]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/gc.c
Merge remote-tracking branch 'f2fs/dev'
[karo-tx-linux.git] / fs / f2fs / gc.c
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19 #include <linux/blkdev.h>
20
21 #include "f2fs.h"
22 #include "node.h"
23 #include "segment.h"
24 #include "gc.h"
25 #include <trace/events/f2fs.h>
26
27 static int gc_thread_func(void *data)
28 {
29         struct f2fs_sb_info *sbi = data;
30         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
31         wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
32         long wait_ms;
33
34         wait_ms = gc_th->min_sleep_time;
35
36         do {
37                 if (try_to_freeze())
38                         continue;
39                 else
40                         wait_event_interruptible_timeout(*wq,
41                                                 kthread_should_stop(),
42                                                 msecs_to_jiffies(wait_ms));
43                 if (kthread_should_stop())
44                         break;
45
46                 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
47                         increase_sleep_time(gc_th, &wait_ms);
48                         continue;
49                 }
50
51                 /*
52                  * [GC triggering condition]
53                  * 0. GC is not conducted currently.
54                  * 1. There are enough dirty segments.
55                  * 2. IO subsystem is idle by checking the # of writeback pages.
56                  * 3. IO subsystem is idle by checking the # of requests in
57                  *    bdev's request list.
58                  *
59                  * Note) We have to avoid triggering GCs frequently.
60                  * Because it is possible that some segments can be
61                  * invalidated soon after by user update or deletion.
62                  * So, I'd like to wait some time to collect dirty segments.
63                  */
64                 if (!mutex_trylock(&sbi->gc_mutex))
65                         continue;
66
67                 if (!is_idle(sbi)) {
68                         increase_sleep_time(gc_th, &wait_ms);
69                         mutex_unlock(&sbi->gc_mutex);
70                         continue;
71                 }
72
73                 if (has_enough_invalid_blocks(sbi))
74                         decrease_sleep_time(gc_th, &wait_ms);
75                 else
76                         increase_sleep_time(gc_th, &wait_ms);
77
78                 stat_inc_bggc_count(sbi);
79
80                 /* if return value is not zero, no victim was selected */
81                 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC)))
82                         wait_ms = gc_th->no_gc_sleep_time;
83
84                 trace_f2fs_background_gc(sbi->sb, wait_ms,
85                                 prefree_segments(sbi), free_segments(sbi));
86
87                 /* balancing f2fs's metadata periodically */
88                 f2fs_balance_fs_bg(sbi);
89
90         } while (!kthread_should_stop());
91         return 0;
92 }
93
94 int start_gc_thread(struct f2fs_sb_info *sbi)
95 {
96         struct f2fs_gc_kthread *gc_th;
97         dev_t dev = sbi->sb->s_bdev->bd_dev;
98         int err = 0;
99
100         gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
101         if (!gc_th) {
102                 err = -ENOMEM;
103                 goto out;
104         }
105
106         gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
107         gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
108         gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
109
110         gc_th->gc_idle = 0;
111
112         sbi->gc_thread = gc_th;
113         init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
114         sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
115                         "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
116         if (IS_ERR(gc_th->f2fs_gc_task)) {
117                 err = PTR_ERR(gc_th->f2fs_gc_task);
118                 kfree(gc_th);
119                 sbi->gc_thread = NULL;
120         }
121 out:
122         return err;
123 }
124
125 void stop_gc_thread(struct f2fs_sb_info *sbi)
126 {
127         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
128         if (!gc_th)
129                 return;
130         kthread_stop(gc_th->f2fs_gc_task);
131         kfree(gc_th);
132         sbi->gc_thread = NULL;
133 }
134
135 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
136 {
137         int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
138
139         if (gc_th && gc_th->gc_idle) {
140                 if (gc_th->gc_idle == 1)
141                         gc_mode = GC_CB;
142                 else if (gc_th->gc_idle == 2)
143                         gc_mode = GC_GREEDY;
144         }
145         return gc_mode;
146 }
147
148 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
149                         int type, struct victim_sel_policy *p)
150 {
151         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
152
153         if (p->alloc_mode == SSR) {
154                 p->gc_mode = GC_GREEDY;
155                 p->dirty_segmap = dirty_i->dirty_segmap[type];
156                 p->max_search = dirty_i->nr_dirty[type];
157                 p->ofs_unit = 1;
158         } else {
159                 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
160                 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
161                 p->max_search = dirty_i->nr_dirty[DIRTY];
162                 p->ofs_unit = sbi->segs_per_sec;
163         }
164
165         if (p->max_search > sbi->max_victim_search)
166                 p->max_search = sbi->max_victim_search;
167
168         p->offset = sbi->last_victim[p->gc_mode];
169 }
170
171 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
172                                 struct victim_sel_policy *p)
173 {
174         /* SSR allocates in a segment unit */
175         if (p->alloc_mode == SSR)
176                 return 1 << sbi->log_blocks_per_seg;
177         if (p->gc_mode == GC_GREEDY)
178                 return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
179         else if (p->gc_mode == GC_CB)
180                 return UINT_MAX;
181         else /* No other gc_mode */
182                 return 0;
183 }
184
185 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
186 {
187         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
188         unsigned int secno;
189
190         /*
191          * If the gc_type is FG_GC, we can select victim segments
192          * selected by background GC before.
193          * Those segments guarantee they have small valid blocks.
194          */
195         for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
196                 if (sec_usage_check(sbi, secno))
197                         continue;
198                 clear_bit(secno, dirty_i->victim_secmap);
199                 return secno * sbi->segs_per_sec;
200         }
201         return NULL_SEGNO;
202 }
203
204 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
205 {
206         struct sit_info *sit_i = SIT_I(sbi);
207         unsigned int secno = GET_SECNO(sbi, segno);
208         unsigned int start = secno * sbi->segs_per_sec;
209         unsigned long long mtime = 0;
210         unsigned int vblocks;
211         unsigned char age = 0;
212         unsigned char u;
213         unsigned int i;
214
215         for (i = 0; i < sbi->segs_per_sec; i++)
216                 mtime += get_seg_entry(sbi, start + i)->mtime;
217         vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
218
219         mtime = div_u64(mtime, sbi->segs_per_sec);
220         vblocks = div_u64(vblocks, sbi->segs_per_sec);
221
222         u = (vblocks * 100) >> sbi->log_blocks_per_seg;
223
224         /* Handle if the system time has changed by the user */
225         if (mtime < sit_i->min_mtime)
226                 sit_i->min_mtime = mtime;
227         if (mtime > sit_i->max_mtime)
228                 sit_i->max_mtime = mtime;
229         if (sit_i->max_mtime != sit_i->min_mtime)
230                 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
231                                 sit_i->max_mtime - sit_i->min_mtime);
232
233         return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
234 }
235
236 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
237                         unsigned int segno, struct victim_sel_policy *p)
238 {
239         if (p->alloc_mode == SSR)
240                 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
241
242         /* alloc_mode == LFS */
243         if (p->gc_mode == GC_GREEDY)
244                 return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
245         else
246                 return get_cb_cost(sbi, segno);
247 }
248
249 /*
250  * This function is called from two paths.
251  * One is garbage collection and the other is SSR segment selection.
252  * When it is called during GC, it just gets a victim segment
253  * and it does not remove it from dirty seglist.
254  * When it is called from SSR segment selection, it finds a segment
255  * which has minimum valid blocks and removes it from dirty seglist.
256  */
257 static int get_victim_by_default(struct f2fs_sb_info *sbi,
258                 unsigned int *result, int gc_type, int type, char alloc_mode)
259 {
260         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
261         struct victim_sel_policy p;
262         unsigned int secno, max_cost;
263         unsigned int last_segment = MAIN_SEGS(sbi);
264         int nsearched = 0;
265
266         mutex_lock(&dirty_i->seglist_lock);
267
268         p.alloc_mode = alloc_mode;
269         select_policy(sbi, gc_type, type, &p);
270
271         p.min_segno = NULL_SEGNO;
272         p.min_cost = max_cost = get_max_cost(sbi, &p);
273
274         if (p.max_search == 0)
275                 goto out;
276
277         if (p.alloc_mode == LFS && gc_type == FG_GC) {
278                 p.min_segno = check_bg_victims(sbi);
279                 if (p.min_segno != NULL_SEGNO)
280                         goto got_it;
281         }
282
283         while (1) {
284                 unsigned long cost;
285                 unsigned int segno;
286
287                 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
288                 if (segno >= last_segment) {
289                         if (sbi->last_victim[p.gc_mode]) {
290                                 last_segment = sbi->last_victim[p.gc_mode];
291                                 sbi->last_victim[p.gc_mode] = 0;
292                                 p.offset = 0;
293                                 continue;
294                         }
295                         break;
296                 }
297
298                 p.offset = segno + p.ofs_unit;
299                 if (p.ofs_unit > 1)
300                         p.offset -= segno % p.ofs_unit;
301
302                 secno = GET_SECNO(sbi, segno);
303
304                 if (sec_usage_check(sbi, secno))
305                         continue;
306                 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
307                         continue;
308
309                 cost = get_gc_cost(sbi, segno, &p);
310
311                 if (p.min_cost > cost) {
312                         p.min_segno = segno;
313                         p.min_cost = cost;
314                 } else if (unlikely(cost == max_cost)) {
315                         continue;
316                 }
317
318                 if (nsearched++ >= p.max_search) {
319                         sbi->last_victim[p.gc_mode] = segno;
320                         break;
321                 }
322         }
323         if (p.min_segno != NULL_SEGNO) {
324 got_it:
325                 if (p.alloc_mode == LFS) {
326                         secno = GET_SECNO(sbi, p.min_segno);
327                         if (gc_type == FG_GC)
328                                 sbi->cur_victim_sec = secno;
329                         else
330                                 set_bit(secno, dirty_i->victim_secmap);
331                 }
332                 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
333
334                 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
335                                 sbi->cur_victim_sec,
336                                 prefree_segments(sbi), free_segments(sbi));
337         }
338 out:
339         mutex_unlock(&dirty_i->seglist_lock);
340
341         return (p.min_segno == NULL_SEGNO) ? 0 : 1;
342 }
343
344 static const struct victim_selection default_v_ops = {
345         .get_victim = get_victim_by_default,
346 };
347
348 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
349 {
350         struct inode_entry *ie;
351
352         ie = radix_tree_lookup(&gc_list->iroot, ino);
353         if (ie)
354                 return ie->inode;
355         return NULL;
356 }
357
358 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
359 {
360         struct inode_entry *new_ie;
361
362         if (inode == find_gc_inode(gc_list, inode->i_ino)) {
363                 iput(inode);
364                 return;
365         }
366         new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
367         new_ie->inode = inode;
368
369         f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
370         list_add_tail(&new_ie->list, &gc_list->ilist);
371 }
372
373 static void put_gc_inode(struct gc_inode_list *gc_list)
374 {
375         struct inode_entry *ie, *next_ie;
376         list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
377                 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
378                 iput(ie->inode);
379                 list_del(&ie->list);
380                 kmem_cache_free(inode_entry_slab, ie);
381         }
382 }
383
384 static int check_valid_map(struct f2fs_sb_info *sbi,
385                                 unsigned int segno, int offset)
386 {
387         struct sit_info *sit_i = SIT_I(sbi);
388         struct seg_entry *sentry;
389         int ret;
390
391         mutex_lock(&sit_i->sentry_lock);
392         sentry = get_seg_entry(sbi, segno);
393         ret = f2fs_test_bit(offset, sentry->cur_valid_map);
394         mutex_unlock(&sit_i->sentry_lock);
395         return ret;
396 }
397
398 /*
399  * This function compares node address got in summary with that in NAT.
400  * On validity, copy that node with cold status, otherwise (invalid node)
401  * ignore that.
402  */
403 static int gc_node_segment(struct f2fs_sb_info *sbi,
404                 struct f2fs_summary *sum, unsigned int segno, int gc_type)
405 {
406         bool initial = true;
407         struct f2fs_summary *entry;
408         block_t start_addr;
409         int off;
410
411         start_addr = START_BLOCK(sbi, segno);
412
413 next_step:
414         entry = sum;
415
416         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
417                 nid_t nid = le32_to_cpu(entry->nid);
418                 struct page *node_page;
419                 struct node_info ni;
420
421                 /* stop BG_GC if there is not enough free sections. */
422                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
423                         return 0;
424
425                 if (check_valid_map(sbi, segno, off) == 0)
426                         continue;
427
428                 if (initial) {
429                         ra_node_page(sbi, nid);
430                         continue;
431                 }
432                 node_page = get_node_page(sbi, nid);
433                 if (IS_ERR(node_page))
434                         continue;
435
436                 /* block may become invalid during get_node_page */
437                 if (check_valid_map(sbi, segno, off) == 0) {
438                         f2fs_put_page(node_page, 1);
439                         continue;
440                 }
441
442                 get_node_info(sbi, nid, &ni);
443                 if (ni.blk_addr != start_addr + off) {
444                         f2fs_put_page(node_page, 1);
445                         continue;
446                 }
447
448                 /* set page dirty and write it */
449                 if (gc_type == FG_GC) {
450                         f2fs_wait_on_page_writeback(node_page, NODE);
451                         set_page_dirty(node_page);
452                 } else {
453                         if (!PageWriteback(node_page))
454                                 set_page_dirty(node_page);
455                 }
456                 f2fs_put_page(node_page, 1);
457                 stat_inc_node_blk_count(sbi, 1, gc_type);
458         }
459
460         if (initial) {
461                 initial = false;
462                 goto next_step;
463         }
464
465         if (gc_type == FG_GC) {
466                 struct writeback_control wbc = {
467                         .sync_mode = WB_SYNC_ALL,
468                         .nr_to_write = LONG_MAX,
469                         .for_reclaim = 0,
470                 };
471                 sync_node_pages(sbi, 0, &wbc);
472
473                 /* return 1 only if FG_GC succefully reclaimed one */
474                 if (get_valid_blocks(sbi, segno, 1) == 0)
475                         return 1;
476         }
477         return 0;
478 }
479
480 /*
481  * Calculate start block index indicating the given node offset.
482  * Be careful, caller should give this node offset only indicating direct node
483  * blocks. If any node offsets, which point the other types of node blocks such
484  * as indirect or double indirect node blocks, are given, it must be a caller's
485  * bug.
486  */
487 block_t start_bidx_of_node(unsigned int node_ofs, struct f2fs_inode_info *fi)
488 {
489         unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
490         unsigned int bidx;
491
492         if (node_ofs == 0)
493                 return 0;
494
495         if (node_ofs <= 2) {
496                 bidx = node_ofs - 1;
497         } else if (node_ofs <= indirect_blks) {
498                 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
499                 bidx = node_ofs - 2 - dec;
500         } else {
501                 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
502                 bidx = node_ofs - 5 - dec;
503         }
504         return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi);
505 }
506
507 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
508                 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
509 {
510         struct page *node_page;
511         nid_t nid;
512         unsigned int ofs_in_node;
513         block_t source_blkaddr;
514
515         nid = le32_to_cpu(sum->nid);
516         ofs_in_node = le16_to_cpu(sum->ofs_in_node);
517
518         node_page = get_node_page(sbi, nid);
519         if (IS_ERR(node_page))
520                 return false;
521
522         get_node_info(sbi, nid, dni);
523
524         if (sum->version != dni->version) {
525                 f2fs_put_page(node_page, 1);
526                 return false;
527         }
528
529         *nofs = ofs_of_node(node_page);
530         source_blkaddr = datablock_addr(node_page, ofs_in_node);
531         f2fs_put_page(node_page, 1);
532
533         if (source_blkaddr != blkaddr)
534                 return false;
535         return true;
536 }
537
538 static void move_encrypted_block(struct inode *inode, block_t bidx)
539 {
540         struct f2fs_io_info fio = {
541                 .sbi = F2FS_I_SB(inode),
542                 .type = DATA,
543                 .rw = READ_SYNC,
544                 .encrypted_page = NULL,
545         };
546         struct dnode_of_data dn;
547         struct f2fs_summary sum;
548         struct node_info ni;
549         struct page *page;
550         int err;
551
552         /* do not read out */
553         page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
554         if (!page)
555                 return;
556
557         set_new_dnode(&dn, inode, NULL, NULL, 0);
558         err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
559         if (err)
560                 goto out;
561
562         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
563                 ClearPageUptodate(page);
564                 goto put_out;
565         }
566
567         /*
568          * don't cache encrypted data into meta inode until previous dirty
569          * data were writebacked to avoid racing between GC and flush.
570          */
571         f2fs_wait_on_page_writeback(page, DATA);
572
573         get_node_info(fio.sbi, dn.nid, &ni);
574         set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
575
576         /* read page */
577         fio.page = page;
578         fio.blk_addr = dn.data_blkaddr;
579
580         fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi),
581                                         fio.blk_addr,
582                                         FGP_LOCK|FGP_CREAT,
583                                         GFP_NOFS);
584         if (!fio.encrypted_page)
585                 goto put_out;
586
587         err = f2fs_submit_page_bio(&fio);
588         if (err)
589                 goto put_page_out;
590
591         /* write page */
592         lock_page(fio.encrypted_page);
593
594         if (unlikely(!PageUptodate(fio.encrypted_page)))
595                 goto put_page_out;
596         if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi)))
597                 goto put_page_out;
598
599         set_page_dirty(fio.encrypted_page);
600         f2fs_wait_on_page_writeback(fio.encrypted_page, DATA);
601         if (clear_page_dirty_for_io(fio.encrypted_page))
602                 dec_page_count(fio.sbi, F2FS_DIRTY_META);
603
604         set_page_writeback(fio.encrypted_page);
605
606         /* allocate block address */
607         f2fs_wait_on_page_writeback(dn.node_page, NODE);
608         allocate_data_block(fio.sbi, NULL, fio.blk_addr,
609                                         &fio.blk_addr, &sum, CURSEG_COLD_DATA);
610         fio.rw = WRITE_SYNC;
611         f2fs_submit_page_mbio(&fio);
612
613         dn.data_blkaddr = fio.blk_addr;
614         set_data_blkaddr(&dn);
615         f2fs_update_extent_cache(&dn);
616         set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
617         if (page->index == 0)
618                 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
619 put_page_out:
620         f2fs_put_page(fio.encrypted_page, 1);
621 put_out:
622         f2fs_put_dnode(&dn);
623 out:
624         f2fs_put_page(page, 1);
625 }
626
627 static void move_data_page(struct inode *inode, block_t bidx, int gc_type)
628 {
629         struct page *page;
630
631         page = get_lock_data_page(inode, bidx, true);
632         if (IS_ERR(page))
633                 return;
634
635         if (gc_type == BG_GC) {
636                 if (PageWriteback(page))
637                         goto out;
638                 set_page_dirty(page);
639                 set_cold_data(page);
640         } else {
641                 struct f2fs_io_info fio = {
642                         .sbi = F2FS_I_SB(inode),
643                         .type = DATA,
644                         .rw = WRITE_SYNC,
645                         .page = page,
646                         .encrypted_page = NULL,
647                 };
648                 set_page_dirty(page);
649                 f2fs_wait_on_page_writeback(page, DATA);
650                 if (clear_page_dirty_for_io(page))
651                         inode_dec_dirty_pages(inode);
652                 set_cold_data(page);
653                 do_write_data_page(&fio);
654                 clear_cold_data(page);
655         }
656 out:
657         f2fs_put_page(page, 1);
658 }
659
660 /*
661  * This function tries to get parent node of victim data block, and identifies
662  * data block validity. If the block is valid, copy that with cold status and
663  * modify parent node.
664  * If the parent node is not valid or the data block address is different,
665  * the victim data block is ignored.
666  */
667 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
668                 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
669 {
670         struct super_block *sb = sbi->sb;
671         struct f2fs_summary *entry;
672         block_t start_addr;
673         int off;
674         int phase = 0;
675
676         start_addr = START_BLOCK(sbi, segno);
677
678 next_step:
679         entry = sum;
680
681         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
682                 struct page *data_page;
683                 struct inode *inode;
684                 struct node_info dni; /* dnode info for the data */
685                 unsigned int ofs_in_node, nofs;
686                 block_t start_bidx;
687
688                 /* stop BG_GC if there is not enough free sections. */
689                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
690                         return 0;
691
692                 if (check_valid_map(sbi, segno, off) == 0)
693                         continue;
694
695                 if (phase == 0) {
696                         ra_node_page(sbi, le32_to_cpu(entry->nid));
697                         continue;
698                 }
699
700                 /* Get an inode by ino with checking validity */
701                 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
702                         continue;
703
704                 if (phase == 1) {
705                         ra_node_page(sbi, dni.ino);
706                         continue;
707                 }
708
709                 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
710
711                 if (phase == 2) {
712                         inode = f2fs_iget(sb, dni.ino);
713                         if (IS_ERR(inode) || is_bad_inode(inode))
714                                 continue;
715
716                         /* if encrypted inode, let's go phase 3 */
717                         if (f2fs_encrypted_inode(inode) &&
718                                                 S_ISREG(inode->i_mode)) {
719                                 add_gc_inode(gc_list, inode);
720                                 continue;
721                         }
722
723                         start_bidx = start_bidx_of_node(nofs, F2FS_I(inode));
724                         data_page = get_read_data_page(inode,
725                                         start_bidx + ofs_in_node, READA, true);
726                         if (IS_ERR(data_page)) {
727                                 iput(inode);
728                                 continue;
729                         }
730
731                         f2fs_put_page(data_page, 0);
732                         add_gc_inode(gc_list, inode);
733                         continue;
734                 }
735
736                 /* phase 3 */
737                 inode = find_gc_inode(gc_list, dni.ino);
738                 if (inode) {
739                         start_bidx = start_bidx_of_node(nofs, F2FS_I(inode))
740                                                                 + ofs_in_node;
741                         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
742                                 move_encrypted_block(inode, start_bidx);
743                         else
744                                 move_data_page(inode, start_bidx, gc_type);
745                         stat_inc_data_blk_count(sbi, 1, gc_type);
746                 }
747         }
748
749         if (++phase < 4)
750                 goto next_step;
751
752         if (gc_type == FG_GC) {
753                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
754
755                 /* return 1 only if FG_GC succefully reclaimed one */
756                 if (get_valid_blocks(sbi, segno, 1) == 0)
757                         return 1;
758         }
759         return 0;
760 }
761
762 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
763                         int gc_type)
764 {
765         struct sit_info *sit_i = SIT_I(sbi);
766         int ret;
767
768         mutex_lock(&sit_i->sentry_lock);
769         ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
770                                               NO_CHECK_TYPE, LFS);
771         mutex_unlock(&sit_i->sentry_lock);
772         return ret;
773 }
774
775 static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
776                                 struct gc_inode_list *gc_list, int gc_type)
777 {
778         struct page *sum_page;
779         struct f2fs_summary_block *sum;
780         struct blk_plug plug;
781         int nfree = 0;
782
783         /* read segment summary of victim */
784         sum_page = get_sum_page(sbi, segno);
785
786         blk_start_plug(&plug);
787
788         sum = page_address(sum_page);
789
790         /*
791          * this is to avoid deadlock:
792          * - lock_page(sum_page)         - f2fs_replace_block
793          *  - check_valid_map()            - mutex_lock(sentry_lock)
794          *   - mutex_lock(sentry_lock)     - change_curseg()
795          *                                  - lock_page(sum_page)
796          */
797         unlock_page(sum_page);
798
799         switch (GET_SUM_TYPE((&sum->footer))) {
800         case SUM_TYPE_NODE:
801                 nfree = gc_node_segment(sbi, sum->entries, segno, gc_type);
802                 break;
803         case SUM_TYPE_DATA:
804                 nfree = gc_data_segment(sbi, sum->entries, gc_list,
805                                                         segno, gc_type);
806                 break;
807         }
808         blk_finish_plug(&plug);
809
810         stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)), gc_type);
811         stat_inc_call_count(sbi->stat_info);
812
813         f2fs_put_page(sum_page, 0);
814         return nfree;
815 }
816
817 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync)
818 {
819         unsigned int segno, i;
820         int gc_type = sync ? FG_GC : BG_GC;
821         int sec_freed = 0;
822         int ret = -EINVAL;
823         struct cp_control cpc;
824         struct gc_inode_list gc_list = {
825                 .ilist = LIST_HEAD_INIT(gc_list.ilist),
826                 .iroot = RADIX_TREE_INIT(GFP_NOFS),
827         };
828
829         cpc.reason = __get_cp_reason(sbi);
830 gc_more:
831         segno = NULL_SEGNO;
832
833         if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
834                 goto stop;
835         if (unlikely(f2fs_cp_error(sbi)))
836                 goto stop;
837
838         if (gc_type == BG_GC && has_not_enough_free_secs(sbi, sec_freed)) {
839                 gc_type = FG_GC;
840                 if (__get_victim(sbi, &segno, gc_type) || prefree_segments(sbi))
841                         write_checkpoint(sbi, &cpc);
842         }
843
844         if (segno == NULL_SEGNO && !__get_victim(sbi, &segno, gc_type))
845                 goto stop;
846         ret = 0;
847
848         /* readahead multi ssa blocks those have contiguous address */
849         if (sbi->segs_per_sec > 1)
850                 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), sbi->segs_per_sec,
851                                                         META_SSA, true);
852
853         for (i = 0; i < sbi->segs_per_sec; i++) {
854                 /*
855                  * for FG_GC case, halt gcing left segments once failed one
856                  * of segments in selected section to avoid long latency.
857                  */
858                 if (!do_garbage_collect(sbi, segno + i, &gc_list, gc_type) &&
859                                 gc_type == FG_GC)
860                         break;
861         }
862
863         if (i == sbi->segs_per_sec && gc_type == FG_GC)
864                 sec_freed++;
865
866         if (gc_type == FG_GC)
867                 sbi->cur_victim_sec = NULL_SEGNO;
868
869         if (!sync) {
870                 if (has_not_enough_free_secs(sbi, sec_freed))
871                         goto gc_more;
872
873                 if (gc_type == FG_GC)
874                         write_checkpoint(sbi, &cpc);
875         }
876 stop:
877         mutex_unlock(&sbi->gc_mutex);
878
879         put_gc_inode(&gc_list);
880
881         if (sync)
882                 ret = sec_freed ? 0 : -EAGAIN;
883         return ret;
884 }
885
886 void build_gc_manager(struct f2fs_sb_info *sbi)
887 {
888         DIRTY_I(sbi)->v_ops = &default_v_ops;
889 }