]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/spi/spi-pxa2xx-dma.c
staging: board: disable as it breaks the build
[karo-tx-linux.git] / drivers / spi / spi-pxa2xx-dma.c
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20
21 #include "spi-pxa2xx.h"
22
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24                                      enum dma_data_direction dir)
25 {
26         int i, nents, len = drv_data->len;
27         struct scatterlist *sg;
28         struct device *dmadev;
29         struct sg_table *sgt;
30         void *buf, *pbuf;
31
32         if (dir == DMA_TO_DEVICE) {
33                 dmadev = drv_data->tx_chan->device->dev;
34                 sgt = &drv_data->tx_sgt;
35                 buf = drv_data->tx;
36                 drv_data->tx_map_len = len;
37         } else {
38                 dmadev = drv_data->rx_chan->device->dev;
39                 sgt = &drv_data->rx_sgt;
40                 buf = drv_data->rx;
41                 drv_data->rx_map_len = len;
42         }
43
44         nents = DIV_ROUND_UP(len, SZ_2K);
45         if (nents != sgt->nents) {
46                 int ret;
47
48                 sg_free_table(sgt);
49                 ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
50                 if (ret)
51                         return ret;
52         }
53
54         pbuf = buf;
55         for_each_sg(sgt->sgl, sg, sgt->nents, i) {
56                 size_t bytes = min_t(size_t, len, SZ_2K);
57
58                 if (buf)
59                         sg_set_buf(sg, pbuf, bytes);
60                 else
61                         sg_set_buf(sg, drv_data->dummy, bytes);
62
63                 pbuf += bytes;
64                 len -= bytes;
65         }
66
67         nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
68         if (!nents)
69                 return -ENOMEM;
70
71         return nents;
72 }
73
74 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
75                                         enum dma_data_direction dir)
76 {
77         struct device *dmadev;
78         struct sg_table *sgt;
79
80         if (dir == DMA_TO_DEVICE) {
81                 dmadev = drv_data->tx_chan->device->dev;
82                 sgt = &drv_data->tx_sgt;
83         } else {
84                 dmadev = drv_data->rx_chan->device->dev;
85                 sgt = &drv_data->rx_sgt;
86         }
87
88         dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
89 }
90
91 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
92 {
93         if (!drv_data->dma_mapped)
94                 return;
95
96         pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
97         pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
98
99         drv_data->dma_mapped = 0;
100 }
101
102 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
103                                              bool error)
104 {
105         struct spi_message *msg = drv_data->cur_msg;
106
107         /*
108          * It is possible that one CPU is handling ROR interrupt and other
109          * just gets DMA completion. Calling pump_transfers() twice for the
110          * same transfer leads to problems thus we prevent concurrent calls
111          * by using ->dma_running.
112          */
113         if (atomic_dec_and_test(&drv_data->dma_running)) {
114                 void __iomem *reg = drv_data->ioaddr;
115
116                 /*
117                  * If the other CPU is still handling the ROR interrupt we
118                  * might not know about the error yet. So we re-check the
119                  * ROR bit here before we clear the status register.
120                  */
121                 if (!error) {
122                         u32 status = read_SSSR(reg) & drv_data->mask_sr;
123                         error = status & SSSR_ROR;
124                 }
125
126                 /* Clear status & disable interrupts */
127                 write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
128                 write_SSSR_CS(drv_data, drv_data->clear_sr);
129                 if (!pxa25x_ssp_comp(drv_data))
130                         write_SSTO(0, reg);
131
132                 if (!error) {
133                         pxa2xx_spi_unmap_dma_buffers(drv_data);
134
135                         drv_data->tx += drv_data->tx_map_len;
136                         drv_data->rx += drv_data->rx_map_len;
137
138                         msg->actual_length += drv_data->len;
139                         msg->state = pxa2xx_spi_next_transfer(drv_data);
140                 } else {
141                         /* In case we got an error we disable the SSP now */
142                         write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
143
144                         msg->state = ERROR_STATE;
145                 }
146
147                 tasklet_schedule(&drv_data->pump_transfers);
148         }
149 }
150
151 static void pxa2xx_spi_dma_callback(void *data)
152 {
153         pxa2xx_spi_dma_transfer_complete(data, false);
154 }
155
156 static struct dma_async_tx_descriptor *
157 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
158                            enum dma_transfer_direction dir)
159 {
160         struct pxa2xx_spi_master *pdata = drv_data->master_info;
161         struct chip_data *chip = drv_data->cur_chip;
162         enum dma_slave_buswidth width;
163         struct dma_slave_config cfg;
164         struct dma_chan *chan;
165         struct sg_table *sgt;
166         int nents, ret;
167
168         switch (drv_data->n_bytes) {
169         case 1:
170                 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
171                 break;
172         case 2:
173                 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
174                 break;
175         default:
176                 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
177                 break;
178         }
179
180         memset(&cfg, 0, sizeof(cfg));
181         cfg.direction = dir;
182
183         if (dir == DMA_MEM_TO_DEV) {
184                 cfg.dst_addr = drv_data->ssdr_physical;
185                 cfg.dst_addr_width = width;
186                 cfg.dst_maxburst = chip->dma_burst_size;
187                 cfg.slave_id = pdata->tx_slave_id;
188
189                 sgt = &drv_data->tx_sgt;
190                 nents = drv_data->tx_nents;
191                 chan = drv_data->tx_chan;
192         } else {
193                 cfg.src_addr = drv_data->ssdr_physical;
194                 cfg.src_addr_width = width;
195                 cfg.src_maxburst = chip->dma_burst_size;
196                 cfg.slave_id = pdata->rx_slave_id;
197
198                 sgt = &drv_data->rx_sgt;
199                 nents = drv_data->rx_nents;
200                 chan = drv_data->rx_chan;
201         }
202
203         ret = dmaengine_slave_config(chan, &cfg);
204         if (ret) {
205                 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
206                 return NULL;
207         }
208
209         return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
210                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
211 }
212
213 static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
214 {
215         const struct pxa2xx_spi_master *pdata = param;
216
217         return chan->chan_id == pdata->tx_chan_id ||
218                chan->chan_id == pdata->rx_chan_id;
219 }
220
221 bool pxa2xx_spi_dma_is_possible(size_t len)
222 {
223         return len <= MAX_DMA_LEN;
224 }
225
226 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
227 {
228         const struct chip_data *chip = drv_data->cur_chip;
229         int ret;
230
231         if (!chip->enable_dma)
232                 return 0;
233
234         /* Don't bother with DMA if we can't do even a single burst */
235         if (drv_data->len < chip->dma_burst_size)
236                 return 0;
237
238         ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
239         if (ret <= 0) {
240                 dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
241                 return 0;
242         }
243
244         drv_data->tx_nents = ret;
245
246         ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
247         if (ret <= 0) {
248                 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
249                 dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
250                 return 0;
251         }
252
253         drv_data->rx_nents = ret;
254         return 1;
255 }
256
257 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
258 {
259         u32 status;
260
261         status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
262         if (status & SSSR_ROR) {
263                 dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
264
265                 dmaengine_terminate_all(drv_data->rx_chan);
266                 dmaengine_terminate_all(drv_data->tx_chan);
267
268                 pxa2xx_spi_dma_transfer_complete(drv_data, true);
269                 return IRQ_HANDLED;
270         }
271
272         return IRQ_NONE;
273 }
274
275 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
276 {
277         struct dma_async_tx_descriptor *tx_desc, *rx_desc;
278
279         tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
280         if (!tx_desc) {
281                 dev_err(&drv_data->pdev->dev,
282                         "failed to get DMA TX descriptor\n");
283                 return -EBUSY;
284         }
285
286         rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
287         if (!rx_desc) {
288                 dev_err(&drv_data->pdev->dev,
289                         "failed to get DMA RX descriptor\n");
290                 return -EBUSY;
291         }
292
293         /* We are ready when RX completes */
294         rx_desc->callback = pxa2xx_spi_dma_callback;
295         rx_desc->callback_param = drv_data;
296
297         dmaengine_submit(rx_desc);
298         dmaengine_submit(tx_desc);
299         return 0;
300 }
301
302 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
303 {
304         dma_async_issue_pending(drv_data->rx_chan);
305         dma_async_issue_pending(drv_data->tx_chan);
306
307         atomic_set(&drv_data->dma_running, 1);
308 }
309
310 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
311 {
312         struct pxa2xx_spi_master *pdata = drv_data->master_info;
313         struct device *dev = &drv_data->pdev->dev;
314         dma_cap_mask_t mask;
315
316         dma_cap_zero(mask);
317         dma_cap_set(DMA_SLAVE, mask);
318
319         drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
320         if (!drv_data->dummy)
321                 return -ENOMEM;
322
323         drv_data->tx_chan = dma_request_slave_channel_compat(mask,
324                                 pxa2xx_spi_dma_filter, pdata, dev, "tx");
325         if (!drv_data->tx_chan)
326                 return -ENODEV;
327
328         drv_data->rx_chan = dma_request_slave_channel_compat(mask,
329                                 pxa2xx_spi_dma_filter, pdata, dev, "rx");
330         if (!drv_data->rx_chan) {
331                 dma_release_channel(drv_data->tx_chan);
332                 drv_data->tx_chan = NULL;
333                 return -ENODEV;
334         }
335
336         return 0;
337 }
338
339 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
340 {
341         if (drv_data->rx_chan) {
342                 dmaengine_terminate_all(drv_data->rx_chan);
343                 dma_release_channel(drv_data->rx_chan);
344                 sg_free_table(&drv_data->rx_sgt);
345                 drv_data->rx_chan = NULL;
346         }
347         if (drv_data->tx_chan) {
348                 dmaengine_terminate_all(drv_data->tx_chan);
349                 dma_release_channel(drv_data->tx_chan);
350                 sg_free_table(&drv_data->tx_sgt);
351                 drv_data->tx_chan = NULL;
352         }
353 }
354
355 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
356 {
357 }
358
359 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
360                                            struct spi_device *spi,
361                                            u8 bits_per_word, u32 *burst_code,
362                                            u32 *threshold)
363 {
364         struct pxa2xx_spi_chip *chip_info = spi->controller_data;
365
366         /*
367          * If the DMA burst size is given in chip_info we use that,
368          * otherwise we use the default. Also we use the default FIFO
369          * thresholds for now.
370          */
371         *burst_code = chip_info ? chip_info->dma_burst_size : 1;
372         *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
373                    | SSCR1_TxTresh(TX_THRESH_DFLT);
374
375         return 0;
376 }