]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/bpf/core.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[karo-tx-linux.git] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30
31 #include <asm/unaligned.h>
32
33 /* Registers */
34 #define BPF_R0  regs[BPF_REG_0]
35 #define BPF_R1  regs[BPF_REG_1]
36 #define BPF_R2  regs[BPF_REG_2]
37 #define BPF_R3  regs[BPF_REG_3]
38 #define BPF_R4  regs[BPF_REG_4]
39 #define BPF_R5  regs[BPF_REG_5]
40 #define BPF_R6  regs[BPF_REG_6]
41 #define BPF_R7  regs[BPF_REG_7]
42 #define BPF_R8  regs[BPF_REG_8]
43 #define BPF_R9  regs[BPF_REG_9]
44 #define BPF_R10 regs[BPF_REG_10]
45
46 /* Named registers */
47 #define DST     regs[insn->dst_reg]
48 #define SRC     regs[insn->src_reg]
49 #define FP      regs[BPF_REG_FP]
50 #define ARG1    regs[BPF_REG_ARG1]
51 #define CTX     regs[BPF_REG_CTX]
52 #define IMM     insn->imm
53
54 /* No hurry in this branch
55  *
56  * Exported for the bpf jit load helper.
57  */
58 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
59 {
60         u8 *ptr = NULL;
61
62         if (k >= SKF_NET_OFF)
63                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
64         else if (k >= SKF_LL_OFF)
65                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
66
67         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
68                 return ptr;
69
70         return NULL;
71 }
72
73 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
74 {
75         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
76                           gfp_extra_flags;
77         struct bpf_prog_aux *aux;
78         struct bpf_prog *fp;
79
80         size = round_up(size, PAGE_SIZE);
81         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
82         if (fp == NULL)
83                 return NULL;
84
85         kmemcheck_annotate_bitfield(fp, meta);
86
87         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
88         if (aux == NULL) {
89                 vfree(fp);
90                 return NULL;
91         }
92
93         fp->pages = size / PAGE_SIZE;
94         fp->aux = aux;
95         fp->aux->prog = fp;
96
97         return fp;
98 }
99 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
100
101 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
102                                   gfp_t gfp_extra_flags)
103 {
104         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
105                           gfp_extra_flags;
106         struct bpf_prog *fp;
107
108         BUG_ON(fp_old == NULL);
109
110         size = round_up(size, PAGE_SIZE);
111         if (size <= fp_old->pages * PAGE_SIZE)
112                 return fp_old;
113
114         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
115         if (fp != NULL) {
116                 kmemcheck_annotate_bitfield(fp, meta);
117
118                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
119                 fp->pages = size / PAGE_SIZE;
120                 fp->aux->prog = fp;
121
122                 /* We keep fp->aux from fp_old around in the new
123                  * reallocated structure.
124                  */
125                 fp_old->aux = NULL;
126                 __bpf_prog_free(fp_old);
127         }
128
129         return fp;
130 }
131 EXPORT_SYMBOL_GPL(bpf_prog_realloc);
132
133 void __bpf_prog_free(struct bpf_prog *fp)
134 {
135         kfree(fp->aux);
136         vfree(fp);
137 }
138 EXPORT_SYMBOL_GPL(__bpf_prog_free);
139
140 #ifdef CONFIG_BPF_JIT
141 struct bpf_binary_header *
142 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
143                      unsigned int alignment,
144                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
145 {
146         struct bpf_binary_header *hdr;
147         unsigned int size, hole, start;
148
149         /* Most of BPF filters are really small, but if some of them
150          * fill a page, allow at least 128 extra bytes to insert a
151          * random section of illegal instructions.
152          */
153         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
154         hdr = module_alloc(size);
155         if (hdr == NULL)
156                 return NULL;
157
158         /* Fill space with illegal/arch-dep instructions. */
159         bpf_fill_ill_insns(hdr, size);
160
161         hdr->pages = size / PAGE_SIZE;
162         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
163                      PAGE_SIZE - sizeof(*hdr));
164         start = (prandom_u32() % hole) & ~(alignment - 1);
165
166         /* Leave a random number of instructions before BPF code. */
167         *image_ptr = &hdr->image[start];
168
169         return hdr;
170 }
171
172 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
173 {
174         module_memfree(hdr);
175 }
176 #endif /* CONFIG_BPF_JIT */
177
178 /* Base function for offset calculation. Needs to go into .text section,
179  * therefore keeping it non-static as well; will also be used by JITs
180  * anyway later on, so do not let the compiler omit it.
181  */
182 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
183 {
184         return 0;
185 }
186 EXPORT_SYMBOL_GPL(__bpf_call_base);
187
188 /**
189  *      __bpf_prog_run - run eBPF program on a given context
190  *      @ctx: is the data we are operating on
191  *      @insn: is the array of eBPF instructions
192  *
193  * Decode and execute eBPF instructions.
194  */
195 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
196 {
197         u64 stack[MAX_BPF_STACK / sizeof(u64)];
198         u64 regs[MAX_BPF_REG], tmp;
199         static const void *jumptable[256] = {
200                 [0 ... 255] = &&default_label,
201                 /* Now overwrite non-defaults ... */
202                 /* 32 bit ALU operations */
203                 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
204                 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
205                 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
206                 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
207                 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
208                 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
209                 [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
210                 [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
211                 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
212                 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
213                 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
214                 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
215                 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
216                 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
217                 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
218                 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
219                 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
220                 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
221                 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
222                 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
223                 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
224                 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
225                 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
226                 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
227                 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
228                 /* 64 bit ALU operations */
229                 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
230                 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
231                 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
232                 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
233                 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
234                 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
235                 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
236                 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
237                 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
238                 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
239                 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
240                 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
241                 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
242                 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
243                 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
244                 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
245                 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
246                 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
247                 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
248                 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
249                 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
250                 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
251                 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
252                 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
253                 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
254                 /* Call instruction */
255                 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
256                 [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
257                 /* Jumps */
258                 [BPF_JMP | BPF_JA] = &&JMP_JA,
259                 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
260                 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
261                 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
262                 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
263                 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
264                 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
265                 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
266                 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
267                 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
268                 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
269                 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
270                 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
271                 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
272                 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
273                 /* Program return */
274                 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
275                 /* Store instructions */
276                 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
277                 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
278                 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
279                 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
280                 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
281                 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
282                 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
283                 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
284                 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
285                 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
286                 /* Load instructions */
287                 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
288                 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
289                 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
290                 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
291                 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
292                 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
293                 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
294                 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
295                 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
296                 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
297                 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
298         };
299         u32 tail_call_cnt = 0;
300         void *ptr;
301         int off;
302
303 #define CONT     ({ insn++; goto select_insn; })
304 #define CONT_JMP ({ insn++; goto select_insn; })
305
306         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
307         ARG1 = (u64) (unsigned long) ctx;
308
309         /* Registers used in classic BPF programs need to be reset first. */
310         regs[BPF_REG_A] = 0;
311         regs[BPF_REG_X] = 0;
312
313 select_insn:
314         goto *jumptable[insn->code];
315
316         /* ALU */
317 #define ALU(OPCODE, OP)                 \
318         ALU64_##OPCODE##_X:             \
319                 DST = DST OP SRC;       \
320                 CONT;                   \
321         ALU_##OPCODE##_X:               \
322                 DST = (u32) DST OP (u32) SRC;   \
323                 CONT;                   \
324         ALU64_##OPCODE##_K:             \
325                 DST = DST OP IMM;               \
326                 CONT;                   \
327         ALU_##OPCODE##_K:               \
328                 DST = (u32) DST OP (u32) IMM;   \
329                 CONT;
330
331         ALU(ADD,  +)
332         ALU(SUB,  -)
333         ALU(AND,  &)
334         ALU(OR,   |)
335         ALU(LSH, <<)
336         ALU(RSH, >>)
337         ALU(XOR,  ^)
338         ALU(MUL,  *)
339 #undef ALU
340         ALU_NEG:
341                 DST = (u32) -DST;
342                 CONT;
343         ALU64_NEG:
344                 DST = -DST;
345                 CONT;
346         ALU_MOV_X:
347                 DST = (u32) SRC;
348                 CONT;
349         ALU_MOV_K:
350                 DST = (u32) IMM;
351                 CONT;
352         ALU64_MOV_X:
353                 DST = SRC;
354                 CONT;
355         ALU64_MOV_K:
356                 DST = IMM;
357                 CONT;
358         LD_IMM_DW:
359                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
360                 insn++;
361                 CONT;
362         ALU64_ARSH_X:
363                 (*(s64 *) &DST) >>= SRC;
364                 CONT;
365         ALU64_ARSH_K:
366                 (*(s64 *) &DST) >>= IMM;
367                 CONT;
368         ALU64_MOD_X:
369                 if (unlikely(SRC == 0))
370                         return 0;
371                 div64_u64_rem(DST, SRC, &tmp);
372                 DST = tmp;
373                 CONT;
374         ALU_MOD_X:
375                 if (unlikely(SRC == 0))
376                         return 0;
377                 tmp = (u32) DST;
378                 DST = do_div(tmp, (u32) SRC);
379                 CONT;
380         ALU64_MOD_K:
381                 div64_u64_rem(DST, IMM, &tmp);
382                 DST = tmp;
383                 CONT;
384         ALU_MOD_K:
385                 tmp = (u32) DST;
386                 DST = do_div(tmp, (u32) IMM);
387                 CONT;
388         ALU64_DIV_X:
389                 if (unlikely(SRC == 0))
390                         return 0;
391                 DST = div64_u64(DST, SRC);
392                 CONT;
393         ALU_DIV_X:
394                 if (unlikely(SRC == 0))
395                         return 0;
396                 tmp = (u32) DST;
397                 do_div(tmp, (u32) SRC);
398                 DST = (u32) tmp;
399                 CONT;
400         ALU64_DIV_K:
401                 DST = div64_u64(DST, IMM);
402                 CONT;
403         ALU_DIV_K:
404                 tmp = (u32) DST;
405                 do_div(tmp, (u32) IMM);
406                 DST = (u32) tmp;
407                 CONT;
408         ALU_END_TO_BE:
409                 switch (IMM) {
410                 case 16:
411                         DST = (__force u16) cpu_to_be16(DST);
412                         break;
413                 case 32:
414                         DST = (__force u32) cpu_to_be32(DST);
415                         break;
416                 case 64:
417                         DST = (__force u64) cpu_to_be64(DST);
418                         break;
419                 }
420                 CONT;
421         ALU_END_TO_LE:
422                 switch (IMM) {
423                 case 16:
424                         DST = (__force u16) cpu_to_le16(DST);
425                         break;
426                 case 32:
427                         DST = (__force u32) cpu_to_le32(DST);
428                         break;
429                 case 64:
430                         DST = (__force u64) cpu_to_le64(DST);
431                         break;
432                 }
433                 CONT;
434
435         /* CALL */
436         JMP_CALL:
437                 /* Function call scratches BPF_R1-BPF_R5 registers,
438                  * preserves BPF_R6-BPF_R9, and stores return value
439                  * into BPF_R0.
440                  */
441                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
442                                                        BPF_R4, BPF_R5);
443                 CONT;
444
445         JMP_TAIL_CALL: {
446                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
447                 struct bpf_array *array = container_of(map, struct bpf_array, map);
448                 struct bpf_prog *prog;
449                 u64 index = BPF_R3;
450
451                 if (unlikely(index >= array->map.max_entries))
452                         goto out;
453
454                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
455                         goto out;
456
457                 tail_call_cnt++;
458
459                 prog = READ_ONCE(array->ptrs[index]);
460                 if (unlikely(!prog))
461                         goto out;
462
463                 /* ARG1 at this point is guaranteed to point to CTX from
464                  * the verifier side due to the fact that the tail call is
465                  * handeled like a helper, that is, bpf_tail_call_proto,
466                  * where arg1_type is ARG_PTR_TO_CTX.
467                  */
468                 insn = prog->insnsi;
469                 goto select_insn;
470 out:
471                 CONT;
472         }
473         /* JMP */
474         JMP_JA:
475                 insn += insn->off;
476                 CONT;
477         JMP_JEQ_X:
478                 if (DST == SRC) {
479                         insn += insn->off;
480                         CONT_JMP;
481                 }
482                 CONT;
483         JMP_JEQ_K:
484                 if (DST == IMM) {
485                         insn += insn->off;
486                         CONT_JMP;
487                 }
488                 CONT;
489         JMP_JNE_X:
490                 if (DST != SRC) {
491                         insn += insn->off;
492                         CONT_JMP;
493                 }
494                 CONT;
495         JMP_JNE_K:
496                 if (DST != IMM) {
497                         insn += insn->off;
498                         CONT_JMP;
499                 }
500                 CONT;
501         JMP_JGT_X:
502                 if (DST > SRC) {
503                         insn += insn->off;
504                         CONT_JMP;
505                 }
506                 CONT;
507         JMP_JGT_K:
508                 if (DST > IMM) {
509                         insn += insn->off;
510                         CONT_JMP;
511                 }
512                 CONT;
513         JMP_JGE_X:
514                 if (DST >= SRC) {
515                         insn += insn->off;
516                         CONT_JMP;
517                 }
518                 CONT;
519         JMP_JGE_K:
520                 if (DST >= IMM) {
521                         insn += insn->off;
522                         CONT_JMP;
523                 }
524                 CONT;
525         JMP_JSGT_X:
526                 if (((s64) DST) > ((s64) SRC)) {
527                         insn += insn->off;
528                         CONT_JMP;
529                 }
530                 CONT;
531         JMP_JSGT_K:
532                 if (((s64) DST) > ((s64) IMM)) {
533                         insn += insn->off;
534                         CONT_JMP;
535                 }
536                 CONT;
537         JMP_JSGE_X:
538                 if (((s64) DST) >= ((s64) SRC)) {
539                         insn += insn->off;
540                         CONT_JMP;
541                 }
542                 CONT;
543         JMP_JSGE_K:
544                 if (((s64) DST) >= ((s64) IMM)) {
545                         insn += insn->off;
546                         CONT_JMP;
547                 }
548                 CONT;
549         JMP_JSET_X:
550                 if (DST & SRC) {
551                         insn += insn->off;
552                         CONT_JMP;
553                 }
554                 CONT;
555         JMP_JSET_K:
556                 if (DST & IMM) {
557                         insn += insn->off;
558                         CONT_JMP;
559                 }
560                 CONT;
561         JMP_EXIT:
562                 return BPF_R0;
563
564         /* STX and ST and LDX*/
565 #define LDST(SIZEOP, SIZE)                                              \
566         STX_MEM_##SIZEOP:                                               \
567                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
568                 CONT;                                                   \
569         ST_MEM_##SIZEOP:                                                \
570                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
571                 CONT;                                                   \
572         LDX_MEM_##SIZEOP:                                               \
573                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
574                 CONT;
575
576         LDST(B,   u8)
577         LDST(H,  u16)
578         LDST(W,  u32)
579         LDST(DW, u64)
580 #undef LDST
581         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
582                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
583                            (DST + insn->off));
584                 CONT;
585         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
586                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
587                              (DST + insn->off));
588                 CONT;
589         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
590                 off = IMM;
591 load_word:
592                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
593                  * only appearing in the programs where ctx ==
594                  * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
595                  * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
596                  * internal BPF verifier will check that BPF_R6 ==
597                  * ctx.
598                  *
599                  * BPF_ABS and BPF_IND are wrappers of function calls,
600                  * so they scratch BPF_R1-BPF_R5 registers, preserve
601                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
602                  *
603                  * Implicit input:
604                  *   ctx == skb == BPF_R6 == CTX
605                  *
606                  * Explicit input:
607                  *   SRC == any register
608                  *   IMM == 32-bit immediate
609                  *
610                  * Output:
611                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
612                  */
613
614                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
615                 if (likely(ptr != NULL)) {
616                         BPF_R0 = get_unaligned_be32(ptr);
617                         CONT;
618                 }
619
620                 return 0;
621         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
622                 off = IMM;
623 load_half:
624                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
625                 if (likely(ptr != NULL)) {
626                         BPF_R0 = get_unaligned_be16(ptr);
627                         CONT;
628                 }
629
630                 return 0;
631         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
632                 off = IMM;
633 load_byte:
634                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
635                 if (likely(ptr != NULL)) {
636                         BPF_R0 = *(u8 *)ptr;
637                         CONT;
638                 }
639
640                 return 0;
641         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
642                 off = IMM + SRC;
643                 goto load_word;
644         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
645                 off = IMM + SRC;
646                 goto load_half;
647         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
648                 off = IMM + SRC;
649                 goto load_byte;
650
651         default_label:
652                 /* If we ever reach this, we have a bug somewhere. */
653                 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
654                 return 0;
655 }
656
657 bool bpf_prog_array_compatible(struct bpf_array *array,
658                                const struct bpf_prog *fp)
659 {
660         if (!array->owner_prog_type) {
661                 /* There's no owner yet where we could check for
662                  * compatibility.
663                  */
664                 array->owner_prog_type = fp->type;
665                 array->owner_jited = fp->jited;
666
667                 return true;
668         }
669
670         return array->owner_prog_type == fp->type &&
671                array->owner_jited == fp->jited;
672 }
673
674 static int bpf_check_tail_call(const struct bpf_prog *fp)
675 {
676         struct bpf_prog_aux *aux = fp->aux;
677         int i;
678
679         for (i = 0; i < aux->used_map_cnt; i++) {
680                 struct bpf_map *map = aux->used_maps[i];
681                 struct bpf_array *array;
682
683                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
684                         continue;
685
686                 array = container_of(map, struct bpf_array, map);
687                 if (!bpf_prog_array_compatible(array, fp))
688                         return -EINVAL;
689         }
690
691         return 0;
692 }
693
694 /**
695  *      bpf_prog_select_runtime - select exec runtime for BPF program
696  *      @fp: bpf_prog populated with internal BPF program
697  *
698  * Try to JIT eBPF program, if JIT is not available, use interpreter.
699  * The BPF program will be executed via BPF_PROG_RUN() macro.
700  */
701 int bpf_prog_select_runtime(struct bpf_prog *fp)
702 {
703         fp->bpf_func = (void *) __bpf_prog_run;
704
705         bpf_int_jit_compile(fp);
706         bpf_prog_lock_ro(fp);
707
708         /* The tail call compatibility check can only be done at
709          * this late stage as we need to determine, if we deal
710          * with JITed or non JITed program concatenations and not
711          * all eBPF JITs might immediately support all features.
712          */
713         return bpf_check_tail_call(fp);
714 }
715 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
716
717 static void bpf_prog_free_deferred(struct work_struct *work)
718 {
719         struct bpf_prog_aux *aux;
720
721         aux = container_of(work, struct bpf_prog_aux, work);
722         bpf_jit_free(aux->prog);
723 }
724
725 /* Free internal BPF program */
726 void bpf_prog_free(struct bpf_prog *fp)
727 {
728         struct bpf_prog_aux *aux = fp->aux;
729
730         INIT_WORK(&aux->work, bpf_prog_free_deferred);
731         schedule_work(&aux->work);
732 }
733 EXPORT_SYMBOL_GPL(bpf_prog_free);
734
735 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
736 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
737
738 void bpf_user_rnd_init_once(void)
739 {
740         prandom_init_once(&bpf_user_rnd_state);
741 }
742
743 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
744 {
745         /* Should someone ever have the rather unwise idea to use some
746          * of the registers passed into this function, then note that
747          * this function is called from native eBPF and classic-to-eBPF
748          * transformations. Register assignments from both sides are
749          * different, f.e. classic always sets fn(ctx, A, X) here.
750          */
751         struct rnd_state *state;
752         u32 res;
753
754         state = &get_cpu_var(bpf_user_rnd_state);
755         res = prandom_u32_state(state);
756         put_cpu_var(state);
757
758         return res;
759 }
760
761 /* Weak definitions of helper functions in case we don't have bpf syscall. */
762 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
763 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
764 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
765
766 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
767 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
768 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
769 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
770 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
771 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
772 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
773 {
774         return NULL;
775 }
776
777 /* Always built-in helper functions. */
778 const struct bpf_func_proto bpf_tail_call_proto = {
779         .func           = NULL,
780         .gpl_only       = false,
781         .ret_type       = RET_VOID,
782         .arg1_type      = ARG_PTR_TO_CTX,
783         .arg2_type      = ARG_CONST_MAP_PTR,
784         .arg3_type      = ARG_ANYTHING,
785 };
786
787 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
788 void __weak bpf_int_jit_compile(struct bpf_prog *prog)
789 {
790 }
791
792 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
793  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
794  */
795 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
796                          int len)
797 {
798         return -EFAULT;
799 }