]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/omap_gpmc.c
mtd: nand: omap_gpmc: rename struct nand_bch_priv to struct omap_nand_info
[karo-tx-uboot.git] / drivers / mtd / nand / omap_gpmc.c
1 /*
2  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3  * Rohit Choraria <rohitkc@ti.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <common.h>
9 #include <asm/io.h>
10 #include <asm/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
16 #include <nand.h>
17 #include <linux/mtd/omap_elm.h>
18
19 #define BADBLOCK_MARKER_LENGTH  2
20 #define SECTOR_BYTES            512
21 #define ECCCLEAR                (0x1 << 8)
22 #define ECCRESULTREG1           (0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD            4
25
26 #ifdef CONFIG_BCH
27 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
29 #endif
30 static uint8_t cs;
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
32
33 /*
34  * omap_nand_hwcontrol - Set the address pointers corretly for the
35  *                      following address/data/command operation
36  */
37 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
38                                 uint32_t ctrl)
39 {
40         register struct nand_chip *this = mtd->priv;
41
42         /*
43          * Point the IO_ADDR to DATA and ADDRESS registers instead
44          * of chip address
45          */
46         switch (ctrl) {
47         case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
48                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
49                 break;
50         case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
51                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
52                 break;
53         case NAND_CTRL_CHANGE | NAND_NCE:
54                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
55                 break;
56         }
57
58         if (cmd != NAND_CMD_NONE)
59                 writeb(cmd, this->IO_ADDR_W);
60 }
61
62 #ifdef CONFIG_SPL_BUILD
63 /* Check wait pin as dev ready indicator */
64 int omap_spl_dev_ready(struct mtd_info *mtd)
65 {
66         return gpmc_cfg->status & (1 << 8);
67 }
68 #endif
69
70
71 /*
72  * gen_true_ecc - This function will generate true ECC value, which
73  * can be used when correcting data read from NAND flash memory core
74  *
75  * @ecc_buf:    buffer to store ecc code
76  *
77  * @return:     re-formatted ECC value
78  */
79 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
80 {
81         return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
82                 ((ecc_buf[2] & 0x0F) << 8);
83 }
84
85 /*
86  * omap_correct_data - Compares the ecc read from nand spare area with ECC
87  * registers values and corrects one bit error if it has occured
88  * Further details can be had from OMAP TRM and the following selected links:
89  * http://en.wikipedia.org/wiki/Hamming_code
90  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
91  *
92  * @mtd:                 MTD device structure
93  * @dat:                 page data
94  * @read_ecc:            ecc read from nand flash
95  * @calc_ecc:            ecc read from ECC registers
96  *
97  * @return 0 if data is OK or corrected, else returns -1
98  */
99 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
100                                 uint8_t *read_ecc, uint8_t *calc_ecc)
101 {
102         uint32_t orig_ecc, new_ecc, res, hm;
103         uint16_t parity_bits, byte;
104         uint8_t bit;
105
106         /* Regenerate the orginal ECC */
107         orig_ecc = gen_true_ecc(read_ecc);
108         new_ecc = gen_true_ecc(calc_ecc);
109         /* Get the XOR of real ecc */
110         res = orig_ecc ^ new_ecc;
111         if (res) {
112                 /* Get the hamming width */
113                 hm = hweight32(res);
114                 /* Single bit errors can be corrected! */
115                 if (hm == 12) {
116                         /* Correctable data! */
117                         parity_bits = res >> 16;
118                         bit = (parity_bits & 0x7);
119                         byte = (parity_bits >> 3) & 0x1FF;
120                         /* Flip the bit to correct */
121                         dat[byte] ^= (0x1 << bit);
122                 } else if (hm == 1) {
123                         printf("Error: Ecc is wrong\n");
124                         /* ECC itself is corrupted */
125                         return 2;
126                 } else {
127                         /*
128                          * hm distance != parity pairs OR one, could mean 2 bit
129                          * error OR potentially be on a blank page..
130                          * orig_ecc: contains spare area data from nand flash.
131                          * new_ecc: generated ecc while reading data area.
132                          * Note: if the ecc = 0, all data bits from which it was
133                          * generated are 0xFF.
134                          * The 3 byte(24 bits) ecc is generated per 512byte
135                          * chunk of a page. If orig_ecc(from spare area)
136                          * is 0xFF && new_ecc(computed now from data area)=0x0,
137                          * this means that data area is 0xFF and spare area is
138                          * 0xFF. A sure sign of a erased page!
139                          */
140                         if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
141                                 return 0;
142                         printf("Error: Bad compare! failed\n");
143                         /* detected 2 bit error */
144                         return -1;
145                 }
146         }
147         return 0;
148 }
149
150 /*
151  * Driver configurations
152  */
153 struct omap_nand_info {
154         struct bch_control *control;
155         enum omap_ecc ecc_scheme;
156 };
157
158 /*
159  * This can be a single instance cause all current users have only one NAND
160  * with nearly the same setup (BCH8, some with ELM and others with sw BCH
161  * library).
162  * When some users with other BCH strength will exists this have to change!
163  */
164 static __maybe_unused struct omap_nand_info omap_nand_info = {
165         .control = NULL
166 };
167
168 /*
169  * omap_reverse_list - re-orders list elements in reverse order [internal]
170  * @list:       pointer to start of list
171  * @length:     length of list
172 */
173 void omap_reverse_list(u8 *list, unsigned int length)
174 {
175         unsigned int i, j;
176         unsigned int half_length = length / 2;
177         u8 tmp;
178         for (i = 0, j = length - 1; i < half_length; i++, j--) {
179                 tmp = list[i];
180                 list[i] = list[j];
181                 list[j] = tmp;
182         }
183 }
184
185 /*
186  * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
187  * @mtd:        MTD device structure
188  * @mode:       Read/Write mode
189  */
190 __maybe_unused
191 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
192 {
193         struct nand_chip        *nand   = mtd->priv;
194         struct omap_nand_info   *info   = nand->priv;
195         unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
196         unsigned int ecc_algo = 0;
197         unsigned int bch_type = 0;
198         unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
199         u32 ecc_size_config_val = 0;
200         u32 ecc_config_val = 0;
201
202         /* configure GPMC for specific ecc-scheme */
203         switch (info->ecc_scheme) {
204         case OMAP_ECC_HAM1_CODE_SW:
205                 return;
206         case OMAP_ECC_HAM1_CODE_HW:
207                 ecc_algo = 0x0;
208                 bch_type = 0x0;
209                 bch_wrapmode = 0x00;
210                 eccsize0 = 0xFF;
211                 eccsize1 = 0xFF;
212                 break;
213         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
214         case OMAP_ECC_BCH8_CODE_HW:
215                 ecc_algo = 0x1;
216                 bch_type = 0x1;
217                 if (mode == NAND_ECC_WRITE) {
218                         bch_wrapmode = 0x01;
219                         eccsize0 = 0;  /* extra bits in nibbles per sector */
220                         eccsize1 = 28; /* OOB bits in nibbles per sector */
221                 } else {
222                         bch_wrapmode = 0x01;
223                         eccsize0 = 26; /* ECC bits in nibbles per sector */
224                         eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
225                 }
226                 break;
227         default:
228                 return;
229         }
230         /* Clear ecc and enable bits */
231         writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
232         /* Configure ecc size for BCH */
233         ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
234         writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
235
236         /* Configure device details for BCH engine */
237         ecc_config_val = ((ecc_algo << 16)      | /* HAM1 | BCHx */
238                         (bch_type << 12)        | /* BCH4/BCH8/BCH16 */
239                         (bch_wrapmode << 8)     | /* wrap mode */
240                         (dev_width << 7)        | /* bus width */
241                         (0x0 << 4)              | /* number of sectors */
242                         (cs <<  1)              | /* ECC CS */
243                         (0x1));                   /* enable ECC */
244         writel(ecc_config_val, &gpmc_cfg->ecc_config);
245 }
246
247 /*
248  *  omap_calculate_ecc - Read ECC result
249  *  @mtd:       MTD structure
250  *  @dat:       unused
251  *  @ecc_code:  ecc_code buffer
252  *  Using noninverted ECC can be considered ugly since writing a blank
253  *  page ie. padding will clear the ECC bytes. This is no problem as
254  *  long nobody is trying to write data on the seemingly unused page.
255  *  Reading an erased page will produce an ECC mismatch between
256  *  generated and read ECC bytes that has to be dealt with separately.
257  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
258  *  is used, the result of read will be 0x0 while the ECC offsets of the
259  *  spare area will be 0xFF which will result in an ECC mismatch.
260  */
261 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
262                                 uint8_t *ecc_code)
263 {
264         struct nand_chip *chip = mtd->priv;
265         struct omap_nand_info *info = chip->priv;
266         uint32_t *ptr, val = 0;
267         int8_t i = 0, j;
268
269         switch (info->ecc_scheme) {
270         case OMAP_ECC_HAM1_CODE_HW:
271                 val = readl(&gpmc_cfg->ecc1_result);
272                 ecc_code[0] = val & 0xFF;
273                 ecc_code[1] = (val >> 16) & 0xFF;
274                 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
275                 break;
276 #ifdef CONFIG_BCH
277         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
278 #endif
279         case OMAP_ECC_BCH8_CODE_HW:
280                 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
281                 val = readl(ptr);
282                 ecc_code[i++] = (val >>  0) & 0xFF;
283                 ptr--;
284                 for (j = 0; j < 3; j++) {
285                         val = readl(ptr);
286                         ecc_code[i++] = (val >> 24) & 0xFF;
287                         ecc_code[i++] = (val >> 16) & 0xFF;
288                         ecc_code[i++] = (val >>  8) & 0xFF;
289                         ecc_code[i++] = (val >>  0) & 0xFF;
290                         ptr--;
291                 }
292                 break;
293         default:
294                 return -EINVAL;
295         }
296         /* ECC scheme specific syndrome customizations */
297         switch (info->ecc_scheme) {
298         case OMAP_ECC_HAM1_CODE_HW:
299                 break;
300 #ifdef CONFIG_BCH
301         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
302
303                 for (i = 0; i < chip->ecc.bytes; i++)
304                         *(ecc_code + i) = *(ecc_code + i) ^
305                                                 bch8_polynomial[i];
306                 break;
307 #endif
308         case OMAP_ECC_BCH8_CODE_HW:
309                 ecc_code[chip->ecc.bytes - 1] = 0x00;
310                 break;
311         default:
312                 return -EINVAL;
313         }
314         return 0;
315 }
316
317 #ifdef CONFIG_NAND_OMAP_ELM
318 /*
319  * omap_correct_data_bch - Compares the ecc read from nand spare area
320  * with ECC registers values and corrects one bit error if it has occured
321  *
322  * @mtd:        MTD device structure
323  * @dat:        page data
324  * @read_ecc:   ecc read from nand flash (ignored)
325  * @calc_ecc:   ecc read from ECC registers
326  *
327  * @return 0 if data is OK or corrected, else returns -1
328  */
329 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
330                                 uint8_t *read_ecc, uint8_t *calc_ecc)
331 {
332         struct nand_chip *chip = mtd->priv;
333         struct omap_nand_info *info = chip->priv;
334         uint32_t eccbytes = chip->ecc.bytes;
335         uint32_t error_count = 0, error_max;
336         uint32_t error_loc[8];
337         enum bch_level bch_type;
338         uint32_t i, ecc_flag = 0;
339         uint8_t count, err = 0;
340         uint32_t byte_pos, bit_pos;
341
342         /* check calculated ecc */
343         for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
344                 if (calc_ecc[i] != 0x00)
345                         ecc_flag = 1;
346         }
347         if (!ecc_flag)
348                 return 0;
349
350         /* check for whether its a erased-page */
351         ecc_flag = 0;
352         for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
353                 if (read_ecc[i] != 0xff)
354                         ecc_flag = 1;
355         }
356         if (!ecc_flag)
357                 return 0;
358
359         /*
360          * while reading ECC result we read it in big endian.
361          * Hence while loading to ELM we have rotate to get the right endian.
362          */
363         switch (info->ecc_scheme) {
364         case OMAP_ECC_BCH8_CODE_HW:
365                 bch_type = BCH_8_BIT;
366                 omap_reverse_list(calc_ecc, eccbytes - 1);
367                 break;
368         default:
369                 return -EINVAL;
370         }
371         /* use elm module to check for errors */
372         elm_config(bch_type);
373         if (elm_check_error(calc_ecc, bch_type, &error_count, error_loc)) {
374                 printf("nand: error: uncorrectable ECC errors\n");
375                 return -EINVAL;
376         }
377         /* correct bch error */
378         for (count = 0; count < error_count; count++) {
379                 switch (info->ecc_scheme) {
380                 case OMAP_ECC_BCH8_CODE_HW:
381                         /* 14th byte in ECC is reserved to match ROM layout */
382                         error_max = SECTOR_BYTES + (eccbytes - 1);
383                         break;
384                 default:
385                         return -EINVAL;
386                 }
387                 byte_pos = error_max - (error_loc[count] / 8) - 1;
388                 bit_pos  = error_loc[count] % 8;
389                 if (byte_pos < SECTOR_BYTES) {
390                         dat[byte_pos] ^= 1 << bit_pos;
391                         printf("nand: bit-flip corrected @data=%d\n", byte_pos);
392                 } else if (byte_pos < error_max) {
393                         read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
394                         printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
395                                                                 SECTOR_BYTES);
396                 } else {
397                         err = -EBADMSG;
398                         printf("nand: error: invalid bit-flip location\n");
399                 }
400         }
401         return (err) ? err : error_count;
402 }
403
404 /**
405  * omap_read_page_bch - hardware ecc based page read function
406  * @mtd:        mtd info structure
407  * @chip:       nand chip info structure
408  * @buf:        buffer to store read data
409  * @oob_required: caller expects OOB data read to chip->oob_poi
410  * @page:       page number to read
411  *
412  */
413 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
414                                 uint8_t *buf, int oob_required, int page)
415 {
416         int i, eccsize = chip->ecc.size;
417         int eccbytes = chip->ecc.bytes;
418         int eccsteps = chip->ecc.steps;
419         uint8_t *p = buf;
420         uint8_t *ecc_calc = chip->buffers->ecccalc;
421         uint8_t *ecc_code = chip->buffers->ecccode;
422         uint32_t *eccpos = chip->ecc.layout->eccpos;
423         uint8_t *oob = chip->oob_poi;
424         uint32_t data_pos;
425         uint32_t oob_pos;
426
427         data_pos = 0;
428         /* oob area start */
429         oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
430         oob += chip->ecc.layout->eccpos[0];
431
432         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
433                                 oob += eccbytes) {
434                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
435                 /* read data */
436                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
437                 chip->read_buf(mtd, p, eccsize);
438
439                 /* read respective ecc from oob area */
440                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
441                 chip->read_buf(mtd, oob, eccbytes);
442                 /* read syndrome */
443                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
444
445                 data_pos += eccsize;
446                 oob_pos += eccbytes;
447         }
448
449         for (i = 0; i < chip->ecc.total; i++)
450                 ecc_code[i] = chip->oob_poi[eccpos[i]];
451
452         eccsteps = chip->ecc.steps;
453         p = buf;
454
455         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
456                 int stat;
457
458                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
459                 if (stat < 0)
460                         mtd->ecc_stats.failed++;
461                 else
462                         mtd->ecc_stats.corrected += stat;
463         }
464         return 0;
465 }
466 #endif /* CONFIG_NAND_OMAP_ELM */
467
468 /*
469  * OMAP3 BCH8 support (with BCH library)
470  */
471 #ifdef CONFIG_BCH
472 /**
473  * omap_correct_data_bch_sw - Decode received data and correct errors
474  * @mtd: MTD device structure
475  * @data: page data
476  * @read_ecc: ecc read from nand flash
477  * @calc_ecc: ecc read from HW ECC registers
478  */
479 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
480                                  u_char *read_ecc, u_char *calc_ecc)
481 {
482         int i, count;
483         /* cannot correct more than 8 errors */
484         unsigned int errloc[8];
485         struct nand_chip *chip = mtd->priv;
486         struct omap_nand_info *info = chip->priv;
487
488         count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
489                                                         NULL, errloc);
490         if (count > 0) {
491                 /* correct errors */
492                 for (i = 0; i < count; i++) {
493                         /* correct data only, not ecc bytes */
494                         if (errloc[i] < 8*512)
495                                 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
496                         printf("corrected bitflip %u\n", errloc[i]);
497 #ifdef DEBUG
498                         puts("read_ecc: ");
499                         /*
500                          * BCH8 have 13 bytes of ECC; BCH4 needs adoption
501                          * here!
502                          */
503                         for (i = 0; i < 13; i++)
504                                 printf("%02x ", read_ecc[i]);
505                         puts("\n");
506                         puts("calc_ecc: ");
507                         for (i = 0; i < 13; i++)
508                                 printf("%02x ", calc_ecc[i]);
509                         puts("\n");
510 #endif
511                 }
512         } else if (count < 0) {
513                 puts("ecc unrecoverable error\n");
514         }
515         return count;
516 }
517
518 /**
519  * omap_free_bch - Release BCH ecc resources
520  * @mtd: MTD device structure
521  */
522 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
523 {
524         struct nand_chip *chip = mtd->priv;
525         struct omap_nand_info *info = chip->priv;
526
527         if (info->control) {
528                 free_bch(info->control);
529                 info->control = NULL;
530         }
531 }
532 #endif /* CONFIG_BCH */
533
534 /**
535  * omap_select_ecc_scheme - configures driver for particular ecc-scheme
536  * @nand: NAND chip device structure
537  * @ecc_scheme: ecc scheme to configure
538  * @pagesize: number of main-area bytes per page of NAND device
539  * @oobsize: number of OOB/spare bytes per page of NAND device
540  */
541 static int omap_select_ecc_scheme(struct nand_chip *nand,
542         enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
543         struct omap_nand_info   *info           = nand->priv;
544         struct nand_ecclayout   *ecclayout      = &omap_ecclayout;
545         int eccsteps = pagesize / SECTOR_BYTES;
546         int i;
547
548         switch (ecc_scheme) {
549         case OMAP_ECC_HAM1_CODE_SW:
550                 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
551                 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
552                  * initialized in nand_scan_tail(), so just set ecc.mode */
553                 info->control           = NULL;
554                 nand->ecc.mode          = NAND_ECC_SOFT;
555                 nand->ecc.layout        = NULL;
556                 nand->ecc.size          = 0;
557                 break;
558
559         case OMAP_ECC_HAM1_CODE_HW:
560                 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
561                 /* check ecc-scheme requirements before updating ecc info */
562                 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
563                         printf("nand: error: insufficient OOB: require=%d\n", (
564                                 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
565                         return -EINVAL;
566                 }
567                 info->control           = NULL;
568                 /* populate ecc specific fields */
569                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
570                 nand->ecc.mode          = NAND_ECC_HW;
571                 nand->ecc.strength      = 1;
572                 nand->ecc.size          = SECTOR_BYTES;
573                 nand->ecc.bytes         = 3;
574                 nand->ecc.hwctl         = omap_enable_hwecc;
575                 nand->ecc.correct       = omap_correct_data;
576                 nand->ecc.calculate     = omap_calculate_ecc;
577                 /* define ecc-layout */
578                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
579                 for (i = 0; i < ecclayout->eccbytes; i++) {
580                         if (nand->options & NAND_BUSWIDTH_16)
581                                 ecclayout->eccpos[i] = i + 2;
582                         else
583                                 ecclayout->eccpos[i] = i + 1;
584                 }
585                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
586                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
587                                                 BADBLOCK_MARKER_LENGTH;
588                 break;
589
590         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
591 #ifdef CONFIG_BCH
592                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
593                 /* check ecc-scheme requirements before updating ecc info */
594                 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
595                         printf("nand: error: insufficient OOB: require=%d\n", (
596                                 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
597                         return -EINVAL;
598                 }
599                 /* check if BCH S/W library can be used for error detection */
600                 info->control = init_bch(13, 8, 0x201b);
601                 if (!info->control) {
602                         printf("nand: error: could not init_bch()\n");
603                         return -ENODEV;
604                 }
605                 /* populate ecc specific fields */
606                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
607                 nand->ecc.mode          = NAND_ECC_HW;
608                 nand->ecc.strength      = 8;
609                 nand->ecc.size          = SECTOR_BYTES;
610                 nand->ecc.bytes         = 13;
611                 nand->ecc.hwctl         = omap_enable_hwecc;
612                 nand->ecc.correct       = omap_correct_data_bch_sw;
613                 nand->ecc.calculate     = omap_calculate_ecc;
614                 /* define ecc-layout */
615                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
616                 ecclayout->eccpos[0]    = BADBLOCK_MARKER_LENGTH;
617                 for (i = 1; i < ecclayout->eccbytes; i++) {
618                         if (i % nand->ecc.bytes)
619                                 ecclayout->eccpos[i] =
620                                                 ecclayout->eccpos[i - 1] + 1;
621                         else
622                                 ecclayout->eccpos[i] =
623                                                 ecclayout->eccpos[i - 1] + 2;
624                 }
625                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
626                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
627                                                 BADBLOCK_MARKER_LENGTH;
628                 break;
629 #else
630                 printf("nand: error: CONFIG_BCH required for ECC\n");
631                 return -EINVAL;
632 #endif
633
634         case OMAP_ECC_BCH8_CODE_HW:
635 #ifdef CONFIG_NAND_OMAP_ELM
636                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
637                 /* check ecc-scheme requirements before updating ecc info */
638                 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
639                         printf("nand: error: insufficient OOB: require=%d\n", (
640                                 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
641                         return -EINVAL;
642                 }
643                 /* intialize ELM for ECC error detection */
644                 elm_init();
645                 info->control           = NULL;
646                 /* populate ecc specific fields */
647                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
648                 nand->ecc.mode          = NAND_ECC_HW;
649                 nand->ecc.strength      = 8;
650                 nand->ecc.size          = SECTOR_BYTES;
651                 nand->ecc.bytes         = 14;
652                 nand->ecc.hwctl         = omap_enable_hwecc;
653                 nand->ecc.correct       = omap_correct_data_bch;
654                 nand->ecc.calculate     = omap_calculate_ecc;
655                 nand->ecc.read_page     = omap_read_page_bch;
656                 /* define ecc-layout */
657                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
658                 for (i = 0; i < ecclayout->eccbytes; i++)
659                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
660                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
661                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
662                                                 BADBLOCK_MARKER_LENGTH;
663                 break;
664 #else
665                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
666                 return -EINVAL;
667 #endif
668
669         default:
670                 debug("nand: error: ecc scheme not enabled or supported\n");
671                 return -EINVAL;
672         }
673
674         /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
675         if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
676                 nand->ecc.layout = ecclayout;
677
678         info->ecc_scheme = ecc_scheme;
679         return 0;
680 }
681
682 #ifndef CONFIG_SPL_BUILD
683 /*
684  * omap_nand_switch_ecc - switch the ECC operation between different engines
685  * (h/w and s/w) and different algorithms (hamming and BCHx)
686  *
687  * @hardware            - true if one of the HW engines should be used
688  * @eccstrength         - the number of bits that could be corrected
689  *                        (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
690  */
691 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
692 {
693         struct nand_chip *nand;
694         struct mtd_info *mtd;
695         int err = 0;
696
697         if (nand_curr_device < 0 ||
698             nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
699             !nand_info[nand_curr_device].name) {
700                 printf("nand: error: no NAND devices found\n");
701                 return -ENODEV;
702         }
703
704         mtd = &nand_info[nand_curr_device];
705         nand = mtd->priv;
706         nand->options |= NAND_OWN_BUFFERS;
707         nand->options &= ~NAND_SUBPAGE_READ;
708         /* Setup the ecc configurations again */
709         if (hardware) {
710                 if (eccstrength == 1) {
711                         err = omap_select_ecc_scheme(nand,
712                                         OMAP_ECC_HAM1_CODE_HW,
713                                         mtd->writesize, mtd->oobsize);
714                 } else if (eccstrength == 8) {
715                         err = omap_select_ecc_scheme(nand,
716                                         OMAP_ECC_BCH8_CODE_HW,
717                                         mtd->writesize, mtd->oobsize);
718                 } else {
719                         printf("nand: error: unsupported ECC scheme\n");
720                         return -EINVAL;
721                 }
722         } else {
723                 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
724                                         mtd->writesize, mtd->oobsize);
725         }
726
727         /* Update NAND handling after ECC mode switch */
728         if (!err)
729                 err = nand_scan_tail(mtd);
730         return err;
731 }
732 #endif /* CONFIG_SPL_BUILD */
733
734 /*
735  * Board-specific NAND initialization. The following members of the
736  * argument are board-specific:
737  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
738  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
739  * - cmd_ctrl: hardwarespecific function for accesing control-lines
740  * - waitfunc: hardwarespecific function for accesing device ready/busy line
741  * - ecc.hwctl: function to enable (reset) hardware ecc generator
742  * - ecc.mode: mode of ecc, see defines
743  * - chip_delay: chip dependent delay for transfering data from array to
744  *   read regs (tR)
745  * - options: various chip options. They can partly be set to inform
746  *   nand_scan about special functionality. See the defines for further
747  *   explanation
748  */
749 int board_nand_init(struct nand_chip *nand)
750 {
751         int32_t gpmc_config = 0;
752         cs = 0;
753         int err = 0;
754         /*
755          * xloader/Uboot's gpmc configuration would have configured GPMC for
756          * nand type of memory. The following logic scans and latches on to the
757          * first CS with NAND type memory.
758          * TBD: need to make this logic generic to handle multiple CS NAND
759          * devices.
760          */
761         while (cs < GPMC_MAX_CS) {
762                 /* Check if NAND type is set */
763                 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
764                         /* Found it!! */
765                         break;
766                 }
767                 cs++;
768         }
769         if (cs >= GPMC_MAX_CS) {
770                 printf("nand: error: Unable to find NAND settings in "
771                         "GPMC Configuration - quitting\n");
772                 return -ENODEV;
773         }
774
775         gpmc_config = readl(&gpmc_cfg->config);
776         /* Disable Write protect */
777         gpmc_config |= 0x10;
778         writel(gpmc_config, &gpmc_cfg->config);
779
780         nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
781         nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
782         nand->priv      = &omap_nand_info;
783         nand->cmd_ctrl  = omap_nand_hwcontrol;
784         nand->options   |= NAND_NO_PADDING | NAND_CACHEPRG;
785         /* If we are 16 bit dev, our gpmc config tells us that */
786         if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
787                 nand->options |= NAND_BUSWIDTH_16;
788
789         nand->chip_delay = 100;
790         nand->ecc.layout = &omap_ecclayout;
791
792         /* select ECC scheme */
793 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
794         err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
795                         CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
796 #else
797         /* pagesize and oobsize are not required to configure sw ecc-scheme */
798         err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
799                         0, 0);
800 #endif
801         if (err)
802                 return err;
803
804 #ifdef CONFIG_SPL_BUILD
805         if (nand->options & NAND_BUSWIDTH_16)
806                 nand->read_buf = nand_read_buf16;
807         else
808                 nand->read_buf = nand_read_buf;
809         nand->dev_ready = omap_spl_dev_ready;
810 #endif
811
812         return 0;
813 }