offset += snprintf(buf + out_offset, out_count - out_offset,
497                                "tx_pkts - \t%llu\n", qp->tx_pkts);
498         out_offset += snprintf(buf + out_offset, out_count - out_offset,
499                                "tx_memcpy - \t%llu\n", qp->tx_memcpy);
500         out_offset += snprintf(buf + out_offset, out_count - out_offset,
501                                "tx_async - \t%llu\n", qp->tx_async);
502         out_offset += snprintf(buf + out_offset, out_count - out_offset,
503                                "tx_ring_full - \t%llu\n", qp->tx_ring_full);
504         out_offset += snprintf(buf + out_offset, out_count - out_offset,
505                                "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
506         out_offset += snprintf(buf + out_offset, out_count - out_offset,
507                                "tx_mw - \t0x%p\n", qp->tx_mw);
508         out_offset += snprintf(buf + out_offset, out_count - out_offset,
509                                "tx_index (H) - \t%u\n", qp->tx_index);
510         out_offset += snprintf(buf + out_offset, out_count - out_offset,
511                                "RRI (T) - \t%u\n",
512                                qp->remote_rx_info->entry);
513         out_offset += snprintf(buf + out_offset, out_count - out_offset,
514                                "tx_max_entry - \t%u\n", qp->tx_max_entry);
515         out_offset += snprintf(buf + out_offset, out_count - out_offset,
516                                "free tx - \t%u\n",
517                                ntb_transport_tx_free_entry(qp));
518
519         out_offset += snprintf(buf + out_offset, out_count - out_offset,
520                                "\n");
521         out_offset += snprintf(buf + out_offset, out_count - out_offset,
522                                "Using TX DMA - \t%s\n",
523                                qp->tx_dma_chan ? "Yes" : "No");
524         out_offset += snprintf(buf + out_offset, out_count - out_offset,
525                                "Using RX DMA - \t%s\n",
526                                qp->rx_dma_chan ? "Yes" : "No");
527         out_offset += snprintf(buf + out_offset, out_count - out_offset,
528                                "QP Link - \t%s\n",
529                                qp->link_is_up ? "Up" : "Down");
530         out_offset += snprintf(buf + out_offset, out_count - out_offset,
531                                "\n");
532
533         if (out_offset > out_count)
534                 out_offset = out_count;
535
536         ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
537         kfree(buf);
538         return ret;
539 }
540
541 static const struct file_operations ntb_qp_debugfs_stats = {
542         .owner = THIS_MODULE,
543         .open = simple_open,
544         .read = debugfs_read,
545 };
546
547 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
548                          struct list_head *list)
549 {
550         unsigned long flags;
551
552         spin_lock_irqsave(lock, flags);
553         list_add_tail(entry, list);
554         spin_unlock_irqrestore(lock, flags);
555 }
556
557 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
558                                            struct list_head *list)
559 {
560         struct ntb_queue_entry *entry;
561         unsigned long flags;
562
563         spin_lock_irqsave(lock, flags);
564         if (list_empty(list)) {
565                 entry = NULL;
566                 goto out;
567         }
568         entry = list_first_entry(list, struct ntb_queue_entry, entry);
569         list_del(&entry->entry);
570
571 out:
572         spin_unlock_irqrestore(lock, flags);
573
574         return entry;
575 }
576
577 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
578                                            struct list_head *list,
579                                            struct list_head *to_list)
580 {
581         struct ntb_queue_entry *entry;
582         unsigned long flags;
583
584         spin_lock_irqsave(lock, flags);
585
586         if (list_empty(list)) {
587                 entry = NULL;
588         } else {
589                 entry = list_first_entry(list, struct ntb_queue_entry, entry);
590                 list_move_tail(&entry->entry, to_list);
591         }
592
593         spin_unlock_irqrestore(lock, flags);
594
595         return entry;
596 }
597
598 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
599                                      unsigned int qp_num)
600 {
601         struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
602         struct ntb_transport_mw *mw;
603         struct ntb_dev *ndev = nt->ndev;
604         struct ntb_queue_entry *entry;
605         unsigned int rx_size, num_qps_mw;
606         unsigned int mw_num, mw_count, qp_count;
607         unsigned int i;
608         int node;
609
610         mw_count = nt->mw_count;
611         qp_count = nt->qp_count;
612
613         mw_num = QP_TO_MW(nt, qp_num);
614         mw = &nt->mw_vec[mw_num];
615
616         if (!mw->virt_addr)
617                 return -ENOMEM;
618
619         if (mw_num < qp_count % mw_count)
620                 num_qps_mw = qp_count / mw_count + 1;
621         else
622                 num_qps_mw = qp_count / mw_count;
623
624         rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
625         qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
626         rx_size -= sizeof(struct ntb_rx_info);
627
628         qp->remote_rx_info = qp->rx_buff + rx_size;
629
630         /* Due to housekeeping, there must be atleast 2 buffs */
631         qp->rx_max_frame = min(transport_mtu, rx_size / 2);
632         qp->rx_max_entry = rx_size / qp->rx_max_frame;
633         qp->rx_index = 0;
634
635         /*
636          * Checking to see if we have more entries than the default.
637          * We should add additional entries if that is the case so we
638          * can be in sync with the transport frames.
639          */
640         node = dev_to_node(&ndev->dev);
641         for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
642                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
643                 if (!entry)
644                         return -ENOMEM;
645
646                 entry->qp = qp;
647                 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
648                              &qp->rx_free_q);
649                 qp->rx_alloc_entry++;
650         }
651
652         qp->remote_rx_info->entry = qp->rx_max_entry - 1;
653
654         /* setup the hdr offsets with 0's */
655         for (i = 0; i < qp->rx_max_entry; i++) {
656                 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
657                                 sizeof(struct ntb_payload_header));
658                 memset(offset, 0, sizeof(struct ntb_payload_header));
659         }
660
661         qp->rx_pkts = 0;
662         qp->tx_pkts = 0;
663         qp->tx_index = 0;
664
665         return 0;
666 }
667
668 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
669 {
670         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
671         struct pci_dev *pdev = nt->ndev->pdev;
672
673         if (!mw->virt_addr)
674                 return;
675
676         ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
677         dma_free_coherent(&pdev->dev, mw->buff_size,
678                           mw->virt_addr, mw->dma_addr);
679         mw->xlat_size = 0;
680         mw->buff_size = 0;
681         mw->virt_addr = NULL;
682 }
683
684 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
685                       resource_size_t size)
686 {
687         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
688         struct pci_dev *pdev = nt->ndev->pdev;
689         size_t xlat_size, buff_size;
690         int rc;
691
692         if (!size)
693                 return -EINVAL;
694
695         xlat_size = round_up(size, mw->xlat_align_size);
696         buff_size = round_up(size, mw->xlat_align);
697
698         /* No need to re-setup */
699         if (mw->xlat_size == xlat_size)
700                 return 0;
701
702         if (mw->buff_size)
703                 ntb_free_mw(nt, num_mw);
704
705         /* Alloc memory for receiving data.  Must be aligned */
706         mw->xlat_size = xlat_size;
707         mw->buff_size = buff_size;
708
709         mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
710                                            &mw->dma_addr, GFP_KERNEL);
711         if (!mw->virt_addr) {
712                 mw->xlat_size = 0;
713                 mw->buff_size = 0;
714                 dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
715                         buff_size);
716                 return -ENOMEM;
717         }
718
719         /*
720          * we must ensure that the memory address allocated is BAR size
721          * aligned in order for the XLAT register to take the value. This
722          * is a requirement of the hardware. It is recommended to setup CMA
723          * for BAR sizes equal or greater than 4MB.
724          */
725         if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
726                 dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
727                         &mw->dma_addr);
728                 ntb_free_mw(nt, num_mw);
729                 return -ENOMEM;
730         }
731
732         /* Notify HW the memory location of the receive buffer */
733         rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
734                               mw->xlat_size);
735         if (rc) {
736                 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
737                 ntb_free_mw(nt, num_mw);
738                 return -EIO;
739         }
740
741         return 0;
742 }
743
744 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
745 {
746         qp->link_is_up = false;
747         qp->active = false;
748
749         qp->tx_index = 0;
750         qp->rx_index = 0;
751         qp->rx_bytes = 0;
752         qp->rx_pkts = 0;
753         qp->rx_ring_empty = 0;
754         qp->rx_err_no_buf = 0;
755         qp->rx_err_oflow = 0;
756         qp->rx_err_ver = 0;
757         qp->rx_memcpy = 0;
758         qp->rx_async = 0;
759         qp->tx_bytes = 0;
760         qp->tx_pkts = 0;
761         qp->tx_ring_full = 0;
762         qp->tx_err_no_buf = 0;
763         qp->tx_memcpy = 0;
764         qp->tx_async = 0;
765 }
766
767 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
768 {
769         struct ntb_transport_ctx *nt = qp->transport;
770         struct pci_dev *pdev = nt->ndev->pdev;
771
772         dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
773
774         cancel_delayed_work_sync(&qp->link_work);
775         ntb_qp_link_down_reset(qp);
776
777         if (qp->event_handler)
778                 qp->event_handler(qp->cb_data, qp->link_is_up);
779 }
780
781 static void ntb_qp_link_cleanup_work(struct work_struct *work)
782 {
783         struct ntb_transport_qp *qp = container_of(work,
784                                                    struct ntb_transport_qp,
785                                                    link_cleanup);
786         struct ntb_transport_ctx *nt = qp->transport;
787
788         ntb_qp_link_cleanup(qp);
789
790         if (nt->link_is_up)
791                 schedule_delayed_work(&qp->link_work,
792                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
793 }
794
795 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
796 {
797         schedule_work(&qp->link_cleanup);
798 }
799
800 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
801 {
802         struct ntb_transport_qp *qp;
803         u64 qp_bitmap_alloc;
804         unsigned int i, count;
805
806         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
807
808         /* Pass along the info to any clients */
809         for (i = 0; i < nt->qp_count; i++)
810                 if (qp_bitmap_alloc & BIT_ULL(i)) {
811                         qp = &nt->qp_vec[i];
812                         ntb_qp_link_cleanup(qp);
813                         cancel_work_sync(&qp->link_cleanup);
814                         cancel_delayed_work_sync(&qp->link_work);
815                 }
816
817         if (!nt->link_is_up)
818                 cancel_delayed_work_sync(&nt->link_work);
819
820         /* The scratchpad registers keep the values if the remote side
821          * goes down, blast them now to give them a sane value the next
822          * time they are accessed
823          */
824         count = ntb_spad_count(nt->ndev);
825         for (i = 0; i < count; i++)
826                 ntb_spad_write(nt->ndev, i, 0);
827 }
828
829 static void ntb_transport_link_cleanup_work(struct work_struct *work)
830 {
831         struct ntb_transport_ctx *nt =
832                 container_of(work, struct ntb_transport_ctx, link_cleanup);
833
834         ntb_transport_link_cleanup(nt);
835 }
836
837 static void ntb_transport_event_callback(void *data)
838 {
839         struct ntb_transport_ctx *nt = data;
840
841         if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
842                 schedule_delayed_work(&nt->link_work, 0);
843         else
844                 schedule_work(&nt->link_cleanup);
845 }
846
847 static void ntb_transport_link_work(struct work_struct *work)
848 {
849         struct ntb_transport_ctx *nt =
850                 container_of(work, struct ntb_transport_ctx, link_work.work);
851         struct ntb_dev *ndev = nt->ndev;
852         struct pci_dev *pdev = ndev->pdev;
853         resource_size_t size;
854         u32 val;
855         int rc = 0, i, spad;
856
857         /* send the local info, in the opposite order of the way we read it */
858         for (i = 0; i < nt->mw_count; i++) {
859                 size = nt->mw_vec[i].phys_size;
860
861                 if (max_mw_size && size > max_mw_size)
862                         size = max_mw_size;
863
864                 spad = MW0_SZ_HIGH + (i * 2);
865                 ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
866
867                 spad = MW0_SZ_LOW + (i * 2);
868                 ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
869         }
870
871         ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
872
873         ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
874
875         ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
876
877         /* Query the remote side for its info */
878         val = ntb_spad_read(ndev, VERSION);
879         dev_dbg(&pdev->dev, "Remote version = %d\n", val);
880         if (val != NTB_TRANSPORT_VERSION)
881                 goto out;
882
883         val = ntb_spad_read(ndev, NUM_QPS);
884         dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
885         if (val != nt->qp_count)
886                 goto out;
887
888         val = ntb_spad_read(ndev, NUM_MWS);
889         dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
890         if (val != nt->mw_count)
891                 goto out;
892
893         for (i = 0; i < nt->mw_count; i++) {
894                 u64 val64;
895
896                 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
897                 val64 = (u64)val << 32;
898
899                 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
900                 val64 |= val;
901
902                 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
903
904                 rc = ntb_set_mw(nt, i, val64);
905                 if (rc)
906                         goto out1;
907         }
908
909         nt->link_is_up = true;
910
911         for (i = 0; i < nt->qp_count; i++) {
912                 struct ntb_transport_qp *qp = &nt->qp_vec[i];
913
914                 ntb_transport_setup_qp_mw(nt, i);
915
916                 if (qp->client_ready)
917                         schedule_delayed_work(&qp->link_work, 0);
918         }
919
920         return;
921
922 out1:
923         for (i = 0; i < nt->mw_count; i++)
924                 ntb_free_mw(nt, i);
925
926         /* if there's an actual failure, we should just bail */
927         if (rc < 0) {
928                 ntb_link_disable(ndev);
929                 return;
930         }
931
932 out:
933         if (ntb_link_is_up(ndev, NULL, NULL) == 1)
934                 schedule_delayed_work(&nt->link_work,
935                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
936 }
937
938 static void ntb_qp_link_work(struct work_struct *work)
939 {
940         struct ntb_transport_qp *qp = container_of(work,
941                                                    struct ntb_transport_qp,
942                                                    link_work.work);
943         struct pci_dev *pdev = qp->ndev->pdev;
944         struct ntb_transport_ctx *nt = qp->transport;
945         int val;
946
947         WARN_ON(!nt->link_is_up);
948
949         val = ntb_spad_read(nt->ndev, QP_LINKS);
950
951         ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
952
953         /* query remote spad for qp ready bits */
954         dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
955
956         /* See if the remote side is up */
957         if (val & BIT(qp->qp_num)) {
958                 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
959                 qp->link_is_up = true;
960                 qp->active = true;
961
962                 if (qp->event_handler)
963                         qp->event_handler(qp->cb_data, qp->link_is_up);
964
965                 if (qp->active)
966                         tasklet_schedule(&qp->rxc_db_work);
967         } else if (nt->link_is_up)
968                 schedule_delayed_work(&qp->link_work,
969                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
970 }
971
972 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
973                                     unsigned int qp_num)
974 {
975         struct ntb_transport_qp *qp;
976         phys_addr_t mw_base;
977         resource_size_t mw_size;
978         unsigned int num_qps_mw, tx_size;
979         unsigned int mw_num, mw_count, qp_count;
980         u64 qp_offset;
981
982         mw_count = nt->mw_count;
983         qp_count = nt->qp_count;
984
985         mw_num = QP_TO_MW(nt, qp_num);
986
987         qp = &nt->qp_vec[qp_num];
988         qp->qp_num = qp_num;
989         qp->transport = nt;
990         qp->ndev = nt->ndev;
991         qp->client_ready = false;
992         qp->event_handler = NULL;
993         ntb_qp_link_down_reset(qp);
994
995         if (mw_num < qp_count % mw_count)
996                 num_qps_mw = qp_count / mw_count + 1;
997         else
998                 num_qps_mw = qp_count / mw_count;
999
1000         mw_base = nt->mw_vec[mw_num].phys_addr;
1001         mw_size = nt->mw_vec[mw_num].phys_size;
1002
1003         tx_size = (unsigned int)mw_size / num_qps_mw;
1004         qp_offset = tx_size * (qp_num / mw_count);
1005
1006         qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1007         if (!qp->tx_mw)
1008                 return -EINVAL;
1009
1010         qp->tx_mw_phys = mw_base + qp_offset;
1011         if (!qp->tx_mw_phys)
1012                 return -EINVAL;
1013
1014         tx_size -= sizeof(struct ntb_rx_info);
1015         qp->rx_info = qp->tx_mw + tx_size;
1016
1017         /* Due to housekeeping, there must be atleast 2 buffs */
1018         qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1019         qp->tx_max_entry = tx_size / qp->tx_max_frame;
1020
1021         if (nt->debugfs_node_dir) {
1022                 char debugfs_name[4];
1023
1024                 snprintf(debugfs_name, 4, "qp%d", qp_num);
1025                 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1026                                                      nt->debugfs_node_dir);
1027
1028                 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1029                                                         qp->debugfs_dir, qp,
1030                                                         &ntb_qp_debugfs_stats);
1031         } else {
1032                 qp->debugfs_dir = NULL;
1033                 qp->debugfs_stats = NULL;
1034         }
1035
1036         INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1037         INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1038
1039         spin_lock_init(&qp->ntb_rx_q_lock);
1040         spin_lock_init(&qp->ntb_tx_free_q_lock);
1041
1042         INIT_LIST_HEAD(&qp->rx_post_q);
1043         INIT_LIST_HEAD(&qp->rx_pend_q);
1044         INIT_LIST_HEAD(&qp->rx_free_q);
1045         INIT_LIST_HEAD(&qp->tx_free_q);
1046
1047         tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1048                      (unsigned long)qp);
1049
1050         return 0;
1051 }
1052
1053 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1054 {
1055         struct ntb_transport_ctx *nt;
1056         struct ntb_transport_mw *mw;
1057         unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1058         u64 qp_bitmap;
1059         int node;
1060         int rc, i;
1061
1062         mw_count = ntb_mw_count(ndev, PIDX);
1063
1064         if (!ndev->ops->mw_set_trans) {
1065                 dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1066                 return -EINVAL;
1067         }
1068
1069         if (ntb_db_is_unsafe(ndev))
1070                 dev_dbg(&ndev->dev,
1071                         "doorbell is unsafe, proceed anyway...\n");
1072         if (ntb_spad_is_unsafe(ndev))
1073                 dev_dbg(&ndev->dev,
1074                         "scratchpad is unsafe, proceed anyway...\n");
1075
1076         if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1077                 dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1078
1079         node = dev_to_node(&ndev->dev);
1080
1081         nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1082         if (!nt)
1083                 return -ENOMEM;
1084
1085         nt->ndev = ndev;
1086         spad_count = ntb_spad_count(ndev);
1087
1088         /* Limit the MW's based on the availability of scratchpads */
1089
1090         if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1091                 nt->mw_count = 0;
1092                 rc = -EINVAL;
1093                 goto err;
1094         }
1095
1096         max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1097         nt->mw_count = min(mw_count, max_mw_count_for_spads);
1098
1099         nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1100                                   GFP_KERNEL, node);
1101         if (!nt->mw_vec) {
1102                 rc = -ENOMEM;
1103                 goto err;
1104         }
1105
1106         for (i = 0; i < mw_count; i++) {
1107                 mw = &nt->mw_vec[i];
1108
1109                 rc = ntb_mw_get_align(ndev, PIDX, i, &mw->xlat_align,
1110                                       &mw->xlat_align_size, NULL);
1111                 if (rc)
1112                         goto err1;
1113
1114                 rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1115                                           &mw->phys_size);
1116                 if (rc)
1117                         goto err1;
1118
1119                 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1120                 if (!mw->vbase) {
1121                         rc = -ENOMEM;
1122                         goto err1;
1123                 }
1124
1125                 mw->buff_size = 0;
1126                 mw->xlat_size = 0;
1127                 mw->virt_addr = NULL;
1128                 mw->dma_addr = 0;
1129         }
1130
1131         qp_bitmap = ntb_db_valid_mask(ndev);
1132
1133         qp_count = ilog2(qp_bitmap);
1134         if (max_num_clients && max_num_clients < qp_count)
1135                 qp_count = max_num_clients;
1136         else if (nt->mw_count < qp_count)
1137                 qp_count = nt->mw_count;
1138
1139         qp_bitmap &= BIT_ULL(qp_count) - 1;
1140
1141         nt->qp_count = qp_count;
1142         nt->qp_bitmap = qp_bitmap;
1143         nt->qp_bitmap_free = qp_bitmap;
1144
1145         nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1146                                   GFP_KERNEL, node);
1147         if (!nt->qp_vec) {
1148                 rc = -ENOMEM;
1149                 goto err1;
1150         }
1151
1152         if (nt_debugfs_dir) {
1153                 nt->debugfs_node_dir =
1154                         debugfs_create_dir(pci_name(ndev->pdev),
1155                                            nt_debugfs_dir);
1156         }
1157
1158         for (i = 0; i < qp_count; i++) {
1159                 rc = ntb_transport_init_queue(nt, i);
1160                 if (rc)
1161                         goto err2;
1162         }
1163
1164         INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1165         INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1166
1167         rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1168         if (rc)
1169                 goto err2;
1170
1171         INIT_LIST_HEAD(&nt->client_devs);
1172         rc = ntb_bus_init(nt);
1173         if (rc)
1174                 goto err3;
1175
1176         nt->link_is_up = false;
1177         ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1178         ntb_link_event(ndev);
1179
1180         return 0;
1181
1182 err3:
1183         ntb_clear_ctx(ndev);
1184 err2:
1185         kfree(nt->qp_vec);
1186 err1:
1187         while (i--) {
1188                 mw = &nt->mw_vec[i];
1189                 iounmap(mw->vbase);
1190         }
1191         kfree(nt->mw_vec);
1192 err:
1193         kfree(nt);
1194         return rc;
1195 }
1196
1197 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1198 {
1199         struct ntb_transport_ctx *nt = ndev->ctx;
1200         struct ntb_transport_qp *qp;
1201         u64 qp_bitmap_alloc;
1202         int i;
1203
1204         ntb_transport_link_cleanup(nt);
1205         cancel_work_sync(&nt->link_cleanup);
1206         cancel_delayed_work_sync(&nt->link_work);
1207
1208         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1209
1210         /* verify that all the qp's are freed */
1211         for (i = 0; i < nt->qp_count; i++) {
1212                 qp = &nt->qp_vec[i];
1213                 if (qp_bitmap_alloc & BIT_ULL(i))
1214                         ntb_transport_free_queue(qp);
1215                 debugfs_remove_recursive(qp->debugfs_dir);
1216         }
1217
1218         ntb_link_disable(ndev);
1219         ntb_clear_ctx(ndev);
1220
1221         ntb_bus_remove(nt);
1222
1223         for (i = nt->mw_count; i--; ) {
1224                 ntb_free_mw(nt, i);
1225                 iounmap(nt->mw_vec[i].vbase);
1226         }
1227
1228         kfree(nt->qp_vec);
1229         kfree(nt->mw_vec);
1230         kfree(nt);
1231 }
1232
1233 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1234 {
1235         struct ntb_queue_entry *entry;
1236         void *cb_data;
1237         unsigned int len;
1238         unsigned long irqflags;
1239
1240         spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1241
1242         while (!list_empty(&qp->rx_post_q)) {
1243                 entry = list_first_entry(&qp->rx_post_q,
1244                                          struct ntb_queue_entry, entry);
1245                 if (!(entry->flags & DESC_DONE_FLAG))
1246                         break;
1247
1248                 entry->rx_hdr->flags = 0;
1249                 iowrite32(entry->rx_index, &qp->rx_info->entry);
1250
1251                 cb_data = entry->cb_data;
1252                 len = entry->len;
1253
1254                 list_move_tail(&entry->entry, &qp->rx_free_q);
1255
1256                 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1257
1258                 if (qp->rx_handler && qp->client_ready)
1259                         qp->rx_handler(qp, qp->cb_data, cb_data, len);
1260
1261                 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1262         }
1263
1264         spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1265 }
1266
1267 static void ntb_rx_copy_callback(void *data,
1268                                  const struct dmaengine_result *res)
1269 {
1270         struct ntb_queue_entry *entry = data;
1271
1272         /* we need to check DMA results if we are using DMA */
1273         if (res) {
1274                 enum dmaengine_tx_result dma_err = res->result;
1275
1276                 switch (dma_err) {
1277                 case DMA_TRANS_READ_FAILED:
1278                 case DMA_TRANS_WRITE_FAILED:
1279                         entry->errors++;
1280                 case DMA_TRANS_ABORTED:
1281                 {
1282                         struct ntb_transport_qp *qp = entry->qp;
1283                         void *offset = qp->rx_buff + qp->rx_max_frame *
1284                                         qp->rx_index;
1285
1286                         ntb_memcpy_rx(entry, offset);
1287                         qp->rx_memcpy++;
1288                         return;
1289                 }
1290
1291                 case DMA_TRANS_NOERROR:
1292                 default:
1293                         break;
1294                 }
1295         }
1296
1297         entry->flags |= DESC_DONE_FLAG;
1298
1299         ntb_complete_rxc(entry->qp);
1300 }
1301
1302 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1303 {
1304         void *buf = entry->buf;
1305         size_t len = entry->len;
1306
1307         memcpy(buf, offset, len);
1308
1309         /* Ensure that the data is fully copied out before clearing the flag */
1310         wmb();
1311
1312         ntb_rx_copy_callback(entry, NULL);
1313 }
1314
1315 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1316 {
1317         struct dma_async_tx_descriptor *txd;
1318         struct ntb_transport_qp *qp = entry->qp;
1319         struct dma_chan *chan = qp->rx_dma_chan;
1320         struct dma_device *device;
1321         size_t pay_off, buff_off, len;
1322         struct dmaengine_unmap_data *unmap;
1323         dma_cookie_t cookie;
1324         void *buf = entry->buf;
1325
1326         len = entry->len;
1327         device = chan->device;
1328         pay_off = (size_t)offset & ~PAGE_MASK;
1329         buff_off = (size_t)buf & ~PAGE_MASK;
1330
1331         if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1332                 goto err;
1333
1334         unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1335         if (!unmap)
1336                 goto err;
1337
1338         unmap->len = len;
1339         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1340                                       pay_off, len, DMA_TO_DEVICE);
1341         if (dma_mapping_error(device->dev, unmap->addr[0]))
1342                 goto err_get_unmap;
1343
1344         unmap->to_cnt = 1;
1345
1346         unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1347                                       buff_off, len, DMA_FROM_DEVICE);
1348         if (dma_mapping_error(device->dev, unmap->addr[1]))
1349                 goto err_get_unmap;
1350
1351         unmap->from_cnt = 1;
1352
1353         txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1354                                              unmap->addr[0], len,
1355                                              DMA_PREP_INTERRUPT);
1356         if (!txd)
1357                 goto err_get_unmap;
1358
1359         txd->callback_result = ntb_rx_copy_callback;
1360         txd->callback_param = entry;
1361         dma_set_unmap(txd, unmap);
1362
1363         cookie = dmaengine_submit(txd);
1364         if (dma_submit_error(cookie))
1365                 goto err_set_unmap;
1366
1367         dmaengine_unmap_put(unmap);
1368
1369         qp->last_cookie = cookie;
1370
1371         qp->rx_async++;
1372
1373         return 0;
1374
1375 err_set_unmap:
1376         dmaengine_unmap_put(unmap);
1377 err_get_unmap:
1378         dmaengine_unmap_put(unmap);
1379 err:
1380         return -ENXIO;
1381 }
1382
1383 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1384 {
1385         struct ntb_transport_qp *qp = entry->qp;
1386         struct dma_chan *chan = qp->rx_dma_chan;
1387         int res;
1388
1389         if (!chan)
1390                 goto err;
1391
1392         if (entry->len < copy_bytes)
1393                 goto err;
1394
1395         res = ntb_async_rx_submit(entry, offset);
1396         if (res < 0)
1397                 goto err;
1398
1399         if (!entry->retries)
1400                 qp->rx_async++;
1401
1402         return;
1403
1404 err:
1405         ntb_memcpy_rx(entry, offset);
1406         qp->rx_memcpy++;
1407 }
1408
1409 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1410 {
1411         struct ntb_payload_header *hdr;
1412         struct ntb_queue_entry *entry;
1413         void *offset;
1414
1415         offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1416         hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1417
1418         dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1419                 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1420
1421         if (!(hdr->flags & DESC_DONE_FLAG)) {
1422                 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1423                 qp->rx_ring_empty++;
1424                 return -EAGAIN;
1425         }
1426
1427         if (hdr->flags & LINK_DOWN_FLAG) {
1428                 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1429                 ntb_qp_link_down(qp);
1430                 hdr->flags = 0;
1431                 return -EAGAIN;
1432         }
1433
1434         if (hdr->ver != (u32)qp->rx_pkts) {
1435                 dev_dbg(&qp->ndev->pdev->dev,
1436                         "version mismatch, expected %llu - got %u\n",
1437                         qp->rx_pkts, hdr->ver);
1438                 qp->rx_err_ver++;
1439                 return -EIO;
1440         }
1441
1442         entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1443         if (!entry) {
1444                 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1445                 qp->rx_err_no_buf++;
1446                 return -EAGAIN;
1447         }
1448
1449         entry->rx_hdr = hdr;
1450         entry->rx_index = qp->rx_index;
1451
1452         if (hdr->len > entry->len) {
1453                 dev_dbg(&qp->ndev->pdev->dev,
1454                         "receive buffer overflow! Wanted %d got %d\n",
1455                         hdr->len, entry->len);
1456                 qp->rx_err_oflow++;
1457
1458                 entry->len = -EIO;
1459                 entry->flags |= DESC_DONE_FLAG;
1460
1461                 ntb_complete_rxc(qp);
1462         } else {
1463                 dev_dbg(&qp->ndev->pdev->dev,
1464                         "RX OK index %u ver %u size %d into buf size %d\n",
1465                         qp->rx_index, hdr->ver, hdr->len, entry->len);
1466
1467                 qp->rx_bytes += hdr->len;
1468                 qp->rx_pkts++;
1469
1470                 entry->len = hdr->len;
1471
1472                 ntb_async_rx(entry, offset);
1473         }
1474
1475         qp->rx_index++;
1476         qp->rx_index %= qp->rx_max_entry;
1477
1478         return 0;
1479 }
1480
1481 static void ntb_transport_rxc_db(unsigned long data)
1482 {
1483         struct ntb_transport_qp *qp = (void *)data;
1484         int rc, i;
1485
1486         dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1487                 __func__, qp->qp_num);
1488
1489         /* Limit the number of packets processed in a single interrupt to
1490          * provide fairness to others
1491          */
1492         for (i = 0; i < qp->rx_max_entry; i++) {
1493                 rc = ntb_process_rxc(qp);
1494                 if (rc)
1495                         break;
1496         }
1497
1498         if (i && qp->rx_dma_chan)
1499                 dma_async_issue_pending(qp->rx_dma_chan);
1500
1501         if (i == qp->rx_max_entry) {
1502                 /* there is more work to do */
1503                 if (qp->active)
1504                         tasklet_schedule(&qp->rxc_db_work);
1505         } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1506                 /* the doorbell bit is set: clear it */
1507                 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1508                 /* ntb_db_read ensures ntb_db_clear write is committed */
1509                 ntb_db_read(qp->ndev);
1510
1511                 /* an interrupt may have arrived between finishing
1512                  * ntb_process_rxc and clearing the doorbell bit:
1513                  * there might be some more work to do.
1514                  */
1515                 if (qp->active)
1516                         tasklet_schedule(&qp->rxc_db_work);
1517         }
1518 }
1519
1520 static void ntb_tx_copy_callback(void *data,
1521                                  const struct dmaengine_result *res)
1522 {
1523         struct ntb_queue_entry *entry = data;
1524         struct ntb_transport_qp *qp = entry->qp;
1525         struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1526
1527         /* we need to check DMA results if we are using DMA */
1528         if (res) {
1529                 enum dmaengine_tx_result dma_err = res->result;
1530
1531                 switch (dma_err) {
1532                 case DMA_TRANS_READ_FAILED:
1533                 case DMA_TRANS_WRITE_FAILED:
1534                         entry->errors++;
1535                 case DMA_TRANS_ABORTED:
1536                 {
1537                         void __iomem *offset =
1538                                 qp->tx_mw + qp->tx_max_frame *
1539                                 entry->tx_index;
1540
1541                         /* resubmit via CPU */
1542                         ntb_memcpy_tx(entry, offset);
1543                         qp->tx_memcpy++;
1544                         return;
1545                 }
1546
1547                 case DMA_TRANS_NOERROR:
1548                 default:
1549                         break;
1550                 }
1551         }
1552
1553         iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1554
1555         ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1556
1557         /* The entry length can only be zero if the packet is intended to be a
1558          * "link down" or similar.  Since no payload is being sent in these
1559          * cases, there is nothing to add to the completion queue.
1560          */
1561         if (entry->len > 0) {
1562                 qp->tx_bytes += entry->len;
1563
1564                 if (qp->tx_handler)
1565                         qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1566                                        entry->len);
1567         }
1568
1569         ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1570 }
1571
1572 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1573 {
1574 #ifdef ARCH_HAS_NOCACHE_UACCESS
1575         /*
1576          * Using non-temporal mov to improve performance on non-cached
1577          * writes, even though we aren't actually copying from user space.
1578          */
1579         __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1580 #else
1581         memcpy_toio(offset, entry->buf, entry->len);
1582 #endif
1583
1584         /* Ensure that the data is fully copied out before setting the flags */
1585         wmb();
1586
1587         ntb_tx_copy_callback(entry, NULL);
1588 }
1589
1590 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1591                                struct ntb_queue_entry *entry)
1592 {
1593         struct dma_async_tx_descriptor *txd;
1594         struct dma_chan *chan = qp->tx_dma_chan;
1595         struct dma_device *device;
1596         size_t len = entry->len;
1597         void *buf = entry->buf;
1598         size_t dest_off, buff_off;
1599         struct dmaengine_unmap_data *unmap;
1600         dma_addr_t dest;
1601         dma_cookie_t cookie;
1602
1603         device = chan->device;
1604         dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1605         buff_off = (size_t)buf & ~PAGE_MASK;
1606         dest_off = (size_t)dest & ~PAGE_MASK;
1607
1608         if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1609                 goto err;
1610
1611         unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1612         if (!unmap)
1613                 goto err;
1614
1615         unmap->len = len;
1616         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1617                                       buff_off, len, DMA_TO_DEVICE);
1618         if (dma_mapping_error(device->dev, unmap->addr[0]))
1619                 goto err_get_unmap;
1620
1621         unmap->to_cnt = 1;
1622
1623         txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1624                                              DMA_PREP_INTERRUPT);
1625         if (!txd)
1626                 goto err_get_unmap;
1627
1628         txd->callback_result = ntb_tx_copy_callback;
1629         txd->callback_param = entry;
1630         dma_set_unmap(txd, unmap);
1631
1632         cookie = dmaengine_submit(txd);
1633         if (dma_submit_error(cookie))
1634                 goto err_set_unmap;
1635
1636         dmaengine_unmap_put(unmap);
1637
1638         dma_async_issue_pending(chan);
1639
1640         return 0;
1641 err_set_unmap:
1642         dmaengine_unmap_put(unmap);
1643 err_get_unmap:
1644         dmaengine_unmap_put(unmap);
1645 err:
1646         return -ENXIO;
1647 }
1648
1649 static void ntb_async_tx(struct ntb_transport_qp *qp,
1650                          struct ntb_queue_entry *entry)
1651 {
1652         struct ntb_payload_header __iomem *hdr;
1653         struct dma_chan *chan = qp->tx_dma_chan;
1654         void __iomem *offset;
1655         int res;
1656
1657         entry->tx_index = qp->tx_index;
1658         offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1659         hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1660         entry->tx_hdr = hdr;
1661
1662         iowrite32(entry->len, &hdr->len);
1663         iowrite32((u32)qp->tx_pkts, &hdr->ver);
1664
1665         if (!chan)
1666                 goto err;
1667
1668         if (entry->len < copy_bytes)
1669                 goto err;
1670
1671         res = ntb_async_tx_submit(qp, entry);
1672         if (res < 0)
1673                 goto err;
1674
1675         if (!entry->retries)
1676                 qp->tx_async++;
1677
1678         return;
1679
1680 err:
1681         ntb_memcpy_tx(entry, offset);
1682         qp->tx_memcpy++;
1683 }
1684
1685 static int ntb_process_tx(struct ntb_transport_qp *qp,
1686                           struct ntb_queue_entry *entry)
1687 {
1688         if (qp->tx_index == qp->remote_rx_info->entry) {
1689                 qp->tx_ring_full++;
1690                 return -EAGAIN;
1691         }
1692
1693         if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1694                 if (qp->tx_handler)
1695                         qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1696
1697                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1698                              &qp->tx_free_q);
1699                 return 0;
1700         }
1701
1702         ntb_async_tx(qp, entry);
1703
1704         qp->tx_index++;
1705         qp->tx_index %= qp->tx_max_entry;
1706
1707         qp->tx_pkts++;
1708
1709         return 0;
1710 }
1711
1712 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1713 {
1714         struct pci_dev *pdev = qp->ndev->pdev;
1715         struct ntb_queue_entry *entry;
1716         int i, rc;
1717
1718         if (!qp->link_is_up)
1719                 return;
1720
1721         dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1722
1723         for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1724                 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1725                 if (entry)
1726                         break;
1727                 msleep(100);
1728         }
1729
1730         if (!entry)
1731                 return;
1732
1733         entry->cb_data = NULL;
1734         entry->buf = NULL;
1735         entry->len = 0;
1736         entry->flags = LINK_DOWN_FLAG;
1737
1738         rc = ntb_process_tx(qp, entry);
1739         if (rc)
1740                 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1741                         qp->qp_num);
1742
1743         ntb_qp_link_down_reset(qp);
1744 }
1745
1746 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1747 {
1748         return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1749 }
1750
1751 /**
1752  * ntb_transport_create_queue - Create a new NTB transport layer queue
1753  * @rx_handler: receive callback function
1754  * @tx_handler: transmit callback function
1755  * @event_handler: event callback function
1756  *
1757  * Create a new NTB transport layer queue and provide the queue with a callback
1758  * routine for both transmit and receive.  The receive callback routine will be
1759  * used to pass up data when the transport has received it on the queue.   The
1760  * transmit callback routine will be called when the transport has completed the
1761  * transmission of the data on the queue and the data is ready to be freed.
1762  *
1763  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1764  */
1765 struct ntb_transport_qp *
1766 ntb_transport_create_queue(void *data, struct device *client_dev,
1767                            const struct ntb_queue_handlers *handlers)
1768 {
1769         struct ntb_dev *ndev;
1770         struct pci_dev *pdev;
1771         struct ntb_transport_ctx *nt;
1772         struct ntb_queue_entry *entry;
1773         struct ntb_transport_qp *qp;
1774         u64 qp_bit;
1775         unsigned int free_queue;
1776         dma_cap_mask_t dma_mask;
1777         int node;
1778         int i;
1779
1780         ndev = dev_ntb(client_dev->parent);
1781         pdev = ndev->pdev;
1782         nt = ndev->ctx;
1783
1784         node = dev_to_node(&ndev->dev);
1785
1786         free_queue = ffs(nt->qp_bitmap_free);
1787         if (!free_queue)
1788                 goto err;
1789
1790         /* decrement free_queue to make it zero based */
1791         free_queue--;
1792
1793         qp = &nt->qp_vec[free_queue];
1794         qp_bit = BIT_ULL(qp->qp_num);
1795
1796         nt->qp_bitmap_free &= ~qp_bit;
1797
1798         qp->cb_data = data;
1799         qp->rx_handler = handlers->rx_handler;
1800         qp->tx_handler = handlers->tx_handler;
1801         qp->event_handler = handlers->event_handler;
1802
1803         dma_cap_zero(dma_mask);
1804         dma_cap_set(DMA_MEMCPY, dma_mask);
1805
1806         if (use_dma) {
1807                 qp->tx_dma_chan =
1808                         dma_request_channel(dma_mask, ntb_dma_filter_fn,
1809                                             (void *)(unsigned long)node);
1810                 if (!qp->tx_dma_chan)
1811                         dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1812
1813                 qp->rx_dma_chan =
1814                         dma_request_channel(dma_mask, ntb_dma_filter_fn,
1815                                             (void *)(unsigned long)node);
1816                 if (!qp->rx_dma_chan)
1817                         dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1818         } else {
1819                 qp->tx_dma_chan = NULL;
1820                 qp->rx_dma_chan = NULL;
1821         }
1822
1823         dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1824                 qp->tx_dma_chan ? "DMA" : "CPU");
1825
1826         dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1827                 qp->rx_dma_chan ? "DMA" : "CPU");
1828
1829         for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1830                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1831                 if (!entry)
1832                         goto err1;
1833
1834                 entry->qp = qp;
1835                 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1836                              &qp->rx_free_q);
1837         }
1838         qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1839
1840         for (i = 0; i < qp->tx_max_entry; i++) {
1841                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1842                 if (!entry)
1843                         goto err2;
1844
1845                 entry->qp = qp;
1846                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1847                              &qp->tx_free_q);
1848         }
1849
1850         ntb_db_clear(qp->ndev, qp_bit);
1851         ntb_db_clear_mask(qp->ndev, qp_bit);
1852
1853         dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1854
1855         return qp;
1856
1857 err2:
1858         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1859                 kfree(entry);
1860 err1:
1861         qp->rx_alloc_entry = 0;
1862         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1863                 kfree(entry);
1864         if (qp->tx_dma_chan)
1865                 dma_release_channel(qp->tx_dma_chan);
1866         if (qp->rx_dma_chan)
1867                 dma_release_channel(qp->rx_dma_chan);
1868         nt->qp_bitmap_free |= qp_bit;
1869 err:
1870         return NULL;
1871 }
1872 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1873
1874 /**
1875  * ntb_transport_free_queue - Frees NTB transport queue
1876  * @qp: NTB queue to be freed
1877  *
1878  * Frees NTB transport queue
1879  */
1880 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1881 {
1882         struct pci_dev *pdev;
1883         struct ntb_queue_entry *entry;
1884         u64 qp_bit;
1885
1886         if (!qp)
1887                 return;
1888
1889         pdev = qp->ndev->pdev;
1890
1891         qp->active = false;
1892
1893         if (qp->tx_dma_chan) {
1894                 struct dma_chan *chan = qp->tx_dma_chan;
1895                 /* Putting the dma_chan to NULL will force any new traffic to be
1896                  * processed by the CPU instead of the DAM engine
1897                  */
1898                 qp->tx_dma_chan = NULL;
1899
1900                 /* Try to be nice and wait for any queued DMA engine
1901                  * transactions to process before smashing it with a rock
1902                  */
1903                 dma_sync_wait(chan, qp->last_cookie);
1904                 dmaengine_terminate_all(chan);
1905                 dma_release_channel(chan);
1906         }
1907
1908         if (qp->rx_dma_chan) {
1909                 struct dma_chan *chan = qp->rx_dma_chan;
1910                 /* Putting the dma_chan to NULL will force any new traffic to be
1911                  * processed by the CPU instead of the DAM engine
1912                  */
1913                 qp->rx_dma_chan = NULL;
1914
1915                 /* Try to be nice and wait for any queued DMA engine
1916                  * transactions to process before smashing it with a rock
1917                  */
1918                 dma_sync_wait(chan, qp->last_cookie);
1919                 dmaengine_terminate_all(chan);
1920                 dma_release_channel(chan);
1921         }
1922
1923         qp_bit = BIT_ULL(qp->qp_num);
1924
1925         ntb_db_set_mask(qp->ndev, qp_bit);
1926         tasklet_kill(&qp->rxc_db_work);
1927
1928         cancel_delayed_work_sync(&qp->link_work);
1929
1930         qp->cb_data = NULL;
1931         qp->rx_handler = NULL;
1932         qp->tx_handler = NULL;
1933         qp->event_handler = NULL;
1934
1935         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1936                 kfree(entry);
1937
1938         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1939                 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1940                 kfree(entry);
1941         }
1942
1943         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1944                 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1945                 kfree(entry);
1946         }
1947
1948         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1949                 kfree(entry);
1950
1951         qp->transport->qp_bitmap_free |= qp_bit;
1952
1953         dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1954 }
1955 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1956
1957 /**
1958  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1959  * @qp: NTB queue to be freed
1960  * @len: pointer to variable to write enqueued buffers length
1961  *
1962  * Dequeues unused buffers from receive queue.  Should only be used during
1963  * shutdown of qp.
1964  *
1965  * RETURNS: NULL error value on error, or void* for success.
1966  */
1967 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1968 {
1969         struct ntb_queue_entry *entry;
1970         void *buf;
1971
1972         if (!qp || qp->client_ready)
1973                 return NULL;
1974
1975         entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1976         if (!entry)
1977                 return NULL;
1978
1979         buf = entry->cb_data;
1980         *len = entry->len;
1981
1982         ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1983
1984         return buf;
1985 }
1986 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1987
1988 /**
1989  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1990  * @qp: NTB transport layer queue the entry is to be enqueued on
1991  * @cb: per buffer pointer for callback function to use
1992  * @data: pointer to data buffer that incoming packets will be copied into
1993  * @len: length of the data buffer
1994  *
1995  * Enqueue a new receive buffer onto the transport queue into which a NTB
1996  * payload can be received into.
1997  *
1998  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1999  */
2000 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2001                              unsigned int len)
2002 {
2003         struct ntb_queue_entry *entry;
2004
2005         if (!qp)
2006                 return -EINVAL;
2007
2008         entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2009         if (!entry)
2010                 return -ENOMEM;
2011
2012         entry->cb_data = cb;
2013         entry->buf = data;
2014         entry->len = len;
2015         entry->flags = 0;
2016         entry->retries = 0;
2017         entry->errors = 0;
2018         entry->rx_index = 0;
2019
2020         ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2021
2022         if (qp->active)
2023                 tasklet_schedule(&qp->rxc_db_work);
2024
2025         return 0;
2026 }
2027 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2028
2029 /**
2030  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2031  * @qp: NTB transport layer queue the entry is to be enqueued on
2032  * @cb: per buffer pointer for callback function to use
2033  * @data: pointer to data buffer that will be sent
2034  * @len: length of the data buffer
2035  *
2036  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2037  * payload will be transmitted.  This assumes that a lock is being held to
2038  * serialize access to the qp.
2039  *
2040  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2041  */
2042 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2043                              unsigned int len)
2044 {
2045         struct ntb_queue_entry *entry;
2046         int rc;
2047
2048         if (!qp || !qp->link_is_up || !len)
2049                 return -EINVAL;
2050
2051         entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2052         if (!entry) {
2053                 qp->tx_err_no_buf++;
2054                 return -EBUSY;
2055         }
2056
2057         entry->cb_data = cb;
2058         entry->buf = data;
2059         entry->len = len;
2060         entry->flags = 0;
2061         entry->errors = 0;
2062         entry->retries = 0;
2063         entry->tx_index = 0;
2064
2065         rc = ntb_process_tx(qp, entry);
2066         if (rc)
2067                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2068                              &qp->tx_free_q);
2069
2070         return rc;
2071 }
2072 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2073
2074 /**
2075  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2076  * @qp: NTB transport layer queue to be enabled
2077  *
2078  * Notify NTB transport layer of client readiness to use queue
2079  */
2080 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2081 {
2082         if (!qp)
2083                 return;
2084
2085         qp->client_ready = true;
2086
2087         if (qp->transport->link_is_up)
2088                 schedule_delayed_work(&qp->link_work, 0);
2089 }
2090 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2091
2092 /**
2093  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2094  * @qp: NTB transport layer queue to be disabled
2095  *
2096  * Notify NTB transport layer of client's desire to no longer receive data on
2097  * transport queue specified.  It is the client's responsibility to ensure all
2098  * entries on queue are purged or otherwise handled appropriately.
2099  */
2100 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2101 {
2102         int val;
2103
2104         if (!qp)
2105                 return;
2106
2107         qp->client_ready = false;
2108
2109         val = ntb_spad_read(qp->ndev, QP_LINKS);
2110
2111         ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2112
2113         if (qp->link_is_up)
2114                 ntb_send_link_down(qp);
2115         else
2116                 cancel_delayed_work_sync(&qp->link_work);
2117 }
2118 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2119
2120 /**
2121  * ntb_transport_link_query - Query transport link state
2122  * @qp: NTB transport layer queue to be queried
2123  *
2124  * Query connectivity to the remote system of the NTB transport queue
2125  *
2126  * RETURNS: true for link up or false for link down
2127  */
2128 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2129 {
2130         if (!qp)
2131                 return false;
2132
2133         return qp->link_is_up;
2134 }
2135 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2136
2137 /**
2138  * ntb_transport_qp_num - Query the qp number
2139  * @qp: NTB transport layer queue to be queried
2140  *
2141  * Query qp number of the NTB transport queue
2142  *
2143  * RETURNS: a zero based number specifying the qp number
2144  */
2145 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2146 {
2147         if (!qp)
2148                 return 0;
2149
2150         return qp->qp_num;
2151 }
2152 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2153
2154 /**
2155  * ntb_transport_max_size - Query the max payload size of a qp
2156  * @qp: NTB transport layer queue to be queried
2157  *
2158  * Query the maximum payload size permissible on the given qp
2159  *
2160  * RETURNS: the max payload size of a qp
2161  */
2162 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2163 {
2164         unsigned int max_size;
2165         unsigned int copy_align;
2166         struct dma_chan *rx_chan, *tx_chan;
2167
2168         if (!qp)
2169                 return 0;
2170
2171         rx_chan = qp->rx_dma_chan;
2172         tx_chan = qp->tx_dma_chan;
2173
2174         copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2175                          tx_chan ? tx_chan->device->copy_align : 0);
2176
2177         /* If DMA engine usage is possible, try to find the max size for that */
2178         max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2179         max_size = round_down(max_size, 1 << copy_align);
2180
2181         return max_size;
2182 }
2183 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2184
2185 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2186 {
2187         unsigned int head = qp->tx_index;
2188         unsigned int tail = qp->remote_rx_info->entry;
2189
2190         return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2191 }
2192 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2193
2194 static void ntb_transport_doorbell_callback(void *data, int vector)
2195 {
2196         struct ntb_transport_ctx *nt = data;
2197         struct ntb_transport_qp *qp;
2198         u64 db_bits;
2199         unsigned int qp_num;
2200
2201         db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2202                    ntb_db_vector_mask(nt->ndev, vector));
2203
2204         while (db_bits) {
2205                 qp_num = __ffs(db_bits);
2206                 qp = &nt->qp_vec[qp_num];
2207
2208                 if (qp->active)
2209                         tasklet_schedule(&qp->rxc_db_work);
2210
2211                 db_bits &= ~BIT_ULL(qp_num);
2212         }
2213 }
2214
2215 static const struct ntb_ctx_ops ntb_transport_ops = {
2216         .link_event = ntb_transport_event_callback,
2217         .db_event = ntb_transport_doorbell_callback,
2218 };
2219
2220 static struct ntb_client ntb_transport_client = {
2221         .ops = {
2222                 .probe = ntb_transport_probe,
2223                 .remove = ntb_transport_free,
2224         },
2225 };
2226
2227 static int __init ntb_transport_init(void)
2228 {
2229         int rc;
2230
2231         pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2232
2233         if (debugfs_initialized())
2234                 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2235
2236         rc = bus_register(&ntb_transport_bus);
2237         if (rc)
2238                 goto err_bus;
2239
2240         rc = ntb_register_client(&ntb_transport_client);
2241         if (rc)
2242                 goto err_client;
2243
2244         return 0;
2245
2246 err_client:
2247         bus_unregister(&ntb_transport_bus);
2248 err_bus:
2249         debugfs_remove_recursive(nt_debugfs_dir);
2250         return rc;
2251 }
2252 module_init(ntb_transport_init);
2253
2254 static void __exit ntb_transport_exit(void)
2255 {
2256         ntb_unregister_client(&ntb_transport_client);
2257         bus_unregister(&ntb_transport_bus);
2258         debugfs_remove_recursive(nt_debugfs_dir);
2259 }
2260 module_exit(ntb_transport_exit);