]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/data.c
Merge remote-tracking branch 'ext4/dev'
[karo-tx-linux.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32         struct bio_vec *bvec;
33         int i;
34
35         if (f2fs_bio_encrypted(bio)) {
36                 if (bio->bi_error) {
37                         f2fs_release_crypto_ctx(bio->bi_private);
38                 } else {
39                         f2fs_end_io_crypto_work(bio->bi_private, bio);
40                         return;
41                 }
42         }
43
44         bio_for_each_segment_all(bvec, bio, i) {
45                 struct page *page = bvec->bv_page;
46
47                 if (!bio->bi_error) {
48                         SetPageUptodate(page);
49                 } else {
50                         ClearPageUptodate(page);
51                         SetPageError(page);
52                 }
53                 unlock_page(page);
54         }
55         bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60         struct f2fs_sb_info *sbi = bio->bi_private;
61         struct bio_vec *bvec;
62         int i;
63
64         bio_for_each_segment_all(bvec, bio, i) {
65                 struct page *page = bvec->bv_page;
66
67                 f2fs_restore_and_release_control_page(&page);
68
69                 if (unlikely(bio->bi_error)) {
70                         set_page_dirty(page);
71                         set_bit(AS_EIO, &page->mapping->flags);
72                         f2fs_stop_checkpoint(sbi);
73                 }
74                 end_page_writeback(page);
75                 dec_page_count(sbi, F2FS_WRITEBACK);
76         }
77
78         if (!get_pages(sbi, F2FS_WRITEBACK) &&
79                         !list_empty(&sbi->cp_wait.task_list))
80                 wake_up(&sbi->cp_wait);
81
82         bio_put(bio);
83 }
84
85 /*
86  * Low-level block read/write IO operations.
87  */
88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
89                                 int npages, bool is_read)
90 {
91         struct bio *bio;
92
93         bio = f2fs_bio_alloc(npages);
94
95         bio->bi_bdev = sbi->sb->s_bdev;
96         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
97         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
98         bio->bi_private = is_read ? NULL : sbi;
99
100         return bio;
101 }
102
103 static void __submit_merged_bio(struct f2fs_bio_info *io)
104 {
105         struct f2fs_io_info *fio = &io->fio;
106
107         if (!io->bio)
108                 return;
109
110         if (is_read_io(fio->rw))
111                 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
112         else
113                 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
114
115         submit_bio(fio->rw, io->bio);
116         io->bio = NULL;
117 }
118
119 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
120                                 enum page_type type, int rw)
121 {
122         enum page_type btype = PAGE_TYPE_OF_BIO(type);
123         struct f2fs_bio_info *io;
124
125         io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
126
127         down_write(&io->io_rwsem);
128
129         /* change META to META_FLUSH in the checkpoint procedure */
130         if (type >= META_FLUSH) {
131                 io->fio.type = META_FLUSH;
132                 if (test_opt(sbi, NOBARRIER))
133                         io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
134                 else
135                         io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
136         }
137         __submit_merged_bio(io);
138         up_write(&io->io_rwsem);
139 }
140
141 /*
142  * Fill the locked page with data located in the block address.
143  * Return unlocked page.
144  */
145 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
146 {
147         struct bio *bio;
148         struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
149
150         trace_f2fs_submit_page_bio(page, fio);
151         f2fs_trace_ios(fio, 0);
152
153         /* Allocate a new bio */
154         bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
155
156         if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
157                 bio_put(bio);
158                 return -EFAULT;
159         }
160
161         submit_bio(fio->rw, bio);
162         return 0;
163 }
164
165 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
166 {
167         struct f2fs_sb_info *sbi = fio->sbi;
168         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
169         struct f2fs_bio_info *io;
170         bool is_read = is_read_io(fio->rw);
171         struct page *bio_page;
172
173         io = is_read ? &sbi->read_io : &sbi->write_io[btype];
174
175         verify_block_addr(sbi, fio->blk_addr);
176
177         down_write(&io->io_rwsem);
178
179         if (!is_read)
180                 inc_page_count(sbi, F2FS_WRITEBACK);
181
182         if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
183                                                 io->fio.rw != fio->rw))
184                 __submit_merged_bio(io);
185 alloc_new:
186         if (io->bio == NULL) {
187                 int bio_blocks = MAX_BIO_BLOCKS(sbi);
188
189                 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
190                 io->fio = *fio;
191         }
192
193         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
194
195         if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
196                                                         PAGE_CACHE_SIZE) {
197                 __submit_merged_bio(io);
198                 goto alloc_new;
199         }
200
201         io->last_block_in_bio = fio->blk_addr;
202         f2fs_trace_ios(fio, 0);
203
204         up_write(&io->io_rwsem);
205         trace_f2fs_submit_page_mbio(fio->page, fio);
206 }
207
208 /*
209  * Lock ordering for the change of data block address:
210  * ->data_page
211  *  ->node_page
212  *    update block addresses in the node page
213  */
214 void set_data_blkaddr(struct dnode_of_data *dn)
215 {
216         struct f2fs_node *rn;
217         __le32 *addr_array;
218         struct page *node_page = dn->node_page;
219         unsigned int ofs_in_node = dn->ofs_in_node;
220
221         f2fs_wait_on_page_writeback(node_page, NODE);
222
223         rn = F2FS_NODE(node_page);
224
225         /* Get physical address of data block */
226         addr_array = blkaddr_in_node(rn);
227         addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
228         set_page_dirty(node_page);
229 }
230
231 int reserve_new_block(struct dnode_of_data *dn)
232 {
233         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
234
235         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
236                 return -EPERM;
237         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
238                 return -ENOSPC;
239
240         trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
241
242         dn->data_blkaddr = NEW_ADDR;
243         set_data_blkaddr(dn);
244         mark_inode_dirty(dn->inode);
245         sync_inode_page(dn);
246         return 0;
247 }
248
249 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
250 {
251         bool need_put = dn->inode_page ? false : true;
252         int err;
253
254         err = get_dnode_of_data(dn, index, ALLOC_NODE);
255         if (err)
256                 return err;
257
258         if (dn->data_blkaddr == NULL_ADDR)
259                 err = reserve_new_block(dn);
260         if (err || need_put)
261                 f2fs_put_dnode(dn);
262         return err;
263 }
264
265 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
266 {
267         struct extent_info ei;
268         struct inode *inode = dn->inode;
269
270         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
271                 dn->data_blkaddr = ei.blk + index - ei.fofs;
272                 return 0;
273         }
274
275         return f2fs_reserve_block(dn, index);
276 }
277
278 struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
279 {
280         struct address_space *mapping = inode->i_mapping;
281         struct dnode_of_data dn;
282         struct page *page;
283         struct extent_info ei;
284         int err;
285         struct f2fs_io_info fio = {
286                 .sbi = F2FS_I_SB(inode),
287                 .type = DATA,
288                 .rw = rw,
289                 .encrypted_page = NULL,
290         };
291
292         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
293                 return read_mapping_page(mapping, index, NULL);
294
295         page = grab_cache_page(mapping, index);
296         if (!page)
297                 return ERR_PTR(-ENOMEM);
298
299         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
300                 dn.data_blkaddr = ei.blk + index - ei.fofs;
301                 goto got_it;
302         }
303
304         set_new_dnode(&dn, inode, NULL, NULL, 0);
305         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
306         if (err)
307                 goto put_err;
308         f2fs_put_dnode(&dn);
309
310         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
311                 err = -ENOENT;
312                 goto put_err;
313         }
314 got_it:
315         if (PageUptodate(page)) {
316                 unlock_page(page);
317                 return page;
318         }
319
320         /*
321          * A new dentry page is allocated but not able to be written, since its
322          * new inode page couldn't be allocated due to -ENOSPC.
323          * In such the case, its blkaddr can be remained as NEW_ADDR.
324          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
325          */
326         if (dn.data_blkaddr == NEW_ADDR) {
327                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
328                 SetPageUptodate(page);
329                 unlock_page(page);
330                 return page;
331         }
332
333         fio.blk_addr = dn.data_blkaddr;
334         fio.page = page;
335         err = f2fs_submit_page_bio(&fio);
336         if (err)
337                 goto put_err;
338         return page;
339
340 put_err:
341         f2fs_put_page(page, 1);
342         return ERR_PTR(err);
343 }
344
345 struct page *find_data_page(struct inode *inode, pgoff_t index)
346 {
347         struct address_space *mapping = inode->i_mapping;
348         struct page *page;
349
350         page = find_get_page(mapping, index);
351         if (page && PageUptodate(page))
352                 return page;
353         f2fs_put_page(page, 0);
354
355         page = get_read_data_page(inode, index, READ_SYNC);
356         if (IS_ERR(page))
357                 return page;
358
359         if (PageUptodate(page))
360                 return page;
361
362         wait_on_page_locked(page);
363         if (unlikely(!PageUptodate(page))) {
364                 f2fs_put_page(page, 0);
365                 return ERR_PTR(-EIO);
366         }
367         return page;
368 }
369
370 /*
371  * If it tries to access a hole, return an error.
372  * Because, the callers, functions in dir.c and GC, should be able to know
373  * whether this page exists or not.
374  */
375 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
376 {
377         struct address_space *mapping = inode->i_mapping;
378         struct page *page;
379 repeat:
380         page = get_read_data_page(inode, index, READ_SYNC);
381         if (IS_ERR(page))
382                 return page;
383
384         /* wait for read completion */
385         lock_page(page);
386         if (unlikely(!PageUptodate(page))) {
387                 f2fs_put_page(page, 1);
388                 return ERR_PTR(-EIO);
389         }
390         if (unlikely(page->mapping != mapping)) {
391                 f2fs_put_page(page, 1);
392                 goto repeat;
393         }
394         return page;
395 }
396
397 /*
398  * Caller ensures that this data page is never allocated.
399  * A new zero-filled data page is allocated in the page cache.
400  *
401  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
402  * f2fs_unlock_op().
403  * Note that, ipage is set only by make_empty_dir, and if any error occur,
404  * ipage should be released by this function.
405  */
406 struct page *get_new_data_page(struct inode *inode,
407                 struct page *ipage, pgoff_t index, bool new_i_size)
408 {
409         struct address_space *mapping = inode->i_mapping;
410         struct page *page;
411         struct dnode_of_data dn;
412         int err;
413 repeat:
414         page = grab_cache_page(mapping, index);
415         if (!page) {
416                 /*
417                  * before exiting, we should make sure ipage will be released
418                  * if any error occur.
419                  */
420                 f2fs_put_page(ipage, 1);
421                 return ERR_PTR(-ENOMEM);
422         }
423
424         set_new_dnode(&dn, inode, ipage, NULL, 0);
425         err = f2fs_reserve_block(&dn, index);
426         if (err) {
427                 f2fs_put_page(page, 1);
428                 return ERR_PTR(err);
429         }
430         if (!ipage)
431                 f2fs_put_dnode(&dn);
432
433         if (PageUptodate(page))
434                 goto got_it;
435
436         if (dn.data_blkaddr == NEW_ADDR) {
437                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
438                 SetPageUptodate(page);
439         } else {
440                 f2fs_put_page(page, 1);
441
442                 page = get_read_data_page(inode, index, READ_SYNC);
443                 if (IS_ERR(page))
444                         goto repeat;
445
446                 /* wait for read completion */
447                 lock_page(page);
448         }
449 got_it:
450         if (new_i_size &&
451                 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
452                 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
453                 /* Only the directory inode sets new_i_size */
454                 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
455         }
456         return page;
457 }
458
459 static int __allocate_data_block(struct dnode_of_data *dn)
460 {
461         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
462         struct f2fs_inode_info *fi = F2FS_I(dn->inode);
463         struct f2fs_summary sum;
464         struct node_info ni;
465         int seg = CURSEG_WARM_DATA;
466         pgoff_t fofs;
467
468         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
469                 return -EPERM;
470
471         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
472         if (dn->data_blkaddr == NEW_ADDR)
473                 goto alloc;
474
475         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
476                 return -ENOSPC;
477
478 alloc:
479         get_node_info(sbi, dn->nid, &ni);
480         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
481
482         if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
483                 seg = CURSEG_DIRECT_IO;
484
485         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
486                                                                 &sum, seg);
487         set_data_blkaddr(dn);
488
489         /* update i_size */
490         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
491                                                         dn->ofs_in_node;
492         if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
493                 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
494
495         /* direct IO doesn't use extent cache to maximize the performance */
496         f2fs_drop_largest_extent(dn->inode, fofs);
497
498         return 0;
499 }
500
501 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
502                                                         size_t count)
503 {
504         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
505         struct dnode_of_data dn;
506         u64 start = F2FS_BYTES_TO_BLK(offset);
507         u64 len = F2FS_BYTES_TO_BLK(count);
508         bool allocated;
509         u64 end_offset;
510
511         while (len) {
512                 f2fs_balance_fs(sbi);
513                 f2fs_lock_op(sbi);
514
515                 /* When reading holes, we need its node page */
516                 set_new_dnode(&dn, inode, NULL, NULL, 0);
517                 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
518                         goto out;
519
520                 allocated = false;
521                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
522
523                 while (dn.ofs_in_node < end_offset && len) {
524                         block_t blkaddr;
525
526                         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
527                         if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
528                                 if (__allocate_data_block(&dn))
529                                         goto sync_out;
530                                 allocated = true;
531                         }
532                         len--;
533                         start++;
534                         dn.ofs_in_node++;
535                 }
536
537                 if (allocated)
538                         sync_inode_page(&dn);
539
540                 f2fs_put_dnode(&dn);
541                 f2fs_unlock_op(sbi);
542         }
543         return;
544
545 sync_out:
546         if (allocated)
547                 sync_inode_page(&dn);
548         f2fs_put_dnode(&dn);
549 out:
550         f2fs_unlock_op(sbi);
551         return;
552 }
553
554 /*
555  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
556  * f2fs_map_blocks structure.
557  * If original data blocks are allocated, then give them to blockdev.
558  * Otherwise,
559  *     a. preallocate requested block addresses
560  *     b. do not use extent cache for better performance
561  *     c. give the block addresses to blockdev
562  */
563 static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
564                                                 int create, int flag)
565 {
566         unsigned int maxblocks = map->m_len;
567         struct dnode_of_data dn;
568         int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
569         pgoff_t pgofs, end_offset;
570         int err = 0, ofs = 1;
571         struct extent_info ei;
572         bool allocated = false;
573
574         map->m_len = 0;
575         map->m_flags = 0;
576
577         /* it only supports block size == page size */
578         pgofs = (pgoff_t)map->m_lblk;
579
580         if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
581                 map->m_pblk = ei.blk + pgofs - ei.fofs;
582                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
583                 map->m_flags = F2FS_MAP_MAPPED;
584                 goto out;
585         }
586
587         if (create)
588                 f2fs_lock_op(F2FS_I_SB(inode));
589
590         /* When reading holes, we need its node page */
591         set_new_dnode(&dn, inode, NULL, NULL, 0);
592         err = get_dnode_of_data(&dn, pgofs, mode);
593         if (err) {
594                 if (err == -ENOENT)
595                         err = 0;
596                 goto unlock_out;
597         }
598         if (dn.data_blkaddr == NEW_ADDR) {
599                 if (flag == F2FS_GET_BLOCK_BMAP) {
600                         err = -ENOENT;
601                         goto put_out;
602                 } else if (flag == F2FS_GET_BLOCK_READ ||
603                                 flag == F2FS_GET_BLOCK_DIO) {
604                         goto put_out;
605                 }
606                 /*
607                  * if it is in fiemap call path (flag = F2FS_GET_BLOCK_FIEMAP),
608                  * mark it as mapped and unwritten block.
609                  */
610         }
611
612         if (dn.data_blkaddr != NULL_ADDR) {
613                 map->m_flags = F2FS_MAP_MAPPED;
614                 map->m_pblk = dn.data_blkaddr;
615                 if (dn.data_blkaddr == NEW_ADDR)
616                         map->m_flags |= F2FS_MAP_UNWRITTEN;
617         } else if (create) {
618                 err = __allocate_data_block(&dn);
619                 if (err)
620                         goto put_out;
621                 allocated = true;
622                 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
623                 map->m_pblk = dn.data_blkaddr;
624         } else {
625                 if (flag == F2FS_GET_BLOCK_BMAP)
626                         err = -ENOENT;
627                 goto put_out;
628         }
629
630         end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
631         map->m_len = 1;
632         dn.ofs_in_node++;
633         pgofs++;
634
635 get_next:
636         if (dn.ofs_in_node >= end_offset) {
637                 if (allocated)
638                         sync_inode_page(&dn);
639                 allocated = false;
640                 f2fs_put_dnode(&dn);
641
642                 set_new_dnode(&dn, inode, NULL, NULL, 0);
643                 err = get_dnode_of_data(&dn, pgofs, mode);
644                 if (err) {
645                         if (err == -ENOENT)
646                                 err = 0;
647                         goto unlock_out;
648                 }
649
650                 if (dn.data_blkaddr == NEW_ADDR &&
651                                 flag != F2FS_GET_BLOCK_FIEMAP)
652                         goto put_out;
653
654                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
655         }
656
657         if (maxblocks > map->m_len) {
658                 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
659                 if (blkaddr == NULL_ADDR && create) {
660                         err = __allocate_data_block(&dn);
661                         if (err)
662                                 goto sync_out;
663                         allocated = true;
664                         map->m_flags |= F2FS_MAP_NEW;
665                         blkaddr = dn.data_blkaddr;
666                 }
667                 /* Give more consecutive addresses for the readahead */
668                 if ((map->m_pblk != NEW_ADDR &&
669                                 blkaddr == (map->m_pblk + ofs)) ||
670                                 (map->m_pblk == NEW_ADDR &&
671                                 blkaddr == NEW_ADDR)) {
672                         ofs++;
673                         dn.ofs_in_node++;
674                         pgofs++;
675                         map->m_len++;
676                         goto get_next;
677                 }
678         }
679 sync_out:
680         if (allocated)
681                 sync_inode_page(&dn);
682 put_out:
683         f2fs_put_dnode(&dn);
684 unlock_out:
685         if (create)
686                 f2fs_unlock_op(F2FS_I_SB(inode));
687 out:
688         trace_f2fs_map_blocks(inode, map, err);
689         return err;
690 }
691
692 static int __get_data_block(struct inode *inode, sector_t iblock,
693                         struct buffer_head *bh, int create, int flag)
694 {
695         struct f2fs_map_blocks map;
696         int ret;
697
698         map.m_lblk = iblock;
699         map.m_len = bh->b_size >> inode->i_blkbits;
700
701         ret = f2fs_map_blocks(inode, &map, create, flag);
702         if (!ret) {
703                 map_bh(bh, inode->i_sb, map.m_pblk);
704                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
705                 bh->b_size = map.m_len << inode->i_blkbits;
706         }
707         return ret;
708 }
709
710 static int get_data_block(struct inode *inode, sector_t iblock,
711                         struct buffer_head *bh_result, int create, int flag)
712 {
713         return __get_data_block(inode, iblock, bh_result, create, flag);
714 }
715
716 static int get_data_block_dio(struct inode *inode, sector_t iblock,
717                         struct buffer_head *bh_result, int create)
718 {
719         return __get_data_block(inode, iblock, bh_result, create,
720                                                 F2FS_GET_BLOCK_DIO);
721 }
722
723 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
724                         struct buffer_head *bh_result, int create)
725 {
726         return __get_data_block(inode, iblock, bh_result, create,
727                                                 F2FS_GET_BLOCK_BMAP);
728 }
729
730 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
731 {
732         return (offset >> inode->i_blkbits);
733 }
734
735 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
736 {
737         return (blk << inode->i_blkbits);
738 }
739
740 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
741                 u64 start, u64 len)
742 {
743         struct buffer_head map_bh;
744         sector_t start_blk, last_blk;
745         loff_t isize = i_size_read(inode);
746         u64 logical = 0, phys = 0, size = 0;
747         u32 flags = 0;
748         bool past_eof = false, whole_file = false;
749         int ret = 0;
750
751         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
752         if (ret)
753                 return ret;
754
755         mutex_lock(&inode->i_mutex);
756
757         if (len >= isize) {
758                 whole_file = true;
759                 len = isize;
760         }
761
762         if (logical_to_blk(inode, len) == 0)
763                 len = blk_to_logical(inode, 1);
764
765         start_blk = logical_to_blk(inode, start);
766         last_blk = logical_to_blk(inode, start + len - 1);
767 next:
768         memset(&map_bh, 0, sizeof(struct buffer_head));
769         map_bh.b_size = len;
770
771         ret = get_data_block(inode, start_blk, &map_bh, 0,
772                                         F2FS_GET_BLOCK_FIEMAP);
773         if (ret)
774                 goto out;
775
776         /* HOLE */
777         if (!buffer_mapped(&map_bh)) {
778                 start_blk++;
779
780                 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
781                         past_eof = 1;
782
783                 if (past_eof && size) {
784                         flags |= FIEMAP_EXTENT_LAST;
785                         ret = fiemap_fill_next_extent(fieinfo, logical,
786                                         phys, size, flags);
787                 } else if (size) {
788                         ret = fiemap_fill_next_extent(fieinfo, logical,
789                                         phys, size, flags);
790                         size = 0;
791                 }
792
793                 /* if we have holes up to/past EOF then we're done */
794                 if (start_blk > last_blk || past_eof || ret)
795                         goto out;
796         } else {
797                 if (start_blk > last_blk && !whole_file) {
798                         ret = fiemap_fill_next_extent(fieinfo, logical,
799                                         phys, size, flags);
800                         goto out;
801                 }
802
803                 /*
804                  * if size != 0 then we know we already have an extent
805                  * to add, so add it.
806                  */
807                 if (size) {
808                         ret = fiemap_fill_next_extent(fieinfo, logical,
809                                         phys, size, flags);
810                         if (ret)
811                                 goto out;
812                 }
813
814                 logical = blk_to_logical(inode, start_blk);
815                 phys = blk_to_logical(inode, map_bh.b_blocknr);
816                 size = map_bh.b_size;
817                 flags = 0;
818                 if (buffer_unwritten(&map_bh))
819                         flags = FIEMAP_EXTENT_UNWRITTEN;
820
821                 start_blk += logical_to_blk(inode, size);
822
823                 /*
824                  * If we are past the EOF, then we need to make sure as
825                  * soon as we find a hole that the last extent we found
826                  * is marked with FIEMAP_EXTENT_LAST
827                  */
828                 if (!past_eof && logical + size >= isize)
829                         past_eof = true;
830         }
831         cond_resched();
832         if (fatal_signal_pending(current))
833                 ret = -EINTR;
834         else
835                 goto next;
836 out:
837         if (ret == 1)
838                 ret = 0;
839
840         mutex_unlock(&inode->i_mutex);
841         return ret;
842 }
843
844 /*
845  * This function was originally taken from fs/mpage.c, and customized for f2fs.
846  * Major change was from block_size == page_size in f2fs by default.
847  */
848 static int f2fs_mpage_readpages(struct address_space *mapping,
849                         struct list_head *pages, struct page *page,
850                         unsigned nr_pages)
851 {
852         struct bio *bio = NULL;
853         unsigned page_idx;
854         sector_t last_block_in_bio = 0;
855         struct inode *inode = mapping->host;
856         const unsigned blkbits = inode->i_blkbits;
857         const unsigned blocksize = 1 << blkbits;
858         sector_t block_in_file;
859         sector_t last_block;
860         sector_t last_block_in_file;
861         sector_t block_nr;
862         struct block_device *bdev = inode->i_sb->s_bdev;
863         struct f2fs_map_blocks map;
864
865         map.m_pblk = 0;
866         map.m_lblk = 0;
867         map.m_len = 0;
868         map.m_flags = 0;
869
870         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
871
872                 prefetchw(&page->flags);
873                 if (pages) {
874                         page = list_entry(pages->prev, struct page, lru);
875                         list_del(&page->lru);
876                         if (add_to_page_cache_lru(page, mapping,
877                                                   page->index, GFP_KERNEL))
878                                 goto next_page;
879                 }
880
881                 block_in_file = (sector_t)page->index;
882                 last_block = block_in_file + nr_pages;
883                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
884                                                                 blkbits;
885                 if (last_block > last_block_in_file)
886                         last_block = last_block_in_file;
887
888                 /*
889                  * Map blocks using the previous result first.
890                  */
891                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
892                                 block_in_file > map.m_lblk &&
893                                 block_in_file < (map.m_lblk + map.m_len))
894                         goto got_it;
895
896                 /*
897                  * Then do more f2fs_map_blocks() calls until we are
898                  * done with this page.
899                  */
900                 map.m_flags = 0;
901
902                 if (block_in_file < last_block) {
903                         map.m_lblk = block_in_file;
904                         map.m_len = last_block - block_in_file;
905
906                         if (f2fs_map_blocks(inode, &map, 0, false))
907                                 goto set_error_page;
908                 }
909 got_it:
910                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
911                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
912                         SetPageMappedToDisk(page);
913
914                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
915                                 SetPageUptodate(page);
916                                 goto confused;
917                         }
918                 } else {
919                         zero_user_segment(page, 0, PAGE_CACHE_SIZE);
920                         SetPageUptodate(page);
921                         unlock_page(page);
922                         goto next_page;
923                 }
924
925                 /*
926                  * This page will go to BIO.  Do we need to send this
927                  * BIO off first?
928                  */
929                 if (bio && (last_block_in_bio != block_nr - 1)) {
930 submit_and_realloc:
931                         submit_bio(READ, bio);
932                         bio = NULL;
933                 }
934                 if (bio == NULL) {
935                         struct f2fs_crypto_ctx *ctx = NULL;
936
937                         if (f2fs_encrypted_inode(inode) &&
938                                         S_ISREG(inode->i_mode)) {
939                                 struct page *cpage;
940
941                                 ctx = f2fs_get_crypto_ctx(inode);
942                                 if (IS_ERR(ctx))
943                                         goto set_error_page;
944
945                                 /* wait the page to be moved by cleaning */
946                                 cpage = find_lock_page(
947                                                 META_MAPPING(F2FS_I_SB(inode)),
948                                                 block_nr);
949                                 if (cpage) {
950                                         f2fs_wait_on_page_writeback(cpage,
951                                                                         DATA);
952                                         f2fs_put_page(cpage, 1);
953                                 }
954                         }
955
956                         bio = bio_alloc(GFP_KERNEL,
957                                 min_t(int, nr_pages, BIO_MAX_PAGES));
958                         if (!bio) {
959                                 if (ctx)
960                                         f2fs_release_crypto_ctx(ctx);
961                                 goto set_error_page;
962                         }
963                         bio->bi_bdev = bdev;
964                         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
965                         bio->bi_end_io = f2fs_read_end_io;
966                         bio->bi_private = ctx;
967                 }
968
969                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
970                         goto submit_and_realloc;
971
972                 last_block_in_bio = block_nr;
973                 goto next_page;
974 set_error_page:
975                 SetPageError(page);
976                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
977                 unlock_page(page);
978                 goto next_page;
979 confused:
980                 if (bio) {
981                         submit_bio(READ, bio);
982                         bio = NULL;
983                 }
984                 unlock_page(page);
985 next_page:
986                 if (pages)
987                         page_cache_release(page);
988         }
989         BUG_ON(pages && !list_empty(pages));
990         if (bio)
991                 submit_bio(READ, bio);
992         return 0;
993 }
994
995 static int f2fs_read_data_page(struct file *file, struct page *page)
996 {
997         struct inode *inode = page->mapping->host;
998         int ret = -EAGAIN;
999
1000         trace_f2fs_readpage(page, DATA);
1001
1002         /* If the file has inline data, try to read it directly */
1003         if (f2fs_has_inline_data(inode))
1004                 ret = f2fs_read_inline_data(inode, page);
1005         if (ret == -EAGAIN)
1006                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1007         return ret;
1008 }
1009
1010 static int f2fs_read_data_pages(struct file *file,
1011                         struct address_space *mapping,
1012                         struct list_head *pages, unsigned nr_pages)
1013 {
1014         struct inode *inode = file->f_mapping->host;
1015
1016         /* If the file has inline data, skip readpages */
1017         if (f2fs_has_inline_data(inode))
1018                 return 0;
1019
1020         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1021 }
1022
1023 int do_write_data_page(struct f2fs_io_info *fio)
1024 {
1025         struct page *page = fio->page;
1026         struct inode *inode = page->mapping->host;
1027         struct dnode_of_data dn;
1028         int err = 0;
1029
1030         set_new_dnode(&dn, inode, NULL, NULL, 0);
1031         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1032         if (err)
1033                 return err;
1034
1035         fio->blk_addr = dn.data_blkaddr;
1036
1037         /* This page is already truncated */
1038         if (fio->blk_addr == NULL_ADDR) {
1039                 ClearPageUptodate(page);
1040                 goto out_writepage;
1041         }
1042
1043         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1044                 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1045                 if (IS_ERR(fio->encrypted_page)) {
1046                         err = PTR_ERR(fio->encrypted_page);
1047                         goto out_writepage;
1048                 }
1049         }
1050
1051         set_page_writeback(page);
1052
1053         /*
1054          * If current allocation needs SSR,
1055          * it had better in-place writes for updated data.
1056          */
1057         if (unlikely(fio->blk_addr != NEW_ADDR &&
1058                         !is_cold_data(page) &&
1059                         need_inplace_update(inode))) {
1060                 rewrite_data_page(fio);
1061                 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1062                 trace_f2fs_do_write_data_page(page, IPU);
1063         } else {
1064                 write_data_page(&dn, fio);
1065                 set_data_blkaddr(&dn);
1066                 f2fs_update_extent_cache(&dn);
1067                 trace_f2fs_do_write_data_page(page, OPU);
1068                 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1069                 if (page->index == 0)
1070                         set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1071         }
1072 out_writepage:
1073         f2fs_put_dnode(&dn);
1074         return err;
1075 }
1076
1077 static int f2fs_write_data_page(struct page *page,
1078                                         struct writeback_control *wbc)
1079 {
1080         struct inode *inode = page->mapping->host;
1081         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1082         loff_t i_size = i_size_read(inode);
1083         const pgoff_t end_index = ((unsigned long long) i_size)
1084                                                         >> PAGE_CACHE_SHIFT;
1085         unsigned offset = 0;
1086         bool need_balance_fs = false;
1087         int err = 0;
1088         struct f2fs_io_info fio = {
1089                 .sbi = sbi,
1090                 .type = DATA,
1091                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1092                 .page = page,
1093                 .encrypted_page = NULL,
1094         };
1095
1096         trace_f2fs_writepage(page, DATA);
1097
1098         if (page->index < end_index)
1099                 goto write;
1100
1101         /*
1102          * If the offset is out-of-range of file size,
1103          * this page does not have to be written to disk.
1104          */
1105         offset = i_size & (PAGE_CACHE_SIZE - 1);
1106         if ((page->index >= end_index + 1) || !offset)
1107                 goto out;
1108
1109         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1110 write:
1111         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1112                 goto redirty_out;
1113         if (f2fs_is_drop_cache(inode))
1114                 goto out;
1115         if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1116                         available_free_memory(sbi, BASE_CHECK))
1117                 goto redirty_out;
1118
1119         /* Dentry blocks are controlled by checkpoint */
1120         if (S_ISDIR(inode->i_mode)) {
1121                 if (unlikely(f2fs_cp_error(sbi)))
1122                         goto redirty_out;
1123                 err = do_write_data_page(&fio);
1124                 goto done;
1125         }
1126
1127         /* we should bypass data pages to proceed the kworkder jobs */
1128         if (unlikely(f2fs_cp_error(sbi))) {
1129                 SetPageError(page);
1130                 goto out;
1131         }
1132
1133         if (!wbc->for_reclaim)
1134                 need_balance_fs = true;
1135         else if (has_not_enough_free_secs(sbi, 0))
1136                 goto redirty_out;
1137
1138         err = -EAGAIN;
1139         f2fs_lock_op(sbi);
1140         if (f2fs_has_inline_data(inode))
1141                 err = f2fs_write_inline_data(inode, page);
1142         if (err == -EAGAIN)
1143                 err = do_write_data_page(&fio);
1144         f2fs_unlock_op(sbi);
1145 done:
1146         if (err && err != -ENOENT)
1147                 goto redirty_out;
1148
1149         clear_cold_data(page);
1150 out:
1151         inode_dec_dirty_pages(inode);
1152         if (err)
1153                 ClearPageUptodate(page);
1154         unlock_page(page);
1155         if (need_balance_fs)
1156                 f2fs_balance_fs(sbi);
1157         if (wbc->for_reclaim)
1158                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1159         return 0;
1160
1161 redirty_out:
1162         redirty_page_for_writepage(wbc, page);
1163         return AOP_WRITEPAGE_ACTIVATE;
1164 }
1165
1166 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1167                         void *data)
1168 {
1169         struct address_space *mapping = data;
1170         int ret = mapping->a_ops->writepage(page, wbc);
1171         mapping_set_error(mapping, ret);
1172         return ret;
1173 }
1174
1175 /*
1176  * This function was copied from write_cche_pages from mm/page-writeback.c.
1177  * The major change is making write step of cold data page separately from
1178  * warm/hot data page.
1179  */
1180 static int f2fs_write_cache_pages(struct address_space *mapping,
1181                         struct writeback_control *wbc, writepage_t writepage,
1182                         void *data)
1183 {
1184         int ret = 0;
1185         int done = 0;
1186         struct pagevec pvec;
1187         int nr_pages;
1188         pgoff_t uninitialized_var(writeback_index);
1189         pgoff_t index;
1190         pgoff_t end;            /* Inclusive */
1191         pgoff_t done_index;
1192         int cycled;
1193         int range_whole = 0;
1194         int tag;
1195         int step = 0;
1196
1197         pagevec_init(&pvec, 0);
1198 next:
1199         if (wbc->range_cyclic) {
1200                 writeback_index = mapping->writeback_index; /* prev offset */
1201                 index = writeback_index;
1202                 if (index == 0)
1203                         cycled = 1;
1204                 else
1205                         cycled = 0;
1206                 end = -1;
1207         } else {
1208                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1209                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1210                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1211                         range_whole = 1;
1212                 cycled = 1; /* ignore range_cyclic tests */
1213         }
1214         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1215                 tag = PAGECACHE_TAG_TOWRITE;
1216         else
1217                 tag = PAGECACHE_TAG_DIRTY;
1218 retry:
1219         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1220                 tag_pages_for_writeback(mapping, index, end);
1221         done_index = index;
1222         while (!done && (index <= end)) {
1223                 int i;
1224
1225                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1226                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1227                 if (nr_pages == 0)
1228                         break;
1229
1230                 for (i = 0; i < nr_pages; i++) {
1231                         struct page *page = pvec.pages[i];
1232
1233                         if (page->index > end) {
1234                                 done = 1;
1235                                 break;
1236                         }
1237
1238                         done_index = page->index;
1239
1240                         lock_page(page);
1241
1242                         if (unlikely(page->mapping != mapping)) {
1243 continue_unlock:
1244                                 unlock_page(page);
1245                                 continue;
1246                         }
1247
1248                         if (!PageDirty(page)) {
1249                                 /* someone wrote it for us */
1250                                 goto continue_unlock;
1251                         }
1252
1253                         if (step == is_cold_data(page))
1254                                 goto continue_unlock;
1255
1256                         if (PageWriteback(page)) {
1257                                 if (wbc->sync_mode != WB_SYNC_NONE)
1258                                         f2fs_wait_on_page_writeback(page, DATA);
1259                                 else
1260                                         goto continue_unlock;
1261                         }
1262
1263                         BUG_ON(PageWriteback(page));
1264                         if (!clear_page_dirty_for_io(page))
1265                                 goto continue_unlock;
1266
1267                         ret = (*writepage)(page, wbc, data);
1268                         if (unlikely(ret)) {
1269                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1270                                         unlock_page(page);
1271                                         ret = 0;
1272                                 } else {
1273                                         done_index = page->index + 1;
1274                                         done = 1;
1275                                         break;
1276                                 }
1277                         }
1278
1279                         if (--wbc->nr_to_write <= 0 &&
1280                             wbc->sync_mode == WB_SYNC_NONE) {
1281                                 done = 1;
1282                                 break;
1283                         }
1284                 }
1285                 pagevec_release(&pvec);
1286                 cond_resched();
1287         }
1288
1289         if (step < 1) {
1290                 step++;
1291                 goto next;
1292         }
1293
1294         if (!cycled && !done) {
1295                 cycled = 1;
1296                 index = 0;
1297                 end = writeback_index - 1;
1298                 goto retry;
1299         }
1300         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1301                 mapping->writeback_index = done_index;
1302
1303         return ret;
1304 }
1305
1306 static int f2fs_write_data_pages(struct address_space *mapping,
1307                             struct writeback_control *wbc)
1308 {
1309         struct inode *inode = mapping->host;
1310         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1311         bool locked = false;
1312         int ret;
1313         long diff;
1314
1315         trace_f2fs_writepages(mapping->host, wbc, DATA);
1316
1317         /* deal with chardevs and other special file */
1318         if (!mapping->a_ops->writepage)
1319                 return 0;
1320
1321         /* skip writing if there is no dirty page in this inode */
1322         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1323                 return 0;
1324
1325         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1326                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1327                         available_free_memory(sbi, DIRTY_DENTS))
1328                 goto skip_write;
1329
1330         /* during POR, we don't need to trigger writepage at all. */
1331         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1332                 goto skip_write;
1333
1334         diff = nr_pages_to_write(sbi, DATA, wbc);
1335
1336         if (!S_ISDIR(inode->i_mode)) {
1337                 mutex_lock(&sbi->writepages);
1338                 locked = true;
1339         }
1340         ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1341         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1342         if (locked)
1343                 mutex_unlock(&sbi->writepages);
1344
1345         remove_dirty_dir_inode(inode);
1346
1347         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1348         return ret;
1349
1350 skip_write:
1351         wbc->pages_skipped += get_dirty_pages(inode);
1352         return 0;
1353 }
1354
1355 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1356 {
1357         struct inode *inode = mapping->host;
1358
1359         if (to > inode->i_size) {
1360                 truncate_pagecache(inode, inode->i_size);
1361                 truncate_blocks(inode, inode->i_size, true);
1362         }
1363 }
1364
1365 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1366                 loff_t pos, unsigned len, unsigned flags,
1367                 struct page **pagep, void **fsdata)
1368 {
1369         struct inode *inode = mapping->host;
1370         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1371         struct page *page = NULL;
1372         struct page *ipage;
1373         pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1374         struct dnode_of_data dn;
1375         int err = 0;
1376
1377         trace_f2fs_write_begin(inode, pos, len, flags);
1378
1379         f2fs_balance_fs(sbi);
1380
1381         /*
1382          * We should check this at this moment to avoid deadlock on inode page
1383          * and #0 page. The locking rule for inline_data conversion should be:
1384          * lock_page(page #0) -> lock_page(inode_page)
1385          */
1386         if (index != 0) {
1387                 err = f2fs_convert_inline_inode(inode);
1388                 if (err)
1389                         goto fail;
1390         }
1391 repeat:
1392         page = grab_cache_page_write_begin(mapping, index, flags);
1393         if (!page) {
1394                 err = -ENOMEM;
1395                 goto fail;
1396         }
1397
1398         *pagep = page;
1399
1400         f2fs_lock_op(sbi);
1401
1402         /* check inline_data */
1403         ipage = get_node_page(sbi, inode->i_ino);
1404         if (IS_ERR(ipage)) {
1405                 err = PTR_ERR(ipage);
1406                 goto unlock_fail;
1407         }
1408
1409         set_new_dnode(&dn, inode, ipage, ipage, 0);
1410
1411         if (f2fs_has_inline_data(inode)) {
1412                 if (pos + len <= MAX_INLINE_DATA) {
1413                         read_inline_data(page, ipage);
1414                         set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1415                         sync_inode_page(&dn);
1416                         goto put_next;
1417                 }
1418                 err = f2fs_convert_inline_page(&dn, page);
1419                 if (err)
1420                         goto put_fail;
1421         }
1422
1423         err = f2fs_get_block(&dn, index);
1424         if (err)
1425                 goto put_fail;
1426 put_next:
1427         f2fs_put_dnode(&dn);
1428         f2fs_unlock_op(sbi);
1429
1430         f2fs_wait_on_page_writeback(page, DATA);
1431
1432         if (len == PAGE_CACHE_SIZE)
1433                 goto out_update;
1434         if (PageUptodate(page))
1435                 goto out_clear;
1436
1437         if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1438                 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1439                 unsigned end = start + len;
1440
1441                 /* Reading beyond i_size is simple: memset to zero */
1442                 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1443                 goto out_update;
1444         }
1445
1446         if (dn.data_blkaddr == NEW_ADDR) {
1447                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1448         } else {
1449                 struct f2fs_io_info fio = {
1450                         .sbi = sbi,
1451                         .type = DATA,
1452                         .rw = READ_SYNC,
1453                         .blk_addr = dn.data_blkaddr,
1454                         .page = page,
1455                         .encrypted_page = NULL,
1456                 };
1457                 err = f2fs_submit_page_bio(&fio);
1458                 if (err)
1459                         goto fail;
1460
1461                 lock_page(page);
1462                 if (unlikely(!PageUptodate(page))) {
1463                         err = -EIO;
1464                         goto fail;
1465                 }
1466                 if (unlikely(page->mapping != mapping)) {
1467                         f2fs_put_page(page, 1);
1468                         goto repeat;
1469                 }
1470
1471                 /* avoid symlink page */
1472                 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1473                         err = f2fs_decrypt_one(inode, page);
1474                         if (err)
1475                                 goto fail;
1476                 }
1477         }
1478 out_update:
1479         SetPageUptodate(page);
1480 out_clear:
1481         clear_cold_data(page);
1482         return 0;
1483
1484 put_fail:
1485         f2fs_put_dnode(&dn);
1486 unlock_fail:
1487         f2fs_unlock_op(sbi);
1488 fail:
1489         f2fs_put_page(page, 1);
1490         f2fs_write_failed(mapping, pos + len);
1491         return err;
1492 }
1493
1494 static int f2fs_write_end(struct file *file,
1495                         struct address_space *mapping,
1496                         loff_t pos, unsigned len, unsigned copied,
1497                         struct page *page, void *fsdata)
1498 {
1499         struct inode *inode = page->mapping->host;
1500
1501         trace_f2fs_write_end(inode, pos, len, copied);
1502
1503         set_page_dirty(page);
1504
1505         if (pos + copied > i_size_read(inode)) {
1506                 i_size_write(inode, pos + copied);
1507                 mark_inode_dirty(inode);
1508                 update_inode_page(inode);
1509         }
1510
1511         f2fs_put_page(page, 1);
1512         return copied;
1513 }
1514
1515 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1516                            loff_t offset)
1517 {
1518         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1519
1520         if (offset & blocksize_mask)
1521                 return -EINVAL;
1522
1523         if (iov_iter_alignment(iter) & blocksize_mask)
1524                 return -EINVAL;
1525
1526         return 0;
1527 }
1528
1529 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1530                               loff_t offset)
1531 {
1532         struct file *file = iocb->ki_filp;
1533         struct address_space *mapping = file->f_mapping;
1534         struct inode *inode = mapping->host;
1535         size_t count = iov_iter_count(iter);
1536         int err;
1537
1538         /* we don't need to use inline_data strictly */
1539         if (f2fs_has_inline_data(inode)) {
1540                 err = f2fs_convert_inline_inode(inode);
1541                 if (err)
1542                         return err;
1543         }
1544
1545         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1546                 return 0;
1547
1548         err = check_direct_IO(inode, iter, offset);
1549         if (err)
1550                 return err;
1551
1552         trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1553
1554         if (iov_iter_rw(iter) == WRITE)
1555                 __allocate_data_blocks(inode, offset, count);
1556
1557         err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1558         if (err < 0 && iov_iter_rw(iter) == WRITE)
1559                 f2fs_write_failed(mapping, offset + count);
1560
1561         trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1562
1563         return err;
1564 }
1565
1566 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1567                                                         unsigned int length)
1568 {
1569         struct inode *inode = page->mapping->host;
1570         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1571
1572         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1573                 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1574                 return;
1575
1576         if (PageDirty(page)) {
1577                 if (inode->i_ino == F2FS_META_INO(sbi))
1578                         dec_page_count(sbi, F2FS_DIRTY_META);
1579                 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1580                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1581                 else
1582                         inode_dec_dirty_pages(inode);
1583         }
1584
1585         /* This is atomic written page, keep Private */
1586         if (IS_ATOMIC_WRITTEN_PAGE(page))
1587                 return;
1588
1589         ClearPagePrivate(page);
1590 }
1591
1592 int f2fs_release_page(struct page *page, gfp_t wait)
1593 {
1594         /* If this is dirty page, keep PagePrivate */
1595         if (PageDirty(page))
1596                 return 0;
1597
1598         /* This is atomic written page, keep Private */
1599         if (IS_ATOMIC_WRITTEN_PAGE(page))
1600                 return 0;
1601
1602         ClearPagePrivate(page);
1603         return 1;
1604 }
1605
1606 static int f2fs_set_data_page_dirty(struct page *page)
1607 {
1608         struct address_space *mapping = page->mapping;
1609         struct inode *inode = mapping->host;
1610
1611         trace_f2fs_set_page_dirty(page, DATA);
1612
1613         SetPageUptodate(page);
1614
1615         if (f2fs_is_atomic_file(inode)) {
1616                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1617                         register_inmem_page(inode, page);
1618                         return 1;
1619                 }
1620                 /*
1621                  * Previously, this page has been registered, we just
1622                  * return here.
1623                  */
1624                 return 0;
1625         }
1626
1627         if (!PageDirty(page)) {
1628                 __set_page_dirty_nobuffers(page);
1629                 update_dirty_page(inode, page);
1630                 return 1;
1631         }
1632         return 0;
1633 }
1634
1635 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1636 {
1637         struct inode *inode = mapping->host;
1638
1639         /* we don't need to use inline_data strictly */
1640         if (f2fs_has_inline_data(inode)) {
1641                 int err = f2fs_convert_inline_inode(inode);
1642                 if (err)
1643                         return err;
1644         }
1645         return generic_block_bmap(mapping, block, get_data_block_bmap);
1646 }
1647
1648 const struct address_space_operations f2fs_dblock_aops = {
1649         .readpage       = f2fs_read_data_page,
1650         .readpages      = f2fs_read_data_pages,
1651         .writepage      = f2fs_write_data_page,
1652         .writepages     = f2fs_write_data_pages,
1653         .write_begin    = f2fs_write_begin,
1654         .write_end      = f2fs_write_end,
1655         .set_page_dirty = f2fs_set_data_page_dirty,
1656         .invalidatepage = f2fs_invalidate_page,
1657         .releasepage    = f2fs_release_page,
1658         .direct_IO      = f2fs_direct_IO,
1659         .bmap           = f2fs_bmap,
1660 };