]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/ipv4/tcp_input.c
Merge tag 'for-3.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi/usb...
[karo-tx-linux.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
114
115 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129         struct inet_connection_sock *icsk = inet_csk(sk);
130         const unsigned int lss = icsk->icsk_ack.last_seg_size;
131         unsigned int len;
132
133         icsk->icsk_ack.last_seg_size = 0;
134
135         /* skb->len may jitter because of SACKs, even if peer
136          * sends good full-sized frames.
137          */
138         len = skb_shinfo(skb)->gso_size ? : skb->len;
139         if (len >= icsk->icsk_ack.rcv_mss) {
140                 icsk->icsk_ack.rcv_mss = len;
141         } else {
142                 /* Otherwise, we make more careful check taking into account,
143                  * that SACKs block is variable.
144                  *
145                  * "len" is invariant segment length, including TCP header.
146                  */
147                 len += skb->data - skb_transport_header(skb);
148                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149                     /* If PSH is not set, packet should be
150                      * full sized, provided peer TCP is not badly broken.
151                      * This observation (if it is correct 8)) allows
152                      * to handle super-low mtu links fairly.
153                      */
154                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156                         /* Subtract also invariant (if peer is RFC compliant),
157                          * tcp header plus fixed timestamp option length.
158                          * Resulting "len" is MSS free of SACK jitter.
159                          */
160                         len -= tcp_sk(sk)->tcp_header_len;
161                         icsk->icsk_ack.last_seg_size = len;
162                         if (len == lss) {
163                                 icsk->icsk_ack.rcv_mss = len;
164                                 return;
165                         }
166                 }
167                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170         }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175         struct inet_connection_sock *icsk = inet_csk(sk);
176         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178         if (quickacks == 0)
179                 quickacks = 2;
180         if (quickacks > icsk->icsk_ack.quick)
181                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186         struct inet_connection_sock *icsk = inet_csk(sk);
187         tcp_incr_quickack(sk);
188         icsk->icsk_ack.pingpong = 0;
189         icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195
196 static inline int tcp_in_quickack_mode(const struct sock *sk)
197 {
198         const struct inet_connection_sock *icsk = inet_csk(sk);
199         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
200 }
201
202 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
203 {
204         if (tp->ecn_flags & TCP_ECN_OK)
205                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
206 }
207
208 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
209 {
210         if (tcp_hdr(skb)->cwr)
211                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213
214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
215 {
216         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 }
218
219 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
220 {
221         if (!(tp->ecn_flags & TCP_ECN_OK))
222                 return;
223
224         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225         case INET_ECN_NOT_ECT:
226                 /* Funny extension: if ECT is not set on a segment,
227                  * and we already seen ECT on a previous segment,
228                  * it is probably a retransmit.
229                  */
230                 if (tp->ecn_flags & TCP_ECN_SEEN)
231                         tcp_enter_quickack_mode((struct sock *)tp);
232                 break;
233         case INET_ECN_CE:
234                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
235                 /* fallinto */
236         default:
237                 tp->ecn_flags |= TCP_ECN_SEEN;
238         }
239 }
240
241 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
242 {
243         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
244                 tp->ecn_flags &= ~TCP_ECN_OK;
245 }
246
247 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
250                 tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252
253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
254 {
255         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
256                 return 1;
257         return 0;
258 }
259
260 /* Buffer size and advertised window tuning.
261  *
262  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
263  */
264
265 static void tcp_fixup_sndbuf(struct sock *sk)
266 {
267         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
268
269         sndmem *= TCP_INIT_CWND;
270         if (sk->sk_sndbuf < sndmem)
271                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
272 }
273
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
275  *
276  * All tcp_full_space() is split to two parts: "network" buffer, allocated
277  * forward and advertised in receiver window (tp->rcv_wnd) and
278  * "application buffer", required to isolate scheduling/application
279  * latencies from network.
280  * window_clamp is maximal advertised window. It can be less than
281  * tcp_full_space(), in this case tcp_full_space() - window_clamp
282  * is reserved for "application" buffer. The less window_clamp is
283  * the smoother our behaviour from viewpoint of network, but the lower
284  * throughput and the higher sensitivity of the connection to losses. 8)
285  *
286  * rcv_ssthresh is more strict window_clamp used at "slow start"
287  * phase to predict further behaviour of this connection.
288  * It is used for two goals:
289  * - to enforce header prediction at sender, even when application
290  *   requires some significant "application buffer". It is check #1.
291  * - to prevent pruning of receive queue because of misprediction
292  *   of receiver window. Check #2.
293  *
294  * The scheme does not work when sender sends good segments opening
295  * window and then starts to feed us spaghetti. But it should work
296  * in common situations. Otherwise, we have to rely on queue collapsing.
297  */
298
299 /* Slow part of check#2. */
300 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
301 {
302         struct tcp_sock *tp = tcp_sk(sk);
303         /* Optimize this! */
304         int truesize = tcp_win_from_space(skb->truesize) >> 1;
305         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
306
307         while (tp->rcv_ssthresh <= window) {
308                 if (truesize <= skb->len)
309                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
310
311                 truesize >>= 1;
312                 window >>= 1;
313         }
314         return 0;
315 }
316
317 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
318 {
319         struct tcp_sock *tp = tcp_sk(sk);
320
321         /* Check #1 */
322         if (tp->rcv_ssthresh < tp->window_clamp &&
323             (int)tp->rcv_ssthresh < tcp_space(sk) &&
324             !sk_under_memory_pressure(sk)) {
325                 int incr;
326
327                 /* Check #2. Increase window, if skb with such overhead
328                  * will fit to rcvbuf in future.
329                  */
330                 if (tcp_win_from_space(skb->truesize) <= skb->len)
331                         incr = 2 * tp->advmss;
332                 else
333                         incr = __tcp_grow_window(sk, skb);
334
335                 if (incr) {
336                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
337                                                tp->window_clamp);
338                         inet_csk(sk)->icsk_ack.quick |= 1;
339                 }
340         }
341 }
342
343 /* 3. Tuning rcvbuf, when connection enters established state. */
344
345 static void tcp_fixup_rcvbuf(struct sock *sk)
346 {
347         u32 mss = tcp_sk(sk)->advmss;
348         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
349         int rcvmem;
350
351         /* Limit to 10 segments if mss <= 1460,
352          * or 14600/mss segments, with a minimum of two segments.
353          */
354         if (mss > 1460)
355                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
356
357         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
358         while (tcp_win_from_space(rcvmem) < mss)
359                 rcvmem += 128;
360
361         rcvmem *= icwnd;
362
363         if (sk->sk_rcvbuf < rcvmem)
364                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
365 }
366
367 /* 4. Try to fixup all. It is made immediately after connection enters
368  *    established state.
369  */
370 static void tcp_init_buffer_space(struct sock *sk)
371 {
372         struct tcp_sock *tp = tcp_sk(sk);
373         int maxwin;
374
375         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
376                 tcp_fixup_rcvbuf(sk);
377         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
378                 tcp_fixup_sndbuf(sk);
379
380         tp->rcvq_space.space = tp->rcv_wnd;
381
382         maxwin = tcp_full_space(sk);
383
384         if (tp->window_clamp >= maxwin) {
385                 tp->window_clamp = maxwin;
386
387                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
388                         tp->window_clamp = max(maxwin -
389                                                (maxwin >> sysctl_tcp_app_win),
390                                                4 * tp->advmss);
391         }
392
393         /* Force reservation of one segment. */
394         if (sysctl_tcp_app_win &&
395             tp->window_clamp > 2 * tp->advmss &&
396             tp->window_clamp + tp->advmss > maxwin)
397                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
398
399         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
400         tp->snd_cwnd_stamp = tcp_time_stamp;
401 }
402
403 /* 5. Recalculate window clamp after socket hit its memory bounds. */
404 static void tcp_clamp_window(struct sock *sk)
405 {
406         struct tcp_sock *tp = tcp_sk(sk);
407         struct inet_connection_sock *icsk = inet_csk(sk);
408
409         icsk->icsk_ack.quick = 0;
410
411         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
412             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
413             !sk_under_memory_pressure(sk) &&
414             sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
415                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
416                                     sysctl_tcp_rmem[2]);
417         }
418         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
419                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
420 }
421
422 /* Initialize RCV_MSS value.
423  * RCV_MSS is an our guess about MSS used by the peer.
424  * We haven't any direct information about the MSS.
425  * It's better to underestimate the RCV_MSS rather than overestimate.
426  * Overestimations make us ACKing less frequently than needed.
427  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
428  */
429 void tcp_initialize_rcv_mss(struct sock *sk)
430 {
431         const struct tcp_sock *tp = tcp_sk(sk);
432         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
433
434         hint = min(hint, tp->rcv_wnd / 2);
435         hint = min(hint, TCP_MSS_DEFAULT);
436         hint = max(hint, TCP_MIN_MSS);
437
438         inet_csk(sk)->icsk_ack.rcv_mss = hint;
439 }
440 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
441
442 /* Receiver "autotuning" code.
443  *
444  * The algorithm for RTT estimation w/o timestamps is based on
445  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
446  * <http://public.lanl.gov/radiant/pubs.html#DRS>
447  *
448  * More detail on this code can be found at
449  * <http://staff.psc.edu/jheffner/>,
450  * though this reference is out of date.  A new paper
451  * is pending.
452  */
453 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
454 {
455         u32 new_sample = tp->rcv_rtt_est.rtt;
456         long m = sample;
457
458         if (m == 0)
459                 m = 1;
460
461         if (new_sample != 0) {
462                 /* If we sample in larger samples in the non-timestamp
463                  * case, we could grossly overestimate the RTT especially
464                  * with chatty applications or bulk transfer apps which
465                  * are stalled on filesystem I/O.
466                  *
467                  * Also, since we are only going for a minimum in the
468                  * non-timestamp case, we do not smooth things out
469                  * else with timestamps disabled convergence takes too
470                  * long.
471                  */
472                 if (!win_dep) {
473                         m -= (new_sample >> 3);
474                         new_sample += m;
475                 } else if (m < new_sample)
476                         new_sample = m << 3;
477         } else {
478                 /* No previous measure. */
479                 new_sample = m << 3;
480         }
481
482         if (tp->rcv_rtt_est.rtt != new_sample)
483                 tp->rcv_rtt_est.rtt = new_sample;
484 }
485
486 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
487 {
488         if (tp->rcv_rtt_est.time == 0)
489                 goto new_measure;
490         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
491                 return;
492         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
493
494 new_measure:
495         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
496         tp->rcv_rtt_est.time = tcp_time_stamp;
497 }
498
499 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
500                                           const struct sk_buff *skb)
501 {
502         struct tcp_sock *tp = tcp_sk(sk);
503         if (tp->rx_opt.rcv_tsecr &&
504             (TCP_SKB_CB(skb)->end_seq -
505              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
506                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
507 }
508
509 /*
510  * This function should be called every time data is copied to user space.
511  * It calculates the appropriate TCP receive buffer space.
512  */
513 void tcp_rcv_space_adjust(struct sock *sk)
514 {
515         struct tcp_sock *tp = tcp_sk(sk);
516         int time;
517         int space;
518
519         if (tp->rcvq_space.time == 0)
520                 goto new_measure;
521
522         time = tcp_time_stamp - tp->rcvq_space.time;
523         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
524                 return;
525
526         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
527
528         space = max(tp->rcvq_space.space, space);
529
530         if (tp->rcvq_space.space != space) {
531                 int rcvmem;
532
533                 tp->rcvq_space.space = space;
534
535                 if (sysctl_tcp_moderate_rcvbuf &&
536                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
537                         int new_clamp = space;
538
539                         /* Receive space grows, normalize in order to
540                          * take into account packet headers and sk_buff
541                          * structure overhead.
542                          */
543                         space /= tp->advmss;
544                         if (!space)
545                                 space = 1;
546                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
547                         while (tcp_win_from_space(rcvmem) < tp->advmss)
548                                 rcvmem += 128;
549                         space *= rcvmem;
550                         space = min(space, sysctl_tcp_rmem[2]);
551                         if (space > sk->sk_rcvbuf) {
552                                 sk->sk_rcvbuf = space;
553
554                                 /* Make the window clamp follow along.  */
555                                 tp->window_clamp = new_clamp;
556                         }
557                 }
558         }
559
560 new_measure:
561         tp->rcvq_space.seq = tp->copied_seq;
562         tp->rcvq_space.time = tcp_time_stamp;
563 }
564
565 /* There is something which you must keep in mind when you analyze the
566  * behavior of the tp->ato delayed ack timeout interval.  When a
567  * connection starts up, we want to ack as quickly as possible.  The
568  * problem is that "good" TCP's do slow start at the beginning of data
569  * transmission.  The means that until we send the first few ACK's the
570  * sender will sit on his end and only queue most of his data, because
571  * he can only send snd_cwnd unacked packets at any given time.  For
572  * each ACK we send, he increments snd_cwnd and transmits more of his
573  * queue.  -DaveM
574  */
575 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
576 {
577         struct tcp_sock *tp = tcp_sk(sk);
578         struct inet_connection_sock *icsk = inet_csk(sk);
579         u32 now;
580
581         inet_csk_schedule_ack(sk);
582
583         tcp_measure_rcv_mss(sk, skb);
584
585         tcp_rcv_rtt_measure(tp);
586
587         now = tcp_time_stamp;
588
589         if (!icsk->icsk_ack.ato) {
590                 /* The _first_ data packet received, initialize
591                  * delayed ACK engine.
592                  */
593                 tcp_incr_quickack(sk);
594                 icsk->icsk_ack.ato = TCP_ATO_MIN;
595         } else {
596                 int m = now - icsk->icsk_ack.lrcvtime;
597
598                 if (m <= TCP_ATO_MIN / 2) {
599                         /* The fastest case is the first. */
600                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
601                 } else if (m < icsk->icsk_ack.ato) {
602                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
603                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
604                                 icsk->icsk_ack.ato = icsk->icsk_rto;
605                 } else if (m > icsk->icsk_rto) {
606                         /* Too long gap. Apparently sender failed to
607                          * restart window, so that we send ACKs quickly.
608                          */
609                         tcp_incr_quickack(sk);
610                         sk_mem_reclaim(sk);
611                 }
612         }
613         icsk->icsk_ack.lrcvtime = now;
614
615         TCP_ECN_check_ce(tp, skb);
616
617         if (skb->len >= 128)
618                 tcp_grow_window(sk, skb);
619 }
620
621 /* Called to compute a smoothed rtt estimate. The data fed to this
622  * routine either comes from timestamps, or from segments that were
623  * known _not_ to have been retransmitted [see Karn/Partridge
624  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
625  * piece by Van Jacobson.
626  * NOTE: the next three routines used to be one big routine.
627  * To save cycles in the RFC 1323 implementation it was better to break
628  * it up into three procedures. -- erics
629  */
630 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
631 {
632         struct tcp_sock *tp = tcp_sk(sk);
633         long m = mrtt; /* RTT */
634
635         /*      The following amusing code comes from Jacobson's
636          *      article in SIGCOMM '88.  Note that rtt and mdev
637          *      are scaled versions of rtt and mean deviation.
638          *      This is designed to be as fast as possible
639          *      m stands for "measurement".
640          *
641          *      On a 1990 paper the rto value is changed to:
642          *      RTO = rtt + 4 * mdev
643          *
644          * Funny. This algorithm seems to be very broken.
645          * These formulae increase RTO, when it should be decreased, increase
646          * too slowly, when it should be increased quickly, decrease too quickly
647          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
648          * does not matter how to _calculate_ it. Seems, it was trap
649          * that VJ failed to avoid. 8)
650          */
651         if (m == 0)
652                 m = 1;
653         if (tp->srtt != 0) {
654                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
655                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
656                 if (m < 0) {
657                         m = -m;         /* m is now abs(error) */
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                         /* This is similar to one of Eifel findings.
660                          * Eifel blocks mdev updates when rtt decreases.
661                          * This solution is a bit different: we use finer gain
662                          * for mdev in this case (alpha*beta).
663                          * Like Eifel it also prevents growth of rto,
664                          * but also it limits too fast rto decreases,
665                          * happening in pure Eifel.
666                          */
667                         if (m > 0)
668                                 m >>= 3;
669                 } else {
670                         m -= (tp->mdev >> 2);   /* similar update on mdev */
671                 }
672                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
673                 if (tp->mdev > tp->mdev_max) {
674                         tp->mdev_max = tp->mdev;
675                         if (tp->mdev_max > tp->rttvar)
676                                 tp->rttvar = tp->mdev_max;
677                 }
678                 if (after(tp->snd_una, tp->rtt_seq)) {
679                         if (tp->mdev_max < tp->rttvar)
680                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
681                         tp->rtt_seq = tp->snd_nxt;
682                         tp->mdev_max = tcp_rto_min(sk);
683                 }
684         } else {
685                 /* no previous measure. */
686                 tp->srtt = m << 3;      /* take the measured time to be rtt */
687                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
688                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
689                 tp->rtt_seq = tp->snd_nxt;
690         }
691 }
692
693 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
694  * routine referred to above.
695  */
696 static inline void tcp_set_rto(struct sock *sk)
697 {
698         const struct tcp_sock *tp = tcp_sk(sk);
699         /* Old crap is replaced with new one. 8)
700          *
701          * More seriously:
702          * 1. If rtt variance happened to be less 50msec, it is hallucination.
703          *    It cannot be less due to utterly erratic ACK generation made
704          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
705          *    to do with delayed acks, because at cwnd>2 true delack timeout
706          *    is invisible. Actually, Linux-2.4 also generates erratic
707          *    ACKs in some circumstances.
708          */
709         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
710
711         /* 2. Fixups made earlier cannot be right.
712          *    If we do not estimate RTO correctly without them,
713          *    all the algo is pure shit and should be replaced
714          *    with correct one. It is exactly, which we pretend to do.
715          */
716
717         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
718          * guarantees that rto is higher.
719          */
720         tcp_bound_rto(sk);
721 }
722
723 /* Save metrics learned by this TCP session.
724    This function is called only, when TCP finishes successfully
725    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
726  */
727 void tcp_update_metrics(struct sock *sk)
728 {
729         struct tcp_sock *tp = tcp_sk(sk);
730         struct dst_entry *dst = __sk_dst_get(sk);
731
732         if (sysctl_tcp_nometrics_save)
733                 return;
734
735         dst_confirm(dst);
736
737         if (dst && (dst->flags & DST_HOST)) {
738                 const struct inet_connection_sock *icsk = inet_csk(sk);
739                 int m;
740                 unsigned long rtt;
741
742                 if (icsk->icsk_backoff || !tp->srtt) {
743                         /* This session failed to estimate rtt. Why?
744                          * Probably, no packets returned in time.
745                          * Reset our results.
746                          */
747                         if (!(dst_metric_locked(dst, RTAX_RTT)))
748                                 dst_metric_set(dst, RTAX_RTT, 0);
749                         return;
750                 }
751
752                 rtt = dst_metric_rtt(dst, RTAX_RTT);
753                 m = rtt - tp->srtt;
754
755                 /* If newly calculated rtt larger than stored one,
756                  * store new one. Otherwise, use EWMA. Remember,
757                  * rtt overestimation is always better than underestimation.
758                  */
759                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
760                         if (m <= 0)
761                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
762                         else
763                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
764                 }
765
766                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
767                         unsigned long var;
768                         if (m < 0)
769                                 m = -m;
770
771                         /* Scale deviation to rttvar fixed point */
772                         m >>= 1;
773                         if (m < tp->mdev)
774                                 m = tp->mdev;
775
776                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
777                         if (m >= var)
778                                 var = m;
779                         else
780                                 var -= (var - m) >> 2;
781
782                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
783                 }
784
785                 if (tcp_in_initial_slowstart(tp)) {
786                         /* Slow start still did not finish. */
787                         if (dst_metric(dst, RTAX_SSTHRESH) &&
788                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
790                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
791                         if (!dst_metric_locked(dst, RTAX_CWND) &&
792                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
793                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
794                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
795                            icsk->icsk_ca_state == TCP_CA_Open) {
796                         /* Cong. avoidance phase, cwnd is reliable. */
797                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
798                                 dst_metric_set(dst, RTAX_SSTHRESH,
799                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
800                         if (!dst_metric_locked(dst, RTAX_CWND))
801                                 dst_metric_set(dst, RTAX_CWND,
802                                                (dst_metric(dst, RTAX_CWND) +
803                                                 tp->snd_cwnd) >> 1);
804                 } else {
805                         /* Else slow start did not finish, cwnd is non-sense,
806                            ssthresh may be also invalid.
807                          */
808                         if (!dst_metric_locked(dst, RTAX_CWND))
809                                 dst_metric_set(dst, RTAX_CWND,
810                                                (dst_metric(dst, RTAX_CWND) +
811                                                 tp->snd_ssthresh) >> 1);
812                         if (dst_metric(dst, RTAX_SSTHRESH) &&
813                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
814                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
815                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
816                 }
817
818                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
819                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
820                             tp->reordering != sysctl_tcp_reordering)
821                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
822                 }
823         }
824 }
825
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829
830         if (!cwnd)
831                 cwnd = TCP_INIT_CWND;
832         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834
835 /* Set slow start threshold and cwnd not falling to slow start */
836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837 {
838         struct tcp_sock *tp = tcp_sk(sk);
839         const struct inet_connection_sock *icsk = inet_csk(sk);
840
841         tp->prior_ssthresh = 0;
842         tp->bytes_acked = 0;
843         if (icsk->icsk_ca_state < TCP_CA_CWR) {
844                 tp->undo_marker = 0;
845                 if (set_ssthresh)
846                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847                 tp->snd_cwnd = min(tp->snd_cwnd,
848                                    tcp_packets_in_flight(tp) + 1U);
849                 tp->snd_cwnd_cnt = 0;
850                 tp->high_seq = tp->snd_nxt;
851                 tp->snd_cwnd_stamp = tcp_time_stamp;
852                 TCP_ECN_queue_cwr(tp);
853
854                 tcp_set_ca_state(sk, TCP_CA_CWR);
855         }
856 }
857
858 /*
859  * Packet counting of FACK is based on in-order assumptions, therefore TCP
860  * disables it when reordering is detected
861  */
862 static void tcp_disable_fack(struct tcp_sock *tp)
863 {
864         /* RFC3517 uses different metric in lost marker => reset on change */
865         if (tcp_is_fack(tp))
866                 tp->lost_skb_hint = NULL;
867         tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
868 }
869
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873         tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874 }
875
876 /* Initialize metrics on socket. */
877
878 static void tcp_init_metrics(struct sock *sk)
879 {
880         struct tcp_sock *tp = tcp_sk(sk);
881         struct dst_entry *dst = __sk_dst_get(sk);
882
883         if (dst == NULL)
884                 goto reset;
885
886         dst_confirm(dst);
887
888         if (dst_metric_locked(dst, RTAX_CWND))
889                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890         if (dst_metric(dst, RTAX_SSTHRESH)) {
891                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
894         } else {
895                 /* ssthresh may have been reduced unnecessarily during.
896                  * 3WHS. Restore it back to its initial default.
897                  */
898                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
899         }
900         if (dst_metric(dst, RTAX_REORDERING) &&
901             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
902                 tcp_disable_fack(tp);
903                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
904         }
905
906         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
907                 goto reset;
908
909         /* Initial rtt is determined from SYN,SYN-ACK.
910          * The segment is small and rtt may appear much
911          * less than real one. Use per-dst memory
912          * to make it more realistic.
913          *
914          * A bit of theory. RTT is time passed after "normal" sized packet
915          * is sent until it is ACKed. In normal circumstances sending small
916          * packets force peer to delay ACKs and calculation is correct too.
917          * The algorithm is adaptive and, provided we follow specs, it
918          * NEVER underestimate RTT. BUT! If peer tries to make some clever
919          * tricks sort of "quick acks" for time long enough to decrease RTT
920          * to low value, and then abruptly stops to do it and starts to delay
921          * ACKs, wait for troubles.
922          */
923         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
924                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
925                 tp->rtt_seq = tp->snd_nxt;
926         }
927         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
928                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
929                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930         }
931         tcp_set_rto(sk);
932 reset:
933         if (tp->srtt == 0) {
934                 /* RFC2988bis: We've failed to get a valid RTT sample from
935                  * 3WHS. This is most likely due to retransmission,
936                  * including spurious one. Reset the RTO back to 3secs
937                  * from the more aggressive 1sec to avoid more spurious
938                  * retransmission.
939                  */
940                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
941                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
942         }
943         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
944          * retransmitted. In light of RFC2988bis' more aggressive 1sec
945          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
946          * retransmission has occurred.
947          */
948         if (tp->total_retrans > 1)
949                 tp->snd_cwnd = 1;
950         else
951                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
952         tp->snd_cwnd_stamp = tcp_time_stamp;
953 }
954
955 static void tcp_update_reordering(struct sock *sk, const int metric,
956                                   const int ts)
957 {
958         struct tcp_sock *tp = tcp_sk(sk);
959         if (metric > tp->reordering) {
960                 int mib_idx;
961
962                 tp->reordering = min(TCP_MAX_REORDERING, metric);
963
964                 /* This exciting event is worth to be remembered. 8) */
965                 if (ts)
966                         mib_idx = LINUX_MIB_TCPTSREORDER;
967                 else if (tcp_is_reno(tp))
968                         mib_idx = LINUX_MIB_TCPRENOREORDER;
969                 else if (tcp_is_fack(tp))
970                         mib_idx = LINUX_MIB_TCPFACKREORDER;
971                 else
972                         mib_idx = LINUX_MIB_TCPSACKREORDER;
973
974                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
975 #if FASTRETRANS_DEBUG > 1
976                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
977                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
978                        tp->reordering,
979                        tp->fackets_out,
980                        tp->sacked_out,
981                        tp->undo_marker ? tp->undo_retrans : 0);
982 #endif
983                 tcp_disable_fack(tp);
984         }
985 }
986
987 /* This must be called before lost_out is incremented */
988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
989 {
990         if ((tp->retransmit_skb_hint == NULL) ||
991             before(TCP_SKB_CB(skb)->seq,
992                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
993                 tp->retransmit_skb_hint = skb;
994
995         if (!tp->lost_out ||
996             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
997                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
998 }
999
1000 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1001 {
1002         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003                 tcp_verify_retransmit_hint(tp, skb);
1004
1005                 tp->lost_out += tcp_skb_pcount(skb);
1006                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007         }
1008 }
1009
1010 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1011                                             struct sk_buff *skb)
1012 {
1013         tcp_verify_retransmit_hint(tp, skb);
1014
1015         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016                 tp->lost_out += tcp_skb_pcount(skb);
1017                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018         }
1019 }
1020
1021 /* This procedure tags the retransmission queue when SACKs arrive.
1022  *
1023  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024  * Packets in queue with these bits set are counted in variables
1025  * sacked_out, retrans_out and lost_out, correspondingly.
1026  *
1027  * Valid combinations are:
1028  * Tag  InFlight        Description
1029  * 0    1               - orig segment is in flight.
1030  * S    0               - nothing flies, orig reached receiver.
1031  * L    0               - nothing flies, orig lost by net.
1032  * R    2               - both orig and retransmit are in flight.
1033  * L|R  1               - orig is lost, retransmit is in flight.
1034  * S|R  1               - orig reached receiver, retrans is still in flight.
1035  * (L|S|R is logically valid, it could occur when L|R is sacked,
1036  *  but it is equivalent to plain S and code short-curcuits it to S.
1037  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1038  *
1039  * These 6 states form finite state machine, controlled by the following events:
1040  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042  * 3. Loss detection event of two flavors:
1043  *      A. Scoreboard estimator decided the packet is lost.
1044  *         A'. Reno "three dupacks" marks head of queue lost.
1045  *         A''. Its FACK modification, head until snd.fack is lost.
1046  *      B. SACK arrives sacking SND.NXT at the moment, when the
1047  *         segment was retransmitted.
1048  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1049  *
1050  * It is pleasant to note, that state diagram turns out to be commutative,
1051  * so that we are allowed not to be bothered by order of our actions,
1052  * when multiple events arrive simultaneously. (see the function below).
1053  *
1054  * Reordering detection.
1055  * --------------------
1056  * Reordering metric is maximal distance, which a packet can be displaced
1057  * in packet stream. With SACKs we can estimate it:
1058  *
1059  * 1. SACK fills old hole and the corresponding segment was not
1060  *    ever retransmitted -> reordering. Alas, we cannot use it
1061  *    when segment was retransmitted.
1062  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063  *    for retransmitted and already SACKed segment -> reordering..
1064  * Both of these heuristics are not used in Loss state, when we cannot
1065  * account for retransmits accurately.
1066  *
1067  * SACK block validation.
1068  * ----------------------
1069  *
1070  * SACK block range validation checks that the received SACK block fits to
1071  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072  * Note that SND.UNA is not included to the range though being valid because
1073  * it means that the receiver is rather inconsistent with itself reporting
1074  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075  * perfectly valid, however, in light of RFC2018 which explicitly states
1076  * that "SACK block MUST reflect the newest segment.  Even if the newest
1077  * segment is going to be discarded ...", not that it looks very clever
1078  * in case of head skb. Due to potentional receiver driven attacks, we
1079  * choose to avoid immediate execution of a walk in write queue due to
1080  * reneging and defer head skb's loss recovery to standard loss recovery
1081  * procedure that will eventually trigger (nothing forbids us doing this).
1082  *
1083  * Implements also blockage to start_seq wrap-around. Problem lies in the
1084  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085  * there's no guarantee that it will be before snd_nxt (n). The problem
1086  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1087  * wrap (s_w):
1088  *
1089  *         <- outs wnd ->                          <- wrapzone ->
1090  *         u     e      n                         u_w   e_w  s n_w
1091  *         |     |      |                          |     |   |  |
1092  * |<------------+------+----- TCP seqno space --------------+---------->|
1093  * ...-- <2^31 ->|                                           |<--------...
1094  * ...---- >2^31 ------>|                                    |<--------...
1095  *
1096  * Current code wouldn't be vulnerable but it's better still to discard such
1097  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100  * equal to the ideal case (infinite seqno space without wrap caused issues).
1101  *
1102  * With D-SACK the lower bound is extended to cover sequence space below
1103  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104  * again, D-SACK block must not to go across snd_una (for the same reason as
1105  * for the normal SACK blocks, explained above). But there all simplicity
1106  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107  * fully below undo_marker they do not affect behavior in anyway and can
1108  * therefore be safely ignored. In rare cases (which are more or less
1109  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110  * fragmentation and packet reordering past skb's retransmission. To consider
1111  * them correctly, the acceptable range must be extended even more though
1112  * the exact amount is rather hard to quantify. However, tp->max_window can
1113  * be used as an exaggerated estimate.
1114  */
1115 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1116                                   u32 start_seq, u32 end_seq)
1117 {
1118         /* Too far in future, or reversed (interpretation is ambiguous) */
1119         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1120                 return 0;
1121
1122         /* Nasty start_seq wrap-around check (see comments above) */
1123         if (!before(start_seq, tp->snd_nxt))
1124                 return 0;
1125
1126         /* In outstanding window? ...This is valid exit for D-SACKs too.
1127          * start_seq == snd_una is non-sensical (see comments above)
1128          */
1129         if (after(start_seq, tp->snd_una))
1130                 return 1;
1131
1132         if (!is_dsack || !tp->undo_marker)
1133                 return 0;
1134
1135         /* ...Then it's D-SACK, and must reside below snd_una completely */
1136         if (after(end_seq, tp->snd_una))
1137                 return 0;
1138
1139         if (!before(start_seq, tp->undo_marker))
1140                 return 1;
1141
1142         /* Too old */
1143         if (!after(end_seq, tp->undo_marker))
1144                 return 0;
1145
1146         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1147          *   start_seq < undo_marker and end_seq >= undo_marker.
1148          */
1149         return !before(start_seq, end_seq - tp->max_window);
1150 }
1151
1152 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153  * Event "B". Later note: FACK people cheated me again 8), we have to account
1154  * for reordering! Ugly, but should help.
1155  *
1156  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157  * less than what is now known to be received by the other end (derived from
1158  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159  * retransmitted skbs to avoid some costly processing per ACKs.
1160  */
1161 static void tcp_mark_lost_retrans(struct sock *sk)
1162 {
1163         const struct inet_connection_sock *icsk = inet_csk(sk);
1164         struct tcp_sock *tp = tcp_sk(sk);
1165         struct sk_buff *skb;
1166         int cnt = 0;
1167         u32 new_low_seq = tp->snd_nxt;
1168         u32 received_upto = tcp_highest_sack_seq(tp);
1169
1170         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1171             !after(received_upto, tp->lost_retrans_low) ||
1172             icsk->icsk_ca_state != TCP_CA_Recovery)
1173                 return;
1174
1175         tcp_for_write_queue(skb, sk) {
1176                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1177
1178                 if (skb == tcp_send_head(sk))
1179                         break;
1180                 if (cnt == tp->retrans_out)
1181                         break;
1182                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183                         continue;
1184
1185                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1186                         continue;
1187
1188                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1189                  * constraint here (see above) but figuring out that at
1190                  * least tp->reordering SACK blocks reside between ack_seq
1191                  * and received_upto is not easy task to do cheaply with
1192                  * the available datastructures.
1193                  *
1194                  * Whether FACK should check here for tp->reordering segs
1195                  * in-between one could argue for either way (it would be
1196                  * rather simple to implement as we could count fack_count
1197                  * during the walk and do tp->fackets_out - fack_count).
1198                  */
1199                 if (after(received_upto, ack_seq)) {
1200                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201                         tp->retrans_out -= tcp_skb_pcount(skb);
1202
1203                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1204                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1205                 } else {
1206                         if (before(ack_seq, new_low_seq))
1207                                 new_low_seq = ack_seq;
1208                         cnt += tcp_skb_pcount(skb);
1209                 }
1210         }
1211
1212         if (tp->retrans_out)
1213                 tp->lost_retrans_low = new_low_seq;
1214 }
1215
1216 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1217                            struct tcp_sack_block_wire *sp, int num_sacks,
1218                            u32 prior_snd_una)
1219 {
1220         struct tcp_sock *tp = tcp_sk(sk);
1221         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1222         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1223         int dup_sack = 0;
1224
1225         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1226                 dup_sack = 1;
1227                 tcp_dsack_seen(tp);
1228                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1229         } else if (num_sacks > 1) {
1230                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1231                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1232
1233                 if (!after(end_seq_0, end_seq_1) &&
1234                     !before(start_seq_0, start_seq_1)) {
1235                         dup_sack = 1;
1236                         tcp_dsack_seen(tp);
1237                         NET_INC_STATS_BH(sock_net(sk),
1238                                         LINUX_MIB_TCPDSACKOFORECV);
1239                 }
1240         }
1241
1242         /* D-SACK for already forgotten data... Do dumb counting. */
1243         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1244             !after(end_seq_0, prior_snd_una) &&
1245             after(end_seq_0, tp->undo_marker))
1246                 tp->undo_retrans--;
1247
1248         return dup_sack;
1249 }
1250
1251 struct tcp_sacktag_state {
1252         int reord;
1253         int fack_count;
1254         int flag;
1255 };
1256
1257 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258  * the incoming SACK may not exactly match but we can find smaller MSS
1259  * aligned portion of it that matches. Therefore we might need to fragment
1260  * which may fail and creates some hassle (caller must handle error case
1261  * returns).
1262  *
1263  * FIXME: this could be merged to shift decision code
1264  */
1265 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1266                                  u32 start_seq, u32 end_seq)
1267 {
1268         int in_sack, err;
1269         unsigned int pkt_len;
1270         unsigned int mss;
1271
1272         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1273                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1274
1275         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1276             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1277                 mss = tcp_skb_mss(skb);
1278                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1279
1280                 if (!in_sack) {
1281                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1282                         if (pkt_len < mss)
1283                                 pkt_len = mss;
1284                 } else {
1285                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1286                         if (pkt_len < mss)
1287                                 return -EINVAL;
1288                 }
1289
1290                 /* Round if necessary so that SACKs cover only full MSSes
1291                  * and/or the remaining small portion (if present)
1292                  */
1293                 if (pkt_len > mss) {
1294                         unsigned int new_len = (pkt_len / mss) * mss;
1295                         if (!in_sack && new_len < pkt_len) {
1296                                 new_len += mss;
1297                                 if (new_len > skb->len)
1298                                         return 0;
1299                         }
1300                         pkt_len = new_len;
1301                 }
1302                 err = tcp_fragment(sk, skb, pkt_len, mss);
1303                 if (err < 0)
1304                         return err;
1305         }
1306
1307         return in_sack;
1308 }
1309
1310 static u8 tcp_sacktag_one(const struct sk_buff *skb, struct sock *sk,
1311                           struct tcp_sacktag_state *state,
1312                           int dup_sack, int pcount)
1313 {
1314         struct tcp_sock *tp = tcp_sk(sk);
1315         u8 sacked = TCP_SKB_CB(skb)->sacked;
1316         int fack_count = state->fack_count;
1317
1318         /* Account D-SACK for retransmitted packet. */
1319         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1320                 if (tp->undo_marker && tp->undo_retrans &&
1321                     after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1322                         tp->undo_retrans--;
1323                 if (sacked & TCPCB_SACKED_ACKED)
1324                         state->reord = min(fack_count, state->reord);
1325         }
1326
1327         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1328         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1329                 return sacked;
1330
1331         if (!(sacked & TCPCB_SACKED_ACKED)) {
1332                 if (sacked & TCPCB_SACKED_RETRANS) {
1333                         /* If the segment is not tagged as lost,
1334                          * we do not clear RETRANS, believing
1335                          * that retransmission is still in flight.
1336                          */
1337                         if (sacked & TCPCB_LOST) {
1338                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1339                                 tp->lost_out -= pcount;
1340                                 tp->retrans_out -= pcount;
1341                         }
1342                 } else {
1343                         if (!(sacked & TCPCB_RETRANS)) {
1344                                 /* New sack for not retransmitted frame,
1345                                  * which was in hole. It is reordering.
1346                                  */
1347                                 if (before(TCP_SKB_CB(skb)->seq,
1348                                            tcp_highest_sack_seq(tp)))
1349                                         state->reord = min(fack_count,
1350                                                            state->reord);
1351
1352                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1353                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1354                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1355                         }
1356
1357                         if (sacked & TCPCB_LOST) {
1358                                 sacked &= ~TCPCB_LOST;
1359                                 tp->lost_out -= pcount;
1360                         }
1361                 }
1362
1363                 sacked |= TCPCB_SACKED_ACKED;
1364                 state->flag |= FLAG_DATA_SACKED;
1365                 tp->sacked_out += pcount;
1366
1367                 fack_count += pcount;
1368
1369                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1371                     before(TCP_SKB_CB(skb)->seq,
1372                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1373                         tp->lost_cnt_hint += pcount;
1374
1375                 if (fack_count > tp->fackets_out)
1376                         tp->fackets_out = fack_count;
1377         }
1378
1379         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1380          * frames and clear it. undo_retrans is decreased above, L|R frames
1381          * are accounted above as well.
1382          */
1383         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1384                 sacked &= ~TCPCB_SACKED_RETRANS;
1385                 tp->retrans_out -= pcount;
1386         }
1387
1388         return sacked;
1389 }
1390
1391 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1392                            struct tcp_sacktag_state *state,
1393                            unsigned int pcount, int shifted, int mss,
1394                            int dup_sack)
1395 {
1396         struct tcp_sock *tp = tcp_sk(sk);
1397         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1398
1399         BUG_ON(!pcount);
1400
1401         if (skb == tp->lost_skb_hint)
1402                 tp->lost_cnt_hint += pcount;
1403
1404         TCP_SKB_CB(prev)->end_seq += shifted;
1405         TCP_SKB_CB(skb)->seq += shifted;
1406
1407         skb_shinfo(prev)->gso_segs += pcount;
1408         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1409         skb_shinfo(skb)->gso_segs -= pcount;
1410
1411         /* When we're adding to gso_segs == 1, gso_size will be zero,
1412          * in theory this shouldn't be necessary but as long as DSACK
1413          * code can come after this skb later on it's better to keep
1414          * setting gso_size to something.
1415          */
1416         if (!skb_shinfo(prev)->gso_size) {
1417                 skb_shinfo(prev)->gso_size = mss;
1418                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1419         }
1420
1421         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1422         if (skb_shinfo(skb)->gso_segs <= 1) {
1423                 skb_shinfo(skb)->gso_size = 0;
1424                 skb_shinfo(skb)->gso_type = 0;
1425         }
1426
1427         /* We discard results */
1428         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1429
1430         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1431         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1432
1433         if (skb->len > 0) {
1434                 BUG_ON(!tcp_skb_pcount(skb));
1435                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1436                 return 0;
1437         }
1438
1439         /* Whole SKB was eaten :-) */
1440
1441         if (skb == tp->retransmit_skb_hint)
1442                 tp->retransmit_skb_hint = prev;
1443         if (skb == tp->scoreboard_skb_hint)
1444                 tp->scoreboard_skb_hint = prev;
1445         if (skb == tp->lost_skb_hint) {
1446                 tp->lost_skb_hint = prev;
1447                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1448         }
1449
1450         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1451         if (skb == tcp_highest_sack(sk))
1452                 tcp_advance_highest_sack(sk, skb);
1453
1454         tcp_unlink_write_queue(skb, sk);
1455         sk_wmem_free_skb(sk, skb);
1456
1457         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1458
1459         return 1;
1460 }
1461
1462 /* I wish gso_size would have a bit more sane initialization than
1463  * something-or-zero which complicates things
1464  */
1465 static int tcp_skb_seglen(const struct sk_buff *skb)
1466 {
1467         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1468 }
1469
1470 /* Shifting pages past head area doesn't work */
1471 static int skb_can_shift(const struct sk_buff *skb)
1472 {
1473         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1474 }
1475
1476 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1477  * skb.
1478  */
1479 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1480                                           struct tcp_sacktag_state *state,
1481                                           u32 start_seq, u32 end_seq,
1482                                           int dup_sack)
1483 {
1484         struct tcp_sock *tp = tcp_sk(sk);
1485         struct sk_buff *prev;
1486         int mss;
1487         int pcount = 0;
1488         int len;
1489         int in_sack;
1490
1491         if (!sk_can_gso(sk))
1492                 goto fallback;
1493
1494         /* Normally R but no L won't result in plain S */
1495         if (!dup_sack &&
1496             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1497                 goto fallback;
1498         if (!skb_can_shift(skb))
1499                 goto fallback;
1500         /* This frame is about to be dropped (was ACKed). */
1501         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1502                 goto fallback;
1503
1504         /* Can only happen with delayed DSACK + discard craziness */
1505         if (unlikely(skb == tcp_write_queue_head(sk)))
1506                 goto fallback;
1507         prev = tcp_write_queue_prev(sk, skb);
1508
1509         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1510                 goto fallback;
1511
1512         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1513                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1514
1515         if (in_sack) {
1516                 len = skb->len;
1517                 pcount = tcp_skb_pcount(skb);
1518                 mss = tcp_skb_seglen(skb);
1519
1520                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1521                  * drop this restriction as unnecessary
1522                  */
1523                 if (mss != tcp_skb_seglen(prev))
1524                         goto fallback;
1525         } else {
1526                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1527                         goto noop;
1528                 /* CHECKME: This is non-MSS split case only?, this will
1529                  * cause skipped skbs due to advancing loop btw, original
1530                  * has that feature too
1531                  */
1532                 if (tcp_skb_pcount(skb) <= 1)
1533                         goto noop;
1534
1535                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1536                 if (!in_sack) {
1537                         /* TODO: head merge to next could be attempted here
1538                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1539                          * though it might not be worth of the additional hassle
1540                          *
1541                          * ...we can probably just fallback to what was done
1542                          * previously. We could try merging non-SACKed ones
1543                          * as well but it probably isn't going to buy off
1544                          * because later SACKs might again split them, and
1545                          * it would make skb timestamp tracking considerably
1546                          * harder problem.
1547                          */
1548                         goto fallback;
1549                 }
1550
1551                 len = end_seq - TCP_SKB_CB(skb)->seq;
1552                 BUG_ON(len < 0);
1553                 BUG_ON(len > skb->len);
1554
1555                 /* MSS boundaries should be honoured or else pcount will
1556                  * severely break even though it makes things bit trickier.
1557                  * Optimize common case to avoid most of the divides
1558                  */
1559                 mss = tcp_skb_mss(skb);
1560
1561                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1562                  * drop this restriction as unnecessary
1563                  */
1564                 if (mss != tcp_skb_seglen(prev))
1565                         goto fallback;
1566
1567                 if (len == mss) {
1568                         pcount = 1;
1569                 } else if (len < mss) {
1570                         goto noop;
1571                 } else {
1572                         pcount = len / mss;
1573                         len = pcount * mss;
1574                 }
1575         }
1576
1577         if (!skb_shift(prev, skb, len))
1578                 goto fallback;
1579         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1580                 goto out;
1581
1582         /* Hole filled allows collapsing with the next as well, this is very
1583          * useful when hole on every nth skb pattern happens
1584          */
1585         if (prev == tcp_write_queue_tail(sk))
1586                 goto out;
1587         skb = tcp_write_queue_next(sk, prev);
1588
1589         if (!skb_can_shift(skb) ||
1590             (skb == tcp_send_head(sk)) ||
1591             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1592             (mss != tcp_skb_seglen(skb)))
1593                 goto out;
1594
1595         len = skb->len;
1596         if (skb_shift(prev, skb, len)) {
1597                 pcount += tcp_skb_pcount(skb);
1598                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1599         }
1600
1601 out:
1602         state->fack_count += pcount;
1603         return prev;
1604
1605 noop:
1606         return skb;
1607
1608 fallback:
1609         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1610         return NULL;
1611 }
1612
1613 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1614                                         struct tcp_sack_block *next_dup,
1615                                         struct tcp_sacktag_state *state,
1616                                         u32 start_seq, u32 end_seq,
1617                                         int dup_sack_in)
1618 {
1619         struct tcp_sock *tp = tcp_sk(sk);
1620         struct sk_buff *tmp;
1621
1622         tcp_for_write_queue_from(skb, sk) {
1623                 int in_sack = 0;
1624                 int dup_sack = dup_sack_in;
1625
1626                 if (skb == tcp_send_head(sk))
1627                         break;
1628
1629                 /* queue is in-order => we can short-circuit the walk early */
1630                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1631                         break;
1632
1633                 if ((next_dup != NULL) &&
1634                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1635                         in_sack = tcp_match_skb_to_sack(sk, skb,
1636                                                         next_dup->start_seq,
1637                                                         next_dup->end_seq);
1638                         if (in_sack > 0)
1639                                 dup_sack = 1;
1640                 }
1641
1642                 /* skb reference here is a bit tricky to get right, since
1643                  * shifting can eat and free both this skb and the next,
1644                  * so not even _safe variant of the loop is enough.
1645                  */
1646                 if (in_sack <= 0) {
1647                         tmp = tcp_shift_skb_data(sk, skb, state,
1648                                                  start_seq, end_seq, dup_sack);
1649                         if (tmp != NULL) {
1650                                 if (tmp != skb) {
1651                                         skb = tmp;
1652                                         continue;
1653                                 }
1654
1655                                 in_sack = 0;
1656                         } else {
1657                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1658                                                                 start_seq,
1659                                                                 end_seq);
1660                         }
1661                 }
1662
1663                 if (unlikely(in_sack < 0))
1664                         break;
1665
1666                 if (in_sack) {
1667                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1668                                                                   state,
1669                                                                   dup_sack,
1670                                                                   tcp_skb_pcount(skb));
1671
1672                         if (!before(TCP_SKB_CB(skb)->seq,
1673                                     tcp_highest_sack_seq(tp)))
1674                                 tcp_advance_highest_sack(sk, skb);
1675                 }
1676
1677                 state->fack_count += tcp_skb_pcount(skb);
1678         }
1679         return skb;
1680 }
1681
1682 /* Avoid all extra work that is being done by sacktag while walking in
1683  * a normal way
1684  */
1685 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1686                                         struct tcp_sacktag_state *state,
1687                                         u32 skip_to_seq)
1688 {
1689         tcp_for_write_queue_from(skb, sk) {
1690                 if (skb == tcp_send_head(sk))
1691                         break;
1692
1693                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1694                         break;
1695
1696                 state->fack_count += tcp_skb_pcount(skb);
1697         }
1698         return skb;
1699 }
1700
1701 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1702                                                 struct sock *sk,
1703                                                 struct tcp_sack_block *next_dup,
1704                                                 struct tcp_sacktag_state *state,
1705                                                 u32 skip_to_seq)
1706 {
1707         if (next_dup == NULL)
1708                 return skb;
1709
1710         if (before(next_dup->start_seq, skip_to_seq)) {
1711                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1712                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1713                                        next_dup->start_seq, next_dup->end_seq,
1714                                        1);
1715         }
1716
1717         return skb;
1718 }
1719
1720 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1721 {
1722         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1723 }
1724
1725 static int
1726 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1727                         u32 prior_snd_una)
1728 {
1729         const struct inet_connection_sock *icsk = inet_csk(sk);
1730         struct tcp_sock *tp = tcp_sk(sk);
1731         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1732                                     TCP_SKB_CB(ack_skb)->sacked);
1733         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1734         struct tcp_sack_block sp[TCP_NUM_SACKS];
1735         struct tcp_sack_block *cache;
1736         struct tcp_sacktag_state state;
1737         struct sk_buff *skb;
1738         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1739         int used_sacks;
1740         int found_dup_sack = 0;
1741         int i, j;
1742         int first_sack_index;
1743
1744         state.flag = 0;
1745         state.reord = tp->packets_out;
1746
1747         if (!tp->sacked_out) {
1748                 if (WARN_ON(tp->fackets_out))
1749                         tp->fackets_out = 0;
1750                 tcp_highest_sack_reset(sk);
1751         }
1752
1753         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1754                                          num_sacks, prior_snd_una);
1755         if (found_dup_sack)
1756                 state.flag |= FLAG_DSACKING_ACK;
1757
1758         /* Eliminate too old ACKs, but take into
1759          * account more or less fresh ones, they can
1760          * contain valid SACK info.
1761          */
1762         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1763                 return 0;
1764
1765         if (!tp->packets_out)
1766                 goto out;
1767
1768         used_sacks = 0;
1769         first_sack_index = 0;
1770         for (i = 0; i < num_sacks; i++) {
1771                 int dup_sack = !i && found_dup_sack;
1772
1773                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1774                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1775
1776                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1777                                             sp[used_sacks].start_seq,
1778                                             sp[used_sacks].end_seq)) {
1779                         int mib_idx;
1780
1781                         if (dup_sack) {
1782                                 if (!tp->undo_marker)
1783                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1784                                 else
1785                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1786                         } else {
1787                                 /* Don't count olds caused by ACK reordering */
1788                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1789                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1790                                         continue;
1791                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1792                         }
1793
1794                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1795                         if (i == 0)
1796                                 first_sack_index = -1;
1797                         continue;
1798                 }
1799
1800                 /* Ignore very old stuff early */
1801                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1802                         continue;
1803
1804                 used_sacks++;
1805         }
1806
1807         /* order SACK blocks to allow in order walk of the retrans queue */
1808         for (i = used_sacks - 1; i > 0; i--) {
1809                 for (j = 0; j < i; j++) {
1810                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1811                                 swap(sp[j], sp[j + 1]);
1812
1813                                 /* Track where the first SACK block goes to */
1814                                 if (j == first_sack_index)
1815                                         first_sack_index = j + 1;
1816                         }
1817                 }
1818         }
1819
1820         skb = tcp_write_queue_head(sk);
1821         state.fack_count = 0;
1822         i = 0;
1823
1824         if (!tp->sacked_out) {
1825                 /* It's already past, so skip checking against it */
1826                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1827         } else {
1828                 cache = tp->recv_sack_cache;
1829                 /* Skip empty blocks in at head of the cache */
1830                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1831                        !cache->end_seq)
1832                         cache++;
1833         }
1834
1835         while (i < used_sacks) {
1836                 u32 start_seq = sp[i].start_seq;
1837                 u32 end_seq = sp[i].end_seq;
1838                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1839                 struct tcp_sack_block *next_dup = NULL;
1840
1841                 if (found_dup_sack && ((i + 1) == first_sack_index))
1842                         next_dup = &sp[i + 1];
1843
1844                 /* Skip too early cached blocks */
1845                 while (tcp_sack_cache_ok(tp, cache) &&
1846                        !before(start_seq, cache->end_seq))
1847                         cache++;
1848
1849                 /* Can skip some work by looking recv_sack_cache? */
1850                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1851                     after(end_seq, cache->start_seq)) {
1852
1853                         /* Head todo? */
1854                         if (before(start_seq, cache->start_seq)) {
1855                                 skb = tcp_sacktag_skip(skb, sk, &state,
1856                                                        start_seq);
1857                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1858                                                        &state,
1859                                                        start_seq,
1860                                                        cache->start_seq,
1861                                                        dup_sack);
1862                         }
1863
1864                         /* Rest of the block already fully processed? */
1865                         if (!after(end_seq, cache->end_seq))
1866                                 goto advance_sp;
1867
1868                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1869                                                        &state,
1870                                                        cache->end_seq);
1871
1872                         /* ...tail remains todo... */
1873                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1874                                 /* ...but better entrypoint exists! */
1875                                 skb = tcp_highest_sack(sk);
1876                                 if (skb == NULL)
1877                                         break;
1878                                 state.fack_count = tp->fackets_out;
1879                                 cache++;
1880                                 goto walk;
1881                         }
1882
1883                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1884                         /* Check overlap against next cached too (past this one already) */
1885                         cache++;
1886                         continue;
1887                 }
1888
1889                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1890                         skb = tcp_highest_sack(sk);
1891                         if (skb == NULL)
1892                                 break;
1893                         state.fack_count = tp->fackets_out;
1894                 }
1895                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1896
1897 walk:
1898                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1899                                        start_seq, end_seq, dup_sack);
1900
1901 advance_sp:
1902                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1903                  * due to in-order walk
1904                  */
1905                 if (after(end_seq, tp->frto_highmark))
1906                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1907
1908                 i++;
1909         }
1910
1911         /* Clear the head of the cache sack blocks so we can skip it next time */
1912         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1913                 tp->recv_sack_cache[i].start_seq = 0;
1914                 tp->recv_sack_cache[i].end_seq = 0;
1915         }
1916         for (j = 0; j < used_sacks; j++)
1917                 tp->recv_sack_cache[i++] = sp[j];
1918
1919         tcp_mark_lost_retrans(sk);
1920
1921         tcp_verify_left_out(tp);
1922
1923         if ((state.reord < tp->fackets_out) &&
1924             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1925             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1926                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1927
1928 out:
1929
1930 #if FASTRETRANS_DEBUG > 0
1931         WARN_ON((int)tp->sacked_out < 0);
1932         WARN_ON((int)tp->lost_out < 0);
1933         WARN_ON((int)tp->retrans_out < 0);
1934         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1935 #endif
1936         return state.flag;
1937 }
1938
1939 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1940  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1941  */
1942 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1943 {
1944         u32 holes;
1945
1946         holes = max(tp->lost_out, 1U);
1947         holes = min(holes, tp->packets_out);
1948
1949         if ((tp->sacked_out + holes) > tp->packets_out) {
1950                 tp->sacked_out = tp->packets_out - holes;
1951                 return 1;
1952         }
1953         return 0;
1954 }
1955
1956 /* If we receive more dupacks than we expected counting segments
1957  * in assumption of absent reordering, interpret this as reordering.
1958  * The only another reason could be bug in receiver TCP.
1959  */
1960 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1961 {
1962         struct tcp_sock *tp = tcp_sk(sk);
1963         if (tcp_limit_reno_sacked(tp))
1964                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1965 }
1966
1967 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1968
1969 static void tcp_add_reno_sack(struct sock *sk)
1970 {
1971         struct tcp_sock *tp = tcp_sk(sk);
1972         tp->sacked_out++;
1973         tcp_check_reno_reordering(sk, 0);
1974         tcp_verify_left_out(tp);
1975 }
1976
1977 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1978
1979 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1980 {
1981         struct tcp_sock *tp = tcp_sk(sk);
1982
1983         if (acked > 0) {
1984                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1985                 if (acked - 1 >= tp->sacked_out)
1986                         tp->sacked_out = 0;
1987                 else
1988                         tp->sacked_out -= acked - 1;
1989         }
1990         tcp_check_reno_reordering(sk, acked);
1991         tcp_verify_left_out(tp);
1992 }
1993
1994 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1995 {
1996         tp->sacked_out = 0;
1997 }
1998
1999 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2000 {
2001         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2002 }
2003
2004 /* F-RTO can only be used if TCP has never retransmitted anything other than
2005  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2006  */
2007 int tcp_use_frto(struct sock *sk)
2008 {
2009         const struct tcp_sock *tp = tcp_sk(sk);
2010         const struct inet_connection_sock *icsk = inet_csk(sk);
2011         struct sk_buff *skb;
2012
2013         if (!sysctl_tcp_frto)
2014                 return 0;
2015
2016         /* MTU probe and F-RTO won't really play nicely along currently */
2017         if (icsk->icsk_mtup.probe_size)
2018                 return 0;
2019
2020         if (tcp_is_sackfrto(tp))
2021                 return 1;
2022
2023         /* Avoid expensive walking of rexmit queue if possible */
2024         if (tp->retrans_out > 1)
2025                 return 0;
2026
2027         skb = tcp_write_queue_head(sk);
2028         if (tcp_skb_is_last(sk, skb))
2029                 return 1;
2030         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2031         tcp_for_write_queue_from(skb, sk) {
2032                 if (skb == tcp_send_head(sk))
2033                         break;
2034                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2035                         return 0;
2036                 /* Short-circuit when first non-SACKed skb has been checked */
2037                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2038                         break;
2039         }
2040         return 1;
2041 }
2042
2043 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2044  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2045  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2046  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2047  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2048  * bits are handled if the Loss state is really to be entered (in
2049  * tcp_enter_frto_loss).
2050  *
2051  * Do like tcp_enter_loss() would; when RTO expires the second time it
2052  * does:
2053  *  "Reduce ssthresh if it has not yet been made inside this window."
2054  */
2055 void tcp_enter_frto(struct sock *sk)
2056 {
2057         const struct inet_connection_sock *icsk = inet_csk(sk);
2058         struct tcp_sock *tp = tcp_sk(sk);
2059         struct sk_buff *skb;
2060
2061         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2062             tp->snd_una == tp->high_seq ||
2063             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2064              !icsk->icsk_retransmits)) {
2065                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2066                 /* Our state is too optimistic in ssthresh() call because cwnd
2067                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2068                  * recovery has not yet completed. Pattern would be this: RTO,
2069                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2070                  * up here twice).
2071                  * RFC4138 should be more specific on what to do, even though
2072                  * RTO is quite unlikely to occur after the first Cumulative ACK
2073                  * due to back-off and complexity of triggering events ...
2074                  */
2075                 if (tp->frto_counter) {
2076                         u32 stored_cwnd;
2077                         stored_cwnd = tp->snd_cwnd;
2078                         tp->snd_cwnd = 2;
2079                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2080                         tp->snd_cwnd = stored_cwnd;
2081                 } else {
2082                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2083                 }
2084                 /* ... in theory, cong.control module could do "any tricks" in
2085                  * ssthresh(), which means that ca_state, lost bits and lost_out
2086                  * counter would have to be faked before the call occurs. We
2087                  * consider that too expensive, unlikely and hacky, so modules
2088                  * using these in ssthresh() must deal these incompatibility
2089                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2090                  */
2091                 tcp_ca_event(sk, CA_EVENT_FRTO);
2092         }
2093
2094         tp->undo_marker = tp->snd_una;
2095         tp->undo_retrans = 0;
2096
2097         skb = tcp_write_queue_head(sk);
2098         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2099                 tp->undo_marker = 0;
2100         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2101                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2102                 tp->retrans_out -= tcp_skb_pcount(skb);
2103         }
2104         tcp_verify_left_out(tp);
2105
2106         /* Too bad if TCP was application limited */
2107         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2108
2109         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2110          * The last condition is necessary at least in tp->frto_counter case.
2111          */
2112         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2113             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2114             after(tp->high_seq, tp->snd_una)) {
2115                 tp->frto_highmark = tp->high_seq;
2116         } else {
2117                 tp->frto_highmark = tp->snd_nxt;
2118         }
2119         tcp_set_ca_state(sk, TCP_CA_Disorder);
2120         tp->high_seq = tp->snd_nxt;
2121         tp->frto_counter = 1;
2122 }
2123
2124 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2125  * which indicates that we should follow the traditional RTO recovery,
2126  * i.e. mark everything lost and do go-back-N retransmission.
2127  */
2128 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2129 {
2130         struct tcp_sock *tp = tcp_sk(sk);
2131         struct sk_buff *skb;
2132
2133         tp->lost_out = 0;
2134         tp->retrans_out = 0;
2135         if (tcp_is_reno(tp))
2136                 tcp_reset_reno_sack(tp);
2137
2138         tcp_for_write_queue(skb, sk) {
2139                 if (skb == tcp_send_head(sk))
2140                         break;
2141
2142                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2143                 /*
2144                  * Count the retransmission made on RTO correctly (only when
2145                  * waiting for the first ACK and did not get it)...
2146                  */
2147                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2148                         /* For some reason this R-bit might get cleared? */
2149                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2150                                 tp->retrans_out += tcp_skb_pcount(skb);
2151                         /* ...enter this if branch just for the first segment */
2152                         flag |= FLAG_DATA_ACKED;
2153                 } else {
2154                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2155                                 tp->undo_marker = 0;
2156                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2157                 }
2158
2159                 /* Marking forward transmissions that were made after RTO lost
2160                  * can cause unnecessary retransmissions in some scenarios,
2161                  * SACK blocks will mitigate that in some but not in all cases.
2162                  * We used to not mark them but it was causing break-ups with
2163                  * receivers that do only in-order receival.
2164                  *
2165                  * TODO: we could detect presence of such receiver and select
2166                  * different behavior per flow.
2167                  */
2168                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2169                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2170                         tp->lost_out += tcp_skb_pcount(skb);
2171                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2172                 }
2173         }
2174         tcp_verify_left_out(tp);
2175
2176         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2177         tp->snd_cwnd_cnt = 0;
2178         tp->snd_cwnd_stamp = tcp_time_stamp;
2179         tp->frto_counter = 0;
2180         tp->bytes_acked = 0;
2181
2182         tp->reordering = min_t(unsigned int, tp->reordering,
2183                                sysctl_tcp_reordering);
2184         tcp_set_ca_state(sk, TCP_CA_Loss);
2185         tp->high_seq = tp->snd_nxt;
2186         TCP_ECN_queue_cwr(tp);
2187
2188         tcp_clear_all_retrans_hints(tp);
2189 }
2190
2191 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2192 {
2193         tp->retrans_out = 0;
2194         tp->lost_out = 0;
2195
2196         tp->undo_marker = 0;
2197         tp->undo_retrans = 0;
2198 }
2199
2200 void tcp_clear_retrans(struct tcp_sock *tp)
2201 {
2202         tcp_clear_retrans_partial(tp);
2203
2204         tp->fackets_out = 0;
2205         tp->sacked_out = 0;
2206 }
2207
2208 /* Enter Loss state. If "how" is not zero, forget all SACK information
2209  * and reset tags completely, otherwise preserve SACKs. If receiver
2210  * dropped its ofo queue, we will know this due to reneging detection.
2211  */
2212 void tcp_enter_loss(struct sock *sk, int how)
2213 {
2214         const struct inet_connection_sock *icsk = inet_csk(sk);
2215         struct tcp_sock *tp = tcp_sk(sk);
2216         struct sk_buff *skb;
2217
2218         /* Reduce ssthresh if it has not yet been made inside this window. */
2219         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2220             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2221                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2222                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2223                 tcp_ca_event(sk, CA_EVENT_LOSS);
2224         }
2225         tp->snd_cwnd       = 1;
2226         tp->snd_cwnd_cnt   = 0;
2227         tp->snd_cwnd_stamp = tcp_time_stamp;
2228
2229         tp->bytes_acked = 0;
2230         tcp_clear_retrans_partial(tp);
2231
2232         if (tcp_is_reno(tp))
2233                 tcp_reset_reno_sack(tp);
2234
2235         if (!how) {
2236                 /* Push undo marker, if it was plain RTO and nothing
2237                  * was retransmitted. */
2238                 tp->undo_marker = tp->snd_una;
2239         } else {
2240                 tp->sacked_out = 0;
2241                 tp->fackets_out = 0;
2242         }
2243         tcp_clear_all_retrans_hints(tp);
2244
2245         tcp_for_write_queue(skb, sk) {
2246                 if (skb == tcp_send_head(sk))
2247                         break;
2248
2249                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2250                         tp->undo_marker = 0;
2251                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2252                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2253                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2254                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2255                         tp->lost_out += tcp_skb_pcount(skb);
2256                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2257                 }
2258         }
2259         tcp_verify_left_out(tp);
2260
2261         tp->reordering = min_t(unsigned int, tp->reordering,
2262                                sysctl_tcp_reordering);
2263         tcp_set_ca_state(sk, TCP_CA_Loss);
2264         tp->high_seq = tp->snd_nxt;
2265         TCP_ECN_queue_cwr(tp);
2266         /* Abort F-RTO algorithm if one is in progress */
2267         tp->frto_counter = 0;
2268 }
2269
2270 /* If ACK arrived pointing to a remembered SACK, it means that our
2271  * remembered SACKs do not reflect real state of receiver i.e.
2272  * receiver _host_ is heavily congested (or buggy).
2273  *
2274  * Do processing similar to RTO timeout.
2275  */
2276 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2277 {
2278         if (flag & FLAG_SACK_RENEGING) {
2279                 struct inet_connection_sock *icsk = inet_csk(sk);
2280                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2281
2282                 tcp_enter_loss(sk, 1);
2283                 icsk->icsk_retransmits++;
2284                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2285                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2286                                           icsk->icsk_rto, TCP_RTO_MAX);
2287                 return 1;
2288         }
2289         return 0;
2290 }
2291
2292 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2293 {
2294         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2295 }
2296
2297 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2298  * counter when SACK is enabled (without SACK, sacked_out is used for
2299  * that purpose).
2300  *
2301  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2302  * segments up to the highest received SACK block so far and holes in
2303  * between them.
2304  *
2305  * With reordering, holes may still be in flight, so RFC3517 recovery
2306  * uses pure sacked_out (total number of SACKed segments) even though
2307  * it violates the RFC that uses duplicate ACKs, often these are equal
2308  * but when e.g. out-of-window ACKs or packet duplication occurs,
2309  * they differ. Since neither occurs due to loss, TCP should really
2310  * ignore them.
2311  */
2312 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2313 {
2314         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2315 }
2316
2317 static inline int tcp_skb_timedout(const struct sock *sk,
2318                                    const struct sk_buff *skb)
2319 {
2320         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2321 }
2322
2323 static inline int tcp_head_timedout(const struct sock *sk)
2324 {
2325         const struct tcp_sock *tp = tcp_sk(sk);
2326
2327         return tp->packets_out &&
2328                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2329 }
2330
2331 /* Linux NewReno/SACK/FACK/ECN state machine.
2332  * --------------------------------------
2333  *
2334  * "Open"       Normal state, no dubious events, fast path.
2335  * "Disorder"   In all the respects it is "Open",
2336  *              but requires a bit more attention. It is entered when
2337  *              we see some SACKs or dupacks. It is split of "Open"
2338  *              mainly to move some processing from fast path to slow one.
2339  * "CWR"        CWND was reduced due to some Congestion Notification event.
2340  *              It can be ECN, ICMP source quench, local device congestion.
2341  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2342  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2343  *
2344  * tcp_fastretrans_alert() is entered:
2345  * - each incoming ACK, if state is not "Open"
2346  * - when arrived ACK is unusual, namely:
2347  *      * SACK
2348  *      * Duplicate ACK.
2349  *      * ECN ECE.
2350  *
2351  * Counting packets in flight is pretty simple.
2352  *
2353  *      in_flight = packets_out - left_out + retrans_out
2354  *
2355  *      packets_out is SND.NXT-SND.UNA counted in packets.
2356  *
2357  *      retrans_out is number of retransmitted segments.
2358  *
2359  *      left_out is number of segments left network, but not ACKed yet.
2360  *
2361  *              left_out = sacked_out + lost_out
2362  *
2363  *     sacked_out: Packets, which arrived to receiver out of order
2364  *                 and hence not ACKed. With SACKs this number is simply
2365  *                 amount of SACKed data. Even without SACKs
2366  *                 it is easy to give pretty reliable estimate of this number,
2367  *                 counting duplicate ACKs.
2368  *
2369  *       lost_out: Packets lost by network. TCP has no explicit
2370  *                 "loss notification" feedback from network (for now).
2371  *                 It means that this number can be only _guessed_.
2372  *                 Actually, it is the heuristics to predict lossage that
2373  *                 distinguishes different algorithms.
2374  *
2375  *      F.e. after RTO, when all the queue is considered as lost,
2376  *      lost_out = packets_out and in_flight = retrans_out.
2377  *
2378  *              Essentially, we have now two algorithms counting
2379  *              lost packets.
2380  *
2381  *              FACK: It is the simplest heuristics. As soon as we decided
2382  *              that something is lost, we decide that _all_ not SACKed
2383  *              packets until the most forward SACK are lost. I.e.
2384  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2385  *              It is absolutely correct estimate, if network does not reorder
2386  *              packets. And it loses any connection to reality when reordering
2387  *              takes place. We use FACK by default until reordering
2388  *              is suspected on the path to this destination.
2389  *
2390  *              NewReno: when Recovery is entered, we assume that one segment
2391  *              is lost (classic Reno). While we are in Recovery and
2392  *              a partial ACK arrives, we assume that one more packet
2393  *              is lost (NewReno). This heuristics are the same in NewReno
2394  *              and SACK.
2395  *
2396  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2397  *  deflation etc. CWND is real congestion window, never inflated, changes
2398  *  only according to classic VJ rules.
2399  *
2400  * Really tricky (and requiring careful tuning) part of algorithm
2401  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2402  * The first determines the moment _when_ we should reduce CWND and,
2403  * hence, slow down forward transmission. In fact, it determines the moment
2404  * when we decide that hole is caused by loss, rather than by a reorder.
2405  *
2406  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2407  * holes, caused by lost packets.
2408  *
2409  * And the most logically complicated part of algorithm is undo
2410  * heuristics. We detect false retransmits due to both too early
2411  * fast retransmit (reordering) and underestimated RTO, analyzing
2412  * timestamps and D-SACKs. When we detect that some segments were
2413  * retransmitted by mistake and CWND reduction was wrong, we undo
2414  * window reduction and abort recovery phase. This logic is hidden
2415  * inside several functions named tcp_try_undo_<something>.
2416  */
2417
2418 /* This function decides, when we should leave Disordered state
2419  * and enter Recovery phase, reducing congestion window.
2420  *
2421  * Main question: may we further continue forward transmission
2422  * with the same cwnd?
2423  */
2424 static int tcp_time_to_recover(struct sock *sk)
2425 {
2426         struct tcp_sock *tp = tcp_sk(sk);
2427         __u32 packets_out;
2428
2429         /* Do not perform any recovery during F-RTO algorithm */
2430         if (tp->frto_counter)
2431                 return 0;
2432
2433         /* Trick#1: The loss is proven. */
2434         if (tp->lost_out)
2435                 return 1;
2436
2437         /* Not-A-Trick#2 : Classic rule... */
2438         if (tcp_dupack_heuristics(tp) > tp->reordering)
2439                 return 1;
2440
2441         /* Trick#3 : when we use RFC2988 timer restart, fast
2442          * retransmit can be triggered by timeout of queue head.
2443          */
2444         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2445                 return 1;
2446
2447         /* Trick#4: It is still not OK... But will it be useful to delay
2448          * recovery more?
2449          */
2450         packets_out = tp->packets_out;
2451         if (packets_out <= tp->reordering &&
2452             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2453             !tcp_may_send_now(sk)) {
2454                 /* We have nothing to send. This connection is limited
2455                  * either by receiver window or by application.
2456                  */
2457                 return 1;
2458         }
2459
2460         /* If a thin stream is detected, retransmit after first
2461          * received dupack. Employ only if SACK is supported in order
2462          * to avoid possible corner-case series of spurious retransmissions
2463          * Use only if there are no unsent data.
2464          */
2465         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2466             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2467             tcp_is_sack(tp) && !tcp_send_head(sk))
2468                 return 1;
2469
2470         return 0;
2471 }
2472
2473 /* New heuristics: it is possible only after we switched to restart timer
2474  * each time when something is ACKed. Hence, we can detect timed out packets
2475  * during fast retransmit without falling to slow start.
2476  *
2477  * Usefulness of this as is very questionable, since we should know which of
2478  * the segments is the next to timeout which is relatively expensive to find
2479  * in general case unless we add some data structure just for that. The
2480  * current approach certainly won't find the right one too often and when it
2481  * finally does find _something_ it usually marks large part of the window
2482  * right away (because a retransmission with a larger timestamp blocks the
2483  * loop from advancing). -ij
2484  */
2485 static void tcp_timeout_skbs(struct sock *sk)
2486 {
2487         struct tcp_sock *tp = tcp_sk(sk);
2488         struct sk_buff *skb;
2489
2490         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2491                 return;
2492
2493         skb = tp->scoreboard_skb_hint;
2494         if (tp->scoreboard_skb_hint == NULL)
2495                 skb = tcp_write_queue_head(sk);
2496
2497         tcp_for_write_queue_from(skb, sk) {
2498                 if (skb == tcp_send_head(sk))
2499                         break;
2500                 if (!tcp_skb_timedout(sk, skb))
2501                         break;
2502
2503                 tcp_skb_mark_lost(tp, skb);
2504         }
2505
2506         tp->scoreboard_skb_hint = skb;
2507
2508         tcp_verify_left_out(tp);
2509 }
2510
2511 /* Detect loss in event "A" above by marking head of queue up as lost.
2512  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2513  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2514  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2515  * the maximum SACKed segments to pass before reaching this limit.
2516  */
2517 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2518 {
2519         struct tcp_sock *tp = tcp_sk(sk);
2520         struct sk_buff *skb;
2521         int cnt, oldcnt;
2522         int err;
2523         unsigned int mss;
2524         /* Use SACK to deduce losses of new sequences sent during recovery */
2525         const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2526
2527         WARN_ON(packets > tp->packets_out);
2528         if (tp->lost_skb_hint) {
2529                 skb = tp->lost_skb_hint;
2530                 cnt = tp->lost_cnt_hint;
2531                 /* Head already handled? */
2532                 if (mark_head && skb != tcp_write_queue_head(sk))
2533                         return;
2534         } else {
2535                 skb = tcp_write_queue_head(sk);
2536                 cnt = 0;
2537         }
2538
2539         tcp_for_write_queue_from(skb, sk) {
2540                 if (skb == tcp_send_head(sk))
2541                         break;
2542                 /* TODO: do this better */
2543                 /* this is not the most efficient way to do this... */
2544                 tp->lost_skb_hint = skb;
2545                 tp->lost_cnt_hint = cnt;
2546
2547                 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2548                         break;
2549
2550                 oldcnt = cnt;
2551                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2552                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2553                         cnt += tcp_skb_pcount(skb);
2554
2555                 if (cnt > packets) {
2556                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2557                             (oldcnt >= packets))
2558                                 break;
2559
2560                         mss = skb_shinfo(skb)->gso_size;
2561                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2562                         if (err < 0)
2563                                 break;
2564                         cnt = packets;
2565                 }
2566
2567                 tcp_skb_mark_lost(tp, skb);
2568
2569                 if (mark_head)
2570                         break;
2571         }
2572         tcp_verify_left_out(tp);
2573 }
2574
2575 /* Account newly detected lost packet(s) */
2576
2577 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2578 {
2579         struct tcp_sock *tp = tcp_sk(sk);
2580
2581         if (tcp_is_reno(tp)) {
2582                 tcp_mark_head_lost(sk, 1, 1);
2583         } else if (tcp_is_fack(tp)) {
2584                 int lost = tp->fackets_out - tp->reordering;
2585                 if (lost <= 0)
2586                         lost = 1;
2587                 tcp_mark_head_lost(sk, lost, 0);
2588         } else {
2589                 int sacked_upto = tp->sacked_out - tp->reordering;
2590                 if (sacked_upto >= 0)
2591                         tcp_mark_head_lost(sk, sacked_upto, 0);
2592                 else if (fast_rexmit)
2593                         tcp_mark_head_lost(sk, 1, 1);
2594         }
2595
2596         tcp_timeout_skbs(sk);
2597 }
2598
2599 /* CWND moderation, preventing bursts due to too big ACKs
2600  * in dubious situations.
2601  */
2602 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2603 {
2604         tp->snd_cwnd = min(tp->snd_cwnd,
2605                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2606         tp->snd_cwnd_stamp = tcp_time_stamp;
2607 }
2608
2609 /* Lower bound on congestion window is slow start threshold
2610  * unless congestion avoidance choice decides to overide it.
2611  */
2612 static inline u32 tcp_cwnd_min(const struct sock *sk)
2613 {
2614         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2615
2616         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2617 }
2618
2619 /* Decrease cwnd each second ack. */
2620 static void tcp_cwnd_down(struct sock *sk, int flag)
2621 {
2622         struct tcp_sock *tp = tcp_sk(sk);
2623         int decr = tp->snd_cwnd_cnt + 1;
2624
2625         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2626             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2627                 tp->snd_cwnd_cnt = decr & 1;
2628                 decr >>= 1;
2629
2630                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2631                         tp->snd_cwnd -= decr;
2632
2633                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2634                 tp->snd_cwnd_stamp = tcp_time_stamp;
2635         }
2636 }
2637
2638 /* Nothing was retransmitted or returned timestamp is less
2639  * than timestamp of the first retransmission.
2640  */
2641 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2642 {
2643         return !tp->retrans_stamp ||
2644                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2645                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2646 }
2647
2648 /* Undo procedures. */
2649
2650 #if FASTRETRANS_DEBUG > 1
2651 static void DBGUNDO(struct sock *sk, const char *msg)
2652 {
2653         struct tcp_sock *tp = tcp_sk(sk);
2654         struct inet_sock *inet = inet_sk(sk);
2655
2656         if (sk->sk_family == AF_INET) {
2657                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2658                        msg,
2659                        &inet->inet_daddr, ntohs(inet->inet_dport),
2660                        tp->snd_cwnd, tcp_left_out(tp),
2661                        tp->snd_ssthresh, tp->prior_ssthresh,
2662                        tp->packets_out);
2663         }
2664 #if IS_ENABLED(CONFIG_IPV6)
2665         else if (sk->sk_family == AF_INET6) {
2666                 struct ipv6_pinfo *np = inet6_sk(sk);
2667                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2668                        msg,
2669                        &np->daddr, ntohs(inet->inet_dport),
2670                        tp->snd_cwnd, tcp_left_out(tp),
2671                        tp->snd_ssthresh, tp->prior_ssthresh,
2672                        tp->packets_out);
2673         }
2674 #endif
2675 }
2676 #else
2677 #define DBGUNDO(x...) do { } while (0)
2678 #endif
2679
2680 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2681 {
2682         struct tcp_sock *tp = tcp_sk(sk);
2683
2684         if (tp->prior_ssthresh) {
2685                 const struct inet_connection_sock *icsk = inet_csk(sk);
2686
2687                 if (icsk->icsk_ca_ops->undo_cwnd)
2688                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2689                 else
2690                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2691
2692                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2693                         tp->snd_ssthresh = tp->prior_ssthresh;
2694                         TCP_ECN_withdraw_cwr(tp);
2695                 }
2696         } else {
2697                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2698         }
2699         tp->snd_cwnd_stamp = tcp_time_stamp;
2700 }
2701
2702 static inline int tcp_may_undo(const struct tcp_sock *tp)
2703 {
2704         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2705 }
2706
2707 /* People celebrate: "We love our President!" */
2708 static int tcp_try_undo_recovery(struct sock *sk)
2709 {
2710         struct tcp_sock *tp = tcp_sk(sk);
2711
2712         if (tcp_may_undo(tp)) {
2713                 int mib_idx;
2714
2715                 /* Happy end! We did not retransmit anything
2716                  * or our original transmission succeeded.
2717                  */
2718                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2719                 tcp_undo_cwr(sk, true);
2720                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2721                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2722                 else
2723                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2724
2725                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2726                 tp->undo_marker = 0;
2727         }
2728         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2729                 /* Hold old state until something *above* high_seq
2730                  * is ACKed. For Reno it is MUST to prevent false
2731                  * fast retransmits (RFC2582). SACK TCP is safe. */
2732                 tcp_moderate_cwnd(tp);
2733                 return 1;
2734         }
2735         tcp_set_ca_state(sk, TCP_CA_Open);
2736         return 0;
2737 }
2738
2739 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2740 static void tcp_try_undo_dsack(struct sock *sk)
2741 {
2742         struct tcp_sock *tp = tcp_sk(sk);
2743
2744         if (tp->undo_marker && !tp->undo_retrans) {
2745                 DBGUNDO(sk, "D-SACK");
2746                 tcp_undo_cwr(sk, true);
2747                 tp->undo_marker = 0;
2748                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2749         }
2750 }
2751
2752 /* We can clear retrans_stamp when there are no retransmissions in the
2753  * window. It would seem that it is trivially available for us in
2754  * tp->retrans_out, however, that kind of assumptions doesn't consider
2755  * what will happen if errors occur when sending retransmission for the
2756  * second time. ...It could the that such segment has only
2757  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2758  * the head skb is enough except for some reneging corner cases that
2759  * are not worth the effort.
2760  *
2761  * Main reason for all this complexity is the fact that connection dying
2762  * time now depends on the validity of the retrans_stamp, in particular,
2763  * that successive retransmissions of a segment must not advance
2764  * retrans_stamp under any conditions.
2765  */
2766 static int tcp_any_retrans_done(const struct sock *sk)
2767 {
2768         const struct tcp_sock *tp = tcp_sk(sk);
2769         struct sk_buff *skb;
2770
2771         if (tp->retrans_out)
2772                 return 1;
2773
2774         skb = tcp_write_queue_head(sk);
2775         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2776                 return 1;
2777
2778         return 0;
2779 }
2780
2781 /* Undo during fast recovery after partial ACK. */
2782
2783 static int tcp_try_undo_partial(struct sock *sk, int acked)
2784 {
2785         struct tcp_sock *tp = tcp_sk(sk);
2786         /* Partial ACK arrived. Force Hoe's retransmit. */
2787         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2788
2789         if (tcp_may_undo(tp)) {
2790                 /* Plain luck! Hole if filled with delayed
2791                  * packet, rather than with a retransmit.
2792                  */
2793                 if (!tcp_any_retrans_done(sk))
2794                         tp->retrans_stamp = 0;
2795
2796                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2797
2798                 DBGUNDO(sk, "Hoe");
2799                 tcp_undo_cwr(sk, false);
2800                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2801
2802                 /* So... Do not make Hoe's retransmit yet.
2803                  * If the first packet was delayed, the rest
2804                  * ones are most probably delayed as well.
2805                  */
2806                 failed = 0;
2807         }
2808         return failed;
2809 }
2810
2811 /* Undo during loss recovery after partial ACK. */
2812 static int tcp_try_undo_loss(struct sock *sk)
2813 {
2814         struct tcp_sock *tp = tcp_sk(sk);
2815
2816         if (tcp_may_undo(tp)) {
2817                 struct sk_buff *skb;
2818                 tcp_for_write_queue(skb, sk) {
2819                         if (skb == tcp_send_head(sk))
2820                                 break;
2821                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2822                 }
2823
2824                 tcp_clear_all_retrans_hints(tp);
2825
2826                 DBGUNDO(sk, "partial loss");
2827                 tp->lost_out = 0;
2828                 tcp_undo_cwr(sk, true);
2829                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2830                 inet_csk(sk)->icsk_retransmits = 0;
2831                 tp->undo_marker = 0;
2832                 if (tcp_is_sack(tp))
2833                         tcp_set_ca_state(sk, TCP_CA_Open);
2834                 return 1;
2835         }
2836         return 0;
2837 }
2838
2839 static inline void tcp_complete_cwr(struct sock *sk)
2840 {
2841         struct tcp_sock *tp = tcp_sk(sk);
2842
2843         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2844         if (tp->undo_marker) {
2845                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2846                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2847                 else /* PRR */
2848                         tp->snd_cwnd = tp->snd_ssthresh;
2849                 tp->snd_cwnd_stamp = tcp_time_stamp;
2850         }
2851         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2852 }
2853
2854 static void tcp_try_keep_open(struct sock *sk)
2855 {
2856         struct tcp_sock *tp = tcp_sk(sk);
2857         int state = TCP_CA_Open;
2858
2859         if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2860                 state = TCP_CA_Disorder;
2861
2862         if (inet_csk(sk)->icsk_ca_state != state) {
2863                 tcp_set_ca_state(sk, state);
2864                 tp->high_seq = tp->snd_nxt;
2865         }
2866 }
2867
2868 static void tcp_try_to_open(struct sock *sk, int flag)
2869 {
2870         struct tcp_sock *tp = tcp_sk(sk);
2871
2872         tcp_verify_left_out(tp);
2873
2874         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2875                 tp->retrans_stamp = 0;
2876
2877         if (flag & FLAG_ECE)
2878                 tcp_enter_cwr(sk, 1);
2879
2880         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2881                 tcp_try_keep_open(sk);
2882                 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2883                         tcp_moderate_cwnd(tp);
2884         } else {
2885                 tcp_cwnd_down(sk, flag);
2886         }
2887 }
2888
2889 static void tcp_mtup_probe_failed(struct sock *sk)
2890 {
2891         struct inet_connection_sock *icsk = inet_csk(sk);
2892
2893         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2894         icsk->icsk_mtup.probe_size = 0;
2895 }
2896
2897 static void tcp_mtup_probe_success(struct sock *sk)
2898 {
2899         struct tcp_sock *tp = tcp_sk(sk);
2900         struct inet_connection_sock *icsk = inet_csk(sk);
2901
2902         /* FIXME: breaks with very large cwnd */
2903         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2904         tp->snd_cwnd = tp->snd_cwnd *
2905                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2906                        icsk->icsk_mtup.probe_size;
2907         tp->snd_cwnd_cnt = 0;
2908         tp->snd_cwnd_stamp = tcp_time_stamp;
2909         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2910
2911         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2912         icsk->icsk_mtup.probe_size = 0;
2913         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2914 }
2915
2916 /* Do a simple retransmit without using the backoff mechanisms in
2917  * tcp_timer. This is used for path mtu discovery.
2918  * The socket is already locked here.
2919  */
2920 void tcp_simple_retransmit(struct sock *sk)
2921 {
2922         const struct inet_connection_sock *icsk = inet_csk(sk);
2923         struct tcp_sock *tp = tcp_sk(sk);
2924         struct sk_buff *skb;
2925         unsigned int mss = tcp_current_mss(sk);
2926         u32 prior_lost = tp->lost_out;
2927
2928         tcp_for_write_queue(skb, sk) {
2929                 if (skb == tcp_send_head(sk))
2930                         break;
2931                 if (tcp_skb_seglen(skb) > mss &&
2932                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2933                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2934                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2935                                 tp->retrans_out -= tcp_skb_pcount(skb);
2936                         }
2937                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2938                 }
2939         }
2940
2941         tcp_clear_retrans_hints_partial(tp);
2942
2943         if (prior_lost == tp->lost_out)
2944                 return;
2945
2946         if (tcp_is_reno(tp))
2947                 tcp_limit_reno_sacked(tp);
2948
2949         tcp_verify_left_out(tp);
2950
2951         /* Don't muck with the congestion window here.
2952          * Reason is that we do not increase amount of _data_
2953          * in network, but units changed and effective
2954          * cwnd/ssthresh really reduced now.
2955          */
2956         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2957                 tp->high_seq = tp->snd_nxt;
2958                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2959                 tp->prior_ssthresh = 0;
2960                 tp->undo_marker = 0;
2961                 tcp_set_ca_state(sk, TCP_CA_Loss);
2962         }
2963         tcp_xmit_retransmit_queue(sk);
2964 }
2965 EXPORT_SYMBOL(tcp_simple_retransmit);
2966
2967 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2968  * (proportional rate reduction with slow start reduction bound) as described in
2969  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2970  * It computes the number of packets to send (sndcnt) based on packets newly
2971  * delivered:
2972  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2973  *      cwnd reductions across a full RTT.
2974  *   2) If packets in flight is lower than ssthresh (such as due to excess
2975  *      losses and/or application stalls), do not perform any further cwnd
2976  *      reductions, but instead slow start up to ssthresh.
2977  */
2978 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2979                                         int fast_rexmit, int flag)
2980 {
2981         struct tcp_sock *tp = tcp_sk(sk);
2982         int sndcnt = 0;
2983         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2984
2985         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2986                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2987                                tp->prior_cwnd - 1;
2988                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2989         } else {
2990                 sndcnt = min_t(int, delta,
2991                                max_t(int, tp->prr_delivered - tp->prr_out,
2992                                      newly_acked_sacked) + 1);
2993         }
2994
2995         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2996         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2997 }
2998
2999 /* Process an event, which can update packets-in-flight not trivially.
3000  * Main goal of this function is to calculate new estimate for left_out,
3001  * taking into account both packets sitting in receiver's buffer and
3002  * packets lost by network.
3003  *
3004  * Besides that it does CWND reduction, when packet loss is detected
3005  * and changes state of machine.
3006  *
3007  * It does _not_ decide what to send, it is made in function
3008  * tcp_xmit_retransmit_queue().
3009  */
3010 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3011                                   int newly_acked_sacked, bool is_dupack,
3012                                   int flag)
3013 {
3014         struct inet_connection_sock *icsk = inet_csk(sk);
3015         struct tcp_sock *tp = tcp_sk(sk);
3016         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3017                                     (tcp_fackets_out(tp) > tp->reordering));
3018         int fast_rexmit = 0, mib_idx;
3019
3020         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3021                 tp->sacked_out = 0;
3022         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3023                 tp->fackets_out = 0;
3024
3025         /* Now state machine starts.
3026          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3027         if (flag & FLAG_ECE)
3028                 tp->prior_ssthresh = 0;
3029
3030         /* B. In all the states check for reneging SACKs. */
3031         if (tcp_check_sack_reneging(sk, flag))
3032                 return;
3033
3034         /* C. Check consistency of the current state. */
3035         tcp_verify_left_out(tp);
3036
3037         /* D. Check state exit conditions. State can be terminated
3038          *    when high_seq is ACKed. */
3039         if (icsk->icsk_ca_state == TCP_CA_Open) {
3040                 WARN_ON(tp->retrans_out != 0);
3041                 tp->retrans_stamp = 0;
3042         } else if (!before(tp->snd_una, tp->high_seq)) {
3043                 switch (icsk->icsk_ca_state) {
3044                 case TCP_CA_Loss:
3045                         icsk->icsk_retransmits = 0;
3046                         if (tcp_try_undo_recovery(sk))
3047                                 return;
3048                         break;
3049
3050                 case TCP_CA_CWR:
3051                         /* CWR is to be held something *above* high_seq
3052                          * is ACKed for CWR bit to reach receiver. */
3053                         if (tp->snd_una != tp->high_seq) {
3054                                 tcp_complete_cwr(sk);
3055                                 tcp_set_ca_state(sk, TCP_CA_Open);
3056                         }
3057                         break;
3058
3059                 case TCP_CA_Recovery:
3060                         if (tcp_is_reno(tp))
3061                                 tcp_reset_reno_sack(tp);
3062                         if (tcp_try_undo_recovery(sk))
3063                                 return;
3064                         tcp_complete_cwr(sk);
3065                         break;
3066                 }
3067         }
3068
3069         /* E. Process state. */
3070         switch (icsk->icsk_ca_state) {
3071         case TCP_CA_Recovery:
3072                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3073                         if (tcp_is_reno(tp) && is_dupack)
3074                                 tcp_add_reno_sack(sk);
3075                 } else
3076                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3077                 break;
3078         case TCP_CA_Loss:
3079                 if (flag & FLAG_DATA_ACKED)
3080                         icsk->icsk_retransmits = 0;
3081                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3082                         tcp_reset_reno_sack(tp);
3083                 if (!tcp_try_undo_loss(sk)) {
3084                         tcp_moderate_cwnd(tp);
3085                         tcp_xmit_retransmit_queue(sk);
3086                         return;
3087                 }
3088                 if (icsk->icsk_ca_state != TCP_CA_Open)
3089                         return;
3090                 /* Loss is undone; fall through to processing in Open state. */
3091         default:
3092                 if (tcp_is_reno(tp)) {
3093                         if (flag & FLAG_SND_UNA_ADVANCED)
3094                                 tcp_reset_reno_sack(tp);
3095                         if (is_dupack)
3096                                 tcp_add_reno_sack(sk);
3097                 }
3098
3099                 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3100                         tcp_try_undo_dsack(sk);
3101
3102                 if (!tcp_time_to_recover(sk)) {
3103                         tcp_try_to_open(sk, flag);
3104                         return;
3105                 }
3106
3107                 /* MTU probe failure: don't reduce cwnd */
3108                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3109                     icsk->icsk_mtup.probe_size &&
3110                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3111                         tcp_mtup_probe_failed(sk);
3112                         /* Restores the reduction we did in tcp_mtup_probe() */
3113                         tp->snd_cwnd++;
3114                         tcp_simple_retransmit(sk);
3115                         return;
3116                 }
3117
3118                 /* Otherwise enter Recovery state */
3119
3120                 if (tcp_is_reno(tp))
3121                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3122                 else
3123                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3124
3125                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3126
3127                 tp->high_seq = tp->snd_nxt;
3128                 tp->prior_ssthresh = 0;
3129                 tp->undo_marker = tp->snd_una;
3130                 tp->undo_retrans = tp->retrans_out;
3131
3132                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3133                         if (!(flag & FLAG_ECE))
3134                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3135                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3136                         TCP_ECN_queue_cwr(tp);
3137                 }
3138
3139                 tp->bytes_acked = 0;
3140                 tp->snd_cwnd_cnt = 0;
3141                 tp->prior_cwnd = tp->snd_cwnd;
3142                 tp->prr_delivered = 0;
3143                 tp->prr_out = 0;
3144                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3145                 fast_rexmit = 1;
3146         }
3147
3148         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3149                 tcp_update_scoreboard(sk, fast_rexmit);
3150         tp->prr_delivered += newly_acked_sacked;
3151         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3152         tcp_xmit_retransmit_queue(sk);
3153 }
3154
3155 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3156 {
3157         tcp_rtt_estimator(sk, seq_rtt);
3158         tcp_set_rto(sk);
3159         inet_csk(sk)->icsk_backoff = 0;
3160 }
3161 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3162
3163 /* Read draft-ietf-tcplw-high-performance before mucking
3164  * with this code. (Supersedes RFC1323)
3165  */
3166 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3167 {
3168         /* RTTM Rule: A TSecr value received in a segment is used to
3169          * update the averaged RTT measurement only if the segment
3170          * acknowledges some new data, i.e., only if it advances the
3171          * left edge of the send window.
3172          *
3173          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3174          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3175          *
3176          * Changed: reset backoff as soon as we see the first valid sample.
3177          * If we do not, we get strongly overestimated rto. With timestamps
3178          * samples are accepted even from very old segments: f.e., when rtt=1
3179          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3180          * answer arrives rto becomes 120 seconds! If at least one of segments
3181          * in window is lost... Voila.                          --ANK (010210)
3182          */
3183         struct tcp_sock *tp = tcp_sk(sk);
3184
3185         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3186 }
3187
3188 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3189 {
3190         /* We don't have a timestamp. Can only use
3191          * packets that are not retransmitted to determine
3192          * rtt estimates. Also, we must not reset the
3193          * backoff for rto until we get a non-retransmitted
3194          * packet. This allows us to deal with a situation
3195          * where the network delay has increased suddenly.
3196          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3197          */
3198
3199         if (flag & FLAG_RETRANS_DATA_ACKED)
3200                 return;
3201
3202         tcp_valid_rtt_meas(sk, seq_rtt);
3203 }
3204
3205 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3206                                       const s32 seq_rtt)
3207 {
3208         const struct tcp_sock *tp = tcp_sk(sk);
3209         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3210         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3211                 tcp_ack_saw_tstamp(sk, flag);
3212         else if (seq_rtt >= 0)
3213                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3214 }
3215
3216 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3217 {
3218         const struct inet_connection_sock *icsk = inet_csk(sk);
3219         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3220         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3221 }
3222
3223 /* Restart timer after forward progress on connection.
3224  * RFC2988 recommends to restart timer to now+rto.
3225  */
3226 static void tcp_rearm_rto(struct sock *sk)
3227 {
3228         const struct tcp_sock *tp = tcp_sk(sk);
3229
3230         if (!tp->packets_out) {
3231                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3232         } else {
3233                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3234                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3235         }
3236 }
3237
3238 /* If we get here, the whole TSO packet has not been acked. */
3239 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3240 {
3241         struct tcp_sock *tp = tcp_sk(sk);
3242         u32 packets_acked;
3243
3244         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3245
3246         packets_acked = tcp_skb_pcount(skb);
3247         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3248                 return 0;
3249         packets_acked -= tcp_skb_pcount(skb);
3250
3251         if (packets_acked) {
3252                 BUG_ON(tcp_skb_pcount(skb) == 0);
3253                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3254         }
3255
3256         return packets_acked;
3257 }
3258
3259 /* Remove acknowledged frames from the retransmission queue. If our packet
3260  * is before the ack sequence we can discard it as it's confirmed to have
3261  * arrived at the other end.
3262  */
3263 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3264                                u32 prior_snd_una)
3265 {
3266         struct tcp_sock *tp = tcp_sk(sk);
3267         const struct inet_connection_sock *icsk = inet_csk(sk);
3268         struct sk_buff *skb;
3269         u32 now = tcp_time_stamp;
3270         int fully_acked = 1;
3271         int flag = 0;
3272         u32 pkts_acked = 0;
3273         u32 reord = tp->packets_out;
3274         u32 prior_sacked = tp->sacked_out;
3275         s32 seq_rtt = -1;
3276         s32 ca_seq_rtt = -1;
3277         ktime_t last_ackt = net_invalid_timestamp();
3278
3279         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3280                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3281                 u32 acked_pcount;
3282                 u8 sacked = scb->sacked;
3283
3284                 /* Determine how many packets and what bytes were acked, tso and else */
3285                 if (after(scb->end_seq, tp->snd_una)) {
3286                         if (tcp_skb_pcount(skb) == 1 ||
3287                             !after(tp->snd_una, scb->seq))
3288                                 break;
3289
3290                         acked_pcount = tcp_tso_acked(sk, skb);
3291                         if (!acked_pcount)
3292                                 break;
3293
3294                         fully_acked = 0;
3295                 } else {
3296                         acked_pcount = tcp_skb_pcount(skb);
3297                 }
3298
3299                 if (sacked & TCPCB_RETRANS) {
3300                         if (sacked & TCPCB_SACKED_RETRANS)
3301                                 tp->retrans_out -= acked_pcount;
3302                         flag |= FLAG_RETRANS_DATA_ACKED;
3303                         ca_seq_rtt = -1;
3304                         seq_rtt = -1;
3305                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3306                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3307                 } else {
3308                         ca_seq_rtt = now - scb->when;
3309                         last_ackt = skb->tstamp;
3310                         if (seq_rtt < 0) {
3311                                 seq_rtt = ca_seq_rtt;
3312                         }
3313                         if (!(sacked & TCPCB_SACKED_ACKED))
3314                                 reord = min(pkts_acked, reord);
3315                 }
3316
3317                 if (sacked & TCPCB_SACKED_ACKED)
3318                         tp->sacked_out -= acked_pcount;
3319                 if (sacked & TCPCB_LOST)
3320                         tp->lost_out -= acked_pcount;
3321
3322                 tp->packets_out -= acked_pcount;
3323                 pkts_acked += acked_pcount;
3324
3325                 /* Initial outgoing SYN's get put onto the write_queue
3326                  * just like anything else we transmit.  It is not
3327                  * true data, and if we misinform our callers that
3328                  * this ACK acks real data, we will erroneously exit
3329                  * connection startup slow start one packet too
3330                  * quickly.  This is severely frowned upon behavior.
3331                  */
3332                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3333                         flag |= FLAG_DATA_ACKED;
3334                 } else {
3335                         flag |= FLAG_SYN_ACKED;
3336                         tp->retrans_stamp = 0;
3337                 }
3338
3339                 if (!fully_acked)
3340                         break;
3341
3342                 tcp_unlink_write_queue(skb, sk);
3343                 sk_wmem_free_skb(sk, skb);
3344                 tp->scoreboard_skb_hint = NULL;
3345                 if (skb == tp->retransmit_skb_hint)
3346                         tp->retransmit_skb_hint = NULL;
3347                 if (skb == tp->lost_skb_hint)
3348                         tp->lost_skb_hint = NULL;
3349         }
3350
3351         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3352                 tp->snd_up = tp->snd_una;
3353
3354         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3355                 flag |= FLAG_SACK_RENEGING;
3356
3357         if (flag & FLAG_ACKED) {
3358                 const struct tcp_congestion_ops *ca_ops
3359                         = inet_csk(sk)->icsk_ca_ops;
3360
3361                 if (unlikely(icsk->icsk_mtup.probe_size &&
3362                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3363                         tcp_mtup_probe_success(sk);
3364                 }
3365
3366                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3367                 tcp_rearm_rto(sk);
3368
3369                 if (tcp_is_reno(tp)) {
3370                         tcp_remove_reno_sacks(sk, pkts_acked);
3371                 } else {
3372                         int delta;
3373
3374                         /* Non-retransmitted hole got filled? That's reordering */
3375                         if (reord < prior_fackets)
3376                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3377
3378                         delta = tcp_is_fack(tp) ? pkts_acked :
3379                                                   prior_sacked - tp->sacked_out;
3380                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3381                 }
3382
3383                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3384
3385                 if (ca_ops->pkts_acked) {
3386                         s32 rtt_us = -1;
3387
3388                         /* Is the ACK triggering packet unambiguous? */
3389                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3390                                 /* High resolution needed and available? */
3391                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3392                                     !ktime_equal(last_ackt,
3393                                                  net_invalid_timestamp()))
3394                                         rtt_us = ktime_us_delta(ktime_get_real(),
3395                                                                 last_ackt);
3396                                 else if (ca_seq_rtt >= 0)
3397                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3398                         }
3399
3400                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3401                 }
3402         }
3403
3404 #if FASTRETRANS_DEBUG > 0
3405         WARN_ON((int)tp->sacked_out < 0);
3406         WARN_ON((int)tp->lost_out < 0);
3407         WARN_ON((int)tp->retrans_out < 0);
3408         if (!tp->packets_out && tcp_is_sack(tp)) {
3409                 icsk = inet_csk(sk);
3410                 if (tp->lost_out) {
3411                         printk(KERN_DEBUG "Leak l=%u %d\n",
3412                                tp->lost_out, icsk->icsk_ca_state);
3413                         tp->lost_out = 0;
3414                 }
3415                 if (tp->sacked_out) {
3416                         printk(KERN_DEBUG "Leak s=%u %d\n",
3417                                tp->sacked_out, icsk->icsk_ca_state);
3418                         tp->sacked_out = 0;
3419                 }
3420                 if (tp->retrans_out) {
3421                         printk(KERN_DEBUG "Leak r=%u %d\n",
3422                                tp->retrans_out, icsk->icsk_ca_state);
3423                         tp->retrans_out = 0;
3424                 }
3425         }
3426 #endif
3427         return flag;
3428 }
3429
3430 static void tcp_ack_probe(struct sock *sk)
3431 {
3432         const struct tcp_sock *tp = tcp_sk(sk);
3433         struct inet_connection_sock *icsk = inet_csk(sk);
3434
3435         /* Was it a usable window open? */
3436
3437         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3438                 icsk->icsk_backoff = 0;
3439                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3440                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3441                  * This function is not for random using!
3442                  */
3443         } else {
3444                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3445                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3446                                           TCP_RTO_MAX);
3447         }
3448 }
3449
3450 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3451 {
3452         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3453                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3454 }
3455
3456 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3457 {
3458         const struct tcp_sock *tp = tcp_sk(sk);
3459         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3460                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3461 }
3462
3463 /* Check that window update is acceptable.
3464  * The function assumes that snd_una<=ack<=snd_next.
3465  */
3466 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3467                                         const u32 ack, const u32 ack_seq,
3468                                         const u32 nwin)
3469 {
3470         return  after(ack, tp->snd_una) ||
3471                 after(ack_seq, tp->snd_wl1) ||
3472                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3473 }
3474
3475 /* Update our send window.
3476  *
3477  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3478  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3479  */
3480 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3481                                  u32 ack_seq)
3482 {
3483         struct tcp_sock *tp = tcp_sk(sk);
3484         int flag = 0;
3485         u32 nwin = ntohs(tcp_hdr(skb)->window);
3486
3487         if (likely(!tcp_hdr(skb)->syn))
3488                 nwin <<= tp->rx_opt.snd_wscale;
3489
3490         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3491                 flag |= FLAG_WIN_UPDATE;
3492                 tcp_update_wl(tp, ack_seq);
3493
3494                 if (tp->snd_wnd != nwin) {
3495                         tp->snd_wnd = nwin;
3496
3497                         /* Note, it is the only place, where
3498                          * fast path is recovered for sending TCP.
3499                          */
3500                         tp->pred_flags = 0;
3501                         tcp_fast_path_check(sk);
3502
3503                         if (nwin > tp->max_window) {
3504                                 tp->max_window = nwin;
3505                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3506                         }
3507                 }
3508         }
3509
3510         tp->snd_una = ack;
3511
3512         return flag;
3513 }
3514
3515 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3516  * continue in congestion avoidance.
3517  */
3518 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3519 {
3520         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3521         tp->snd_cwnd_cnt = 0;
3522         tp->bytes_acked = 0;
3523         TCP_ECN_queue_cwr(tp);
3524         tcp_moderate_cwnd(tp);
3525 }
3526
3527 /* A conservative spurious RTO response algorithm: reduce cwnd using
3528  * rate halving and continue in congestion avoidance.
3529  */
3530 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3531 {
3532         tcp_enter_cwr(sk, 0);
3533 }
3534
3535 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3536 {
3537         if (flag & FLAG_ECE)
3538                 tcp_ratehalving_spur_to_response(sk);
3539         else
3540                 tcp_undo_cwr(sk, true);
3541 }
3542
3543 /* F-RTO spurious RTO detection algorithm (RFC4138)
3544  *
3545  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3546  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3547  * window (but not to or beyond highest sequence sent before RTO):
3548  *   On First ACK,  send two new segments out.
3549  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3550  *                  algorithm is not part of the F-RTO detection algorithm
3551  *                  given in RFC4138 but can be selected separately).
3552  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3553  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3554  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3555  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3556  *
3557  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3558  * original window even after we transmit two new data segments.
3559  *
3560  * SACK version:
3561  *   on first step, wait until first cumulative ACK arrives, then move to
3562  *   the second step. In second step, the next ACK decides.
3563  *
3564  * F-RTO is implemented (mainly) in four functions:
3565  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3566  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3567  *     called when tcp_use_frto() showed green light
3568  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3569  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3570  *     to prove that the RTO is indeed spurious. It transfers the control
3571  *     from F-RTO to the conventional RTO recovery
3572  */
3573 static int tcp_process_frto(struct sock *sk, int flag)
3574 {
3575         struct tcp_sock *tp = tcp_sk(sk);
3576
3577         tcp_verify_left_out(tp);
3578
3579         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3580         if (flag & FLAG_DATA_ACKED)
3581                 inet_csk(sk)->icsk_retransmits = 0;
3582
3583         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3584             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3585                 tp->undo_marker = 0;
3586
3587         if (!before(tp->snd_una, tp->frto_highmark)) {
3588                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3589                 return 1;
3590         }
3591
3592         if (!tcp_is_sackfrto(tp)) {
3593                 /* RFC4138 shortcoming in step 2; should also have case c):
3594                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3595                  * data, winupdate
3596                  */
3597                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3598                         return 1;
3599
3600                 if (!(flag & FLAG_DATA_ACKED)) {
3601                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3602                                             flag);
3603                         return 1;
3604                 }
3605         } else {
3606                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3607                         /* Prevent sending of new data. */
3608                         tp->snd_cwnd = min(tp->snd_cwnd,
3609                                            tcp_packets_in_flight(tp));
3610                         return 1;
3611                 }
3612
3613                 if ((tp->frto_counter >= 2) &&
3614                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3615                      ((flag & FLAG_DATA_SACKED) &&
3616                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3617                         /* RFC4138 shortcoming (see comment above) */
3618                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3619                             (flag & FLAG_NOT_DUP))
3620                                 return 1;
3621
3622                         tcp_enter_frto_loss(sk, 3, flag);
3623                         return 1;
3624                 }
3625         }
3626
3627         if (tp->frto_counter == 1) {
3628                 /* tcp_may_send_now needs to see updated state */
3629                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3630                 tp->frto_counter = 2;
3631
3632                 if (!tcp_may_send_now(sk))
3633                         tcp_enter_frto_loss(sk, 2, flag);
3634
3635                 return 1;
3636         } else {
3637                 switch (sysctl_tcp_frto_response) {
3638                 case 2:
3639                         tcp_undo_spur_to_response(sk, flag);
3640                         break;
3641                 case 1:
3642                         tcp_conservative_spur_to_response(tp);
3643                         break;
3644                 default:
3645                         tcp_ratehalving_spur_to_response(sk);
3646                         break;
3647                 }
3648                 tp->frto_counter = 0;
3649                 tp->undo_marker = 0;
3650                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3651         }
3652         return 0;
3653 }
3654
3655 /* This routine deals with incoming acks, but not outgoing ones. */
3656 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3657 {
3658         struct inet_connection_sock *icsk = inet_csk(sk);
3659         struct tcp_sock *tp = tcp_sk(sk);
3660         u32 prior_snd_una = tp->snd_una;
3661         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3662         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3663         bool is_dupack = false;
3664         u32 prior_in_flight;
3665         u32 prior_fackets;
3666         int prior_packets;
3667         int prior_sacked = tp->sacked_out;
3668         int pkts_acked = 0;
3669         int newly_acked_sacked = 0;
3670         int frto_cwnd = 0;
3671
3672         /* If the ack is older than previous acks
3673          * then we can probably ignore it.
3674          */
3675         if (before(ack, prior_snd_una))
3676                 goto old_ack;
3677
3678         /* If the ack includes data we haven't sent yet, discard
3679          * this segment (RFC793 Section 3.9).
3680          */
3681         if (after(ack, tp->snd_nxt))
3682                 goto invalid_ack;
3683
3684         if (after(ack, prior_snd_una))
3685                 flag |= FLAG_SND_UNA_ADVANCED;
3686
3687         if (sysctl_tcp_abc) {
3688                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3689                         tp->bytes_acked += ack - prior_snd_una;
3690                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3691                         /* we assume just one segment left network */
3692                         tp->bytes_acked += min(ack - prior_snd_una,
3693                                                tp->mss_cache);
3694         }
3695
3696         prior_fackets = tp->fackets_out;
3697         prior_in_flight = tcp_packets_in_flight(tp);
3698
3699         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3700                 /* Window is constant, pure forward advance.
3701                  * No more checks are required.
3702                  * Note, we use the fact that SND.UNA>=SND.WL2.
3703                  */
3704                 tcp_update_wl(tp, ack_seq);
3705                 tp->snd_una = ack;
3706                 flag |= FLAG_WIN_UPDATE;
3707
3708                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3709
3710                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3711         } else {
3712                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3713                         flag |= FLAG_DATA;
3714                 else
3715                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3716
3717                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3718
3719                 if (TCP_SKB_CB(skb)->sacked)
3720                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3721
3722                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3723                         flag |= FLAG_ECE;
3724
3725                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3726         }
3727
3728         /* We passed data and got it acked, remove any soft error
3729          * log. Something worked...
3730          */
3731         sk->sk_err_soft = 0;
3732         icsk->icsk_probes_out = 0;
3733         tp->rcv_tstamp = tcp_time_stamp;
3734         prior_packets = tp->packets_out;
3735         if (!prior_packets)
3736                 goto no_queue;
3737
3738         /* See if we can take anything off of the retransmit queue. */
3739         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3740
3741         pkts_acked = prior_packets - tp->packets_out;
3742         newly_acked_sacked = (prior_packets - prior_sacked) -
3743                              (tp->packets_out - tp->sacked_out);
3744
3745         if (tp->frto_counter)
3746                 frto_cwnd = tcp_process_frto(sk, flag);
3747         /* Guarantee sacktag reordering detection against wrap-arounds */
3748         if (before(tp->frto_highmark, tp->snd_una))
3749                 tp->frto_highmark = 0;
3750
3751         if (tcp_ack_is_dubious(sk, flag)) {
3752                 /* Advance CWND, if state allows this. */
3753                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3754                     tcp_may_raise_cwnd(sk, flag))
3755                         tcp_cong_avoid(sk, ack, prior_in_flight);
3756                 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3757                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3758                                       is_dupack, flag);
3759         } else {
3760                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3761                         tcp_cong_avoid(sk, ack, prior_in_flight);
3762         }
3763
3764         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3765                 dst_confirm(__sk_dst_get(sk));
3766
3767         return 1;
3768
3769 no_queue:
3770         /* If data was DSACKed, see if we can undo a cwnd reduction. */
3771         if (flag & FLAG_DSACKING_ACK)
3772                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3773                                       is_dupack, flag);
3774         /* If this ack opens up a zero window, clear backoff.  It was
3775          * being used to time the probes, and is probably far higher than
3776          * it needs to be for normal retransmission.
3777          */
3778         if (tcp_send_head(sk))
3779                 tcp_ack_probe(sk);
3780         return 1;
3781
3782 invalid_ack:
3783         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3784         return -1;
3785
3786 old_ack:
3787         /* If data was SACKed, tag it and see if we should send more data.
3788          * If data was DSACKed, see if we can undo a cwnd reduction.
3789          */
3790         if (TCP_SKB_CB(skb)->sacked) {
3791                 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3792                 newly_acked_sacked = tp->sacked_out - prior_sacked;
3793                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3794                                       is_dupack, flag);
3795         }
3796
3797         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3798         return 0;
3799 }
3800
3801 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3802  * But, this can also be called on packets in the established flow when
3803  * the fast version below fails.
3804  */
3805 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3806                        const u8 **hvpp, int estab)
3807 {
3808         const unsigned char *ptr;
3809         const struct tcphdr *th = tcp_hdr(skb);
3810         int length = (th->doff * 4) - sizeof(struct tcphdr);
3811
3812         ptr = (const unsigned char *)(th + 1);
3813         opt_rx->saw_tstamp = 0;
3814
3815         while (length > 0) {
3816                 int opcode = *ptr++;
3817                 int opsize;
3818
3819                 switch (opcode) {
3820                 case TCPOPT_EOL:
3821                         return;
3822                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3823                         length--;
3824                         continue;
3825                 default:
3826                         opsize = *ptr++;
3827                         if (opsize < 2) /* "silly options" */
3828                                 return;
3829                         if (opsize > length)
3830                                 return; /* don't parse partial options */
3831                         switch (opcode) {
3832                         case TCPOPT_MSS:
3833                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3834                                         u16 in_mss = get_unaligned_be16(ptr);
3835                                         if (in_mss) {
3836                                                 if (opt_rx->user_mss &&
3837                                                     opt_rx->user_mss < in_mss)
3838                                                         in_mss = opt_rx->user_mss;
3839                                                 opt_rx->mss_clamp = in_mss;
3840                                         }
3841                                 }
3842                                 break;
3843                         case TCPOPT_WINDOW:
3844                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3845                                     !estab && sysctl_tcp_window_scaling) {
3846                                         __u8 snd_wscale = *(__u8 *)ptr;
3847                                         opt_rx->wscale_ok = 1;
3848                                         if (snd_wscale > 14) {
3849                                                 if (net_ratelimit())
3850                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3851                                                                "scaling value %d >14 received.\n",
3852                                                                snd_wscale);
3853                                                 snd_wscale = 14;
3854                                         }
3855                                         opt_rx->snd_wscale = snd_wscale;
3856                                 }
3857                                 break;
3858                         case TCPOPT_TIMESTAMP:
3859                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3860                                     ((estab && opt_rx->tstamp_ok) ||
3861                                      (!estab && sysctl_tcp_timestamps))) {
3862                                         opt_rx->saw_tstamp = 1;
3863                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3864                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3865                                 }
3866                                 break;
3867                         case TCPOPT_SACK_PERM:
3868                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3869                                     !estab && sysctl_tcp_sack) {
3870                                         opt_rx->sack_ok = TCP_SACK_SEEN;
3871                                         tcp_sack_reset(opt_rx);
3872                                 }
3873                                 break;
3874
3875                         case TCPOPT_SACK:
3876                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3877                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3878                                    opt_rx->sack_ok) {
3879                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3880                                 }
3881                                 break;
3882 #ifdef CONFIG_TCP_MD5SIG
3883                         case TCPOPT_MD5SIG:
3884                                 /*
3885                                  * The MD5 Hash has already been
3886                                  * checked (see tcp_v{4,6}_do_rcv()).
3887                                  */
3888                                 break;
3889 #endif
3890                         case TCPOPT_COOKIE:
3891                                 /* This option is variable length.
3892                                  */
3893                                 switch (opsize) {
3894                                 case TCPOLEN_COOKIE_BASE:
3895                                         /* not yet implemented */
3896                                         break;
3897                                 case TCPOLEN_COOKIE_PAIR:
3898                                         /* not yet implemented */
3899                                         break;
3900                                 case TCPOLEN_COOKIE_MIN+0:
3901                                 case TCPOLEN_COOKIE_MIN+2:
3902                                 case TCPOLEN_COOKIE_MIN+4:
3903                                 case TCPOLEN_COOKIE_MIN+6:
3904                                 case TCPOLEN_COOKIE_MAX:
3905                                         /* 16-bit multiple */
3906                                         opt_rx->cookie_plus = opsize;
3907                                         *hvpp = ptr;
3908                                         break;
3909                                 default:
3910                                         /* ignore option */
3911                                         break;
3912                                 }
3913                                 break;
3914                         }
3915
3916                         ptr += opsize-2;
3917                         length -= opsize;
3918                 }
3919         }
3920 }
3921 EXPORT_SYMBOL(tcp_parse_options);
3922
3923 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3924 {
3925         const __be32 *ptr = (const __be32 *)(th + 1);
3926
3927         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3928                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3929                 tp->rx_opt.saw_tstamp = 1;
3930                 ++ptr;
3931                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3932                 ++ptr;
3933                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3934                 return 1;
3935         }
3936         return 0;
3937 }
3938
3939 /* Fast parse options. This hopes to only see timestamps.
3940  * If it is wrong it falls back on tcp_parse_options().
3941  */
3942 static int tcp_fast_parse_options(const struct sk_buff *skb,
3943                                   const struct tcphdr *th,
3944                                   struct tcp_sock *tp, const u8 **hvpp)
3945 {
3946         /* In the spirit of fast parsing, compare doff directly to constant
3947          * values.  Because equality is used, short doff can be ignored here.
3948          */
3949         if (th->doff == (sizeof(*th) / 4)) {
3950                 tp->rx_opt.saw_tstamp = 0;
3951                 return 0;
3952         } else if (tp->rx_opt.tstamp_ok &&
3953                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3954                 if (tcp_parse_aligned_timestamp(tp, th))
3955                         return 1;
3956         }
3957         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3958         return 1;
3959 }
3960
3961 #ifdef CONFIG_TCP_MD5SIG
3962 /*
3963  * Parse MD5 Signature option
3964  */
3965 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3966 {
3967         int length = (th->doff << 2) - sizeof(*th);
3968         const u8 *ptr = (const u8 *)(th + 1);
3969
3970         /* If the TCP option is too short, we can short cut */
3971         if (length < TCPOLEN_MD5SIG)
3972                 return NULL;
3973
3974         while (length > 0) {
3975                 int opcode = *ptr++;
3976                 int opsize;
3977
3978                 switch(opcode) {
3979                 case TCPOPT_EOL:
3980                         return NULL;
3981                 case TCPOPT_NOP:
3982                         length--;
3983                         continue;
3984                 default:
3985                         opsize = *ptr++;
3986                         if (opsize < 2 || opsize > length)
3987                                 return NULL;
3988                         if (opcode == TCPOPT_MD5SIG)
3989                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3990                 }
3991                 ptr += opsize - 2;
3992                 length -= opsize;
3993         }
3994         return NULL;
3995 }
3996 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3997 #endif
3998
3999 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4000 {
4001         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4002         tp->rx_opt.ts_recent_stamp = get_seconds();
4003 }
4004
4005 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4006 {
4007         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4008                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4009                  * extra check below makes sure this can only happen
4010                  * for pure ACK frames.  -DaveM
4011                  *
4012                  * Not only, also it occurs for expired timestamps.
4013                  */
4014
4015                 if (tcp_paws_check(&tp->rx_opt, 0))
4016                         tcp_store_ts_recent(tp);
4017         }
4018 }
4019
4020 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4021  *
4022  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4023  * it can pass through stack. So, the following predicate verifies that
4024  * this segment is not used for anything but congestion avoidance or
4025  * fast retransmit. Moreover, we even are able to eliminate most of such
4026  * second order effects, if we apply some small "replay" window (~RTO)
4027  * to timestamp space.
4028  *
4029  * All these measures still do not guarantee that we reject wrapped ACKs
4030  * on networks with high bandwidth, when sequence space is recycled fastly,
4031  * but it guarantees that such events will be very rare and do not affect
4032  * connection seriously. This doesn't look nice, but alas, PAWS is really
4033  * buggy extension.
4034  *
4035  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4036  * states that events when retransmit arrives after original data are rare.
4037  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4038  * the biggest problem on large power networks even with minor reordering.
4039  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4040  * up to bandwidth of 18Gigabit/sec. 8) ]
4041  */
4042
4043 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4044 {
4045         const struct tcp_sock *tp = tcp_sk(sk);
4046         const struct tcphdr *th = tcp_hdr(skb);
4047         u32 seq = TCP_SKB_CB(skb)->seq;
4048         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4049
4050         return (/* 1. Pure ACK with correct sequence number. */
4051                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4052
4053                 /* 2. ... and duplicate ACK. */
4054                 ack == tp->snd_una &&
4055
4056                 /* 3. ... and does not update window. */
4057                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4058
4059                 /* 4. ... and sits in replay window. */
4060                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4061 }
4062
4063 static inline int tcp_paws_discard(const struct sock *sk,
4064                                    const struct sk_buff *skb)
4065 {
4066         const struct tcp_sock *tp = tcp_sk(sk);
4067
4068         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4069                !tcp_disordered_ack(sk, skb);
4070 }
4071
4072 /* Check segment sequence number for validity.
4073  *
4074  * Segment controls are considered valid, if the segment
4075  * fits to the window after truncation to the window. Acceptability
4076  * of data (and SYN, FIN, of course) is checked separately.
4077  * See tcp_data_queue(), for example.
4078  *
4079  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4080  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4081  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4082  * (borrowed from freebsd)
4083  */
4084
4085 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4086 {
4087         return  !before(end_seq, tp->rcv_wup) &&
4088                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4089 }
4090
4091 /* When we get a reset we do this. */
4092 static void tcp_reset(struct sock *sk)
4093 {
4094         /* We want the right error as BSD sees it (and indeed as we do). */
4095         switch (sk->sk_state) {
4096         case TCP_SYN_SENT:
4097                 sk->sk_err = ECONNREFUSED;
4098                 break;
4099         case TCP_CLOSE_WAIT:
4100                 sk->sk_err = EPIPE;
4101                 break;
4102         case TCP_CLOSE:
4103                 return;
4104         default:
4105                 sk->sk_err = ECONNRESET;
4106         }
4107         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4108         smp_wmb();
4109
4110         if (!sock_flag(sk, SOCK_DEAD))
4111                 sk->sk_error_report(sk);
4112
4113         tcp_done(sk);
4114 }
4115
4116 /*
4117  *      Process the FIN bit. This now behaves as it is supposed to work
4118  *      and the FIN takes effect when it is validly part of sequence
4119  *      space. Not before when we get holes.
4120  *
4121  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4122  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4123  *      TIME-WAIT)
4124  *
4125  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4126  *      close and we go into CLOSING (and later onto TIME-WAIT)
4127  *
4128  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4129  */
4130 static void tcp_fin(struct sock *sk)
4131 {
4132         struct tcp_sock *tp = tcp_sk(sk);
4133
4134         inet_csk_schedule_ack(sk);
4135
4136         sk->sk_shutdown |= RCV_SHUTDOWN;
4137         sock_set_flag(sk, SOCK_DONE);
4138
4139         switch (sk->sk_state) {
4140         case TCP_SYN_RECV:
4141         case TCP_ESTABLISHED:
4142                 /* Move to CLOSE_WAIT */
4143                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4144                 inet_csk(sk)->icsk_ack.pingpong = 1;
4145                 break;
4146
4147         case TCP_CLOSE_WAIT:
4148         case TCP_CLOSING:
4149                 /* Received a retransmission of the FIN, do
4150                  * nothing.
4151                  */
4152                 break;
4153         case TCP_LAST_ACK:
4154                 /* RFC793: Remain in the LAST-ACK state. */
4155                 break;
4156
4157         case TCP_FIN_WAIT1:
4158                 /* This case occurs when a simultaneous close
4159                  * happens, we must ack the received FIN and
4160                  * enter the CLOSING state.
4161                  */
4162                 tcp_send_ack(sk);
4163                 tcp_set_state(sk, TCP_CLOSING);
4164                 break;
4165         case TCP_FIN_WAIT2:
4166                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4167                 tcp_send_ack(sk);
4168                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4169                 break;
4170         default:
4171                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4172                  * cases we should never reach this piece of code.
4173                  */
4174                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4175                        __func__, sk->sk_state);
4176                 break;
4177         }
4178
4179         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4180          * Probably, we should reset in this case. For now drop them.
4181          */
4182         __skb_queue_purge(&tp->out_of_order_queue);
4183         if (tcp_is_sack(tp))
4184                 tcp_sack_reset(&tp->rx_opt);
4185         sk_mem_reclaim(sk);
4186
4187         if (!sock_flag(sk, SOCK_DEAD)) {
4188                 sk->sk_state_change(sk);
4189
4190                 /* Do not send POLL_HUP for half duplex close. */
4191                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4192                     sk->sk_state == TCP_CLOSE)
4193                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4194                 else
4195                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4196         }
4197 }
4198
4199 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4200                                   u32 end_seq)
4201 {
4202         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4203                 if (before(seq, sp->start_seq))
4204                         sp->start_seq = seq;
4205                 if (after(end_seq, sp->end_seq))
4206                         sp->end_seq = end_seq;
4207                 return 1;
4208         }
4209         return 0;
4210 }
4211
4212 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4213 {
4214         struct tcp_sock *tp = tcp_sk(sk);
4215
4216         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4217                 int mib_idx;
4218
4219                 if (before(seq, tp->rcv_nxt))
4220                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4221                 else
4222                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4223
4224                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4225
4226                 tp->rx_opt.dsack = 1;
4227                 tp->duplicate_sack[0].start_seq = seq;
4228                 tp->duplicate_sack[0].end_seq = end_seq;
4229         }
4230 }
4231
4232 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4233 {
4234         struct tcp_sock *tp = tcp_sk(sk);
4235
4236         if (!tp->rx_opt.dsack)
4237                 tcp_dsack_set(sk, seq, end_seq);
4238         else
4239                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4240 }
4241
4242 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4243 {
4244         struct tcp_sock *tp = tcp_sk(sk);
4245
4246         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4247             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4248                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4249                 tcp_enter_quickack_mode(sk);
4250
4251                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4252                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4253
4254                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4255                                 end_seq = tp->rcv_nxt;
4256                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4257                 }
4258         }
4259
4260         tcp_send_ack(sk);
4261 }
4262
4263 /* These routines update the SACK block as out-of-order packets arrive or
4264  * in-order packets close up the sequence space.
4265  */
4266 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4267 {
4268         int this_sack;
4269         struct tcp_sack_block *sp = &tp->selective_acks[0];
4270         struct tcp_sack_block *swalk = sp + 1;
4271
4272         /* See if the recent change to the first SACK eats into
4273          * or hits the sequence space of other SACK blocks, if so coalesce.
4274          */
4275         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4276                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4277                         int i;
4278
4279                         /* Zap SWALK, by moving every further SACK up by one slot.
4280                          * Decrease num_sacks.
4281                          */
4282                         tp->rx_opt.num_sacks--;
4283                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4284                                 sp[i] = sp[i + 1];
4285                         continue;
4286                 }
4287                 this_sack++, swalk++;
4288         }
4289 }
4290
4291 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4292 {
4293         struct tcp_sock *tp = tcp_sk(sk);
4294         struct tcp_sack_block *sp = &tp->selective_acks[0];
4295         int cur_sacks = tp->rx_opt.num_sacks;
4296         int this_sack;
4297
4298         if (!cur_sacks)
4299                 goto new_sack;
4300
4301         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4302                 if (tcp_sack_extend(sp, seq, end_seq)) {
4303                         /* Rotate this_sack to the first one. */
4304                         for (; this_sack > 0; this_sack--, sp--)
4305                                 swap(*sp, *(sp - 1));
4306                         if (cur_sacks > 1)
4307                                 tcp_sack_maybe_coalesce(tp);
4308                         return;
4309                 }
4310         }
4311
4312         /* Could not find an adjacent existing SACK, build a new one,
4313          * put it at the front, and shift everyone else down.  We
4314          * always know there is at least one SACK present already here.
4315          *
4316          * If the sack array is full, forget about the last one.
4317          */
4318         if (this_sack >= TCP_NUM_SACKS) {
4319                 this_sack--;
4320                 tp->rx_opt.num_sacks--;
4321                 sp--;
4322         }
4323         for (; this_sack > 0; this_sack--, sp--)
4324                 *sp = *(sp - 1);
4325
4326 new_sack:
4327         /* Build the new head SACK, and we're done. */
4328         sp->start_seq = seq;
4329         sp->end_seq = end_seq;
4330         tp->rx_opt.num_sacks++;
4331 }
4332
4333 /* RCV.NXT advances, some SACKs should be eaten. */
4334
4335 static void tcp_sack_remove(struct tcp_sock *tp)
4336 {
4337         struct tcp_sack_block *sp = &tp->selective_acks[0];
4338         int num_sacks = tp->rx_opt.num_sacks;
4339         int this_sack;
4340
4341         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4342         if (skb_queue_empty(&tp->out_of_order_queue)) {
4343                 tp->rx_opt.num_sacks = 0;
4344                 return;
4345         }
4346
4347         for (this_sack = 0; this_sack < num_sacks;) {
4348                 /* Check if the start of the sack is covered by RCV.NXT. */
4349                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4350                         int i;
4351
4352                         /* RCV.NXT must cover all the block! */
4353                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4354
4355                         /* Zap this SACK, by moving forward any other SACKS. */
4356                         for (i=this_sack+1; i < num_sacks; i++)
4357                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4358                         num_sacks--;
4359                         continue;
4360                 }
4361                 this_sack++;
4362                 sp++;
4363         }
4364         tp->rx_opt.num_sacks = num_sacks;
4365 }
4366
4367 /* This one checks to see if we can put data from the
4368  * out_of_order queue into the receive_queue.
4369  */
4370 static void tcp_ofo_queue(struct sock *sk)
4371 {
4372         struct tcp_sock *tp = tcp_sk(sk);
4373         __u32 dsack_high = tp->rcv_nxt;
4374         struct sk_buff *skb;
4375
4376         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4377                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4378                         break;
4379
4380                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4381                         __u32 dsack = dsack_high;
4382                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4383                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4384                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4385                 }
4386
4387                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4388                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4389                         __skb_unlink(skb, &tp->out_of_order_queue);
4390                         __kfree_skb(skb);
4391                         continue;
4392                 }
4393                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4394                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4395                            TCP_SKB_CB(skb)->end_seq);
4396
4397                 __skb_unlink(skb, &tp->out_of_order_queue);
4398                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4399                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4400                 if (tcp_hdr(skb)->fin)
4401                         tcp_fin(sk);
4402         }
4403 }
4404
4405 static int tcp_prune_ofo_queue(struct sock *sk);
4406 static int tcp_prune_queue(struct sock *sk);
4407
4408 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4409 {
4410         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4411             !sk_rmem_schedule(sk, size)) {
4412
4413                 if (tcp_prune_queue(sk) < 0)
4414                         return -1;
4415
4416                 if (!sk_rmem_schedule(sk, size)) {
4417                         if (!tcp_prune_ofo_queue(sk))
4418                                 return -1;
4419
4420                         if (!sk_rmem_schedule(sk, size))
4421                                 return -1;
4422                 }
4423         }
4424         return 0;
4425 }
4426
4427 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4428 {
4429         const struct tcphdr *th = tcp_hdr(skb);
4430         struct tcp_sock *tp = tcp_sk(sk);
4431         int eaten = -1;
4432
4433         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4434                 goto drop;
4435
4436         skb_dst_drop(skb);
4437         __skb_pull(skb, th->doff * 4);
4438
4439         TCP_ECN_accept_cwr(tp, skb);
4440
4441         tp->rx_opt.dsack = 0;
4442
4443         /*  Queue data for delivery to the user.
4444          *  Packets in sequence go to the receive queue.
4445          *  Out of sequence packets to the out_of_order_queue.
4446          */
4447         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4448                 if (tcp_receive_window(tp) == 0)
4449                         goto out_of_window;
4450
4451                 /* Ok. In sequence. In window. */
4452                 if (tp->ucopy.task == current &&
4453                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4454                     sock_owned_by_user(sk) && !tp->urg_data) {
4455                         int chunk = min_t(unsigned int, skb->len,
4456                                           tp->ucopy.len);
4457
4458                         __set_current_state(TASK_RUNNING);
4459
4460                         local_bh_enable();
4461                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4462                                 tp->ucopy.len -= chunk;
4463                                 tp->copied_seq += chunk;
4464                                 eaten = (chunk == skb->len);
4465                                 tcp_rcv_space_adjust(sk);
4466                         }
4467                         local_bh_disable();
4468                 }
4469
4470                 if (eaten <= 0) {
4471 queue_and_out:
4472                         if (eaten < 0 &&
4473                             tcp_try_rmem_schedule(sk, skb->truesize))
4474                                 goto drop;
4475
4476                         skb_set_owner_r(skb, sk);
4477                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4478                 }
4479                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4480                 if (skb->len)
4481                         tcp_event_data_recv(sk, skb);
4482                 if (th->fin)
4483                         tcp_fin(sk);
4484
4485                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4486                         tcp_ofo_queue(sk);
4487
4488                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4489                          * gap in queue is filled.
4490                          */
4491                         if (skb_queue_empty(&tp->out_of_order_queue))
4492                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4493                 }
4494
4495                 if (tp->rx_opt.num_sacks)
4496                         tcp_sack_remove(tp);
4497
4498                 tcp_fast_path_check(sk);
4499
4500                 if (eaten > 0)
4501                         __kfree_skb(skb);
4502                 else if (!sock_flag(sk, SOCK_DEAD))
4503                         sk->sk_data_ready(sk, 0);
4504                 return;
4505         }
4506
4507         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4508                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4509                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4510                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4511
4512 out_of_window:
4513                 tcp_enter_quickack_mode(sk);
4514                 inet_csk_schedule_ack(sk);
4515 drop:
4516                 __kfree_skb(skb);
4517                 return;
4518         }
4519
4520         /* Out of window. F.e. zero window probe. */
4521         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4522                 goto out_of_window;
4523
4524         tcp_enter_quickack_mode(sk);
4525
4526         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4527                 /* Partial packet, seq < rcv_next < end_seq */
4528                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4529                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4530                            TCP_SKB_CB(skb)->end_seq);
4531
4532                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4533
4534                 /* If window is closed, drop tail of packet. But after
4535                  * remembering D-SACK for its head made in previous line.
4536                  */
4537                 if (!tcp_receive_window(tp))
4538                         goto out_of_window;
4539                 goto queue_and_out;
4540         }
4541
4542         TCP_ECN_check_ce(tp, skb);
4543
4544         if (tcp_try_rmem_schedule(sk, skb->truesize))
4545                 goto drop;
4546
4547         /* Disable header prediction. */
4548         tp->pred_flags = 0;
4549         inet_csk_schedule_ack(sk);
4550
4551         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4552                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4553
4554         skb_set_owner_r(skb, sk);
4555
4556         if (!skb_peek(&tp->out_of_order_queue)) {
4557                 /* Initial out of order segment, build 1 SACK. */
4558                 if (tcp_is_sack(tp)) {
4559                         tp->rx_opt.num_sacks = 1;
4560                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4561                         tp->selective_acks[0].end_seq =
4562                                                 TCP_SKB_CB(skb)->end_seq;
4563                 }
4564                 __skb_queue_head(&tp->out_of_order_queue, skb);
4565         } else {
4566                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4567                 u32 seq = TCP_SKB_CB(skb)->seq;
4568                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4569
4570                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4571                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4572
4573                         if (!tp->rx_opt.num_sacks ||
4574                             tp->selective_acks[0].end_seq != seq)
4575                                 goto add_sack;
4576
4577                         /* Common case: data arrive in order after hole. */
4578                         tp->selective_acks[0].end_seq = end_seq;
4579                         return;
4580                 }
4581
4582                 /* Find place to insert this segment. */
4583                 while (1) {
4584                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4585                                 break;
4586                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4587                                 skb1 = NULL;
4588                                 break;
4589                         }
4590                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4591                 }
4592
4593                 /* Do skb overlap to previous one? */
4594                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4595                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4596                                 /* All the bits are present. Drop. */
4597                                 __kfree_skb(skb);
4598                                 tcp_dsack_set(sk, seq, end_seq);
4599                                 goto add_sack;
4600                         }
4601                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4602                                 /* Partial overlap. */
4603                                 tcp_dsack_set(sk, seq,
4604                                               TCP_SKB_CB(skb1)->end_seq);
4605                         } else {
4606                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4607                                                        skb1))
4608                                         skb1 = NULL;
4609                                 else
4610                                         skb1 = skb_queue_prev(
4611                                                 &tp->out_of_order_queue,
4612                                                 skb1);
4613                         }
4614                 }
4615                 if (!skb1)
4616                         __skb_queue_head(&tp->out_of_order_queue, skb);
4617                 else
4618                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4619
4620                 /* And clean segments covered by new one as whole. */
4621                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4622                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4623
4624                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4625                                 break;
4626                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4627                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4628                                                  end_seq);
4629                                 break;
4630                         }
4631                         __skb_unlink(skb1, &tp->out_of_order_queue);
4632                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4633                                          TCP_SKB_CB(skb1)->end_seq);
4634                         __kfree_skb(skb1);
4635                 }
4636
4637 add_sack:
4638                 if (tcp_is_sack(tp))
4639                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4640         }
4641 }
4642
4643 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4644                                         struct sk_buff_head *list)
4645 {
4646         struct sk_buff *next = NULL;
4647
4648         if (!skb_queue_is_last(list, skb))
4649                 next = skb_queue_next(list, skb);
4650
4651         __skb_unlink(skb, list);
4652         __kfree_skb(skb);
4653         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4654
4655         return next;
4656 }
4657
4658 /* Collapse contiguous sequence of skbs head..tail with
4659  * sequence numbers start..end.
4660  *
4661  * If tail is NULL, this means until the end of the list.
4662  *
4663  * Segments with FIN/SYN are not collapsed (only because this
4664  * simplifies code)
4665  */
4666 static void
4667 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4668              struct sk_buff *head, struct sk_buff *tail,
4669              u32 start, u32 end)
4670 {
4671         struct sk_buff *skb, *n;
4672         bool end_of_skbs;
4673
4674         /* First, check that queue is collapsible and find
4675          * the point where collapsing can be useful. */
4676         skb = head;
4677 restart:
4678         end_of_skbs = true;
4679         skb_queue_walk_from_safe(list, skb, n) {
4680                 if (skb == tail)
4681                         break;
4682                 /* No new bits? It is possible on ofo queue. */
4683                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4684                         skb = tcp_collapse_one(sk, skb, list);
4685                         if (!skb)
4686                                 break;
4687                         goto restart;
4688                 }
4689
4690                 /* The first skb to collapse is:
4691                  * - not SYN/FIN and
4692                  * - bloated or contains data before "start" or
4693                  *   overlaps to the next one.
4694                  */
4695                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4696                     (tcp_win_from_space(skb->truesize) > skb->len ||
4697                      before(TCP_SKB_CB(skb)->seq, start))) {
4698                         end_of_skbs = false;
4699                         break;
4700                 }
4701
4702                 if (!skb_queue_is_last(list, skb)) {
4703                         struct sk_buff *next = skb_queue_next(list, skb);
4704                         if (next != tail &&
4705                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4706                                 end_of_skbs = false;
4707                                 break;
4708                         }
4709                 }
4710
4711                 /* Decided to skip this, advance start seq. */
4712                 start = TCP_SKB_CB(skb)->end_seq;
4713         }
4714         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4715                 return;
4716
4717         while (before(start, end)) {
4718                 struct sk_buff *nskb;
4719                 unsigned int header = skb_headroom(skb);
4720                 int copy = SKB_MAX_ORDER(header, 0);
4721
4722                 /* Too big header? This can happen with IPv6. */
4723                 if (copy < 0)
4724                         return;
4725                 if (end - start < copy)
4726                         copy = end - start;
4727                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4728                 if (!nskb)
4729                         return;
4730
4731                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4732                 skb_set_network_header(nskb, (skb_network_header(skb) -
4733                                               skb->head));
4734                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4735                                                 skb->head));
4736                 skb_reserve(nskb, header);
4737                 memcpy(nskb->head, skb->head, header);
4738                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4739                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4740                 __skb_queue_before(list, skb, nskb);
4741                 skb_set_owner_r(nskb, sk);
4742
4743                 /* Copy data, releasing collapsed skbs. */
4744                 while (copy > 0) {
4745                         int offset = start - TCP_SKB_CB(skb)->seq;
4746                         int size = TCP_SKB_CB(skb)->end_seq - start;
4747
4748                         BUG_ON(offset < 0);
4749                         if (size > 0) {
4750                                 size = min(copy, size);
4751                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4752                                         BUG();
4753                                 TCP_SKB_CB(nskb)->end_seq += size;
4754                                 copy -= size;
4755                                 start += size;
4756                         }
4757                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4758                                 skb = tcp_collapse_one(sk, skb, list);
4759                                 if (!skb ||
4760                                     skb == tail ||
4761                                     tcp_hdr(skb)->syn ||
4762                                     tcp_hdr(skb)->fin)
4763                                         return;
4764                         }
4765                 }
4766         }
4767 }
4768
4769 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4770  * and tcp_collapse() them until all the queue is collapsed.
4771  */
4772 static void tcp_collapse_ofo_queue(struct sock *sk)
4773 {
4774         struct tcp_sock *tp = tcp_sk(sk);
4775         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4776         struct sk_buff *head;
4777         u32 start, end;
4778
4779         if (skb == NULL)
4780                 return;
4781
4782         start = TCP_SKB_CB(skb)->seq;
4783         end = TCP_SKB_CB(skb)->end_seq;
4784         head = skb;
4785
4786         for (;;) {
4787                 struct sk_buff *next = NULL;
4788
4789                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4790                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4791                 skb = next;
4792
4793                 /* Segment is terminated when we see gap or when
4794                  * we are at the end of all the queue. */
4795                 if (!skb ||
4796                     after(TCP_SKB_CB(skb)->seq, end) ||
4797                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4798                         tcp_collapse(sk, &tp->out_of_order_queue,
4799                                      head, skb, start, end);
4800                         head = skb;
4801                         if (!skb)
4802                                 break;
4803                         /* Start new segment */
4804                         start = TCP_SKB_CB(skb)->seq;
4805                         end = TCP_SKB_CB(skb)->end_seq;
4806                 } else {
4807                         if (before(TCP_SKB_CB(skb)->seq, start))
4808                                 start = TCP_SKB_CB(skb)->seq;
4809                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4810                                 end = TCP_SKB_CB(skb)->end_seq;
4811                 }
4812         }
4813 }
4814
4815 /*
4816  * Purge the out-of-order queue.
4817  * Return true if queue was pruned.
4818  */
4819 static int tcp_prune_ofo_queue(struct sock *sk)
4820 {
4821         struct tcp_sock *tp = tcp_sk(sk);
4822         int res = 0;
4823
4824         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4825                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4826                 __skb_queue_purge(&tp->out_of_order_queue);
4827
4828                 /* Reset SACK state.  A conforming SACK implementation will
4829                  * do the same at a timeout based retransmit.  When a connection
4830                  * is in a sad state like this, we care only about integrity
4831                  * of the connection not performance.
4832                  */
4833                 if (tp->rx_opt.sack_ok)
4834                         tcp_sack_reset(&tp->rx_opt);
4835                 sk_mem_reclaim(sk);
4836                 res = 1;
4837         }
4838         return res;
4839 }
4840
4841 /* Reduce allocated memory if we can, trying to get
4842  * the socket within its memory limits again.
4843  *
4844  * Return less than zero if we should start dropping frames
4845  * until the socket owning process reads some of the data
4846  * to stabilize the situation.
4847  */
4848 static int tcp_prune_queue(struct sock *sk)
4849 {
4850         struct tcp_sock *tp = tcp_sk(sk);
4851
4852         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4853
4854         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4855
4856         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4857                 tcp_clamp_window(sk);
4858         else if (sk_under_memory_pressure(sk))
4859                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4860
4861         tcp_collapse_ofo_queue(sk);
4862         if (!skb_queue_empty(&sk->sk_receive_queue))
4863                 tcp_collapse(sk, &sk->sk_receive_queue,
4864                              skb_peek(&sk->sk_receive_queue),
4865                              NULL,
4866                              tp->copied_seq, tp->rcv_nxt);
4867         sk_mem_reclaim(sk);
4868
4869         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4870                 return 0;
4871
4872         /* Collapsing did not help, destructive actions follow.
4873          * This must not ever occur. */
4874
4875         tcp_prune_ofo_queue(sk);
4876
4877         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4878                 return 0;
4879
4880         /* If we are really being abused, tell the caller to silently
4881          * drop receive data on the floor.  It will get retransmitted
4882          * and hopefully then we'll have sufficient space.
4883          */
4884         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4885
4886         /* Massive buffer overcommit. */
4887         tp->pred_flags = 0;
4888         return -1;
4889 }
4890
4891 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4892  * As additional protections, we do not touch cwnd in retransmission phases,
4893  * and if application hit its sndbuf limit recently.
4894  */
4895 void tcp_cwnd_application_limited(struct sock *sk)
4896 {
4897         struct tcp_sock *tp = tcp_sk(sk);
4898
4899         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4900             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4901                 /* Limited by application or receiver window. */
4902                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4903                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4904                 if (win_used < tp->snd_cwnd) {
4905                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4906                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4907                 }
4908                 tp->snd_cwnd_used = 0;
4909         }
4910         tp->snd_cwnd_stamp = tcp_time_stamp;
4911 }
4912
4913 static int tcp_should_expand_sndbuf(const struct sock *sk)
4914 {
4915         const struct tcp_sock *tp = tcp_sk(sk);
4916
4917         /* If the user specified a specific send buffer setting, do
4918          * not modify it.
4919          */
4920         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4921                 return 0;
4922
4923         /* If we are under global TCP memory pressure, do not expand.  */
4924         if (sk_under_memory_pressure(sk))
4925                 return 0;
4926
4927         /* If we are under soft global TCP memory pressure, do not expand.  */
4928         if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4929                 return 0;
4930
4931         /* If we filled the congestion window, do not expand.  */
4932         if (tp->packets_out >= tp->snd_cwnd)
4933                 return 0;
4934
4935         return 1;
4936 }
4937
4938 /* When incoming ACK allowed to free some skb from write_queue,
4939  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4940  * on the exit from tcp input handler.
4941  *
4942  * PROBLEM: sndbuf expansion does not work well with largesend.
4943  */
4944 static void tcp_new_space(struct sock *sk)
4945 {
4946         struct tcp_sock *tp = tcp_sk(sk);
4947
4948         if (tcp_should_expand_sndbuf(sk)) {
4949                 int sndmem = SKB_TRUESIZE(max_t(u32,
4950                                                 tp->rx_opt.mss_clamp,
4951                                                 tp->mss_cache) +
4952                                           MAX_TCP_HEADER);
4953                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4954                                      tp->reordering + 1);
4955                 sndmem *= 2 * demanded;
4956                 if (sndmem > sk->sk_sndbuf)
4957                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4958                 tp->snd_cwnd_stamp = tcp_time_stamp;
4959         }
4960
4961         sk->sk_write_space(sk);
4962 }
4963
4964 static void tcp_check_space(struct sock *sk)
4965 {
4966         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4967                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4968                 if (sk->sk_socket &&
4969                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4970                         tcp_new_space(sk);
4971         }
4972 }
4973
4974 static inline void tcp_data_snd_check(struct sock *sk)
4975 {
4976         tcp_push_pending_frames(sk);
4977         tcp_check_space(sk);
4978 }
4979
4980 /*
4981  * Check if sending an ack is needed.
4982  */
4983 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4984 {
4985         struct tcp_sock *tp = tcp_sk(sk);
4986
4987             /* More than one full frame received... */
4988         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4989              /* ... and right edge of window advances far enough.
4990               * (tcp_recvmsg() will send ACK otherwise). Or...
4991               */
4992              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4993             /* We ACK each frame or... */
4994             tcp_in_quickack_mode(sk) ||
4995             /* We have out of order data. */
4996             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4997                 /* Then ack it now */
4998                 tcp_send_ack(sk);
4999         } else {
5000                 /* Else, send delayed ack. */
5001                 tcp_send_delayed_ack(sk);
5002         }
5003 }
5004
5005 static inline void tcp_ack_snd_check(struct sock *sk)
5006 {
5007         if (!inet_csk_ack_scheduled(sk)) {
5008                 /* We sent a data segment already. */
5009                 return;
5010         }
5011         __tcp_ack_snd_check(sk, 1);
5012 }
5013
5014 /*
5015  *      This routine is only called when we have urgent data
5016  *      signaled. Its the 'slow' part of tcp_urg. It could be
5017  *      moved inline now as tcp_urg is only called from one
5018  *      place. We handle URGent data wrong. We have to - as
5019  *      BSD still doesn't use the correction from RFC961.
5020  *      For 1003.1g we should support a new option TCP_STDURG to permit
5021  *      either form (or just set the sysctl tcp_stdurg).
5022  */
5023
5024 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5025 {
5026         struct tcp_sock *tp = tcp_sk(sk);
5027         u32 ptr = ntohs(th->urg_ptr);
5028
5029         if (ptr && !sysctl_tcp_stdurg)
5030                 ptr--;
5031         ptr += ntohl(th->seq);
5032
5033         /* Ignore urgent data that we've already seen and read. */
5034         if (after(tp->copied_seq, ptr))
5035                 return;
5036
5037         /* Do not replay urg ptr.
5038          *
5039          * NOTE: interesting situation not covered by specs.
5040          * Misbehaving sender may send urg ptr, pointing to segment,
5041          * which we already have in ofo queue. We are not able to fetch
5042          * such data and will stay in TCP_URG_NOTYET until will be eaten
5043          * by recvmsg(). Seems, we are not obliged to handle such wicked
5044          * situations. But it is worth to think about possibility of some
5045          * DoSes using some hypothetical application level deadlock.
5046          */
5047         if (before(ptr, tp->rcv_nxt))
5048                 return;
5049
5050         /* Do we already have a newer (or duplicate) urgent pointer? */
5051         if (tp->urg_data && !after(ptr, tp->urg_seq))
5052                 return;
5053
5054         /* Tell the world about our new urgent pointer. */
5055         sk_send_sigurg(sk);
5056
5057         /* We may be adding urgent data when the last byte read was
5058          * urgent. To do this requires some care. We cannot just ignore
5059          * tp->copied_seq since we would read the last urgent byte again
5060          * as data, nor can we alter copied_seq until this data arrives
5061          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5062          *
5063          * NOTE. Double Dutch. Rendering to plain English: author of comment
5064          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5065          * and expect that both A and B disappear from stream. This is _wrong_.
5066          * Though this happens in BSD with high probability, this is occasional.
5067          * Any application relying on this is buggy. Note also, that fix "works"
5068          * only in this artificial test. Insert some normal data between A and B and we will
5069          * decline of BSD again. Verdict: it is better to remove to trap
5070          * buggy users.
5071          */
5072         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5073             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5074                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5075                 tp->copied_seq++;
5076                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5077                         __skb_unlink(skb, &sk->sk_receive_queue);
5078                         __kfree_skb(skb);
5079                 }
5080         }
5081
5082         tp->urg_data = TCP_URG_NOTYET;
5083         tp->urg_seq = ptr;
5084
5085         /* Disable header prediction. */
5086         tp->pred_flags = 0;
5087 }
5088
5089 /* This is the 'fast' part of urgent handling. */
5090 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5091 {
5092         struct tcp_sock *tp = tcp_sk(sk);
5093
5094         /* Check if we get a new urgent pointer - normally not. */
5095         if (th->urg)
5096                 tcp_check_urg(sk, th);
5097
5098         /* Do we wait for any urgent data? - normally not... */
5099         if (tp->urg_data == TCP_URG_NOTYET) {
5100                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5101                           th->syn;
5102
5103                 /* Is the urgent pointer pointing into this packet? */
5104                 if (ptr < skb->len) {
5105                         u8 tmp;
5106                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5107                                 BUG();
5108                         tp->urg_data = TCP_URG_VALID | tmp;
5109                         if (!sock_flag(sk, SOCK_DEAD))
5110                                 sk->sk_data_ready(sk, 0);
5111                 }
5112         }
5113 }
5114
5115 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5116 {
5117         struct tcp_sock *tp = tcp_sk(sk);
5118         int chunk = skb->len - hlen;
5119         int err;
5120
5121         local_bh_enable();
5122         if (skb_csum_unnecessary(skb))
5123                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5124         else
5125                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5126                                                        tp->ucopy.iov);
5127
5128         if (!err) {
5129                 tp->ucopy.len -= chunk;
5130                 tp->copied_seq += chunk;
5131                 tcp_rcv_space_adjust(sk);
5132         }
5133
5134         local_bh_disable();
5135         return err;
5136 }
5137
5138 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5139                                             struct sk_buff *skb)
5140 {
5141         __sum16 result;
5142
5143         if (sock_owned_by_user(sk)) {
5144                 local_bh_enable();
5145                 result = __tcp_checksum_complete(skb);
5146                 local_bh_disable();
5147         } else {
5148                 result = __tcp_checksum_complete(skb);
5149         }
5150         return result;
5151 }
5152
5153 static inline int tcp_checksum_complete_user(struct sock *sk,
5154                                              struct sk_buff *skb)
5155 {
5156         return !skb_csum_unnecessary(skb) &&
5157                __tcp_checksum_complete_user(sk, skb);
5158 }
5159
5160 #ifdef CONFIG_NET_DMA
5161 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5162                                   int hlen)
5163 {
5164         struct tcp_sock *tp = tcp_sk(sk);
5165         int chunk = skb->len - hlen;
5166         int dma_cookie;
5167         int copied_early = 0;
5168
5169         if (tp->ucopy.wakeup)
5170                 return 0;
5171
5172         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5173                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5174
5175         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5176
5177                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5178                                                          skb, hlen,
5179                                                          tp->ucopy.iov, chunk,
5180                                                          tp->ucopy.pinned_list);
5181
5182                 if (dma_cookie < 0)
5183                         goto out;
5184
5185                 tp->ucopy.dma_cookie = dma_cookie;
5186                 copied_early = 1;
5187
5188                 tp->ucopy.len -= chunk;
5189                 tp->copied_seq += chunk;
5190                 tcp_rcv_space_adjust(sk);
5191
5192                 if ((tp->ucopy.len == 0) ||
5193                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5194                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5195                         tp->ucopy.wakeup = 1;
5196                         sk->sk_data_ready(sk, 0);
5197                 }
5198         } else if (chunk > 0) {
5199                 tp->ucopy.wakeup = 1;
5200                 sk->sk_data_ready(sk, 0);
5201         }
5202 out:
5203         return copied_early;
5204 }
5205 #endif /* CONFIG_NET_DMA */
5206
5207 /* Does PAWS and seqno based validation of an incoming segment, flags will
5208  * play significant role here.
5209  */
5210 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5211                               const struct tcphdr *th, int syn_inerr)
5212 {
5213         const u8 *hash_location;
5214         struct tcp_sock *tp = tcp_sk(sk);
5215
5216         /* RFC1323: H1. Apply PAWS check first. */
5217         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5218             tp->rx_opt.saw_tstamp &&
5219             tcp_paws_discard(sk, skb)) {
5220                 if (!th->rst) {
5221                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5222                         tcp_send_dupack(sk, skb);
5223                         goto discard;
5224                 }
5225                 /* Reset is accepted even if it did not pass PAWS. */
5226         }
5227
5228         /* Step 1: check sequence number */
5229         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5230                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5231                  * (RST) segments are validated by checking their SEQ-fields."
5232                  * And page 69: "If an incoming segment is not acceptable,
5233                  * an acknowledgment should be sent in reply (unless the RST
5234                  * bit is set, if so drop the segment and return)".
5235                  */
5236                 if (!th->rst)
5237                         tcp_send_dupack(sk, skb);
5238                 goto discard;
5239         }
5240
5241         /* Step 2: check RST bit */
5242         if (th->rst) {
5243                 tcp_reset(sk);
5244                 goto discard;
5245         }
5246
5247         /* ts_recent update must be made after we are sure that the packet
5248          * is in window.
5249          */
5250         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5251
5252         /* step 3: check security and precedence [ignored] */
5253
5254         /* step 4: Check for a SYN in window. */
5255         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5256                 if (syn_inerr)
5257                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5258                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5259                 tcp_reset(sk);
5260                 return -1;
5261         }
5262
5263         return 1;
5264
5265 discard:
5266         __kfree_skb(skb);
5267         return 0;
5268 }
5269
5270 /*
5271  *      TCP receive function for the ESTABLISHED state.
5272  *
5273  *      It is split into a fast path and a slow path. The fast path is
5274  *      disabled when:
5275  *      - A zero window was announced from us - zero window probing
5276  *        is only handled properly in the slow path.
5277  *      - Out of order segments arrived.
5278  *      - Urgent data is expected.
5279  *      - There is no buffer space left
5280  *      - Unexpected TCP flags/window values/header lengths are received
5281  *        (detected by checking the TCP header against pred_flags)
5282  *      - Data is sent in both directions. Fast path only supports pure senders
5283  *        or pure receivers (this means either the sequence number or the ack
5284  *        value must stay constant)
5285  *      - Unexpected TCP option.
5286  *
5287  *      When these conditions are not satisfied it drops into a standard
5288  *      receive procedure patterned after RFC793 to handle all cases.
5289  *      The first three cases are guaranteed by proper pred_flags setting,
5290  *      the rest is checked inline. Fast processing is turned on in
5291  *      tcp_data_queue when everything is OK.
5292  */
5293 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5294                         const struct tcphdr *th, unsigned int len)
5295 {
5296         struct tcp_sock *tp = tcp_sk(sk);
5297         int res;
5298
5299         /*
5300          *      Header prediction.
5301          *      The code loosely follows the one in the famous
5302          *      "30 instruction TCP receive" Van Jacobson mail.
5303          *
5304          *      Van's trick is to deposit buffers into socket queue
5305          *      on a device interrupt, to call tcp_recv function
5306          *      on the receive process context and checksum and copy
5307          *      the buffer to user space. smart...
5308          *
5309          *      Our current scheme is not silly either but we take the
5310          *      extra cost of the net_bh soft interrupt processing...
5311          *      We do checksum and copy also but from device to kernel.
5312          */
5313
5314         tp->rx_opt.saw_tstamp = 0;
5315
5316         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5317          *      if header_prediction is to be made
5318          *      'S' will always be tp->tcp_header_len >> 2
5319          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5320          *  turn it off (when there are holes in the receive
5321          *       space for instance)
5322          *      PSH flag is ignored.
5323          */
5324
5325         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5326             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5327             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5328                 int tcp_header_len = tp->tcp_header_len;
5329
5330                 /* Timestamp header prediction: tcp_header_len
5331                  * is automatically equal to th->doff*4 due to pred_flags
5332                  * match.
5333                  */
5334
5335                 /* Check timestamp */
5336                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5337                         /* No? Slow path! */
5338                         if (!tcp_parse_aligned_timestamp(tp, th))
5339                                 goto slow_path;
5340
5341                         /* If PAWS failed, check it more carefully in slow path */
5342                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5343                                 goto slow_path;
5344
5345                         /* DO NOT update ts_recent here, if checksum fails
5346                          * and timestamp was corrupted part, it will result
5347                          * in a hung connection since we will drop all
5348                          * future packets due to the PAWS test.
5349                          */
5350                 }
5351
5352                 if (len <= tcp_header_len) {
5353                         /* Bulk data transfer: sender */
5354                         if (len == tcp_header_len) {
5355                                 /* Predicted packet is in window by definition.
5356                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5357                                  * Hence, check seq<=rcv_wup reduces to:
5358                                  */
5359                                 if (tcp_header_len ==
5360                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5361                                     tp->rcv_nxt == tp->rcv_wup)
5362                                         tcp_store_ts_recent(tp);
5363
5364                                 /* We know that such packets are checksummed
5365                                  * on entry.
5366                                  */
5367                                 tcp_ack(sk, skb, 0);
5368                                 __kfree_skb(skb);
5369                                 tcp_data_snd_check(sk);
5370                                 return 0;
5371                         } else { /* Header too small */
5372                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5373                                 goto discard;
5374                         }
5375                 } else {
5376                         int eaten = 0;
5377                         int copied_early = 0;
5378
5379                         if (tp->copied_seq == tp->rcv_nxt &&
5380                             len - tcp_header_len <= tp->ucopy.len) {
5381 #ifdef CONFIG_NET_DMA
5382                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5383                                         copied_early = 1;
5384                                         eaten = 1;
5385                                 }
5386 #endif
5387                                 if (tp->ucopy.task == current &&
5388                                     sock_owned_by_user(sk) && !copied_early) {
5389                                         __set_current_state(TASK_RUNNING);
5390
5391                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5392                                                 eaten = 1;
5393                                 }
5394                                 if (eaten) {
5395                                         /* Predicted packet is in window by definition.
5396                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5397                                          * Hence, check seq<=rcv_wup reduces to:
5398                                          */
5399                                         if (tcp_header_len ==
5400                                             (sizeof(struct tcphdr) +
5401                                              TCPOLEN_TSTAMP_ALIGNED) &&
5402                                             tp->rcv_nxt == tp->rcv_wup)
5403                                                 tcp_store_ts_recent(tp);
5404
5405                                         tcp_rcv_rtt_measure_ts(sk, skb);
5406
5407                                         __skb_pull(skb, tcp_header_len);
5408                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5409                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5410                                 }
5411                                 if (copied_early)
5412                                         tcp_cleanup_rbuf(sk, skb->len);
5413                         }
5414                         if (!eaten) {
5415                                 if (tcp_checksum_complete_user(sk, skb))
5416                                         goto csum_error;
5417
5418                                 /* Predicted packet is in window by definition.
5419                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5420                                  * Hence, check seq<=rcv_wup reduces to:
5421                                  */
5422                                 if (tcp_header_len ==
5423                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5424                                     tp->rcv_nxt == tp->rcv_wup)
5425                                         tcp_store_ts_recent(tp);
5426
5427                                 tcp_rcv_rtt_measure_ts(sk, skb);
5428
5429                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5430                                         goto step5;
5431
5432                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5433
5434                                 /* Bulk data transfer: receiver */
5435                                 __skb_pull(skb, tcp_header_len);
5436                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5437                                 skb_set_owner_r(skb, sk);
5438                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5439                         }
5440
5441                         tcp_event_data_recv(sk, skb);
5442
5443                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5444                                 /* Well, only one small jumplet in fast path... */
5445                                 tcp_ack(sk, skb, FLAG_DATA);
5446                                 tcp_data_snd_check(sk);
5447                                 if (!inet_csk_ack_scheduled(sk))
5448                                         goto no_ack;
5449                         }
5450
5451                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5452                                 __tcp_ack_snd_check(sk, 0);
5453 no_ack:
5454 #ifdef CONFIG_NET_DMA
5455                         if (copied_early)
5456                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5457                         else
5458 #endif
5459                         if (eaten)
5460                                 __kfree_skb(skb);
5461                         else
5462                                 sk->sk_data_ready(sk, 0);
5463                         return 0;
5464                 }
5465         }
5466
5467 slow_path:
5468         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5469                 goto csum_error;
5470
5471         /*
5472          *      Standard slow path.
5473          */
5474
5475         res = tcp_validate_incoming(sk, skb, th, 1);
5476         if (res <= 0)
5477                 return -res;
5478
5479 step5:
5480         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5481                 goto discard;
5482
5483         tcp_rcv_rtt_measure_ts(sk, skb);
5484
5485         /* Process urgent data. */
5486         tcp_urg(sk, skb, th);
5487
5488         /* step 7: process the segment text */
5489         tcp_data_queue(sk, skb);
5490
5491         tcp_data_snd_check(sk);
5492         tcp_ack_snd_check(sk);
5493         return 0;
5494
5495 csum_error:
5496         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5497
5498 discard:
5499         __kfree_skb(skb);
5500         return 0;
5501 }
5502 EXPORT_SYMBOL(tcp_rcv_established);
5503
5504 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5505                                          const struct tcphdr *th, unsigned int len)
5506 {
5507         const u8 *hash_location;
5508         struct inet_connection_sock *icsk = inet_csk(sk);
5509         struct tcp_sock *tp = tcp_sk(sk);
5510         struct tcp_cookie_values *cvp = tp->cookie_values;
5511         int saved_clamp = tp->rx_opt.mss_clamp;
5512
5513         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5514
5515         if (th->ack) {
5516                 /* rfc793:
5517                  * "If the state is SYN-SENT then
5518                  *    first check the ACK bit
5519                  *      If the ACK bit is set
5520                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5521                  *        a reset (unless the RST bit is set, if so drop
5522                  *        the segment and return)"
5523                  *
5524                  *  We do not send data with SYN, so that RFC-correct
5525                  *  test reduces to:
5526                  */
5527                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5528                         goto reset_and_undo;
5529
5530                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5531                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5532                              tcp_time_stamp)) {
5533                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5534                         goto reset_and_undo;
5535                 }
5536
5537                 /* Now ACK is acceptable.
5538                  *
5539                  * "If the RST bit is set
5540                  *    If the ACK was acceptable then signal the user "error:
5541                  *    connection reset", drop the segment, enter CLOSED state,
5542                  *    delete TCB, and return."
5543                  */
5544
5545                 if (th->rst) {
5546                         tcp_reset(sk);
5547                         goto discard;
5548                 }
5549
5550                 /* rfc793:
5551                  *   "fifth, if neither of the SYN or RST bits is set then
5552                  *    drop the segment and return."
5553                  *
5554                  *    See note below!
5555                  *                                        --ANK(990513)
5556                  */
5557                 if (!th->syn)
5558                         goto discard_and_undo;
5559
5560                 /* rfc793:
5561                  *   "If the SYN bit is on ...
5562                  *    are acceptable then ...
5563                  *    (our SYN has been ACKed), change the connection
5564                  *    state to ESTABLISHED..."
5565                  */
5566
5567                 TCP_ECN_rcv_synack(tp, th);
5568
5569                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5570                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5571
5572                 /* Ok.. it's good. Set up sequence numbers and
5573                  * move to established.
5574                  */
5575                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5576                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5577
5578                 /* RFC1323: The window in SYN & SYN/ACK segments is
5579                  * never scaled.
5580                  */
5581                 tp->snd_wnd = ntohs(th->window);
5582                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5583
5584                 if (!tp->rx_opt.wscale_ok) {
5585                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5586                         tp->window_clamp = min(tp->window_clamp, 65535U);
5587                 }
5588
5589                 if (tp->rx_opt.saw_tstamp) {
5590                         tp->rx_opt.tstamp_ok       = 1;
5591                         tp->tcp_header_len =
5592                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5593                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5594                         tcp_store_ts_recent(tp);
5595                 } else {
5596                         tp->tcp_header_len = sizeof(struct tcphdr);
5597                 }
5598
5599                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5600                         tcp_enable_fack(tp);
5601
5602                 tcp_mtup_init(sk);
5603                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5604                 tcp_initialize_rcv_mss(sk);
5605
5606                 /* Remember, tcp_poll() does not lock socket!
5607                  * Change state from SYN-SENT only after copied_seq
5608                  * is initialized. */
5609                 tp->copied_seq = tp->rcv_nxt;
5610
5611                 if (cvp != NULL &&
5612                     cvp->cookie_pair_size > 0 &&
5613                     tp->rx_opt.cookie_plus > 0) {
5614                         int cookie_size = tp->rx_opt.cookie_plus
5615                                         - TCPOLEN_COOKIE_BASE;
5616                         int cookie_pair_size = cookie_size
5617                                              + cvp->cookie_desired;
5618
5619                         /* A cookie extension option was sent and returned.
5620                          * Note that each incoming SYNACK replaces the
5621                          * Responder cookie.  The initial exchange is most
5622                          * fragile, as protection against spoofing relies
5623                          * entirely upon the sequence and timestamp (above).
5624                          * This replacement strategy allows the correct pair to
5625                          * pass through, while any others will be filtered via
5626                          * Responder verification later.
5627                          */
5628                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5629                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5630                                        hash_location, cookie_size);
5631                                 cvp->cookie_pair_size = cookie_pair_size;
5632                         }
5633                 }
5634
5635                 smp_mb();
5636                 tcp_set_state(sk, TCP_ESTABLISHED);
5637
5638                 security_inet_conn_established(sk, skb);
5639
5640                 /* Make sure socket is routed, for correct metrics.  */
5641                 icsk->icsk_af_ops->rebuild_header(sk);
5642
5643                 tcp_init_metrics(sk);
5644
5645                 tcp_init_congestion_control(sk);
5646
5647                 /* Prevent spurious tcp_cwnd_restart() on first data
5648                  * packet.
5649                  */
5650                 tp->lsndtime = tcp_time_stamp;
5651
5652                 tcp_init_buffer_space(sk);
5653
5654                 if (sock_flag(sk, SOCK_KEEPOPEN))
5655                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5656
5657                 if (!tp->rx_opt.snd_wscale)
5658                         __tcp_fast_path_on(tp, tp->snd_wnd);
5659                 else
5660                         tp->pred_flags = 0;
5661
5662                 if (!sock_flag(sk, SOCK_DEAD)) {
5663                         sk->sk_state_change(sk);
5664                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5665                 }
5666
5667                 if (sk->sk_write_pending ||
5668                     icsk->icsk_accept_queue.rskq_defer_accept ||
5669                     icsk->icsk_ack.pingpong) {
5670                         /* Save one ACK. Data will be ready after
5671                          * several ticks, if write_pending is set.
5672                          *
5673                          * It may be deleted, but with this feature tcpdumps
5674                          * look so _wonderfully_ clever, that I was not able
5675                          * to stand against the temptation 8)     --ANK
5676                          */
5677                         inet_csk_schedule_ack(sk);
5678                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5679                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5680                         tcp_incr_quickack(sk);
5681                         tcp_enter_quickack_mode(sk);
5682                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5683                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5684
5685 discard:
5686                         __kfree_skb(skb);
5687                         return 0;
5688                 } else {
5689                         tcp_send_ack(sk);
5690                 }
5691                 return -1;
5692         }
5693
5694         /* No ACK in the segment */
5695
5696         if (th->rst) {
5697                 /* rfc793:
5698                  * "If the RST bit is set
5699                  *
5700                  *      Otherwise (no ACK) drop the segment and return."
5701                  */
5702
5703                 goto discard_and_undo;
5704         }
5705
5706         /* PAWS check. */
5707         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5708             tcp_paws_reject(&tp->rx_opt, 0))
5709                 goto discard_and_undo;
5710
5711         if (th->syn) {
5712                 /* We see SYN without ACK. It is attempt of
5713                  * simultaneous connect with crossed SYNs.
5714                  * Particularly, it can be connect to self.
5715                  */
5716                 tcp_set_state(sk, TCP_SYN_RECV);
5717
5718                 if (tp->rx_opt.saw_tstamp) {
5719                         tp->rx_opt.tstamp_ok = 1;
5720                         tcp_store_ts_recent(tp);
5721                         tp->tcp_header_len =
5722                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5723                 } else {
5724                         tp->tcp_header_len = sizeof(struct tcphdr);
5725                 }
5726
5727                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5728                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5729
5730                 /* RFC1323: The window in SYN & SYN/ACK segments is
5731                  * never scaled.
5732                  */
5733                 tp->snd_wnd    = ntohs(th->window);
5734                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5735                 tp->max_window = tp->snd_wnd;
5736
5737                 TCP_ECN_rcv_syn(tp, th);
5738
5739                 tcp_mtup_init(sk);
5740                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5741                 tcp_initialize_rcv_mss(sk);
5742
5743                 tcp_send_synack(sk);
5744 #if 0
5745                 /* Note, we could accept data and URG from this segment.
5746                  * There are no obstacles to make this.
5747                  *
5748                  * However, if we ignore data in ACKless segments sometimes,
5749                  * we have no reasons to accept it sometimes.
5750                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5751                  * is not flawless. So, discard packet for sanity.
5752                  * Uncomment this return to process the data.
5753                  */
5754                 return -1;
5755 #else
5756                 goto discard;
5757 #endif
5758         }
5759         /* "fifth, if neither of the SYN or RST bits is set then
5760          * drop the segment and return."
5761          */
5762
5763 discard_and_undo:
5764         tcp_clear_options(&tp->rx_opt);
5765         tp->rx_opt.mss_clamp = saved_clamp;
5766         goto discard;
5767
5768 reset_and_undo:
5769         tcp_clear_options(&tp->rx_opt);
5770         tp->rx_opt.mss_clamp = saved_clamp;
5771         return 1;
5772 }
5773
5774 /*
5775  *      This function implements the receiving procedure of RFC 793 for
5776  *      all states except ESTABLISHED and TIME_WAIT.
5777  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5778  *      address independent.
5779  */
5780
5781 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5782                           const struct tcphdr *th, unsigned int len)
5783 {
5784         struct tcp_sock *tp = tcp_sk(sk);
5785         struct inet_connection_sock *icsk = inet_csk(sk);
5786         int queued = 0;
5787         int res;
5788
5789         tp->rx_opt.saw_tstamp = 0;
5790
5791         switch (sk->sk_state) {
5792         case TCP_CLOSE:
5793                 goto discard;
5794
5795         case TCP_LISTEN:
5796                 if (th->ack)
5797                         return 1;
5798
5799                 if (th->rst)
5800                         goto discard;
5801
5802                 if (th->syn) {
5803                         if (th->fin)
5804                                 goto discard;
5805                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5806                                 return 1;
5807
5808                         /* Now we have several options: In theory there is
5809                          * nothing else in the frame. KA9Q has an option to
5810                          * send data with the syn, BSD accepts data with the
5811                          * syn up to the [to be] advertised window and
5812                          * Solaris 2.1 gives you a protocol error. For now
5813                          * we just ignore it, that fits the spec precisely
5814                          * and avoids incompatibilities. It would be nice in
5815                          * future to drop through and process the data.
5816                          *
5817                          * Now that TTCP is starting to be used we ought to
5818                          * queue this data.
5819                          * But, this leaves one open to an easy denial of
5820                          * service attack, and SYN cookies can't defend
5821                          * against this problem. So, we drop the data
5822                          * in the interest of security over speed unless
5823                          * it's still in use.
5824                          */
5825                         kfree_skb(skb);
5826                         return 0;
5827                 }
5828                 goto discard;
5829
5830         case TCP_SYN_SENT:
5831                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5832                 if (queued >= 0)
5833                         return queued;
5834
5835                 /* Do step6 onward by hand. */
5836                 tcp_urg(sk, skb, th);
5837                 __kfree_skb(skb);
5838                 tcp_data_snd_check(sk);
5839                 return 0;
5840         }
5841
5842         res = tcp_validate_incoming(sk, skb, th, 0);
5843         if (res <= 0)
5844                 return -res;
5845
5846         /* step 5: check the ACK field */
5847         if (th->ack) {
5848                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5849
5850                 switch (sk->sk_state) {
5851                 case TCP_SYN_RECV:
5852                         if (acceptable) {
5853                                 tp->copied_seq = tp->rcv_nxt;
5854                                 smp_mb();
5855                                 tcp_set_state(sk, TCP_ESTABLISHED);
5856                                 sk->sk_state_change(sk);
5857
5858                                 /* Note, that this wakeup is only for marginal
5859                                  * crossed SYN case. Passively open sockets
5860                                  * are not waked up, because sk->sk_sleep ==
5861                                  * NULL and sk->sk_socket == NULL.
5862                                  */
5863                                 if (sk->sk_socket)
5864                                         sk_wake_async(sk,
5865                                                       SOCK_WAKE_IO, POLL_OUT);
5866
5867                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5868                                 tp->snd_wnd = ntohs(th->window) <<
5869                                               tp->rx_opt.snd_wscale;
5870                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5871
5872                                 if (tp->rx_opt.tstamp_ok)
5873                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5874
5875                                 /* Make sure socket is routed, for
5876                                  * correct metrics.
5877                                  */
5878                                 icsk->icsk_af_ops->rebuild_header(sk);
5879
5880                                 tcp_init_metrics(sk);
5881
5882                                 tcp_init_congestion_control(sk);
5883
5884                                 /* Prevent spurious tcp_cwnd_restart() on
5885                                  * first data packet.
5886                                  */
5887                                 tp->lsndtime = tcp_time_stamp;
5888
5889                                 tcp_mtup_init(sk);
5890                                 tcp_initialize_rcv_mss(sk);
5891                                 tcp_init_buffer_space(sk);
5892                                 tcp_fast_path_on(tp);
5893                         } else {
5894                                 return 1;
5895                         }
5896                         break;
5897
5898                 case TCP_FIN_WAIT1:
5899                         if (tp->snd_una == tp->write_seq) {
5900                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5901                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5902                                 dst_confirm(__sk_dst_get(sk));
5903
5904                                 if (!sock_flag(sk, SOCK_DEAD))
5905                                         /* Wake up lingering close() */
5906                                         sk->sk_state_change(sk);
5907                                 else {
5908                                         int tmo;
5909
5910                                         if (tp->linger2 < 0 ||
5911                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5912                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5913                                                 tcp_done(sk);
5914                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5915                                                 return 1;
5916                                         }
5917
5918                                         tmo = tcp_fin_time(sk);
5919                                         if (tmo > TCP_TIMEWAIT_LEN) {
5920                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5921                                         } else if (th->fin || sock_owned_by_user(sk)) {
5922                                                 /* Bad case. We could lose such FIN otherwise.
5923                                                  * It is not a big problem, but it looks confusing
5924                                                  * and not so rare event. We still can lose it now,
5925                                                  * if it spins in bh_lock_sock(), but it is really
5926                                                  * marginal case.
5927                                                  */
5928                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5929                                         } else {
5930                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5931                                                 goto discard;
5932                                         }
5933                                 }
5934                         }
5935                         break;
5936
5937                 case TCP_CLOSING:
5938                         if (tp->snd_una == tp->write_seq) {
5939                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5940                                 goto discard;
5941                         }
5942                         break;
5943
5944                 case TCP_LAST_ACK:
5945                         if (tp->snd_una == tp->write_seq) {
5946                                 tcp_update_metrics(sk);
5947                                 tcp_done(sk);
5948                                 goto discard;
5949                         }
5950                         break;
5951                 }
5952         } else
5953                 goto discard;
5954
5955         /* step 6: check the URG bit */
5956         tcp_urg(sk, skb, th);
5957
5958         /* step 7: process the segment text */
5959         switch (sk->sk_state) {
5960         case TCP_CLOSE_WAIT:
5961         case TCP_CLOSING:
5962         case TCP_LAST_ACK:
5963                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5964                         break;
5965         case TCP_FIN_WAIT1:
5966         case TCP_FIN_WAIT2:
5967                 /* RFC 793 says to queue data in these states,
5968                  * RFC 1122 says we MUST send a reset.
5969                  * BSD 4.4 also does reset.
5970                  */
5971                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5972                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5973                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5974                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5975                                 tcp_reset(sk);
5976                                 return 1;
5977                         }
5978                 }
5979                 /* Fall through */
5980         case TCP_ESTABLISHED:
5981                 tcp_data_queue(sk, skb);
5982                 queued = 1;
5983                 break;
5984         }
5985
5986         /* tcp_data could move socket to TIME-WAIT */
5987         if (sk->sk_state != TCP_CLOSE) {
5988                 tcp_data_snd_check(sk);
5989                 tcp_ack_snd_check(sk);
5990         }
5991
5992         if (!queued) {
5993 discard:
5994                 __kfree_skb(skb);
5995         }
5996         return 0;
5997 }
5998 EXPORT_SYMBOL(tcp_rcv_state_process);