]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/nand_util.c
Merge 'u-boot-atmel/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / drivers / mtd / nand / nand_util.c
1 /*
2  * drivers/mtd/nand/nand_util.c
3  *
4  * Copyright (C) 2006 by Weiss-Electronic GmbH.
5  * All rights reserved.
6  *
7  * @author:     Guido Classen <clagix@gmail.com>
8  * @descr:      NAND Flash support
9  * @references: borrowed heavily from Linux mtd-utils code:
10  *              flash_eraseall.c by Arcom Control System Ltd
11  *              nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
12  *                             and Thomas Gleixner (tglx@linutronix.de)
13  *
14  * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
15  * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
16  *
17  * See file CREDITS for list of people who contributed to this
18  * project.
19  *
20  * This program is free software; you can redistribute it and/or
21  * modify it under the terms of the GNU General Public License version
22  * 2 as published by the Free Software Foundation.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
32  * MA 02111-1307 USA
33  *
34  * Copyright 2010 Freescale Semiconductor
35  * The portions of this file whose copyright is held by Freescale and which
36  * are not considered a derived work of GPL v2-only code may be distributed
37  * and/or modified under the terms of the GNU General Public License as
38  * published by the Free Software Foundation; either version 2 of the
39  * License, or (at your option) any later version.
40  */
41
42 #include <common.h>
43 #include <command.h>
44 #include <watchdog.h>
45 #include <malloc.h>
46 #include <div64.h>
47
48 #include <asm/errno.h>
49 #include <linux/mtd/mtd.h>
50 #include <nand.h>
51 #include <jffs2/jffs2.h>
52
53 typedef struct erase_info       erase_info_t;
54 typedef struct mtd_info         mtd_info_t;
55
56 /* support only for native endian JFFS2 */
57 #define cpu_to_je16(x) (x)
58 #define cpu_to_je32(x) (x)
59
60 /**
61  * nand_erase_opts: - erase NAND flash with support for various options
62  *                    (jffs2 formatting)
63  *
64  * @param meminfo       NAND device to erase
65  * @param opts          options,  @see struct nand_erase_options
66  * @return              0 in case of success
67  *
68  * This code is ported from flash_eraseall.c from Linux mtd utils by
69  * Arcom Control System Ltd.
70  */
71 int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
72 {
73         struct jffs2_unknown_node cleanmarker;
74         erase_info_t erase;
75         unsigned long erase_length, erased_length; /* in blocks */
76         int bbtest = 1;
77         int result;
78         int percent_complete = -1;
79         const char *mtd_device = meminfo->name;
80         struct mtd_oob_ops oob_opts;
81         struct nand_chip *chip = meminfo->priv;
82
83         if ((opts->offset & (meminfo->erasesize - 1)) != 0) {
84                 printf("Attempt to erase non block-aligned data\n");
85                 return -1;
86         }
87
88         memset(&erase, 0, sizeof(erase));
89         memset(&oob_opts, 0, sizeof(oob_opts));
90
91         erase.mtd = meminfo;
92         erase.len  = meminfo->erasesize;
93         erase.addr = opts->offset;
94         erase_length = lldiv(opts->length + meminfo->erasesize - 1,
95                              meminfo->erasesize);
96
97         cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
98         cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
99         cleanmarker.totlen = cpu_to_je32(8);
100
101         /* scrub option allows to erase badblock. To prevent internal
102          * check from erase() method, set block check method to dummy
103          * and disable bad block table while erasing.
104          */
105         if (opts->scrub) {
106                 erase.scrub = opts->scrub;
107                 /*
108                  * We don't need the bad block table anymore...
109                  * after scrub, there are no bad blocks left!
110                  */
111                 if (chip->bbt) {
112                         kfree(chip->bbt);
113                 }
114                 chip->bbt = NULL;
115         }
116
117         for (erased_length = 0;
118              erased_length < erase_length;
119              erase.addr += meminfo->erasesize) {
120
121                 WATCHDOG_RESET();
122
123                 if (!opts->scrub && bbtest) {
124                         int ret = meminfo->block_isbad(meminfo, erase.addr);
125                         if (ret > 0) {
126                                 if (!opts->quiet)
127                                         printf("\rSkipping bad block at  "
128                                                "0x%08llx                 "
129                                                "                         \n",
130                                                erase.addr);
131
132                                 if (!opts->spread)
133                                         erased_length++;
134
135                                 continue;
136
137                         } else if (ret < 0) {
138                                 printf("\n%s: MTD get bad block failed: %d\n",
139                                        mtd_device,
140                                        ret);
141                                 return -1;
142                         }
143                 }
144
145                 erased_length++;
146
147                 result = meminfo->erase(meminfo, &erase);
148                 if (result != 0) {
149                         printf("\n%s: MTD Erase failure: %d\n",
150                                mtd_device, result);
151                         continue;
152                 }
153
154                 /* format for JFFS2 ? */
155                 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
156                         chip->ops.ooblen = 8;
157                         chip->ops.datbuf = NULL;
158                         chip->ops.oobbuf = (uint8_t *)&cleanmarker;
159                         chip->ops.ooboffs = 0;
160                         chip->ops.mode = MTD_OOB_AUTO;
161
162                         result = meminfo->write_oob(meminfo,
163                                                     erase.addr,
164                                                     &chip->ops);
165                         if (result != 0) {
166                                 printf("\n%s: MTD writeoob failure: %d\n",
167                                        mtd_device, result);
168                                 continue;
169                         }
170                 }
171
172                 if (!opts->quiet) {
173                         unsigned long long n = erased_length * 100ULL;
174                         int percent;
175
176                         do_div(n, erase_length);
177                         percent = (int)n;
178
179                         /* output progress message only at whole percent
180                          * steps to reduce the number of messages printed
181                          * on (slow) serial consoles
182                          */
183                         if (percent != percent_complete) {
184                                 percent_complete = percent;
185
186                                 printf("\rErasing at 0x%llx -- %3d%% complete.",
187                                        erase.addr, percent);
188
189                                 if (opts->jffs2 && result == 0)
190                                         printf(" Cleanmarker written at 0x%llx.",
191                                                erase.addr);
192                         }
193                 }
194         }
195         if (!opts->quiet)
196                 printf("\n");
197
198         if (opts->scrub)
199                 chip->scan_bbt(meminfo);
200
201         return 0;
202 }
203
204 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
205
206 /******************************************************************************
207  * Support for locking / unlocking operations of some NAND devices
208  *****************************************************************************/
209
210 /**
211  * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
212  *            state
213  *
214  * @param mtd           nand mtd instance
215  * @param tight         bring device in lock tight mode
216  *
217  * @return              0 on success, -1 in case of error
218  *
219  * The lock / lock-tight command only applies to the whole chip. To get some
220  * parts of the chip lock and others unlocked use the following sequence:
221  *
222  * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
223  * - Call nand_unlock() once for each consecutive area to be unlocked
224  * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
225  *
226  *   If the device is in lock-tight state software can't change the
227  *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
228  *   calls will fail. It is only posible to leave lock-tight state by
229  *   an hardware signal (low pulse on _WP pin) or by power down.
230  */
231 int nand_lock(struct mtd_info *mtd, int tight)
232 {
233         int ret = 0;
234         int status;
235         struct nand_chip *chip = mtd->priv;
236
237         /* select the NAND device */
238         chip->select_chip(mtd, 0);
239
240         chip->cmdfunc(mtd,
241                       (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
242                       -1, -1);
243
244         /* call wait ready function */
245         status = chip->waitfunc(mtd, chip);
246
247         /* see if device thinks it succeeded */
248         if (status & 0x01) {
249                 ret = -1;
250         }
251
252         /* de-select the NAND device */
253         chip->select_chip(mtd, -1);
254         return ret;
255 }
256
257 /**
258  * nand_get_lock_status: - query current lock state from one page of NAND
259  *                         flash
260  *
261  * @param mtd           nand mtd instance
262  * @param offset        page address to query (must be page-aligned!)
263  *
264  * @return              -1 in case of error
265  *                      >0 lock status:
266  *                        bitfield with the following combinations:
267  *                        NAND_LOCK_STATUS_TIGHT: page in tight state
268  *                        NAND_LOCK_STATUS_UNLOCK: page unlocked
269  *
270  */
271 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
272 {
273         int ret = 0;
274         int chipnr;
275         int page;
276         struct nand_chip *chip = mtd->priv;
277
278         /* select the NAND device */
279         chipnr = (int)(offset >> chip->chip_shift);
280         chip->select_chip(mtd, chipnr);
281
282
283         if ((offset & (mtd->writesize - 1)) != 0) {
284                 printf("nand_get_lock_status: "
285                         "Start address must be beginning of "
286                         "nand page!\n");
287                 ret = -1;
288                 goto out;
289         }
290
291         /* check the Lock Status */
292         page = (int)(offset >> chip->page_shift);
293         chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
294
295         ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
296                                           | NAND_LOCK_STATUS_UNLOCK);
297
298  out:
299         /* de-select the NAND device */
300         chip->select_chip(mtd, -1);
301         return ret;
302 }
303
304 /**
305  * nand_unlock: - Unlock area of NAND pages
306  *                only one consecutive area can be unlocked at one time!
307  *
308  * @param mtd           nand mtd instance
309  * @param start         start byte address
310  * @param length        number of bytes to unlock (must be a multiple of
311  *                      page size nand->writesize)
312  * @param allexcept     if set, unlock everything not selected
313  *
314  * @return              0 on success, -1 in case of error
315  */
316 int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
317         int allexcept)
318 {
319         int ret = 0;
320         int chipnr;
321         int status;
322         int page;
323         struct nand_chip *chip = mtd->priv;
324
325         debug("nand_unlock%s: start: %08llx, length: %d!\n",
326                 allexcept ? " (allexcept)" : "", start, length);
327
328         /* select the NAND device */
329         chipnr = (int)(start >> chip->chip_shift);
330         chip->select_chip(mtd, chipnr);
331
332         /* check the WP bit */
333         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
334         if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
335                 printf("nand_unlock: Device is write protected!\n");
336                 ret = -1;
337                 goto out;
338         }
339
340         if ((start & (mtd->erasesize - 1)) != 0) {
341                 printf("nand_unlock: Start address must be beginning of "
342                         "nand block!\n");
343                 ret = -1;
344                 goto out;
345         }
346
347         if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
348                 printf("nand_unlock: Length must be a multiple of nand block "
349                         "size %08x!\n", mtd->erasesize);
350                 ret = -1;
351                 goto out;
352         }
353
354         /*
355          * Set length so that the last address is set to the
356          * starting address of the last block
357          */
358         length -= mtd->erasesize;
359
360         /* submit address of first page to unlock */
361         page = (int)(start >> chip->page_shift);
362         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
363
364         /* submit ADDRESS of LAST page to unlock */
365         page += (int)(length >> chip->page_shift);
366
367         /*
368          * Page addresses for unlocking are supposed to be block-aligned.
369          * At least some NAND chips use the low bit to indicate that the
370          * page range should be inverted.
371          */
372         if (allexcept)
373                 page |= 1;
374
375         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
376
377         /* call wait ready function */
378         status = chip->waitfunc(mtd, chip);
379         /* see if device thinks it succeeded */
380         if (status & 0x01) {
381                 /* there was an error */
382                 ret = -1;
383                 goto out;
384         }
385
386  out:
387         /* de-select the NAND device */
388         chip->select_chip(mtd, -1);
389         return ret;
390 }
391 #endif
392
393 /**
394  * check_skip_len
395  *
396  * Check if there are any bad blocks, and whether length including bad
397  * blocks fits into device
398  *
399  * @param nand NAND device
400  * @param offset offset in flash
401  * @param length image length
402  * @return 0 if the image fits and there are no bad blocks
403  *         1 if the image fits, but there are bad blocks
404  *        -1 if the image does not fit
405  */
406 static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length)
407 {
408         size_t len_excl_bad = 0;
409         int ret = 0;
410
411         while (len_excl_bad < length) {
412                 size_t block_len, block_off;
413                 loff_t block_start;
414
415                 if (offset >= nand->size)
416                         return -1;
417
418                 block_start = offset & ~(loff_t)(nand->erasesize - 1);
419                 block_off = offset & (nand->erasesize - 1);
420                 block_len = nand->erasesize - block_off;
421
422                 if (!nand_block_isbad(nand, block_start))
423                         len_excl_bad += block_len;
424                 else
425                         ret = 1;
426
427                 offset += block_len;
428         }
429
430         return ret;
431 }
432
433 #ifdef CONFIG_CMD_NAND_TRIMFFS
434 static size_t drop_ffs(const nand_info_t *nand, const u_char *buf,
435                         const size_t *len)
436 {
437         size_t i, l = *len;
438
439         for (i = l - 1; i >= 0; i--)
440                 if (buf[i] != 0xFF)
441                         break;
442
443         /* The resulting length must be aligned to the minimum flash I/O size */
444         l = i + 1;
445         l = (l + nand->writesize - 1) / nand->writesize;
446         l *=  nand->writesize;
447
448         /*
449          * since the input length may be unaligned, prevent access past the end
450          * of the buffer
451          */
452         return min(l, *len);
453 }
454 #endif
455
456 /**
457  * nand_write_skip_bad:
458  *
459  * Write image to NAND flash.
460  * Blocks that are marked bad are skipped and the is written to the next
461  * block instead as long as the image is short enough to fit even after
462  * skipping the bad blocks.
463  *
464  * @param nand          NAND device
465  * @param offset        offset in flash
466  * @param length        buffer length
467  * @param buffer        buffer to read from
468  * @param flags         flags modifying the behaviour of the write to NAND
469  * @return              0 in case of success
470  */
471 int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
472                         u_char *buffer, int flags)
473 {
474         int rval = 0, blocksize;
475         size_t left_to_write = *length;
476         u_char *p_buffer = buffer;
477         int need_skip;
478
479 #ifdef CONFIG_CMD_NAND_YAFFS
480         if (flags & WITH_YAFFS_OOB) {
481                 if (flags & ~WITH_YAFFS_OOB)
482                         return -EINVAL;
483
484                 int pages;
485                 pages = nand->erasesize / nand->writesize;
486                 blocksize = (pages * nand->oobsize) + nand->erasesize;
487                 if (*length % (nand->writesize + nand->oobsize)) {
488                         printf("Attempt to write incomplete page"
489                                 " in yaffs mode\n");
490                         return -EINVAL;
491                 }
492         } else
493 #endif
494         {
495                 blocksize = nand->erasesize;
496         }
497
498         /*
499          * nand_write() handles unaligned, partial page writes.
500          *
501          * We allow length to be unaligned, for convenience in
502          * using the $filesize variable.
503          *
504          * However, starting at an unaligned offset makes the
505          * semantics of bad block skipping ambiguous (really,
506          * you should only start a block skipping access at a
507          * partition boundary).  So don't try to handle that.
508          */
509         if ((offset & (nand->writesize - 1)) != 0) {
510                 printf("Attempt to write non page-aligned data\n");
511                 *length = 0;
512                 return -EINVAL;
513         }
514
515         need_skip = check_skip_len(nand, offset, *length);
516         if (need_skip < 0) {
517                 printf("Attempt to write outside the flash area\n");
518                 *length = 0;
519                 return -EINVAL;
520         }
521
522         if (!need_skip && !(flags & WITH_DROP_FFS)) {
523                 rval = nand_write(nand, offset, length, buffer);
524                 if (rval == 0)
525                         return 0;
526
527                 *length = 0;
528                 printf("NAND write to offset %llx failed %d\n",
529                         offset, rval);
530                 return rval;
531         }
532
533         while (left_to_write > 0) {
534                 size_t block_offset = offset & (nand->erasesize - 1);
535                 size_t write_size, truncated_write_size;
536
537                 WATCHDOG_RESET();
538
539                 if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) {
540                         printf("Skip bad block 0x%08llx\n",
541                                 offset & ~(nand->erasesize - 1));
542                         offset += nand->erasesize - block_offset;
543                         continue;
544                 }
545
546                 if (left_to_write < (blocksize - block_offset))
547                         write_size = left_to_write;
548                 else
549                         write_size = blocksize - block_offset;
550
551 #ifdef CONFIG_CMD_NAND_YAFFS
552                 if (flags & WITH_YAFFS_OOB) {
553                         int page, pages;
554                         size_t pagesize = nand->writesize;
555                         size_t pagesize_oob = pagesize + nand->oobsize;
556                         struct mtd_oob_ops ops;
557
558                         ops.len = pagesize;
559                         ops.ooblen = nand->oobsize;
560                         ops.mode = MTD_OOB_AUTO;
561                         ops.ooboffs = 0;
562
563                         pages = write_size / pagesize_oob;
564                         for (page = 0; page < pages; page++) {
565                                 WATCHDOG_RESET();
566
567                                 ops.datbuf = p_buffer;
568                                 ops.oobbuf = ops.datbuf + pagesize;
569
570                                 rval = nand->write_oob(nand, offset, &ops);
571                                 if (rval != 0)
572                                         break;
573
574                                 offset += pagesize;
575                                 p_buffer += pagesize_oob;
576                         }
577                 }
578                 else
579 #endif
580                 {
581                         truncated_write_size = write_size;
582 #ifdef CONFIG_CMD_NAND_TRIMFFS
583                         if (flags & WITH_DROP_FFS)
584                                 truncated_write_size = drop_ffs(nand, p_buffer,
585                                                 &write_size);
586 #endif
587
588                         rval = nand_write(nand, offset, &truncated_write_size,
589                                         p_buffer);
590                         offset += write_size;
591                         p_buffer += write_size;
592                 }
593
594                 if (rval != 0) {
595                         printf("NAND write to offset %llx failed %d\n",
596                                 offset, rval);
597                         *length -= left_to_write;
598                         return rval;
599                 }
600
601                 left_to_write -= write_size;
602         }
603
604         return 0;
605 }
606
607 /**
608  * nand_read_skip_bad:
609  *
610  * Read image from NAND flash.
611  * Blocks that are marked bad are skipped and the next block is read
612  * instead as long as the image is short enough to fit even after skipping the
613  * bad blocks.
614  *
615  * @param nand NAND device
616  * @param offset offset in flash
617  * @param length buffer length, on return holds number of read bytes
618  * @param buffer buffer to write to
619  * @return 0 in case of success
620  */
621 int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
622                        u_char *buffer)
623 {
624         int rval;
625         size_t left_to_read = *length;
626         u_char *p_buffer = buffer;
627         int need_skip;
628
629         if ((offset & (nand->writesize - 1)) != 0) {
630                 printf("Attempt to read non page-aligned data\n");
631                 *length = 0;
632                 return -EINVAL;
633         }
634
635         need_skip = check_skip_len(nand, offset, *length);
636         if (need_skip < 0) {
637                 printf("Attempt to read outside the flash area\n");
638                 *length = 0;
639                 return -EINVAL;
640         }
641
642         if (!need_skip) {
643                 rval = nand_read(nand, offset, length, buffer);
644                 if (!rval || rval == -EUCLEAN)
645                         return 0;
646
647                 *length = 0;
648                 printf("NAND read from offset %llx failed %d\n",
649                         offset, rval);
650                 return rval;
651         }
652
653         while (left_to_read > 0) {
654                 size_t block_offset = offset & (nand->erasesize - 1);
655                 size_t read_length;
656
657                 WATCHDOG_RESET();
658
659                 if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) {
660                         printf("Skipping bad block 0x%08llx\n",
661                                 offset & ~(nand->erasesize - 1));
662                         offset += nand->erasesize - block_offset;
663                         continue;
664                 }
665
666                 if (left_to_read < (nand->erasesize - block_offset))
667                         read_length = left_to_read;
668                 else
669                         read_length = nand->erasesize - block_offset;
670
671                 rval = nand_read(nand, offset, &read_length, p_buffer);
672                 if (rval && rval != -EUCLEAN) {
673                         printf("NAND read from offset %llx failed %d\n",
674                                 offset, rval);
675                         *length -= left_to_read;
676                         return rval;
677                 }
678
679                 left_to_read -= read_length;
680                 offset       += read_length;
681                 p_buffer     += read_length;
682         }
683
684         return 0;
685 }
686
687 #ifdef CONFIG_CMD_NAND_TORTURE
688
689 /**
690  * check_pattern:
691  *
692  * Check if buffer contains only a certain byte pattern.
693  *
694  * @param buf buffer to check
695  * @param patt the pattern to check
696  * @param size buffer size in bytes
697  * @return 1 if there are only patt bytes in buf
698  *         0 if something else was found
699  */
700 static int check_pattern(const u_char *buf, u_char patt, int size)
701 {
702         int i;
703
704         for (i = 0; i < size; i++)
705                 if (buf[i] != patt)
706                         return 0;
707         return 1;
708 }
709
710 /**
711  * nand_torture:
712  *
713  * Torture a block of NAND flash.
714  * This is useful to determine if a block that caused a write error is still
715  * good or should be marked as bad.
716  *
717  * @param nand NAND device
718  * @param offset offset in flash
719  * @return 0 if the block is still good
720  */
721 int nand_torture(nand_info_t *nand, loff_t offset)
722 {
723         u_char patterns[] = {0xa5, 0x5a, 0x00};
724         struct erase_info instr = {
725                 .mtd = nand,
726                 .addr = offset,
727                 .len = nand->erasesize,
728         };
729         size_t retlen;
730         int err, ret = -1, i, patt_count;
731         u_char *buf;
732
733         if ((offset & (nand->erasesize - 1)) != 0) {
734                 puts("Attempt to torture a block at a non block-aligned offset\n");
735                 return -EINVAL;
736         }
737
738         if (offset + nand->erasesize > nand->size) {
739                 puts("Attempt to torture a block outside the flash area\n");
740                 return -EINVAL;
741         }
742
743         patt_count = ARRAY_SIZE(patterns);
744
745         buf = malloc(nand->erasesize);
746         if (buf == NULL) {
747                 puts("Out of memory for erase block buffer\n");
748                 return -ENOMEM;
749         }
750
751         for (i = 0; i < patt_count; i++) {
752                 err = nand->erase(nand, &instr);
753                 if (err) {
754                         printf("%s: erase() failed for block at 0x%llx: %d\n",
755                                 nand->name, instr.addr, err);
756                         goto out;
757                 }
758
759                 /* Make sure the block contains only 0xff bytes */
760                 err = nand->read(nand, offset, nand->erasesize, &retlen, buf);
761                 if ((err && err != -EUCLEAN) || retlen != nand->erasesize) {
762                         printf("%s: read() failed for block at 0x%llx: %d\n",
763                                 nand->name, instr.addr, err);
764                         goto out;
765                 }
766
767                 err = check_pattern(buf, 0xff, nand->erasesize);
768                 if (!err) {
769                         printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
770                                 offset);
771                         ret = -EIO;
772                         goto out;
773                 }
774
775                 /* Write a pattern and check it */
776                 memset(buf, patterns[i], nand->erasesize);
777                 err = nand->write(nand, offset, nand->erasesize, &retlen, buf);
778                 if (err || retlen != nand->erasesize) {
779                         printf("%s: write() failed for block at 0x%llx: %d\n",
780                                 nand->name, instr.addr, err);
781                         goto out;
782                 }
783
784                 err = nand->read(nand, offset, nand->erasesize, &retlen, buf);
785                 if ((err && err != -EUCLEAN) || retlen != nand->erasesize) {
786                         printf("%s: read() failed for block at 0x%llx: %d\n",
787                                 nand->name, instr.addr, err);
788                         goto out;
789                 }
790
791                 err = check_pattern(buf, patterns[i], nand->erasesize);
792                 if (!err) {
793                         printf("Pattern 0x%.2x checking failed for block at "
794                                         "0x%llx\n", patterns[i], offset);
795                         ret = -EIO;
796                         goto out;
797                 }
798         }
799
800         ret = 0;
801
802 out:
803         free(buf);
804         return ret;
805 }
806
807 #endif