]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/armv7/mx6/clock.c
c8522f529df38d08ec4e2e978e19c34e496ae274
[karo-tx-uboot.git] / arch / arm / cpu / armv7 / mx6 / clock.c
1 /*
2  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:     GPL-2.0+
5  */
6
7 #include <common.h>
8 #include <div64.h>
9 #include <asm/io.h>
10 #include <asm/errno.h>
11 #include <asm/arch/imx-regs.h>
12 #include <asm/arch/crm_regs.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/sys_proto.h>
15
16 enum pll_clocks {
17         PLL_ARM,        /* PLL1: ARM PLL */
18         PLL_528,        /* PLL2: System Bus PLL*/
19         PLL_USBOTG,     /* PLL3: OTG USB PLL */
20         PLL_AUDIO,      /* PLL4: Audio PLL */
21         PLL_VIDEO,      /* PLL5: Video PLL */
22         PLL_ENET,       /* PLL6: ENET PLL */
23         PLL_USB2,       /* PLL7: USB2 PLL */
24         PLL_MLB,        /* PLL8: MLB PLL */
25 };
26
27 struct mxc_ccm_reg *const imx_ccm = (void *)CCM_BASE_ADDR;
28 struct anatop_regs *const anatop = (void *)ANATOP_BASE_ADDR;
29
30 int clk_enable(struct clk *clk)
31 {
32         int ret = 0;
33
34         if (!clk)
35                 return 0;
36         if (clk->usecount == 0) {
37                 debug("%s: Enabling %s clock\n", __func__, clk->name);
38                 ret = clk->enable(clk);
39                 if (ret)
40                         return ret;
41                 clk->usecount++;
42         }
43         assert(clk->usecount > 0);
44         return ret;
45 }
46
47 void clk_disable(struct clk *clk)
48 {
49         if (!clk)
50                 return;
51
52         assert(clk->usecount > 0);
53         if (!(--clk->usecount)) {
54                 if (clk->disable) {
55                         debug("%s: Disabling %s clock\n", __func__, clk->name);
56                         clk->disable(clk);
57                 }
58         }
59 }
60
61 int clk_get_usecount(struct clk *clk)
62 {
63         if (clk == NULL)
64                 return 0;
65
66         return clk->usecount;
67 }
68
69 u32 clk_get_rate(struct clk *clk)
70 {
71         if (!clk)
72                 return 0;
73
74         return clk->rate;
75 }
76
77 struct clk *clk_get_parent(struct clk *clk)
78 {
79         if (!clk)
80                 return 0;
81
82         return clk->parent;
83 }
84
85 int clk_set_rate(struct clk *clk, unsigned long rate)
86 {
87         if (clk && clk->set_rate)
88                 clk->set_rate(clk, rate);
89         return clk->rate;
90 }
91
92 long clk_round_rate(struct clk *clk, unsigned long rate)
93 {
94         if (clk == NULL || !clk->round_rate)
95                 return 0;
96
97         return clk->round_rate(clk, rate);
98 }
99
100 int clk_set_parent(struct clk *clk, struct clk *parent)
101 {
102         debug("Setting parent of clk %p to %p (%p)\n", clk, parent,
103                 clk ? clk->parent : NULL);
104
105         if (!clk || clk == parent)
106                 return 0;
107
108         if (clk->set_parent) {
109                 int ret;
110
111                 ret = clk->set_parent(clk, parent);
112                 if (ret)
113                         return ret;
114         }
115         clk->parent = parent;
116         return 0;
117 }
118
119 #ifdef CONFIG_MXC_OCOTP
120 void enable_ocotp_clk(unsigned char enable)
121 {
122         u32 reg;
123
124         reg = __raw_readl(&imx_ccm->CCGR2);
125         if (enable)
126                 reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
127         else
128                 reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
129         __raw_writel(reg, &imx_ccm->CCGR2);
130 }
131 #endif
132
133 #ifdef CONFIG_NAND_MXS
134 void setup_gpmi_io_clk(u32 cfg)
135 {
136         /* Disable clocks per ERR007177 from MX6 errata */
137         clrbits_le32(&imx_ccm->CCGR4,
138                      MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
139                      MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
140                      MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
141                      MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
142                      MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
143
144         clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
145
146         clrsetbits_le32(&imx_ccm->cs2cdr,
147                         MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
148                         MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
149                         MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
150                         cfg);
151
152         setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
153         setbits_le32(&imx_ccm->CCGR4,
154                      MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
155                      MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
156                      MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
157                      MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
158                      MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
159 }
160 #endif
161
162 void enable_usboh3_clk(unsigned char enable)
163 {
164         u32 reg;
165
166         reg = __raw_readl(&imx_ccm->CCGR6);
167         if (enable)
168                 reg |= MXC_CCM_CCGR6_USBOH3_MASK;
169         else
170                 reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
171         __raw_writel(reg, &imx_ccm->CCGR6);
172
173 }
174
175 #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_SOC_MX6SX)
176 void enable_enet_clk(unsigned char enable)
177 {
178         u32 mask, *addr;
179
180         if (is_cpu_type(MXC_CPU_MX6UL)) {
181                 mask = MXC_CCM_CCGR3_ENET_MASK;
182                 addr = &imx_ccm->CCGR3;
183         } else {
184                 mask = MXC_CCM_CCGR1_ENET_MASK;
185                 addr = &imx_ccm->CCGR1;
186         }
187
188         if (enable)
189                 setbits_le32(addr, mask);
190         else
191                 clrbits_le32(addr, mask);
192 }
193 #endif
194
195 #ifdef CONFIG_MXC_UART
196 void enable_uart_clk(unsigned char enable)
197 {
198         u32 mask;
199
200         if (is_cpu_type(MXC_CPU_MX6UL))
201                 mask = MXC_CCM_CCGR5_UART_MASK;
202         else
203                 mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
204
205         if (enable)
206                 setbits_le32(&imx_ccm->CCGR5, mask);
207         else
208                 clrbits_le32(&imx_ccm->CCGR5, mask);
209 }
210 #endif
211
212 #ifdef CONFIG_MMC
213 int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
214 {
215         u32 mask;
216
217         if (bus_num > 3)
218                 return -EINVAL;
219
220         mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
221         if (enable)
222                 setbits_le32(&imx_ccm->CCGR6, mask);
223         else
224                 clrbits_le32(&imx_ccm->CCGR6, mask);
225
226         return 0;
227 }
228 #endif
229
230 #ifdef CONFIG_SYS_I2C_MXC
231 /* i2c_num can be from 0 - 3 */
232 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
233 {
234         u32 reg;
235         u32 mask;
236         u32 *addr;
237
238         if (i2c_num > 3)
239                 return -EINVAL;
240         if (i2c_num < 3) {
241                 mask = MXC_CCM_CCGR_CG_MASK
242                         << (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
243                         + (i2c_num << 1));
244                 reg = __raw_readl(&imx_ccm->CCGR2);
245                 if (enable)
246                         reg |= mask;
247                 else
248                         reg &= ~mask;
249                 __raw_writel(reg, &imx_ccm->CCGR2);
250         } else {
251                 if (is_cpu_type(MXC_CPU_MX6SX) || is_cpu_type(MXC_CPU_MX6UL)) {
252                         mask = MXC_CCM_CCGR6_I2C4_MASK;
253                         addr = &imx_ccm->CCGR6;
254                 } else {
255                         mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
256                         addr = &imx_ccm->CCGR1;
257                 }
258                 reg = __raw_readl(addr);
259                 if (enable)
260                         reg |= mask;
261                 else
262                         reg &= ~mask;
263                 __raw_writel(reg, addr);
264         }
265         return 0;
266 }
267 #endif
268
269 /* spi_num can be from 0 - SPI_MAX_NUM */
270 int enable_spi_clk(unsigned char enable, unsigned spi_num)
271 {
272         u32 reg;
273         u32 mask;
274
275         if (spi_num > SPI_MAX_NUM)
276                 return -EINVAL;
277
278         mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
279         reg = __raw_readl(&imx_ccm->CCGR1);
280         if (enable)
281                 reg |= mask;
282         else
283                 reg &= ~mask;
284         __raw_writel(reg, &imx_ccm->CCGR1);
285         return 0;
286 }
287 static u32 decode_pll(enum pll_clocks pll, u32 infreq)
288 {
289         u32 div;
290
291         switch (pll) {
292         case PLL_ARM:
293                 div = __raw_readl(&anatop->pll_arm);
294                 if (div & BM_ANADIG_PLL_ARM_BYPASS)
295                         /* Assume the bypass clock is always derived from OSC */
296                         return infreq;
297                 div &= BM_ANADIG_PLL_ARM_DIV_SELECT;
298
299                 return infreq * div / 2;
300         case PLL_528:
301                 div = __raw_readl(&anatop->pll_528);
302                 if (div & BM_ANADIG_PLL_528_BYPASS)
303                         return infreq;
304                 div &= BM_ANADIG_PLL_528_DIV_SELECT;
305
306                 return infreq * (20 + div * 2);
307         case PLL_USBOTG:
308                 div = __raw_readl(&anatop->usb1_pll_480_ctrl);
309                 if (div & BM_ANADIG_USB1_PLL_480_CTRL_BYPASS)
310                         return infreq;
311                 div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
312
313                 return infreq * (20 + div * 2);
314         case PLL_AUDIO:
315                 div = __raw_readl(&anatop->pll_audio);
316                 if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
317                         return infreq;
318                 div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
319
320                 return infreq * div;
321         case PLL_VIDEO:
322                 div = __raw_readl(&anatop->pll_video);
323                 if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
324                         return infreq;
325                 div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
326
327                 return infreq * div;
328         case PLL_ENET:
329                 div = __raw_readl(&anatop->pll_enet);
330                 if (div & BM_ANADIG_PLL_ENET_BYPASS)
331                         return infreq;
332                 div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
333
334                 return 25000000 * (div + (div >> 1) + 1);
335         case PLL_USB2:
336                 div = __raw_readl(&anatop->usb2_pll_480_ctrl);
337                 if (div & BM_ANADIG_USB1_PLL_480_CTRL_BYPASS)
338                         return infreq;
339                 div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
340
341                 return infreq * (20 + div * 2);
342         case PLL_MLB:
343                 div = __raw_readl(&anatop->pll_mlb);
344                 if (div & BM_ANADIG_PLL_MLB_BYPASS)
345                         return infreq;
346                 /* unknown external clock provided on MLB_CLK pin */
347                 return 0;
348         }
349         return 0;
350 }
351 static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
352 {
353         u32 div;
354         u64 freq;
355
356         switch (pll) {
357         case PLL_528:
358                 if (!is_cpu_type(MXC_CPU_MX6UL)) {
359                         if (pfd_num == 3) {
360                                 /* No PFD3 on PPL2 */
361                                 return 0;
362                         }
363                 }
364                 div = __raw_readl(&anatop->pfd_528);
365                 freq = (u64)decode_pll(PLL_528, MXC_HCLK);
366                 break;
367         case PLL_USBOTG:
368                 div = __raw_readl(&anatop->pfd_480);
369                 freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
370                 break;
371         default:
372                 /* No PFD on other PLL */
373                 return 0;
374         }
375
376         return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
377                               ANATOP_PFD_FRAC_SHIFT(pfd_num));
378 }
379
380 static u32 get_mcu_main_clk(void)
381 {
382         u32 reg, freq;
383
384         reg = __raw_readl(&imx_ccm->cacrr);
385         reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
386         reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
387         freq = decode_pll(PLL_ARM, MXC_HCLK);
388
389         return freq / (reg + 1);
390 }
391
392 u32 get_periph_clk(void)
393 {
394         u32 reg, div = 0, freq = 0;
395
396         reg = __raw_readl(&imx_ccm->cbcdr);
397         if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
398                 div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
399                        MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
400                 reg = __raw_readl(&imx_ccm->cbcmr);
401                 reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
402                 reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
403
404                 switch (reg) {
405                 case 0:
406                         freq = decode_pll(PLL_USBOTG, MXC_HCLK);
407                         break;
408                 case 1:
409                 case 2:
410                         freq = MXC_HCLK;
411                         break;
412                 }
413         } else {
414                 reg = __raw_readl(&imx_ccm->cbcmr);
415                 reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
416                 reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
417
418                 switch (reg) {
419                 case 0:
420                         freq = decode_pll(PLL_528, MXC_HCLK);
421                         break;
422                 case 1:
423                         freq = mxc_get_pll_pfd(PLL_528, 2);
424                         break;
425                 case 2:
426                         freq = mxc_get_pll_pfd(PLL_528, 0);
427                         break;
428                 case 3:
429                         /* static / 2 divider */
430                         freq = mxc_get_pll_pfd(PLL_528, 2) / 2;
431                         break;
432                 }
433         }
434
435         return freq / (div + 1);
436 }
437
438 static u32 get_ipg_clk(void)
439 {
440         u32 reg, ipg_podf;
441
442         reg = __raw_readl(&imx_ccm->cbcdr);
443         reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
444         ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
445
446         return get_ahb_clk() / (ipg_podf + 1);
447 }
448
449 static u32 get_ipg_per_clk(void)
450 {
451         u32 reg, perclk_podf;
452
453         reg = __raw_readl(&imx_ccm->cscmr1);
454         if (is_cpu_type(MXC_CPU_MX6SL) || is_cpu_type(MXC_CPU_MX6SX) ||
455             is_mx6dqp() || is_cpu_type(MXC_CPU_MX6UL)) {
456                 if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
457                         return MXC_HCLK; /* OSC 24Mhz */
458         }
459
460         perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
461
462         return get_ipg_clk() / (perclk_podf + 1);
463 }
464
465 static u32 get_uart_clk(void)
466 {
467         u32 reg, uart_podf;
468         u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
469         reg = __raw_readl(&imx_ccm->cscdr1);
470
471         if (is_cpu_type(MXC_CPU_MX6SL) || is_cpu_type(MXC_CPU_MX6SX) ||
472             is_mx6dqp() || is_cpu_type(MXC_CPU_MX6UL)) {
473                 if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
474                         freq = MXC_HCLK;
475         }
476
477         reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
478         uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
479
480         return freq / (uart_podf + 1);
481 }
482
483 static u32 get_cspi_clk(void)
484 {
485         u32 reg, cspi_podf;
486
487         reg = __raw_readl(&imx_ccm->cscdr2);
488         cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
489                      MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
490
491         if (is_mx6dqp() || is_cpu_type(MXC_CPU_MX6SL) ||
492             is_cpu_type(MXC_CPU_MX6SX) || is_cpu_type(MXC_CPU_MX6UL)) {
493                 if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
494                         return MXC_HCLK / (cspi_podf + 1);
495         }
496
497         return  decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
498 }
499
500 static u32 get_axi_clk(void)
501 {
502         u32 root_freq, axi_podf;
503         u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
504
505         axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
506         axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
507
508         if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
509                 if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
510                         root_freq = mxc_get_pll_pfd(PLL_528, 2);
511                 else
512                         root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
513         } else {
514                 root_freq = get_periph_clk();
515         }
516         return  root_freq / (axi_podf + 1);
517 }
518
519 static u32 get_emi_slow_clk(void)
520 {
521         u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
522
523         cscmr1 =  __raw_readl(&imx_ccm->cscmr1);
524         emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
525         emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
526         emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
527         emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
528
529         switch (emi_clk_sel) {
530         case 0:
531                 root_freq = get_axi_clk();
532                 break;
533         case 1:
534                 root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
535                 break;
536         case 2:
537                 root_freq =  mxc_get_pll_pfd(PLL_528, 2);
538                 break;
539         case 3:
540                 root_freq =  mxc_get_pll_pfd(PLL_528, 0);
541                 break;
542         }
543
544         return root_freq / (emi_slow_podf + 1);
545 }
546
547 static u32 get_nfc_clk(void)
548 {
549         u32 cs2cdr = __raw_readl(&imx_ccm->cs2cdr);
550         u32 podf = (cs2cdr & MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK) >> MXC_CCM_CS2CDR_ENFC_CLK_PODF_OFFSET;
551         u32 pred = (cs2cdr & MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK) >> MXC_CCM_CS2CDR_ENFC_CLK_PRED_OFFSET;
552         int nfc_clk_sel = (cs2cdr & MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK) >>
553                 MXC_CCM_CS2CDR_ENFC_CLK_SEL_OFFSET;
554         u32 root_freq;
555
556         switch (nfc_clk_sel) {
557         case 0:
558                 root_freq = mxc_get_pll_pfd(PLL_528, 0);
559                 break;
560         case 1:
561                 root_freq = decode_pll(PLL_528, MXC_HCLK);
562                 break;
563         case 2:
564                 root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
565                 break;
566         case 3:
567                 root_freq = mxc_get_pll_pfd(PLL_528, 2);
568                 break;
569         default:
570                 return 0;
571         }
572
573         return root_freq / (pred + 1) / (podf + 1);
574 }
575
576 #define CS2CDR_ENFC_MASK        (MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |    \
577                                 MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |     \
578                                 MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK)
579
580 static int set_nfc_clk(u32 ref, u32 freq_khz)
581 {
582         u32 cs2cdr = __raw_readl(&imx_ccm->cs2cdr);
583         u32 podf;
584         u32 pred;
585         int nfc_clk_sel;
586         u32 root_freq;
587         u32 min_err = ~0;
588         u32 nfc_val = ~0;
589         u32 freq = freq_khz * 1000;
590
591         for (nfc_clk_sel = 0; nfc_clk_sel < 4; nfc_clk_sel++) {
592                 u32 act_freq;
593                 u32 err;
594
595                 if (ref < 4 && ref != nfc_clk_sel)
596                         continue;
597
598                 switch (nfc_clk_sel) {
599                 case 0:
600                         root_freq = mxc_get_pll_pfd(PLL_528, 0);
601                         break;
602                 case 1:
603                         root_freq = decode_pll(PLL_528, MXC_HCLK);
604                         break;
605                 case 2:
606                         root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
607                         break;
608                 case 3:
609                         root_freq = mxc_get_pll_pfd(PLL_528, 2);
610                         break;
611                 }
612                 if (root_freq < freq)
613                         continue;
614
615                 podf = min(DIV_ROUND_UP(root_freq, freq), 1U << 6);
616                 pred = min(DIV_ROUND_UP(root_freq / podf, freq), 8U);
617                 act_freq = root_freq / pred / podf;
618                 err = (freq - act_freq) * 100 / freq;
619                 debug("root=%d[%u] freq=%u pred=%u podf=%u act=%u err=%d\n",
620                         nfc_clk_sel, root_freq, freq, pred, podf, act_freq, err);
621                 if (act_freq > freq)
622                         continue;
623                 if (err < min_err) {
624                         nfc_val = (podf - 1) << MXC_CCM_CS2CDR_ENFC_CLK_PODF_OFFSET;
625                         nfc_val |= (pred - 1) << MXC_CCM_CS2CDR_ENFC_CLK_PRED_OFFSET;
626                         nfc_val |= nfc_clk_sel << MXC_CCM_CS2CDR_ENFC_CLK_SEL_OFFSET;
627                         min_err = err;
628                         if (err == 0)
629                                 break;
630                 }
631         }
632
633         if (nfc_val == ~0 || min_err > 10)
634                 return -EINVAL;
635
636         if ((cs2cdr & CS2CDR_ENFC_MASK) != nfc_val) {
637                 debug("changing cs2cdr from %08x to %08x\n", cs2cdr,
638                         (cs2cdr & ~CS2CDR_ENFC_MASK) | nfc_val);
639                 __raw_writel((cs2cdr & ~CS2CDR_ENFC_MASK) | nfc_val,
640                         &imx_ccm->cs2cdr);
641         } else {
642                 debug("Leaving cs2cdr unchanged [%08x]\n", cs2cdr);
643         }
644         return 0;
645 }
646
647 static u32 get_mmdc_ch0_clk(void)
648 {
649         u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
650         u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
651
652         u32 freq, podf, per2_clk2_podf;
653
654         if (is_cpu_type(MXC_CPU_MX6SX) || is_cpu_type(MXC_CPU_MX6UL) ||
655             is_cpu_type(MXC_CPU_MX6SL)) {
656                 podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
657                         MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
658                 if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
659                         per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
660                                 MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
661                         if (is_cpu_type(MXC_CPU_MX6SL)) {
662                                 if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
663                                         freq = MXC_HCLK;
664                                 else
665                                         freq = decode_pll(PLL_USBOTG, MXC_HCLK);
666                         } else {
667                                 if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
668                                         freq = decode_pll(PLL_528, MXC_HCLK);
669                                 else
670                                         freq = decode_pll(PLL_USBOTG, MXC_HCLK);
671                         }
672                 } else {
673                         per2_clk2_podf = 0;
674                         switch ((cbcmr &
675                                 MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
676                                 MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
677                         case 0:
678                                 freq = decode_pll(PLL_528, MXC_HCLK);
679                                 break;
680                         case 1:
681                                 freq = mxc_get_pll_pfd(PLL_528, 2);
682                                 break;
683                         case 2:
684                                 freq = mxc_get_pll_pfd(PLL_528, 0);
685                                 break;
686                         case 3:
687                                 /* static / 2 divider */
688                                 freq =  mxc_get_pll_pfd(PLL_528, 2) / 2;
689                                 break;
690                         }
691                 }
692                 return freq / (podf + 1) / (per2_clk2_podf + 1);
693         } else {
694                 podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
695                         MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
696                 return get_periph_clk() / (podf + 1);
697         }
698 }
699
700 #ifdef CONFIG_FSL_QSPI
701 /* qspi_num can be from 0 - 1 */
702 void enable_qspi_clk(int qspi_num)
703 {
704         u32 reg = 0;
705         /* Enable QuadSPI clock */
706         switch (qspi_num) {
707         case 0:
708                 /* disable the clock gate */
709                 clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
710
711                 /* set 50M  : (50 = 396 / 2 / 4) */
712                 reg = readl(&imx_ccm->cscmr1);
713                 reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
714                          MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
715                 reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
716                         (2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
717                 writel(reg, &imx_ccm->cscmr1);
718
719                 /* enable the clock gate */
720                 setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
721                 break;
722         case 1:
723                 /*
724                  * disable the clock gate
725                  * QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
726                  * disable both of them.
727                  */
728                 clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
729                              MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
730
731                 /* set 50M  : (50 = 396 / 2 / 4) */
732                 reg = readl(&imx_ccm->cs2cdr);
733                 reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
734                          MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
735                          MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
736                 reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
737                         MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
738                 writel(reg, &imx_ccm->cs2cdr);
739
740                 /*enable the clock gate*/
741                 setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
742                              MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
743                 break;
744         default:
745                 break;
746         }
747 }
748 #endif
749
750 #ifdef CONFIG_FEC_MXC
751 int enable_fec_anatop_clock(enum enet_freq freq)
752 {
753         u32 reg = 0;
754         s32 timeout = 100000;
755
756         if (freq < ENET_25MHZ || freq > ENET_125MHZ)
757                 return -EINVAL;
758
759         reg = readl(&anatop->pll_enet);
760         reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
761         reg |= freq;
762
763         if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
764             (!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
765                 reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
766                 writel(reg, &anatop->pll_enet);
767                 while (timeout--) {
768                         if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
769                                 break;
770                 }
771                 if (timeout < 0)
772                         return -ETIMEDOUT;
773         }
774
775         /* Enable FEC clock */
776         reg |= BM_ANADIG_PLL_ENET_ENABLE;
777         reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
778         writel(reg, &anatop->pll_enet);
779
780 #ifdef CONFIG_SOC_MX6SX
781         /*
782          * Set enet ahb clock to 200MHz
783          * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
784          */
785         reg = readl(&imx_ccm->chsccdr);
786         reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
787                  | MXC_CCM_CHSCCDR_ENET_PODF_MASK
788                  | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
789         /* PLL2 PFD2 */
790         reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
791         /* Div = 2*/
792         reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
793         reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
794         writel(reg, &imx_ccm->chsccdr);
795
796         /* Enable enet system clock */
797         reg = readl(&imx_ccm->CCGR3);
798         reg |= MXC_CCM_CCGR3_ENET_MASK;
799         writel(reg, &imx_ccm->CCGR3);
800 #endif
801         return 0;
802 }
803 #endif
804
805 static u32 get_usdhc_clk(u32 port)
806 {
807         u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
808         u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
809         u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
810
811         switch (port) {
812         case 0:
813                 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
814                                         MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
815                 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
816
817                 break;
818         case 1:
819                 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
820                                         MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
821                 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
822
823                 break;
824         case 2:
825                 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
826                                         MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
827                 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
828
829                 break;
830         case 3:
831                 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
832                                         MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
833                 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
834
835                 break;
836         default:
837                 break;
838         }
839
840         if (clk_sel)
841                 root_freq = mxc_get_pll_pfd(PLL_528, 0);
842         else
843                 root_freq = mxc_get_pll_pfd(PLL_528, 2);
844
845         return root_freq / (usdhc_podf + 1);
846 }
847
848 u32 imx_get_uartclk(void)
849 {
850         return get_uart_clk();
851 }
852
853 u32 imx_get_fecclk(void)
854 {
855         return mxc_get_clock(MXC_IPG_CLK);
856 }
857
858 #if defined(CONFIG_CMD_SATA) || defined(CONFIG_PCIE_IMX)
859 static int enable_enet_pll(uint32_t en)
860 {
861         u32 reg;
862         s32 timeout = 100000;
863
864         /* Enable PLLs */
865         reg = readl(&anatop->pll_enet);
866         reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
867         writel(reg, &anatop->pll_enet);
868         reg |= BM_ANADIG_PLL_ENET_ENABLE;
869         while (timeout--) {
870                 if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
871                         break;
872         }
873         if (timeout <= 0)
874                 return -EIO;
875         reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
876         writel(reg, &anatop->pll_enet);
877         reg |= en;
878         writel(reg, &anatop->pll_enet);
879         return 0;
880 }
881 #endif
882
883 #ifdef CONFIG_CMD_SATA
884 static void ungate_sata_clock(void)
885 {
886         /* Enable SATA clock. */
887         setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
888 }
889
890 int enable_sata_clock(void)
891 {
892         ungate_sata_clock();
893         return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
894 }
895
896 void disable_sata_clock(void)
897 {
898         clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
899 }
900 #endif
901
902 #ifdef CONFIG_PCIE_IMX
903 static void ungate_pcie_clock(void)
904 {
905         /* Enable PCIe clock. */
906         setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
907 }
908
909 int enable_pcie_clock(void)
910 {
911         u32 lvds1_clk_sel;
912
913         /*
914          * Here be dragons!
915          *
916          * The register ANATOP_MISC1 is not documented in the Freescale
917          * MX6RM. The register that is mapped in the ANATOP space and
918          * marked as ANATOP_MISC1 is actually documented in the PMU section
919          * of the datasheet as PMU_MISC1.
920          *
921          * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
922          * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
923          * for PCI express link that is clocked from the i.MX6.
924          */
925 #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN          (1 << 12)
926 #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN          (1 << 10)
927 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK     0x0000001F
928 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa
929 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb
930
931         if (is_cpu_type(MXC_CPU_MX6SX))
932                 lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
933         else
934                 lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
935
936         clrsetbits_le32(&anatop_regs->ana_misc1,
937                         ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
938                         ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
939                         ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
940
941         /* PCIe reference clock sourced from AXI. */
942         clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
943
944         /* Party time! Ungate the clock to the PCIe. */
945 #ifdef CONFIG_CMD_SATA
946         ungate_sata_clock();
947 #endif
948         ungate_pcie_clock();
949
950         return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
951                                BM_ANADIG_PLL_ENET_ENABLE_PCIE);
952 }
953 #endif
954
955 #ifdef CONFIG_SECURE_BOOT
956 void hab_caam_clock_enable(unsigned char enable)
957 {
958         u32 reg;
959
960         /* CG4 ~ CG6, CAAM clocks */
961         reg = __raw_readl(&imx_ccm->CCGR0);
962         if (enable)
963                 reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
964                         MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
965                         MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
966         else
967                 reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
968                         MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
969                         MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
970         __raw_writel(reg, &imx_ccm->CCGR0);
971
972         /* EMI slow clk */
973         reg = __raw_readl(&imx_ccm->CCGR6);
974         if (enable)
975                 reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
976         else
977                 reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
978         __raw_writel(reg, &imx_ccm->CCGR6);
979 }
980 #endif
981
982 static void enable_pll3(void)
983 {
984         /* make sure pll3 is enabled */
985         if ((readl(&anatop->usb1_pll_480_ctrl) &
986                         BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
987                 /* enable pll's power */
988                 writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
989                        &anatop->usb1_pll_480_ctrl_set);
990                 writel(0x80, &anatop->ana_misc2_clr);
991                 /* wait for pll lock */
992                 while ((readl(&anatop->usb1_pll_480_ctrl) &
993                         BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
994                         ;
995                 /* disable bypass */
996                 writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
997                        &anatop->usb1_pll_480_ctrl_clr);
998                 /* enable pll output */
999                 writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
1000                        &anatop->usb1_pll_480_ctrl_set);
1001         }
1002 }
1003
1004 void enable_thermal_clk(void)
1005 {
1006         enable_pll3();
1007 }
1008
1009 void ipu_clk_enable(void)
1010 {
1011         u32 reg = readl(&imx_ccm->CCGR3);
1012         reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
1013         writel(reg, &imx_ccm->CCGR3);
1014 }
1015
1016 void ipu_clk_disable(void)
1017 {
1018         u32 reg = readl(&imx_ccm->CCGR3);
1019         reg &= ~MXC_CCM_CCGR3_IPU1_IPU_MASK;
1020         writel(reg, &imx_ccm->CCGR3);
1021 }
1022
1023 void ipu_di_clk_enable(int di)
1024 {
1025         switch (di) {
1026         case 0:
1027                 setbits_le32(&imx_ccm->CCGR3,
1028                         MXC_CCM_CCGR3_IPU1_IPU_DI0_MASK);
1029                 break;
1030         case 1:
1031                 setbits_le32(&imx_ccm->CCGR3,
1032                         MXC_CCM_CCGR3_IPU1_IPU_DI1_MASK);
1033                 break;
1034         default:
1035                 printf("%s: Invalid DI index %d\n", __func__, di);
1036         }
1037 }
1038
1039 void ipu_di_clk_disable(int di)
1040 {
1041         switch (di) {
1042         case 0:
1043                 clrbits_le32(&imx_ccm->CCGR3,
1044                         MXC_CCM_CCGR3_IPU1_IPU_DI0_MASK);
1045                 break;
1046         case 1:
1047                 clrbits_le32(&imx_ccm->CCGR3,
1048                         MXC_CCM_CCGR3_IPU1_IPU_DI1_MASK);
1049                 break;
1050         default:
1051                 printf("%s: Invalid DI index %d\n", __func__, di);
1052         }
1053 }
1054
1055 void ldb_clk_enable(int ldb)
1056 {
1057         switch (ldb) {
1058         case 0:
1059                 setbits_le32(&imx_ccm->CCGR3,
1060                         MXC_CCM_CCGR3_LDB_DI0_MASK);
1061                 break;
1062         case 1:
1063                 setbits_le32(&imx_ccm->CCGR3,
1064                         MXC_CCM_CCGR3_LDB_DI1_MASK);
1065                 break;
1066         default:
1067                 printf("%s: Invalid LDB index %d\n", __func__, ldb);
1068         }
1069 }
1070
1071 void ldb_clk_disable(int ldb)
1072 {
1073         switch (ldb) {
1074         case 0:
1075                 clrbits_le32(&imx_ccm->CCGR3,
1076                         MXC_CCM_CCGR3_LDB_DI0_MASK);
1077                 break;
1078         case 1:
1079                 clrbits_le32(&imx_ccm->CCGR3,
1080                         MXC_CCM_CCGR3_LDB_DI1_MASK);
1081                 break;
1082         default:
1083                 printf("%s: Invalid LDB index %d\n", __func__, ldb);
1084         }
1085 }
1086
1087 unsigned int mxc_get_clock(enum mxc_clock clk)
1088 {
1089         switch (clk) {
1090         case MXC_ARM_CLK:
1091                 return get_mcu_main_clk();
1092         case MXC_PER_CLK:
1093                 return get_periph_clk();
1094         case MXC_AHB_CLK:
1095                 return get_ahb_clk();
1096         case MXC_IPG_CLK:
1097                 return get_ipg_clk();
1098         case MXC_IPG_PERCLK:
1099         case MXC_I2C_CLK:
1100                 return get_ipg_per_clk();
1101         case MXC_UART_CLK:
1102                 return get_uart_clk();
1103         case MXC_CSPI_CLK:
1104                 return get_cspi_clk();
1105         case MXC_AXI_CLK:
1106                 return get_axi_clk();
1107         case MXC_EMI_SLOW_CLK:
1108                 return get_emi_slow_clk();
1109         case MXC_DDR_CLK:
1110                 return get_mmdc_ch0_clk();
1111         case MXC_ESDHC_CLK:
1112                 return get_usdhc_clk(0);
1113         case MXC_ESDHC2_CLK:
1114                 return get_usdhc_clk(1);
1115         case MXC_ESDHC3_CLK:
1116                 return get_usdhc_clk(2);
1117         case MXC_ESDHC4_CLK:
1118                 return get_usdhc_clk(3);
1119         case MXC_SATA_CLK:
1120                 return get_ahb_clk();
1121         case MXC_NFC_CLK:
1122                 return get_nfc_clk();
1123         default:
1124                 printf("Unsupported MXC CLK: %d\n", clk);
1125         }
1126
1127         return 0;
1128 }
1129
1130 static inline int gcd(int m, int n)
1131 {
1132         int t;
1133         while (m > 0) {
1134                 if (n > m) {
1135                         t = m;
1136                         m = n;
1137                         n = t;
1138                 } /* swap */
1139                 m -= n;
1140         }
1141         return n;
1142 }
1143
1144 /* Config CPU clock */
1145 static int set_arm_clk(u32 ref, u32 freq_khz)
1146 {
1147         int d;
1148         int div = 0;
1149         int mul = 0;
1150         u32 min_err = ~0;
1151         u32 reg;
1152
1153         if (freq_khz > ref / 1000 * 108 / 2 || freq_khz < ref / 1000 * 54 / 8 / 2) {
1154                 printf("Frequency %u.%03uMHz is out of range: %u.%03u..%u.%03u\n",
1155                         freq_khz / 1000, freq_khz % 1000,
1156                         54 * ref / 1000000 / 8 / 2, 54 * ref / 1000 / 8 / 2 % 1000,
1157                         108 * ref / 1000000 / 2, 108 * ref / 1000 / 2 % 1000);
1158                 return -EINVAL;
1159         }
1160
1161         for (d = DIV_ROUND_UP(648000, freq_khz); d <= 8; d++) {
1162                 int m = freq_khz * 2 * d / (ref / 1000);
1163                 u32 f;
1164                 u32 err;
1165
1166                 if (m > 108) {
1167                         debug("%s@%d: d=%d m=%d\n", __func__, __LINE__,
1168                                 d, m);
1169                         break;
1170                 }
1171
1172                 f = ref * m / d / 2;
1173                 if (f > freq_khz * 1000) {
1174                         debug("%s@%d: d=%d m=%d f=%u freq=%u\n", __func__, __LINE__,
1175                                 d, m, f, freq_khz);
1176                         if (--m < 54)
1177                                 return -EINVAL;
1178                         f = ref * m / d / 2;
1179                 }
1180                 err = freq_khz * 1000 - f;
1181                 debug("%s@%d: d=%d m=%d f=%u freq=%u err=%d\n", __func__, __LINE__,
1182                         d, m, f, freq_khz, err);
1183                 if (err < min_err) {
1184                         mul = m;
1185                         div = d;
1186                         min_err = err;
1187                         if (err == 0)
1188                                 break;
1189                 }
1190         }
1191         if (min_err == ~0)
1192                 return -EINVAL;
1193         debug("Setting M=%3u D=%2u for %u.%03uMHz (actual: %u.%03uMHz)\n",
1194                 mul, div, freq_khz / 1000, freq_khz % 1000,
1195                 ref * mul / 2 / div / 1000000, ref * mul / 2 / div / 1000 % 1000);
1196
1197         reg = readl(&anatop->pll_arm);
1198         debug("anadig_pll_arm=%08x -> %08x\n",
1199                 reg, (reg & ~0x7f) | mul);
1200
1201         reg |= 1 << 16;
1202         writel(reg, &anatop->pll_arm); /* bypass PLL */
1203
1204         reg = (reg & ~0x7f) | mul;
1205         writel(reg, &anatop->pll_arm);
1206
1207         writel(div - 1, &imx_ccm->cacrr);
1208
1209         reg &= ~(1 << 16);
1210         writel(reg, &anatop->pll_arm); /* disable PLL bypass */
1211
1212         return 0;
1213 }
1214
1215 /*
1216  * This function assumes the expected core clock has to be changed by
1217  * modifying the PLL. This is NOT true always but for most of the times,
1218  * it is. So it assumes the PLL output freq is the same as the expected
1219  * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
1220  * In the latter case, it will try to increase the presc value until
1221  * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
1222  * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
1223  * on the targeted PLL and reference input clock to the PLL. Lastly,
1224  * it sets the register based on these values along with the dividers.
1225  * Note 1) There is no value checking for the passed-in divider values
1226  *         so the caller has to make sure those values are sensible.
1227  *      2) Also adjust the NFC divider such that the NFC clock doesn't
1228  *         exceed NFC_CLK_MAX.
1229  *      3) IPU HSP clock is independent of AHB clock. Even it can go up to
1230  *         177MHz for higher voltage, this function fixes the max to 133MHz.
1231  *      4) This function should not have allowed diag_printf() calls since
1232  *         the serial driver has been stoped. But leave then here to allow
1233  *         easy debugging by NOT calling the cyg_hal_plf_serial_stop().
1234  */
1235 int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
1236 {
1237         int ret;
1238
1239         freq *= 1000;
1240
1241         switch (clk) {
1242         case MXC_ARM_CLK:
1243                 ret = set_arm_clk(ref, freq);
1244                 break;
1245
1246         case MXC_NFC_CLK:
1247                 ret = set_nfc_clk(ref, freq);
1248                 break;
1249
1250         default:
1251                 printf("Warning: Unsupported or invalid clock type: %d\n",
1252                         clk);
1253                 return -EINVAL;
1254         }
1255
1256         return ret;
1257 }
1258
1259 /*
1260  * Dump some core clocks.
1261  */
1262 #define print_pll(pll)  {                               \
1263         u32 __pll = decode_pll(pll, MXC_HCLK);          \
1264         printf("%-12s %4d.%03d MHz\n", #pll,            \
1265                 __pll / 1000000, __pll / 1000 % 1000);  \
1266         }
1267
1268 #define MXC_IPG_PER_CLK MXC_IPG_PERCLK
1269
1270 #define print_clk(clk)  {                               \
1271         u32 __clk = mxc_get_clock(MXC_##clk##_CLK);     \
1272         printf("%-12s %4d.%03d MHz\n", #clk,            \
1273                 __clk / 1000000, __clk / 1000 % 1000);  \
1274         }
1275
1276 #define print_pfd(pll, pfd)     {                                       \
1277         u32 __pfd = readl(&anatop->pfd_##pll);                          \
1278         if (__pfd & (0x80 << 8 * pfd)) {                                \
1279                 printf("PFD_%s[%d]      OFF\n", #pll, pfd);             \
1280         } else {                                                        \
1281                 __pfd = (__pfd >> 8 * pfd) & 0x3f;                      \
1282                 printf("PFD_%s[%d]   %4d.%03d MHz\n", #pll, pfd,        \
1283                         pll * 18 / __pfd,                               \
1284                         pll * 18 * 1000 / __pfd % 1000);                \
1285         }                                                               \
1286 }
1287
1288 static void do_mx6_showclocks(void)
1289 {
1290         print_pll(PLL_ARM);
1291         print_pll(PLL_528);
1292         print_pll(PLL_USBOTG);
1293         print_pll(PLL_AUDIO);
1294         print_pll(PLL_VIDEO);
1295         print_pll(PLL_ENET);
1296         print_pll(PLL_USB2);
1297         printf("\n");
1298
1299         print_pfd(480, 0);
1300         print_pfd(480, 1);
1301         print_pfd(480, 2);
1302         print_pfd(480, 3);
1303         print_pfd(528, 0);
1304         print_pfd(528, 1);
1305         print_pfd(528, 2);
1306         printf("\n");
1307
1308         print_clk(IPG);
1309         print_clk(UART);
1310         print_clk(CSPI);
1311         print_clk(AHB);
1312         print_clk(AXI);
1313         print_clk(DDR);
1314         print_clk(ESDHC);
1315         print_clk(ESDHC2);
1316         print_clk(ESDHC3);
1317         print_clk(ESDHC4);
1318         print_clk(EMI_SLOW);
1319         print_clk(NFC);
1320         print_clk(IPG_PER);
1321         print_clk(ARM);
1322 }
1323
1324 static struct clk_lookup {
1325         const char *name;
1326         unsigned int index;
1327 } mx6_clk_lookup[] = {
1328         { "arm", MXC_ARM_CLK, },
1329         { "nfc", MXC_NFC_CLK, },
1330 };
1331
1332 int do_clocks(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1333 {
1334         int i;
1335         unsigned long freq;
1336         unsigned long ref = ~0UL;
1337
1338         if (argc < 2) {
1339                 do_mx6_showclocks();
1340                 return CMD_RET_SUCCESS;
1341         } else if (argc == 2 || argc > 4) {
1342                 return CMD_RET_USAGE;
1343         }
1344
1345         freq = simple_strtoul(argv[2], NULL, 0);
1346         if (freq == 0) {
1347                 printf("Invalid clock frequency %lu\n", freq);
1348                 return CMD_RET_FAILURE;
1349         }
1350         if (argc > 3) {
1351                 ref = simple_strtoul(argv[3], NULL, 0);
1352         }
1353         for (i = 0; i < ARRAY_SIZE(mx6_clk_lookup); i++) {
1354                 if (strcasecmp(argv[1], mx6_clk_lookup[i].name) == 0) {
1355                         switch (mx6_clk_lookup[i].index) {
1356                         case MXC_ARM_CLK:
1357                                 if (argc > 3)
1358                                         return CMD_RET_USAGE;
1359                                 ref = MXC_HCLK;
1360                                 break;
1361
1362                         case MXC_NFC_CLK:
1363                                 if (argc > 3 && ref > 3) {
1364                                         printf("Invalid clock selector value: %lu\n", ref);
1365                                         return CMD_RET_FAILURE;
1366                                 }
1367                                 break;
1368                         }
1369                         printf("Setting %s clock to %lu MHz\n",
1370                                 mx6_clk_lookup[i].name, freq);
1371                         if (mxc_set_clock(ref, freq, mx6_clk_lookup[i].index))
1372                                 break;
1373                         freq = mxc_get_clock(mx6_clk_lookup[i].index);
1374                         printf("%s clock set to %lu.%03lu MHz\n",
1375                                 mx6_clk_lookup[i].name,
1376                                 freq / 1000000, freq / 1000 % 1000);
1377                         return CMD_RET_SUCCESS;
1378                 }
1379         }
1380         if (i == ARRAY_SIZE(mx6_clk_lookup)) {
1381                 printf("clock %s not found; supported clocks are:\n", argv[1]);
1382                 for (i = 0; i < ARRAY_SIZE(mx6_clk_lookup); i++) {
1383                         printf("\t%s\n", mx6_clk_lookup[i].name);
1384                 }
1385         } else {
1386                 printf("Failed to set clock %s to %s MHz\n",
1387                         argv[1], argv[2]);
1388         }
1389         return CMD_RET_FAILURE;
1390 }
1391
1392 #ifndef CONFIG_SOC_MX6SX
1393 void enable_ipu_clock(void)
1394 {
1395         int reg = readl(&imx_ccm->CCGR3);
1396         reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
1397         writel(reg, &imx_ccm->CCGR3);
1398
1399         if (is_mx6dqp()) {
1400                 setbits_le32(&imx_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
1401                 setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
1402         }
1403 }
1404 #endif
1405 /***************************************************/
1406
1407 U_BOOT_CMD(
1408         clocks, 4, 0, do_clocks,
1409         "display/set clocks",
1410         "                    - display clock settings\n"
1411         "clocks <clkname> <freq>    - set clock <clkname> to <freq> MHz"
1412 );