]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/rcu/tree_plugin.h
rcu: Convert ACCESS_ONCE() to READ_ONCE() and WRITE_ONCE()
[karo-tx-linux.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #endif /* #ifdef CONFIG_RCU_BOOST */
47
48 #ifdef CONFIG_RCU_NOCB_CPU
49 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
51 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
52 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
53
54 /*
55  * Check the RCU kernel configuration parameters and print informative
56  * messages about anything out of the ordinary.  If you like #ifdef, you
57  * will love this function.
58  */
59 static void __init rcu_bootup_announce_oddness(void)
60 {
61         if (IS_ENABLED(CONFIG_RCU_TRACE))
62                 pr_info("\tRCU debugfs-based tracing is enabled.\n");
63         if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) ||
64             (!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32))
65                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
66                        CONFIG_RCU_FANOUT);
67         if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT))
68                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
69         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
70                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
71         if (IS_ENABLED(CONFIG_PROVE_RCU))
72                 pr_info("\tRCU lockdep checking is enabled.\n");
73         if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
74                 pr_info("\tRCU torture testing starts during boot.\n");
75         if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO))
76                 pr_info("\tAdditional per-CPU info printed with stalls.\n");
77         if (NUM_RCU_LVL_4 != 0)
78                 pr_info("\tFour-level hierarchy is enabled.\n");
79         if (CONFIG_RCU_FANOUT_LEAF != 16)
80                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
81                         CONFIG_RCU_FANOUT_LEAF);
82         if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
83                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
84         if (nr_cpu_ids != NR_CPUS)
85                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
86         if (IS_ENABLED(CONFIG_RCU_BOOST))
87                 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
88 }
89
90 #ifdef CONFIG_PREEMPT_RCU
91
92 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94
95 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
97                                bool wake);
98
99 /*
100  * Tell them what RCU they are running.
101  */
102 static void __init rcu_bootup_announce(void)
103 {
104         pr_info("Preemptible hierarchical RCU implementation.\n");
105         rcu_bootup_announce_oddness();
106 }
107
108 /*
109  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
110  * that this just means that the task currently running on the CPU is
111  * not in a quiescent state.  There might be any number of tasks blocked
112  * while in an RCU read-side critical section.
113  *
114  * As with the other rcu_*_qs() functions, callers to this function
115  * must disable preemption.
116  */
117 static void rcu_preempt_qs(void)
118 {
119         if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
120                 trace_rcu_grace_period(TPS("rcu_preempt"),
121                                        __this_cpu_read(rcu_preempt_data.gpnum),
122                                        TPS("cpuqs"));
123                 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
124                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
125                 current->rcu_read_unlock_special.b.need_qs = false;
126         }
127 }
128
129 /*
130  * We have entered the scheduler, and the current task might soon be
131  * context-switched away from.  If this task is in an RCU read-side
132  * critical section, we will no longer be able to rely on the CPU to
133  * record that fact, so we enqueue the task on the blkd_tasks list.
134  * The task will dequeue itself when it exits the outermost enclosing
135  * RCU read-side critical section.  Therefore, the current grace period
136  * cannot be permitted to complete until the blkd_tasks list entries
137  * predating the current grace period drain, in other words, until
138  * rnp->gp_tasks becomes NULL.
139  *
140  * Caller must disable preemption.
141  */
142 static void rcu_preempt_note_context_switch(void)
143 {
144         struct task_struct *t = current;
145         unsigned long flags;
146         struct rcu_data *rdp;
147         struct rcu_node *rnp;
148
149         if (t->rcu_read_lock_nesting > 0 &&
150             !t->rcu_read_unlock_special.b.blocked) {
151
152                 /* Possibly blocking in an RCU read-side critical section. */
153                 rdp = this_cpu_ptr(rcu_preempt_state.rda);
154                 rnp = rdp->mynode;
155                 raw_spin_lock_irqsave(&rnp->lock, flags);
156                 smp_mb__after_unlock_lock();
157                 t->rcu_read_unlock_special.b.blocked = true;
158                 t->rcu_blocked_node = rnp;
159
160                 /*
161                  * If this CPU has already checked in, then this task
162                  * will hold up the next grace period rather than the
163                  * current grace period.  Queue the task accordingly.
164                  * If the task is queued for the current grace period
165                  * (i.e., this CPU has not yet passed through a quiescent
166                  * state for the current grace period), then as long
167                  * as that task remains queued, the current grace period
168                  * cannot end.  Note that there is some uncertainty as
169                  * to exactly when the current grace period started.
170                  * We take a conservative approach, which can result
171                  * in unnecessarily waiting on tasks that started very
172                  * slightly after the current grace period began.  C'est
173                  * la vie!!!
174                  *
175                  * But first, note that the current CPU must still be
176                  * on line!
177                  */
178                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
179                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
180                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
181                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
182                         rnp->gp_tasks = &t->rcu_node_entry;
183 #ifdef CONFIG_RCU_BOOST
184                         if (rnp->boost_tasks != NULL)
185                                 rnp->boost_tasks = rnp->gp_tasks;
186 #endif /* #ifdef CONFIG_RCU_BOOST */
187                 } else {
188                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
189                         if (rnp->qsmask & rdp->grpmask)
190                                 rnp->gp_tasks = &t->rcu_node_entry;
191                 }
192                 trace_rcu_preempt_task(rdp->rsp->name,
193                                        t->pid,
194                                        (rnp->qsmask & rdp->grpmask)
195                                        ? rnp->gpnum
196                                        : rnp->gpnum + 1);
197                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
198         } else if (t->rcu_read_lock_nesting < 0 &&
199                    t->rcu_read_unlock_special.s) {
200
201                 /*
202                  * Complete exit from RCU read-side critical section on
203                  * behalf of preempted instance of __rcu_read_unlock().
204                  */
205                 rcu_read_unlock_special(t);
206         }
207
208         /*
209          * Either we were not in an RCU read-side critical section to
210          * begin with, or we have now recorded that critical section
211          * globally.  Either way, we can now note a quiescent state
212          * for this CPU.  Again, if we were in an RCU read-side critical
213          * section, and if that critical section was blocking the current
214          * grace period, then the fact that the task has been enqueued
215          * means that we continue to block the current grace period.
216          */
217         rcu_preempt_qs();
218 }
219
220 /*
221  * Check for preempted RCU readers blocking the current grace period
222  * for the specified rcu_node structure.  If the caller needs a reliable
223  * answer, it must hold the rcu_node's ->lock.
224  */
225 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
226 {
227         return rnp->gp_tasks != NULL;
228 }
229
230 /*
231  * Advance a ->blkd_tasks-list pointer to the next entry, instead
232  * returning NULL if at the end of the list.
233  */
234 static struct list_head *rcu_next_node_entry(struct task_struct *t,
235                                              struct rcu_node *rnp)
236 {
237         struct list_head *np;
238
239         np = t->rcu_node_entry.next;
240         if (np == &rnp->blkd_tasks)
241                 np = NULL;
242         return np;
243 }
244
245 /*
246  * Return true if the specified rcu_node structure has tasks that were
247  * preempted within an RCU read-side critical section.
248  */
249 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
250 {
251         return !list_empty(&rnp->blkd_tasks);
252 }
253
254 /*
255  * Handle special cases during rcu_read_unlock(), such as needing to
256  * notify RCU core processing or task having blocked during the RCU
257  * read-side critical section.
258  */
259 void rcu_read_unlock_special(struct task_struct *t)
260 {
261         bool empty_exp;
262         bool empty_norm;
263         bool empty_exp_now;
264         unsigned long flags;
265         struct list_head *np;
266 #ifdef CONFIG_RCU_BOOST
267         bool drop_boost_mutex = false;
268 #endif /* #ifdef CONFIG_RCU_BOOST */
269         struct rcu_node *rnp;
270         union rcu_special special;
271
272         /* NMI handlers cannot block and cannot safely manipulate state. */
273         if (in_nmi())
274                 return;
275
276         local_irq_save(flags);
277
278         /*
279          * If RCU core is waiting for this CPU to exit critical section,
280          * let it know that we have done so.  Because irqs are disabled,
281          * t->rcu_read_unlock_special cannot change.
282          */
283         special = t->rcu_read_unlock_special;
284         if (special.b.need_qs) {
285                 rcu_preempt_qs();
286                 t->rcu_read_unlock_special.b.need_qs = false;
287                 if (!t->rcu_read_unlock_special.s) {
288                         local_irq_restore(flags);
289                         return;
290                 }
291         }
292
293         /* Hardware IRQ handlers cannot block, complain if they get here. */
294         if (in_irq() || in_serving_softirq()) {
295                 lockdep_rcu_suspicious(__FILE__, __LINE__,
296                                        "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
297                 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
298                          t->rcu_read_unlock_special.s,
299                          t->rcu_read_unlock_special.b.blocked,
300                          t->rcu_read_unlock_special.b.need_qs);
301                 local_irq_restore(flags);
302                 return;
303         }
304
305         /* Clean up if blocked during RCU read-side critical section. */
306         if (special.b.blocked) {
307                 t->rcu_read_unlock_special.b.blocked = false;
308
309                 /*
310                  * Remove this task from the list it blocked on.  The
311                  * task can migrate while we acquire the lock, but at
312                  * most one time.  So at most two passes through loop.
313                  */
314                 for (;;) {
315                         rnp = t->rcu_blocked_node;
316                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
317                         smp_mb__after_unlock_lock();
318                         if (rnp == t->rcu_blocked_node)
319                                 break;
320                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
321                 }
322                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
323                 empty_exp = !rcu_preempted_readers_exp(rnp);
324                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
325                 np = rcu_next_node_entry(t, rnp);
326                 list_del_init(&t->rcu_node_entry);
327                 t->rcu_blocked_node = NULL;
328                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
329                                                 rnp->gpnum, t->pid);
330                 if (&t->rcu_node_entry == rnp->gp_tasks)
331                         rnp->gp_tasks = np;
332                 if (&t->rcu_node_entry == rnp->exp_tasks)
333                         rnp->exp_tasks = np;
334 #ifdef CONFIG_RCU_BOOST
335                 if (&t->rcu_node_entry == rnp->boost_tasks)
336                         rnp->boost_tasks = np;
337                 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
338                 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
339 #endif /* #ifdef CONFIG_RCU_BOOST */
340
341                 /*
342                  * If this was the last task on the current list, and if
343                  * we aren't waiting on any CPUs, report the quiescent state.
344                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
345                  * so we must take a snapshot of the expedited state.
346                  */
347                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
348                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
349                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
350                                                          rnp->gpnum,
351                                                          0, rnp->qsmask,
352                                                          rnp->level,
353                                                          rnp->grplo,
354                                                          rnp->grphi,
355                                                          !!rnp->gp_tasks);
356                         rcu_report_unblock_qs_rnp(&rcu_preempt_state,
357                                                   rnp, flags);
358                 } else {
359                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
360                 }
361
362 #ifdef CONFIG_RCU_BOOST
363                 /* Unboost if we were boosted. */
364                 if (drop_boost_mutex)
365                         rt_mutex_unlock(&rnp->boost_mtx);
366 #endif /* #ifdef CONFIG_RCU_BOOST */
367
368                 /*
369                  * If this was the last task on the expedited lists,
370                  * then we need to report up the rcu_node hierarchy.
371                  */
372                 if (!empty_exp && empty_exp_now)
373                         rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
374         } else {
375                 local_irq_restore(flags);
376         }
377 }
378
379 /*
380  * Dump detailed information for all tasks blocking the current RCU
381  * grace period on the specified rcu_node structure.
382  */
383 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
384 {
385         unsigned long flags;
386         struct task_struct *t;
387
388         raw_spin_lock_irqsave(&rnp->lock, flags);
389         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
390                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
391                 return;
392         }
393         t = list_entry(rnp->gp_tasks,
394                        struct task_struct, rcu_node_entry);
395         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
396                 sched_show_task(t);
397         raw_spin_unlock_irqrestore(&rnp->lock, flags);
398 }
399
400 /*
401  * Dump detailed information for all tasks blocking the current RCU
402  * grace period.
403  */
404 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
405 {
406         struct rcu_node *rnp = rcu_get_root(rsp);
407
408         rcu_print_detail_task_stall_rnp(rnp);
409         rcu_for_each_leaf_node(rsp, rnp)
410                 rcu_print_detail_task_stall_rnp(rnp);
411 }
412
413 #ifdef CONFIG_RCU_CPU_STALL_INFO
414
415 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
416 {
417         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
418                rnp->level, rnp->grplo, rnp->grphi);
419 }
420
421 static void rcu_print_task_stall_end(void)
422 {
423         pr_cont("\n");
424 }
425
426 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
427
428 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
429 {
430 }
431
432 static void rcu_print_task_stall_end(void)
433 {
434 }
435
436 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
437
438 /*
439  * Scan the current list of tasks blocked within RCU read-side critical
440  * sections, printing out the tid of each.
441  */
442 static int rcu_print_task_stall(struct rcu_node *rnp)
443 {
444         struct task_struct *t;
445         int ndetected = 0;
446
447         if (!rcu_preempt_blocked_readers_cgp(rnp))
448                 return 0;
449         rcu_print_task_stall_begin(rnp);
450         t = list_entry(rnp->gp_tasks,
451                        struct task_struct, rcu_node_entry);
452         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
453                 pr_cont(" P%d", t->pid);
454                 ndetected++;
455         }
456         rcu_print_task_stall_end();
457         return ndetected;
458 }
459
460 /*
461  * Check that the list of blocked tasks for the newly completed grace
462  * period is in fact empty.  It is a serious bug to complete a grace
463  * period that still has RCU readers blocked!  This function must be
464  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
465  * must be held by the caller.
466  *
467  * Also, if there are blocked tasks on the list, they automatically
468  * block the newly created grace period, so set up ->gp_tasks accordingly.
469  */
470 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
471 {
472         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
473         if (rcu_preempt_has_tasks(rnp))
474                 rnp->gp_tasks = rnp->blkd_tasks.next;
475         WARN_ON_ONCE(rnp->qsmask);
476 }
477
478 /*
479  * Check for a quiescent state from the current CPU.  When a task blocks,
480  * the task is recorded in the corresponding CPU's rcu_node structure,
481  * which is checked elsewhere.
482  *
483  * Caller must disable hard irqs.
484  */
485 static void rcu_preempt_check_callbacks(void)
486 {
487         struct task_struct *t = current;
488
489         if (t->rcu_read_lock_nesting == 0) {
490                 rcu_preempt_qs();
491                 return;
492         }
493         if (t->rcu_read_lock_nesting > 0 &&
494             __this_cpu_read(rcu_preempt_data.qs_pending) &&
495             !__this_cpu_read(rcu_preempt_data.passed_quiesce))
496                 t->rcu_read_unlock_special.b.need_qs = true;
497 }
498
499 #ifdef CONFIG_RCU_BOOST
500
501 static void rcu_preempt_do_callbacks(void)
502 {
503         rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
504 }
505
506 #endif /* #ifdef CONFIG_RCU_BOOST */
507
508 /*
509  * Queue a preemptible-RCU callback for invocation after a grace period.
510  */
511 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
512 {
513         __call_rcu(head, func, &rcu_preempt_state, -1, 0);
514 }
515 EXPORT_SYMBOL_GPL(call_rcu);
516
517 /**
518  * synchronize_rcu - wait until a grace period has elapsed.
519  *
520  * Control will return to the caller some time after a full grace
521  * period has elapsed, in other words after all currently executing RCU
522  * read-side critical sections have completed.  Note, however, that
523  * upon return from synchronize_rcu(), the caller might well be executing
524  * concurrently with new RCU read-side critical sections that began while
525  * synchronize_rcu() was waiting.  RCU read-side critical sections are
526  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
527  *
528  * See the description of synchronize_sched() for more detailed information
529  * on memory ordering guarantees.
530  */
531 void synchronize_rcu(void)
532 {
533         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
534                            !lock_is_held(&rcu_lock_map) &&
535                            !lock_is_held(&rcu_sched_lock_map),
536                            "Illegal synchronize_rcu() in RCU read-side critical section");
537         if (!rcu_scheduler_active)
538                 return;
539         if (rcu_gp_is_expedited())
540                 synchronize_rcu_expedited();
541         else
542                 wait_rcu_gp(call_rcu);
543 }
544 EXPORT_SYMBOL_GPL(synchronize_rcu);
545
546 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
547 static unsigned long sync_rcu_preempt_exp_count;
548 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
549
550 /*
551  * Return non-zero if there are any tasks in RCU read-side critical
552  * sections blocking the current preemptible-RCU expedited grace period.
553  * If there is no preemptible-RCU expedited grace period currently in
554  * progress, returns zero unconditionally.
555  */
556 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
557 {
558         return rnp->exp_tasks != NULL;
559 }
560
561 /*
562  * return non-zero if there is no RCU expedited grace period in progress
563  * for the specified rcu_node structure, in other words, if all CPUs and
564  * tasks covered by the specified rcu_node structure have done their bit
565  * for the current expedited grace period.  Works only for preemptible
566  * RCU -- other RCU implementation use other means.
567  *
568  * Caller must hold sync_rcu_preempt_exp_mutex.
569  */
570 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
571 {
572         return !rcu_preempted_readers_exp(rnp) &&
573                READ_ONCE(rnp->expmask) == 0;
574 }
575
576 /*
577  * Report the exit from RCU read-side critical section for the last task
578  * that queued itself during or before the current expedited preemptible-RCU
579  * grace period.  This event is reported either to the rcu_node structure on
580  * which the task was queued or to one of that rcu_node structure's ancestors,
581  * recursively up the tree.  (Calm down, calm down, we do the recursion
582  * iteratively!)
583  *
584  * Caller must hold sync_rcu_preempt_exp_mutex.
585  */
586 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
587                                bool wake)
588 {
589         unsigned long flags;
590         unsigned long mask;
591
592         raw_spin_lock_irqsave(&rnp->lock, flags);
593         smp_mb__after_unlock_lock();
594         for (;;) {
595                 if (!sync_rcu_preempt_exp_done(rnp)) {
596                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
597                         break;
598                 }
599                 if (rnp->parent == NULL) {
600                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
601                         if (wake) {
602                                 smp_mb(); /* EGP done before wake_up(). */
603                                 wake_up(&sync_rcu_preempt_exp_wq);
604                         }
605                         break;
606                 }
607                 mask = rnp->grpmask;
608                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
609                 rnp = rnp->parent;
610                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
611                 smp_mb__after_unlock_lock();
612                 rnp->expmask &= ~mask;
613         }
614 }
615
616 /*
617  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
618  * grace period for the specified rcu_node structure, phase 1.  If there
619  * are such tasks, set the ->expmask bits up the rcu_node tree and also
620  * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
621  * that work is needed here.
622  *
623  * Caller must hold sync_rcu_preempt_exp_mutex.
624  */
625 static void
626 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
627 {
628         unsigned long flags;
629         unsigned long mask;
630         struct rcu_node *rnp_up;
631
632         raw_spin_lock_irqsave(&rnp->lock, flags);
633         smp_mb__after_unlock_lock();
634         WARN_ON_ONCE(rnp->expmask);
635         WARN_ON_ONCE(rnp->exp_tasks);
636         if (!rcu_preempt_has_tasks(rnp)) {
637                 /* No blocked tasks, nothing to do. */
638                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
639                 return;
640         }
641         /* Call for Phase 2 and propagate ->expmask bits up the tree. */
642         rnp->expmask = 1;
643         rnp_up = rnp;
644         while (rnp_up->parent) {
645                 mask = rnp_up->grpmask;
646                 rnp_up = rnp_up->parent;
647                 if (rnp_up->expmask & mask)
648                         break;
649                 raw_spin_lock(&rnp_up->lock); /* irqs already off */
650                 smp_mb__after_unlock_lock();
651                 rnp_up->expmask |= mask;
652                 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
653         }
654         raw_spin_unlock_irqrestore(&rnp->lock, flags);
655 }
656
657 /*
658  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
659  * grace period for the specified rcu_node structure, phase 2.  If the
660  * leaf rcu_node structure has its ->expmask field set, check for tasks.
661  * If there are some, clear ->expmask and set ->exp_tasks accordingly,
662  * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
663  * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
664  * enabling rcu_read_unlock_special() to do the bit-clearing.
665  *
666  * Caller must hold sync_rcu_preempt_exp_mutex.
667  */
668 static void
669 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
670 {
671         unsigned long flags;
672
673         raw_spin_lock_irqsave(&rnp->lock, flags);
674         smp_mb__after_unlock_lock();
675         if (!rnp->expmask) {
676                 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
677                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
678                 return;
679         }
680
681         /* Phase 1 is over. */
682         rnp->expmask = 0;
683
684         /*
685          * If there are still blocked tasks, set up ->exp_tasks so that
686          * rcu_read_unlock_special() will wake us and then boost them.
687          */
688         if (rcu_preempt_has_tasks(rnp)) {
689                 rnp->exp_tasks = rnp->blkd_tasks.next;
690                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
691                 return;
692         }
693
694         /* No longer any blocked tasks, so undo bit setting. */
695         raw_spin_unlock_irqrestore(&rnp->lock, flags);
696         rcu_report_exp_rnp(rsp, rnp, false);
697 }
698
699 /**
700  * synchronize_rcu_expedited - Brute-force RCU grace period
701  *
702  * Wait for an RCU-preempt grace period, but expedite it.  The basic
703  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
704  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
705  * significant time on all CPUs and is unfriendly to real-time workloads,
706  * so is thus not recommended for any sort of common-case code.
707  * In fact, if you are using synchronize_rcu_expedited() in a loop,
708  * please restructure your code to batch your updates, and then Use a
709  * single synchronize_rcu() instead.
710  */
711 void synchronize_rcu_expedited(void)
712 {
713         struct rcu_node *rnp;
714         struct rcu_state *rsp = &rcu_preempt_state;
715         unsigned long snap;
716         int trycount = 0;
717
718         smp_mb(); /* Caller's modifications seen first by other CPUs. */
719         snap = READ_ONCE(sync_rcu_preempt_exp_count) + 1;
720         smp_mb(); /* Above access cannot bleed into critical section. */
721
722         /*
723          * Block CPU-hotplug operations.  This means that any CPU-hotplug
724          * operation that finds an rcu_node structure with tasks in the
725          * process of being boosted will know that all tasks blocking
726          * this expedited grace period will already be in the process of
727          * being boosted.  This simplifies the process of moving tasks
728          * from leaf to root rcu_node structures.
729          */
730         if (!try_get_online_cpus()) {
731                 /* CPU-hotplug operation in flight, fall back to normal GP. */
732                 wait_rcu_gp(call_rcu);
733                 return;
734         }
735
736         /*
737          * Acquire lock, falling back to synchronize_rcu() if too many
738          * lock-acquisition failures.  Of course, if someone does the
739          * expedited grace period for us, just leave.
740          */
741         while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
742                 if (ULONG_CMP_LT(snap,
743                     READ_ONCE(sync_rcu_preempt_exp_count))) {
744                         put_online_cpus();
745                         goto mb_ret; /* Others did our work for us. */
746                 }
747                 if (trycount++ < 10) {
748                         udelay(trycount * num_online_cpus());
749                 } else {
750                         put_online_cpus();
751                         wait_rcu_gp(call_rcu);
752                         return;
753                 }
754         }
755         if (ULONG_CMP_LT(snap, READ_ONCE(sync_rcu_preempt_exp_count))) {
756                 put_online_cpus();
757                 goto unlock_mb_ret; /* Others did our work for us. */
758         }
759
760         /* force all RCU readers onto ->blkd_tasks lists. */
761         synchronize_sched_expedited();
762
763         /*
764          * Snapshot current state of ->blkd_tasks lists into ->expmask.
765          * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
766          * to start clearing them.  Doing this in one phase leads to
767          * strange races between setting and clearing bits, so just say "no"!
768          */
769         rcu_for_each_leaf_node(rsp, rnp)
770                 sync_rcu_preempt_exp_init1(rsp, rnp);
771         rcu_for_each_leaf_node(rsp, rnp)
772                 sync_rcu_preempt_exp_init2(rsp, rnp);
773
774         put_online_cpus();
775
776         /* Wait for snapshotted ->blkd_tasks lists to drain. */
777         rnp = rcu_get_root(rsp);
778         wait_event(sync_rcu_preempt_exp_wq,
779                    sync_rcu_preempt_exp_done(rnp));
780
781         /* Clean up and exit. */
782         smp_mb(); /* ensure expedited GP seen before counter increment. */
783         WRITE_ONCE(sync_rcu_preempt_exp_count, sync_rcu_preempt_exp_count + 1);
784 unlock_mb_ret:
785         mutex_unlock(&sync_rcu_preempt_exp_mutex);
786 mb_ret:
787         smp_mb(); /* ensure subsequent action seen after grace period. */
788 }
789 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
790
791 /**
792  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
793  *
794  * Note that this primitive does not necessarily wait for an RCU grace period
795  * to complete.  For example, if there are no RCU callbacks queued anywhere
796  * in the system, then rcu_barrier() is within its rights to return
797  * immediately, without waiting for anything, much less an RCU grace period.
798  */
799 void rcu_barrier(void)
800 {
801         _rcu_barrier(&rcu_preempt_state);
802 }
803 EXPORT_SYMBOL_GPL(rcu_barrier);
804
805 /*
806  * Initialize preemptible RCU's state structures.
807  */
808 static void __init __rcu_init_preempt(void)
809 {
810         rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
811 }
812
813 /*
814  * Check for a task exiting while in a preemptible-RCU read-side
815  * critical section, clean up if so.  No need to issue warnings,
816  * as debug_check_no_locks_held() already does this if lockdep
817  * is enabled.
818  */
819 void exit_rcu(void)
820 {
821         struct task_struct *t = current;
822
823         if (likely(list_empty(&current->rcu_node_entry)))
824                 return;
825         t->rcu_read_lock_nesting = 1;
826         barrier();
827         t->rcu_read_unlock_special.b.blocked = true;
828         __rcu_read_unlock();
829 }
830
831 #else /* #ifdef CONFIG_PREEMPT_RCU */
832
833 static struct rcu_state *rcu_state_p = &rcu_sched_state;
834
835 /*
836  * Tell them what RCU they are running.
837  */
838 static void __init rcu_bootup_announce(void)
839 {
840         pr_info("Hierarchical RCU implementation.\n");
841         rcu_bootup_announce_oddness();
842 }
843
844 /*
845  * Because preemptible RCU does not exist, we never have to check for
846  * CPUs being in quiescent states.
847  */
848 static void rcu_preempt_note_context_switch(void)
849 {
850 }
851
852 /*
853  * Because preemptible RCU does not exist, there are never any preempted
854  * RCU readers.
855  */
856 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
857 {
858         return 0;
859 }
860
861 /*
862  * Because there is no preemptible RCU, there can be no readers blocked.
863  */
864 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
865 {
866         return false;
867 }
868
869 /*
870  * Because preemptible RCU does not exist, we never have to check for
871  * tasks blocked within RCU read-side critical sections.
872  */
873 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
874 {
875 }
876
877 /*
878  * Because preemptible RCU does not exist, we never have to check for
879  * tasks blocked within RCU read-side critical sections.
880  */
881 static int rcu_print_task_stall(struct rcu_node *rnp)
882 {
883         return 0;
884 }
885
886 /*
887  * Because there is no preemptible RCU, there can be no readers blocked,
888  * so there is no need to check for blocked tasks.  So check only for
889  * bogus qsmask values.
890  */
891 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
892 {
893         WARN_ON_ONCE(rnp->qsmask);
894 }
895
896 /*
897  * Because preemptible RCU does not exist, it never has any callbacks
898  * to check.
899  */
900 static void rcu_preempt_check_callbacks(void)
901 {
902 }
903
904 /*
905  * Wait for an rcu-preempt grace period, but make it happen quickly.
906  * But because preemptible RCU does not exist, map to rcu-sched.
907  */
908 void synchronize_rcu_expedited(void)
909 {
910         synchronize_sched_expedited();
911 }
912 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
913
914 /*
915  * Because preemptible RCU does not exist, rcu_barrier() is just
916  * another name for rcu_barrier_sched().
917  */
918 void rcu_barrier(void)
919 {
920         rcu_barrier_sched();
921 }
922 EXPORT_SYMBOL_GPL(rcu_barrier);
923
924 /*
925  * Because preemptible RCU does not exist, it need not be initialized.
926  */
927 static void __init __rcu_init_preempt(void)
928 {
929 }
930
931 /*
932  * Because preemptible RCU does not exist, tasks cannot possibly exit
933  * while in preemptible RCU read-side critical sections.
934  */
935 void exit_rcu(void)
936 {
937 }
938
939 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
940
941 #ifdef CONFIG_RCU_BOOST
942
943 #include "../locking/rtmutex_common.h"
944
945 #ifdef CONFIG_RCU_TRACE
946
947 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
948 {
949         if (!rcu_preempt_has_tasks(rnp))
950                 rnp->n_balk_blkd_tasks++;
951         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
952                 rnp->n_balk_exp_gp_tasks++;
953         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
954                 rnp->n_balk_boost_tasks++;
955         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
956                 rnp->n_balk_notblocked++;
957         else if (rnp->gp_tasks != NULL &&
958                  ULONG_CMP_LT(jiffies, rnp->boost_time))
959                 rnp->n_balk_notyet++;
960         else
961                 rnp->n_balk_nos++;
962 }
963
964 #else /* #ifdef CONFIG_RCU_TRACE */
965
966 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
967 {
968 }
969
970 #endif /* #else #ifdef CONFIG_RCU_TRACE */
971
972 static void rcu_wake_cond(struct task_struct *t, int status)
973 {
974         /*
975          * If the thread is yielding, only wake it when this
976          * is invoked from idle
977          */
978         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
979                 wake_up_process(t);
980 }
981
982 /*
983  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
984  * or ->boost_tasks, advancing the pointer to the next task in the
985  * ->blkd_tasks list.
986  *
987  * Note that irqs must be enabled: boosting the task can block.
988  * Returns 1 if there are more tasks needing to be boosted.
989  */
990 static int rcu_boost(struct rcu_node *rnp)
991 {
992         unsigned long flags;
993         struct task_struct *t;
994         struct list_head *tb;
995
996         if (READ_ONCE(rnp->exp_tasks) == NULL &&
997             READ_ONCE(rnp->boost_tasks) == NULL)
998                 return 0;  /* Nothing left to boost. */
999
1000         raw_spin_lock_irqsave(&rnp->lock, flags);
1001         smp_mb__after_unlock_lock();
1002
1003         /*
1004          * Recheck under the lock: all tasks in need of boosting
1005          * might exit their RCU read-side critical sections on their own.
1006          */
1007         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1008                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1009                 return 0;
1010         }
1011
1012         /*
1013          * Preferentially boost tasks blocking expedited grace periods.
1014          * This cannot starve the normal grace periods because a second
1015          * expedited grace period must boost all blocked tasks, including
1016          * those blocking the pre-existing normal grace period.
1017          */
1018         if (rnp->exp_tasks != NULL) {
1019                 tb = rnp->exp_tasks;
1020                 rnp->n_exp_boosts++;
1021         } else {
1022                 tb = rnp->boost_tasks;
1023                 rnp->n_normal_boosts++;
1024         }
1025         rnp->n_tasks_boosted++;
1026
1027         /*
1028          * We boost task t by manufacturing an rt_mutex that appears to
1029          * be held by task t.  We leave a pointer to that rt_mutex where
1030          * task t can find it, and task t will release the mutex when it
1031          * exits its outermost RCU read-side critical section.  Then
1032          * simply acquiring this artificial rt_mutex will boost task
1033          * t's priority.  (Thanks to tglx for suggesting this approach!)
1034          *
1035          * Note that task t must acquire rnp->lock to remove itself from
1036          * the ->blkd_tasks list, which it will do from exit() if from
1037          * nowhere else.  We therefore are guaranteed that task t will
1038          * stay around at least until we drop rnp->lock.  Note that
1039          * rnp->lock also resolves races between our priority boosting
1040          * and task t's exiting its outermost RCU read-side critical
1041          * section.
1042          */
1043         t = container_of(tb, struct task_struct, rcu_node_entry);
1044         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1045         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1046         /* Lock only for side effect: boosts task t's priority. */
1047         rt_mutex_lock(&rnp->boost_mtx);
1048         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1049
1050         return READ_ONCE(rnp->exp_tasks) != NULL ||
1051                READ_ONCE(rnp->boost_tasks) != NULL;
1052 }
1053
1054 /*
1055  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1056  * root rcu_node.
1057  */
1058 static int rcu_boost_kthread(void *arg)
1059 {
1060         struct rcu_node *rnp = (struct rcu_node *)arg;
1061         int spincnt = 0;
1062         int more2boost;
1063
1064         trace_rcu_utilization(TPS("Start boost kthread@init"));
1065         for (;;) {
1066                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1067                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1068                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1069                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1070                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1071                 more2boost = rcu_boost(rnp);
1072                 if (more2boost)
1073                         spincnt++;
1074                 else
1075                         spincnt = 0;
1076                 if (spincnt > 10) {
1077                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1078                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1079                         schedule_timeout_interruptible(2);
1080                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1081                         spincnt = 0;
1082                 }
1083         }
1084         /* NOTREACHED */
1085         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1086         return 0;
1087 }
1088
1089 /*
1090  * Check to see if it is time to start boosting RCU readers that are
1091  * blocking the current grace period, and, if so, tell the per-rcu_node
1092  * kthread to start boosting them.  If there is an expedited grace
1093  * period in progress, it is always time to boost.
1094  *
1095  * The caller must hold rnp->lock, which this function releases.
1096  * The ->boost_kthread_task is immortal, so we don't need to worry
1097  * about it going away.
1098  */
1099 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1100         __releases(rnp->lock)
1101 {
1102         struct task_struct *t;
1103
1104         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1105                 rnp->n_balk_exp_gp_tasks++;
1106                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1107                 return;
1108         }
1109         if (rnp->exp_tasks != NULL ||
1110             (rnp->gp_tasks != NULL &&
1111              rnp->boost_tasks == NULL &&
1112              rnp->qsmask == 0 &&
1113              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1114                 if (rnp->exp_tasks == NULL)
1115                         rnp->boost_tasks = rnp->gp_tasks;
1116                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1117                 t = rnp->boost_kthread_task;
1118                 if (t)
1119                         rcu_wake_cond(t, rnp->boost_kthread_status);
1120         } else {
1121                 rcu_initiate_boost_trace(rnp);
1122                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1123         }
1124 }
1125
1126 /*
1127  * Wake up the per-CPU kthread to invoke RCU callbacks.
1128  */
1129 static void invoke_rcu_callbacks_kthread(void)
1130 {
1131         unsigned long flags;
1132
1133         local_irq_save(flags);
1134         __this_cpu_write(rcu_cpu_has_work, 1);
1135         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1136             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1137                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1138                               __this_cpu_read(rcu_cpu_kthread_status));
1139         }
1140         local_irq_restore(flags);
1141 }
1142
1143 /*
1144  * Is the current CPU running the RCU-callbacks kthread?
1145  * Caller must have preemption disabled.
1146  */
1147 static bool rcu_is_callbacks_kthread(void)
1148 {
1149         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1150 }
1151
1152 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1153
1154 /*
1155  * Do priority-boost accounting for the start of a new grace period.
1156  */
1157 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1158 {
1159         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1160 }
1161
1162 /*
1163  * Create an RCU-boost kthread for the specified node if one does not
1164  * already exist.  We only create this kthread for preemptible RCU.
1165  * Returns zero if all is well, a negated errno otherwise.
1166  */
1167 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1168                                        struct rcu_node *rnp)
1169 {
1170         int rnp_index = rnp - &rsp->node[0];
1171         unsigned long flags;
1172         struct sched_param sp;
1173         struct task_struct *t;
1174
1175         if (&rcu_preempt_state != rsp)
1176                 return 0;
1177
1178         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1179                 return 0;
1180
1181         rsp->boost = 1;
1182         if (rnp->boost_kthread_task != NULL)
1183                 return 0;
1184         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1185                            "rcub/%d", rnp_index);
1186         if (IS_ERR(t))
1187                 return PTR_ERR(t);
1188         raw_spin_lock_irqsave(&rnp->lock, flags);
1189         smp_mb__after_unlock_lock();
1190         rnp->boost_kthread_task = t;
1191         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1192         sp.sched_priority = kthread_prio;
1193         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1194         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1195         return 0;
1196 }
1197
1198 static void rcu_kthread_do_work(void)
1199 {
1200         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1201         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1202         rcu_preempt_do_callbacks();
1203 }
1204
1205 static void rcu_cpu_kthread_setup(unsigned int cpu)
1206 {
1207         struct sched_param sp;
1208
1209         sp.sched_priority = kthread_prio;
1210         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1211 }
1212
1213 static void rcu_cpu_kthread_park(unsigned int cpu)
1214 {
1215         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1216 }
1217
1218 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1219 {
1220         return __this_cpu_read(rcu_cpu_has_work);
1221 }
1222
1223 /*
1224  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1225  * RCU softirq used in flavors and configurations of RCU that do not
1226  * support RCU priority boosting.
1227  */
1228 static void rcu_cpu_kthread(unsigned int cpu)
1229 {
1230         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1231         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1232         int spincnt;
1233
1234         for (spincnt = 0; spincnt < 10; spincnt++) {
1235                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1236                 local_bh_disable();
1237                 *statusp = RCU_KTHREAD_RUNNING;
1238                 this_cpu_inc(rcu_cpu_kthread_loops);
1239                 local_irq_disable();
1240                 work = *workp;
1241                 *workp = 0;
1242                 local_irq_enable();
1243                 if (work)
1244                         rcu_kthread_do_work();
1245                 local_bh_enable();
1246                 if (*workp == 0) {
1247                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1248                         *statusp = RCU_KTHREAD_WAITING;
1249                         return;
1250                 }
1251         }
1252         *statusp = RCU_KTHREAD_YIELDING;
1253         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1254         schedule_timeout_interruptible(2);
1255         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1256         *statusp = RCU_KTHREAD_WAITING;
1257 }
1258
1259 /*
1260  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1261  * served by the rcu_node in question.  The CPU hotplug lock is still
1262  * held, so the value of rnp->qsmaskinit will be stable.
1263  *
1264  * We don't include outgoingcpu in the affinity set, use -1 if there is
1265  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1266  * this function allows the kthread to execute on any CPU.
1267  */
1268 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1269 {
1270         struct task_struct *t = rnp->boost_kthread_task;
1271         unsigned long mask = rcu_rnp_online_cpus(rnp);
1272         cpumask_var_t cm;
1273         int cpu;
1274
1275         if (!t)
1276                 return;
1277         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1278                 return;
1279         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1280                 if ((mask & 0x1) && cpu != outgoingcpu)
1281                         cpumask_set_cpu(cpu, cm);
1282         if (cpumask_weight(cm) == 0)
1283                 cpumask_setall(cm);
1284         set_cpus_allowed_ptr(t, cm);
1285         free_cpumask_var(cm);
1286 }
1287
1288 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1289         .store                  = &rcu_cpu_kthread_task,
1290         .thread_should_run      = rcu_cpu_kthread_should_run,
1291         .thread_fn              = rcu_cpu_kthread,
1292         .thread_comm            = "rcuc/%u",
1293         .setup                  = rcu_cpu_kthread_setup,
1294         .park                   = rcu_cpu_kthread_park,
1295 };
1296
1297 /*
1298  * Spawn boost kthreads -- called as soon as the scheduler is running.
1299  */
1300 static void __init rcu_spawn_boost_kthreads(void)
1301 {
1302         struct rcu_node *rnp;
1303         int cpu;
1304
1305         for_each_possible_cpu(cpu)
1306                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1307         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1308         rcu_for_each_leaf_node(rcu_state_p, rnp)
1309                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1310 }
1311
1312 static void rcu_prepare_kthreads(int cpu)
1313 {
1314         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1315         struct rcu_node *rnp = rdp->mynode;
1316
1317         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1318         if (rcu_scheduler_fully_active)
1319                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1320 }
1321
1322 #else /* #ifdef CONFIG_RCU_BOOST */
1323
1324 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1325         __releases(rnp->lock)
1326 {
1327         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1328 }
1329
1330 static void invoke_rcu_callbacks_kthread(void)
1331 {
1332         WARN_ON_ONCE(1);
1333 }
1334
1335 static bool rcu_is_callbacks_kthread(void)
1336 {
1337         return false;
1338 }
1339
1340 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1341 {
1342 }
1343
1344 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1345 {
1346 }
1347
1348 static void __init rcu_spawn_boost_kthreads(void)
1349 {
1350 }
1351
1352 static void rcu_prepare_kthreads(int cpu)
1353 {
1354 }
1355
1356 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1357
1358 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1359
1360 /*
1361  * Check to see if any future RCU-related work will need to be done
1362  * by the current CPU, even if none need be done immediately, returning
1363  * 1 if so.  This function is part of the RCU implementation; it is -not-
1364  * an exported member of the RCU API.
1365  *
1366  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1367  * any flavor of RCU.
1368  */
1369 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1370 int rcu_needs_cpu(unsigned long *delta_jiffies)
1371 {
1372         *delta_jiffies = ULONG_MAX;
1373         return rcu_cpu_has_callbacks(NULL);
1374 }
1375 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1376
1377 /*
1378  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1379  * after it.
1380  */
1381 static void rcu_cleanup_after_idle(void)
1382 {
1383 }
1384
1385 /*
1386  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1387  * is nothing.
1388  */
1389 static void rcu_prepare_for_idle(void)
1390 {
1391 }
1392
1393 /*
1394  * Don't bother keeping a running count of the number of RCU callbacks
1395  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1396  */
1397 static void rcu_idle_count_callbacks_posted(void)
1398 {
1399 }
1400
1401 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1402
1403 /*
1404  * This code is invoked when a CPU goes idle, at which point we want
1405  * to have the CPU do everything required for RCU so that it can enter
1406  * the energy-efficient dyntick-idle mode.  This is handled by a
1407  * state machine implemented by rcu_prepare_for_idle() below.
1408  *
1409  * The following three proprocessor symbols control this state machine:
1410  *
1411  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1412  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1413  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1414  *      benchmarkers who might otherwise be tempted to set this to a large
1415  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1416  *      system.  And if you are -that- concerned about energy efficiency,
1417  *      just power the system down and be done with it!
1418  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1419  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1420  *      callbacks pending.  Setting this too high can OOM your system.
1421  *
1422  * The values below work well in practice.  If future workloads require
1423  * adjustment, they can be converted into kernel config parameters, though
1424  * making the state machine smarter might be a better option.
1425  */
1426 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1427 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1428
1429 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1430 module_param(rcu_idle_gp_delay, int, 0644);
1431 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1432 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1433
1434 extern int tick_nohz_active;
1435
1436 /*
1437  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1438  * only if it has been awhile since the last time we did so.  Afterwards,
1439  * if there are any callbacks ready for immediate invocation, return true.
1440  */
1441 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1442 {
1443         bool cbs_ready = false;
1444         struct rcu_data *rdp;
1445         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1446         struct rcu_node *rnp;
1447         struct rcu_state *rsp;
1448
1449         /* Exit early if we advanced recently. */
1450         if (jiffies == rdtp->last_advance_all)
1451                 return false;
1452         rdtp->last_advance_all = jiffies;
1453
1454         for_each_rcu_flavor(rsp) {
1455                 rdp = this_cpu_ptr(rsp->rda);
1456                 rnp = rdp->mynode;
1457
1458                 /*
1459                  * Don't bother checking unless a grace period has
1460                  * completed since we last checked and there are
1461                  * callbacks not yet ready to invoke.
1462                  */
1463                 if ((rdp->completed != rnp->completed ||
1464                      unlikely(READ_ONCE(rdp->gpwrap))) &&
1465                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1466                         note_gp_changes(rsp, rdp);
1467
1468                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1469                         cbs_ready = true;
1470         }
1471         return cbs_ready;
1472 }
1473
1474 /*
1475  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1476  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1477  * caller to set the timeout based on whether or not there are non-lazy
1478  * callbacks.
1479  *
1480  * The caller must have disabled interrupts.
1481  */
1482 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1483 int rcu_needs_cpu(unsigned long *dj)
1484 {
1485         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1486
1487         /* Snapshot to detect later posting of non-lazy callback. */
1488         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1489
1490         /* If no callbacks, RCU doesn't need the CPU. */
1491         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1492                 *dj = ULONG_MAX;
1493                 return 0;
1494         }
1495
1496         /* Attempt to advance callbacks. */
1497         if (rcu_try_advance_all_cbs()) {
1498                 /* Some ready to invoke, so initiate later invocation. */
1499                 invoke_rcu_core();
1500                 return 1;
1501         }
1502         rdtp->last_accelerate = jiffies;
1503
1504         /* Request timer delay depending on laziness, and round. */
1505         if (!rdtp->all_lazy) {
1506                 *dj = round_up(rcu_idle_gp_delay + jiffies,
1507                                rcu_idle_gp_delay) - jiffies;
1508         } else {
1509                 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1510         }
1511         return 0;
1512 }
1513 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1514
1515 /*
1516  * Prepare a CPU for idle from an RCU perspective.  The first major task
1517  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1518  * The second major task is to check to see if a non-lazy callback has
1519  * arrived at a CPU that previously had only lazy callbacks.  The third
1520  * major task is to accelerate (that is, assign grace-period numbers to)
1521  * any recently arrived callbacks.
1522  *
1523  * The caller must have disabled interrupts.
1524  */
1525 static void rcu_prepare_for_idle(void)
1526 {
1527 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1528         bool needwake;
1529         struct rcu_data *rdp;
1530         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1531         struct rcu_node *rnp;
1532         struct rcu_state *rsp;
1533         int tne;
1534
1535         /* Handle nohz enablement switches conservatively. */
1536         tne = READ_ONCE(tick_nohz_active);
1537         if (tne != rdtp->tick_nohz_enabled_snap) {
1538                 if (rcu_cpu_has_callbacks(NULL))
1539                         invoke_rcu_core(); /* force nohz to see update. */
1540                 rdtp->tick_nohz_enabled_snap = tne;
1541                 return;
1542         }
1543         if (!tne)
1544                 return;
1545
1546         /* If this is a no-CBs CPU, no callbacks, just return. */
1547         if (rcu_is_nocb_cpu(smp_processor_id()))
1548                 return;
1549
1550         /*
1551          * If a non-lazy callback arrived at a CPU having only lazy
1552          * callbacks, invoke RCU core for the side-effect of recalculating
1553          * idle duration on re-entry to idle.
1554          */
1555         if (rdtp->all_lazy &&
1556             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1557                 rdtp->all_lazy = false;
1558                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1559                 invoke_rcu_core();
1560                 return;
1561         }
1562
1563         /*
1564          * If we have not yet accelerated this jiffy, accelerate all
1565          * callbacks on this CPU.
1566          */
1567         if (rdtp->last_accelerate == jiffies)
1568                 return;
1569         rdtp->last_accelerate = jiffies;
1570         for_each_rcu_flavor(rsp) {
1571                 rdp = this_cpu_ptr(rsp->rda);
1572                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1573                         continue;
1574                 rnp = rdp->mynode;
1575                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1576                 smp_mb__after_unlock_lock();
1577                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1578                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1579                 if (needwake)
1580                         rcu_gp_kthread_wake(rsp);
1581         }
1582 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1583 }
1584
1585 /*
1586  * Clean up for exit from idle.  Attempt to advance callbacks based on
1587  * any grace periods that elapsed while the CPU was idle, and if any
1588  * callbacks are now ready to invoke, initiate invocation.
1589  */
1590 static void rcu_cleanup_after_idle(void)
1591 {
1592 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1593         if (rcu_is_nocb_cpu(smp_processor_id()))
1594                 return;
1595         if (rcu_try_advance_all_cbs())
1596                 invoke_rcu_core();
1597 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1598 }
1599
1600 /*
1601  * Keep a running count of the number of non-lazy callbacks posted
1602  * on this CPU.  This running counter (which is never decremented) allows
1603  * rcu_prepare_for_idle() to detect when something out of the idle loop
1604  * posts a callback, even if an equal number of callbacks are invoked.
1605  * Of course, callbacks should only be posted from within a trace event
1606  * designed to be called from idle or from within RCU_NONIDLE().
1607  */
1608 static void rcu_idle_count_callbacks_posted(void)
1609 {
1610         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1611 }
1612
1613 /*
1614  * Data for flushing lazy RCU callbacks at OOM time.
1615  */
1616 static atomic_t oom_callback_count;
1617 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1618
1619 /*
1620  * RCU OOM callback -- decrement the outstanding count and deliver the
1621  * wake-up if we are the last one.
1622  */
1623 static void rcu_oom_callback(struct rcu_head *rhp)
1624 {
1625         if (atomic_dec_and_test(&oom_callback_count))
1626                 wake_up(&oom_callback_wq);
1627 }
1628
1629 /*
1630  * Post an rcu_oom_notify callback on the current CPU if it has at
1631  * least one lazy callback.  This will unnecessarily post callbacks
1632  * to CPUs that already have a non-lazy callback at the end of their
1633  * callback list, but this is an infrequent operation, so accept some
1634  * extra overhead to keep things simple.
1635  */
1636 static void rcu_oom_notify_cpu(void *unused)
1637 {
1638         struct rcu_state *rsp;
1639         struct rcu_data *rdp;
1640
1641         for_each_rcu_flavor(rsp) {
1642                 rdp = raw_cpu_ptr(rsp->rda);
1643                 if (rdp->qlen_lazy != 0) {
1644                         atomic_inc(&oom_callback_count);
1645                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1646                 }
1647         }
1648 }
1649
1650 /*
1651  * If low on memory, ensure that each CPU has a non-lazy callback.
1652  * This will wake up CPUs that have only lazy callbacks, in turn
1653  * ensuring that they free up the corresponding memory in a timely manner.
1654  * Because an uncertain amount of memory will be freed in some uncertain
1655  * timeframe, we do not claim to have freed anything.
1656  */
1657 static int rcu_oom_notify(struct notifier_block *self,
1658                           unsigned long notused, void *nfreed)
1659 {
1660         int cpu;
1661
1662         /* Wait for callbacks from earlier instance to complete. */
1663         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1664         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1665
1666         /*
1667          * Prevent premature wakeup: ensure that all increments happen
1668          * before there is a chance of the counter reaching zero.
1669          */
1670         atomic_set(&oom_callback_count, 1);
1671
1672         get_online_cpus();
1673         for_each_online_cpu(cpu) {
1674                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1675                 cond_resched_rcu_qs();
1676         }
1677         put_online_cpus();
1678
1679         /* Unconditionally decrement: no need to wake ourselves up. */
1680         atomic_dec(&oom_callback_count);
1681
1682         return NOTIFY_OK;
1683 }
1684
1685 static struct notifier_block rcu_oom_nb = {
1686         .notifier_call = rcu_oom_notify
1687 };
1688
1689 static int __init rcu_register_oom_notifier(void)
1690 {
1691         register_oom_notifier(&rcu_oom_nb);
1692         return 0;
1693 }
1694 early_initcall(rcu_register_oom_notifier);
1695
1696 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1697
1698 #ifdef CONFIG_RCU_CPU_STALL_INFO
1699
1700 #ifdef CONFIG_RCU_FAST_NO_HZ
1701
1702 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1703 {
1704         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1705         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1706
1707         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1708                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1709                 ulong2long(nlpd),
1710                 rdtp->all_lazy ? 'L' : '.',
1711                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1712 }
1713
1714 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1715
1716 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1717 {
1718         *cp = '\0';
1719 }
1720
1721 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1722
1723 /* Initiate the stall-info list. */
1724 static void print_cpu_stall_info_begin(void)
1725 {
1726         pr_cont("\n");
1727 }
1728
1729 /*
1730  * Print out diagnostic information for the specified stalled CPU.
1731  *
1732  * If the specified CPU is aware of the current RCU grace period
1733  * (flavor specified by rsp), then print the number of scheduling
1734  * clock interrupts the CPU has taken during the time that it has
1735  * been aware.  Otherwise, print the number of RCU grace periods
1736  * that this CPU is ignorant of, for example, "1" if the CPU was
1737  * aware of the previous grace period.
1738  *
1739  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1740  */
1741 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1742 {
1743         char fast_no_hz[72];
1744         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1745         struct rcu_dynticks *rdtp = rdp->dynticks;
1746         char *ticks_title;
1747         unsigned long ticks_value;
1748
1749         if (rsp->gpnum == rdp->gpnum) {
1750                 ticks_title = "ticks this GP";
1751                 ticks_value = rdp->ticks_this_gp;
1752         } else {
1753                 ticks_title = "GPs behind";
1754                 ticks_value = rsp->gpnum - rdp->gpnum;
1755         }
1756         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1757         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1758                cpu, ticks_value, ticks_title,
1759                atomic_read(&rdtp->dynticks) & 0xfff,
1760                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1761                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1762                READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1763                fast_no_hz);
1764 }
1765
1766 /* Terminate the stall-info list. */
1767 static void print_cpu_stall_info_end(void)
1768 {
1769         pr_err("\t");
1770 }
1771
1772 /* Zero ->ticks_this_gp for all flavors of RCU. */
1773 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1774 {
1775         rdp->ticks_this_gp = 0;
1776         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1777 }
1778
1779 /* Increment ->ticks_this_gp for all flavors of RCU. */
1780 static void increment_cpu_stall_ticks(void)
1781 {
1782         struct rcu_state *rsp;
1783
1784         for_each_rcu_flavor(rsp)
1785                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1786 }
1787
1788 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1789
1790 static void print_cpu_stall_info_begin(void)
1791 {
1792         pr_cont(" {");
1793 }
1794
1795 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1796 {
1797         pr_cont(" %d", cpu);
1798 }
1799
1800 static void print_cpu_stall_info_end(void)
1801 {
1802         pr_cont("} ");
1803 }
1804
1805 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1806 {
1807 }
1808
1809 static void increment_cpu_stall_ticks(void)
1810 {
1811 }
1812
1813 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1814
1815 #ifdef CONFIG_RCU_NOCB_CPU
1816
1817 /*
1818  * Offload callback processing from the boot-time-specified set of CPUs
1819  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1820  * kthread created that pulls the callbacks from the corresponding CPU,
1821  * waits for a grace period to elapse, and invokes the callbacks.
1822  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1823  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1824  * has been specified, in which case each kthread actively polls its
1825  * CPU.  (Which isn't so great for energy efficiency, but which does
1826  * reduce RCU's overhead on that CPU.)
1827  *
1828  * This is intended to be used in conjunction with Frederic Weisbecker's
1829  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1830  * running CPU-bound user-mode computations.
1831  *
1832  * Offloading of callback processing could also in theory be used as
1833  * an energy-efficiency measure because CPUs with no RCU callbacks
1834  * queued are more aggressive about entering dyntick-idle mode.
1835  */
1836
1837
1838 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1839 static int __init rcu_nocb_setup(char *str)
1840 {
1841         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1842         have_rcu_nocb_mask = true;
1843         cpulist_parse(str, rcu_nocb_mask);
1844         return 1;
1845 }
1846 __setup("rcu_nocbs=", rcu_nocb_setup);
1847
1848 static int __init parse_rcu_nocb_poll(char *arg)
1849 {
1850         rcu_nocb_poll = 1;
1851         return 0;
1852 }
1853 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1854
1855 /*
1856  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1857  * grace period.
1858  */
1859 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1860 {
1861         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1862 }
1863
1864 /*
1865  * Set the root rcu_node structure's ->need_future_gp field
1866  * based on the sum of those of all rcu_node structures.  This does
1867  * double-count the root rcu_node structure's requests, but this
1868  * is necessary to handle the possibility of a rcu_nocb_kthread()
1869  * having awakened during the time that the rcu_node structures
1870  * were being updated for the end of the previous grace period.
1871  */
1872 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1873 {
1874         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1875 }
1876
1877 static void rcu_init_one_nocb(struct rcu_node *rnp)
1878 {
1879         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1880         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1881 }
1882
1883 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1884 /* Is the specified CPU a no-CBs CPU? */
1885 bool rcu_is_nocb_cpu(int cpu)
1886 {
1887         if (have_rcu_nocb_mask)
1888                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1889         return false;
1890 }
1891 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1892
1893 /*
1894  * Kick the leader kthread for this NOCB group.
1895  */
1896 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1897 {
1898         struct rcu_data *rdp_leader = rdp->nocb_leader;
1899
1900         if (!READ_ONCE(rdp_leader->nocb_kthread))
1901                 return;
1902         if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1903                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1904                 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1905                 wake_up(&rdp_leader->nocb_wq);
1906         }
1907 }
1908
1909 /*
1910  * Does the specified CPU need an RCU callback for the specified flavor
1911  * of rcu_barrier()?
1912  */
1913 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1914 {
1915         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1916         unsigned long ret;
1917 #ifdef CONFIG_PROVE_RCU
1918         struct rcu_head *rhp;
1919 #endif /* #ifdef CONFIG_PROVE_RCU */
1920
1921         /*
1922          * Check count of all no-CBs callbacks awaiting invocation.
1923          * There needs to be a barrier before this function is called,
1924          * but associated with a prior determination that no more
1925          * callbacks would be posted.  In the worst case, the first
1926          * barrier in _rcu_barrier() suffices (but the caller cannot
1927          * necessarily rely on this, not a substitute for the caller
1928          * getting the concurrency design right!).  There must also be
1929          * a barrier between the following load an posting of a callback
1930          * (if a callback is in fact needed).  This is associated with an
1931          * atomic_inc() in the caller.
1932          */
1933         ret = atomic_long_read(&rdp->nocb_q_count);
1934
1935 #ifdef CONFIG_PROVE_RCU
1936         rhp = READ_ONCE(rdp->nocb_head);
1937         if (!rhp)
1938                 rhp = READ_ONCE(rdp->nocb_gp_head);
1939         if (!rhp)
1940                 rhp = READ_ONCE(rdp->nocb_follower_head);
1941
1942         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1943         if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1944             rcu_scheduler_fully_active) {
1945                 /* RCU callback enqueued before CPU first came online??? */
1946                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1947                        cpu, rhp->func);
1948                 WARN_ON_ONCE(1);
1949         }
1950 #endif /* #ifdef CONFIG_PROVE_RCU */
1951
1952         return !!ret;
1953 }
1954
1955 /*
1956  * Enqueue the specified string of rcu_head structures onto the specified
1957  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1958  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1959  * counts are supplied by rhcount and rhcount_lazy.
1960  *
1961  * If warranted, also wake up the kthread servicing this CPUs queues.
1962  */
1963 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1964                                     struct rcu_head *rhp,
1965                                     struct rcu_head **rhtp,
1966                                     int rhcount, int rhcount_lazy,
1967                                     unsigned long flags)
1968 {
1969         int len;
1970         struct rcu_head **old_rhpp;
1971         struct task_struct *t;
1972
1973         /* Enqueue the callback on the nocb list and update counts. */
1974         atomic_long_add(rhcount, &rdp->nocb_q_count);
1975         /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1976         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1977         WRITE_ONCE(*old_rhpp, rhp);
1978         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1979         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1980
1981         /* If we are not being polled and there is a kthread, awaken it ... */
1982         t = READ_ONCE(rdp->nocb_kthread);
1983         if (rcu_nocb_poll || !t) {
1984                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1985                                     TPS("WakeNotPoll"));
1986                 return;
1987         }
1988         len = atomic_long_read(&rdp->nocb_q_count);
1989         if (old_rhpp == &rdp->nocb_head) {
1990                 if (!irqs_disabled_flags(flags)) {
1991                         /* ... if queue was empty ... */
1992                         wake_nocb_leader(rdp, false);
1993                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1994                                             TPS("WakeEmpty"));
1995                 } else {
1996                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1997                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1998                                             TPS("WakeEmptyIsDeferred"));
1999                 }
2000                 rdp->qlen_last_fqs_check = 0;
2001         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2002                 /* ... or if many callbacks queued. */
2003                 if (!irqs_disabled_flags(flags)) {
2004                         wake_nocb_leader(rdp, true);
2005                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2006                                             TPS("WakeOvf"));
2007                 } else {
2008                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2009                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2010                                             TPS("WakeOvfIsDeferred"));
2011                 }
2012                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2013         } else {
2014                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2015         }
2016         return;
2017 }
2018
2019 /*
2020  * This is a helper for __call_rcu(), which invokes this when the normal
2021  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2022  * function returns failure back to __call_rcu(), which can complain
2023  * appropriately.
2024  *
2025  * Otherwise, this function queues the callback where the corresponding
2026  * "rcuo" kthread can find it.
2027  */
2028 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2029                             bool lazy, unsigned long flags)
2030 {
2031
2032         if (!rcu_is_nocb_cpu(rdp->cpu))
2033                 return false;
2034         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2035         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2036                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2037                                          (unsigned long)rhp->func,
2038                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2039                                          -atomic_long_read(&rdp->nocb_q_count));
2040         else
2041                 trace_rcu_callback(rdp->rsp->name, rhp,
2042                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2043                                    -atomic_long_read(&rdp->nocb_q_count));
2044
2045         /*
2046          * If called from an extended quiescent state with interrupts
2047          * disabled, invoke the RCU core in order to allow the idle-entry
2048          * deferred-wakeup check to function.
2049          */
2050         if (irqs_disabled_flags(flags) &&
2051             !rcu_is_watching() &&
2052             cpu_online(smp_processor_id()))
2053                 invoke_rcu_core();
2054
2055         return true;
2056 }
2057
2058 /*
2059  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2060  * not a no-CBs CPU.
2061  */
2062 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2063                                                      struct rcu_data *rdp,
2064                                                      unsigned long flags)
2065 {
2066         long ql = rsp->qlen;
2067         long qll = rsp->qlen_lazy;
2068
2069         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2070         if (!rcu_is_nocb_cpu(smp_processor_id()))
2071                 return false;
2072         rsp->qlen = 0;
2073         rsp->qlen_lazy = 0;
2074
2075         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2076         if (rsp->orphan_donelist != NULL) {
2077                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2078                                         rsp->orphan_donetail, ql, qll, flags);
2079                 ql = qll = 0;
2080                 rsp->orphan_donelist = NULL;
2081                 rsp->orphan_donetail = &rsp->orphan_donelist;
2082         }
2083         if (rsp->orphan_nxtlist != NULL) {
2084                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2085                                         rsp->orphan_nxttail, ql, qll, flags);
2086                 ql = qll = 0;
2087                 rsp->orphan_nxtlist = NULL;
2088                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2089         }
2090         return true;
2091 }
2092
2093 /*
2094  * If necessary, kick off a new grace period, and either way wait
2095  * for a subsequent grace period to complete.
2096  */
2097 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2098 {
2099         unsigned long c;
2100         bool d;
2101         unsigned long flags;
2102         bool needwake;
2103         struct rcu_node *rnp = rdp->mynode;
2104
2105         raw_spin_lock_irqsave(&rnp->lock, flags);
2106         smp_mb__after_unlock_lock();
2107         needwake = rcu_start_future_gp(rnp, rdp, &c);
2108         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2109         if (needwake)
2110                 rcu_gp_kthread_wake(rdp->rsp);
2111
2112         /*
2113          * Wait for the grace period.  Do so interruptibly to avoid messing
2114          * up the load average.
2115          */
2116         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2117         for (;;) {
2118                 wait_event_interruptible(
2119                         rnp->nocb_gp_wq[c & 0x1],
2120                         (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2121                 if (likely(d))
2122                         break;
2123                 WARN_ON(signal_pending(current));
2124                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2125         }
2126         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2127         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2128 }
2129
2130 /*
2131  * Leaders come here to wait for additional callbacks to show up.
2132  * This function does not return until callbacks appear.
2133  */
2134 static void nocb_leader_wait(struct rcu_data *my_rdp)
2135 {
2136         bool firsttime = true;
2137         bool gotcbs;
2138         struct rcu_data *rdp;
2139         struct rcu_head **tail;
2140
2141 wait_again:
2142
2143         /* Wait for callbacks to appear. */
2144         if (!rcu_nocb_poll) {
2145                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2146                 wait_event_interruptible(my_rdp->nocb_wq,
2147                                 !READ_ONCE(my_rdp->nocb_leader_sleep));
2148                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2149         } else if (firsttime) {
2150                 firsttime = false; /* Don't drown trace log with "Poll"! */
2151                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2152         }
2153
2154         /*
2155          * Each pass through the following loop checks a follower for CBs.
2156          * We are our own first follower.  Any CBs found are moved to
2157          * nocb_gp_head, where they await a grace period.
2158          */
2159         gotcbs = false;
2160         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2161                 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2162                 if (!rdp->nocb_gp_head)
2163                         continue;  /* No CBs here, try next follower. */
2164
2165                 /* Move callbacks to wait-for-GP list, which is empty. */
2166                 WRITE_ONCE(rdp->nocb_head, NULL);
2167                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2168                 gotcbs = true;
2169         }
2170
2171         /*
2172          * If there were no callbacks, sleep a bit, rescan after a
2173          * memory barrier, and go retry.
2174          */
2175         if (unlikely(!gotcbs)) {
2176                 if (!rcu_nocb_poll)
2177                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2178                                             "WokeEmpty");
2179                 WARN_ON(signal_pending(current));
2180                 schedule_timeout_interruptible(1);
2181
2182                 /* Rescan in case we were a victim of memory ordering. */
2183                 my_rdp->nocb_leader_sleep = true;
2184                 smp_mb();  /* Ensure _sleep true before scan. */
2185                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2186                         if (READ_ONCE(rdp->nocb_head)) {
2187                                 /* Found CB, so short-circuit next wait. */
2188                                 my_rdp->nocb_leader_sleep = false;
2189                                 break;
2190                         }
2191                 goto wait_again;
2192         }
2193
2194         /* Wait for one grace period. */
2195         rcu_nocb_wait_gp(my_rdp);
2196
2197         /*
2198          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2199          * We set it now, but recheck for new callbacks while
2200          * traversing our follower list.
2201          */
2202         my_rdp->nocb_leader_sleep = true;
2203         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2204
2205         /* Each pass through the following loop wakes a follower, if needed. */
2206         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2207                 if (READ_ONCE(rdp->nocb_head))
2208                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2209                 if (!rdp->nocb_gp_head)
2210                         continue; /* No CBs, so no need to wake follower. */
2211
2212                 /* Append callbacks to follower's "done" list. */
2213                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2214                 *tail = rdp->nocb_gp_head;
2215                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2216                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2217                         /*
2218                          * List was empty, wake up the follower.
2219                          * Memory barriers supplied by atomic_long_add().
2220                          */
2221                         wake_up(&rdp->nocb_wq);
2222                 }
2223         }
2224
2225         /* If we (the leader) don't have CBs, go wait some more. */
2226         if (!my_rdp->nocb_follower_head)
2227                 goto wait_again;
2228 }
2229
2230 /*
2231  * Followers come here to wait for additional callbacks to show up.
2232  * This function does not return until callbacks appear.
2233  */
2234 static void nocb_follower_wait(struct rcu_data *rdp)
2235 {
2236         bool firsttime = true;
2237
2238         for (;;) {
2239                 if (!rcu_nocb_poll) {
2240                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2241                                             "FollowerSleep");
2242                         wait_event_interruptible(rdp->nocb_wq,
2243                                                  READ_ONCE(rdp->nocb_follower_head));
2244                 } else if (firsttime) {
2245                         /* Don't drown trace log with "Poll"! */
2246                         firsttime = false;
2247                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2248                 }
2249                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2250                         /* ^^^ Ensure CB invocation follows _head test. */
2251                         return;
2252                 }
2253                 if (!rcu_nocb_poll)
2254                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2255                                             "WokeEmpty");
2256                 WARN_ON(signal_pending(current));
2257                 schedule_timeout_interruptible(1);
2258         }
2259 }
2260
2261 /*
2262  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2263  * callbacks queued by the corresponding no-CBs CPU, however, there is
2264  * an optional leader-follower relationship so that the grace-period
2265  * kthreads don't have to do quite so many wakeups.
2266  */
2267 static int rcu_nocb_kthread(void *arg)
2268 {
2269         int c, cl;
2270         struct rcu_head *list;
2271         struct rcu_head *next;
2272         struct rcu_head **tail;
2273         struct rcu_data *rdp = arg;
2274
2275         /* Each pass through this loop invokes one batch of callbacks */
2276         for (;;) {
2277                 /* Wait for callbacks. */
2278                 if (rdp->nocb_leader == rdp)
2279                         nocb_leader_wait(rdp);
2280                 else
2281                         nocb_follower_wait(rdp);
2282
2283                 /* Pull the ready-to-invoke callbacks onto local list. */
2284                 list = READ_ONCE(rdp->nocb_follower_head);
2285                 BUG_ON(!list);
2286                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2287                 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2288                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2289
2290                 /* Each pass through the following loop invokes a callback. */
2291                 trace_rcu_batch_start(rdp->rsp->name,
2292                                       atomic_long_read(&rdp->nocb_q_count_lazy),
2293                                       atomic_long_read(&rdp->nocb_q_count), -1);
2294                 c = cl = 0;
2295                 while (list) {
2296                         next = list->next;
2297                         /* Wait for enqueuing to complete, if needed. */
2298                         while (next == NULL && &list->next != tail) {
2299                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2300                                                     TPS("WaitQueue"));
2301                                 schedule_timeout_interruptible(1);
2302                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2303                                                     TPS("WokeQueue"));
2304                                 next = list->next;
2305                         }
2306                         debug_rcu_head_unqueue(list);
2307                         local_bh_disable();
2308                         if (__rcu_reclaim(rdp->rsp->name, list))
2309                                 cl++;
2310                         c++;
2311                         local_bh_enable();
2312                         list = next;
2313                 }
2314                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2315                 smp_mb__before_atomic();  /* _add after CB invocation. */
2316                 atomic_long_add(-c, &rdp->nocb_q_count);
2317                 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2318                 rdp->n_nocbs_invoked += c;
2319         }
2320         return 0;
2321 }
2322
2323 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2324 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2325 {
2326         return READ_ONCE(rdp->nocb_defer_wakeup);
2327 }
2328
2329 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2330 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2331 {
2332         int ndw;
2333
2334         if (!rcu_nocb_need_deferred_wakeup(rdp))
2335                 return;
2336         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2337         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2338         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2339         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2340 }
2341
2342 void __init rcu_init_nohz(void)
2343 {
2344         int cpu;
2345         bool need_rcu_nocb_mask = true;
2346         struct rcu_state *rsp;
2347
2348 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2349         need_rcu_nocb_mask = false;
2350 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2351
2352 #if defined(CONFIG_NO_HZ_FULL)
2353         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2354                 need_rcu_nocb_mask = true;
2355 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2356
2357         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2358                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2359                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2360                         return;
2361                 }
2362                 have_rcu_nocb_mask = true;
2363         }
2364         if (!have_rcu_nocb_mask)
2365                 return;
2366
2367 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2368         pr_info("\tOffload RCU callbacks from CPU 0\n");
2369         cpumask_set_cpu(0, rcu_nocb_mask);
2370 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2371 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2372         pr_info("\tOffload RCU callbacks from all CPUs\n");
2373         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2374 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2375 #if defined(CONFIG_NO_HZ_FULL)
2376         if (tick_nohz_full_running)
2377                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2378 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2379
2380         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2381                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2382                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2383                             rcu_nocb_mask);
2384         }
2385         pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2386                 cpumask_pr_args(rcu_nocb_mask));
2387         if (rcu_nocb_poll)
2388                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2389
2390         for_each_rcu_flavor(rsp) {
2391                 for_each_cpu(cpu, rcu_nocb_mask)
2392                         init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2393                 rcu_organize_nocb_kthreads(rsp);
2394         }
2395 }
2396
2397 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2398 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2399 {
2400         rdp->nocb_tail = &rdp->nocb_head;
2401         init_waitqueue_head(&rdp->nocb_wq);
2402         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2403 }
2404
2405 /*
2406  * If the specified CPU is a no-CBs CPU that does not already have its
2407  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2408  * brought online out of order, this can require re-organizing the
2409  * leader-follower relationships.
2410  */
2411 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2412 {
2413         struct rcu_data *rdp;
2414         struct rcu_data *rdp_last;
2415         struct rcu_data *rdp_old_leader;
2416         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2417         struct task_struct *t;
2418
2419         /*
2420          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2421          * then nothing to do.
2422          */
2423         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2424                 return;
2425
2426         /* If we didn't spawn the leader first, reorganize! */
2427         rdp_old_leader = rdp_spawn->nocb_leader;
2428         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2429                 rdp_last = NULL;
2430                 rdp = rdp_old_leader;
2431                 do {
2432                         rdp->nocb_leader = rdp_spawn;
2433                         if (rdp_last && rdp != rdp_spawn)
2434                                 rdp_last->nocb_next_follower = rdp;
2435                         if (rdp == rdp_spawn) {
2436                                 rdp = rdp->nocb_next_follower;
2437                         } else {
2438                                 rdp_last = rdp;
2439                                 rdp = rdp->nocb_next_follower;
2440                                 rdp_last->nocb_next_follower = NULL;
2441                         }
2442                 } while (rdp);
2443                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2444         }
2445
2446         /* Spawn the kthread for this CPU and RCU flavor. */
2447         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2448                         "rcuo%c/%d", rsp->abbr, cpu);
2449         BUG_ON(IS_ERR(t));
2450         WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2451 }
2452
2453 /*
2454  * If the specified CPU is a no-CBs CPU that does not already have its
2455  * rcuo kthreads, spawn them.
2456  */
2457 static void rcu_spawn_all_nocb_kthreads(int cpu)
2458 {
2459         struct rcu_state *rsp;
2460
2461         if (rcu_scheduler_fully_active)
2462                 for_each_rcu_flavor(rsp)
2463                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2464 }
2465
2466 /*
2467  * Once the scheduler is running, spawn rcuo kthreads for all online
2468  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2469  * non-boot CPUs come online -- if this changes, we will need to add
2470  * some mutual exclusion.
2471  */
2472 static void __init rcu_spawn_nocb_kthreads(void)
2473 {
2474         int cpu;
2475
2476         for_each_online_cpu(cpu)
2477                 rcu_spawn_all_nocb_kthreads(cpu);
2478 }
2479
2480 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2481 static int rcu_nocb_leader_stride = -1;
2482 module_param(rcu_nocb_leader_stride, int, 0444);
2483
2484 /*
2485  * Initialize leader-follower relationships for all no-CBs CPU.
2486  */
2487 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2488 {
2489         int cpu;
2490         int ls = rcu_nocb_leader_stride;
2491         int nl = 0;  /* Next leader. */
2492         struct rcu_data *rdp;
2493         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2494         struct rcu_data *rdp_prev = NULL;
2495
2496         if (!have_rcu_nocb_mask)
2497                 return;
2498         if (ls == -1) {
2499                 ls = int_sqrt(nr_cpu_ids);
2500                 rcu_nocb_leader_stride = ls;
2501         }
2502
2503         /*
2504          * Each pass through this loop sets up one rcu_data structure and
2505          * spawns one rcu_nocb_kthread().
2506          */
2507         for_each_cpu(cpu, rcu_nocb_mask) {
2508                 rdp = per_cpu_ptr(rsp->rda, cpu);
2509                 if (rdp->cpu >= nl) {
2510                         /* New leader, set up for followers & next leader. */
2511                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2512                         rdp->nocb_leader = rdp;
2513                         rdp_leader = rdp;
2514                 } else {
2515                         /* Another follower, link to previous leader. */
2516                         rdp->nocb_leader = rdp_leader;
2517                         rdp_prev->nocb_next_follower = rdp;
2518                 }
2519                 rdp_prev = rdp;
2520         }
2521 }
2522
2523 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2524 static bool init_nocb_callback_list(struct rcu_data *rdp)
2525 {
2526         if (!rcu_is_nocb_cpu(rdp->cpu))
2527                 return false;
2528
2529         /* If there are early-boot callbacks, move them to nocb lists. */
2530         if (rdp->nxtlist) {
2531                 rdp->nocb_head = rdp->nxtlist;
2532                 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2533                 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2534                 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2535                 rdp->nxtlist = NULL;
2536                 rdp->qlen = 0;
2537                 rdp->qlen_lazy = 0;
2538         }
2539         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2540         return true;
2541 }
2542
2543 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2544
2545 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2546 {
2547         WARN_ON_ONCE(1); /* Should be dead code. */
2548         return false;
2549 }
2550
2551 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2552 {
2553 }
2554
2555 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2556 {
2557 }
2558
2559 static void rcu_init_one_nocb(struct rcu_node *rnp)
2560 {
2561 }
2562
2563 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2564                             bool lazy, unsigned long flags)
2565 {
2566         return false;
2567 }
2568
2569 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2570                                                      struct rcu_data *rdp,
2571                                                      unsigned long flags)
2572 {
2573         return false;
2574 }
2575
2576 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2577 {
2578 }
2579
2580 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2581 {
2582         return false;
2583 }
2584
2585 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2586 {
2587 }
2588
2589 static void rcu_spawn_all_nocb_kthreads(int cpu)
2590 {
2591 }
2592
2593 static void __init rcu_spawn_nocb_kthreads(void)
2594 {
2595 }
2596
2597 static bool init_nocb_callback_list(struct rcu_data *rdp)
2598 {
2599         return false;
2600 }
2601
2602 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2603
2604 /*
2605  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2606  * arbitrarily long period of time with the scheduling-clock tick turned
2607  * off.  RCU will be paying attention to this CPU because it is in the
2608  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2609  * machine because the scheduling-clock tick has been disabled.  Therefore,
2610  * if an adaptive-ticks CPU is failing to respond to the current grace
2611  * period and has not be idle from an RCU perspective, kick it.
2612  */
2613 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2614 {
2615 #ifdef CONFIG_NO_HZ_FULL
2616         if (tick_nohz_full_cpu(cpu))
2617                 smp_send_reschedule(cpu);
2618 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2619 }
2620
2621
2622 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2623
2624 static int full_sysidle_state;          /* Current system-idle state. */
2625 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2626 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2627 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2628 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2629 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2630
2631 /*
2632  * Invoked to note exit from irq or task transition to idle.  Note that
2633  * usermode execution does -not- count as idle here!  After all, we want
2634  * to detect full-system idle states, not RCU quiescent states and grace
2635  * periods.  The caller must have disabled interrupts.
2636  */
2637 static void rcu_sysidle_enter(int irq)
2638 {
2639         unsigned long j;
2640         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2641
2642         /* If there are no nohz_full= CPUs, no need to track this. */
2643         if (!tick_nohz_full_enabled())
2644                 return;
2645
2646         /* Adjust nesting, check for fully idle. */
2647         if (irq) {
2648                 rdtp->dynticks_idle_nesting--;
2649                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2650                 if (rdtp->dynticks_idle_nesting != 0)
2651                         return;  /* Still not fully idle. */
2652         } else {
2653                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2654                     DYNTICK_TASK_NEST_VALUE) {
2655                         rdtp->dynticks_idle_nesting = 0;
2656                 } else {
2657                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2658                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2659                         return;  /* Still not fully idle. */
2660                 }
2661         }
2662
2663         /* Record start of fully idle period. */
2664         j = jiffies;
2665         WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2666         smp_mb__before_atomic();
2667         atomic_inc(&rdtp->dynticks_idle);
2668         smp_mb__after_atomic();
2669         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2670 }
2671
2672 /*
2673  * Unconditionally force exit from full system-idle state.  This is
2674  * invoked when a normal CPU exits idle, but must be called separately
2675  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2676  * is that the timekeeping CPU is permitted to take scheduling-clock
2677  * interrupts while the system is in system-idle state, and of course
2678  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2679  * interrupt from any other type of interrupt.
2680  */
2681 void rcu_sysidle_force_exit(void)
2682 {
2683         int oldstate = READ_ONCE(full_sysidle_state);
2684         int newoldstate;
2685
2686         /*
2687          * Each pass through the following loop attempts to exit full
2688          * system-idle state.  If contention proves to be a problem,
2689          * a trylock-based contention tree could be used here.
2690          */
2691         while (oldstate > RCU_SYSIDLE_SHORT) {
2692                 newoldstate = cmpxchg(&full_sysidle_state,
2693                                       oldstate, RCU_SYSIDLE_NOT);
2694                 if (oldstate == newoldstate &&
2695                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2696                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2697                         return; /* We cleared it, done! */
2698                 }
2699                 oldstate = newoldstate;
2700         }
2701         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2702 }
2703
2704 /*
2705  * Invoked to note entry to irq or task transition from idle.  Note that
2706  * usermode execution does -not- count as idle here!  The caller must
2707  * have disabled interrupts.
2708  */
2709 static void rcu_sysidle_exit(int irq)
2710 {
2711         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2712
2713         /* If there are no nohz_full= CPUs, no need to track this. */
2714         if (!tick_nohz_full_enabled())
2715                 return;
2716
2717         /* Adjust nesting, check for already non-idle. */
2718         if (irq) {
2719                 rdtp->dynticks_idle_nesting++;
2720                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2721                 if (rdtp->dynticks_idle_nesting != 1)
2722                         return; /* Already non-idle. */
2723         } else {
2724                 /*
2725                  * Allow for irq misnesting.  Yes, it really is possible
2726                  * to enter an irq handler then never leave it, and maybe
2727                  * also vice versa.  Handle both possibilities.
2728                  */
2729                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2730                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2731                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2732                         return; /* Already non-idle. */
2733                 } else {
2734                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2735                 }
2736         }
2737
2738         /* Record end of idle period. */
2739         smp_mb__before_atomic();
2740         atomic_inc(&rdtp->dynticks_idle);
2741         smp_mb__after_atomic();
2742         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2743
2744         /*
2745          * If we are the timekeeping CPU, we are permitted to be non-idle
2746          * during a system-idle state.  This must be the case, because
2747          * the timekeeping CPU has to take scheduling-clock interrupts
2748          * during the time that the system is transitioning to full
2749          * system-idle state.  This means that the timekeeping CPU must
2750          * invoke rcu_sysidle_force_exit() directly if it does anything
2751          * more than take a scheduling-clock interrupt.
2752          */
2753         if (smp_processor_id() == tick_do_timer_cpu)
2754                 return;
2755
2756         /* Update system-idle state: We are clearly no longer fully idle! */
2757         rcu_sysidle_force_exit();
2758 }
2759
2760 /*
2761  * Check to see if the current CPU is idle.  Note that usermode execution
2762  * does not count as idle.  The caller must have disabled interrupts,
2763  * and must be running on tick_do_timer_cpu.
2764  */
2765 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2766                                   unsigned long *maxj)
2767 {
2768         int cur;
2769         unsigned long j;
2770         struct rcu_dynticks *rdtp = rdp->dynticks;
2771
2772         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2773         if (!tick_nohz_full_enabled())
2774                 return;
2775
2776         /*
2777          * If some other CPU has already reported non-idle, if this is
2778          * not the flavor of RCU that tracks sysidle state, or if this
2779          * is an offline or the timekeeping CPU, nothing to do.
2780          */
2781         if (!*isidle || rdp->rsp != rcu_state_p ||
2782             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2783                 return;
2784         /* Verify affinity of current kthread. */
2785         WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2786
2787         /* Pick up current idle and NMI-nesting counter and check. */
2788         cur = atomic_read(&rdtp->dynticks_idle);
2789         if (cur & 0x1) {
2790                 *isidle = false; /* We are not idle! */
2791                 return;
2792         }
2793         smp_mb(); /* Read counters before timestamps. */
2794
2795         /* Pick up timestamps. */
2796         j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2797         /* If this CPU entered idle more recently, update maxj timestamp. */
2798         if (ULONG_CMP_LT(*maxj, j))
2799                 *maxj = j;
2800 }
2801
2802 /*
2803  * Is this the flavor of RCU that is handling full-system idle?
2804  */
2805 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2806 {
2807         return rsp == rcu_state_p;
2808 }
2809
2810 /*
2811  * Return a delay in jiffies based on the number of CPUs, rcu_node
2812  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2813  * systems more time to transition to full-idle state in order to
2814  * avoid the cache thrashing that otherwise occur on the state variable.
2815  * Really small systems (less than a couple of tens of CPUs) should
2816  * instead use a single global atomically incremented counter, and later
2817  * versions of this will automatically reconfigure themselves accordingly.
2818  */
2819 static unsigned long rcu_sysidle_delay(void)
2820 {
2821         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2822                 return 0;
2823         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2824 }
2825
2826 /*
2827  * Advance the full-system-idle state.  This is invoked when all of
2828  * the non-timekeeping CPUs are idle.
2829  */
2830 static void rcu_sysidle(unsigned long j)
2831 {
2832         /* Check the current state. */
2833         switch (READ_ONCE(full_sysidle_state)) {
2834         case RCU_SYSIDLE_NOT:
2835
2836                 /* First time all are idle, so note a short idle period. */
2837                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2838                 break;
2839
2840         case RCU_SYSIDLE_SHORT:
2841
2842                 /*
2843                  * Idle for a bit, time to advance to next state?
2844                  * cmpxchg failure means race with non-idle, let them win.
2845                  */
2846                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2847                         (void)cmpxchg(&full_sysidle_state,
2848                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2849                 break;
2850
2851         case RCU_SYSIDLE_LONG:
2852
2853                 /*
2854                  * Do an additional check pass before advancing to full.
2855                  * cmpxchg failure means race with non-idle, let them win.
2856                  */
2857                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2858                         (void)cmpxchg(&full_sysidle_state,
2859                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2860                 break;
2861
2862         default:
2863                 break;
2864         }
2865 }
2866
2867 /*
2868  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2869  * back to the beginning.
2870  */
2871 static void rcu_sysidle_cancel(void)
2872 {
2873         smp_mb();
2874         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2875                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2876 }
2877
2878 /*
2879  * Update the sysidle state based on the results of a force-quiescent-state
2880  * scan of the CPUs' dyntick-idle state.
2881  */
2882 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2883                                unsigned long maxj, bool gpkt)
2884 {
2885         if (rsp != rcu_state_p)
2886                 return;  /* Wrong flavor, ignore. */
2887         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2888                 return;  /* Running state machine from timekeeping CPU. */
2889         if (isidle)
2890                 rcu_sysidle(maxj);    /* More idle! */
2891         else
2892                 rcu_sysidle_cancel(); /* Idle is over. */
2893 }
2894
2895 /*
2896  * Wrapper for rcu_sysidle_report() when called from the grace-period
2897  * kthread's context.
2898  */
2899 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2900                                   unsigned long maxj)
2901 {
2902         /* If there are no nohz_full= CPUs, no need to track this. */
2903         if (!tick_nohz_full_enabled())
2904                 return;
2905
2906         rcu_sysidle_report(rsp, isidle, maxj, true);
2907 }
2908
2909 /* Callback and function for forcing an RCU grace period. */
2910 struct rcu_sysidle_head {
2911         struct rcu_head rh;
2912         int inuse;
2913 };
2914
2915 static void rcu_sysidle_cb(struct rcu_head *rhp)
2916 {
2917         struct rcu_sysidle_head *rshp;
2918
2919         /*
2920          * The following memory barrier is needed to replace the
2921          * memory barriers that would normally be in the memory
2922          * allocator.
2923          */
2924         smp_mb();  /* grace period precedes setting inuse. */
2925
2926         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2927         WRITE_ONCE(rshp->inuse, 0);
2928 }
2929
2930 /*
2931  * Check to see if the system is fully idle, other than the timekeeping CPU.
2932  * The caller must have disabled interrupts.  This is not intended to be
2933  * called unless tick_nohz_full_enabled().
2934  */
2935 bool rcu_sys_is_idle(void)
2936 {
2937         static struct rcu_sysidle_head rsh;
2938         int rss = READ_ONCE(full_sysidle_state);
2939
2940         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2941                 return false;
2942
2943         /* Handle small-system case by doing a full scan of CPUs. */
2944         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2945                 int oldrss = rss - 1;
2946
2947                 /*
2948                  * One pass to advance to each state up to _FULL.
2949                  * Give up if any pass fails to advance the state.
2950                  */
2951                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2952                         int cpu;
2953                         bool isidle = true;
2954                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2955                         struct rcu_data *rdp;
2956
2957                         /* Scan all the CPUs looking for nonidle CPUs. */
2958                         for_each_possible_cpu(cpu) {
2959                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2960                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2961                                 if (!isidle)
2962                                         break;
2963                         }
2964                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2965                         oldrss = rss;
2966                         rss = READ_ONCE(full_sysidle_state);
2967                 }
2968         }
2969
2970         /* If this is the first observation of an idle period, record it. */
2971         if (rss == RCU_SYSIDLE_FULL) {
2972                 rss = cmpxchg(&full_sysidle_state,
2973                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2974                 return rss == RCU_SYSIDLE_FULL;
2975         }
2976
2977         smp_mb(); /* ensure rss load happens before later caller actions. */
2978
2979         /* If already fully idle, tell the caller (in case of races). */
2980         if (rss == RCU_SYSIDLE_FULL_NOTED)
2981                 return true;
2982
2983         /*
2984          * If we aren't there yet, and a grace period is not in flight,
2985          * initiate a grace period.  Either way, tell the caller that
2986          * we are not there yet.  We use an xchg() rather than an assignment
2987          * to make up for the memory barriers that would otherwise be
2988          * provided by the memory allocator.
2989          */
2990         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2991             !rcu_gp_in_progress(rcu_state_p) &&
2992             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2993                 call_rcu(&rsh.rh, rcu_sysidle_cb);
2994         return false;
2995 }
2996
2997 /*
2998  * Initialize dynticks sysidle state for CPUs coming online.
2999  */
3000 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3001 {
3002         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3003 }
3004
3005 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3006
3007 static void rcu_sysidle_enter(int irq)
3008 {
3009 }
3010
3011 static void rcu_sysidle_exit(int irq)
3012 {
3013 }
3014
3015 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3016                                   unsigned long *maxj)
3017 {
3018 }
3019
3020 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3021 {
3022         return false;
3023 }
3024
3025 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3026                                   unsigned long maxj)
3027 {
3028 }
3029
3030 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3031 {
3032 }
3033
3034 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3035
3036 /*
3037  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3038  * grace-period kthread will do force_quiescent_state() processing?
3039  * The idea is to avoid waking up RCU core processing on such a
3040  * CPU unless the grace period has extended for too long.
3041  *
3042  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3043  * CONFIG_RCU_NOCB_CPU CPUs.
3044  */
3045 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3046 {
3047 #ifdef CONFIG_NO_HZ_FULL
3048         if (tick_nohz_full_cpu(smp_processor_id()) &&
3049             (!rcu_gp_in_progress(rsp) ||
3050              ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3051                 return 1;
3052 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3053         return 0;
3054 }
3055
3056 /*
3057  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3058  * timekeeping CPU.
3059  */
3060 static void rcu_bind_gp_kthread(void)
3061 {
3062         int __maybe_unused cpu;
3063
3064         if (!tick_nohz_full_enabled())
3065                 return;
3066 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3067         cpu = tick_do_timer_cpu;
3068         if (cpu >= 0 && cpu < nr_cpu_ids)
3069                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3070 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3071         housekeeping_affine(current);
3072 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3073 }
3074
3075 /* Record the current task on dyntick-idle entry. */
3076 static void rcu_dynticks_task_enter(void)
3077 {
3078 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3079         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3080 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3081 }
3082
3083 /* Record no current task on dyntick-idle exit. */
3084 static void rcu_dynticks_task_exit(void)
3085 {
3086 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3087         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3088 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3089 }