]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/xfs/xfs_buf.c
xfs: remove buffers from the delwri list in xfs_buf_stale
[karo-tx-linux.git] / fs / xfs / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46
47 static struct workqueue_struct *xfslogd_workqueue;
48 struct workqueue_struct *xfsdatad_workqueue;
49 struct workqueue_struct *xfsconvertd_workqueue;
50
51 #ifdef XFS_BUF_LOCK_TRACKING
52 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
53 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
54 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
55 #else
56 # define XB_SET_OWNER(bp)       do { } while (0)
57 # define XB_CLEAR_OWNER(bp)     do { } while (0)
58 # define XB_GET_OWNER(bp)       do { } while (0)
59 #endif
60
61 #define xb_to_gfp(flags) \
62         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
63           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
64
65 #define xb_to_km(flags) \
66          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
67
68 #define xfs_buf_allocate(flags) \
69         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
70 #define xfs_buf_deallocate(bp) \
71         kmem_zone_free(xfs_buf_zone, (bp));
72
73 static inline int
74 xfs_buf_is_vmapped(
75         struct xfs_buf  *bp)
76 {
77         /*
78          * Return true if the buffer is vmapped.
79          *
80          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
81          * code is clever enough to know it doesn't have to map a single page,
82          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
83          */
84         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
85 }
86
87 static inline int
88 xfs_buf_vmap_len(
89         struct xfs_buf  *bp)
90 {
91         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
92 }
93
94 /*
95  * xfs_buf_lru_add - add a buffer to the LRU.
96  *
97  * The LRU takes a new reference to the buffer so that it will only be freed
98  * once the shrinker takes the buffer off the LRU.
99  */
100 STATIC void
101 xfs_buf_lru_add(
102         struct xfs_buf  *bp)
103 {
104         struct xfs_buftarg *btp = bp->b_target;
105
106         spin_lock(&btp->bt_lru_lock);
107         if (list_empty(&bp->b_lru)) {
108                 atomic_inc(&bp->b_hold);
109                 list_add_tail(&bp->b_lru, &btp->bt_lru);
110                 btp->bt_lru_nr++;
111         }
112         spin_unlock(&btp->bt_lru_lock);
113 }
114
115 /*
116  * xfs_buf_lru_del - remove a buffer from the LRU
117  *
118  * The unlocked check is safe here because it only occurs when there are not
119  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
120  * to optimise the shrinker removing the buffer from the LRU and calling
121  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
122  * bt_lru_lock.
123  */
124 STATIC void
125 xfs_buf_lru_del(
126         struct xfs_buf  *bp)
127 {
128         struct xfs_buftarg *btp = bp->b_target;
129
130         if (list_empty(&bp->b_lru))
131                 return;
132
133         spin_lock(&btp->bt_lru_lock);
134         if (!list_empty(&bp->b_lru)) {
135                 list_del_init(&bp->b_lru);
136                 btp->bt_lru_nr--;
137         }
138         spin_unlock(&btp->bt_lru_lock);
139 }
140
141 /*
142  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
143  * b_lru_ref count so that the buffer is freed immediately when the buffer
144  * reference count falls to zero. If the buffer is already on the LRU, we need
145  * to remove the reference that LRU holds on the buffer.
146  *
147  * This prevents build-up of stale buffers on the LRU.
148  */
149 void
150 xfs_buf_stale(
151         struct xfs_buf  *bp)
152 {
153         bp->b_flags |= XBF_STALE;
154         xfs_buf_delwri_dequeue(bp);
155         atomic_set(&(bp)->b_lru_ref, 0);
156         if (!list_empty(&bp->b_lru)) {
157                 struct xfs_buftarg *btp = bp->b_target;
158
159                 spin_lock(&btp->bt_lru_lock);
160                 if (!list_empty(&bp->b_lru)) {
161                         list_del_init(&bp->b_lru);
162                         btp->bt_lru_nr--;
163                         atomic_dec(&bp->b_hold);
164                 }
165                 spin_unlock(&btp->bt_lru_lock);
166         }
167         ASSERT(atomic_read(&bp->b_hold) >= 1);
168 }
169
170 STATIC void
171 _xfs_buf_initialize(
172         xfs_buf_t               *bp,
173         xfs_buftarg_t           *target,
174         xfs_off_t               range_base,
175         size_t                  range_length,
176         xfs_buf_flags_t         flags)
177 {
178         /*
179          * We don't want certain flags to appear in b_flags.
180          */
181         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
182
183         memset(bp, 0, sizeof(xfs_buf_t));
184         atomic_set(&bp->b_hold, 1);
185         atomic_set(&bp->b_lru_ref, 1);
186         init_completion(&bp->b_iowait);
187         INIT_LIST_HEAD(&bp->b_lru);
188         INIT_LIST_HEAD(&bp->b_list);
189         RB_CLEAR_NODE(&bp->b_rbnode);
190         sema_init(&bp->b_sema, 0); /* held, no waiters */
191         XB_SET_OWNER(bp);
192         bp->b_target = target;
193         bp->b_file_offset = range_base;
194         /*
195          * Set buffer_length and count_desired to the same value initially.
196          * I/O routines should use count_desired, which will be the same in
197          * most cases but may be reset (e.g. XFS recovery).
198          */
199         bp->b_buffer_length = bp->b_count_desired = range_length;
200         bp->b_flags = flags;
201         bp->b_bn = XFS_BUF_DADDR_NULL;
202         atomic_set(&bp->b_pin_count, 0);
203         init_waitqueue_head(&bp->b_waiters);
204
205         XFS_STATS_INC(xb_create);
206
207         trace_xfs_buf_init(bp, _RET_IP_);
208 }
209
210 /*
211  *      Allocate a page array capable of holding a specified number
212  *      of pages, and point the page buf at it.
213  */
214 STATIC int
215 _xfs_buf_get_pages(
216         xfs_buf_t               *bp,
217         int                     page_count,
218         xfs_buf_flags_t         flags)
219 {
220         /* Make sure that we have a page list */
221         if (bp->b_pages == NULL) {
222                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
223                 bp->b_page_count = page_count;
224                 if (page_count <= XB_PAGES) {
225                         bp->b_pages = bp->b_page_array;
226                 } else {
227                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
228                                         page_count, xb_to_km(flags));
229                         if (bp->b_pages == NULL)
230                                 return -ENOMEM;
231                 }
232                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233         }
234         return 0;
235 }
236
237 /*
238  *      Frees b_pages if it was allocated.
239  */
240 STATIC void
241 _xfs_buf_free_pages(
242         xfs_buf_t       *bp)
243 {
244         if (bp->b_pages != bp->b_page_array) {
245                 kmem_free(bp->b_pages);
246                 bp->b_pages = NULL;
247         }
248 }
249
250 /*
251  *      Releases the specified buffer.
252  *
253  *      The modification state of any associated pages is left unchanged.
254  *      The buffer most not be on any hash - use xfs_buf_rele instead for
255  *      hashed and refcounted buffers
256  */
257 void
258 xfs_buf_free(
259         xfs_buf_t               *bp)
260 {
261         trace_xfs_buf_free(bp, _RET_IP_);
262
263         ASSERT(list_empty(&bp->b_lru));
264
265         if (bp->b_flags & _XBF_PAGES) {
266                 uint            i;
267
268                 if (xfs_buf_is_vmapped(bp))
269                         vm_unmap_ram(bp->b_addr - bp->b_offset,
270                                         bp->b_page_count);
271
272                 for (i = 0; i < bp->b_page_count; i++) {
273                         struct page     *page = bp->b_pages[i];
274
275                         __free_page(page);
276                 }
277         } else if (bp->b_flags & _XBF_KMEM)
278                 kmem_free(bp->b_addr);
279         _xfs_buf_free_pages(bp);
280         xfs_buf_deallocate(bp);
281 }
282
283 /*
284  * Allocates all the pages for buffer in question and builds it's page list.
285  */
286 STATIC int
287 xfs_buf_allocate_memory(
288         xfs_buf_t               *bp,
289         uint                    flags)
290 {
291         size_t                  size = bp->b_count_desired;
292         size_t                  nbytes, offset;
293         gfp_t                   gfp_mask = xb_to_gfp(flags);
294         unsigned short          page_count, i;
295         xfs_off_t               end;
296         int                     error;
297
298         /*
299          * for buffers that are contained within a single page, just allocate
300          * the memory from the heap - there's no need for the complexity of
301          * page arrays to keep allocation down to order 0.
302          */
303         if (bp->b_buffer_length < PAGE_SIZE) {
304                 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
305                 if (!bp->b_addr) {
306                         /* low memory - use alloc_page loop instead */
307                         goto use_alloc_page;
308                 }
309
310                 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
311                                                                 PAGE_MASK) !=
312                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
313                         /* b_addr spans two pages - use alloc_page instead */
314                         kmem_free(bp->b_addr);
315                         bp->b_addr = NULL;
316                         goto use_alloc_page;
317                 }
318                 bp->b_offset = offset_in_page(bp->b_addr);
319                 bp->b_pages = bp->b_page_array;
320                 bp->b_pages[0] = virt_to_page(bp->b_addr);
321                 bp->b_page_count = 1;
322                 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
323                 return 0;
324         }
325
326 use_alloc_page:
327         end = bp->b_file_offset + bp->b_buffer_length;
328         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
329         error = _xfs_buf_get_pages(bp, page_count, flags);
330         if (unlikely(error))
331                 return error;
332
333         offset = bp->b_offset;
334         bp->b_flags |= _XBF_PAGES;
335
336         for (i = 0; i < bp->b_page_count; i++) {
337                 struct page     *page;
338                 uint            retries = 0;
339 retry:
340                 page = alloc_page(gfp_mask);
341                 if (unlikely(page == NULL)) {
342                         if (flags & XBF_READ_AHEAD) {
343                                 bp->b_page_count = i;
344                                 error = ENOMEM;
345                                 goto out_free_pages;
346                         }
347
348                         /*
349                          * This could deadlock.
350                          *
351                          * But until all the XFS lowlevel code is revamped to
352                          * handle buffer allocation failures we can't do much.
353                          */
354                         if (!(++retries % 100))
355                                 xfs_err(NULL,
356                 "possible memory allocation deadlock in %s (mode:0x%x)",
357                                         __func__, gfp_mask);
358
359                         XFS_STATS_INC(xb_page_retries);
360                         congestion_wait(BLK_RW_ASYNC, HZ/50);
361                         goto retry;
362                 }
363
364                 XFS_STATS_INC(xb_page_found);
365
366                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
367                 size -= nbytes;
368                 bp->b_pages[i] = page;
369                 offset = 0;
370         }
371         return 0;
372
373 out_free_pages:
374         for (i = 0; i < bp->b_page_count; i++)
375                 __free_page(bp->b_pages[i]);
376         return error;
377 }
378
379 /*
380  *      Map buffer into kernel address-space if necessary.
381  */
382 STATIC int
383 _xfs_buf_map_pages(
384         xfs_buf_t               *bp,
385         uint                    flags)
386 {
387         ASSERT(bp->b_flags & _XBF_PAGES);
388         if (bp->b_page_count == 1) {
389                 /* A single page buffer is always mappable */
390                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391                 bp->b_flags |= XBF_MAPPED;
392         } else if (flags & XBF_MAPPED) {
393                 int retried = 0;
394
395                 do {
396                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
397                                                 -1, PAGE_KERNEL);
398                         if (bp->b_addr)
399                                 break;
400                         vm_unmap_aliases();
401                 } while (retried++ <= 1);
402
403                 if (!bp->b_addr)
404                         return -ENOMEM;
405                 bp->b_addr += bp->b_offset;
406                 bp->b_flags |= XBF_MAPPED;
407         }
408
409         return 0;
410 }
411
412 /*
413  *      Finding and Reading Buffers
414  */
415
416 /*
417  *      Look up, and creates if absent, a lockable buffer for
418  *      a given range of an inode.  The buffer is returned
419  *      locked. No I/O is implied by this call.
420  */
421 xfs_buf_t *
422 _xfs_buf_find(
423         xfs_buftarg_t           *btp,   /* block device target          */
424         xfs_off_t               ioff,   /* starting offset of range     */
425         size_t                  isize,  /* length of range              */
426         xfs_buf_flags_t         flags,
427         xfs_buf_t               *new_bp)
428 {
429         xfs_off_t               range_base;
430         size_t                  range_length;
431         struct xfs_perag        *pag;
432         struct rb_node          **rbp;
433         struct rb_node          *parent;
434         xfs_buf_t               *bp;
435
436         range_base = (ioff << BBSHIFT);
437         range_length = (isize << BBSHIFT);
438
439         /* Check for IOs smaller than the sector size / not sector aligned */
440         ASSERT(!(range_length < (1 << btp->bt_sshift)));
441         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
442
443         /* get tree root */
444         pag = xfs_perag_get(btp->bt_mount,
445                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
446
447         /* walk tree */
448         spin_lock(&pag->pag_buf_lock);
449         rbp = &pag->pag_buf_tree.rb_node;
450         parent = NULL;
451         bp = NULL;
452         while (*rbp) {
453                 parent = *rbp;
454                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
455
456                 if (range_base < bp->b_file_offset)
457                         rbp = &(*rbp)->rb_left;
458                 else if (range_base > bp->b_file_offset)
459                         rbp = &(*rbp)->rb_right;
460                 else {
461                         /*
462                          * found a block offset match. If the range doesn't
463                          * match, the only way this is allowed is if the buffer
464                          * in the cache is stale and the transaction that made
465                          * it stale has not yet committed. i.e. we are
466                          * reallocating a busy extent. Skip this buffer and
467                          * continue searching to the right for an exact match.
468                          */
469                         if (bp->b_buffer_length != range_length) {
470                                 ASSERT(bp->b_flags & XBF_STALE);
471                                 rbp = &(*rbp)->rb_right;
472                                 continue;
473                         }
474                         atomic_inc(&bp->b_hold);
475                         goto found;
476                 }
477         }
478
479         /* No match found */
480         if (new_bp) {
481                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
482                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
483                 /* the buffer keeps the perag reference until it is freed */
484                 new_bp->b_pag = pag;
485                 spin_unlock(&pag->pag_buf_lock);
486         } else {
487                 XFS_STATS_INC(xb_miss_locked);
488                 spin_unlock(&pag->pag_buf_lock);
489                 xfs_perag_put(pag);
490         }
491         return new_bp;
492
493 found:
494         spin_unlock(&pag->pag_buf_lock);
495         xfs_perag_put(pag);
496
497         if (!xfs_buf_trylock(bp)) {
498                 if (flags & XBF_TRYLOCK) {
499                         xfs_buf_rele(bp);
500                         XFS_STATS_INC(xb_busy_locked);
501                         return NULL;
502                 }
503                 xfs_buf_lock(bp);
504                 XFS_STATS_INC(xb_get_locked_waited);
505         }
506
507         /*
508          * if the buffer is stale, clear all the external state associated with
509          * it. We need to keep flags such as how we allocated the buffer memory
510          * intact here.
511          */
512         if (bp->b_flags & XBF_STALE) {
513                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
514                 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
515         }
516
517         trace_xfs_buf_find(bp, flags, _RET_IP_);
518         XFS_STATS_INC(xb_get_locked);
519         return bp;
520 }
521
522 /*
523  * Assembles a buffer covering the specified range. The code is optimised for
524  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
525  * more hits than misses.
526  */
527 struct xfs_buf *
528 xfs_buf_get(
529         xfs_buftarg_t           *target,/* target for buffer            */
530         xfs_off_t               ioff,   /* starting offset of range     */
531         size_t                  isize,  /* length of range              */
532         xfs_buf_flags_t         flags)
533 {
534         struct xfs_buf          *bp;
535         struct xfs_buf          *new_bp;
536         int                     error = 0;
537
538         bp = _xfs_buf_find(target, ioff, isize, flags, NULL);
539         if (likely(bp))
540                 goto found;
541
542         new_bp = xfs_buf_allocate(flags);
543         if (unlikely(!new_bp))
544                 return NULL;
545
546         _xfs_buf_initialize(new_bp, target,
547                             ioff << BBSHIFT, isize << BBSHIFT, flags);
548
549         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
550         if (!bp) {
551                 xfs_buf_deallocate(new_bp);
552                 return NULL;
553         }
554
555         if (bp == new_bp) {
556                 error = xfs_buf_allocate_memory(bp, flags);
557                 if (error)
558                         goto no_buffer;
559         } else
560                 xfs_buf_deallocate(new_bp);
561
562         /*
563          * Now we have a workable buffer, fill in the block number so
564          * that we can do IO on it.
565          */
566         bp->b_bn = ioff;
567         bp->b_count_desired = bp->b_buffer_length;
568
569 found:
570         if (!(bp->b_flags & XBF_MAPPED)) {
571                 error = _xfs_buf_map_pages(bp, flags);
572                 if (unlikely(error)) {
573                         xfs_warn(target->bt_mount,
574                                 "%s: failed to map pages\n", __func__);
575                         goto no_buffer;
576                 }
577         }
578
579         XFS_STATS_INC(xb_get);
580         trace_xfs_buf_get(bp, flags, _RET_IP_);
581         return bp;
582
583 no_buffer:
584         if (flags & (XBF_LOCK | XBF_TRYLOCK))
585                 xfs_buf_unlock(bp);
586         xfs_buf_rele(bp);
587         return NULL;
588 }
589
590 STATIC int
591 _xfs_buf_read(
592         xfs_buf_t               *bp,
593         xfs_buf_flags_t         flags)
594 {
595         int                     status;
596
597         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
598         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
599
600         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
601         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
602
603         status = xfs_buf_iorequest(bp);
604         if (status || bp->b_error || (flags & XBF_ASYNC))
605                 return status;
606         return xfs_buf_iowait(bp);
607 }
608
609 xfs_buf_t *
610 xfs_buf_read(
611         xfs_buftarg_t           *target,
612         xfs_off_t               ioff,
613         size_t                  isize,
614         xfs_buf_flags_t         flags)
615 {
616         xfs_buf_t               *bp;
617
618         flags |= XBF_READ;
619
620         bp = xfs_buf_get(target, ioff, isize, flags);
621         if (bp) {
622                 trace_xfs_buf_read(bp, flags, _RET_IP_);
623
624                 if (!XFS_BUF_ISDONE(bp)) {
625                         XFS_STATS_INC(xb_get_read);
626                         _xfs_buf_read(bp, flags);
627                 } else if (flags & XBF_ASYNC) {
628                         /*
629                          * Read ahead call which is already satisfied,
630                          * drop the buffer
631                          */
632                         goto no_buffer;
633                 } else {
634                         /* We do not want read in the flags */
635                         bp->b_flags &= ~XBF_READ;
636                 }
637         }
638
639         return bp;
640
641  no_buffer:
642         if (flags & (XBF_LOCK | XBF_TRYLOCK))
643                 xfs_buf_unlock(bp);
644         xfs_buf_rele(bp);
645         return NULL;
646 }
647
648 /*
649  *      If we are not low on memory then do the readahead in a deadlock
650  *      safe manner.
651  */
652 void
653 xfs_buf_readahead(
654         xfs_buftarg_t           *target,
655         xfs_off_t               ioff,
656         size_t                  isize)
657 {
658         if (bdi_read_congested(target->bt_bdi))
659                 return;
660
661         xfs_buf_read(target, ioff, isize,
662                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
663 }
664
665 /*
666  * Read an uncached buffer from disk. Allocates and returns a locked
667  * buffer containing the disk contents or nothing.
668  */
669 struct xfs_buf *
670 xfs_buf_read_uncached(
671         struct xfs_mount        *mp,
672         struct xfs_buftarg      *target,
673         xfs_daddr_t             daddr,
674         size_t                  length,
675         int                     flags)
676 {
677         xfs_buf_t               *bp;
678         int                     error;
679
680         bp = xfs_buf_get_uncached(target, length, flags);
681         if (!bp)
682                 return NULL;
683
684         /* set up the buffer for a read IO */
685         XFS_BUF_SET_ADDR(bp, daddr);
686         XFS_BUF_READ(bp);
687
688         xfsbdstrat(mp, bp);
689         error = xfs_buf_iowait(bp);
690         if (error || bp->b_error) {
691                 xfs_buf_relse(bp);
692                 return NULL;
693         }
694         return bp;
695 }
696
697 xfs_buf_t *
698 xfs_buf_get_empty(
699         size_t                  len,
700         xfs_buftarg_t           *target)
701 {
702         xfs_buf_t               *bp;
703
704         bp = xfs_buf_allocate(0);
705         if (bp)
706                 _xfs_buf_initialize(bp, target, 0, len, 0);
707         return bp;
708 }
709
710 /*
711  * Return a buffer allocated as an empty buffer and associated to external
712  * memory via xfs_buf_associate_memory() back to it's empty state.
713  */
714 void
715 xfs_buf_set_empty(
716         struct xfs_buf          *bp,
717         size_t                  len)
718 {
719         if (bp->b_pages)
720                 _xfs_buf_free_pages(bp);
721
722         bp->b_pages = NULL;
723         bp->b_page_count = 0;
724         bp->b_addr = NULL;
725         bp->b_file_offset = 0;
726         bp->b_buffer_length = bp->b_count_desired = len;
727         bp->b_bn = XFS_BUF_DADDR_NULL;
728         bp->b_flags &= ~XBF_MAPPED;
729 }
730
731 static inline struct page *
732 mem_to_page(
733         void                    *addr)
734 {
735         if ((!is_vmalloc_addr(addr))) {
736                 return virt_to_page(addr);
737         } else {
738                 return vmalloc_to_page(addr);
739         }
740 }
741
742 int
743 xfs_buf_associate_memory(
744         xfs_buf_t               *bp,
745         void                    *mem,
746         size_t                  len)
747 {
748         int                     rval;
749         int                     i = 0;
750         unsigned long           pageaddr;
751         unsigned long           offset;
752         size_t                  buflen;
753         int                     page_count;
754
755         pageaddr = (unsigned long)mem & PAGE_MASK;
756         offset = (unsigned long)mem - pageaddr;
757         buflen = PAGE_ALIGN(len + offset);
758         page_count = buflen >> PAGE_SHIFT;
759
760         /* Free any previous set of page pointers */
761         if (bp->b_pages)
762                 _xfs_buf_free_pages(bp);
763
764         bp->b_pages = NULL;
765         bp->b_addr = mem;
766
767         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
768         if (rval)
769                 return rval;
770
771         bp->b_offset = offset;
772
773         for (i = 0; i < bp->b_page_count; i++) {
774                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
775                 pageaddr += PAGE_SIZE;
776         }
777
778         bp->b_count_desired = len;
779         bp->b_buffer_length = buflen;
780         bp->b_flags |= XBF_MAPPED;
781
782         return 0;
783 }
784
785 xfs_buf_t *
786 xfs_buf_get_uncached(
787         struct xfs_buftarg      *target,
788         size_t                  len,
789         int                     flags)
790 {
791         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
792         int                     error, i;
793         xfs_buf_t               *bp;
794
795         bp = xfs_buf_allocate(0);
796         if (unlikely(bp == NULL))
797                 goto fail;
798         _xfs_buf_initialize(bp, target, 0, len, 0);
799
800         error = _xfs_buf_get_pages(bp, page_count, 0);
801         if (error)
802                 goto fail_free_buf;
803
804         for (i = 0; i < page_count; i++) {
805                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
806                 if (!bp->b_pages[i])
807                         goto fail_free_mem;
808         }
809         bp->b_flags |= _XBF_PAGES;
810
811         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
812         if (unlikely(error)) {
813                 xfs_warn(target->bt_mount,
814                         "%s: failed to map pages\n", __func__);
815                 goto fail_free_mem;
816         }
817
818         trace_xfs_buf_get_uncached(bp, _RET_IP_);
819         return bp;
820
821  fail_free_mem:
822         while (--i >= 0)
823                 __free_page(bp->b_pages[i]);
824         _xfs_buf_free_pages(bp);
825  fail_free_buf:
826         xfs_buf_deallocate(bp);
827  fail:
828         return NULL;
829 }
830
831 /*
832  *      Increment reference count on buffer, to hold the buffer concurrently
833  *      with another thread which may release (free) the buffer asynchronously.
834  *      Must hold the buffer already to call this function.
835  */
836 void
837 xfs_buf_hold(
838         xfs_buf_t               *bp)
839 {
840         trace_xfs_buf_hold(bp, _RET_IP_);
841         atomic_inc(&bp->b_hold);
842 }
843
844 /*
845  *      Releases a hold on the specified buffer.  If the
846  *      the hold count is 1, calls xfs_buf_free.
847  */
848 void
849 xfs_buf_rele(
850         xfs_buf_t               *bp)
851 {
852         struct xfs_perag        *pag = bp->b_pag;
853
854         trace_xfs_buf_rele(bp, _RET_IP_);
855
856         if (!pag) {
857                 ASSERT(list_empty(&bp->b_lru));
858                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
859                 if (atomic_dec_and_test(&bp->b_hold))
860                         xfs_buf_free(bp);
861                 return;
862         }
863
864         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
865
866         ASSERT(atomic_read(&bp->b_hold) > 0);
867         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
868                 if (!(bp->b_flags & XBF_STALE) &&
869                            atomic_read(&bp->b_lru_ref)) {
870                         xfs_buf_lru_add(bp);
871                         spin_unlock(&pag->pag_buf_lock);
872                 } else {
873                         xfs_buf_lru_del(bp);
874                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
875                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
876                         spin_unlock(&pag->pag_buf_lock);
877                         xfs_perag_put(pag);
878                         xfs_buf_free(bp);
879                 }
880         }
881 }
882
883
884 /*
885  *      Lock a buffer object, if it is not already locked.
886  *
887  *      If we come across a stale, pinned, locked buffer, we know that we are
888  *      being asked to lock a buffer that has been reallocated. Because it is
889  *      pinned, we know that the log has not been pushed to disk and hence it
890  *      will still be locked.  Rather than continuing to have trylock attempts
891  *      fail until someone else pushes the log, push it ourselves before
892  *      returning.  This means that the xfsaild will not get stuck trying
893  *      to push on stale inode buffers.
894  */
895 int
896 xfs_buf_trylock(
897         struct xfs_buf          *bp)
898 {
899         int                     locked;
900
901         locked = down_trylock(&bp->b_sema) == 0;
902         if (locked)
903                 XB_SET_OWNER(bp);
904         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
905                 xfs_log_force(bp->b_target->bt_mount, 0);
906
907         trace_xfs_buf_trylock(bp, _RET_IP_);
908         return locked;
909 }
910
911 /*
912  *      Lock a buffer object.
913  *
914  *      If we come across a stale, pinned, locked buffer, we know that we
915  *      are being asked to lock a buffer that has been reallocated. Because
916  *      it is pinned, we know that the log has not been pushed to disk and
917  *      hence it will still be locked. Rather than sleeping until someone
918  *      else pushes the log, push it ourselves before trying to get the lock.
919  */
920 void
921 xfs_buf_lock(
922         struct xfs_buf          *bp)
923 {
924         trace_xfs_buf_lock(bp, _RET_IP_);
925
926         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
927                 xfs_log_force(bp->b_target->bt_mount, 0);
928         down(&bp->b_sema);
929         XB_SET_OWNER(bp);
930
931         trace_xfs_buf_lock_done(bp, _RET_IP_);
932 }
933
934 /*
935  *      Releases the lock on the buffer object.
936  *      If the buffer is marked delwri but is not queued, do so before we
937  *      unlock the buffer as we need to set flags correctly.  We also need to
938  *      take a reference for the delwri queue because the unlocker is going to
939  *      drop their's and they don't know we just queued it.
940  */
941 void
942 xfs_buf_unlock(
943         struct xfs_buf          *bp)
944 {
945         XB_CLEAR_OWNER(bp);
946         up(&bp->b_sema);
947
948         trace_xfs_buf_unlock(bp, _RET_IP_);
949 }
950
951 STATIC void
952 xfs_buf_wait_unpin(
953         xfs_buf_t               *bp)
954 {
955         DECLARE_WAITQUEUE       (wait, current);
956
957         if (atomic_read(&bp->b_pin_count) == 0)
958                 return;
959
960         add_wait_queue(&bp->b_waiters, &wait);
961         for (;;) {
962                 set_current_state(TASK_UNINTERRUPTIBLE);
963                 if (atomic_read(&bp->b_pin_count) == 0)
964                         break;
965                 io_schedule();
966         }
967         remove_wait_queue(&bp->b_waiters, &wait);
968         set_current_state(TASK_RUNNING);
969 }
970
971 /*
972  *      Buffer Utility Routines
973  */
974
975 STATIC void
976 xfs_buf_iodone_work(
977         struct work_struct      *work)
978 {
979         xfs_buf_t               *bp =
980                 container_of(work, xfs_buf_t, b_iodone_work);
981
982         if (bp->b_iodone)
983                 (*(bp->b_iodone))(bp);
984         else if (bp->b_flags & XBF_ASYNC)
985                 xfs_buf_relse(bp);
986 }
987
988 void
989 xfs_buf_ioend(
990         xfs_buf_t               *bp,
991         int                     schedule)
992 {
993         trace_xfs_buf_iodone(bp, _RET_IP_);
994
995         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
996         if (bp->b_error == 0)
997                 bp->b_flags |= XBF_DONE;
998
999         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1000                 if (schedule) {
1001                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1002                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1003                 } else {
1004                         xfs_buf_iodone_work(&bp->b_iodone_work);
1005                 }
1006         } else {
1007                 complete(&bp->b_iowait);
1008         }
1009 }
1010
1011 void
1012 xfs_buf_ioerror(
1013         xfs_buf_t               *bp,
1014         int                     error)
1015 {
1016         ASSERT(error >= 0 && error <= 0xffff);
1017         bp->b_error = (unsigned short)error;
1018         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1019 }
1020
1021 int
1022 xfs_bwrite(
1023         struct xfs_buf          *bp)
1024 {
1025         int                     error;
1026
1027         bp->b_flags |= XBF_WRITE;
1028         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1029
1030         xfs_buf_delwri_dequeue(bp);
1031         xfs_bdstrat_cb(bp);
1032
1033         error = xfs_buf_iowait(bp);
1034         if (error) {
1035                 xfs_force_shutdown(bp->b_target->bt_mount,
1036                                    SHUTDOWN_META_IO_ERROR);
1037         }
1038         return error;
1039 }
1040
1041 /*
1042  * Called when we want to stop a buffer from getting written or read.
1043  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1044  * so that the proper iodone callbacks get called.
1045  */
1046 STATIC int
1047 xfs_bioerror(
1048         xfs_buf_t *bp)
1049 {
1050 #ifdef XFSERRORDEBUG
1051         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1052 #endif
1053
1054         /*
1055          * No need to wait until the buffer is unpinned, we aren't flushing it.
1056          */
1057         xfs_buf_ioerror(bp, EIO);
1058
1059         /*
1060          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1061          */
1062         XFS_BUF_UNREAD(bp);
1063         XFS_BUF_UNDONE(bp);
1064         xfs_buf_stale(bp);
1065
1066         xfs_buf_ioend(bp, 0);
1067
1068         return EIO;
1069 }
1070
1071 /*
1072  * Same as xfs_bioerror, except that we are releasing the buffer
1073  * here ourselves, and avoiding the xfs_buf_ioend call.
1074  * This is meant for userdata errors; metadata bufs come with
1075  * iodone functions attached, so that we can track down errors.
1076  */
1077 STATIC int
1078 xfs_bioerror_relse(
1079         struct xfs_buf  *bp)
1080 {
1081         int64_t         fl = bp->b_flags;
1082         /*
1083          * No need to wait until the buffer is unpinned.
1084          * We aren't flushing it.
1085          *
1086          * chunkhold expects B_DONE to be set, whether
1087          * we actually finish the I/O or not. We don't want to
1088          * change that interface.
1089          */
1090         XFS_BUF_UNREAD(bp);
1091         XFS_BUF_DONE(bp);
1092         xfs_buf_stale(bp);
1093         bp->b_iodone = NULL;
1094         if (!(fl & XBF_ASYNC)) {
1095                 /*
1096                  * Mark b_error and B_ERROR _both_.
1097                  * Lot's of chunkcache code assumes that.
1098                  * There's no reason to mark error for
1099                  * ASYNC buffers.
1100                  */
1101                 xfs_buf_ioerror(bp, EIO);
1102                 complete(&bp->b_iowait);
1103         } else {
1104                 xfs_buf_relse(bp);
1105         }
1106
1107         return EIO;
1108 }
1109
1110
1111 /*
1112  * All xfs metadata buffers except log state machine buffers
1113  * get this attached as their b_bdstrat callback function.
1114  * This is so that we can catch a buffer
1115  * after prematurely unpinning it to forcibly shutdown the filesystem.
1116  */
1117 int
1118 xfs_bdstrat_cb(
1119         struct xfs_buf  *bp)
1120 {
1121         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1122                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1123                 /*
1124                  * Metadata write that didn't get logged but
1125                  * written delayed anyway. These aren't associated
1126                  * with a transaction, and can be ignored.
1127                  */
1128                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1129                         return xfs_bioerror_relse(bp);
1130                 else
1131                         return xfs_bioerror(bp);
1132         }
1133
1134         xfs_buf_iorequest(bp);
1135         return 0;
1136 }
1137
1138 /*
1139  * Wrapper around bdstrat so that we can stop data from going to disk in case
1140  * we are shutting down the filesystem.  Typically user data goes thru this
1141  * path; one of the exceptions is the superblock.
1142  */
1143 void
1144 xfsbdstrat(
1145         struct xfs_mount        *mp,
1146         struct xfs_buf          *bp)
1147 {
1148         if (XFS_FORCED_SHUTDOWN(mp)) {
1149                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1150                 xfs_bioerror_relse(bp);
1151                 return;
1152         }
1153
1154         xfs_buf_iorequest(bp);
1155 }
1156
1157 STATIC void
1158 _xfs_buf_ioend(
1159         xfs_buf_t               *bp,
1160         int                     schedule)
1161 {
1162         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1163                 xfs_buf_ioend(bp, schedule);
1164 }
1165
1166 STATIC void
1167 xfs_buf_bio_end_io(
1168         struct bio              *bio,
1169         int                     error)
1170 {
1171         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1172
1173         xfs_buf_ioerror(bp, -error);
1174
1175         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1176                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1177
1178         _xfs_buf_ioend(bp, 1);
1179         bio_put(bio);
1180 }
1181
1182 STATIC void
1183 _xfs_buf_ioapply(
1184         xfs_buf_t               *bp)
1185 {
1186         int                     rw, map_i, total_nr_pages, nr_pages;
1187         struct bio              *bio;
1188         int                     offset = bp->b_offset;
1189         int                     size = bp->b_count_desired;
1190         sector_t                sector = bp->b_bn;
1191
1192         total_nr_pages = bp->b_page_count;
1193         map_i = 0;
1194
1195         if (bp->b_flags & XBF_WRITE) {
1196                 if (bp->b_flags & XBF_SYNCIO)
1197                         rw = WRITE_SYNC;
1198                 else
1199                         rw = WRITE;
1200                 if (bp->b_flags & XBF_FUA)
1201                         rw |= REQ_FUA;
1202                 if (bp->b_flags & XBF_FLUSH)
1203                         rw |= REQ_FLUSH;
1204         } else if (bp->b_flags & XBF_READ_AHEAD) {
1205                 rw = READA;
1206         } else {
1207                 rw = READ;
1208         }
1209
1210         /* we only use the buffer cache for meta-data */
1211         rw |= REQ_META;
1212
1213 next_chunk:
1214         atomic_inc(&bp->b_io_remaining);
1215         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1216         if (nr_pages > total_nr_pages)
1217                 nr_pages = total_nr_pages;
1218
1219         bio = bio_alloc(GFP_NOIO, nr_pages);
1220         bio->bi_bdev = bp->b_target->bt_bdev;
1221         bio->bi_sector = sector;
1222         bio->bi_end_io = xfs_buf_bio_end_io;
1223         bio->bi_private = bp;
1224
1225
1226         for (; size && nr_pages; nr_pages--, map_i++) {
1227                 int     rbytes, nbytes = PAGE_SIZE - offset;
1228
1229                 if (nbytes > size)
1230                         nbytes = size;
1231
1232                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1233                 if (rbytes < nbytes)
1234                         break;
1235
1236                 offset = 0;
1237                 sector += nbytes >> BBSHIFT;
1238                 size -= nbytes;
1239                 total_nr_pages--;
1240         }
1241
1242         if (likely(bio->bi_size)) {
1243                 if (xfs_buf_is_vmapped(bp)) {
1244                         flush_kernel_vmap_range(bp->b_addr,
1245                                                 xfs_buf_vmap_len(bp));
1246                 }
1247                 submit_bio(rw, bio);
1248                 if (size)
1249                         goto next_chunk;
1250         } else {
1251                 xfs_buf_ioerror(bp, EIO);
1252                 bio_put(bio);
1253         }
1254 }
1255
1256 int
1257 xfs_buf_iorequest(
1258         xfs_buf_t               *bp)
1259 {
1260         trace_xfs_buf_iorequest(bp, _RET_IP_);
1261
1262         ASSERT(!(bp->b_flags & XBF_DELWRI));
1263
1264         if (bp->b_flags & XBF_WRITE)
1265                 xfs_buf_wait_unpin(bp);
1266         xfs_buf_hold(bp);
1267
1268         /* Set the count to 1 initially, this will stop an I/O
1269          * completion callout which happens before we have started
1270          * all the I/O from calling xfs_buf_ioend too early.
1271          */
1272         atomic_set(&bp->b_io_remaining, 1);
1273         _xfs_buf_ioapply(bp);
1274         _xfs_buf_ioend(bp, 0);
1275
1276         xfs_buf_rele(bp);
1277         return 0;
1278 }
1279
1280 /*
1281  *      Waits for I/O to complete on the buffer supplied.
1282  *      It returns immediately if no I/O is pending.
1283  *      It returns the I/O error code, if any, or 0 if there was no error.
1284  */
1285 int
1286 xfs_buf_iowait(
1287         xfs_buf_t               *bp)
1288 {
1289         trace_xfs_buf_iowait(bp, _RET_IP_);
1290
1291         wait_for_completion(&bp->b_iowait);
1292
1293         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1294         return bp->b_error;
1295 }
1296
1297 xfs_caddr_t
1298 xfs_buf_offset(
1299         xfs_buf_t               *bp,
1300         size_t                  offset)
1301 {
1302         struct page             *page;
1303
1304         if (bp->b_flags & XBF_MAPPED)
1305                 return bp->b_addr + offset;
1306
1307         offset += bp->b_offset;
1308         page = bp->b_pages[offset >> PAGE_SHIFT];
1309         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1310 }
1311
1312 /*
1313  *      Move data into or out of a buffer.
1314  */
1315 void
1316 xfs_buf_iomove(
1317         xfs_buf_t               *bp,    /* buffer to process            */
1318         size_t                  boff,   /* starting buffer offset       */
1319         size_t                  bsize,  /* length to copy               */
1320         void                    *data,  /* data address                 */
1321         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1322 {
1323         size_t                  bend, cpoff, csize;
1324         struct page             *page;
1325
1326         bend = boff + bsize;
1327         while (boff < bend) {
1328                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1329                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1330                 csize = min_t(size_t,
1331                               PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1332
1333                 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1334
1335                 switch (mode) {
1336                 case XBRW_ZERO:
1337                         memset(page_address(page) + cpoff, 0, csize);
1338                         break;
1339                 case XBRW_READ:
1340                         memcpy(data, page_address(page) + cpoff, csize);
1341                         break;
1342                 case XBRW_WRITE:
1343                         memcpy(page_address(page) + cpoff, data, csize);
1344                 }
1345
1346                 boff += csize;
1347                 data += csize;
1348         }
1349 }
1350
1351 /*
1352  *      Handling of buffer targets (buftargs).
1353  */
1354
1355 /*
1356  * Wait for any bufs with callbacks that have been submitted but have not yet
1357  * returned. These buffers will have an elevated hold count, so wait on those
1358  * while freeing all the buffers only held by the LRU.
1359  */
1360 void
1361 xfs_wait_buftarg(
1362         struct xfs_buftarg      *btp)
1363 {
1364         struct xfs_buf          *bp;
1365
1366 restart:
1367         spin_lock(&btp->bt_lru_lock);
1368         while (!list_empty(&btp->bt_lru)) {
1369                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1370                 if (atomic_read(&bp->b_hold) > 1) {
1371                         spin_unlock(&btp->bt_lru_lock);
1372                         delay(100);
1373                         goto restart;
1374                 }
1375                 /*
1376                  * clear the LRU reference count so the bufer doesn't get
1377                  * ignored in xfs_buf_rele().
1378                  */
1379                 atomic_set(&bp->b_lru_ref, 0);
1380                 spin_unlock(&btp->bt_lru_lock);
1381                 xfs_buf_rele(bp);
1382                 spin_lock(&btp->bt_lru_lock);
1383         }
1384         spin_unlock(&btp->bt_lru_lock);
1385 }
1386
1387 int
1388 xfs_buftarg_shrink(
1389         struct shrinker         *shrink,
1390         struct shrink_control   *sc)
1391 {
1392         struct xfs_buftarg      *btp = container_of(shrink,
1393                                         struct xfs_buftarg, bt_shrinker);
1394         struct xfs_buf          *bp;
1395         int nr_to_scan = sc->nr_to_scan;
1396         LIST_HEAD(dispose);
1397
1398         if (!nr_to_scan)
1399                 return btp->bt_lru_nr;
1400
1401         spin_lock(&btp->bt_lru_lock);
1402         while (!list_empty(&btp->bt_lru)) {
1403                 if (nr_to_scan-- <= 0)
1404                         break;
1405
1406                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1407
1408                 /*
1409                  * Decrement the b_lru_ref count unless the value is already
1410                  * zero. If the value is already zero, we need to reclaim the
1411                  * buffer, otherwise it gets another trip through the LRU.
1412                  */
1413                 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1414                         list_move_tail(&bp->b_lru, &btp->bt_lru);
1415                         continue;
1416                 }
1417
1418                 /*
1419                  * remove the buffer from the LRU now to avoid needing another
1420                  * lock round trip inside xfs_buf_rele().
1421                  */
1422                 list_move(&bp->b_lru, &dispose);
1423                 btp->bt_lru_nr--;
1424         }
1425         spin_unlock(&btp->bt_lru_lock);
1426
1427         while (!list_empty(&dispose)) {
1428                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1429                 list_del_init(&bp->b_lru);
1430                 xfs_buf_rele(bp);
1431         }
1432
1433         return btp->bt_lru_nr;
1434 }
1435
1436 void
1437 xfs_free_buftarg(
1438         struct xfs_mount        *mp,
1439         struct xfs_buftarg      *btp)
1440 {
1441         unregister_shrinker(&btp->bt_shrinker);
1442
1443         xfs_flush_buftarg(btp, 1);
1444         if (mp->m_flags & XFS_MOUNT_BARRIER)
1445                 xfs_blkdev_issue_flush(btp);
1446
1447         kthread_stop(btp->bt_task);
1448         kmem_free(btp);
1449 }
1450
1451 STATIC int
1452 xfs_setsize_buftarg_flags(
1453         xfs_buftarg_t           *btp,
1454         unsigned int            blocksize,
1455         unsigned int            sectorsize,
1456         int                     verbose)
1457 {
1458         btp->bt_bsize = blocksize;
1459         btp->bt_sshift = ffs(sectorsize) - 1;
1460         btp->bt_smask = sectorsize - 1;
1461
1462         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1463                 xfs_warn(btp->bt_mount,
1464                         "Cannot set_blocksize to %u on device %s\n",
1465                         sectorsize, xfs_buf_target_name(btp));
1466                 return EINVAL;
1467         }
1468
1469         return 0;
1470 }
1471
1472 /*
1473  *      When allocating the initial buffer target we have not yet
1474  *      read in the superblock, so don't know what sized sectors
1475  *      are being used is at this early stage.  Play safe.
1476  */
1477 STATIC int
1478 xfs_setsize_buftarg_early(
1479         xfs_buftarg_t           *btp,
1480         struct block_device     *bdev)
1481 {
1482         return xfs_setsize_buftarg_flags(btp,
1483                         PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1484 }
1485
1486 int
1487 xfs_setsize_buftarg(
1488         xfs_buftarg_t           *btp,
1489         unsigned int            blocksize,
1490         unsigned int            sectorsize)
1491 {
1492         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1493 }
1494
1495 STATIC int
1496 xfs_alloc_delwri_queue(
1497         xfs_buftarg_t           *btp,
1498         const char              *fsname)
1499 {
1500         INIT_LIST_HEAD(&btp->bt_delwri_queue);
1501         spin_lock_init(&btp->bt_delwri_lock);
1502         btp->bt_flags = 0;
1503         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1504         if (IS_ERR(btp->bt_task))
1505                 return PTR_ERR(btp->bt_task);
1506         return 0;
1507 }
1508
1509 xfs_buftarg_t *
1510 xfs_alloc_buftarg(
1511         struct xfs_mount        *mp,
1512         struct block_device     *bdev,
1513         int                     external,
1514         const char              *fsname)
1515 {
1516         xfs_buftarg_t           *btp;
1517
1518         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1519
1520         btp->bt_mount = mp;
1521         btp->bt_dev =  bdev->bd_dev;
1522         btp->bt_bdev = bdev;
1523         btp->bt_bdi = blk_get_backing_dev_info(bdev);
1524         if (!btp->bt_bdi)
1525                 goto error;
1526
1527         INIT_LIST_HEAD(&btp->bt_lru);
1528         spin_lock_init(&btp->bt_lru_lock);
1529         if (xfs_setsize_buftarg_early(btp, bdev))
1530                 goto error;
1531         if (xfs_alloc_delwri_queue(btp, fsname))
1532                 goto error;
1533         btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1534         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1535         register_shrinker(&btp->bt_shrinker);
1536         return btp;
1537
1538 error:
1539         kmem_free(btp);
1540         return NULL;
1541 }
1542
1543
1544 /*
1545  *      Delayed write buffer handling
1546  */
1547 void
1548 xfs_buf_delwri_queue(
1549         xfs_buf_t               *bp)
1550 {
1551         struct xfs_buftarg      *btp = bp->b_target;
1552
1553         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1554
1555         ASSERT(!(bp->b_flags & XBF_READ));
1556
1557         spin_lock(&btp->bt_delwri_lock);
1558         if (!list_empty(&bp->b_list)) {
1559                 /* if already in the queue, move it to the tail */
1560                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1561                 list_move_tail(&bp->b_list, &btp->bt_delwri_queue);
1562         } else {
1563                 /* start xfsbufd as it is about to have something to do */
1564                 if (list_empty(&btp->bt_delwri_queue))
1565                         wake_up_process(bp->b_target->bt_task);
1566
1567                 atomic_inc(&bp->b_hold);
1568                 bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
1569                 list_add_tail(&bp->b_list, &btp->bt_delwri_queue);
1570         }
1571         bp->b_queuetime = jiffies;
1572         spin_unlock(&btp->bt_delwri_lock);
1573 }
1574
1575 void
1576 xfs_buf_delwri_dequeue(
1577         xfs_buf_t               *bp)
1578 {
1579         int                     dequeued = 0;
1580
1581         spin_lock(&bp->b_target->bt_delwri_lock);
1582         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1583                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1584                 list_del_init(&bp->b_list);
1585                 dequeued = 1;
1586         }
1587         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1588         spin_unlock(&bp->b_target->bt_delwri_lock);
1589
1590         if (dequeued)
1591                 xfs_buf_rele(bp);
1592
1593         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1594 }
1595
1596 /*
1597  * If a delwri buffer needs to be pushed before it has aged out, then promote
1598  * it to the head of the delwri queue so that it will be flushed on the next
1599  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1600  * than the age currently needed to flush the buffer. Hence the next time the
1601  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1602  */
1603 void
1604 xfs_buf_delwri_promote(
1605         struct xfs_buf  *bp)
1606 {
1607         struct xfs_buftarg *btp = bp->b_target;
1608         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1609
1610         ASSERT(bp->b_flags & XBF_DELWRI);
1611         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1612
1613         /*
1614          * Check the buffer age before locking the delayed write queue as we
1615          * don't need to promote buffers that are already past the flush age.
1616          */
1617         if (bp->b_queuetime < jiffies - age)
1618                 return;
1619         bp->b_queuetime = jiffies - age;
1620         spin_lock(&btp->bt_delwri_lock);
1621         list_move(&bp->b_list, &btp->bt_delwri_queue);
1622         spin_unlock(&btp->bt_delwri_lock);
1623 }
1624
1625 STATIC void
1626 xfs_buf_runall_queues(
1627         struct workqueue_struct *queue)
1628 {
1629         flush_workqueue(queue);
1630 }
1631
1632 /*
1633  * Move as many buffers as specified to the supplied list
1634  * idicating if we skipped any buffers to prevent deadlocks.
1635  */
1636 STATIC int
1637 xfs_buf_delwri_split(
1638         xfs_buftarg_t   *target,
1639         struct list_head *list,
1640         unsigned long   age)
1641 {
1642         xfs_buf_t       *bp, *n;
1643         int             skipped = 0;
1644         int             force;
1645
1646         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1647         INIT_LIST_HEAD(list);
1648         spin_lock(&target->bt_delwri_lock);
1649         list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) {
1650                 ASSERT(bp->b_flags & XBF_DELWRI);
1651
1652                 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1653                         if (!force &&
1654                             time_before(jiffies, bp->b_queuetime + age)) {
1655                                 xfs_buf_unlock(bp);
1656                                 break;
1657                         }
1658
1659                         bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1660                         bp->b_flags |= XBF_WRITE;
1661                         list_move_tail(&bp->b_list, list);
1662                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1663                 } else
1664                         skipped++;
1665         }
1666
1667         spin_unlock(&target->bt_delwri_lock);
1668         return skipped;
1669 }
1670
1671 /*
1672  * Compare function is more complex than it needs to be because
1673  * the return value is only 32 bits and we are doing comparisons
1674  * on 64 bit values
1675  */
1676 static int
1677 xfs_buf_cmp(
1678         void            *priv,
1679         struct list_head *a,
1680         struct list_head *b)
1681 {
1682         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1683         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1684         xfs_daddr_t             diff;
1685
1686         diff = ap->b_bn - bp->b_bn;
1687         if (diff < 0)
1688                 return -1;
1689         if (diff > 0)
1690                 return 1;
1691         return 0;
1692 }
1693
1694 STATIC int
1695 xfsbufd(
1696         void            *data)
1697 {
1698         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1699
1700         current->flags |= PF_MEMALLOC;
1701
1702         set_freezable();
1703
1704         do {
1705                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1706                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1707                 struct list_head tmp;
1708                 struct blk_plug plug;
1709
1710                 if (unlikely(freezing(current))) {
1711                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1712                         refrigerator();
1713                 } else {
1714                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1715                 }
1716
1717                 /* sleep for a long time if there is nothing to do. */
1718                 if (list_empty(&target->bt_delwri_queue))
1719                         tout = MAX_SCHEDULE_TIMEOUT;
1720                 schedule_timeout_interruptible(tout);
1721
1722                 xfs_buf_delwri_split(target, &tmp, age);
1723                 list_sort(NULL, &tmp, xfs_buf_cmp);
1724
1725                 blk_start_plug(&plug);
1726                 while (!list_empty(&tmp)) {
1727                         struct xfs_buf *bp;
1728                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1729                         list_del_init(&bp->b_list);
1730                         xfs_bdstrat_cb(bp);
1731                 }
1732                 blk_finish_plug(&plug);
1733         } while (!kthread_should_stop());
1734
1735         return 0;
1736 }
1737
1738 /*
1739  *      Go through all incore buffers, and release buffers if they belong to
1740  *      the given device. This is used in filesystem error handling to
1741  *      preserve the consistency of its metadata.
1742  */
1743 int
1744 xfs_flush_buftarg(
1745         xfs_buftarg_t   *target,
1746         int             wait)
1747 {
1748         xfs_buf_t       *bp;
1749         int             pincount = 0;
1750         LIST_HEAD(tmp_list);
1751         LIST_HEAD(wait_list);
1752         struct blk_plug plug;
1753
1754         xfs_buf_runall_queues(xfsconvertd_workqueue);
1755         xfs_buf_runall_queues(xfsdatad_workqueue);
1756         xfs_buf_runall_queues(xfslogd_workqueue);
1757
1758         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1759         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1760
1761         /*
1762          * Dropped the delayed write list lock, now walk the temporary list.
1763          * All I/O is issued async and then if we need to wait for completion
1764          * we do that after issuing all the IO.
1765          */
1766         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1767
1768         blk_start_plug(&plug);
1769         while (!list_empty(&tmp_list)) {
1770                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1771                 ASSERT(target == bp->b_target);
1772                 list_del_init(&bp->b_list);
1773                 if (wait) {
1774                         bp->b_flags &= ~XBF_ASYNC;
1775                         list_add(&bp->b_list, &wait_list);
1776                 }
1777                 xfs_bdstrat_cb(bp);
1778         }
1779         blk_finish_plug(&plug);
1780
1781         if (wait) {
1782                 /* Wait for IO to complete. */
1783                 while (!list_empty(&wait_list)) {
1784                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1785
1786                         list_del_init(&bp->b_list);
1787                         xfs_buf_iowait(bp);
1788                         xfs_buf_relse(bp);
1789                 }
1790         }
1791
1792         return pincount;
1793 }
1794
1795 int __init
1796 xfs_buf_init(void)
1797 {
1798         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1799                                                 KM_ZONE_HWALIGN, NULL);
1800         if (!xfs_buf_zone)
1801                 goto out;
1802
1803         xfslogd_workqueue = alloc_workqueue("xfslogd",
1804                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1805         if (!xfslogd_workqueue)
1806                 goto out_free_buf_zone;
1807
1808         xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1809         if (!xfsdatad_workqueue)
1810                 goto out_destroy_xfslogd_workqueue;
1811
1812         xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1813                                                 WQ_MEM_RECLAIM, 1);
1814         if (!xfsconvertd_workqueue)
1815                 goto out_destroy_xfsdatad_workqueue;
1816
1817         return 0;
1818
1819  out_destroy_xfsdatad_workqueue:
1820         destroy_workqueue(xfsdatad_workqueue);
1821  out_destroy_xfslogd_workqueue:
1822         destroy_workqueue(xfslogd_workqueue);
1823  out_free_buf_zone:
1824         kmem_zone_destroy(xfs_buf_zone);
1825  out:
1826         return -ENOMEM;
1827 }
1828
1829 void
1830 xfs_buf_terminate(void)
1831 {
1832         destroy_workqueue(xfsconvertd_workqueue);
1833         destroy_workqueue(xfsdatad_workqueue);
1834         destroy_workqueue(xfslogd_workqueue);
1835         kmem_zone_destroy(xfs_buf_zone);
1836 }