]> git.kernelconcepts.de Git - karo-tx-uboot.git/blobdiff - arch/arm/cpu/arm926ejs/mx28/timer.c
Unified codebase for TX28, TX48, TX51, TX53
[karo-tx-uboot.git] / arch / arm / cpu / arm926ejs / mx28 / timer.c
index 5b73f4a2b3e1a4a297f131b0fd67bef610585018..116932cb56d843219248221e06a193cda9cedbf9 100644 (file)
 
 DECLARE_GLOBAL_DATA_PTR;
 
-#define timestamp (gd->tbl)
-#define lastdec (gd->lastinc)
+/* Enable this to verify that the code can correctly
+ * handle the timer rollover
+ */
+/* #define DEBUG_TIMER_WRAP */
+
+#ifdef DEBUG_TIMER_WRAP
+/*
+ * Let the timer wrap 15 seconds after start to catch misbehaving
+ * timer related code early
+ */
+#define TIMER_START            (-time_to_tick(15 * CONFIG_SYS_HZ))
+#else
+#define TIMER_START            0UL
+#endif
 
 /*
  * This driver uses 1kHz clock source.
@@ -54,12 +66,6 @@ static inline unsigned long time_to_tick(unsigned long time)
        return time * (MX28_INCREMENTER_HZ / CONFIG_SYS_HZ);
 }
 
-/* Calculate how many ticks happen in "us" microseconds */
-static inline unsigned long us_to_tick(unsigned long us)
-{
-       return (us * MX28_INCREMENTER_HZ) / 1000000;
-}
-
 int timer_init(void)
 {
        struct mx28_timrot_regs *timrot_regs =
@@ -76,34 +82,70 @@ int timer_init(void)
                TIMROT_TIMCTRLn_SELECT_1KHZ_XTAL,
                &timrot_regs->hw_timrot_timctrl0);
 
-       /* Set fixed_count to maximal value */
+#ifndef DEBUG_TIMER_WRAP
+       /* Set fixed_count to maximum value */
        writel(TIMER_LOAD_VAL, &timrot_regs->hw_timrot_fixed_count0);
-
+#else
+       /* Set fixed_count so that the counter will wrap after 20 seconds */
+       writel(20 * MX28_INCREMENTER_HZ,
+               &timrot_regs->hw_timrot_fixed_count0);
+       gd->lastinc = TIMER_LOAD_VAL - 20 * MX28_INCREMENTER_HZ;
+#endif
+#ifdef DEBUG_TIMER_WRAP
+       /* Make the usec counter roll over 30 seconds after startup */
+       writel(-30000000, MX28_HW_DIGCTL_MICROSECONDS);
+#endif
+       writel(TIMROT_TIMCTRLn_UPDATE,
+               &timrot_regs->hw_timrot_timctrl0_clr);
+#ifdef DEBUG_TIMER_WRAP
+       /* Set fixed_count to maximal value for subsequent loads */
+       writel(TIMER_LOAD_VAL, &timrot_regs->hw_timrot_fixed_count0);
+#endif
+       gd->timer_rate_hz = MX28_INCREMENTER_HZ;
+       gd->tbl = TIMER_START;
+       gd->tbu = 0;
        return 0;
 }
 
+/* We use the HW_DIGCTL_MICROSECONDS register for sub-millisecond timer. */
+#define        MX28_HW_DIGCTL_MICROSECONDS     0x8001c0c0
+
+void __udelay(unsigned long usec)
+{
+       uint32_t start = readl(MX28_HW_DIGCTL_MICROSECONDS);
+
+       while (readl(MX28_HW_DIGCTL_MICROSECONDS) - start <= usec)
+               /* use '<=' to guarantee a delay of _at least_
+                * the given number of microseconds.
+                * No need for fancy rollover checks
+                * Two's complement arithmetic applied correctly
+                * does everything that's needed  automagically!
+                */
+               ;
+}
+
+/* Note: This function works correctly for TIMER_LOAD_VAL == 0xffffffff!
+ * The rollover is handled automagically due to the properties of
+ * two's complement arithmetic.
+ * For any other value of TIMER_LOAD_VAL the calculations would have
+ * to be done modulus(TIMER_LOAD_VAL + 1).
+ */
 unsigned long long get_ticks(void)
 {
        struct mx28_timrot_regs *timrot_regs =
                (struct mx28_timrot_regs *)MXS_TIMROT_BASE;
-
-       /* Current tick value */
-       uint32_t now = readl(&timrot_regs->hw_timrot_running_count0);
-
-       if (lastdec >= now) {
-               /*
-                * normal mode (non roll)
-                * move stamp forward with absolut diff ticks
-                */
-               timestamp += (lastdec - now);
-       } else {
-               /* we have rollover of decrementer */
-               timestamp += (TIMER_LOAD_VAL - now) + lastdec;
-
-       }
-       lastdec = now;
-
-       return timestamp;
+       /* The timer is counting down, so subtract the register value from
+        * the counter period length to get an incrementing timestamp
+        */
+       unsigned long now = -readl(&timrot_regs->hw_timrot_running_count0);
+       ulong inc = now - gd->lastinc;
+
+       gd->tbl += inc;
+       gd->lastinc = now;
+       /* Since the get_timer() function only uses a 32bit value
+        * it doesn't make sense to return a real 64 bit value here.
+        */
+       return gd->tbl;
 }
 
 ulong get_timer_masked(void)
@@ -113,44 +155,15 @@ ulong get_timer_masked(void)
 
 ulong get_timer(ulong base)
 {
-       return get_timer_masked() - base;
-}
-
-/* We use the HW_DIGCTL_MICROSECONDS register for sub-millisecond timer. */
-#define        MX28_HW_DIGCTL_MICROSECONDS     0x8001c0c0
-
-void __udelay(unsigned long usec)
-{
-       uint32_t old, new, incr;
-       uint32_t counter = 0;
-
-       old = readl(MX28_HW_DIGCTL_MICROSECONDS);
-
-       while (counter < usec) {
-               new = readl(MX28_HW_DIGCTL_MICROSECONDS);
-
-               /* Check if the timer wrapped. */
-               if (new < old) {
-                       incr = 0xffffffff - old;
-                       incr += new;
-               } else {
-                       incr = new - old;
-               }
-
-               /*
-                * Check if we are close to the maximum time and the counter
-                * would wrap if incremented. If that's the case, break out
-                * from the loop as the requested delay time passed.
-                */
-               if (counter + incr < counter)
-                       break;
-
-               counter += incr;
-               old = new;
-       }
+       /* NOTE: time_to_tick(base) is required to correctly handle rollover! */
+       return tick_to_time(get_ticks() - time_to_tick(base));
 }
 
+/*
+ * This function is derived from PowerPC code (timebase clock frequency).
+ * On ARM it returns the number of timer ticks per second.
+ */
 ulong get_tbclk(void)
 {
-       return MX28_INCREMENTER_HZ;
+       return gd->timer_rate_hz;
 }