]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/mxc_nand.c
merged tx6dl-devel into denx master branch
[karo-tx-uboot.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
18  * MA 02110-1301, USA.
19  */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <linux/err.h>
24 #include <asm/io.h>
25 #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
26         defined(CONFIG_MX51) || defined(CONFIG_MX53)
27 #include <asm/arch/imx-regs.h>
28 #endif
29 #include "mxc_nand.h"
30
31 #define DRIVER_NAME "mxc_nand"
32
33 struct mxc_nand_host {
34         struct mtd_info                 mtd;
35         struct nand_chip                *nand;
36
37         struct mxc_nand_regs __iomem    *regs;
38 #ifdef MXC_NFC_V3_2
39         struct mxc_nand_ip_regs __iomem *ip_regs;
40 #endif
41         int                             spare_only;
42         int                             status_request;
43         int                             pagesize_2k;
44         int                             clk_act;
45         uint16_t                        col_addr;
46         unsigned int                    page_addr;
47 };
48
49 static struct mxc_nand_host mxc_host;
50 static struct mxc_nand_host *host = &mxc_host;
51
52 /* Define delays in microsec for NAND device operations */
53 #define TROP_US_DELAY   2000
54 /* Macros to get byte and bit positions of ECC */
55 #define COLPOS(x)  ((x) >> 3)
56 #define BITPOS(x) ((x) & 0xf)
57
58 /* Define single bit Error positions in Main & Spare area */
59 #define MAIN_SINGLEBIT_ERROR 0x4
60 #define SPARE_SINGLEBIT_ERROR 0x1
61
62 /* OOB placement block for use with hardware ecc generation */
63 #if defined(MXC_NFC_V1)
64 #ifndef CONFIG_SYS_NAND_LARGEPAGE
65 static struct nand_ecclayout nand_hw_eccoob = {
66         .eccbytes = 5,
67         .eccpos = {6, 7, 8, 9, 10},
68         .oobfree = { {0, 5}, {11, 5}, }
69 };
70 #else
71 static struct nand_ecclayout nand_hw_eccoob2k = {
72         .eccbytes = 20,
73         .eccpos = {
74                 6, 7, 8, 9, 10,
75                 22, 23, 24, 25, 26,
76                 38, 39, 40, 41, 42,
77                 54, 55, 56, 57, 58,
78         },
79         .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
80 };
81 #endif
82 #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
83 #ifndef CONFIG_SYS_NAND_LARGEPAGE
84 static struct nand_ecclayout nand_hw_eccoob = {
85         .eccbytes = 9,
86         .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
87         .oobfree = { {2, 5} }
88 };
89 #else
90 static struct nand_ecclayout nand_hw_eccoob2k = {
91         .eccbytes = 36,
92         .eccpos = {
93                 7, 8, 9, 10, 11, 12, 13, 14, 15,
94                 23, 24, 25, 26, 27, 28, 29, 30, 31,
95                 39, 40, 41, 42, 43, 44, 45, 46, 47,
96                 55, 56, 57, 58, 59, 60, 61, 62, 63,
97         },
98         .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
99 };
100 #endif
101 #endif
102
103 static int is_16bit_nand(void)
104 {
105 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
106         return 1;
107 #else
108         return 0;
109 #endif
110 }
111
112 static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
113 {
114         uint32_t *d = dest;
115
116         size >>= 2;
117         while (size--)
118                 __raw_writel(__raw_readl(source++), d++);
119         return dest;
120 }
121
122 /*
123  * This function polls the NANDFC to wait for the basic operation to
124  * complete by checking the INT bit.
125  */
126 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
127                                 uint16_t param)
128 {
129         uint32_t tmp;
130
131         while (max_retries-- > 0) {
132 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
133                 tmp = readnfc(&host->regs->config2);
134                 if (tmp & NFC_V1_V2_CONFIG2_INT) {
135                         tmp &= ~NFC_V1_V2_CONFIG2_INT;
136                         writenfc(tmp, &host->regs->config2);
137 #elif defined(MXC_NFC_V3_2)
138                 tmp = readnfc(&host->ip_regs->ipc);
139                 if (tmp & NFC_V3_IPC_INT) {
140                         tmp &= ~NFC_V3_IPC_INT;
141                         writenfc(tmp, &host->ip_regs->ipc);
142 #endif
143                         break;
144                 }
145                 udelay(1);
146         }
147         if (max_retries < 0) {
148                 MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
149                                 __func__, param);
150         }
151 }
152
153 /*
154  * This function issues the specified command to the NAND device and
155  * waits for completion.
156  */
157 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
158 {
159         MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
160
161         writenfc(cmd, &host->regs->flash_cmd);
162         writenfc(NFC_CMD, &host->regs->operation);
163
164         /* Wait for operation to complete */
165         wait_op_done(host, TROP_US_DELAY, cmd);
166 }
167
168 /*
169  * This function sends an address (or partial address) to the
170  * NAND device. The address is used to select the source/destination for
171  * a NAND command.
172  */
173 static void send_addr(struct mxc_nand_host *host, uint16_t addr)
174 {
175         MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
176
177         writenfc(addr, &host->regs->flash_addr);
178         writenfc(NFC_ADDR, &host->regs->operation);
179
180         /* Wait for operation to complete */
181         wait_op_done(host, TROP_US_DELAY, addr);
182 }
183
184 /*
185  * This function requests the NANDFC to initiate the transfer
186  * of data currently in the NANDFC RAM buffer to the NAND device.
187  */
188 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
189                         int spare_only)
190 {
191         if (spare_only)
192                 MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only);
193
194         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
195                 int i;
196                 /*
197                  *  The controller copies the 64 bytes of spare data from
198                  *  the first 16 bytes of each of the 4 64 byte spare buffers.
199                  *  Copy the contiguous data starting in spare_area[0] to
200                  *  the four spare area buffers.
201                  */
202                 for (i = 1; i < 4; i++) {
203                         void __iomem *src = &host->regs->spare_area[0][i * 16];
204                         void __iomem *dst = &host->regs->spare_area[i][0];
205
206                         mxc_nand_memcpy32(dst, src, 16);
207                 }
208         }
209
210 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
211         writenfc(buf_id, &host->regs->buf_addr);
212 #elif defined(MXC_NFC_V3_2)
213         uint32_t tmp = readnfc(&host->regs->config1);
214         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
215         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
216         writenfc(tmp, &host->regs->config1);
217 #endif
218
219         /* Configure spare or page+spare access */
220         if (!host->pagesize_2k) {
221                 uint32_t config1 = readnfc(&host->regs->config1);
222                 if (spare_only)
223                         config1 |= NFC_CONFIG1_SP_EN;
224                 else
225                         config1 &= ~NFC_CONFIG1_SP_EN;
226                 writenfc(config1, &host->regs->config1);
227         }
228
229         writenfc(NFC_INPUT, &host->regs->operation);
230
231         /* Wait for operation to complete */
232         wait_op_done(host, TROP_US_DELAY, spare_only);
233 }
234
235 /*
236  * Requests NANDFC to initiate the transfer of data from the
237  * NAND device into in the NANDFC ram buffer.
238  */
239 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
240                 int spare_only)
241 {
242         MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
243
244 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
245         writenfc(buf_id, &host->regs->buf_addr);
246 #elif defined(MXC_NFC_V3_2)
247         uint32_t tmp = readnfc(&host->regs->config1);
248         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
249         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
250         writenfc(tmp, &host->regs->config1);
251 #endif
252
253         /* Configure spare or page+spare access */
254         if (!host->pagesize_2k) {
255                 uint32_t config1 = readnfc(&host->regs->config1);
256                 if (spare_only)
257                         config1 |= NFC_CONFIG1_SP_EN;
258                 else
259                         config1 &= ~NFC_CONFIG1_SP_EN;
260                 writenfc(config1, &host->regs->config1);
261         }
262
263         writenfc(NFC_OUTPUT, &host->regs->operation);
264
265         /* Wait for operation to complete */
266         wait_op_done(host, TROP_US_DELAY, spare_only);
267
268         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
269                 int i;
270
271                 /*
272                  *  The controller copies the 64 bytes of spare data to
273                  *  the first 16 bytes of each of the 4 spare buffers.
274                  *  Make the data contiguous starting in spare_area[0].
275                  */
276                 for (i = 1; i < 4; i++) {
277                         void __iomem *src = &host->regs->spare_area[i][0];
278                         void __iomem *dst = &host->regs->spare_area[0][i * 16];
279
280                         mxc_nand_memcpy32(dst, src, 16);
281                 }
282         }
283 }
284
285 /* Request the NANDFC to perform a read of the NAND device ID. */
286 static void send_read_id(struct mxc_nand_host *host)
287 {
288         uint32_t tmp;
289
290 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
291         /* NANDFC buffer 0 is used for device ID output */
292         writenfc(0x0, &host->regs->buf_addr);
293 #elif defined(MXC_NFC_V3_2)
294         tmp = readnfc(&host->regs->config1);
295         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
296         writenfc(tmp, &host->regs->config1);
297 #endif
298
299         /* Read ID into main buffer */
300         tmp = readnfc(&host->regs->config1);
301         tmp &= ~NFC_CONFIG1_SP_EN;
302         writenfc(tmp, &host->regs->config1);
303
304         writenfc(NFC_ID, &host->regs->operation);
305
306         /* Wait for operation to complete */
307         wait_op_done(host, TROP_US_DELAY, 0);
308 }
309
310 /*
311  * This function requests the NANDFC to perform a read of the
312  * NAND device status and returns the current status.
313  */
314 static uint16_t get_dev_status(struct mxc_nand_host *host)
315 {
316 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
317         void __iomem *main_buf = host->regs->main_area[1];
318         uint32_t store;
319 #endif
320         uint32_t ret, tmp;
321         /* Issue status request to NAND device */
322
323 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
324         /* store the main area1 first word, later do recovery */
325         store = readl(main_buf);
326         /* NANDFC buffer 1 is used for device status */
327         writenfc(1, &host->regs->buf_addr);
328 #endif
329
330         /* Read status into main buffer */
331         tmp = readnfc(&host->regs->config1);
332         tmp &= ~NFC_CONFIG1_SP_EN;
333         writenfc(tmp, &host->regs->config1);
334
335         writenfc(NFC_STATUS, &host->regs->operation);
336
337         /* Wait for operation to complete */
338         wait_op_done(host, TROP_US_DELAY, 0);
339
340 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
341         /*
342          *  Status is placed in first word of main buffer
343          * get status, then recovery area 1 data
344          */
345         ret = readw(main_buf);
346         writel(store, main_buf);
347 #elif defined(MXC_NFC_V3_2)
348         ret = readnfc(&host->regs->config1) >> 16;
349 #endif
350
351         return ret;
352 }
353
354 /* This function is used by upper layer to checks if device is ready */
355 static int mxc_nand_dev_ready(struct mtd_info *mtd)
356 {
357         /*
358          * NFC handles R/B internally. Therefore, this function
359          * always returns status as ready.
360          */
361         return 1;
362 }
363
364 static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
365 {
366         struct nand_chip *nand_chip = mtd->priv;
367         struct mxc_nand_host *host = nand_chip->priv;
368 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
369         uint16_t tmp = readnfc(&host->regs->config1);
370
371         if (on)
372                 tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
373         else
374                 tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
375         writenfc(tmp, &host->regs->config1);
376 #elif defined(MXC_NFC_V3_2)
377         uint32_t tmp = readnfc(&host->ip_regs->config2);
378
379         if (on)
380                 tmp |= NFC_V3_CONFIG2_ECC_EN;
381         else
382                 tmp &= ~NFC_V3_CONFIG2_ECC_EN;
383         writenfc(tmp, &host->ip_regs->config2);
384 #endif
385 }
386
387 #ifdef CONFIG_MXC_NAND_HWECC
388 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
389 {
390         /*
391          * If HW ECC is enabled, we turn it on during init. There is
392          * no need to enable again here.
393          */
394 }
395
396 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
397 static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
398                                       struct nand_chip *chip,
399                                       int page)
400 {
401         struct mxc_nand_host *host = chip->priv;
402         uint8_t *buf = chip->oob_poi;
403         int length = mtd->oobsize;
404         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
405         uint8_t *bufpoi = buf;
406         int i, toread;
407
408         MTDDEBUG(MTD_DEBUG_LEVEL0,
409                         "%s: Reading OOB area of page %u to oob %p\n",
410                          __func__, page, buf);
411
412         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
413         for (i = 0; i < chip->ecc.steps; i++) {
414                 toread = min_t(int, length, chip->ecc.prepad);
415                 if (toread) {
416                         chip->read_buf(mtd, bufpoi, toread);
417                         bufpoi += toread;
418                         length -= toread;
419                 }
420                 bufpoi += chip->ecc.bytes;
421                 host->col_addr += chip->ecc.bytes;
422                 length -= chip->ecc.bytes;
423
424                 toread = min_t(int, length, chip->ecc.postpad);
425                 if (toread) {
426                         chip->read_buf(mtd, bufpoi, toread);
427                         bufpoi += toread;
428                         length -= toread;
429                 }
430         }
431         if (length > 0)
432                 chip->read_buf(mtd, bufpoi, length);
433
434         _mxc_nand_enable_hwecc(mtd, 0);
435         chip->cmdfunc(mtd, NAND_CMD_READOOB,
436                         mtd->writesize + chip->ecc.prepad, page);
437         bufpoi = buf + chip->ecc.prepad;
438         length = mtd->oobsize - chip->ecc.prepad;
439         for (i = 0; i < chip->ecc.steps; i++) {
440                 toread = min_t(int, length, chip->ecc.bytes);
441                 chip->read_buf(mtd, bufpoi, toread);
442                 bufpoi += eccpitch;
443                 length -= eccpitch;
444                 host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
445         }
446         _mxc_nand_enable_hwecc(mtd, 1);
447         return 1;
448 }
449
450 static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
451                                            struct nand_chip *chip,
452                                            uint8_t *buf,
453                                            int oob_required,
454                                            int page)
455 {
456         struct mxc_nand_host *host = chip->priv;
457         int eccsize = chip->ecc.size;
458         int eccbytes = chip->ecc.bytes;
459         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
460         uint8_t *oob = chip->oob_poi;
461         int steps, size;
462         int n;
463
464         _mxc_nand_enable_hwecc(mtd, 0);
465         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
466
467         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
468                 host->col_addr = n * eccsize;
469                 chip->read_buf(mtd, buf, eccsize);
470                 buf += eccsize;
471
472                 host->col_addr = mtd->writesize + n * eccpitch;
473                 if (chip->ecc.prepad) {
474                         chip->read_buf(mtd, oob, chip->ecc.prepad);
475                         oob += chip->ecc.prepad;
476                 }
477
478                 chip->read_buf(mtd, oob, eccbytes);
479                 oob += eccbytes;
480
481                 if (chip->ecc.postpad) {
482                         chip->read_buf(mtd, oob, chip->ecc.postpad);
483                         oob += chip->ecc.postpad;
484                 }
485         }
486
487         size = mtd->oobsize - (oob - chip->oob_poi);
488         if (size)
489                 chip->read_buf(mtd, oob, size);
490         _mxc_nand_enable_hwecc(mtd, 1);
491
492         return 0;
493 }
494
495 static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
496                                        struct nand_chip *chip,
497                                        uint8_t *buf,
498                                        int oob_required,
499                                        int page)
500 {
501         struct mxc_nand_host *host = chip->priv;
502         int n, eccsize = chip->ecc.size;
503         int eccbytes = chip->ecc.bytes;
504         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
505         int eccsteps = chip->ecc.steps;
506         uint8_t *p = buf;
507         uint8_t *oob = chip->oob_poi;
508
509         MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n",
510               page, buf, oob);
511
512         /* first read the data area and the available portion of OOB */
513         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
514                 int stat;
515
516                 host->col_addr = n * eccsize;
517
518                 chip->read_buf(mtd, p, eccsize);
519
520                 host->col_addr = mtd->writesize + n * eccpitch;
521
522                 if (chip->ecc.prepad) {
523                         chip->read_buf(mtd, oob, chip->ecc.prepad);
524                         oob += chip->ecc.prepad;
525                 }
526
527                 stat = chip->ecc.correct(mtd, p, oob, NULL);
528
529                 if (stat < 0)
530                         mtd->ecc_stats.failed++;
531                 else
532                         mtd->ecc_stats.corrected += stat;
533                 oob += eccbytes;
534
535                 if (chip->ecc.postpad) {
536                         chip->read_buf(mtd, oob, chip->ecc.postpad);
537                         oob += chip->ecc.postpad;
538                 }
539         }
540
541         /* Calculate remaining oob bytes */
542         n = mtd->oobsize - (oob - chip->oob_poi);
543         if (n)
544                 chip->read_buf(mtd, oob, n);
545
546         /* Then switch ECC off and read the OOB area to get the ECC code */
547         _mxc_nand_enable_hwecc(mtd, 0);
548         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
549         eccsteps = chip->ecc.steps;
550         oob = chip->oob_poi + chip->ecc.prepad;
551         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
552                 host->col_addr = mtd->writesize +
553                                  n * eccpitch +
554                                  chip->ecc.prepad;
555                 chip->read_buf(mtd, oob, eccbytes);
556                 oob += eccbytes + chip->ecc.postpad;
557         }
558         _mxc_nand_enable_hwecc(mtd, 1);
559         return 0;
560 }
561
562 static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
563                                        struct nand_chip *chip, int page)
564 {
565         struct mxc_nand_host *host = chip->priv;
566         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
567         int length = mtd->oobsize;
568         int i, len, status, steps = chip->ecc.steps;
569         const uint8_t *bufpoi = chip->oob_poi;
570
571         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
572         for (i = 0; i < steps; i++) {
573                 len = min_t(int, length, eccpitch);
574
575                 chip->write_buf(mtd, bufpoi, len);
576                 bufpoi += len;
577                 length -= len;
578                 host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
579         }
580         if (length > 0)
581                 chip->write_buf(mtd, bufpoi, length);
582
583         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
584         status = chip->waitfunc(mtd, chip);
585         return status & NAND_STATUS_FAIL ? -EIO : 0;
586 }
587
588 static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
589                                              struct nand_chip *chip,
590                                              const uint8_t *buf,
591                                              int oob_required)
592 {
593         struct mxc_nand_host *host = chip->priv;
594         int eccsize = chip->ecc.size;
595         int eccbytes = chip->ecc.bytes;
596         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
597         uint8_t *oob = chip->oob_poi;
598         int steps, size;
599         int n;
600
601         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
602                 host->col_addr = n * eccsize;
603                 chip->write_buf(mtd, buf, eccsize);
604                 buf += eccsize;
605
606                 host->col_addr = mtd->writesize + n * eccpitch;
607
608                 if (chip->ecc.prepad) {
609                         chip->write_buf(mtd, oob, chip->ecc.prepad);
610                         oob += chip->ecc.prepad;
611                 }
612
613                 host->col_addr += eccbytes;
614                 oob += eccbytes;
615
616                 if (chip->ecc.postpad) {
617                         chip->write_buf(mtd, oob, chip->ecc.postpad);
618                         oob += chip->ecc.postpad;
619                 }
620         }
621
622         size = mtd->oobsize - (oob - chip->oob_poi);
623         if (size)
624                 chip->write_buf(mtd, oob, size);
625         return 0;
626 }
627
628 static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
629                                          struct nand_chip *chip,
630                                          const uint8_t *buf,
631                                          int oob_required)
632 {
633         struct mxc_nand_host *host = chip->priv;
634         int i, n, eccsize = chip->ecc.size;
635         int eccbytes = chip->ecc.bytes;
636         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
637         int eccsteps = chip->ecc.steps;
638         const uint8_t *p = buf;
639         uint8_t *oob = chip->oob_poi;
640
641         chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
642
643         for (i = n = 0;
644              eccsteps;
645              n++, eccsteps--, i += eccbytes, p += eccsize) {
646                 host->col_addr = n * eccsize;
647
648                 chip->write_buf(mtd, p, eccsize);
649
650                 host->col_addr = mtd->writesize + n * eccpitch;
651
652                 if (chip->ecc.prepad) {
653                         chip->write_buf(mtd, oob, chip->ecc.prepad);
654                         oob += chip->ecc.prepad;
655                 }
656
657                 chip->write_buf(mtd, oob, eccbytes);
658                 oob += eccbytes;
659
660                 if (chip->ecc.postpad) {
661                         chip->write_buf(mtd, oob, chip->ecc.postpad);
662                         oob += chip->ecc.postpad;
663                 }
664         }
665
666         /* Calculate remaining oob bytes */
667         i = mtd->oobsize - (oob - chip->oob_poi);
668         if (i)
669                 chip->write_buf(mtd, oob, i);
670         return 0;
671 }
672
673 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
674                                  u_char *read_ecc, u_char *calc_ecc)
675 {
676         struct nand_chip *nand_chip = mtd->priv;
677         struct mxc_nand_host *host = nand_chip->priv;
678         uint32_t ecc_status = readl(&host->regs->ecc_status_result);
679         int subpages = mtd->writesize / nand_chip->subpagesize;
680         int pg2blk_shift = nand_chip->phys_erase_shift -
681                            nand_chip->page_shift;
682
683         do {
684                 if ((ecc_status & 0xf) > 4) {
685                         static int last_bad = -1;
686
687                         if (last_bad != host->page_addr >> pg2blk_shift) {
688                                 last_bad = host->page_addr >> pg2blk_shift;
689                                 printk(KERN_DEBUG
690                                        "MXC_NAND: HWECC uncorrectable ECC error"
691                                        " in block %u page %u subpage %d\n",
692                                        last_bad, host->page_addr,
693                                        mtd->writesize / nand_chip->subpagesize
694                                             - subpages);
695                         }
696                         return -1;
697                 }
698                 ecc_status >>= 4;
699                 subpages--;
700         } while (subpages > 0);
701
702         return 0;
703 }
704 #else
705 #define mxc_nand_read_page_syndrome NULL
706 #define mxc_nand_read_page_raw_syndrome NULL
707 #define mxc_nand_read_oob_syndrome NULL
708 #define mxc_nand_write_page_syndrome NULL
709 #define mxc_nand_write_page_raw_syndrome NULL
710 #define mxc_nand_write_oob_syndrome NULL
711
712 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
713                                  u_char *read_ecc, u_char *calc_ecc)
714 {
715         struct nand_chip *nand_chip = mtd->priv;
716         struct mxc_nand_host *host = nand_chip->priv;
717
718         /*
719          * 1-Bit errors are automatically corrected in HW.  No need for
720          * additional correction.  2-Bit errors cannot be corrected by
721          * HW ECC, so we need to return failure
722          */
723         uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
724
725         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
726                 MTDDEBUG(MTD_DEBUG_LEVEL0,
727                       "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
728                 return -1;
729         }
730
731         return 0;
732 }
733 #endif
734
735 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
736                                   u_char *ecc_code)
737 {
738         return 0;
739 }
740 #endif
741
742 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
743 {
744         struct nand_chip *nand_chip = mtd->priv;
745         struct mxc_nand_host *host = nand_chip->priv;
746         uint8_t ret = 0;
747         uint16_t col;
748         uint16_t __iomem *main_buf =
749                 (uint16_t __iomem *)host->regs->main_area[0];
750         uint16_t __iomem *spare_buf =
751                 (uint16_t __iomem *)host->regs->spare_area[0];
752         union {
753                 uint16_t word;
754                 uint8_t bytes[2];
755         } nfc_word;
756
757         /* Check for status request */
758         if (host->status_request)
759                 return get_dev_status(host) & 0xFF;
760
761         /* Get column for 16-bit access */
762         col = host->col_addr >> 1;
763
764         /* If we are accessing the spare region */
765         if (host->spare_only)
766                 nfc_word.word = readw(&spare_buf[col]);
767         else
768                 nfc_word.word = readw(&main_buf[col]);
769
770         /* Pick upper/lower byte of word from RAM buffer */
771         ret = nfc_word.bytes[host->col_addr & 0x1];
772
773         /* Update saved column address */
774         if (nand_chip->options & NAND_BUSWIDTH_16)
775                 host->col_addr += 2;
776         else
777                 host->col_addr++;
778
779         return ret;
780 }
781
782 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
783 {
784         struct nand_chip *nand_chip = mtd->priv;
785         struct mxc_nand_host *host = nand_chip->priv;
786         uint16_t col, ret;
787         uint16_t __iomem *p;
788
789         MTDDEBUG(MTD_DEBUG_LEVEL3,
790               "mxc_nand_read_word(col = %d)\n", host->col_addr);
791
792         col = host->col_addr;
793         /* Adjust saved column address */
794         if (col < mtd->writesize && host->spare_only)
795                 col += mtd->writesize;
796
797         if (col < mtd->writesize) {
798                 p = (uint16_t __iomem *)(host->regs->main_area[0] +
799                                 (col >> 1));
800         } else {
801                 p = (uint16_t __iomem *)(host->regs->spare_area[0] +
802                                 ((col - mtd->writesize) >> 1));
803         }
804
805         if (col & 1) {
806                 union {
807                         uint16_t word;
808                         uint8_t bytes[2];
809                 } nfc_word[3];
810
811                 nfc_word[0].word = readw(p);
812                 nfc_word[1].word = readw(p + 1);
813
814                 nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
815                 nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
816
817                 ret = nfc_word[2].word;
818         } else {
819                 ret = readw(p);
820         }
821
822         /* Update saved column address */
823         host->col_addr = col + 2;
824
825         return ret;
826 }
827
828 /*
829  * Write data of length len to buffer buf. The data to be
830  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
831  * Operation by the NFC, the data is written to NAND Flash
832  */
833 static void mxc_nand_write_buf(struct mtd_info *mtd,
834                                 const u_char *buf, int len)
835 {
836         struct nand_chip *nand_chip = mtd->priv;
837         struct mxc_nand_host *host = nand_chip->priv;
838         int n, col, i = 0;
839
840         MTDDEBUG(MTD_DEBUG_LEVEL3,
841               "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
842               len);
843
844         col = host->col_addr;
845
846         /* Adjust saved column address */
847         if (col < mtd->writesize && host->spare_only)
848                 col += mtd->writesize;
849
850         n = mtd->writesize + mtd->oobsize - col;
851         n = min(len, n);
852
853         MTDDEBUG(MTD_DEBUG_LEVEL3,
854               "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
855
856         while (n > 0) {
857                 void __iomem *p;
858
859                 if (col < mtd->writesize) {
860                         p = host->regs->main_area[0] + (col & ~3);
861                 } else {
862                         p = host->regs->spare_area[0] -
863                                                 mtd->writesize + (col & ~3);
864                 }
865
866                 MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
867                       __LINE__, p);
868
869                 if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
870                         union {
871                                 uint32_t word;
872                                 uint8_t bytes[4];
873                         } nfc_word;
874
875                         nfc_word.word = readl(p);
876                         nfc_word.bytes[col & 3] = buf[i++];
877                         n--;
878                         col++;
879
880                         writel(nfc_word.word, p);
881                 } else {
882                         int m = mtd->writesize - col;
883
884                         if (col >= mtd->writesize)
885                                 m += mtd->oobsize;
886
887                         m = min(n, m) & ~3;
888
889                         MTDDEBUG(MTD_DEBUG_LEVEL3,
890                               "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
891                               __func__,  __LINE__, n, m, i, col);
892
893                         mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
894                         col += m;
895                         i += m;
896                         n -= m;
897                 }
898         }
899         /* Update saved column address */
900         host->col_addr = col;
901 }
902
903 /*
904  * Read the data buffer from the NAND Flash. To read the data from NAND
905  * Flash first the data output cycle is initiated by the NFC, which copies
906  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
907  */
908 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
909 {
910         struct nand_chip *nand_chip = mtd->priv;
911         struct mxc_nand_host *host = nand_chip->priv;
912         int n, col, i = 0;
913
914         MTDDEBUG(MTD_DEBUG_LEVEL3,
915               "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
916
917         col = host->col_addr;
918
919         /* Adjust saved column address */
920         if (col < mtd->writesize && host->spare_only)
921                 col += mtd->writesize;
922
923         n = mtd->writesize + mtd->oobsize - col;
924         n = min(len, n);
925
926         while (n > 0) {
927                 void __iomem *p;
928
929                 if (col < mtd->writesize) {
930                         p = host->regs->main_area[0] + (col & ~3);
931                 } else {
932                         p = host->regs->spare_area[0] -
933                                         mtd->writesize + (col & ~3);
934                 }
935
936                 if (((col | (int)&buf[i]) & 3) || n < 4) {
937                         union {
938                                 uint32_t word;
939                                 uint8_t bytes[4];
940                         } nfc_word;
941
942                         nfc_word.word = readl(p);
943                         buf[i++] = nfc_word.bytes[col & 3];
944                         n--;
945                         col++;
946                 } else {
947                         int m = mtd->writesize - col;
948
949                         if (col >= mtd->writesize)
950                                 m += mtd->oobsize;
951
952                         m = min(n, m) & ~3;
953                         mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
954
955                         col += m;
956                         i += m;
957                         n -= m;
958                 }
959         }
960         /* Update saved column address */
961         host->col_addr = col;
962 }
963
964 /*
965  * Used by the upper layer to verify the data in NAND Flash
966  * with the data in the buf.
967  */
968 static int mxc_nand_verify_buf(struct mtd_info *mtd,
969                                 const u_char *buf, int len)
970 {
971         u_char tmp[256];
972         uint bsize;
973
974         while (len) {
975                 bsize = min(len, 256);
976                 mxc_nand_read_buf(mtd, tmp, bsize);
977
978                 if (memcmp(buf, tmp, bsize))
979                         return 1;
980
981                 buf += bsize;
982                 len -= bsize;
983         }
984
985         return 0;
986 }
987
988 /*
989  * This function is used by upper layer for select and
990  * deselect of the NAND chip
991  */
992 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
993 {
994         struct nand_chip *nand_chip = mtd->priv;
995         struct mxc_nand_host *host = nand_chip->priv;
996
997         switch (chip) {
998         case -1:
999                 /* TODO: Disable the NFC clock */
1000                 if (host->clk_act)
1001                         host->clk_act = 0;
1002                 break;
1003         case 0:
1004                 /* TODO: Enable the NFC clock */
1005                 if (!host->clk_act)
1006                         host->clk_act = 1;
1007                 break;
1008
1009         default:
1010                 break;
1011         }
1012 }
1013
1014 /*
1015  * Used by the upper layer to write command to NAND Flash for
1016  * different operations to be carried out on NAND Flash
1017  */
1018 void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1019                                 int column, int page_addr)
1020 {
1021         struct nand_chip *nand_chip = mtd->priv;
1022         struct mxc_nand_host *host = nand_chip->priv;
1023
1024         MTDDEBUG(MTD_DEBUG_LEVEL3,
1025               "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1026               command, column, page_addr);
1027
1028         /* Reset command state information */
1029         host->status_request = false;
1030
1031         /* Command pre-processing step */
1032         switch (command) {
1033
1034         case NAND_CMD_STATUS:
1035                 host->col_addr = 0;
1036                 host->status_request = true;
1037                 break;
1038
1039         case NAND_CMD_READ0:
1040                 host->page_addr = page_addr;
1041                 host->col_addr = column;
1042                 host->spare_only = false;
1043                 break;
1044
1045         case NAND_CMD_READOOB:
1046                 host->col_addr = column;
1047                 host->spare_only = true;
1048                 if (host->pagesize_2k)
1049                         command = NAND_CMD_READ0; /* only READ0 is valid */
1050                 break;
1051
1052         case NAND_CMD_SEQIN:
1053                 if (column >= mtd->writesize) {
1054                         /*
1055                          * before sending SEQIN command for partial write,
1056                          * we need read one page out. FSL NFC does not support
1057                          * partial write. It always sends out 512+ecc+512+ecc
1058                          * for large page nand flash. But for small page nand
1059                          * flash, it does support SPARE ONLY operation.
1060                          */
1061                         if (host->pagesize_2k) {
1062                                 /* call ourself to read a page */
1063                                 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
1064                                                 page_addr);
1065                         }
1066
1067                         host->col_addr = column - mtd->writesize;
1068                         host->spare_only = true;
1069
1070                         /* Set program pointer to spare region */
1071                         if (!host->pagesize_2k)
1072                                 send_cmd(host, NAND_CMD_READOOB);
1073                 } else {
1074                         host->spare_only = false;
1075                         host->col_addr = column;
1076
1077                         /* Set program pointer to page start */
1078                         if (!host->pagesize_2k)
1079                                 send_cmd(host, NAND_CMD_READ0);
1080                 }
1081                 break;
1082
1083         case NAND_CMD_PAGEPROG:
1084                 send_prog_page(host, 0, host->spare_only);
1085
1086                 if (host->pagesize_2k && is_mxc_nfc_1()) {
1087                         /* data in 4 areas */
1088                         send_prog_page(host, 1, host->spare_only);
1089                         send_prog_page(host, 2, host->spare_only);
1090                         send_prog_page(host, 3, host->spare_only);
1091                 }
1092
1093                 break;
1094         }
1095
1096         /* Write out the command to the device. */
1097         send_cmd(host, command);
1098
1099         /* Write out column address, if necessary */
1100         if (column != -1) {
1101                 /*
1102                  * MXC NANDFC can only perform full page+spare or
1103                  * spare-only read/write. When the upper layers perform
1104                  * a read/write buffer operation, we will use the saved
1105                  * column address to index into the full page.
1106                  */
1107                 send_addr(host, 0);
1108                 if (host->pagesize_2k)
1109                         /* another col addr cycle for 2k page */
1110                         send_addr(host, 0);
1111         }
1112
1113         /* Write out page address, if necessary */
1114         if (page_addr != -1) {
1115                 u32 page_mask = nand_chip->pagemask;
1116                 do {
1117                         send_addr(host, page_addr & 0xFF);
1118                         page_addr >>= 8;
1119                         page_mask >>= 8;
1120                 } while (page_mask);
1121         }
1122
1123         /* Command post-processing step */
1124         switch (command) {
1125
1126         case NAND_CMD_RESET:
1127                 break;
1128
1129         case NAND_CMD_READOOB:
1130         case NAND_CMD_READ0:
1131                 if (host->pagesize_2k) {
1132                         /* send read confirm command */
1133                         send_cmd(host, NAND_CMD_READSTART);
1134                         /* read for each AREA */
1135                         send_read_page(host, 0, host->spare_only);
1136                         if (is_mxc_nfc_1()) {
1137                                 send_read_page(host, 1, host->spare_only);
1138                                 send_read_page(host, 2, host->spare_only);
1139                                 send_read_page(host, 3, host->spare_only);
1140                         }
1141                 } else {
1142                         send_read_page(host, 0, host->spare_only);
1143                 }
1144                 break;
1145
1146         case NAND_CMD_READID:
1147                 host->col_addr = 0;
1148                 send_read_id(host);
1149                 break;
1150
1151         case NAND_CMD_PAGEPROG:
1152                 break;
1153
1154         case NAND_CMD_STATUS:
1155                 break;
1156
1157         case NAND_CMD_ERASE2:
1158                 break;
1159         }
1160 }
1161
1162 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1163
1164 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
1165 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
1166
1167 static struct nand_bbt_descr bbt_main_descr = {
1168         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1169                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1170         .offs = 0,
1171         .len = 4,
1172         .veroffs = 4,
1173         .maxblocks = 4,
1174         .pattern = bbt_pattern,
1175 };
1176
1177 static struct nand_bbt_descr bbt_mirror_descr = {
1178         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1179                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1180         .offs = 0,
1181         .len = 4,
1182         .veroffs = 4,
1183         .maxblocks = 4,
1184         .pattern = mirror_pattern,
1185 };
1186
1187 #endif
1188
1189 int board_nand_init(struct nand_chip *this)
1190 {
1191         struct mtd_info *mtd;
1192 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
1193         uint32_t tmp;
1194 #endif
1195
1196 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1197         this->bbt_options |= NAND_BBT_USE_FLASH;
1198         this->bbt_td = &bbt_main_descr;
1199         this->bbt_md = &bbt_mirror_descr;
1200 #endif
1201
1202         /* structures must be linked */
1203         mtd = &host->mtd;
1204         mtd->priv = this;
1205         host->nand = this;
1206
1207         /* 5 us command delay time */
1208         this->chip_delay = 5;
1209
1210         this->priv = host;
1211         this->dev_ready = mxc_nand_dev_ready;
1212         this->cmdfunc = mxc_nand_command;
1213         this->select_chip = mxc_nand_select_chip;
1214         this->read_byte = mxc_nand_read_byte;
1215         this->read_word = mxc_nand_read_word;
1216         this->write_buf = mxc_nand_write_buf;
1217         this->read_buf = mxc_nand_read_buf;
1218         this->verify_buf = mxc_nand_verify_buf;
1219
1220         host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
1221 #ifdef MXC_NFC_V3_2
1222         host->ip_regs =
1223                 (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
1224 #endif
1225         host->clk_act = 1;
1226
1227 #ifdef CONFIG_MXC_NAND_HWECC
1228         this->ecc.calculate = mxc_nand_calculate_ecc;
1229         this->ecc.hwctl = mxc_nand_enable_hwecc;
1230         this->ecc.correct = mxc_nand_correct_data;
1231         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
1232                 this->ecc.mode = NAND_ECC_HW_SYNDROME;
1233                 this->ecc.read_page = mxc_nand_read_page_syndrome;
1234                 this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
1235                 this->ecc.read_oob = mxc_nand_read_oob_syndrome;
1236                 this->ecc.write_page = mxc_nand_write_page_syndrome;
1237                 this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
1238                 this->ecc.write_oob = mxc_nand_write_oob_syndrome;
1239                 this->ecc.bytes = 9;
1240                 this->ecc.prepad = 7;
1241         } else {
1242                 this->ecc.mode = NAND_ECC_HW;
1243         }
1244
1245                 if (is_mxc_nfc_1())
1246                         this->ecc.strength = 1;
1247                 else
1248                         this->ecc.strength = 4;
1249
1250         host->pagesize_2k = 0;
1251
1252         this->ecc.size = 512;
1253         _mxc_nand_enable_hwecc(mtd, 1);
1254 #else
1255         this->ecc.layout = &nand_soft_eccoob;
1256         this->ecc.mode = NAND_ECC_SOFT;
1257         _mxc_nand_enable_hwecc(mtd, 0);
1258 #endif
1259         /* Reset NAND */
1260         this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1261
1262         /* NAND bus width determines access functions used by upper layer */
1263         if (is_16bit_nand())
1264                 this->options |= NAND_BUSWIDTH_16;
1265
1266 #ifdef CONFIG_SYS_NAND_LARGEPAGE
1267         host->pagesize_2k = 1;
1268         this->ecc.layout = &nand_hw_eccoob2k;
1269 #else
1270         host->pagesize_2k = 0;
1271         this->ecc.layout = &nand_hw_eccoob;
1272 #endif
1273
1274 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
1275 #ifdef MXC_NFC_V2_1
1276         tmp = readnfc(&host->regs->config1);
1277         tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
1278         tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
1279         writenfc(tmp, &host->regs->config1);
1280         if (host->pagesize_2k)
1281                 writenfc(64/2, &host->regs->spare_area_size);
1282         else
1283                 writenfc(16/2, &host->regs->spare_area_size);
1284 #endif
1285
1286         /*
1287          * preset operation
1288          * Unlock the internal RAM Buffer
1289          */
1290         writenfc(0x2, &host->regs->config);
1291
1292         /* Blocks to be unlocked */
1293         writenfc(0x0, &host->regs->unlockstart_blkaddr);
1294         /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
1295          * unlockend_blkaddr, but the magic 0x4000 does not always work
1296          * when writing more than some 32 megabytes (on 2k page nands)
1297          * However 0xFFFF doesn't seem to have this kind
1298          * of limitation (tried it back and forth several times).
1299          * The linux kernel driver sets this to 0xFFFF for the v2 controller
1300          * only, but probably this was not tested there for v1.
1301          * The very same limitation seems to apply to this kernel driver.
1302          * This might be NAND chip specific and the i.MX31 datasheet is
1303          * extremely vague about the semantics of this register.
1304          */
1305         writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
1306
1307         /* Unlock Block Command for given address range */
1308         writenfc(0x4, &host->regs->wrprot);
1309 #elif defined(MXC_NFC_V3_2)
1310         writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
1311         writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
1312
1313         /* Unlock the internal RAM Buffer */
1314         writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1315                         &host->ip_regs->wrprot);
1316
1317         /* Blocks to be unlocked */
1318         for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
1319                 writenfc(0x0 | 0xFFFF << 16,
1320                                 &host->ip_regs->wrprot_unlock_blkaddr[tmp]);
1321
1322         writenfc(0, &host->ip_regs->ipc);
1323
1324         tmp = readnfc(&host->ip_regs->config2);
1325         tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
1326                         NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
1327         tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
1328
1329         if (host->pagesize_2k) {
1330                 tmp |= NFC_V3_CONFIG2_SPAS(64/2);
1331                 tmp |= NFC_V3_CONFIG2_PS_2048;
1332         } else {
1333                 tmp |= NFC_V3_CONFIG2_SPAS(16/2);
1334                 tmp |= NFC_V3_CONFIG2_PS_512;
1335         }
1336
1337         writenfc(tmp, &host->ip_regs->config2);
1338
1339         tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
1340                         NFC_V3_CONFIG3_NO_SDMA |
1341                         NFC_V3_CONFIG3_RBB_MODE |
1342                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1343                         NFC_V3_CONFIG3_ADD_OP(0);
1344
1345         if (!(this->options & NAND_BUSWIDTH_16))
1346                 tmp |= NFC_V3_CONFIG3_FW8;
1347
1348         writenfc(tmp, &host->ip_regs->config3);
1349
1350         writenfc(0, &host->ip_regs->delay_line);
1351 #endif
1352
1353         return 0;
1354 }