]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/powerpc/cpu/mpc8xxx/ddr/lc_common_dimm_params.c
Merge 'u-boot-microblaze/zynq' into (u-boot-arm/master'
[karo-tx-uboot.git] / arch / powerpc / cpu / mpc8xxx / ddr / lc_common_dimm_params.c
1 /*
2  * Copyright 2008-2012 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * Version 2 as published by the Free Software Foundation.
7  */
8
9 #include <common.h>
10 #include <asm/fsl_ddr_sdram.h>
11
12 #include "ddr.h"
13
14 #if defined(CONFIG_FSL_DDR3)
15 static unsigned int
16 compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
17                          common_timing_params_t *outpdimm,
18                          unsigned int number_of_dimms)
19 {
20         unsigned int i;
21         unsigned int tAAmin_ps = 0;
22         unsigned int tCKmin_X_ps = 0;
23         unsigned int common_caslat;
24         unsigned int caslat_actual;
25         unsigned int retry = 16;
26         unsigned int tmp;
27         const unsigned int mclk_ps = get_memory_clk_period_ps();
28
29         /* compute the common CAS latency supported between slots */
30         tmp = dimm_params[0].caslat_X;
31         for (i = 1; i < number_of_dimms; i++) {
32                 if (dimm_params[i].n_ranks)
33                         tmp &= dimm_params[i].caslat_X;
34         }
35         common_caslat = tmp;
36
37         /* compute the max tAAmin tCKmin between slots */
38         for (i = 0; i < number_of_dimms; i++) {
39                 tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
40                 tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
41         }
42         /* validate if the memory clk is in the range of dimms */
43         if (mclk_ps < tCKmin_X_ps) {
44                 printf("DDR clock (MCLK cycle %u ps) is faster than "
45                         "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
46                         mclk_ps, tCKmin_X_ps);
47         }
48         /* determine the acutal cas latency */
49         caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
50         /* check if the dimms support the CAS latency */
51         while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
52                 caslat_actual++;
53                 retry--;
54         }
55         /* once the caculation of caslat_actual is completed
56          * we must verify that this CAS latency value does not
57          * exceed tAAmax, which is 20 ns for all DDR3 speed grades
58          */
59         if (caslat_actual * mclk_ps > 20000) {
60                 printf("The choosen cas latency %d is too large\n",
61                         caslat_actual);
62         }
63         outpdimm->lowest_common_SPD_caslat = caslat_actual;
64
65         return 0;
66 }
67 #endif
68
69 /*
70  * compute_lowest_common_dimm_parameters()
71  *
72  * Determine the worst-case DIMM timing parameters from the set of DIMMs
73  * whose parameters have been computed into the array pointed to
74  * by dimm_params.
75  */
76 unsigned int
77 compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
78                                       common_timing_params_t *outpdimm,
79                                       const unsigned int number_of_dimms)
80 {
81         unsigned int i, j;
82
83         unsigned int tCKmin_X_ps = 0;
84         unsigned int tCKmax_ps = 0xFFFFFFFF;
85         unsigned int tCKmax_max_ps = 0;
86         unsigned int tRCD_ps = 0;
87         unsigned int tRP_ps = 0;
88         unsigned int tRAS_ps = 0;
89         unsigned int tWR_ps = 0;
90         unsigned int tWTR_ps = 0;
91         unsigned int tRFC_ps = 0;
92         unsigned int tRRD_ps = 0;
93         unsigned int tRC_ps = 0;
94         unsigned int refresh_rate_ps = 0;
95         unsigned int tIS_ps = 0;
96         unsigned int tIH_ps = 0;
97         unsigned int tDS_ps = 0;
98         unsigned int tDH_ps = 0;
99         unsigned int tRTP_ps = 0;
100         unsigned int tDQSQ_max_ps = 0;
101         unsigned int tQHS_ps = 0;
102
103         unsigned int temp1, temp2;
104         unsigned int additive_latency = 0;
105 #if !defined(CONFIG_FSL_DDR3)
106         const unsigned int mclk_ps = get_memory_clk_period_ps();
107         unsigned int lowest_good_caslat;
108         unsigned int not_ok;
109
110         debug("using mclk_ps = %u\n", mclk_ps);
111 #endif
112
113         temp1 = 0;
114         for (i = 0; i < number_of_dimms; i++) {
115                 /*
116                  * If there are no ranks on this DIMM,
117                  * it probably doesn't exist, so skip it.
118                  */
119                 if (dimm_params[i].n_ranks == 0) {
120                         temp1++;
121                         continue;
122                 }
123                 if (dimm_params[i].n_ranks == 4 && i != 0) {
124                         printf("Found Quad-rank DIMM in wrong bank, ignored."
125                                 " Software may not run as expected.\n");
126                         temp1++;
127                         continue;
128                 }
129
130                 /*
131                  * check if quad-rank DIMM is plugged if
132                  * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
133                  * Only the board with proper design is capable
134                  */
135 #ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
136                 if (dimm_params[i].n_ranks == 4 && \
137                   CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
138                         printf("Found Quad-rank DIMM, not able to support.");
139                         temp1++;
140                         continue;
141                 }
142 #endif
143                 /*
144                  * Find minimum tCKmax_ps to find fastest slow speed,
145                  * i.e., this is the slowest the whole system can go.
146                  */
147                 tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
148
149                 /* Either find maximum value to determine slowest
150                  * speed, delay, time, period, etc */
151                 tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
152                 tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
153                 tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
154                 tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
155                 tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
156                 tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
157                 tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
158                 tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
159                 tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
160                 tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
161                 tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
162                 tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
163                 tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
164                 tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
165                 tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
166                 tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
167                 refresh_rate_ps = max(refresh_rate_ps,
168                                       dimm_params[i].refresh_rate_ps);
169
170                 /*
171                  * Find maximum tDQSQ_max_ps to find slowest.
172                  *
173                  * FIXME: is finding the slowest value the correct
174                  * strategy for this parameter?
175                  */
176                 tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
177         }
178
179         outpdimm->ndimms_present = number_of_dimms - temp1;
180
181         if (temp1 == number_of_dimms) {
182                 debug("no dimms this memory controller\n");
183                 return 0;
184         }
185
186         outpdimm->tCKmin_X_ps = tCKmin_X_ps;
187         outpdimm->tCKmax_ps = tCKmax_ps;
188         outpdimm->tCKmax_max_ps = tCKmax_max_ps;
189         outpdimm->tRCD_ps = tRCD_ps;
190         outpdimm->tRP_ps = tRP_ps;
191         outpdimm->tRAS_ps = tRAS_ps;
192         outpdimm->tWR_ps = tWR_ps;
193         outpdimm->tWTR_ps = tWTR_ps;
194         outpdimm->tRFC_ps = tRFC_ps;
195         outpdimm->tRRD_ps = tRRD_ps;
196         outpdimm->tRC_ps = tRC_ps;
197         outpdimm->refresh_rate_ps = refresh_rate_ps;
198         outpdimm->tIS_ps = tIS_ps;
199         outpdimm->tIH_ps = tIH_ps;
200         outpdimm->tDS_ps = tDS_ps;
201         outpdimm->tDH_ps = tDH_ps;
202         outpdimm->tRTP_ps = tRTP_ps;
203         outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
204         outpdimm->tQHS_ps = tQHS_ps;
205
206         /* Determine common burst length for all DIMMs. */
207         temp1 = 0xff;
208         for (i = 0; i < number_of_dimms; i++) {
209                 if (dimm_params[i].n_ranks) {
210                         temp1 &= dimm_params[i].burst_lengths_bitmask;
211                 }
212         }
213         outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
214
215         /* Determine if all DIMMs registered buffered. */
216         temp1 = temp2 = 0;
217         for (i = 0; i < number_of_dimms; i++) {
218                 if (dimm_params[i].n_ranks) {
219                         if (dimm_params[i].registered_dimm) {
220                                 temp1 = 1;
221 #ifndef CONFIG_SPL_BUILD
222                                 printf("Detected RDIMM %s\n",
223                                         dimm_params[i].mpart);
224 #endif
225                         } else {
226                                 temp2 = 1;
227 #ifndef CONFIG_SPL_BUILD
228                                 printf("Detected UDIMM %s\n",
229                                         dimm_params[i].mpart);
230 #endif
231                         }
232                 }
233         }
234
235         outpdimm->all_DIMMs_registered = 0;
236         outpdimm->all_DIMMs_unbuffered = 0;
237         if (temp1 && !temp2) {
238                 outpdimm->all_DIMMs_registered = 1;
239         } else if (!temp1 && temp2) {
240                 outpdimm->all_DIMMs_unbuffered = 1;
241         } else {
242                 printf("ERROR:  Mix of registered buffered and unbuffered "
243                                 "DIMMs detected!\n");
244         }
245
246         temp1 = 0;
247         if (outpdimm->all_DIMMs_registered)
248                 for (j = 0; j < 16; j++) {
249                         outpdimm->rcw[j] = dimm_params[0].rcw[j];
250                         for (i = 1; i < number_of_dimms; i++) {
251                                 if (!dimm_params[i].n_ranks)
252                                         continue;
253                                 if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
254                                         temp1 = 1;
255                                         break;
256                                 }
257                         }
258                 }
259
260         if (temp1 != 0)
261                 printf("ERROR: Mix different RDIMM detected!\n");
262
263 #if defined(CONFIG_FSL_DDR3)
264         if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
265                 return 1;
266 #else
267         /*
268          * Compute a CAS latency suitable for all DIMMs
269          *
270          * Strategy for SPD-defined latencies: compute only
271          * CAS latency defined by all DIMMs.
272          */
273
274         /*
275          * Step 1: find CAS latency common to all DIMMs using bitwise
276          * operation.
277          */
278         temp1 = 0xFF;
279         for (i = 0; i < number_of_dimms; i++) {
280                 if (dimm_params[i].n_ranks) {
281                         temp2 = 0;
282                         temp2 |= 1 << dimm_params[i].caslat_X;
283                         temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
284                         temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
285                         /*
286                          * FIXME: If there was no entry for X-2 (X-1) in
287                          * the SPD, then caslat_X_minus_2
288                          * (caslat_X_minus_1) contains either 255 or
289                          * 0xFFFFFFFF because that's what the glorious
290                          * __ilog2 function returns for an input of 0.
291                          * On 32-bit PowerPC, left shift counts with bit
292                          * 26 set (that the value of 255 or 0xFFFFFFFF
293                          * will have), cause the destination register to
294                          * be 0.  That is why this works.
295                          */
296                         temp1 &= temp2;
297                 }
298         }
299
300         /*
301          * Step 2: check each common CAS latency against tCK of each
302          * DIMM's SPD.
303          */
304         lowest_good_caslat = 0;
305         temp2 = 0;
306         while (temp1) {
307                 not_ok = 0;
308                 temp2 =  __ilog2(temp1);
309                 debug("checking common caslat = %u\n", temp2);
310
311                 /* Check if this CAS latency will work on all DIMMs at tCK. */
312                 for (i = 0; i < number_of_dimms; i++) {
313                         if (!dimm_params[i].n_ranks) {
314                                 continue;
315                         }
316                         if (dimm_params[i].caslat_X == temp2) {
317                                 if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
318                                         debug("CL = %u ok on DIMM %u at tCK=%u"
319                                             " ps with its tCKmin_X_ps of %u\n",
320                                                temp2, i, mclk_ps,
321                                                dimm_params[i].tCKmin_X_ps);
322                                         continue;
323                                 } else {
324                                         not_ok++;
325                                 }
326                         }
327
328                         if (dimm_params[i].caslat_X_minus_1 == temp2) {
329                                 unsigned int tCKmin_X_minus_1_ps
330                                         = dimm_params[i].tCKmin_X_minus_1_ps;
331                                 if (mclk_ps >= tCKmin_X_minus_1_ps) {
332                                         debug("CL = %u ok on DIMM %u at "
333                                                 "tCK=%u ps with its "
334                                                 "tCKmin_X_minus_1_ps of %u\n",
335                                                temp2, i, mclk_ps,
336                                                tCKmin_X_minus_1_ps);
337                                         continue;
338                                 } else {
339                                         not_ok++;
340                                 }
341                         }
342
343                         if (dimm_params[i].caslat_X_minus_2 == temp2) {
344                                 unsigned int tCKmin_X_minus_2_ps
345                                         = dimm_params[i].tCKmin_X_minus_2_ps;
346                                 if (mclk_ps >= tCKmin_X_minus_2_ps) {
347                                         debug("CL = %u ok on DIMM %u at "
348                                                 "tCK=%u ps with its "
349                                                 "tCKmin_X_minus_2_ps of %u\n",
350                                                temp2, i, mclk_ps,
351                                                tCKmin_X_minus_2_ps);
352                                         continue;
353                                 } else {
354                                         not_ok++;
355                                 }
356                         }
357                 }
358
359                 if (!not_ok) {
360                         lowest_good_caslat = temp2;
361                 }
362
363                 temp1 &= ~(1 << temp2);
364         }
365
366         debug("lowest common SPD-defined CAS latency = %u\n",
367                lowest_good_caslat);
368         outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
369
370
371         /*
372          * Compute a common 'de-rated' CAS latency.
373          *
374          * The strategy here is to find the *highest* dereated cas latency
375          * with the assumption that all of the DIMMs will support a dereated
376          * CAS latency higher than or equal to their lowest dereated value.
377          */
378         temp1 = 0;
379         for (i = 0; i < number_of_dimms; i++) {
380                 temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
381         }
382         outpdimm->highest_common_derated_caslat = temp1;
383         debug("highest common dereated CAS latency = %u\n", temp1);
384 #endif /* #if defined(CONFIG_FSL_DDR3) */
385
386         /* Determine if all DIMMs ECC capable. */
387         temp1 = 1;
388         for (i = 0; i < number_of_dimms; i++) {
389                 if (dimm_params[i].n_ranks &&
390                         !(dimm_params[i].edc_config & EDC_ECC)) {
391                         temp1 = 0;
392                         break;
393                 }
394         }
395         if (temp1) {
396                 debug("all DIMMs ECC capable\n");
397         } else {
398                 debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
399         }
400         outpdimm->all_DIMMs_ECC_capable = temp1;
401
402 #ifndef CONFIG_FSL_DDR3
403         /* FIXME: move to somewhere else to validate. */
404         if (mclk_ps > tCKmax_max_ps) {
405                 printf("Warning: some of the installed DIMMs "
406                                 "can not operate this slowly.\n");
407                 return 1;
408         }
409 #endif
410         /*
411          * Compute additive latency.
412          *
413          * For DDR1, additive latency should be 0.
414          *
415          * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
416          *      which comes from Trcd, and also note that:
417          *          add_lat + caslat must be >= 4
418          *
419          * For DDR3, we use the AL=0
420          *
421          * When to use additive latency for DDR2:
422          *
423          * I. Because you are using CL=3 and need to do ODT on writes and
424          *    want functionality.
425          *    1. Are you going to use ODT? (Does your board not have
426          *      additional termination circuitry for DQ, DQS, DQS_,
427          *      DM, RDQS, RDQS_ for x4/x8 configs?)
428          *    2. If so, is your lowest supported CL going to be 3?
429          *    3. If so, then you must set AL=1 because
430          *
431          *       WL >= 3 for ODT on writes
432          *       RL = AL + CL
433          *       WL = RL - 1
434          *       ->
435          *       WL = AL + CL - 1
436          *       AL + CL - 1 >= 3
437          *       AL + CL >= 4
438          *  QED
439          *
440          *  RL >= 3 for ODT on reads
441          *  RL = AL + CL
442          *
443          *  Since CL aren't usually less than 2, AL=0 is a minimum,
444          *  so the WL-derived AL should be the  -- FIXME?
445          *
446          * II. Because you are using auto-precharge globally and want to
447          *     use additive latency (posted CAS) to get more bandwidth.
448          *     1. Are you going to use auto-precharge mode globally?
449          *
450          *        Use addtivie latency and compute AL to be 1 cycle less than
451          *        tRCD, i.e. the READ or WRITE command is in the cycle
452          *        immediately following the ACTIVATE command..
453          *
454          * III. Because you feel like it or want to do some sort of
455          *      degraded-performance experiment.
456          *     1.  Do you just want to use additive latency because you feel
457          *         like it?
458          *
459          * Validation:  AL is less than tRCD, and within the other
460          * read-to-precharge constraints.
461          */
462
463         additive_latency = 0;
464
465 #if defined(CONFIG_FSL_DDR2)
466         if (lowest_good_caslat < 4) {
467                 additive_latency = (picos_to_mclk(tRCD_ps) > lowest_good_caslat)
468                         ? picos_to_mclk(tRCD_ps) - lowest_good_caslat : 0;
469                 if (mclk_to_picos(additive_latency) > tRCD_ps) {
470                         additive_latency = picos_to_mclk(tRCD_ps);
471                         debug("setting additive_latency to %u because it was "
472                                 " greater than tRCD_ps\n", additive_latency);
473                 }
474         }
475
476 #elif defined(CONFIG_FSL_DDR3)
477         /*
478          * The system will not use the global auto-precharge mode.
479          * However, it uses the page mode, so we set AL=0
480          */
481         additive_latency = 0;
482 #endif
483
484         /*
485          * Validate additive latency
486          * FIXME: move to somewhere else to validate
487          *
488          * AL <= tRCD(min)
489          */
490         if (mclk_to_picos(additive_latency) > tRCD_ps) {
491                 printf("Error: invalid additive latency exceeds tRCD(min).\n");
492                 return 1;
493         }
494
495         /*
496          * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
497          * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
498          * ADD_LAT (the register) must be set to a value less
499          * than ACTTORW if WL = 1, then AL must be set to 1
500          * RD_TO_PRE (the register) must be set to a minimum
501          * tRTP + AL if AL is nonzero
502          */
503
504         /*
505          * Additive latency will be applied only if the memctl option to
506          * use it.
507          */
508         outpdimm->additive_latency = additive_latency;
509
510         debug("tCKmin_ps = %u\n", outpdimm->tCKmin_X_ps);
511         debug("tRCD_ps   = %u\n", outpdimm->tRCD_ps);
512         debug("tRP_ps    = %u\n", outpdimm->tRP_ps);
513         debug("tRAS_ps   = %u\n", outpdimm->tRAS_ps);
514         debug("tWR_ps    = %u\n", outpdimm->tWR_ps);
515         debug("tWTR_ps   = %u\n", outpdimm->tWTR_ps);
516         debug("tRFC_ps   = %u\n", outpdimm->tRFC_ps);
517         debug("tRRD_ps   = %u\n", outpdimm->tRRD_ps);
518         debug("tRC_ps    = %u\n", outpdimm->tRC_ps);
519
520         return 0;
521 }