]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/dax.c
Merge remote-tracking branch 'nfsd/nfsd-next'
[karo-tx-linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pmem.h>
28 #include <linux/sched.h>
29 #include <linux/uio.h>
30 #include <linux/vmstat.h>
31
32 int dax_clear_blocks(struct inode *inode, sector_t block, long size)
33 {
34         struct block_device *bdev = inode->i_sb->s_bdev;
35         sector_t sector = block << (inode->i_blkbits - 9);
36
37         might_sleep();
38         do {
39                 void __pmem *addr;
40                 unsigned long pfn;
41                 long count;
42
43                 count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
44                 if (count < 0)
45                         return count;
46                 BUG_ON(size < count);
47                 while (count > 0) {
48                         unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
49                         if (pgsz > count)
50                                 pgsz = count;
51                         clear_pmem(addr, pgsz);
52                         addr += pgsz;
53                         size -= pgsz;
54                         count -= pgsz;
55                         BUG_ON(pgsz & 511);
56                         sector += pgsz / 512;
57                         cond_resched();
58                 }
59         } while (size);
60
61         wmb_pmem();
62         return 0;
63 }
64 EXPORT_SYMBOL_GPL(dax_clear_blocks);
65
66 static long dax_get_addr(struct buffer_head *bh, void __pmem **addr,
67                 unsigned blkbits)
68 {
69         unsigned long pfn;
70         sector_t sector = bh->b_blocknr << (blkbits - 9);
71         return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
72 }
73
74 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
75 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
76                 loff_t pos, loff_t end)
77 {
78         loff_t final = end - pos + first; /* The final byte of the buffer */
79
80         if (first > 0)
81                 clear_pmem(addr, first);
82         if (final < size)
83                 clear_pmem(addr + final, size - final);
84 }
85
86 static bool buffer_written(struct buffer_head *bh)
87 {
88         return buffer_mapped(bh) && !buffer_unwritten(bh);
89 }
90
91 /*
92  * When ext4 encounters a hole, it returns without modifying the buffer_head
93  * which means that we can't trust b_size.  To cope with this, we set b_state
94  * to 0 before calling get_block and, if any bit is set, we know we can trust
95  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
96  * and would save us time calling get_block repeatedly.
97  */
98 static bool buffer_size_valid(struct buffer_head *bh)
99 {
100         return bh->b_state != 0;
101 }
102
103 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
104                       loff_t start, loff_t end, get_block_t get_block,
105                       struct buffer_head *bh)
106 {
107         ssize_t retval = 0;
108         loff_t pos = start;
109         loff_t max = start;
110         loff_t bh_max = start;
111         void __pmem *addr;
112         bool hole = false;
113         bool need_wmb = false;
114
115         if (iov_iter_rw(iter) != WRITE)
116                 end = min(end, i_size_read(inode));
117
118         while (pos < end) {
119                 size_t len;
120                 if (pos == max) {
121                         unsigned blkbits = inode->i_blkbits;
122                         long page = pos >> PAGE_SHIFT;
123                         sector_t block = page << (PAGE_SHIFT - blkbits);
124                         unsigned first = pos - (block << blkbits);
125                         long size;
126
127                         if (pos == bh_max) {
128                                 bh->b_size = PAGE_ALIGN(end - pos);
129                                 bh->b_state = 0;
130                                 retval = get_block(inode, block, bh,
131                                                    iov_iter_rw(iter) == WRITE);
132                                 if (retval)
133                                         break;
134                                 if (!buffer_size_valid(bh))
135                                         bh->b_size = 1 << blkbits;
136                                 bh_max = pos - first + bh->b_size;
137                         } else {
138                                 unsigned done = bh->b_size -
139                                                 (bh_max - (pos - first));
140                                 bh->b_blocknr += done >> blkbits;
141                                 bh->b_size -= done;
142                         }
143
144                         hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
145                         if (hole) {
146                                 addr = NULL;
147                                 size = bh->b_size - first;
148                         } else {
149                                 retval = dax_get_addr(bh, &addr, blkbits);
150                                 if (retval < 0)
151                                         break;
152                                 if (buffer_unwritten(bh) || buffer_new(bh)) {
153                                         dax_new_buf(addr, retval, first, pos,
154                                                                         end);
155                                         need_wmb = true;
156                                 }
157                                 addr += first;
158                                 size = retval - first;
159                         }
160                         max = min(pos + size, end);
161                 }
162
163                 if (iov_iter_rw(iter) == WRITE) {
164                         len = copy_from_iter_pmem(addr, max - pos, iter);
165                         need_wmb = true;
166                 } else if (!hole)
167                         len = copy_to_iter((void __force *)addr, max - pos,
168                                         iter);
169                 else
170                         len = iov_iter_zero(max - pos, iter);
171
172                 if (!len)
173                         break;
174
175                 pos += len;
176                 addr += len;
177         }
178
179         if (need_wmb)
180                 wmb_pmem();
181
182         return (pos == start) ? retval : pos - start;
183 }
184
185 /**
186  * dax_do_io - Perform I/O to a DAX file
187  * @iocb: The control block for this I/O
188  * @inode: The file which the I/O is directed at
189  * @iter: The addresses to do I/O from or to
190  * @pos: The file offset where the I/O starts
191  * @get_block: The filesystem method used to translate file offsets to blocks
192  * @end_io: A filesystem callback for I/O completion
193  * @flags: See below
194  *
195  * This function uses the same locking scheme as do_blockdev_direct_IO:
196  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
197  * caller for writes.  For reads, we take and release the i_mutex ourselves.
198  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
199  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
200  * is in progress.
201  */
202 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
203                   struct iov_iter *iter, loff_t pos, get_block_t get_block,
204                   dio_iodone_t end_io, int flags)
205 {
206         struct buffer_head bh;
207         ssize_t retval = -EINVAL;
208         loff_t end = pos + iov_iter_count(iter);
209
210         memset(&bh, 0, sizeof(bh));
211
212         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
213                 struct address_space *mapping = inode->i_mapping;
214                 mutex_lock(&inode->i_mutex);
215                 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
216                 if (retval) {
217                         mutex_unlock(&inode->i_mutex);
218                         goto out;
219                 }
220         }
221
222         /* Protects against truncate */
223         if (!(flags & DIO_SKIP_DIO_COUNT))
224                 inode_dio_begin(inode);
225
226         retval = dax_io(inode, iter, pos, end, get_block, &bh);
227
228         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
229                 mutex_unlock(&inode->i_mutex);
230
231         if ((retval > 0) && end_io)
232                 end_io(iocb, pos, retval, bh.b_private);
233
234         if (!(flags & DIO_SKIP_DIO_COUNT))
235                 inode_dio_end(inode);
236  out:
237         return retval;
238 }
239 EXPORT_SYMBOL_GPL(dax_do_io);
240
241 /*
242  * The user has performed a load from a hole in the file.  Allocating
243  * a new page in the file would cause excessive storage usage for
244  * workloads with sparse files.  We allocate a page cache page instead.
245  * We'll kick it out of the page cache if it's ever written to,
246  * otherwise it will simply fall out of the page cache under memory
247  * pressure without ever having been dirtied.
248  */
249 static int dax_load_hole(struct address_space *mapping, struct page *page,
250                                                         struct vm_fault *vmf)
251 {
252         unsigned long size;
253         struct inode *inode = mapping->host;
254         if (!page)
255                 page = find_or_create_page(mapping, vmf->pgoff,
256                                                 GFP_KERNEL | __GFP_ZERO);
257         if (!page)
258                 return VM_FAULT_OOM;
259         /* Recheck i_size under page lock to avoid truncate race */
260         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
261         if (vmf->pgoff >= size) {
262                 unlock_page(page);
263                 page_cache_release(page);
264                 return VM_FAULT_SIGBUS;
265         }
266
267         vmf->page = page;
268         return VM_FAULT_LOCKED;
269 }
270
271 static int copy_user_bh(struct page *to, struct buffer_head *bh,
272                         unsigned blkbits, unsigned long vaddr)
273 {
274         void __pmem *vfrom;
275         void *vto;
276
277         if (dax_get_addr(bh, &vfrom, blkbits) < 0)
278                 return -EIO;
279         vto = kmap_atomic(to);
280         copy_user_page(vto, (void __force *)vfrom, vaddr, to);
281         kunmap_atomic(vto);
282         return 0;
283 }
284
285 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
286                         struct vm_area_struct *vma, struct vm_fault *vmf)
287 {
288         struct address_space *mapping = inode->i_mapping;
289         sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
290         unsigned long vaddr = (unsigned long)vmf->virtual_address;
291         void __pmem *addr;
292         unsigned long pfn;
293         pgoff_t size;
294         int error;
295
296         i_mmap_lock_read(mapping);
297
298         /*
299          * Check truncate didn't happen while we were allocating a block.
300          * If it did, this block may or may not be still allocated to the
301          * file.  We can't tell the filesystem to free it because we can't
302          * take i_mutex here.  In the worst case, the file still has blocks
303          * allocated past the end of the file.
304          */
305         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
306         if (unlikely(vmf->pgoff >= size)) {
307                 error = -EIO;
308                 goto out;
309         }
310
311         error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
312         if (error < 0)
313                 goto out;
314         if (error < PAGE_SIZE) {
315                 error = -EIO;
316                 goto out;
317         }
318
319         if (buffer_unwritten(bh) || buffer_new(bh)) {
320                 clear_pmem(addr, PAGE_SIZE);
321                 wmb_pmem();
322         }
323
324         error = vm_insert_mixed(vma, vaddr, pfn);
325
326  out:
327         i_mmap_unlock_read(mapping);
328
329         return error;
330 }
331
332 /**
333  * __dax_fault - handle a page fault on a DAX file
334  * @vma: The virtual memory area where the fault occurred
335  * @vmf: The description of the fault
336  * @get_block: The filesystem method used to translate file offsets to blocks
337  * @complete_unwritten: The filesystem method used to convert unwritten blocks
338  *      to written so the data written to them is exposed. This is required for
339  *      required by write faults for filesystems that will return unwritten
340  *      extent mappings from @get_block, but it is optional for reads as
341  *      dax_insert_mapping() will always zero unwritten blocks. If the fs does
342  *      not support unwritten extents, the it should pass NULL.
343  *
344  * When a page fault occurs, filesystems may call this helper in their
345  * fault handler for DAX files. __dax_fault() assumes the caller has done all
346  * the necessary locking for the page fault to proceed successfully.
347  */
348 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
349                         get_block_t get_block, dax_iodone_t complete_unwritten)
350 {
351         struct file *file = vma->vm_file;
352         struct address_space *mapping = file->f_mapping;
353         struct inode *inode = mapping->host;
354         struct page *page;
355         struct buffer_head bh;
356         unsigned long vaddr = (unsigned long)vmf->virtual_address;
357         unsigned blkbits = inode->i_blkbits;
358         sector_t block;
359         pgoff_t size;
360         int error;
361         int major = 0;
362
363         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
364         if (vmf->pgoff >= size)
365                 return VM_FAULT_SIGBUS;
366
367         memset(&bh, 0, sizeof(bh));
368         block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
369         bh.b_size = PAGE_SIZE;
370
371  repeat:
372         page = find_get_page(mapping, vmf->pgoff);
373         if (page) {
374                 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
375                         page_cache_release(page);
376                         return VM_FAULT_RETRY;
377                 }
378                 if (unlikely(page->mapping != mapping)) {
379                         unlock_page(page);
380                         page_cache_release(page);
381                         goto repeat;
382                 }
383                 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
384                 if (unlikely(vmf->pgoff >= size)) {
385                         /*
386                          * We have a struct page covering a hole in the file
387                          * from a read fault and we've raced with a truncate
388                          */
389                         error = -EIO;
390                         goto unlock_page;
391                 }
392         }
393
394         error = get_block(inode, block, &bh, 0);
395         if (!error && (bh.b_size < PAGE_SIZE))
396                 error = -EIO;           /* fs corruption? */
397         if (error)
398                 goto unlock_page;
399
400         if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
401                 if (vmf->flags & FAULT_FLAG_WRITE) {
402                         error = get_block(inode, block, &bh, 1);
403                         count_vm_event(PGMAJFAULT);
404                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
405                         major = VM_FAULT_MAJOR;
406                         if (!error && (bh.b_size < PAGE_SIZE))
407                                 error = -EIO;
408                         if (error)
409                                 goto unlock_page;
410                 } else {
411                         return dax_load_hole(mapping, page, vmf);
412                 }
413         }
414
415         if (vmf->cow_page) {
416                 struct page *new_page = vmf->cow_page;
417                 if (buffer_written(&bh))
418                         error = copy_user_bh(new_page, &bh, blkbits, vaddr);
419                 else
420                         clear_user_highpage(new_page, vaddr);
421                 if (error)
422                         goto unlock_page;
423                 vmf->page = page;
424                 if (!page) {
425                         i_mmap_lock_read(mapping);
426                         /* Check we didn't race with truncate */
427                         size = (i_size_read(inode) + PAGE_SIZE - 1) >>
428                                                                 PAGE_SHIFT;
429                         if (vmf->pgoff >= size) {
430                                 i_mmap_unlock_read(mapping);
431                                 error = -EIO;
432                                 goto out;
433                         }
434                 }
435                 return VM_FAULT_LOCKED;
436         }
437
438         /* Check we didn't race with a read fault installing a new page */
439         if (!page && major)
440                 page = find_lock_page(mapping, vmf->pgoff);
441
442         if (page) {
443                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
444                                                         PAGE_CACHE_SIZE, 0);
445                 delete_from_page_cache(page);
446                 unlock_page(page);
447                 page_cache_release(page);
448         }
449
450         /*
451          * If we successfully insert the new mapping over an unwritten extent,
452          * we need to ensure we convert the unwritten extent. If there is an
453          * error inserting the mapping, the filesystem needs to leave it as
454          * unwritten to prevent exposure of the stale underlying data to
455          * userspace, but we still need to call the completion function so
456          * the private resources on the mapping buffer can be released. We
457          * indicate what the callback should do via the uptodate variable, same
458          * as for normal BH based IO completions.
459          */
460         error = dax_insert_mapping(inode, &bh, vma, vmf);
461         if (buffer_unwritten(&bh)) {
462                 if (complete_unwritten)
463                         complete_unwritten(&bh, !error);
464                 else
465                         WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
466         }
467
468  out:
469         if (error == -ENOMEM)
470                 return VM_FAULT_OOM | major;
471         /* -EBUSY is fine, somebody else faulted on the same PTE */
472         if ((error < 0) && (error != -EBUSY))
473                 return VM_FAULT_SIGBUS | major;
474         return VM_FAULT_NOPAGE | major;
475
476  unlock_page:
477         if (page) {
478                 unlock_page(page);
479                 page_cache_release(page);
480         }
481         goto out;
482 }
483 EXPORT_SYMBOL(__dax_fault);
484
485 /**
486  * dax_fault - handle a page fault on a DAX file
487  * @vma: The virtual memory area where the fault occurred
488  * @vmf: The description of the fault
489  * @get_block: The filesystem method used to translate file offsets to blocks
490  *
491  * When a page fault occurs, filesystems may call this helper in their
492  * fault handler for DAX files.
493  */
494 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
495               get_block_t get_block, dax_iodone_t complete_unwritten)
496 {
497         int result;
498         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
499
500         if (vmf->flags & FAULT_FLAG_WRITE) {
501                 sb_start_pagefault(sb);
502                 file_update_time(vma->vm_file);
503         }
504         result = __dax_fault(vma, vmf, get_block, complete_unwritten);
505         if (vmf->flags & FAULT_FLAG_WRITE)
506                 sb_end_pagefault(sb);
507
508         return result;
509 }
510 EXPORT_SYMBOL_GPL(dax_fault);
511
512 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
513 /*
514  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
515  * more often than one might expect in the below function.
516  */
517 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
518
519 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
520                 pmd_t *pmd, unsigned int flags, get_block_t get_block,
521                 dax_iodone_t complete_unwritten)
522 {
523         struct file *file = vma->vm_file;
524         struct address_space *mapping = file->f_mapping;
525         struct inode *inode = mapping->host;
526         struct buffer_head bh;
527         unsigned blkbits = inode->i_blkbits;
528         unsigned long pmd_addr = address & PMD_MASK;
529         bool write = flags & FAULT_FLAG_WRITE;
530         long length;
531         void __pmem *kaddr;
532         pgoff_t size, pgoff;
533         sector_t block, sector;
534         unsigned long pfn;
535         int result = 0;
536
537         /* Fall back to PTEs if we're going to COW */
538         if (write && !(vma->vm_flags & VM_SHARED))
539                 return VM_FAULT_FALLBACK;
540         /* If the PMD would extend outside the VMA */
541         if (pmd_addr < vma->vm_start)
542                 return VM_FAULT_FALLBACK;
543         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
544                 return VM_FAULT_FALLBACK;
545
546         pgoff = linear_page_index(vma, pmd_addr);
547         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
548         if (pgoff >= size)
549                 return VM_FAULT_SIGBUS;
550         /* If the PMD would cover blocks out of the file */
551         if ((pgoff | PG_PMD_COLOUR) >= size)
552                 return VM_FAULT_FALLBACK;
553
554         memset(&bh, 0, sizeof(bh));
555         block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
556
557         bh.b_size = PMD_SIZE;
558         length = get_block(inode, block, &bh, write);
559         if (length)
560                 return VM_FAULT_SIGBUS;
561         i_mmap_lock_read(mapping);
562
563         /*
564          * If the filesystem isn't willing to tell us the length of a hole,
565          * just fall back to PTEs.  Calling get_block 512 times in a loop
566          * would be silly.
567          */
568         if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)
569                 goto fallback;
570
571         /*
572          * If we allocated new storage, make sure no process has any
573          * zero pages covering this hole
574          */
575         if (buffer_new(&bh)) {
576                 i_mmap_unlock_read(mapping);
577                 unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0);
578                 i_mmap_lock_read(mapping);
579         }
580
581         /*
582          * If a truncate happened while we were allocating blocks, we may
583          * leave blocks allocated to the file that are beyond EOF.  We can't
584          * take i_mutex here, so just leave them hanging; they'll be freed
585          * when the file is deleted.
586          */
587         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
588         if (pgoff >= size) {
589                 result = VM_FAULT_SIGBUS;
590                 goto out;
591         }
592         if ((pgoff | PG_PMD_COLOUR) >= size)
593                 goto fallback;
594
595         if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
596                 spinlock_t *ptl;
597                 pmd_t entry;
598                 struct page *zero_page = get_huge_zero_page();
599
600                 if (unlikely(!zero_page))
601                         goto fallback;
602
603                 ptl = pmd_lock(vma->vm_mm, pmd);
604                 if (!pmd_none(*pmd)) {
605                         spin_unlock(ptl);
606                         goto fallback;
607                 }
608
609                 entry = mk_pmd(zero_page, vma->vm_page_prot);
610                 entry = pmd_mkhuge(entry);
611                 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
612                 result = VM_FAULT_NOPAGE;
613                 spin_unlock(ptl);
614         } else {
615                 sector = bh.b_blocknr << (blkbits - 9);
616                 length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,
617                                                 bh.b_size);
618                 if (length < 0) {
619                         result = VM_FAULT_SIGBUS;
620                         goto out;
621                 }
622                 if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))
623                         goto fallback;
624
625                 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
626                         int i;
627                         for (i = 0; i < PTRS_PER_PMD; i++)
628                                 clear_pmem(kaddr + i * PAGE_SIZE, PAGE_SIZE);
629                         wmb_pmem();
630                         count_vm_event(PGMAJFAULT);
631                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
632                         result |= VM_FAULT_MAJOR;
633                 }
634
635                 result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write);
636         }
637
638  out:
639         i_mmap_unlock_read(mapping);
640
641         if (buffer_unwritten(&bh))
642                 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
643
644         return result;
645
646  fallback:
647         count_vm_event(THP_FAULT_FALLBACK);
648         result = VM_FAULT_FALLBACK;
649         goto out;
650 }
651 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
652
653 /**
654  * dax_pmd_fault - handle a PMD fault on a DAX file
655  * @vma: The virtual memory area where the fault occurred
656  * @vmf: The description of the fault
657  * @get_block: The filesystem method used to translate file offsets to blocks
658  *
659  * When a page fault occurs, filesystems may call this helper in their
660  * pmd_fault handler for DAX files.
661  */
662 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
663                         pmd_t *pmd, unsigned int flags, get_block_t get_block,
664                         dax_iodone_t complete_unwritten)
665 {
666         int result;
667         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
668
669         if (flags & FAULT_FLAG_WRITE) {
670                 sb_start_pagefault(sb);
671                 file_update_time(vma->vm_file);
672         }
673         result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
674                                 complete_unwritten);
675         if (flags & FAULT_FLAG_WRITE)
676                 sb_end_pagefault(sb);
677
678         return result;
679 }
680 EXPORT_SYMBOL_GPL(dax_pmd_fault);
681 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
682
683 /**
684  * dax_pfn_mkwrite - handle first write to DAX page
685  * @vma: The virtual memory area where the fault occurred
686  * @vmf: The description of the fault
687  *
688  */
689 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
690 {
691         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
692
693         sb_start_pagefault(sb);
694         file_update_time(vma->vm_file);
695         sb_end_pagefault(sb);
696         return VM_FAULT_NOPAGE;
697 }
698 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
699
700 /**
701  * dax_zero_page_range - zero a range within a page of a DAX file
702  * @inode: The file being truncated
703  * @from: The file offset that is being truncated to
704  * @length: The number of bytes to zero
705  * @get_block: The filesystem method used to translate file offsets to blocks
706  *
707  * This function can be called by a filesystem when it is zeroing part of a
708  * page in a DAX file.  This is intended for hole-punch operations.  If
709  * you are truncating a file, the helper function dax_truncate_page() may be
710  * more convenient.
711  *
712  * We work in terms of PAGE_CACHE_SIZE here for commonality with
713  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
714  * took care of disposing of the unnecessary blocks.  Even if the filesystem
715  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
716  * since the file might be mmapped.
717  */
718 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
719                                                         get_block_t get_block)
720 {
721         struct buffer_head bh;
722         pgoff_t index = from >> PAGE_CACHE_SHIFT;
723         unsigned offset = from & (PAGE_CACHE_SIZE-1);
724         int err;
725
726         /* Block boundary? Nothing to do */
727         if (!length)
728                 return 0;
729         BUG_ON((offset + length) > PAGE_CACHE_SIZE);
730
731         memset(&bh, 0, sizeof(bh));
732         bh.b_size = PAGE_CACHE_SIZE;
733         err = get_block(inode, index, &bh, 0);
734         if (err < 0)
735                 return err;
736         if (buffer_written(&bh)) {
737                 void __pmem *addr;
738                 err = dax_get_addr(&bh, &addr, inode->i_blkbits);
739                 if (err < 0)
740                         return err;
741                 clear_pmem(addr + offset, length);
742                 wmb_pmem();
743         }
744
745         return 0;
746 }
747 EXPORT_SYMBOL_GPL(dax_zero_page_range);
748
749 /**
750  * dax_truncate_page - handle a partial page being truncated in a DAX file
751  * @inode: The file being truncated
752  * @from: The file offset that is being truncated to
753  * @get_block: The filesystem method used to translate file offsets to blocks
754  *
755  * Similar to block_truncate_page(), this function can be called by a
756  * filesystem when it is truncating a DAX file to handle the partial page.
757  *
758  * We work in terms of PAGE_CACHE_SIZE here for commonality with
759  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
760  * took care of disposing of the unnecessary blocks.  Even if the filesystem
761  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
762  * since the file might be mmapped.
763  */
764 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
765 {
766         unsigned length = PAGE_CACHE_ALIGN(from) - from;
767         return dax_zero_page_range(inode, from, length, get_block);
768 }
769 EXPORT_SYMBOL_GPL(dax_truncate_page);