]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89                            unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92                                   unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98
99 bool kvm_rebooting;
100 EXPORT_SYMBOL_GPL(kvm_rebooting);
101
102 static bool largepages_enabled = true;
103
104 bool kvm_is_mmio_pfn(pfn_t pfn)
105 {
106         if (pfn_valid(pfn))
107                 return PageReserved(pfn_to_page(pfn));
108
109         return true;
110 }
111
112 /*
113  * Switches to specified vcpu, until a matching vcpu_put()
114  */
115 int vcpu_load(struct kvm_vcpu *vcpu)
116 {
117         int cpu;
118
119         if (mutex_lock_killable(&vcpu->mutex))
120                 return -EINTR;
121         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
122                 /* The thread running this VCPU changed. */
123                 struct pid *oldpid = vcpu->pid;
124                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
125                 rcu_assign_pointer(vcpu->pid, newpid);
126                 synchronize_rcu();
127                 put_pid(oldpid);
128         }
129         cpu = get_cpu();
130         preempt_notifier_register(&vcpu->preempt_notifier);
131         kvm_arch_vcpu_load(vcpu, cpu);
132         put_cpu();
133         return 0;
134 }
135
136 void vcpu_put(struct kvm_vcpu *vcpu)
137 {
138         preempt_disable();
139         kvm_arch_vcpu_put(vcpu);
140         preempt_notifier_unregister(&vcpu->preempt_notifier);
141         preempt_enable();
142         mutex_unlock(&vcpu->mutex);
143 }
144
145 static void ack_flush(void *_completed)
146 {
147 }
148
149 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
150 {
151         int i, cpu, me;
152         cpumask_var_t cpus;
153         bool called = true;
154         struct kvm_vcpu *vcpu;
155
156         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
157
158         me = get_cpu();
159         kvm_for_each_vcpu(i, vcpu, kvm) {
160                 kvm_make_request(req, vcpu);
161                 cpu = vcpu->cpu;
162
163                 /* Set ->requests bit before we read ->mode */
164                 smp_mb();
165
166                 if (cpus != NULL && cpu != -1 && cpu != me &&
167                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
168                         cpumask_set_cpu(cpu, cpus);
169         }
170         if (unlikely(cpus == NULL))
171                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
172         else if (!cpumask_empty(cpus))
173                 smp_call_function_many(cpus, ack_flush, NULL, 1);
174         else
175                 called = false;
176         put_cpu();
177         free_cpumask_var(cpus);
178         return called;
179 }
180
181 void kvm_flush_remote_tlbs(struct kvm *kvm)
182 {
183         long dirty_count = kvm->tlbs_dirty;
184
185         smp_mb();
186         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
187                 ++kvm->stat.remote_tlb_flush;
188         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
189 }
190
191 void kvm_reload_remote_mmus(struct kvm *kvm)
192 {
193         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
194 }
195
196 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
197 {
198         make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
199 }
200
201 void kvm_make_scan_ioapic_request(struct kvm *kvm)
202 {
203         make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
204 }
205
206 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
207 {
208         struct page *page;
209         int r;
210
211         mutex_init(&vcpu->mutex);
212         vcpu->cpu = -1;
213         vcpu->kvm = kvm;
214         vcpu->vcpu_id = id;
215         vcpu->pid = NULL;
216         init_waitqueue_head(&vcpu->wq);
217         kvm_async_pf_vcpu_init(vcpu);
218
219         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
220         if (!page) {
221                 r = -ENOMEM;
222                 goto fail;
223         }
224         vcpu->run = page_address(page);
225
226         kvm_vcpu_set_in_spin_loop(vcpu, false);
227         kvm_vcpu_set_dy_eligible(vcpu, false);
228         vcpu->preempted = false;
229
230         r = kvm_arch_vcpu_init(vcpu);
231         if (r < 0)
232                 goto fail_free_run;
233         return 0;
234
235 fail_free_run:
236         free_page((unsigned long)vcpu->run);
237 fail:
238         return r;
239 }
240 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
241
242 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
243 {
244         put_pid(vcpu->pid);
245         kvm_arch_vcpu_uninit(vcpu);
246         free_page((unsigned long)vcpu->run);
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
249
250 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
251 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
252 {
253         return container_of(mn, struct kvm, mmu_notifier);
254 }
255
256 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
257                                              struct mm_struct *mm,
258                                              unsigned long address)
259 {
260         struct kvm *kvm = mmu_notifier_to_kvm(mn);
261         int need_tlb_flush, idx;
262
263         /*
264          * When ->invalidate_page runs, the linux pte has been zapped
265          * already but the page is still allocated until
266          * ->invalidate_page returns. So if we increase the sequence
267          * here the kvm page fault will notice if the spte can't be
268          * established because the page is going to be freed. If
269          * instead the kvm page fault establishes the spte before
270          * ->invalidate_page runs, kvm_unmap_hva will release it
271          * before returning.
272          *
273          * The sequence increase only need to be seen at spin_unlock
274          * time, and not at spin_lock time.
275          *
276          * Increasing the sequence after the spin_unlock would be
277          * unsafe because the kvm page fault could then establish the
278          * pte after kvm_unmap_hva returned, without noticing the page
279          * is going to be freed.
280          */
281         idx = srcu_read_lock(&kvm->srcu);
282         spin_lock(&kvm->mmu_lock);
283
284         kvm->mmu_notifier_seq++;
285         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
286         /* we've to flush the tlb before the pages can be freed */
287         if (need_tlb_flush)
288                 kvm_flush_remote_tlbs(kvm);
289
290         spin_unlock(&kvm->mmu_lock);
291         srcu_read_unlock(&kvm->srcu, idx);
292 }
293
294 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
295                                         struct mm_struct *mm,
296                                         unsigned long address,
297                                         pte_t pte)
298 {
299         struct kvm *kvm = mmu_notifier_to_kvm(mn);
300         int idx;
301
302         idx = srcu_read_lock(&kvm->srcu);
303         spin_lock(&kvm->mmu_lock);
304         kvm->mmu_notifier_seq++;
305         kvm_set_spte_hva(kvm, address, pte);
306         spin_unlock(&kvm->mmu_lock);
307         srcu_read_unlock(&kvm->srcu, idx);
308 }
309
310 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
311                                                     struct mm_struct *mm,
312                                                     unsigned long start,
313                                                     unsigned long end)
314 {
315         struct kvm *kvm = mmu_notifier_to_kvm(mn);
316         int need_tlb_flush = 0, idx;
317
318         idx = srcu_read_lock(&kvm->srcu);
319         spin_lock(&kvm->mmu_lock);
320         /*
321          * The count increase must become visible at unlock time as no
322          * spte can be established without taking the mmu_lock and
323          * count is also read inside the mmu_lock critical section.
324          */
325         kvm->mmu_notifier_count++;
326         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
327         need_tlb_flush |= kvm->tlbs_dirty;
328         /* we've to flush the tlb before the pages can be freed */
329         if (need_tlb_flush)
330                 kvm_flush_remote_tlbs(kvm);
331
332         spin_unlock(&kvm->mmu_lock);
333         srcu_read_unlock(&kvm->srcu, idx);
334 }
335
336 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
337                                                   struct mm_struct *mm,
338                                                   unsigned long start,
339                                                   unsigned long end)
340 {
341         struct kvm *kvm = mmu_notifier_to_kvm(mn);
342
343         spin_lock(&kvm->mmu_lock);
344         /*
345          * This sequence increase will notify the kvm page fault that
346          * the page that is going to be mapped in the spte could have
347          * been freed.
348          */
349         kvm->mmu_notifier_seq++;
350         smp_wmb();
351         /*
352          * The above sequence increase must be visible before the
353          * below count decrease, which is ensured by the smp_wmb above
354          * in conjunction with the smp_rmb in mmu_notifier_retry().
355          */
356         kvm->mmu_notifier_count--;
357         spin_unlock(&kvm->mmu_lock);
358
359         BUG_ON(kvm->mmu_notifier_count < 0);
360 }
361
362 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
363                                               struct mm_struct *mm,
364                                               unsigned long address)
365 {
366         struct kvm *kvm = mmu_notifier_to_kvm(mn);
367         int young, idx;
368
369         idx = srcu_read_lock(&kvm->srcu);
370         spin_lock(&kvm->mmu_lock);
371
372         young = kvm_age_hva(kvm, address);
373         if (young)
374                 kvm_flush_remote_tlbs(kvm);
375
376         spin_unlock(&kvm->mmu_lock);
377         srcu_read_unlock(&kvm->srcu, idx);
378
379         return young;
380 }
381
382 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
383                                        struct mm_struct *mm,
384                                        unsigned long address)
385 {
386         struct kvm *kvm = mmu_notifier_to_kvm(mn);
387         int young, idx;
388
389         idx = srcu_read_lock(&kvm->srcu);
390         spin_lock(&kvm->mmu_lock);
391         young = kvm_test_age_hva(kvm, address);
392         spin_unlock(&kvm->mmu_lock);
393         srcu_read_unlock(&kvm->srcu, idx);
394
395         return young;
396 }
397
398 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
399                                      struct mm_struct *mm)
400 {
401         struct kvm *kvm = mmu_notifier_to_kvm(mn);
402         int idx;
403
404         idx = srcu_read_lock(&kvm->srcu);
405         kvm_arch_flush_shadow_all(kvm);
406         srcu_read_unlock(&kvm->srcu, idx);
407 }
408
409 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
410         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
411         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
412         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
413         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
414         .test_young             = kvm_mmu_notifier_test_young,
415         .change_pte             = kvm_mmu_notifier_change_pte,
416         .release                = kvm_mmu_notifier_release,
417 };
418
419 static int kvm_init_mmu_notifier(struct kvm *kvm)
420 {
421         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
422         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
423 }
424
425 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429         return 0;
430 }
431
432 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
433
434 static void kvm_init_memslots_id(struct kvm *kvm)
435 {
436         int i;
437         struct kvm_memslots *slots = kvm->memslots;
438
439         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
440                 slots->id_to_index[i] = slots->memslots[i].id = i;
441 }
442
443 static struct kvm *kvm_create_vm(unsigned long type)
444 {
445         int r, i;
446         struct kvm *kvm = kvm_arch_alloc_vm();
447
448         if (!kvm)
449                 return ERR_PTR(-ENOMEM);
450
451         r = kvm_arch_init_vm(kvm, type);
452         if (r)
453                 goto out_err_nodisable;
454
455         r = hardware_enable_all();
456         if (r)
457                 goto out_err_nodisable;
458
459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
460         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
461         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
462 #endif
463
464         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
465
466         r = -ENOMEM;
467         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
468         if (!kvm->memslots)
469                 goto out_err_nosrcu;
470         kvm_init_memslots_id(kvm);
471         if (init_srcu_struct(&kvm->srcu))
472                 goto out_err_nosrcu;
473         for (i = 0; i < KVM_NR_BUSES; i++) {
474                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
475                                         GFP_KERNEL);
476                 if (!kvm->buses[i])
477                         goto out_err;
478         }
479
480         spin_lock_init(&kvm->mmu_lock);
481         kvm->mm = current->mm;
482         atomic_inc(&kvm->mm->mm_count);
483         kvm_eventfd_init(kvm);
484         mutex_init(&kvm->lock);
485         mutex_init(&kvm->irq_lock);
486         mutex_init(&kvm->slots_lock);
487         atomic_set(&kvm->users_count, 1);
488         INIT_LIST_HEAD(&kvm->devices);
489
490         r = kvm_init_mmu_notifier(kvm);
491         if (r)
492                 goto out_err;
493
494         spin_lock(&kvm_lock);
495         list_add(&kvm->vm_list, &vm_list);
496         spin_unlock(&kvm_lock);
497
498         return kvm;
499
500 out_err:
501         cleanup_srcu_struct(&kvm->srcu);
502 out_err_nosrcu:
503         hardware_disable_all();
504 out_err_nodisable:
505         for (i = 0; i < KVM_NR_BUSES; i++)
506                 kfree(kvm->buses[i]);
507         kfree(kvm->memslots);
508         kvm_arch_free_vm(kvm);
509         return ERR_PTR(r);
510 }
511
512 /*
513  * Avoid using vmalloc for a small buffer.
514  * Should not be used when the size is statically known.
515  */
516 void *kvm_kvzalloc(unsigned long size)
517 {
518         if (size > PAGE_SIZE)
519                 return vzalloc(size);
520         else
521                 return kzalloc(size, GFP_KERNEL);
522 }
523
524 void kvm_kvfree(const void *addr)
525 {
526         if (is_vmalloc_addr(addr))
527                 vfree(addr);
528         else
529                 kfree(addr);
530 }
531
532 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
533 {
534         if (!memslot->dirty_bitmap)
535                 return;
536
537         kvm_kvfree(memslot->dirty_bitmap);
538         memslot->dirty_bitmap = NULL;
539 }
540
541 /*
542  * Free any memory in @free but not in @dont.
543  */
544 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
545                                   struct kvm_memory_slot *dont)
546 {
547         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
548                 kvm_destroy_dirty_bitmap(free);
549
550         kvm_arch_free_memslot(free, dont);
551
552         free->npages = 0;
553 }
554
555 void kvm_free_physmem(struct kvm *kvm)
556 {
557         struct kvm_memslots *slots = kvm->memslots;
558         struct kvm_memory_slot *memslot;
559
560         kvm_for_each_memslot(memslot, slots)
561                 kvm_free_physmem_slot(memslot, NULL);
562
563         kfree(kvm->memslots);
564 }
565
566 static void kvm_destroy_devices(struct kvm *kvm)
567 {
568         struct list_head *node, *tmp;
569
570         list_for_each_safe(node, tmp, &kvm->devices) {
571                 struct kvm_device *dev =
572                         list_entry(node, struct kvm_device, vm_node);
573
574                 list_del(node);
575                 dev->ops->destroy(dev);
576         }
577 }
578
579 static void kvm_destroy_vm(struct kvm *kvm)
580 {
581         int i;
582         struct mm_struct *mm = kvm->mm;
583
584         kvm_arch_sync_events(kvm);
585         spin_lock(&kvm_lock);
586         list_del(&kvm->vm_list);
587         spin_unlock(&kvm_lock);
588         kvm_free_irq_routing(kvm);
589         for (i = 0; i < KVM_NR_BUSES; i++)
590                 kvm_io_bus_destroy(kvm->buses[i]);
591         kvm_coalesced_mmio_free(kvm);
592 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
593         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
594 #else
595         kvm_arch_flush_shadow_all(kvm);
596 #endif
597         kvm_arch_destroy_vm(kvm);
598         kvm_destroy_devices(kvm);
599         kvm_free_physmem(kvm);
600         cleanup_srcu_struct(&kvm->srcu);
601         kvm_arch_free_vm(kvm);
602         hardware_disable_all();
603         mmdrop(mm);
604 }
605
606 void kvm_get_kvm(struct kvm *kvm)
607 {
608         atomic_inc(&kvm->users_count);
609 }
610 EXPORT_SYMBOL_GPL(kvm_get_kvm);
611
612 void kvm_put_kvm(struct kvm *kvm)
613 {
614         if (atomic_dec_and_test(&kvm->users_count))
615                 kvm_destroy_vm(kvm);
616 }
617 EXPORT_SYMBOL_GPL(kvm_put_kvm);
618
619
620 static int kvm_vm_release(struct inode *inode, struct file *filp)
621 {
622         struct kvm *kvm = filp->private_data;
623
624         kvm_irqfd_release(kvm);
625
626         kvm_put_kvm(kvm);
627         return 0;
628 }
629
630 /*
631  * Allocation size is twice as large as the actual dirty bitmap size.
632  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
633  */
634 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
635 {
636 #ifndef CONFIG_S390
637         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
638
639         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
640         if (!memslot->dirty_bitmap)
641                 return -ENOMEM;
642
643 #endif /* !CONFIG_S390 */
644         return 0;
645 }
646
647 static int cmp_memslot(const void *slot1, const void *slot2)
648 {
649         struct kvm_memory_slot *s1, *s2;
650
651         s1 = (struct kvm_memory_slot *)slot1;
652         s2 = (struct kvm_memory_slot *)slot2;
653
654         if (s1->npages < s2->npages)
655                 return 1;
656         if (s1->npages > s2->npages)
657                 return -1;
658
659         return 0;
660 }
661
662 /*
663  * Sort the memslots base on its size, so the larger slots
664  * will get better fit.
665  */
666 static void sort_memslots(struct kvm_memslots *slots)
667 {
668         int i;
669
670         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
671               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
672
673         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
674                 slots->id_to_index[slots->memslots[i].id] = i;
675 }
676
677 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
678                      u64 last_generation)
679 {
680         if (new) {
681                 int id = new->id;
682                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
683                 unsigned long npages = old->npages;
684
685                 *old = *new;
686                 if (new->npages != npages)
687                         sort_memslots(slots);
688         }
689
690         slots->generation = last_generation + 1;
691 }
692
693 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
694 {
695         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
696
697 #ifdef KVM_CAP_READONLY_MEM
698         valid_flags |= KVM_MEM_READONLY;
699 #endif
700
701         if (mem->flags & ~valid_flags)
702                 return -EINVAL;
703
704         return 0;
705 }
706
707 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
708                 struct kvm_memslots *slots, struct kvm_memory_slot *new)
709 {
710         struct kvm_memslots *old_memslots = kvm->memslots;
711
712         update_memslots(slots, new, kvm->memslots->generation);
713         rcu_assign_pointer(kvm->memslots, slots);
714         synchronize_srcu_expedited(&kvm->srcu);
715
716         kvm_arch_memslots_updated(kvm);
717
718         return old_memslots;
719 }
720
721 /*
722  * Allocate some memory and give it an address in the guest physical address
723  * space.
724  *
725  * Discontiguous memory is allowed, mostly for framebuffers.
726  *
727  * Must be called holding mmap_sem for write.
728  */
729 int __kvm_set_memory_region(struct kvm *kvm,
730                             struct kvm_userspace_memory_region *mem)
731 {
732         int r;
733         gfn_t base_gfn;
734         unsigned long npages;
735         struct kvm_memory_slot *slot;
736         struct kvm_memory_slot old, new;
737         struct kvm_memslots *slots = NULL, *old_memslots;
738         enum kvm_mr_change change;
739
740         r = check_memory_region_flags(mem);
741         if (r)
742                 goto out;
743
744         r = -EINVAL;
745         /* General sanity checks */
746         if (mem->memory_size & (PAGE_SIZE - 1))
747                 goto out;
748         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
749                 goto out;
750         /* We can read the guest memory with __xxx_user() later on. */
751         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
752             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
753              !access_ok(VERIFY_WRITE,
754                         (void __user *)(unsigned long)mem->userspace_addr,
755                         mem->memory_size)))
756                 goto out;
757         if (mem->slot >= KVM_MEM_SLOTS_NUM)
758                 goto out;
759         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
760                 goto out;
761
762         slot = id_to_memslot(kvm->memslots, mem->slot);
763         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
764         npages = mem->memory_size >> PAGE_SHIFT;
765
766         r = -EINVAL;
767         if (npages > KVM_MEM_MAX_NR_PAGES)
768                 goto out;
769
770         if (!npages)
771                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
772
773         new = old = *slot;
774
775         new.id = mem->slot;
776         new.base_gfn = base_gfn;
777         new.npages = npages;
778         new.flags = mem->flags;
779
780         r = -EINVAL;
781         if (npages) {
782                 if (!old.npages)
783                         change = KVM_MR_CREATE;
784                 else { /* Modify an existing slot. */
785                         if ((mem->userspace_addr != old.userspace_addr) ||
786                             (npages != old.npages) ||
787                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
788                                 goto out;
789
790                         if (base_gfn != old.base_gfn)
791                                 change = KVM_MR_MOVE;
792                         else if (new.flags != old.flags)
793                                 change = KVM_MR_FLAGS_ONLY;
794                         else { /* Nothing to change. */
795                                 r = 0;
796                                 goto out;
797                         }
798                 }
799         } else if (old.npages) {
800                 change = KVM_MR_DELETE;
801         } else /* Modify a non-existent slot: disallowed. */
802                 goto out;
803
804         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
805                 /* Check for overlaps */
806                 r = -EEXIST;
807                 kvm_for_each_memslot(slot, kvm->memslots) {
808                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
809                             (slot->id == mem->slot))
810                                 continue;
811                         if (!((base_gfn + npages <= slot->base_gfn) ||
812                               (base_gfn >= slot->base_gfn + slot->npages)))
813                                 goto out;
814                 }
815         }
816
817         /* Free page dirty bitmap if unneeded */
818         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
819                 new.dirty_bitmap = NULL;
820
821         r = -ENOMEM;
822         if (change == KVM_MR_CREATE) {
823                 new.userspace_addr = mem->userspace_addr;
824
825                 if (kvm_arch_create_memslot(&new, npages))
826                         goto out_free;
827         }
828
829         /* Allocate page dirty bitmap if needed */
830         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
831                 if (kvm_create_dirty_bitmap(&new) < 0)
832                         goto out_free;
833         }
834
835         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
836                 r = -ENOMEM;
837                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
838                                 GFP_KERNEL);
839                 if (!slots)
840                         goto out_free;
841                 slot = id_to_memslot(slots, mem->slot);
842                 slot->flags |= KVM_MEMSLOT_INVALID;
843
844                 old_memslots = install_new_memslots(kvm, slots, NULL);
845
846                 /* slot was deleted or moved, clear iommu mapping */
847                 kvm_iommu_unmap_pages(kvm, &old);
848                 /* From this point no new shadow pages pointing to a deleted,
849                  * or moved, memslot will be created.
850                  *
851                  * validation of sp->gfn happens in:
852                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
853                  *      - kvm_is_visible_gfn (mmu_check_roots)
854                  */
855                 kvm_arch_flush_shadow_memslot(kvm, slot);
856                 slots = old_memslots;
857         }
858
859         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
860         if (r)
861                 goto out_slots;
862
863         r = -ENOMEM;
864         /*
865          * We can re-use the old_memslots from above, the only difference
866          * from the currently installed memslots is the invalid flag.  This
867          * will get overwritten by update_memslots anyway.
868          */
869         if (!slots) {
870                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
871                                 GFP_KERNEL);
872                 if (!slots)
873                         goto out_free;
874         }
875
876         /*
877          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
878          * un-mapped and re-mapped if their base changes.  Since base change
879          * unmapping is handled above with slot deletion, mapping alone is
880          * needed here.  Anything else the iommu might care about for existing
881          * slots (size changes, userspace addr changes and read-only flag
882          * changes) is disallowed above, so any other attribute changes getting
883          * here can be skipped.
884          */
885         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
886                 r = kvm_iommu_map_pages(kvm, &new);
887                 if (r)
888                         goto out_slots;
889         }
890
891         /* actual memory is freed via old in kvm_free_physmem_slot below */
892         if (change == KVM_MR_DELETE) {
893                 new.dirty_bitmap = NULL;
894                 memset(&new.arch, 0, sizeof(new.arch));
895         }
896
897         old_memslots = install_new_memslots(kvm, slots, &new);
898
899         kvm_arch_commit_memory_region(kvm, mem, &old, change);
900
901         kvm_free_physmem_slot(&old, &new);
902         kfree(old_memslots);
903
904         return 0;
905
906 out_slots:
907         kfree(slots);
908 out_free:
909         kvm_free_physmem_slot(&new, &old);
910 out:
911         return r;
912 }
913 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
914
915 int kvm_set_memory_region(struct kvm *kvm,
916                           struct kvm_userspace_memory_region *mem)
917 {
918         int r;
919
920         mutex_lock(&kvm->slots_lock);
921         r = __kvm_set_memory_region(kvm, mem);
922         mutex_unlock(&kvm->slots_lock);
923         return r;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
926
927 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
928                                    struct kvm_userspace_memory_region *mem)
929 {
930         if (mem->slot >= KVM_USER_MEM_SLOTS)
931                 return -EINVAL;
932         return kvm_set_memory_region(kvm, mem);
933 }
934
935 int kvm_get_dirty_log(struct kvm *kvm,
936                         struct kvm_dirty_log *log, int *is_dirty)
937 {
938         struct kvm_memory_slot *memslot;
939         int r, i;
940         unsigned long n;
941         unsigned long any = 0;
942
943         r = -EINVAL;
944         if (log->slot >= KVM_USER_MEM_SLOTS)
945                 goto out;
946
947         memslot = id_to_memslot(kvm->memslots, log->slot);
948         r = -ENOENT;
949         if (!memslot->dirty_bitmap)
950                 goto out;
951
952         n = kvm_dirty_bitmap_bytes(memslot);
953
954         for (i = 0; !any && i < n/sizeof(long); ++i)
955                 any = memslot->dirty_bitmap[i];
956
957         r = -EFAULT;
958         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
959                 goto out;
960
961         if (any)
962                 *is_dirty = 1;
963
964         r = 0;
965 out:
966         return r;
967 }
968
969 bool kvm_largepages_enabled(void)
970 {
971         return largepages_enabled;
972 }
973
974 void kvm_disable_largepages(void)
975 {
976         largepages_enabled = false;
977 }
978 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
979
980 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
981 {
982         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
983 }
984 EXPORT_SYMBOL_GPL(gfn_to_memslot);
985
986 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
987 {
988         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
989
990         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
991               memslot->flags & KVM_MEMSLOT_INVALID)
992                 return 0;
993
994         return 1;
995 }
996 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
997
998 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
999 {
1000         struct vm_area_struct *vma;
1001         unsigned long addr, size;
1002
1003         size = PAGE_SIZE;
1004
1005         addr = gfn_to_hva(kvm, gfn);
1006         if (kvm_is_error_hva(addr))
1007                 return PAGE_SIZE;
1008
1009         down_read(&current->mm->mmap_sem);
1010         vma = find_vma(current->mm, addr);
1011         if (!vma)
1012                 goto out;
1013
1014         size = vma_kernel_pagesize(vma);
1015
1016 out:
1017         up_read(&current->mm->mmap_sem);
1018
1019         return size;
1020 }
1021
1022 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1023 {
1024         return slot->flags & KVM_MEM_READONLY;
1025 }
1026
1027 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1028                                        gfn_t *nr_pages, bool write)
1029 {
1030         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1031                 return KVM_HVA_ERR_BAD;
1032
1033         if (memslot_is_readonly(slot) && write)
1034                 return KVM_HVA_ERR_RO_BAD;
1035
1036         if (nr_pages)
1037                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1038
1039         return __gfn_to_hva_memslot(slot, gfn);
1040 }
1041
1042 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1043                                      gfn_t *nr_pages)
1044 {
1045         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1046 }
1047
1048 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1049                                  gfn_t gfn)
1050 {
1051         return gfn_to_hva_many(slot, gfn, NULL);
1052 }
1053 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1054
1055 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1056 {
1057         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1058 }
1059 EXPORT_SYMBOL_GPL(gfn_to_hva);
1060
1061 /*
1062  * If writable is set to false, the hva returned by this function is only
1063  * allowed to be read.
1064  */
1065 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1066 {
1067         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1068         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1069
1070         if (!kvm_is_error_hva(hva) && writable)
1071                 *writable = !memslot_is_readonly(slot);
1072
1073         return hva;
1074 }
1075
1076 static int kvm_read_hva(void *data, void __user *hva, int len)
1077 {
1078         return __copy_from_user(data, hva, len);
1079 }
1080
1081 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1082 {
1083         return __copy_from_user_inatomic(data, hva, len);
1084 }
1085
1086 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1087         unsigned long start, int write, struct page **page)
1088 {
1089         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1090
1091         if (write)
1092                 flags |= FOLL_WRITE;
1093
1094         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1095 }
1096
1097 static inline int check_user_page_hwpoison(unsigned long addr)
1098 {
1099         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1100
1101         rc = __get_user_pages(current, current->mm, addr, 1,
1102                               flags, NULL, NULL, NULL);
1103         return rc == -EHWPOISON;
1104 }
1105
1106 /*
1107  * The atomic path to get the writable pfn which will be stored in @pfn,
1108  * true indicates success, otherwise false is returned.
1109  */
1110 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1111                             bool write_fault, bool *writable, pfn_t *pfn)
1112 {
1113         struct page *page[1];
1114         int npages;
1115
1116         if (!(async || atomic))
1117                 return false;
1118
1119         /*
1120          * Fast pin a writable pfn only if it is a write fault request
1121          * or the caller allows to map a writable pfn for a read fault
1122          * request.
1123          */
1124         if (!(write_fault || writable))
1125                 return false;
1126
1127         npages = __get_user_pages_fast(addr, 1, 1, page);
1128         if (npages == 1) {
1129                 *pfn = page_to_pfn(page[0]);
1130
1131                 if (writable)
1132                         *writable = true;
1133                 return true;
1134         }
1135
1136         return false;
1137 }
1138
1139 /*
1140  * The slow path to get the pfn of the specified host virtual address,
1141  * 1 indicates success, -errno is returned if error is detected.
1142  */
1143 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1144                            bool *writable, pfn_t *pfn)
1145 {
1146         struct page *page[1];
1147         int npages = 0;
1148
1149         might_sleep();
1150
1151         if (writable)
1152                 *writable = write_fault;
1153
1154         if (async) {
1155                 down_read(&current->mm->mmap_sem);
1156                 npages = get_user_page_nowait(current, current->mm,
1157                                               addr, write_fault, page);
1158                 up_read(&current->mm->mmap_sem);
1159         } else
1160                 npages = get_user_pages_fast(addr, 1, write_fault,
1161                                              page);
1162         if (npages != 1)
1163                 return npages;
1164
1165         /* map read fault as writable if possible */
1166         if (unlikely(!write_fault) && writable) {
1167                 struct page *wpage[1];
1168
1169                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1170                 if (npages == 1) {
1171                         *writable = true;
1172                         put_page(page[0]);
1173                         page[0] = wpage[0];
1174                 }
1175
1176                 npages = 1;
1177         }
1178         *pfn = page_to_pfn(page[0]);
1179         return npages;
1180 }
1181
1182 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1183 {
1184         if (unlikely(!(vma->vm_flags & VM_READ)))
1185                 return false;
1186
1187         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1188                 return false;
1189
1190         return true;
1191 }
1192
1193 /*
1194  * Pin guest page in memory and return its pfn.
1195  * @addr: host virtual address which maps memory to the guest
1196  * @atomic: whether this function can sleep
1197  * @async: whether this function need to wait IO complete if the
1198  *         host page is not in the memory
1199  * @write_fault: whether we should get a writable host page
1200  * @writable: whether it allows to map a writable host page for !@write_fault
1201  *
1202  * The function will map a writable host page for these two cases:
1203  * 1): @write_fault = true
1204  * 2): @write_fault = false && @writable, @writable will tell the caller
1205  *     whether the mapping is writable.
1206  */
1207 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1208                         bool write_fault, bool *writable)
1209 {
1210         struct vm_area_struct *vma;
1211         pfn_t pfn = 0;
1212         int npages;
1213
1214         /* we can do it either atomically or asynchronously, not both */
1215         BUG_ON(atomic && async);
1216
1217         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1218                 return pfn;
1219
1220         if (atomic)
1221                 return KVM_PFN_ERR_FAULT;
1222
1223         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1224         if (npages == 1)
1225                 return pfn;
1226
1227         down_read(&current->mm->mmap_sem);
1228         if (npages == -EHWPOISON ||
1229               (!async && check_user_page_hwpoison(addr))) {
1230                 pfn = KVM_PFN_ERR_HWPOISON;
1231                 goto exit;
1232         }
1233
1234         vma = find_vma_intersection(current->mm, addr, addr + 1);
1235
1236         if (vma == NULL)
1237                 pfn = KVM_PFN_ERR_FAULT;
1238         else if ((vma->vm_flags & VM_PFNMAP)) {
1239                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1240                         vma->vm_pgoff;
1241                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1242         } else {
1243                 if (async && vma_is_valid(vma, write_fault))
1244                         *async = true;
1245                 pfn = KVM_PFN_ERR_FAULT;
1246         }
1247 exit:
1248         up_read(&current->mm->mmap_sem);
1249         return pfn;
1250 }
1251
1252 static pfn_t
1253 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1254                      bool *async, bool write_fault, bool *writable)
1255 {
1256         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1257
1258         if (addr == KVM_HVA_ERR_RO_BAD)
1259                 return KVM_PFN_ERR_RO_FAULT;
1260
1261         if (kvm_is_error_hva(addr))
1262                 return KVM_PFN_NOSLOT;
1263
1264         /* Do not map writable pfn in the readonly memslot. */
1265         if (writable && memslot_is_readonly(slot)) {
1266                 *writable = false;
1267                 writable = NULL;
1268         }
1269
1270         return hva_to_pfn(addr, atomic, async, write_fault,
1271                           writable);
1272 }
1273
1274 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1275                           bool write_fault, bool *writable)
1276 {
1277         struct kvm_memory_slot *slot;
1278
1279         if (async)
1280                 *async = false;
1281
1282         slot = gfn_to_memslot(kvm, gfn);
1283
1284         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1285                                     writable);
1286 }
1287
1288 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1289 {
1290         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1291 }
1292 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1293
1294 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1295                        bool write_fault, bool *writable)
1296 {
1297         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1298 }
1299 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1300
1301 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1302 {
1303         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1304 }
1305 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1306
1307 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1308                       bool *writable)
1309 {
1310         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1313
1314 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1315 {
1316         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1317 }
1318
1319 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1320 {
1321         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1322 }
1323 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1324
1325 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1326                                                                   int nr_pages)
1327 {
1328         unsigned long addr;
1329         gfn_t entry;
1330
1331         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1332         if (kvm_is_error_hva(addr))
1333                 return -1;
1334
1335         if (entry < nr_pages)
1336                 return 0;
1337
1338         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1339 }
1340 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1341
1342 static struct page *kvm_pfn_to_page(pfn_t pfn)
1343 {
1344         if (is_error_noslot_pfn(pfn))
1345                 return KVM_ERR_PTR_BAD_PAGE;
1346
1347         if (kvm_is_mmio_pfn(pfn)) {
1348                 WARN_ON(1);
1349                 return KVM_ERR_PTR_BAD_PAGE;
1350         }
1351
1352         return pfn_to_page(pfn);
1353 }
1354
1355 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1356 {
1357         pfn_t pfn;
1358
1359         pfn = gfn_to_pfn(kvm, gfn);
1360
1361         return kvm_pfn_to_page(pfn);
1362 }
1363
1364 EXPORT_SYMBOL_GPL(gfn_to_page);
1365
1366 void kvm_release_page_clean(struct page *page)
1367 {
1368         WARN_ON(is_error_page(page));
1369
1370         kvm_release_pfn_clean(page_to_pfn(page));
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1373
1374 void kvm_release_pfn_clean(pfn_t pfn)
1375 {
1376         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1377                 put_page(pfn_to_page(pfn));
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1380
1381 void kvm_release_page_dirty(struct page *page)
1382 {
1383         WARN_ON(is_error_page(page));
1384
1385         kvm_release_pfn_dirty(page_to_pfn(page));
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1388
1389 void kvm_release_pfn_dirty(pfn_t pfn)
1390 {
1391         kvm_set_pfn_dirty(pfn);
1392         kvm_release_pfn_clean(pfn);
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1395
1396 void kvm_set_page_dirty(struct page *page)
1397 {
1398         kvm_set_pfn_dirty(page_to_pfn(page));
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1401
1402 void kvm_set_pfn_dirty(pfn_t pfn)
1403 {
1404         if (!kvm_is_mmio_pfn(pfn)) {
1405                 struct page *page = pfn_to_page(pfn);
1406                 if (!PageReserved(page))
1407                         SetPageDirty(page);
1408         }
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1411
1412 void kvm_set_pfn_accessed(pfn_t pfn)
1413 {
1414         if (!kvm_is_mmio_pfn(pfn))
1415                 mark_page_accessed(pfn_to_page(pfn));
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1418
1419 void kvm_get_pfn(pfn_t pfn)
1420 {
1421         if (!kvm_is_mmio_pfn(pfn))
1422                 get_page(pfn_to_page(pfn));
1423 }
1424 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1425
1426 static int next_segment(unsigned long len, int offset)
1427 {
1428         if (len > PAGE_SIZE - offset)
1429                 return PAGE_SIZE - offset;
1430         else
1431                 return len;
1432 }
1433
1434 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1435                         int len)
1436 {
1437         int r;
1438         unsigned long addr;
1439
1440         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1441         if (kvm_is_error_hva(addr))
1442                 return -EFAULT;
1443         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1444         if (r)
1445                 return -EFAULT;
1446         return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1449
1450 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1451 {
1452         gfn_t gfn = gpa >> PAGE_SHIFT;
1453         int seg;
1454         int offset = offset_in_page(gpa);
1455         int ret;
1456
1457         while ((seg = next_segment(len, offset)) != 0) {
1458                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1459                 if (ret < 0)
1460                         return ret;
1461                 offset = 0;
1462                 len -= seg;
1463                 data += seg;
1464                 ++gfn;
1465         }
1466         return 0;
1467 }
1468 EXPORT_SYMBOL_GPL(kvm_read_guest);
1469
1470 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1471                           unsigned long len)
1472 {
1473         int r;
1474         unsigned long addr;
1475         gfn_t gfn = gpa >> PAGE_SHIFT;
1476         int offset = offset_in_page(gpa);
1477
1478         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1479         if (kvm_is_error_hva(addr))
1480                 return -EFAULT;
1481         pagefault_disable();
1482         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1483         pagefault_enable();
1484         if (r)
1485                 return -EFAULT;
1486         return 0;
1487 }
1488 EXPORT_SYMBOL(kvm_read_guest_atomic);
1489
1490 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1491                          int offset, int len)
1492 {
1493         int r;
1494         unsigned long addr;
1495
1496         addr = gfn_to_hva(kvm, gfn);
1497         if (kvm_is_error_hva(addr))
1498                 return -EFAULT;
1499         r = __copy_to_user((void __user *)addr + offset, data, len);
1500         if (r)
1501                 return -EFAULT;
1502         mark_page_dirty(kvm, gfn);
1503         return 0;
1504 }
1505 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1506
1507 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1508                     unsigned long len)
1509 {
1510         gfn_t gfn = gpa >> PAGE_SHIFT;
1511         int seg;
1512         int offset = offset_in_page(gpa);
1513         int ret;
1514
1515         while ((seg = next_segment(len, offset)) != 0) {
1516                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1517                 if (ret < 0)
1518                         return ret;
1519                 offset = 0;
1520                 len -= seg;
1521                 data += seg;
1522                 ++gfn;
1523         }
1524         return 0;
1525 }
1526
1527 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1528                               gpa_t gpa, unsigned long len)
1529 {
1530         struct kvm_memslots *slots = kvm_memslots(kvm);
1531         int offset = offset_in_page(gpa);
1532         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1533         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1534         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1535         gfn_t nr_pages_avail;
1536
1537         ghc->gpa = gpa;
1538         ghc->generation = slots->generation;
1539         ghc->len = len;
1540         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1541         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1542         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1543                 ghc->hva += offset;
1544         } else {
1545                 /*
1546                  * If the requested region crosses two memslots, we still
1547                  * verify that the entire region is valid here.
1548                  */
1549                 while (start_gfn <= end_gfn) {
1550                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1551                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1552                                                    &nr_pages_avail);
1553                         if (kvm_is_error_hva(ghc->hva))
1554                                 return -EFAULT;
1555                         start_gfn += nr_pages_avail;
1556                 }
1557                 /* Use the slow path for cross page reads and writes. */
1558                 ghc->memslot = NULL;
1559         }
1560         return 0;
1561 }
1562 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1563
1564 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1565                            void *data, unsigned long len)
1566 {
1567         struct kvm_memslots *slots = kvm_memslots(kvm);
1568         int r;
1569
1570         BUG_ON(len > ghc->len);
1571
1572         if (slots->generation != ghc->generation)
1573                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1574
1575         if (unlikely(!ghc->memslot))
1576                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1577
1578         if (kvm_is_error_hva(ghc->hva))
1579                 return -EFAULT;
1580
1581         r = __copy_to_user((void __user *)ghc->hva, data, len);
1582         if (r)
1583                 return -EFAULT;
1584         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1585
1586         return 0;
1587 }
1588 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1589
1590 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1591                            void *data, unsigned long len)
1592 {
1593         struct kvm_memslots *slots = kvm_memslots(kvm);
1594         int r;
1595
1596         BUG_ON(len > ghc->len);
1597
1598         if (slots->generation != ghc->generation)
1599                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1600
1601         if (unlikely(!ghc->memslot))
1602                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1603
1604         if (kvm_is_error_hva(ghc->hva))
1605                 return -EFAULT;
1606
1607         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1608         if (r)
1609                 return -EFAULT;
1610
1611         return 0;
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1614
1615 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1616 {
1617         return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1618                                     offset, len);
1619 }
1620 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1621
1622 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1623 {
1624         gfn_t gfn = gpa >> PAGE_SHIFT;
1625         int seg;
1626         int offset = offset_in_page(gpa);
1627         int ret;
1628
1629         while ((seg = next_segment(len, offset)) != 0) {
1630                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1631                 if (ret < 0)
1632                         return ret;
1633                 offset = 0;
1634                 len -= seg;
1635                 ++gfn;
1636         }
1637         return 0;
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1640
1641 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1642                              gfn_t gfn)
1643 {
1644         if (memslot && memslot->dirty_bitmap) {
1645                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1646
1647                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1648         }
1649 }
1650
1651 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1652 {
1653         struct kvm_memory_slot *memslot;
1654
1655         memslot = gfn_to_memslot(kvm, gfn);
1656         mark_page_dirty_in_slot(kvm, memslot, gfn);
1657 }
1658
1659 /*
1660  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1661  */
1662 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1663 {
1664         DEFINE_WAIT(wait);
1665
1666         for (;;) {
1667                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1668
1669                 if (kvm_arch_vcpu_runnable(vcpu)) {
1670                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1671                         break;
1672                 }
1673                 if (kvm_cpu_has_pending_timer(vcpu))
1674                         break;
1675                 if (signal_pending(current))
1676                         break;
1677
1678                 schedule();
1679         }
1680
1681         finish_wait(&vcpu->wq, &wait);
1682 }
1683
1684 #ifndef CONFIG_S390
1685 /*
1686  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1687  */
1688 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1689 {
1690         int me;
1691         int cpu = vcpu->cpu;
1692         wait_queue_head_t *wqp;
1693
1694         wqp = kvm_arch_vcpu_wq(vcpu);
1695         if (waitqueue_active(wqp)) {
1696                 wake_up_interruptible(wqp);
1697                 ++vcpu->stat.halt_wakeup;
1698         }
1699
1700         me = get_cpu();
1701         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1702                 if (kvm_arch_vcpu_should_kick(vcpu))
1703                         smp_send_reschedule(cpu);
1704         put_cpu();
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1707 #endif /* !CONFIG_S390 */
1708
1709 void kvm_resched(struct kvm_vcpu *vcpu)
1710 {
1711         if (!need_resched())
1712                 return;
1713         cond_resched();
1714 }
1715 EXPORT_SYMBOL_GPL(kvm_resched);
1716
1717 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1718 {
1719         struct pid *pid;
1720         struct task_struct *task = NULL;
1721         bool ret = false;
1722
1723         rcu_read_lock();
1724         pid = rcu_dereference(target->pid);
1725         if (pid)
1726                 task = get_pid_task(target->pid, PIDTYPE_PID);
1727         rcu_read_unlock();
1728         if (!task)
1729                 return ret;
1730         if (task->flags & PF_VCPU) {
1731                 put_task_struct(task);
1732                 return ret;
1733         }
1734         ret = yield_to(task, 1);
1735         put_task_struct(task);
1736
1737         return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1740
1741 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1742 /*
1743  * Helper that checks whether a VCPU is eligible for directed yield.
1744  * Most eligible candidate to yield is decided by following heuristics:
1745  *
1746  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1747  *  (preempted lock holder), indicated by @in_spin_loop.
1748  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1749  *
1750  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1751  *  chance last time (mostly it has become eligible now since we have probably
1752  *  yielded to lockholder in last iteration. This is done by toggling
1753  *  @dy_eligible each time a VCPU checked for eligibility.)
1754  *
1755  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1756  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1757  *  burning. Giving priority for a potential lock-holder increases lock
1758  *  progress.
1759  *
1760  *  Since algorithm is based on heuristics, accessing another VCPU data without
1761  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1762  *  and continue with next VCPU and so on.
1763  */
1764 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1765 {
1766         bool eligible;
1767
1768         eligible = !vcpu->spin_loop.in_spin_loop ||
1769                         (vcpu->spin_loop.in_spin_loop &&
1770                          vcpu->spin_loop.dy_eligible);
1771
1772         if (vcpu->spin_loop.in_spin_loop)
1773                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1774
1775         return eligible;
1776 }
1777 #endif
1778
1779 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1780 {
1781         struct kvm *kvm = me->kvm;
1782         struct kvm_vcpu *vcpu;
1783         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1784         int yielded = 0;
1785         int try = 3;
1786         int pass;
1787         int i;
1788
1789         kvm_vcpu_set_in_spin_loop(me, true);
1790         /*
1791          * We boost the priority of a VCPU that is runnable but not
1792          * currently running, because it got preempted by something
1793          * else and called schedule in __vcpu_run.  Hopefully that
1794          * VCPU is holding the lock that we need and will release it.
1795          * We approximate round-robin by starting at the last boosted VCPU.
1796          */
1797         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1798                 kvm_for_each_vcpu(i, vcpu, kvm) {
1799                         if (!pass && i <= last_boosted_vcpu) {
1800                                 i = last_boosted_vcpu;
1801                                 continue;
1802                         } else if (pass && i > last_boosted_vcpu)
1803                                 break;
1804                         if (!ACCESS_ONCE(vcpu->preempted))
1805                                 continue;
1806                         if (vcpu == me)
1807                                 continue;
1808                         if (waitqueue_active(&vcpu->wq))
1809                                 continue;
1810                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1811                                 continue;
1812
1813                         yielded = kvm_vcpu_yield_to(vcpu);
1814                         if (yielded > 0) {
1815                                 kvm->last_boosted_vcpu = i;
1816                                 break;
1817                         } else if (yielded < 0) {
1818                                 try--;
1819                                 if (!try)
1820                                         break;
1821                         }
1822                 }
1823         }
1824         kvm_vcpu_set_in_spin_loop(me, false);
1825
1826         /* Ensure vcpu is not eligible during next spinloop */
1827         kvm_vcpu_set_dy_eligible(me, false);
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1830
1831 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1832 {
1833         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1834         struct page *page;
1835
1836         if (vmf->pgoff == 0)
1837                 page = virt_to_page(vcpu->run);
1838 #ifdef CONFIG_X86
1839         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1840                 page = virt_to_page(vcpu->arch.pio_data);
1841 #endif
1842 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1843         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1844                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1845 #endif
1846         else
1847                 return kvm_arch_vcpu_fault(vcpu, vmf);
1848         get_page(page);
1849         vmf->page = page;
1850         return 0;
1851 }
1852
1853 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1854         .fault = kvm_vcpu_fault,
1855 };
1856
1857 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1858 {
1859         vma->vm_ops = &kvm_vcpu_vm_ops;
1860         return 0;
1861 }
1862
1863 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1864 {
1865         struct kvm_vcpu *vcpu = filp->private_data;
1866
1867         kvm_put_kvm(vcpu->kvm);
1868         return 0;
1869 }
1870
1871 static struct file_operations kvm_vcpu_fops = {
1872         .release        = kvm_vcpu_release,
1873         .unlocked_ioctl = kvm_vcpu_ioctl,
1874 #ifdef CONFIG_COMPAT
1875         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1876 #endif
1877         .mmap           = kvm_vcpu_mmap,
1878         .llseek         = noop_llseek,
1879 };
1880
1881 /*
1882  * Allocates an inode for the vcpu.
1883  */
1884 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1885 {
1886         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1887 }
1888
1889 /*
1890  * Creates some virtual cpus.  Good luck creating more than one.
1891  */
1892 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1893 {
1894         int r;
1895         struct kvm_vcpu *vcpu, *v;
1896
1897         vcpu = kvm_arch_vcpu_create(kvm, id);
1898         if (IS_ERR(vcpu))
1899                 return PTR_ERR(vcpu);
1900
1901         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1902
1903         r = kvm_arch_vcpu_setup(vcpu);
1904         if (r)
1905                 goto vcpu_destroy;
1906
1907         mutex_lock(&kvm->lock);
1908         if (!kvm_vcpu_compatible(vcpu)) {
1909                 r = -EINVAL;
1910                 goto unlock_vcpu_destroy;
1911         }
1912         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1913                 r = -EINVAL;
1914                 goto unlock_vcpu_destroy;
1915         }
1916
1917         kvm_for_each_vcpu(r, v, kvm)
1918                 if (v->vcpu_id == id) {
1919                         r = -EEXIST;
1920                         goto unlock_vcpu_destroy;
1921                 }
1922
1923         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1924
1925         /* Now it's all set up, let userspace reach it */
1926         kvm_get_kvm(kvm);
1927         r = create_vcpu_fd(vcpu);
1928         if (r < 0) {
1929                 kvm_put_kvm(kvm);
1930                 goto unlock_vcpu_destroy;
1931         }
1932
1933         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1934         smp_wmb();
1935         atomic_inc(&kvm->online_vcpus);
1936
1937         mutex_unlock(&kvm->lock);
1938         kvm_arch_vcpu_postcreate(vcpu);
1939         return r;
1940
1941 unlock_vcpu_destroy:
1942         mutex_unlock(&kvm->lock);
1943 vcpu_destroy:
1944         kvm_arch_vcpu_destroy(vcpu);
1945         return r;
1946 }
1947
1948 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1949 {
1950         if (sigset) {
1951                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1952                 vcpu->sigset_active = 1;
1953                 vcpu->sigset = *sigset;
1954         } else
1955                 vcpu->sigset_active = 0;
1956         return 0;
1957 }
1958
1959 static long kvm_vcpu_ioctl(struct file *filp,
1960                            unsigned int ioctl, unsigned long arg)
1961 {
1962         struct kvm_vcpu *vcpu = filp->private_data;
1963         void __user *argp = (void __user *)arg;
1964         int r;
1965         struct kvm_fpu *fpu = NULL;
1966         struct kvm_sregs *kvm_sregs = NULL;
1967
1968         if (vcpu->kvm->mm != current->mm)
1969                 return -EIO;
1970
1971 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1972         /*
1973          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1974          * so vcpu_load() would break it.
1975          */
1976         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1977                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1978 #endif
1979
1980
1981         r = vcpu_load(vcpu);
1982         if (r)
1983                 return r;
1984         switch (ioctl) {
1985         case KVM_RUN:
1986                 r = -EINVAL;
1987                 if (arg)
1988                         goto out;
1989                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1990                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1991                 break;
1992         case KVM_GET_REGS: {
1993                 struct kvm_regs *kvm_regs;
1994
1995                 r = -ENOMEM;
1996                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1997                 if (!kvm_regs)
1998                         goto out;
1999                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2000                 if (r)
2001                         goto out_free1;
2002                 r = -EFAULT;
2003                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2004                         goto out_free1;
2005                 r = 0;
2006 out_free1:
2007                 kfree(kvm_regs);
2008                 break;
2009         }
2010         case KVM_SET_REGS: {
2011                 struct kvm_regs *kvm_regs;
2012
2013                 r = -ENOMEM;
2014                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2015                 if (IS_ERR(kvm_regs)) {
2016                         r = PTR_ERR(kvm_regs);
2017                         goto out;
2018                 }
2019                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2020                 kfree(kvm_regs);
2021                 break;
2022         }
2023         case KVM_GET_SREGS: {
2024                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2025                 r = -ENOMEM;
2026                 if (!kvm_sregs)
2027                         goto out;
2028                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2029                 if (r)
2030                         goto out;
2031                 r = -EFAULT;
2032                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2033                         goto out;
2034                 r = 0;
2035                 break;
2036         }
2037         case KVM_SET_SREGS: {
2038                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2039                 if (IS_ERR(kvm_sregs)) {
2040                         r = PTR_ERR(kvm_sregs);
2041                         kvm_sregs = NULL;
2042                         goto out;
2043                 }
2044                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2045                 break;
2046         }
2047         case KVM_GET_MP_STATE: {
2048                 struct kvm_mp_state mp_state;
2049
2050                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2051                 if (r)
2052                         goto out;
2053                 r = -EFAULT;
2054                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2055                         goto out;
2056                 r = 0;
2057                 break;
2058         }
2059         case KVM_SET_MP_STATE: {
2060                 struct kvm_mp_state mp_state;
2061
2062                 r = -EFAULT;
2063                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2064                         goto out;
2065                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2066                 break;
2067         }
2068         case KVM_TRANSLATE: {
2069                 struct kvm_translation tr;
2070
2071                 r = -EFAULT;
2072                 if (copy_from_user(&tr, argp, sizeof tr))
2073                         goto out;
2074                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2075                 if (r)
2076                         goto out;
2077                 r = -EFAULT;
2078                 if (copy_to_user(argp, &tr, sizeof tr))
2079                         goto out;
2080                 r = 0;
2081                 break;
2082         }
2083         case KVM_SET_GUEST_DEBUG: {
2084                 struct kvm_guest_debug dbg;
2085
2086                 r = -EFAULT;
2087                 if (copy_from_user(&dbg, argp, sizeof dbg))
2088                         goto out;
2089                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2090                 break;
2091         }
2092         case KVM_SET_SIGNAL_MASK: {
2093                 struct kvm_signal_mask __user *sigmask_arg = argp;
2094                 struct kvm_signal_mask kvm_sigmask;
2095                 sigset_t sigset, *p;
2096
2097                 p = NULL;
2098                 if (argp) {
2099                         r = -EFAULT;
2100                         if (copy_from_user(&kvm_sigmask, argp,
2101                                            sizeof kvm_sigmask))
2102                                 goto out;
2103                         r = -EINVAL;
2104                         if (kvm_sigmask.len != sizeof sigset)
2105                                 goto out;
2106                         r = -EFAULT;
2107                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2108                                            sizeof sigset))
2109                                 goto out;
2110                         p = &sigset;
2111                 }
2112                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2113                 break;
2114         }
2115         case KVM_GET_FPU: {
2116                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2117                 r = -ENOMEM;
2118                 if (!fpu)
2119                         goto out;
2120                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2121                 if (r)
2122                         goto out;
2123                 r = -EFAULT;
2124                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2125                         goto out;
2126                 r = 0;
2127                 break;
2128         }
2129         case KVM_SET_FPU: {
2130                 fpu = memdup_user(argp, sizeof(*fpu));
2131                 if (IS_ERR(fpu)) {
2132                         r = PTR_ERR(fpu);
2133                         fpu = NULL;
2134                         goto out;
2135                 }
2136                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2137                 break;
2138         }
2139         default:
2140                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2141         }
2142 out:
2143         vcpu_put(vcpu);
2144         kfree(fpu);
2145         kfree(kvm_sregs);
2146         return r;
2147 }
2148
2149 #ifdef CONFIG_COMPAT
2150 static long kvm_vcpu_compat_ioctl(struct file *filp,
2151                                   unsigned int ioctl, unsigned long arg)
2152 {
2153         struct kvm_vcpu *vcpu = filp->private_data;
2154         void __user *argp = compat_ptr(arg);
2155         int r;
2156
2157         if (vcpu->kvm->mm != current->mm)
2158                 return -EIO;
2159
2160         switch (ioctl) {
2161         case KVM_SET_SIGNAL_MASK: {
2162                 struct kvm_signal_mask __user *sigmask_arg = argp;
2163                 struct kvm_signal_mask kvm_sigmask;
2164                 compat_sigset_t csigset;
2165                 sigset_t sigset;
2166
2167                 if (argp) {
2168                         r = -EFAULT;
2169                         if (copy_from_user(&kvm_sigmask, argp,
2170                                            sizeof kvm_sigmask))
2171                                 goto out;
2172                         r = -EINVAL;
2173                         if (kvm_sigmask.len != sizeof csigset)
2174                                 goto out;
2175                         r = -EFAULT;
2176                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2177                                            sizeof csigset))
2178                                 goto out;
2179                         sigset_from_compat(&sigset, &csigset);
2180                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2181                 } else
2182                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2183                 break;
2184         }
2185         default:
2186                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2187         }
2188
2189 out:
2190         return r;
2191 }
2192 #endif
2193
2194 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2195                                  int (*accessor)(struct kvm_device *dev,
2196                                                  struct kvm_device_attr *attr),
2197                                  unsigned long arg)
2198 {
2199         struct kvm_device_attr attr;
2200
2201         if (!accessor)
2202                 return -EPERM;
2203
2204         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2205                 return -EFAULT;
2206
2207         return accessor(dev, &attr);
2208 }
2209
2210 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2211                              unsigned long arg)
2212 {
2213         struct kvm_device *dev = filp->private_data;
2214
2215         switch (ioctl) {
2216         case KVM_SET_DEVICE_ATTR:
2217                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2218         case KVM_GET_DEVICE_ATTR:
2219                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2220         case KVM_HAS_DEVICE_ATTR:
2221                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2222         default:
2223                 if (dev->ops->ioctl)
2224                         return dev->ops->ioctl(dev, ioctl, arg);
2225
2226                 return -ENOTTY;
2227         }
2228 }
2229
2230 static int kvm_device_release(struct inode *inode, struct file *filp)
2231 {
2232         struct kvm_device *dev = filp->private_data;
2233         struct kvm *kvm = dev->kvm;
2234
2235         kvm_put_kvm(kvm);
2236         return 0;
2237 }
2238
2239 static const struct file_operations kvm_device_fops = {
2240         .unlocked_ioctl = kvm_device_ioctl,
2241 #ifdef CONFIG_COMPAT
2242         .compat_ioctl = kvm_device_ioctl,
2243 #endif
2244         .release = kvm_device_release,
2245 };
2246
2247 struct kvm_device *kvm_device_from_filp(struct file *filp)
2248 {
2249         if (filp->f_op != &kvm_device_fops)
2250                 return NULL;
2251
2252         return filp->private_data;
2253 }
2254
2255 static int kvm_ioctl_create_device(struct kvm *kvm,
2256                                    struct kvm_create_device *cd)
2257 {
2258         struct kvm_device_ops *ops = NULL;
2259         struct kvm_device *dev;
2260         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2261         int ret;
2262
2263         switch (cd->type) {
2264 #ifdef CONFIG_KVM_MPIC
2265         case KVM_DEV_TYPE_FSL_MPIC_20:
2266         case KVM_DEV_TYPE_FSL_MPIC_42:
2267                 ops = &kvm_mpic_ops;
2268                 break;
2269 #endif
2270 #ifdef CONFIG_KVM_XICS
2271         case KVM_DEV_TYPE_XICS:
2272                 ops = &kvm_xics_ops;
2273                 break;
2274 #endif
2275         default:
2276                 return -ENODEV;
2277         }
2278
2279         if (test)
2280                 return 0;
2281
2282         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2283         if (!dev)
2284                 return -ENOMEM;
2285
2286         dev->ops = ops;
2287         dev->kvm = kvm;
2288
2289         ret = ops->create(dev, cd->type);
2290         if (ret < 0) {
2291                 kfree(dev);
2292                 return ret;
2293         }
2294
2295         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2296         if (ret < 0) {
2297                 ops->destroy(dev);
2298                 return ret;
2299         }
2300
2301         list_add(&dev->vm_node, &kvm->devices);
2302         kvm_get_kvm(kvm);
2303         cd->fd = ret;
2304         return 0;
2305 }
2306
2307 static long kvm_vm_ioctl(struct file *filp,
2308                            unsigned int ioctl, unsigned long arg)
2309 {
2310         struct kvm *kvm = filp->private_data;
2311         void __user *argp = (void __user *)arg;
2312         int r;
2313
2314         if (kvm->mm != current->mm)
2315                 return -EIO;
2316         switch (ioctl) {
2317         case KVM_CREATE_VCPU:
2318                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2319                 break;
2320         case KVM_SET_USER_MEMORY_REGION: {
2321                 struct kvm_userspace_memory_region kvm_userspace_mem;
2322
2323                 r = -EFAULT;
2324                 if (copy_from_user(&kvm_userspace_mem, argp,
2325                                                 sizeof kvm_userspace_mem))
2326                         goto out;
2327
2328                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2329                 break;
2330         }
2331         case KVM_GET_DIRTY_LOG: {
2332                 struct kvm_dirty_log log;
2333
2334                 r = -EFAULT;
2335                 if (copy_from_user(&log, argp, sizeof log))
2336                         goto out;
2337                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2338                 break;
2339         }
2340 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2341         case KVM_REGISTER_COALESCED_MMIO: {
2342                 struct kvm_coalesced_mmio_zone zone;
2343                 r = -EFAULT;
2344                 if (copy_from_user(&zone, argp, sizeof zone))
2345                         goto out;
2346                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2347                 break;
2348         }
2349         case KVM_UNREGISTER_COALESCED_MMIO: {
2350                 struct kvm_coalesced_mmio_zone zone;
2351                 r = -EFAULT;
2352                 if (copy_from_user(&zone, argp, sizeof zone))
2353                         goto out;
2354                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2355                 break;
2356         }
2357 #endif
2358         case KVM_IRQFD: {
2359                 struct kvm_irqfd data;
2360
2361                 r = -EFAULT;
2362                 if (copy_from_user(&data, argp, sizeof data))
2363                         goto out;
2364                 r = kvm_irqfd(kvm, &data);
2365                 break;
2366         }
2367         case KVM_IOEVENTFD: {
2368                 struct kvm_ioeventfd data;
2369
2370                 r = -EFAULT;
2371                 if (copy_from_user(&data, argp, sizeof data))
2372                         goto out;
2373                 r = kvm_ioeventfd(kvm, &data);
2374                 break;
2375         }
2376 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2377         case KVM_SET_BOOT_CPU_ID:
2378                 r = 0;
2379                 mutex_lock(&kvm->lock);
2380                 if (atomic_read(&kvm->online_vcpus) != 0)
2381                         r = -EBUSY;
2382                 else
2383                         kvm->bsp_vcpu_id = arg;
2384                 mutex_unlock(&kvm->lock);
2385                 break;
2386 #endif
2387 #ifdef CONFIG_HAVE_KVM_MSI
2388         case KVM_SIGNAL_MSI: {
2389                 struct kvm_msi msi;
2390
2391                 r = -EFAULT;
2392                 if (copy_from_user(&msi, argp, sizeof msi))
2393                         goto out;
2394                 r = kvm_send_userspace_msi(kvm, &msi);
2395                 break;
2396         }
2397 #endif
2398 #ifdef __KVM_HAVE_IRQ_LINE
2399         case KVM_IRQ_LINE_STATUS:
2400         case KVM_IRQ_LINE: {
2401                 struct kvm_irq_level irq_event;
2402
2403                 r = -EFAULT;
2404                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2405                         goto out;
2406
2407                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2408                                         ioctl == KVM_IRQ_LINE_STATUS);
2409                 if (r)
2410                         goto out;
2411
2412                 r = -EFAULT;
2413                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2414                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2415                                 goto out;
2416                 }
2417
2418                 r = 0;
2419                 break;
2420         }
2421 #endif
2422 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2423         case KVM_SET_GSI_ROUTING: {
2424                 struct kvm_irq_routing routing;
2425                 struct kvm_irq_routing __user *urouting;
2426                 struct kvm_irq_routing_entry *entries;
2427
2428                 r = -EFAULT;
2429                 if (copy_from_user(&routing, argp, sizeof(routing)))
2430                         goto out;
2431                 r = -EINVAL;
2432                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2433                         goto out;
2434                 if (routing.flags)
2435                         goto out;
2436                 r = -ENOMEM;
2437                 entries = vmalloc(routing.nr * sizeof(*entries));
2438                 if (!entries)
2439                         goto out;
2440                 r = -EFAULT;
2441                 urouting = argp;
2442                 if (copy_from_user(entries, urouting->entries,
2443                                    routing.nr * sizeof(*entries)))
2444                         goto out_free_irq_routing;
2445                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2446                                         routing.flags);
2447         out_free_irq_routing:
2448                 vfree(entries);
2449                 break;
2450         }
2451 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2452         case KVM_CREATE_DEVICE: {
2453                 struct kvm_create_device cd;
2454
2455                 r = -EFAULT;
2456                 if (copy_from_user(&cd, argp, sizeof(cd)))
2457                         goto out;
2458
2459                 r = kvm_ioctl_create_device(kvm, &cd);
2460                 if (r)
2461                         goto out;
2462
2463                 r = -EFAULT;
2464                 if (copy_to_user(argp, &cd, sizeof(cd)))
2465                         goto out;
2466
2467                 r = 0;
2468                 break;
2469         }
2470         default:
2471                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2472                 if (r == -ENOTTY)
2473                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2474         }
2475 out:
2476         return r;
2477 }
2478
2479 #ifdef CONFIG_COMPAT
2480 struct compat_kvm_dirty_log {
2481         __u32 slot;
2482         __u32 padding1;
2483         union {
2484                 compat_uptr_t dirty_bitmap; /* one bit per page */
2485                 __u64 padding2;
2486         };
2487 };
2488
2489 static long kvm_vm_compat_ioctl(struct file *filp,
2490                            unsigned int ioctl, unsigned long arg)
2491 {
2492         struct kvm *kvm = filp->private_data;
2493         int r;
2494
2495         if (kvm->mm != current->mm)
2496                 return -EIO;
2497         switch (ioctl) {
2498         case KVM_GET_DIRTY_LOG: {
2499                 struct compat_kvm_dirty_log compat_log;
2500                 struct kvm_dirty_log log;
2501
2502                 r = -EFAULT;
2503                 if (copy_from_user(&compat_log, (void __user *)arg,
2504                                    sizeof(compat_log)))
2505                         goto out;
2506                 log.slot         = compat_log.slot;
2507                 log.padding1     = compat_log.padding1;
2508                 log.padding2     = compat_log.padding2;
2509                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2510
2511                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2512                 break;
2513         }
2514         default:
2515                 r = kvm_vm_ioctl(filp, ioctl, arg);
2516         }
2517
2518 out:
2519         return r;
2520 }
2521 #endif
2522
2523 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2524 {
2525         struct page *page[1];
2526         unsigned long addr;
2527         int npages;
2528         gfn_t gfn = vmf->pgoff;
2529         struct kvm *kvm = vma->vm_file->private_data;
2530
2531         addr = gfn_to_hva(kvm, gfn);
2532         if (kvm_is_error_hva(addr))
2533                 return VM_FAULT_SIGBUS;
2534
2535         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2536                                 NULL);
2537         if (unlikely(npages != 1))
2538                 return VM_FAULT_SIGBUS;
2539
2540         vmf->page = page[0];
2541         return 0;
2542 }
2543
2544 static const struct vm_operations_struct kvm_vm_vm_ops = {
2545         .fault = kvm_vm_fault,
2546 };
2547
2548 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2549 {
2550         vma->vm_ops = &kvm_vm_vm_ops;
2551         return 0;
2552 }
2553
2554 static struct file_operations kvm_vm_fops = {
2555         .release        = kvm_vm_release,
2556         .unlocked_ioctl = kvm_vm_ioctl,
2557 #ifdef CONFIG_COMPAT
2558         .compat_ioctl   = kvm_vm_compat_ioctl,
2559 #endif
2560         .mmap           = kvm_vm_mmap,
2561         .llseek         = noop_llseek,
2562 };
2563
2564 static int kvm_dev_ioctl_create_vm(unsigned long type)
2565 {
2566         int r;
2567         struct kvm *kvm;
2568
2569         kvm = kvm_create_vm(type);
2570         if (IS_ERR(kvm))
2571                 return PTR_ERR(kvm);
2572 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2573         r = kvm_coalesced_mmio_init(kvm);
2574         if (r < 0) {
2575                 kvm_put_kvm(kvm);
2576                 return r;
2577         }
2578 #endif
2579         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2580         if (r < 0)
2581                 kvm_put_kvm(kvm);
2582
2583         return r;
2584 }
2585
2586 static long kvm_dev_ioctl_check_extension_generic(long arg)
2587 {
2588         switch (arg) {
2589         case KVM_CAP_USER_MEMORY:
2590         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2591         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2592 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2593         case KVM_CAP_SET_BOOT_CPU_ID:
2594 #endif
2595         case KVM_CAP_INTERNAL_ERROR_DATA:
2596 #ifdef CONFIG_HAVE_KVM_MSI
2597         case KVM_CAP_SIGNAL_MSI:
2598 #endif
2599 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2600         case KVM_CAP_IRQFD_RESAMPLE:
2601 #endif
2602                 return 1;
2603 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2604         case KVM_CAP_IRQ_ROUTING:
2605                 return KVM_MAX_IRQ_ROUTES;
2606 #endif
2607         default:
2608                 break;
2609         }
2610         return kvm_dev_ioctl_check_extension(arg);
2611 }
2612
2613 static long kvm_dev_ioctl(struct file *filp,
2614                           unsigned int ioctl, unsigned long arg)
2615 {
2616         long r = -EINVAL;
2617
2618         switch (ioctl) {
2619         case KVM_GET_API_VERSION:
2620                 r = -EINVAL;
2621                 if (arg)
2622                         goto out;
2623                 r = KVM_API_VERSION;
2624                 break;
2625         case KVM_CREATE_VM:
2626                 r = kvm_dev_ioctl_create_vm(arg);
2627                 break;
2628         case KVM_CHECK_EXTENSION:
2629                 r = kvm_dev_ioctl_check_extension_generic(arg);
2630                 break;
2631         case KVM_GET_VCPU_MMAP_SIZE:
2632                 r = -EINVAL;
2633                 if (arg)
2634                         goto out;
2635                 r = PAGE_SIZE;     /* struct kvm_run */
2636 #ifdef CONFIG_X86
2637                 r += PAGE_SIZE;    /* pio data page */
2638 #endif
2639 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2640                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2641 #endif
2642                 break;
2643         case KVM_TRACE_ENABLE:
2644         case KVM_TRACE_PAUSE:
2645         case KVM_TRACE_DISABLE:
2646                 r = -EOPNOTSUPP;
2647                 break;
2648         default:
2649                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2650         }
2651 out:
2652         return r;
2653 }
2654
2655 static struct file_operations kvm_chardev_ops = {
2656         .unlocked_ioctl = kvm_dev_ioctl,
2657         .compat_ioctl   = kvm_dev_ioctl,
2658         .llseek         = noop_llseek,
2659 };
2660
2661 static struct miscdevice kvm_dev = {
2662         KVM_MINOR,
2663         "kvm",
2664         &kvm_chardev_ops,
2665 };
2666
2667 static void hardware_enable_nolock(void *junk)
2668 {
2669         int cpu = raw_smp_processor_id();
2670         int r;
2671
2672         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2673                 return;
2674
2675         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2676
2677         r = kvm_arch_hardware_enable(NULL);
2678
2679         if (r) {
2680                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2681                 atomic_inc(&hardware_enable_failed);
2682                 printk(KERN_INFO "kvm: enabling virtualization on "
2683                                  "CPU%d failed\n", cpu);
2684         }
2685 }
2686
2687 static void hardware_enable(void)
2688 {
2689         raw_spin_lock(&kvm_count_lock);
2690         if (kvm_usage_count)
2691                 hardware_enable_nolock(NULL);
2692         raw_spin_unlock(&kvm_count_lock);
2693 }
2694
2695 static void hardware_disable_nolock(void *junk)
2696 {
2697         int cpu = raw_smp_processor_id();
2698
2699         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2700                 return;
2701         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2702         kvm_arch_hardware_disable(NULL);
2703 }
2704
2705 static void hardware_disable(void)
2706 {
2707         raw_spin_lock(&kvm_count_lock);
2708         if (kvm_usage_count)
2709                 hardware_disable_nolock(NULL);
2710         raw_spin_unlock(&kvm_count_lock);
2711 }
2712
2713 static void hardware_disable_all_nolock(void)
2714 {
2715         BUG_ON(!kvm_usage_count);
2716
2717         kvm_usage_count--;
2718         if (!kvm_usage_count)
2719                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2720 }
2721
2722 static void hardware_disable_all(void)
2723 {
2724         raw_spin_lock(&kvm_count_lock);
2725         hardware_disable_all_nolock();
2726         raw_spin_unlock(&kvm_count_lock);
2727 }
2728
2729 static int hardware_enable_all(void)
2730 {
2731         int r = 0;
2732
2733         raw_spin_lock(&kvm_count_lock);
2734
2735         kvm_usage_count++;
2736         if (kvm_usage_count == 1) {
2737                 atomic_set(&hardware_enable_failed, 0);
2738                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2739
2740                 if (atomic_read(&hardware_enable_failed)) {
2741                         hardware_disable_all_nolock();
2742                         r = -EBUSY;
2743                 }
2744         }
2745
2746         raw_spin_unlock(&kvm_count_lock);
2747
2748         return r;
2749 }
2750
2751 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2752                            void *v)
2753 {
2754         int cpu = (long)v;
2755
2756         val &= ~CPU_TASKS_FROZEN;
2757         switch (val) {
2758         case CPU_DYING:
2759                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2760                        cpu);
2761                 hardware_disable();
2762                 break;
2763         case CPU_STARTING:
2764                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2765                        cpu);
2766                 hardware_enable();
2767                 break;
2768         }
2769         return NOTIFY_OK;
2770 }
2771
2772 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2773                       void *v)
2774 {
2775         /*
2776          * Some (well, at least mine) BIOSes hang on reboot if
2777          * in vmx root mode.
2778          *
2779          * And Intel TXT required VMX off for all cpu when system shutdown.
2780          */
2781         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2782         kvm_rebooting = true;
2783         on_each_cpu(hardware_disable_nolock, NULL, 1);
2784         return NOTIFY_OK;
2785 }
2786
2787 static struct notifier_block kvm_reboot_notifier = {
2788         .notifier_call = kvm_reboot,
2789         .priority = 0,
2790 };
2791
2792 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2793 {
2794         int i;
2795
2796         for (i = 0; i < bus->dev_count; i++) {
2797                 struct kvm_io_device *pos = bus->range[i].dev;
2798
2799                 kvm_iodevice_destructor(pos);
2800         }
2801         kfree(bus);
2802 }
2803
2804 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2805                                  const struct kvm_io_range *r2)
2806 {
2807         if (r1->addr < r2->addr)
2808                 return -1;
2809         if (r1->addr + r1->len > r2->addr + r2->len)
2810                 return 1;
2811         return 0;
2812 }
2813
2814 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2815 {
2816         return kvm_io_bus_cmp(p1, p2);
2817 }
2818
2819 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2820                           gpa_t addr, int len)
2821 {
2822         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2823                 .addr = addr,
2824                 .len = len,
2825                 .dev = dev,
2826         };
2827
2828         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2829                 kvm_io_bus_sort_cmp, NULL);
2830
2831         return 0;
2832 }
2833
2834 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2835                              gpa_t addr, int len)
2836 {
2837         struct kvm_io_range *range, key;
2838         int off;
2839
2840         key = (struct kvm_io_range) {
2841                 .addr = addr,
2842                 .len = len,
2843         };
2844
2845         range = bsearch(&key, bus->range, bus->dev_count,
2846                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2847         if (range == NULL)
2848                 return -ENOENT;
2849
2850         off = range - bus->range;
2851
2852         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2853                 off--;
2854
2855         return off;
2856 }
2857
2858 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2859                               struct kvm_io_range *range, const void *val)
2860 {
2861         int idx;
2862
2863         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2864         if (idx < 0)
2865                 return -EOPNOTSUPP;
2866
2867         while (idx < bus->dev_count &&
2868                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2869                 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2870                                         range->len, val))
2871                         return idx;
2872                 idx++;
2873         }
2874
2875         return -EOPNOTSUPP;
2876 }
2877
2878 /* kvm_io_bus_write - called under kvm->slots_lock */
2879 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2880                      int len, const void *val)
2881 {
2882         struct kvm_io_bus *bus;
2883         struct kvm_io_range range;
2884         int r;
2885
2886         range = (struct kvm_io_range) {
2887                 .addr = addr,
2888                 .len = len,
2889         };
2890
2891         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2892         r = __kvm_io_bus_write(bus, &range, val);
2893         return r < 0 ? r : 0;
2894 }
2895
2896 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2897 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2898                             int len, const void *val, long cookie)
2899 {
2900         struct kvm_io_bus *bus;
2901         struct kvm_io_range range;
2902
2903         range = (struct kvm_io_range) {
2904                 .addr = addr,
2905                 .len = len,
2906         };
2907
2908         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2909
2910         /* First try the device referenced by cookie. */
2911         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2912             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2913                 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2914                                         val))
2915                         return cookie;
2916
2917         /*
2918          * cookie contained garbage; fall back to search and return the
2919          * correct cookie value.
2920          */
2921         return __kvm_io_bus_write(bus, &range, val);
2922 }
2923
2924 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2925                              void *val)
2926 {
2927         int idx;
2928
2929         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2930         if (idx < 0)
2931                 return -EOPNOTSUPP;
2932
2933         while (idx < bus->dev_count &&
2934                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2935                 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2936                                        range->len, val))
2937                         return idx;
2938                 idx++;
2939         }
2940
2941         return -EOPNOTSUPP;
2942 }
2943
2944 /* kvm_io_bus_read - called under kvm->slots_lock */
2945 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2946                     int len, void *val)
2947 {
2948         struct kvm_io_bus *bus;
2949         struct kvm_io_range range;
2950         int r;
2951
2952         range = (struct kvm_io_range) {
2953                 .addr = addr,
2954                 .len = len,
2955         };
2956
2957         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2958         r = __kvm_io_bus_read(bus, &range, val);
2959         return r < 0 ? r : 0;
2960 }
2961
2962 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2963 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2964                            int len, void *val, long cookie)
2965 {
2966         struct kvm_io_bus *bus;
2967         struct kvm_io_range range;
2968
2969         range = (struct kvm_io_range) {
2970                 .addr = addr,
2971                 .len = len,
2972         };
2973
2974         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2975
2976         /* First try the device referenced by cookie. */
2977         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2978             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2979                 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2980                                        val))
2981                         return cookie;
2982
2983         /*
2984          * cookie contained garbage; fall back to search and return the
2985          * correct cookie value.
2986          */
2987         return __kvm_io_bus_read(bus, &range, val);
2988 }
2989
2990 /* Caller must hold slots_lock. */
2991 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2992                             int len, struct kvm_io_device *dev)
2993 {
2994         struct kvm_io_bus *new_bus, *bus;
2995
2996         bus = kvm->buses[bus_idx];
2997         /* exclude ioeventfd which is limited by maximum fd */
2998         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2999                 return -ENOSPC;
3000
3001         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3002                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3003         if (!new_bus)
3004                 return -ENOMEM;
3005         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3006                sizeof(struct kvm_io_range)));
3007         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3008         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3009         synchronize_srcu_expedited(&kvm->srcu);
3010         kfree(bus);
3011
3012         return 0;
3013 }
3014
3015 /* Caller must hold slots_lock. */
3016 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3017                               struct kvm_io_device *dev)
3018 {
3019         int i, r;
3020         struct kvm_io_bus *new_bus, *bus;
3021
3022         bus = kvm->buses[bus_idx];
3023         r = -ENOENT;
3024         for (i = 0; i < bus->dev_count; i++)
3025                 if (bus->range[i].dev == dev) {
3026                         r = 0;
3027                         break;
3028                 }
3029
3030         if (r)
3031                 return r;
3032
3033         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3034                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3035         if (!new_bus)
3036                 return -ENOMEM;
3037
3038         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3039         new_bus->dev_count--;
3040         memcpy(new_bus->range + i, bus->range + i + 1,
3041                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3042
3043         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3044         synchronize_srcu_expedited(&kvm->srcu);
3045         kfree(bus);
3046         return r;
3047 }
3048
3049 static struct notifier_block kvm_cpu_notifier = {
3050         .notifier_call = kvm_cpu_hotplug,
3051 };
3052
3053 static int vm_stat_get(void *_offset, u64 *val)
3054 {
3055         unsigned offset = (long)_offset;
3056         struct kvm *kvm;
3057
3058         *val = 0;
3059         spin_lock(&kvm_lock);
3060         list_for_each_entry(kvm, &vm_list, vm_list)
3061                 *val += *(u32 *)((void *)kvm + offset);
3062         spin_unlock(&kvm_lock);
3063         return 0;
3064 }
3065
3066 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3067
3068 static int vcpu_stat_get(void *_offset, u64 *val)
3069 {
3070         unsigned offset = (long)_offset;
3071         struct kvm *kvm;
3072         struct kvm_vcpu *vcpu;
3073         int i;
3074
3075         *val = 0;
3076         spin_lock(&kvm_lock);
3077         list_for_each_entry(kvm, &vm_list, vm_list)
3078                 kvm_for_each_vcpu(i, vcpu, kvm)
3079                         *val += *(u32 *)((void *)vcpu + offset);
3080
3081         spin_unlock(&kvm_lock);
3082         return 0;
3083 }
3084
3085 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3086
3087 static const struct file_operations *stat_fops[] = {
3088         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3089         [KVM_STAT_VM]   = &vm_stat_fops,
3090 };
3091
3092 static int kvm_init_debug(void)
3093 {
3094         int r = -EFAULT;
3095         struct kvm_stats_debugfs_item *p;
3096
3097         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3098         if (kvm_debugfs_dir == NULL)
3099                 goto out;
3100
3101         for (p = debugfs_entries; p->name; ++p) {
3102                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3103                                                 (void *)(long)p->offset,
3104                                                 stat_fops[p->kind]);
3105                 if (p->dentry == NULL)
3106                         goto out_dir;
3107         }
3108
3109         return 0;
3110
3111 out_dir:
3112         debugfs_remove_recursive(kvm_debugfs_dir);
3113 out:
3114         return r;
3115 }
3116
3117 static void kvm_exit_debug(void)
3118 {
3119         struct kvm_stats_debugfs_item *p;
3120
3121         for (p = debugfs_entries; p->name; ++p)
3122                 debugfs_remove(p->dentry);
3123         debugfs_remove(kvm_debugfs_dir);
3124 }
3125
3126 static int kvm_suspend(void)
3127 {
3128         if (kvm_usage_count)
3129                 hardware_disable_nolock(NULL);
3130         return 0;
3131 }
3132
3133 static void kvm_resume(void)
3134 {
3135         if (kvm_usage_count) {
3136                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3137                 hardware_enable_nolock(NULL);
3138         }
3139 }
3140
3141 static struct syscore_ops kvm_syscore_ops = {
3142         .suspend = kvm_suspend,
3143         .resume = kvm_resume,
3144 };
3145
3146 static inline
3147 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3148 {
3149         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3150 }
3151
3152 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3153 {
3154         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3155         if (vcpu->preempted)
3156                 vcpu->preempted = false;
3157
3158         kvm_arch_vcpu_load(vcpu, cpu);
3159 }
3160
3161 static void kvm_sched_out(struct preempt_notifier *pn,
3162                           struct task_struct *next)
3163 {
3164         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3165
3166         if (current->state == TASK_RUNNING)
3167                 vcpu->preempted = true;
3168         kvm_arch_vcpu_put(vcpu);
3169 }
3170
3171 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3172                   struct module *module)
3173 {
3174         int r;
3175         int cpu;
3176
3177         r = kvm_arch_init(opaque);
3178         if (r)
3179                 goto out_fail;
3180
3181         /*
3182          * kvm_arch_init makes sure there's at most one caller
3183          * for architectures that support multiple implementations,
3184          * like intel and amd on x86.
3185          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3186          * conflicts in case kvm is already setup for another implementation.
3187          */
3188         r = kvm_irqfd_init();
3189         if (r)
3190                 goto out_irqfd;
3191
3192         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3193                 r = -ENOMEM;
3194                 goto out_free_0;
3195         }
3196
3197         r = kvm_arch_hardware_setup();
3198         if (r < 0)
3199                 goto out_free_0a;
3200
3201         for_each_online_cpu(cpu) {
3202                 smp_call_function_single(cpu,
3203                                 kvm_arch_check_processor_compat,
3204                                 &r, 1);
3205                 if (r < 0)
3206                         goto out_free_1;
3207         }
3208
3209         r = register_cpu_notifier(&kvm_cpu_notifier);
3210         if (r)
3211                 goto out_free_2;
3212         register_reboot_notifier(&kvm_reboot_notifier);
3213
3214         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3215         if (!vcpu_align)
3216                 vcpu_align = __alignof__(struct kvm_vcpu);
3217         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3218                                            0, NULL);
3219         if (!kvm_vcpu_cache) {
3220                 r = -ENOMEM;
3221                 goto out_free_3;
3222         }
3223
3224         r = kvm_async_pf_init();
3225         if (r)
3226                 goto out_free;
3227
3228         kvm_chardev_ops.owner = module;
3229         kvm_vm_fops.owner = module;
3230         kvm_vcpu_fops.owner = module;
3231
3232         r = misc_register(&kvm_dev);
3233         if (r) {
3234                 printk(KERN_ERR "kvm: misc device register failed\n");
3235                 goto out_unreg;
3236         }
3237
3238         register_syscore_ops(&kvm_syscore_ops);
3239
3240         kvm_preempt_ops.sched_in = kvm_sched_in;
3241         kvm_preempt_ops.sched_out = kvm_sched_out;
3242
3243         r = kvm_init_debug();
3244         if (r) {
3245                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3246                 goto out_undebugfs;
3247         }
3248
3249         return 0;
3250
3251 out_undebugfs:
3252         unregister_syscore_ops(&kvm_syscore_ops);
3253         misc_deregister(&kvm_dev);
3254 out_unreg:
3255         kvm_async_pf_deinit();
3256 out_free:
3257         kmem_cache_destroy(kvm_vcpu_cache);
3258 out_free_3:
3259         unregister_reboot_notifier(&kvm_reboot_notifier);
3260         unregister_cpu_notifier(&kvm_cpu_notifier);
3261 out_free_2:
3262 out_free_1:
3263         kvm_arch_hardware_unsetup();
3264 out_free_0a:
3265         free_cpumask_var(cpus_hardware_enabled);
3266 out_free_0:
3267         kvm_irqfd_exit();
3268 out_irqfd:
3269         kvm_arch_exit();
3270 out_fail:
3271         return r;
3272 }
3273 EXPORT_SYMBOL_GPL(kvm_init);
3274
3275 void kvm_exit(void)
3276 {
3277         kvm_exit_debug();
3278         misc_deregister(&kvm_dev);
3279         kmem_cache_destroy(kvm_vcpu_cache);
3280         kvm_async_pf_deinit();
3281         unregister_syscore_ops(&kvm_syscore_ops);
3282         unregister_reboot_notifier(&kvm_reboot_notifier);
3283         unregister_cpu_notifier(&kvm_cpu_notifier);
3284         on_each_cpu(hardware_disable_nolock, NULL, 1);
3285         kvm_arch_hardware_unsetup();
3286         kvm_arch_exit();
3287         kvm_irqfd_exit();
3288         free_cpumask_var(cpus_hardware_enabled);
3289 }
3290 EXPORT_SYMBOL_GPL(kvm_exit);