]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/include/asm/arch-tegra/clock.h
karo: fdt: fix panel-dpi support
[karo-tx-uboot.git] / arch / arm / include / asm / arch-tegra / clock.h
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  *
4  * SPDX-License-Identifier:     GPL-2.0+
5  */
6
7 /* Tegra clock control functions */
8
9 #ifndef _TEGRA_CLOCK_H_
10 #define _TEGRA_CLOCK_H_
11
12 /* Set of oscillator frequencies supported in the internal API. */
13 enum clock_osc_freq {
14         /* All in MHz, so 13_0 is 13.0MHz */
15         CLOCK_OSC_FREQ_13_0,
16         CLOCK_OSC_FREQ_19_2,
17         CLOCK_OSC_FREQ_12_0,
18         CLOCK_OSC_FREQ_26_0,
19         CLOCK_OSC_FREQ_38_4,
20         CLOCK_OSC_FREQ_48_0,
21
22         CLOCK_OSC_FREQ_COUNT,
23 };
24
25 /*
26  * Note that no Tegra clock register actually uses all of bits 31:28 as
27  * the mux field. Rather, bits 30:28, 29:28, or 28 are used. However, in
28  * those cases, nothing is stored in the bits about the mux field, so it's
29  * safe to pretend that the mux field extends all the way to the end of the
30  * register. As such, the U-Boot clock driver is currently a bit lazy, and
31  * doesn't distinguish between 31:28, 30:28, 29:28 and 28; it just lumps
32  * them all together and pretends they're all 31:28.
33  */
34 enum {
35         MASK_BITS_31_30,
36         MASK_BITS_31_29,
37         MASK_BITS_31_28,
38 };
39
40 #include <asm/arch/clock-tables.h>
41 /* PLL stabilization delay in usec */
42 #define CLOCK_PLL_STABLE_DELAY_US 300
43
44 /* return the current oscillator clock frequency */
45 enum clock_osc_freq clock_get_osc_freq(void);
46
47 /**
48  * Start PLL using the provided configuration parameters.
49  *
50  * @param id    clock id
51  * @param divm  input divider
52  * @param divn  feedback divider
53  * @param divp  post divider 2^n
54  * @param cpcon charge pump setup control
55  * @param lfcon loop filter setup control
56  *
57  * @returns monotonic time in us that the PLL will be stable
58  */
59 unsigned long clock_start_pll(enum clock_id id, u32 divm, u32 divn,
60                 u32 divp, u32 cpcon, u32 lfcon);
61
62 /**
63  * Set PLL output frequency
64  *
65  * @param clkid clock id
66  * @param pllout        pll output id
67  * @param rate          desired output rate
68  *
69  * @return 0 if ok, -1 on error (invalid clock id or no suitable divider)
70  */
71 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout,
72                 unsigned rate);
73
74 /**
75  * Read low-level parameters of a PLL.
76  *
77  * @param id    clock id to read (note: USB is not supported)
78  * @param divm  returns input divider
79  * @param divn  returns feedback divider
80  * @param divp  returns post divider 2^n
81  * @param cpcon returns charge pump setup control
82  * @param lfcon returns loop filter setup control
83  *
84  * @returns 0 if ok, -1 on error (invalid clock id)
85  */
86 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
87                 u32 *divp, u32 *cpcon, u32 *lfcon);
88
89 /*
90  * Enable a clock
91  *
92  * @param id    clock id
93  */
94 void clock_enable(enum periph_id clkid);
95
96 /*
97  * Disable a clock
98  *
99  * @param id    clock id
100  */
101 void clock_disable(enum periph_id clkid);
102
103 /*
104  * Set whether a clock is enabled or disabled.
105  *
106  * @param id            clock id
107  * @param enable        1 to enable, 0 to disable
108  */
109 void clock_set_enable(enum periph_id clkid, int enable);
110
111 /**
112  * Reset a peripheral. This puts it in reset, waits for a delay, then takes
113  * it out of reset and waits for th delay again.
114  *
115  * @param periph_id     peripheral to reset
116  * @param us_delay      time to delay in microseconds
117  */
118 void reset_periph(enum periph_id periph_id, int us_delay);
119
120 /**
121  * Put a peripheral into or out of reset.
122  *
123  * @param periph_id     peripheral to reset
124  * @param enable        1 to put into reset, 0 to take out of reset
125  */
126 void reset_set_enable(enum periph_id periph_id, int enable);
127
128
129 /* CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET/CLR_0 */
130 enum crc_reset_id {
131         /* Things we can hold in reset for each CPU */
132         crc_rst_cpu = 1,
133         crc_rst_de = 1 << 4,    /* What is de? */
134         crc_rst_watchdog = 1 << 8,
135         crc_rst_debug = 1 << 12,
136 };
137
138 /**
139  * Put parts of the CPU complex into or out of reset.\
140  *
141  * @param cpu           cpu number (0 or 1 on Tegra2, 0-3 on Tegra3)
142  * @param which         which parts of the complex to affect (OR of crc_reset_id)
143  * @param reset         1 to assert reset, 0 to de-assert
144  */
145 void reset_cmplx_set_enable(int cpu, int which, int reset);
146
147 /**
148  * Set the source for a peripheral clock. This plus the divisor sets the
149  * clock rate. You need to look up the datasheet to see the meaning of the
150  * source parameter as it changes for each peripheral.
151  *
152  * Warning: This function is only for use pre-relocation. Please use
153  * clock_start_periph_pll() instead.
154  *
155  * @param periph_id     peripheral to adjust
156  * @param source        source clock (0, 1, 2 or 3)
157  */
158 void clock_ll_set_source(enum periph_id periph_id, unsigned source);
159
160 /**
161  * This function is similar to clock_ll_set_source() except that it can be
162  * used for clocks with more than 2 mux bits.
163  *
164  * @param periph_id     peripheral to adjust
165  * @param mux_bits      number of mux bits for the clock
166  * @param source        source clock (0-15 depending on mux_bits)
167  */
168 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
169                              unsigned source);
170
171 /**
172  * Set the source and divisor for a peripheral clock. This sets the
173  * clock rate. You need to look up the datasheet to see the meaning of the
174  * source parameter as it changes for each peripheral.
175  *
176  * Warning: This function is only for use pre-relocation. Please use
177  * clock_start_periph_pll() instead.
178  *
179  * @param periph_id     peripheral to adjust
180  * @param source        source clock (0, 1, 2 or 3)
181  * @param divisor       divisor value to use
182  */
183 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
184                 unsigned divisor);
185
186 /**
187  * Start a peripheral PLL clock at the given rate. This also resets the
188  * peripheral.
189  *
190  * @param periph_id     peripheral to start
191  * @param parent        PLL id of required parent clock
192  * @param rate          Required clock rate in Hz
193  * @return rate selected in Hz, or -1U if something went wrong
194  */
195 unsigned clock_start_periph_pll(enum periph_id periph_id,
196                 enum clock_id parent, unsigned rate);
197
198 /**
199  * Returns the rate of a peripheral clock in Hz. Since the caller almost
200  * certainly knows the parent clock (having just set it) we require that
201  * this be passed in so we don't need to work it out.
202  *
203  * @param periph_id     peripheral to start
204  * @param parent        PLL id of parent clock (used to calculate rate, you
205  *                      must know this!)
206  * @return clock rate of peripheral in Hz
207  */
208 unsigned long clock_get_periph_rate(enum periph_id periph_id,
209                 enum clock_id parent);
210
211 /**
212  * Adjust peripheral PLL clock to the given rate. This does not reset the
213  * peripheral. If a second stage divisor is not available, pass NULL for
214  * extra_div. If it is available, then this parameter will return the
215  * divisor selected (which will be a power of 2 from 1 to 256).
216  *
217  * @param periph_id     peripheral to start
218  * @param parent        PLL id of required parent clock
219  * @param rate          Required clock rate in Hz
220  * @param extra_div     value for the second-stage divisor (NULL if one is
221                         not available)
222  * @return rate selected in Hz, or -1U if something went wrong
223  */
224 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
225                 enum clock_id parent, unsigned rate, int *extra_div);
226
227 /**
228  * Returns the clock rate of a specified clock, in Hz.
229  *
230  * @param parent        PLL id of clock to check
231  * @return rate of clock in Hz
232  */
233 unsigned clock_get_rate(enum clock_id clkid);
234
235 /**
236  * Start up a UART using low-level calls
237  *
238  * Prior to relocation clock_start_periph_pll() cannot be called. This
239  * function provides a way to set up a UART using low-level calls which
240  * do not require BSS.
241  *
242  * @param periph_id     Peripheral ID of UART to enable (e,g, PERIPH_ID_UART1)
243  */
244 void clock_ll_start_uart(enum periph_id periph_id);
245
246 /**
247  * Decode a peripheral ID from a device tree node.
248  *
249  * This works by looking up the peripheral's 'clocks' node and reading out
250  * the second cell, which is the clock number / peripheral ID.
251  *
252  * @param blob          FDT blob to use
253  * @param node          Node to look at
254  * @return peripheral ID, or PERIPH_ID_NONE if none
255  */
256 enum periph_id clock_decode_periph_id(const void *blob, int node);
257
258 /**
259  * Checks if the oscillator bypass is enabled (XOBP bit)
260  *
261  * @return 1 if bypass is enabled, 0 if not
262  */
263 int clock_get_osc_bypass(void);
264
265 /*
266  * Checks that clocks are valid and prints a warning if not
267  *
268  * @return 0 if ok, -1 on error
269  */
270 int clock_verify(void);
271
272 /* Initialize the clocks */
273 void clock_init(void);
274
275 /* Initialize the PLLs */
276 void clock_early_init(void);
277
278 /* Returns a pointer to the clock source register for a peripheral */
279 u32 *get_periph_source_reg(enum periph_id periph_id);
280
281 /* Returns a pointer to the given 'simple' PLL */
282 struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid);
283
284 /**
285  * Given a peripheral ID and the required source clock, this returns which
286  * value should be programmed into the source mux for that peripheral.
287  *
288  * There is special code here to handle the one source type with 5 sources.
289  *
290  * @param periph_id     peripheral to start
291  * @param source        PLL id of required parent clock
292  * @param mux_bits      Set to number of bits in mux register: 2 or 4
293  * @param divider_bits  Set to number of divider bits (8 or 16)
294  * @return mux value (0-4, or -1 if not found)
295  */
296 int get_periph_clock_source(enum periph_id periph_id,
297                 enum clock_id parent, int *mux_bits, int *divider_bits);
298
299 /*
300  * Convert a device tree clock ID to our peripheral ID. They are mostly
301  * the same but we are very cautious so we check that a valid clock ID is
302  * provided.
303  *
304  * @param clk_id        Clock ID according to tegra30 device tree binding
305  * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
306  */
307 enum periph_id clk_id_to_periph_id(int clk_id);
308
309 /**
310  * Set the output frequency you want for each PLL clock.
311  * PLL output frequencies are programmed by setting their N, M and P values.
312  * The governing equations are:
313  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
314  *     where Fo is the output frequency from the PLL.
315  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
316  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
317  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
318  *
319  * @param n PLL feedback divider(DIVN)
320  * @param m PLL input divider(DIVN)
321  * @param p post divider(DIVP)
322  * @param cpcon base PLL charge pump(CPCON)
323  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
324  *              be overriden), 1 if PLL is already correct
325  */
326 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon);
327
328 /* return 1 if a peripheral ID is in range */
329 #define clock_type_id_isvalid(id) ((id) >= 0 && \
330                 (id) < CLOCK_TYPE_COUNT)
331
332 /* return 1 if a periphc_internal_id is in range */
333 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
334                 (id) < PERIPHC_COUNT)
335
336 /* SoC-specific TSC init */
337 void arch_timer_init(void);
338
339 void tegra30_set_up_pllp(void);
340
341 /* Number of PLL-based clocks (i.e. not OSC or 32KHz) */
342 #define CLOCK_ID_PLL_COUNT      (CLOCK_ID_COUNT - 2)
343
344 struct clk_pll_info {
345         u32     m_shift:5;      /* DIVM_SHIFT */
346         u32     n_shift:5;      /* DIVN_SHIFT */
347         u32     p_shift:5;      /* DIVP_SHIFT */
348         u32     kcp_shift:5;    /* KCP/cpcon SHIFT */
349         u32     kvco_shift:5;   /* KVCO/lfcon SHIFT */
350         u32     lock_ena:6;     /* LOCK_ENABLE/EN_LOCKDET shift */
351         u32     rsvd:1;
352         u32     m_mask:10;      /* DIVM_MASK */
353         u32     n_mask:12;      /* DIVN_MASK */
354         u32     p_mask:10;      /* DIVP_MASK or VCO_MASK */
355         u32     kcp_mask:10;    /* KCP/CPCON MASK */
356         u32     kvco_mask:10;   /* KVCO/LFCON MASK */
357         u32     lock_det:6;     /* LOCK_DETECT/LOCKED shift */
358         u32     rsvd2:6;
359 };
360 extern struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT];
361
362 /**
363  * Enable output clock for external peripherals
364  *
365  * @param clk_id        Clock ID to output (1, 2 or 3)
366  * @return 0 if OK. -ve on error
367  */
368 int clock_external_output(int clk_id);
369
370 #endif  /* _TEGRA_CLOCK_H_ */