]> git.kernelconcepts.de Git - karo-tx-uboot.git/blobdiff - common/cmd_nand.c
Merge with /home/wd/git/u-boot/testing-NAND/ to add new NAND handling.
[karo-tx-uboot.git] / common / cmd_nand.c
index ae4c68ac1f4a200cd341f277c51739ac2febc1b6..152873f1ae1069c2057c1cd6d05abcfa02c3e6c6 100644 (file)
@@ -1,15 +1,18 @@
 /*
- * Rick Bronson and Pantelis Antoniou
+ * Driver for NAND support, Rick Bronson
+ * borrowed heavily from:
+ * (c) 1999 Machine Vision Holdings, Inc.
+ * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
+ *
+ * Added 16-bit nand support
+ * (C) 2004 Texas Instruments
  */
 
 #include <common.h>
-
-#if (CONFIG_COMMANDS & CFG_CMD_NAND)
-
 #include <command.h>
-#include <watchdog.h>
 #include <malloc.h>
-#include <asm/byteorder.h>
+#include <asm/io.h>
+#include <watchdog.h>
 
 #ifdef CONFIG_SHOW_BOOT_PROGRESS
 # include <status_led.h>
 # define SHOW_BOOT_PROGRESS(arg)
 #endif
 
-#include <jffs2/jffs2.h>
-#include <nand.h>
-
-extern nand_info_t nand_info[];       /* info for NAND chips */
+#if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CONFIG_NEW_NAND_CODE)
 
-static int nand_dump_oob(nand_info_t *nand, ulong off)
-{
-       return 0;
-}
-
-static int nand_dump(nand_info_t *nand, ulong off)
-{
-       int i;
-       u_char *buf, *p;
-
-       buf = malloc(nand->oobblock + nand->oobsize);
-       if (!buf) {
-               puts("No memory for page buffer\n");
-               return 1;
-       }
-       off &= ~(nand->oobblock - 1);
-       i = nand_read_raw(nand, buf, off, nand->oobblock, nand->oobsize);
-       if (i < 0) {
-               printf("Error (%d) reading page %08x\n", i, off);
-               free(buf);
-               return 1;
-       }
-       printf("Page %08x dump:\n", off);
-       i = nand->oobblock >> 4; p = buf;
-       while (i--) {
-               printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x"
-                       "  %02x %02x %02x %02x %02x %02x %02x %02x\n",
-                       p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
-                       p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
-               p += 16;
-       }
-       puts("OOB:\n");
-       i = nand->oobsize >> 3;
-       while (i--) {
-               printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x\n",
-                       p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
-               p += 8;
-       }
-       free(buf);
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ids.h>
+#include <jffs2/jffs2.h>
 
-       return 0;
-}
+#ifdef CONFIG_OMAP1510
+void archflashwp(void *archdata, int wp);
+#endif
 
-/* ------------------------------------------------------------------------- */
+#define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1)))
 
-static void
-arg_off_size(int argc, char *argv[], ulong *off, ulong *size, ulong totsize)
-{
-       *off = 0;
-       *size = 0;
+/*
+ * Definition of the out of band configuration structure
+ */
+struct nand_oob_config {
+       int ecc_pos[6];         /* position of ECC bytes inside oob */
+       int badblock_pos;       /* position of bad block flag inside oob -1 = inactive */
+       int eccvalid_pos;       /* position of ECC valid flag inside oob -1 = inactive */
+} oob_config = { {0}, 0, 0};
+
+#undef NAND_DEBUG
+#undef PSYCHO_DEBUG
+
+/* ****************** WARNING *********************
+ * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
+ * erase (or at least attempt to erase) blocks that are marked
+ * bad. This can be very handy if you are _sure_ that the block
+ * is OK, say because you marked a good block bad to test bad
+ * block handling and you are done testing, or if you have
+ * accidentally marked blocks bad.
+ *
+ * Erasing factory marked bad blocks is a _bad_ idea. If the
+ * erase succeeds there is no reliable way to find them again,
+ * and attempting to program or erase bad blocks can affect
+ * the data in _other_ (good) blocks.
+ */
+#define         ALLOW_ERASE_BAD_DEBUG 0
 
-#if defined(CONFIG_JFFS2_NAND) && defined(CFG_JFFS_CUSTOM_PART)
-       if (argc >= 1 && strcmp(argv[0], "partition") == 0) {
-               int part_num;
-               struct part_info *part;
-               const char *partstr;
+#define CONFIG_MTD_NAND_ECC  /* enable ECC */
+#define CONFIG_MTD_NAND_ECC_JFFS2
 
-               if (argc >= 2)
-                       partstr = argv[1];
-               else
-                       partstr = getenv("partition");
+/* bits for nand_rw() `cmd'; or together as needed */
+#define NANDRW_READ    0x01
+#define NANDRW_WRITE   0x00
+#define NANDRW_JFFS2   0x02
+#define NANDRW_JFFS2_SKIP      0x04
 
-               if (partstr)
-                       part_num = (int)simple_strtoul(partstr, NULL, 10);
-               else
-                       part_num = 0;
-
-               part = jffs2_part_info(part_num);
-               if (part == NULL) {
-                       printf("\nInvalid partition %d\n", part_num);
-                       return;
-               }
-               *size = part->size;
-               *off = (ulong)part->offset;
-       } else
+/*
+ * Function Prototypes
+ */
+static void nand_print(struct nand_chip *nand);
+int nand_rw (struct nand_chip* nand, int cmd,
+           size_t start, size_t len,
+           size_t * retlen, u_char * buf);
+int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);
+static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
+                size_t * retlen, u_char *buf, u_char *ecc_code);
+static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
+                          size_t * retlen, const u_char * buf, u_char * ecc_code);
+static void nand_print_bad(struct nand_chip *nand);
+static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
+                size_t * retlen, u_char * buf);
+static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
+                size_t * retlen, const u_char * buf);
+static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
+#ifdef CONFIG_MTD_NAND_ECC
+static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
 #endif
-       {
-               if (argc >= 1)
-                       *off = (ulong)simple_strtoul(argv[0], NULL, 16);
-               else
-                       *off = 0;
 
-               if (argc >= 2)
-                       *size = (ulong)simple_strtoul(argv[1], NULL, 16);
-               else
-                       *size = totsize - *off;
+struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
 
-       }
+/* Current NAND Device */
+static int curr_device = -1;
 
-}
+/* ------------------------------------------------------------------------- */
 
-int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
+int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
 {
-       int i, dev, ret;
-       ulong addr, off, size;
-       char *cmd, *s;
-       nand_info_t *nand;
+    int rcode = 0;
 
-       /* at least two arguments please */
-       if (argc < 2)
-               goto usage;
-
-       cmd = argv[1];
+    switch (argc) {
+    case 0:
+    case 1:
+       printf ("Usage:\n%s\n", cmdtp->usage);
+       return 1;
+    case 2:
+       if (strcmp(argv[1],"info") == 0) {
+               int i;
 
-       if (strcmp(cmd, "info") == 0) {
+               putc ('\n');
 
-               putc('\n');
-               for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
-                       if (nand_info[i].name)
-                               printf("Device %d: %s\n", i, nand_info[i].name);
+               for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) {
+                       if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN)
+                               continue; /* list only known devices */
+                       printf ("Device %d: ", i);
+                       nand_print(&nand_dev_desc[i]);
                }
                return 0;
-       }
 
-       if (strcmp(cmd, "device") == 0) {
-
-               if (argc < 3) {
-                       if ((nand_curr_device < 0) ||
-                           (nand_curr_device >= CFG_MAX_NAND_DEVICE))
-                               puts("\nno devices available\n");
-                       else
-                               printf("\nDevice %d: %s\n", nand_curr_device,
-                                       nand_info[nand_curr_device].name);
-                       return 0;
-               }
-               dev = (int)simple_strtoul(argv[2], NULL, 10);
-               if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
-                       puts("No such device\n");
+       } else if (strcmp(argv[1],"device") == 0) {
+               if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
+                       puts ("\nno devices available\n");
                        return 1;
                }
-               printf("Device %d: %s", dev, nand_info[dev].name);
-               puts("... is now current device\n");
-               nand_curr_device = dev;
+               printf ("\nDevice %d: ", curr_device);
+               nand_print(&nand_dev_desc[curr_device]);
                return 0;
-       }
-
-       if (strcmp(cmd, "bad") != 0 && strcmp(cmd, "erase") != 0 &&
-           strncmp(cmd, "dump", 4) != 0 &&
-           strncmp(cmd, "read", 4) != 0 && strncmp(cmd, "write", 5) != 0
-#ifdef CONFIG_MTD_NAND_UNSAFE
-           && strcmp(cmd, "scrub") != 0 && strcmp(cmd, "biterr") != 0
-           && strcmp(cmd, "markbad") != 0
-#endif
-           )
-               goto usage;
-
-       /* the following commands operate on the current device */
-       if (nand_curr_device < 0 || nand_curr_device >= CFG_MAX_NAND_DEVICE ||
-           !nand_info[nand_curr_device].name) {
-               puts("\nno devices available\n");
-               return 1;
-       }
-       nand = &nand_info[nand_curr_device];
 
-       if (strcmp(cmd, "bad") == 0) {
-               printf("\nDevice %d bad blocks:\n", nand_curr_device);
-               for (off = 0; off < nand->size; off += nand->erasesize)
-                       if (nand_block_isbad(nand, off))
-                               printf("  %08x\n", off);
+       } else if (strcmp(argv[1],"bad") == 0) {
+               if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
+                       puts ("\nno devices available\n");
+                       return 1;
+               }
+               printf ("\nDevice %d bad blocks:\n", curr_device);
+               nand_print_bad(&nand_dev_desc[curr_device]);
                return 0;
-       }
-
-       if (strcmp(cmd, "erase") == 0
-#ifdef CONFIG_MTD_NAND_UNSAFE
-           || strcmp(cmd, "scrub") == 0
-#endif
-           ) {
 
-#ifdef CONFIG_MTD_NAND_UNSAFE
-               i = strcmp(cmd, "scrub") == 0;  /* 1 scrub, 0 = erase */
-#endif
+       }
+       printf ("Usage:\n%s\n", cmdtp->usage);
+       return 1;
+    case 3:
+       if (strcmp(argv[1],"device") == 0) {
+               int dev = (int)simple_strtoul(argv[2], NULL, 10);
 
-               arg_off_size(argc - 2, argv + 2, &off, &size, nand->size);
-               if (off == 0 && size == 0)
+               printf ("\nDevice %d: ", dev);
+               if (dev >= CFG_MAX_NAND_DEVICE) {
+                       puts ("unknown device\n");
                        return 1;
+               }
+               nand_print(&nand_dev_desc[dev]);
+               /*nand_print (dev);*/
 
-               printf("\nNAND %s: device %d offset 0x%x, size 0x%x ",
-#ifdef CONFIG_MTD_NAND_UNSAFE
-                      i ? "scrub" :
-#endif
-                      "erase",
-                      nand_curr_device, off, size);
+               if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) {
+                       return 1;
+               }
 
-#ifdef CONFIG_MTD_NAND_UNSAFE
-               if (i)
-                       ret = nand_scrub(nand, off, size);
-               else
-#endif
-                       ret = nand_erase(nand, off, size);
+               curr_device = dev;
 
-               printf("%s\n", ret ? "ERROR" : "OK");
+               puts ("... is now current device\n");
 
-               return ret == 0 ? 0 : 1;
+               return 0;
        }
+       else if (strcmp(argv[1],"erase") == 0 && strcmp(argv[2], "clean") == 0) {
+               struct nand_chip* nand = &nand_dev_desc[curr_device];
+               ulong off = 0;
+               ulong size = nand->totlen;
+               int ret;
 
-       if (strncmp(cmd, "dump", 4) == 0) {
-               if (argc < 3)
-                       goto usage;
+               printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
+                       curr_device, off, size);
 
-               s = strchr(cmd, '.');
-               off = (int)simple_strtoul(argv[2], NULL, 16);
+               ret = nand_erase (nand, off, size, 1);
 
-               if (s != NULL && strcmp(s, ".oob") == 0)
-                       ret = nand_dump_oob(nand, off);
-               else
-                       ret = nand_dump(nand, off);
-
-               return ret == 0 ? 1 : 0;
+               printf("%s\n", ret ? "ERROR" : "OK");
 
+               return ret;
        }
 
-       /* read write */
-       if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {
-               if (argc < 4)
-                       goto usage;
-/*
-               s = strchr(cmd, '.');
-               clean = CLEAN_NONE;
-               if (s != NULL) {
-                       if (strcmp(s, ".jffs2") == 0 || strcmp(s, ".e") == 0
-                           || strcmp(s, ".i"))
-                               clean = CLEAN_JFFS2;
-               }
-*/
-               addr = (ulong)simple_strtoul(argv[2], NULL, 16);
-
-               arg_off_size(argc - 3, argv + 3, &off, &size, nand->size);
-               if (off == 0 && size == 0)
+       printf ("Usage:\n%s\n", cmdtp->usage);
+       return 1;
+    default:
+       /* at least 4 args */
+
+       if (strncmp(argv[1], "read", 4) == 0 ||
+           strncmp(argv[1], "write", 5) == 0) {
+               ulong addr = simple_strtoul(argv[2], NULL, 16);
+               ulong off  = simple_strtoul(argv[3], NULL, 16);
+               ulong size = simple_strtoul(argv[4], NULL, 16);
+               int cmd    = (strncmp(argv[1], "read", 4) == 0) ?
+                               NANDRW_READ : NANDRW_WRITE;
+               int ret, total;
+               char* cmdtail = strchr(argv[1], '.');
+
+               if (cmdtail && !strncmp(cmdtail, ".oob", 2)) {
+                       /* read out-of-band data */
+                       if (cmd & NANDRW_READ) {
+                               ret = nand_read_oob(nand_dev_desc + curr_device,
+                                                   off, size, (size_t *)&total,
+                                                   (u_char*)addr);
+                       }
+                       else {
+                               ret = nand_write_oob(nand_dev_desc + curr_device,
+                                                    off, size, (size_t *)&total,
+                                                    (u_char*)addr);
+                       }
+                       return ret;
+               }
+               else if (cmdtail && !strncmp(cmdtail, ".jffs2", 2))
+                       cmd |= NANDRW_JFFS2;    /* skip bad blocks */
+               else if (cmdtail && !strncmp(cmdtail, ".jffs2s", 2)) {
+                       cmd |= NANDRW_JFFS2;    /* skip bad blocks (on read too) */
+                       if (cmd & NANDRW_READ)
+                               cmd |= NANDRW_JFFS2_SKIP;       /* skip bad blocks (on read too) */
+               }
+#ifdef SXNI855T
+               /* need ".e" same as ".j" for compatibility with older units */
+               else if (cmdtail && !strcmp(cmdtail, ".e"))
+                       cmd |= NANDRW_JFFS2;    /* skip bad blocks */
+#endif
+#ifdef CFG_NAND_SKIP_BAD_DOT_I
+               /* need ".i" same as ".jffs2s" for compatibility with older units (esd) */
+               /* ".i" for image -> read skips bad block (no 0xff) */
+               else if (cmdtail && !strcmp(cmdtail, ".i")) {
+                       cmd |= NANDRW_JFFS2;    /* skip bad blocks (on read too) */
+                       if (cmd & NANDRW_READ)
+                               cmd |= NANDRW_JFFS2_SKIP;       /* skip bad blocks (on read too) */
+               }
+#endif /* CFG_NAND_SKIP_BAD_DOT_I */
+               else if (cmdtail) {
+                       printf ("Usage:\n%s\n", cmdtp->usage);
                        return 1;
+               }
 
-               i = strncmp(cmd, "read", 4) == 0;       /* 1 = read, 0 = write */
-               printf("\nNAND %s: device %d offset %u, size %u ... ",
-                      i ? "read" : "write", nand_curr_device, off, size);
+               printf ("\nNAND %s: device %d offset %ld, size %ld ... ",
+                       (cmd & NANDRW_READ) ? "read" : "write",
+                       curr_device, off, size);
 
-               if (i)
-                       ret = nand_read(nand, off, &size, (u_char *)addr);
-               else
-                       ret = nand_write(nand, off, &size, (u_char *)addr);
+               ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size,
+                            (size_t *)&total, (u_char*)addr);
 
-               printf(" %d bytes %s: %s\n", size,
-                      i ? "read" : "written", ret ? "ERROR" : "OK");
+               printf (" %d bytes %s: %s\n", total,
+                       (cmd & NANDRW_READ) ? "read" : "written",
+                       ret ? "ERROR" : "OK");
 
-               return ret == 0 ? 0 : 1;
-       }
-#ifdef CONFIG_MTD_NAND_UNSAFE
-       if (strcmp(cmd, "markbad") == 0 || strcmp(cmd, "biterr") == 0) {
-               if (argc < 3)
-                       goto usage;
+               return ret;
+       } else if (strcmp(argv[1],"erase") == 0 &&
+                  (argc == 4 || strcmp("clean", argv[2]) == 0)) {
+               int clean = argc == 5;
+               ulong off = simple_strtoul(argv[2 + clean], NULL, 16);
+               ulong size = simple_strtoul(argv[3 + clean], NULL, 16);
+               int ret;
 
-               i = strcmp(cmd, "biterr") == 0;
+               printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
+                       curr_device, off, size);
 
-               off = (int)simple_strtoul(argv[2], NULL, 16);
+               ret = nand_erase (nand_dev_desc + curr_device, off, size, clean);
 
-               if (i)
-                       ret = nand_make_bit_error(nand, off);
-               else
-                       ret = nand_mark_bad(nand, off);
+               printf("%s\n", ret ? "ERROR" : "OK");
 
-               return ret == 0 ? 0 : 1;
+               return ret;
+       } else {
+               printf ("Usage:\n%s\n", cmdtp->usage);
+               rcode = 1;
        }
-#endif
 
-usage:
-       printf("Usage:\n%s\n", cmdtp->usage);
-       return 1;
+       return rcode;
+    }
 }
 
-U_BOOT_CMD(nand, 5, 1, do_nand,
+U_BOOT_CMD(
+       nand,   5,      1,      do_nand,
        "nand    - NAND sub-system\n",
-       "info                  - show available NAND devices\n"
-       "nand device [dev]     - show or set current device\n"
-       "nand read[.jffs2]     - addr off size\n"
-       "nand write[.jffs2]    - addr off size - read/write `size' bytes starting\n"
+       "info  - show available NAND devices\n"
+       "nand device [dev] - show or set current device\n"
+       "nand read[.jffs2[s]]  addr off size\n"
+       "nand write[.jffs2] addr off size - read/write `size' bytes starting\n"
        "    at offset `off' to/from memory address `addr'\n"
        "nand erase [clean] [off size] - erase `size' bytes from\n"
        "    offset `off' (entire device if not specified)\n"
        "nand bad - show bad blocks\n"
-       "nand dump[.oob] off - dump page\n"
-       "nand scrub - really clean NAND erasing bad blocks (UNSAFE)\n"
-       "nand markbad off - mark bad block at offset (UNSAFE)\n"
-       "nand biterr off - make a bit error at offset (UNSAFE)\n");
+       "nand read.oob addr off size - read out-of-band data\n"
+       "nand write.oob addr off size - read out-of-band data\n"
+);
 
-int do_nandboot(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
+int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
 {
        char *boot_device = NULL;
        char *ep;
        int dev;
-       int r;
-       ulong addr, cnt, offset = 0;
+       ulong cnt;
+       ulong addr;
+       ulong offset = 0;
        image_header_t *hdr;
-       nand_info_t *nand;
-
+       int rcode = 0;
        switch (argc) {
        case 1:
                addr = CFG_LOAD_ADDR;
-               boot_device = getenv("bootdevice");
+               boot_device = getenv ("bootdevice");
                break;
        case 2:
                addr = simple_strtoul(argv[1], NULL, 16);
-               boot_device = getenv("bootdevice");
+               boot_device = getenv ("bootdevice");
                break;
        case 3:
                addr = simple_strtoul(argv[1], NULL, 16);
@@ -334,53 +316,55 @@ int do_nandboot(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
                offset = simple_strtoul(argv[3], NULL, 16);
                break;
        default:
-               printf("Usage:\n%s\n", cmdtp->usage);
-               SHOW_BOOT_PROGRESS(-1);
+               printf ("Usage:\n%s\n", cmdtp->usage);
+               SHOW_BOOT_PROGRESS (-1);
                return 1;
        }
 
        if (!boot_device) {
-               puts("\n** No boot device **\n");
-               SHOW_BOOT_PROGRESS(-1);
+               puts ("\n** No boot device **\n");
+               SHOW_BOOT_PROGRESS (-1);
                return 1;
        }
 
        dev = simple_strtoul(boot_device, &ep, 16);
 
-       if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
-               printf("\n** Device %d not available\n", dev);
-               SHOW_BOOT_PROGRESS(-1);
+       if ((dev >= CFG_MAX_NAND_DEVICE) ||
+           (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) {
+               printf ("\n** Device %d not available\n", dev);
+               SHOW_BOOT_PROGRESS (-1);
                return 1;
        }
 
-       nand = &nand_info[dev];
-       printf("\nLoading from device %d: %s (offset 0x%lx)\n",
-              dev, nand->name, offset);
+       printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n",
+               dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
+               offset);
 
-       cnt = nand->oobblock;
-       r = nand_read(nand, offset, &cnt, (u_char *) addr);
-       if (r) {
-               printf("** Read error on %d\n", dev);
-               SHOW_BOOT_PROGRESS(-1);
+       if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset,
+                   SECTORSIZE, NULL, (u_char *)addr)) {
+               printf ("** Read error on %d\n", dev);
+               SHOW_BOOT_PROGRESS (-1);
                return 1;
        }
 
-       hdr = (image_header_t *) addr;
+       hdr = (image_header_t *)addr;
 
-       if (ntohl(hdr->ih_magic) != IH_MAGIC) {
-               printf("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
-               SHOW_BOOT_PROGRESS(-1);
-               return 1;
-       }
+       if (ntohl(hdr->ih_magic) == IH_MAGIC) {
 
-       print_image_hdr(hdr);
+               print_image_hdr (hdr);
 
-       cnt = (ntohl(hdr->ih_size) + sizeof (image_header_t));
+               cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t));
+               cnt -= SECTORSIZE;
+       } else {
+               printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
+               SHOW_BOOT_PROGRESS (-1);
+               return 1;
+       }
 
-       r = nand_read(nand, offset, &cnt, (u_char *) addr);
-       if (r) {
-               printf("** Read error on %d\n", dev);
-               SHOW_BOOT_PROGRESS(-1);
+       if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset + SECTORSIZE, cnt,
+                   NULL, (u_char *)(addr+SECTORSIZE))) {
+               printf ("** Read error on %d\n", dev);
+               SHOW_BOOT_PROGRESS (-1);
                return 1;
        }
 
@@ -389,24 +373,1526 @@ int do_nandboot(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
        load_addr = addr;
 
        /* Check if we should attempt an auto-start */
-       if (((ep = getenv("autostart")) != NULL) && (strcmp(ep, "yes") == 0)) {
+       if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
                char *local_args[2];
-               extern int do_bootm(cmd_tbl_t *, int, int, char *[]);
+               extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
 
                local_args[0] = argv[0];
                local_args[1] = NULL;
 
-               printf("Automatic boot of image at addr 0x%08lx ...\n", addr);
+               printf ("Automatic boot of image at addr 0x%08lx ...\n", addr);
+
+               do_bootm (cmdtp, 0, 1, local_args);
+               rcode = 1;
+       }
+       return rcode;
+}
+
+U_BOOT_CMD(
+       nboot,  4,      1,      do_nandboot,
+       "nboot   - boot from NAND device\n",
+       "loadAddr dev\n"
+);
 
-               do_bootm(cmdtp, 0, 1, local_args);
+/* returns 0 if block containing pos is OK:
+ *             valid erase block and
+ *             not marked bad, or no bad mark position is specified
+ * returns 1 if marked bad or otherwise invalid
+ */
+int check_block (struct nand_chip *nand, unsigned long pos)
+{
+       size_t retlen;
+       uint8_t oob_data;
+       uint16_t oob_data16[6];
+       int page0 = pos & (-nand->erasesize);
+       int page1 = page0 + nand->oobblock;
+       int badpos = oob_config.badblock_pos;
+
+       if (pos >= nand->totlen)
                return 1;
+
+       if (badpos < 0)
+               return 0;       /* no way to check, assume OK */
+
+       if (nand->bus16) {
+               if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
+                   || (oob_data16[2] & 0xff00) != 0xff00)
+                       return 1;
+               if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
+                   || (oob_data16[2] & 0xff00) != 0xff00)
+                       return 1;
+       } else {
+               /* Note - bad block marker can be on first or second page */
+               if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data)
+                   || oob_data != 0xff
+                   || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data)
+                   || oob_data != 0xff)
+                       return 1;
        }
+
        return 0;
 }
 
-U_BOOT_CMD(nboot, 4, 1, do_nandboot,
-       "nboot   - boot from NAND device\n", "loadAddr dev\n");
+/* print bad blocks in NAND flash */
+static void nand_print_bad(struct nand_chip* nand)
+{
+       unsigned long pos;
+
+       for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
+               if (check_block(nand, pos))
+                       printf(" 0x%8.8lx\n", pos);
+       }
+       puts("\n");
+}
+
+/* cmd: 0: NANDRW_WRITE                        write, fail on bad block
+ *     1: NANDRW_READ                  read, fail on bad block
+ *     2: NANDRW_WRITE | NANDRW_JFFS2  write, skip bad blocks
+ *     3: NANDRW_READ | NANDRW_JFFS2   read, data all 0xff for bad blocks
+ *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
+ */
+int nand_rw (struct nand_chip* nand, int cmd,
+           size_t start, size_t len,
+           size_t * retlen, u_char * buf)
+{
+       int ret = 0, n, total = 0;
+       char eccbuf[6];
+       /* eblk (once set) is the start of the erase block containing the
+        * data being processed.
+        */
+       unsigned long eblk = ~0;        /* force mismatch on first pass */
+       unsigned long erasesize = nand->erasesize;
+
+       while (len) {
+               if ((start & (-erasesize)) != eblk) {
+                       /* have crossed into new erase block, deal with
+                        * it if it is sure marked bad.
+                        */
+                       eblk = start & (-erasesize); /* start of block */
+                       if (check_block(nand, eblk)) {
+                               if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
+                                       while (len > 0 &&
+                                              start - eblk < erasesize) {
+                                               *(buf++) = 0xff;
+                                               ++start;
+                                               ++total;
+                                               --len;
+                                       }
+                                       continue;
+                               } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
+                                       start += erasesize;
+                                       continue;
+                               } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
+                                       /* skip bad block */
+                                       start += erasesize;
+                                       continue;
+                               } else {
+                                       ret = 1;
+                                       break;
+                               }
+                       }
+               }
+               /* The ECC will not be calculated correctly if
+                  less than 512 is written or read */
+               /* Is request at least 512 bytes AND it starts on a proper boundry */
+               if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
+                       printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
+
+               if (cmd & NANDRW_READ) {
+                       ret = nand_read_ecc(nand, start,
+                                          min(len, eblk + erasesize - start),
+                                          (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
+               } else {
+                       ret = nand_write_ecc(nand, start,
+                                           min(len, eblk + erasesize - start),
+                                           (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
+               }
+
+               if (ret)
+                       break;
+
+               start  += n;
+               buf   += n;
+               total += n;
+               len   -= n;
+       }
+       if (retlen)
+               *retlen = total;
+
+       return ret;
+}
+
+static void nand_print(struct nand_chip *nand)
+{
+       if (nand->numchips > 1) {
+               printf("%s at 0x%lx,\n"
+                      "\t  %d chips %s, size %d MB, \n"
+                      "\t  total size %ld MB, sector size %ld kB\n",
+                      nand->name, nand->IO_ADDR, nand->numchips,
+                      nand->chips_name, 1 << (nand->chipshift - 20),
+                      nand->totlen >> 20, nand->erasesize >> 10);
+       }
+       else {
+               printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
+               print_size(nand->totlen, ", ");
+               print_size(nand->erasesize, " sector)\n");
+       }
+}
+
+/* ------------------------------------------------------------------------- */
+
+static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
+{
+       /* This is inline, to optimise the common case, where it's ready instantly */
+       int ret = 0;
+
+#ifdef NAND_NO_RB      /* in config file, shorter delays currently wrap accesses */
+       if(ale_wait)
+               NAND_WAIT_READY(nand);  /* do the worst case 25us wait */
+       else
+               udelay(10);
+#else  /* has functional r/b signal */
+       NAND_WAIT_READY(nand);
+#endif
+       return ret;
+}
+
+/* NanD_Command: Send a flash command to the flash chip */
+
+static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
+{
+       unsigned long nandptr = nand->IO_ADDR;
+
+       /* Assert the CLE (Command Latch Enable) line to the flash chip */
+       NAND_CTL_SETCLE(nandptr);
+
+       /* Send the command */
+       WRITE_NAND_COMMAND(command, nandptr);
+
+       /* Lower the CLE line */
+       NAND_CTL_CLRCLE(nandptr);
+
+#ifdef NAND_NO_RB
+       if(command == NAND_CMD_RESET){
+               u_char ret_val;
+               NanD_Command(nand, NAND_CMD_STATUS);
+               do {
+                       ret_val = READ_NAND(nandptr);/* wait till ready */
+               } while((ret_val & 0x40) != 0x40);
+       }
+#endif
+       return NanD_WaitReady(nand, 0);
+}
+
+/* NanD_Address: Set the current address for the flash chip */
+
+static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
+{
+       unsigned long nandptr;
+       int i;
+
+       nandptr = nand->IO_ADDR;
+
+       /* Assert the ALE (Address Latch Enable) line to the flash chip */
+       NAND_CTL_SETALE(nandptr);
+
+       /* Send the address */
+       /* Devices with 256-byte page are addressed as:
+        * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
+        * there is no device on the market with page256
+        * and more than 24 bits.
+        * Devices with 512-byte page are addressed as:
+        * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
+        * 25-31 is sent only if the chip support it.
+        * bit 8 changes the read command to be sent
+        * (NAND_CMD_READ0 or NAND_CMD_READ1).
+        */
+
+       if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
+               WRITE_NAND_ADDRESS(ofs, nandptr);
+
+       ofs = ofs >> nand->page_shift;
+
+       if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
+               for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
+                       WRITE_NAND_ADDRESS(ofs, nandptr);
+               }
+       }
+
+       /* Lower the ALE line */
+       NAND_CTL_CLRALE(nandptr);
+
+       /* Wait for the chip to respond */
+       return NanD_WaitReady(nand, 1);
+}
+
+/* NanD_SelectChip: Select a given flash chip within the current floor */
+
+static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
+{
+       /* Wait for it to be ready */
+       return NanD_WaitReady(nand, 0);
+}
+
+/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
+
+static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
+{
+       int mfr, id, i;
+
+       NAND_ENABLE_CE(nand);  /* set pin low */
+       /* Reset the chip */
+       if (NanD_Command(nand, NAND_CMD_RESET)) {
+#ifdef NAND_DEBUG
+               printf("NanD_Command (reset) for %d,%d returned true\n",
+                      floor, chip);
+#endif
+               NAND_DISABLE_CE(nand);  /* set pin high */
+               return 0;
+       }
+
+       /* Read the NAND chip ID: 1. Send ReadID command */
+       if (NanD_Command(nand, NAND_CMD_READID)) {
+#ifdef NAND_DEBUG
+               printf("NanD_Command (ReadID) for %d,%d returned true\n",
+                      floor, chip);
+#endif
+               NAND_DISABLE_CE(nand);  /* set pin high */
+               return 0;
+       }
+
+       /* Read the NAND chip ID: 2. Send address byte zero */
+       NanD_Address(nand, ADDR_COLUMN, 0);
+
+       /* Read the manufacturer and device id codes from the device */
+
+       mfr = READ_NAND(nand->IO_ADDR);
+
+       id = READ_NAND(nand->IO_ADDR);
+
+       NAND_DISABLE_CE(nand);  /* set pin high */
+
+#ifdef NAND_DEBUG
+       printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
+#endif
+       if (mfr == 0xff || mfr == 0) {
+               /* No response - return failure */
+               return 0;
+       }
+
+       /* Check it's the same as the first chip we identified.
+        * M-Systems say that any given nand_chip device should only
+        * contain _one_ type of flash part, although that's not a
+        * hardware restriction. */
+       if (nand->mfr) {
+               if (nand->mfr == mfr && nand->id == id) {
+                       return 1;       /* This is another the same the first */
+               } else {
+                       printf("Flash chip at floor %d, chip %d is different:\n",
+                              floor, chip);
+               }
+       }
+
+       /* Print and store the manufacturer and ID codes. */
+       for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+               if (mfr == nand_flash_ids[i].manufacture_id &&
+                   id == nand_flash_ids[i].model_id) {
+#ifdef NAND_DEBUG
+                       printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
+                              "Chip ID: 0x%2.2X (%s)\n", mfr, id,
+                              nand_flash_ids[i].name);
+#endif
+                       if (!nand->mfr) {
+                               nand->mfr = mfr;
+                               nand->id = id;
+                               nand->chipshift =
+                                   nand_flash_ids[i].chipshift;
+                               nand->page256 = nand_flash_ids[i].page256;
+                               nand->eccsize = 256;
+                               if (nand->page256) {
+                                       nand->oobblock = 256;
+                                       nand->oobsize = 8;
+                                       nand->page_shift = 8;
+                               } else {
+                                       nand->oobblock = 512;
+                                       nand->oobsize = 16;
+                                       nand->page_shift = 9;
+                               }
+                               nand->pageadrlen = nand_flash_ids[i].pageadrlen;
+                               nand->erasesize  = nand_flash_ids[i].erasesize;
+                               nand->chips_name = nand_flash_ids[i].name;
+                               nand->bus16      = nand_flash_ids[i].bus16;
+                               return 1;
+                       }
+                       return 0;
+               }
+       }
+
+
+#ifdef NAND_DEBUG
+       /* We haven't fully identified the chip. Print as much as we know. */
+       printf("Unknown flash chip found: %2.2X %2.2X\n",
+              id, mfr);
+#endif
+
+       return 0;
+}
+
+/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
+
+static void NanD_ScanChips(struct nand_chip *nand)
+{
+       int floor, chip;
+       int numchips[NAND_MAX_FLOORS];
+       int maxchips = NAND_MAX_CHIPS;
+       int ret = 1;
+
+       nand->numchips = 0;
+       nand->mfr = 0;
+       nand->id = 0;
+
+
+       /* For each floor, find the number of valid chips it contains */
+       for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
+               ret = 1;
+               numchips[floor] = 0;
+               for (chip = 0; chip < maxchips && ret != 0; chip++) {
+
+                       ret = NanD_IdentChip(nand, floor, chip);
+                       if (ret) {
+                               numchips[floor]++;
+                               nand->numchips++;
+                       }
+               }
+       }
+
+       /* If there are none at all that we recognise, bail */
+       if (!nand->numchips) {
+#ifdef NAND_DEBUG
+               puts ("No NAND flash chips recognised.\n");
+#endif
+               return;
+       }
+
+       /* Allocate an array to hold the information for each chip */
+       nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
+       if (!nand->chips) {
+               puts ("No memory for allocating chip info structures\n");
+               return;
+       }
+
+       ret = 0;
+
+       /* Fill out the chip array with {floor, chipno} for each
+        * detected chip in the device. */
+       for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
+               for (chip = 0; chip < numchips[floor]; chip++) {
+                       nand->chips[ret].floor = floor;
+                       nand->chips[ret].chip = chip;
+                       nand->chips[ret].curadr = 0;
+                       nand->chips[ret].curmode = 0x50;
+                       ret++;
+               }
+       }
+
+       /* Calculate and print the total size of the device */
+       nand->totlen = nand->numchips * (1 << nand->chipshift);
+
+#ifdef NAND_DEBUG
+       printf("%d flash chips found. Total nand_chip size: %ld MB\n",
+              nand->numchips, nand->totlen >> 20);
+#endif
+}
+
+/* we need to be fast here, 1 us per read translates to 1 second per meg */
+static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
+{
+       unsigned long nandptr = nand->IO_ADDR;
+
+       NanD_Command (nand, NAND_CMD_READ0);
+
+       if (nand->bus16) {
+               u16 val;
+
+               while (cntr >= 16) {
+                       val = READ_NAND (nandptr);
+                       *data_buf++ = val & 0xff;
+                       *data_buf++ = val >> 8;
+                       val = READ_NAND (nandptr);
+                       *data_buf++ = val & 0xff;
+                       *data_buf++ = val >> 8;
+                       val = READ_NAND (nandptr);
+                       *data_buf++ = val & 0xff;
+                       *data_buf++ = val >> 8;
+                       val = READ_NAND (nandptr);
+                       *data_buf++ = val & 0xff;
+                       *data_buf++ = val >> 8;
+                       val = READ_NAND (nandptr);
+                       *data_buf++ = val & 0xff;
+                       *data_buf++ = val >> 8;
+                       val = READ_NAND (nandptr);
+                       *data_buf++ = val & 0xff;
+                       *data_buf++ = val >> 8;
+                       val = READ_NAND (nandptr);
+                       *data_buf++ = val & 0xff;
+                       *data_buf++ = val >> 8;
+                       val = READ_NAND (nandptr);
+                       *data_buf++ = val & 0xff;
+                       *data_buf++ = val >> 8;
+                       cntr -= 16;
+               }
+
+               while (cntr > 0) {
+                       val = READ_NAND (nandptr);
+                       *data_buf++ = val & 0xff;
+                       *data_buf++ = val >> 8;
+                       cntr -= 2;
+               }
+       } else {
+               while (cntr >= 16) {
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       *data_buf++ = READ_NAND (nandptr);
+                       cntr -= 16;
+               }
+
+               while (cntr > 0) {
+                       *data_buf++ = READ_NAND (nandptr);
+                       cntr--;
+               }
+       }
+}
+
+/*
+ * NAND read with ECC
+ */
+static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
+                size_t * retlen, u_char *buf, u_char *ecc_code)
+{
+       int col, page;
+       int ecc_status = 0;
+#ifdef CONFIG_MTD_NAND_ECC
+       int j;
+       int ecc_failed = 0;
+       u_char *data_poi;
+       u_char ecc_calc[6];
+#endif
+
+       /* Do not allow reads past end of device */
+       if ((start + len) > nand->totlen) {
+               printf ("%s: Attempt read beyond end of device %x %x %x\n",
+                       __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
+               *retlen = 0;
+               return -1;
+       }
+
+       /* First we calculate the starting page */
+       /*page = shr(start, nand->page_shift);*/
+       page = start >> nand->page_shift;
+
+       /* Get raw starting column */
+       col = start & (nand->oobblock - 1);
+
+       /* Initialize return value */
+       *retlen = 0;
+
+       /* Select the NAND device */
+       NAND_ENABLE_CE(nand);  /* set pin low */
+
+       /* Loop until all data read */
+       while (*retlen < len) {
+
+#ifdef CONFIG_MTD_NAND_ECC
+               /* Do we have this page in cache ? */
+               if (nand->cache_page == page)
+                       goto readdata;
+               /* Send the read command */
+               NanD_Command(nand, NAND_CMD_READ0);
+               if (nand->bus16) {
+                       NanD_Address(nand, ADDR_COLUMN_PAGE,
+                                    (page << nand->page_shift) + (col >> 1));
+               } else {
+                       NanD_Address(nand, ADDR_COLUMN_PAGE,
+                                    (page << nand->page_shift) + col);
+               }
+
+               /* Read in a page + oob data */
+               NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
+
+               /* copy data into cache, for read out of cache and if ecc fails */
+               if (nand->data_cache) {
+                       memcpy (nand->data_cache, nand->data_buf,
+                               nand->oobblock + nand->oobsize);
+               }
+
+               /* Pick the ECC bytes out of the oob data */
+               for (j = 0; j < 6; j++) {
+                       ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
+               }
+
+               /* Calculate the ECC and verify it */
+               /* If block was not written with ECC, skip ECC */
+               if (oob_config.eccvalid_pos != -1 &&
+                   (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
+
+                       nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
+                       switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
+                       case -1:
+                               printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
+                               ecc_failed++;
+                               break;
+                       case 1:
+                       case 2: /* transfer ECC corrected data to cache */
+                               if (nand->data_cache)
+                                       memcpy (nand->data_cache, nand->data_buf, 256);
+                               break;
+                       }
+               }
+
+               if (oob_config.eccvalid_pos != -1 &&
+                   nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
+
+                       nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
+                       switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
+                       case -1:
+                               printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
+                               ecc_failed++;
+                               break;
+                       case 1:
+                       case 2: /* transfer ECC corrected data to cache */
+                               if (nand->data_cache)
+                                       memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
+                               break;
+                       }
+               }
+readdata:
+               /* Read the data from ECC data buffer into return buffer */
+               data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
+               data_poi += col;
+               if ((*retlen + (nand->oobblock - col)) >= len) {
+                       memcpy (buf + *retlen, data_poi, len - *retlen);
+                       *retlen = len;
+               } else {
+                       memcpy (buf + *retlen, data_poi,  nand->oobblock - col);
+                       *retlen += nand->oobblock - col;
+               }
+               /* Set cache page address, invalidate, if ecc_failed */
+               nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
+
+               ecc_status += ecc_failed;
+               ecc_failed = 0;
+
+#else
+               /* Send the read command */
+               NanD_Command(nand, NAND_CMD_READ0);
+               if (nand->bus16) {
+                       NanD_Address(nand, ADDR_COLUMN_PAGE,
+                                    (page << nand->page_shift) + (col >> 1));
+               } else {
+                       NanD_Address(nand, ADDR_COLUMN_PAGE,
+                                    (page << nand->page_shift) + col);
+               }
+
+               /* Read the data directly into the return buffer */
+               if ((*retlen + (nand->oobblock - col)) >= len) {
+                       NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
+                       *retlen = len;
+                       /* We're done */
+                       continue;
+               } else {
+                       NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
+                       *retlen += nand->oobblock - col;
+                       }
+#endif
+               /* For subsequent reads align to page boundary. */
+               col = 0;
+               /* Increment page address */
+               page++;
+       }
+
+       /* De-select the NAND device */
+       NAND_DISABLE_CE(nand);  /* set pin high */
+
+       /*
+        * Return success, if no ECC failures, else -EIO
+        * fs driver will take care of that, because
+        * retlen == desired len and result == -EIO
+        */
+       return ecc_status ? -1 : 0;
+}
+
+/*
+ *     Nand_page_program function is used for write and writev !
+ */
+static int nand_write_page (struct nand_chip *nand,
+                           int page, int col, int last, u_char * ecc_code)
+{
+
+       int i;
+       unsigned long nandptr = nand->IO_ADDR;
+
+#ifdef CONFIG_MTD_NAND_ECC
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+       int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
+#endif
+#endif
+       /* pad oob area */
+       for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
+               nand->data_buf[i] = 0xff;
+
+#ifdef CONFIG_MTD_NAND_ECC
+       /* Zero out the ECC array */
+       for (i = 0; i < 6; i++)
+               ecc_code[i] = 0x00;
+
+       /* Read back previous written data, if col > 0 */
+       if (col) {
+               NanD_Command (nand, NAND_CMD_READ0);
+               if (nand->bus16) {
+                       NanD_Address (nand, ADDR_COLUMN_PAGE,
+                                     (page << nand->page_shift) + (col >> 1));
+               } else {
+                       NanD_Address (nand, ADDR_COLUMN_PAGE,
+                                     (page << nand->page_shift) + col);
+               }
+
+               if (nand->bus16) {
+                       u16 val;
+
+                       for (i = 0; i < col; i += 2) {
+                               val = READ_NAND (nandptr);
+                               nand->data_buf[i] = val & 0xff;
+                               nand->data_buf[i + 1] = val >> 8;
+                       }
+               } else {
+                       for (i = 0; i < col; i++)
+                               nand->data_buf[i] = READ_NAND (nandptr);
+               }
+       }
+
+       /* Calculate and write the ECC if we have enough data */
+       if ((col < nand->eccsize) && (last >= nand->eccsize)) {
+               nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
+               for (i = 0; i < 3; i++) {
+                       nand->data_buf[(nand->oobblock +
+                                       oob_config.ecc_pos[i])] = ecc_code[i];
+               }
+               if (oob_config.eccvalid_pos != -1) {
+                       nand->data_buf[nand->oobblock +
+                                      oob_config.eccvalid_pos] = 0xf0;
+               }
+       }
+
+       /* Calculate and write the second ECC if we have enough data */
+       if ((nand->oobblock == 512) && (last == nand->oobblock)) {
+               nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
+               for (i = 3; i < 6; i++) {
+                       nand->data_buf[(nand->oobblock +
+                                       oob_config.ecc_pos[i])] = ecc_code[i];
+               }
+               if (oob_config.eccvalid_pos != -1) {
+                       nand->data_buf[nand->oobblock +
+                                      oob_config.eccvalid_pos] &= 0x0f;
+               }
+       }
+#endif
+       /* Prepad for partial page programming !!! */
+       for (i = 0; i < col; i++)
+               nand->data_buf[i] = 0xff;
+
+       /* Postpad for partial page programming !!! oob is already padded */
+       for (i = last; i < nand->oobblock; i++)
+               nand->data_buf[i] = 0xff;
+
+       /* Send command to begin auto page programming */
+       NanD_Command (nand, NAND_CMD_READ0);
+       NanD_Command (nand, NAND_CMD_SEQIN);
+       if (nand->bus16) {
+               NanD_Address (nand, ADDR_COLUMN_PAGE,
+                             (page << nand->page_shift) + (col >> 1));
+       } else {
+               NanD_Address (nand, ADDR_COLUMN_PAGE,
+                             (page << nand->page_shift) + col);
+       }
+
+       /* Write out complete page of data */
+       if (nand->bus16) {
+               for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
+                       WRITE_NAND (nand->data_buf[i] +
+                                   (nand->data_buf[i + 1] << 8),
+                                   nand->IO_ADDR);
+               }
+       } else {
+               for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
+                       WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
+       }
+
+       /* Send command to actually program the data */
+       NanD_Command (nand, NAND_CMD_PAGEPROG);
+       NanD_Command (nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+       {
+               u_char ret_val;
+
+               do {
+                       ret_val = READ_NAND (nandptr);  /* wait till ready */
+               } while ((ret_val & 0x40) != 0x40);
+       }
+#endif
+       /* See if device thinks it succeeded */
+       if (READ_NAND (nand->IO_ADDR) & 0x01) {
+               printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
+                       page);
+               return -1;
+       }
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+       /*
+        * The NAND device assumes that it is always writing to
+        * a cleanly erased page. Hence, it performs its internal
+        * write verification only on bits that transitioned from
+        * 1 to 0. The device does NOT verify the whole page on a
+        * byte by byte basis. It is possible that the page was
+        * not completely erased or the page is becoming unusable
+        * due to wear. The read with ECC would catch the error
+        * later when the ECC page check fails, but we would rather
+        * catch it early in the page write stage. Better to write
+        * no data than invalid data.
+        */
+
+       /* Send command to read back the page */
+       if (col < nand->eccsize)
+               NanD_Command (nand, NAND_CMD_READ0);
+       else
+               NanD_Command (nand, NAND_CMD_READ1);
+       if (nand->bus16) {
+               NanD_Address (nand, ADDR_COLUMN_PAGE,
+                             (page << nand->page_shift) + (col >> 1));
+       } else {
+               NanD_Address (nand, ADDR_COLUMN_PAGE,
+                             (page << nand->page_shift) + col);
+       }
+
+       /* Loop through and verify the data */
+       if (nand->bus16) {
+               for (i = col; i < last; i = +2) {
+                       if ((nand->data_buf[i] +
+                            (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
+                               printf ("%s: Failed write verify, page 0x%08x ",
+                                       __FUNCTION__, page);
+                               return -1;
+                       }
+               }
+       } else {
+               for (i = col; i < last; i++) {
+                       if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
+                               printf ("%s: Failed write verify, page 0x%08x ",
+                                       __FUNCTION__, page);
+                               return -1;
+                       }
+               }
+       }
+
+#ifdef CONFIG_MTD_NAND_ECC
+       /*
+        * We also want to check that the ECC bytes wrote
+        * correctly for the same reasons stated above.
+        */
+       NanD_Command (nand, NAND_CMD_READOOB);
+       if (nand->bus16) {
+               NanD_Address (nand, ADDR_COLUMN_PAGE,
+                             (page << nand->page_shift) + (col >> 1));
+       } else {
+               NanD_Address (nand, ADDR_COLUMN_PAGE,
+                             (page << nand->page_shift) + col);
+       }
+       if (nand->bus16) {
+               for (i = 0; i < nand->oobsize; i += 2) {
+                       u16 val;
+
+                       val = READ_NAND (nand->IO_ADDR);
+                       nand->data_buf[i] = val & 0xff;
+                       nand->data_buf[i + 1] = val >> 8;
+               }
+       } else {
+               for (i = 0; i < nand->oobsize; i++) {
+                       nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
+               }
+       }
+       for (i = 0; i < ecc_bytes; i++) {
+               if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
+                       printf ("%s: Failed ECC write "
+                               "verify, page 0x%08x, "
+                               "%6i bytes were succesful\n",
+                               __FUNCTION__, page, i);
+                       return -1;
+               }
+       }
+#endif /* CONFIG_MTD_NAND_ECC */
+#endif /* CONFIG_MTD_NAND_VERIFY_WRITE */
+       return 0;
+}
+
+static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
+                          size_t * retlen, const u_char * buf, u_char * ecc_code)
+{
+       int i, page, col, cnt, ret = 0;
+
+       /* Do not allow write past end of device */
+       if ((to + len) > nand->totlen) {
+               printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
+               return -1;
+       }
+
+       /* Shift to get page */
+       page = ((int) to) >> nand->page_shift;
+
+       /* Get the starting column */
+       col = to & (nand->oobblock - 1);
+
+       /* Initialize return length value */
+       *retlen = 0;
+
+       /* Select the NAND device */
+#ifdef CONFIG_OMAP1510
+       archflashwp(0,0);
+#endif
+#ifdef CFG_NAND_WP
+       NAND_WP_OFF();
+#endif
+
+       NAND_ENABLE_CE(nand);  /* set pin low */
+
+       /* Check the WP bit */
+       NanD_Command(nand, NAND_CMD_STATUS);
+       if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+               printf ("%s: Device is write protected!!!\n", __FUNCTION__);
+               ret = -1;
+               goto out;
+       }
+
+       /* Loop until all data is written */
+       while (*retlen < len) {
+               /* Invalidate cache, if we write to this page */
+               if (nand->cache_page == page)
+                       nand->cache_page = -1;
+
+               /* Write data into buffer */
+               if ((col + len) >= nand->oobblock) {
+                       for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
+                               nand->data_buf[i] = buf[(*retlen + cnt)];
+                       }
+               } else {
+                       for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
+                               nand->data_buf[i] = buf[(*retlen + cnt)];
+                       }
+               }
+               /* We use the same function for write and writev !) */
+               ret = nand_write_page (nand, page, col, i, ecc_code);
+               if (ret)
+                       goto out;
+
+               /* Next data start at page boundary */
+               col = 0;
+
+               /* Update written bytes count */
+               *retlen += cnt;
+
+               /* Increment page address */
+               page++;
+       }
+
+       /* Return happy */
+       *retlen = len;
+
+out:
+       /* De-select the NAND device */
+       NAND_DISABLE_CE(nand);  /* set pin high */
+#ifdef CONFIG_OMAP1510
+       archflashwp(0,1);
+#endif
+#ifdef CFG_NAND_WP
+       NAND_WP_ON();
+#endif
+
+       return ret;
+}
+
+/* read from the 16 bytes of oob data that correspond to a 512 byte
+ * page or 2 256-byte pages.
+ */
+static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
+                        size_t * retlen, u_char * buf)
+{
+       int len256 = 0;
+       struct Nand *mychip;
+       int ret = 0;
+
+       mychip = &nand->chips[ofs >> nand->chipshift];
+
+       /* update address for 2M x 8bit devices. OOB starts on the second */
+       /* page to maintain compatibility with nand_read_ecc. */
+       if (nand->page256) {
+               if (!(ofs & 0x8))
+                       ofs += 0x100;
+               else
+                       ofs -= 0x8;
+       }
+
+       NAND_ENABLE_CE(nand);  /* set pin low */
+       NanD_Command(nand, NAND_CMD_READOOB);
+       if (nand->bus16) {
+               NanD_Address(nand, ADDR_COLUMN_PAGE,
+                            ((ofs >> nand->page_shift) << nand->page_shift) +
+                               ((ofs & (nand->oobblock - 1)) >> 1));
+       } else {
+               NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+       }
+
+       /* treat crossing 8-byte OOB data for 2M x 8bit devices */
+       /* Note: datasheet says it should automaticaly wrap to the */
+       /*       next OOB block, but it didn't work here. mf.      */
+       if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
+               len256 = (ofs | 0x7) + 1 - ofs;
+               NanD_ReadBuf(nand, buf, len256);
+
+               NanD_Command(nand, NAND_CMD_READOOB);
+               NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
+       }
+
+       NanD_ReadBuf(nand, &buf[len256], len - len256);
+
+       *retlen = len;
+       /* Reading the full OOB data drops us off of the end of the page,
+        * causing the flash device to go into busy mode, so we need
+        * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
+
+       ret = NanD_WaitReady(nand, 1);
+       NAND_DISABLE_CE(nand);  /* set pin high */
+
+       return ret;
+
+}
+
+/* write to the 16 bytes of oob data that correspond to a 512 byte
+ * page or 2 256-byte pages.
+ */
+static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
+                 size_t * retlen, const u_char * buf)
+{
+       int len256 = 0;
+       int i;
+       unsigned long nandptr = nand->IO_ADDR;
+
+#ifdef PSYCHO_DEBUG
+       printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
+              (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
+              buf[8], buf[9], buf[14],buf[15]);
+#endif
+
+       NAND_ENABLE_CE(nand);  /* set pin low to enable chip */
+
+       /* Reset the chip */
+       NanD_Command(nand, NAND_CMD_RESET);
+
+       /* issue the Read2 command to set the pointer to the Spare Data Area. */
+       NanD_Command(nand, NAND_CMD_READOOB);
+       if (nand->bus16) {
+               NanD_Address(nand, ADDR_COLUMN_PAGE,
+                            ((ofs >> nand->page_shift) << nand->page_shift) +
+                               ((ofs & (nand->oobblock - 1)) >> 1));
+       } else {
+               NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+       }
+
+       /* update address for 2M x 8bit devices. OOB starts on the second */
+       /* page to maintain compatibility with nand_read_ecc. */
+       if (nand->page256) {
+               if (!(ofs & 0x8))
+                       ofs += 0x100;
+               else
+                       ofs -= 0x8;
+       }
+
+       /* issue the Serial Data In command to initial the Page Program process */
+       NanD_Command(nand, NAND_CMD_SEQIN);
+       if (nand->bus16) {
+               NanD_Address(nand, ADDR_COLUMN_PAGE,
+                            ((ofs >> nand->page_shift) << nand->page_shift) +
+                               ((ofs & (nand->oobblock - 1)) >> 1));
+       } else {
+               NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+       }
+
+       /* treat crossing 8-byte OOB data for 2M x 8bit devices */
+       /* Note: datasheet says it should automaticaly wrap to the */
+       /*       next OOB block, but it didn't work here. mf.      */
+       if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
+               len256 = (ofs | 0x7) + 1 - ofs;
+               for (i = 0; i < len256; i++)
+                       WRITE_NAND(buf[i], nandptr);
+
+               NanD_Command(nand, NAND_CMD_PAGEPROG);
+               NanD_Command(nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+               { u_char ret_val;
+                       do {
+                               ret_val = READ_NAND(nandptr); /* wait till ready */
+                       } while ((ret_val & 0x40) != 0x40);
+               }
+#endif
+               if (READ_NAND(nandptr) & 1) {
+                       puts ("Error programming oob data\n");
+                       /* There was an error */
+                       NAND_DISABLE_CE(nand);  /* set pin high */
+                       *retlen = 0;
+                       return -1;
+               }
+               NanD_Command(nand, NAND_CMD_SEQIN);
+               NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
+       }
+
+       if (nand->bus16) {
+               for (i = len256; i < len; i += 2) {
+                       WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
+               }
+       } else {
+               for (i = len256; i < len; i++)
+                       WRITE_NAND(buf[i], nandptr);
+       }
+
+       NanD_Command(nand, NAND_CMD_PAGEPROG);
+       NanD_Command(nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+       {       u_char ret_val;
+               do {
+                       ret_val = READ_NAND(nandptr); /* wait till ready */
+               } while ((ret_val & 0x40) != 0x40);
+       }
+#endif
+       if (READ_NAND(nandptr) & 1) {
+               puts ("Error programming oob data\n");
+               /* There was an error */
+               NAND_DISABLE_CE(nand);  /* set pin high */
+               *retlen = 0;
+               return -1;
+       }
+
+       NAND_DISABLE_CE(nand);  /* set pin high */
+       *retlen = len;
+       return 0;
+
+}
+
+int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
+{
+       /* This is defined as a structure so it will work on any system
+        * using native endian jffs2 (the default).
+        */
+       static struct jffs2_unknown_node clean_marker = {
+               JFFS2_MAGIC_BITMASK,
+               JFFS2_NODETYPE_CLEANMARKER,
+               8               /* 8 bytes in this node */
+       };
+       unsigned long nandptr;
+       struct Nand *mychip;
+       int ret = 0;
+
+       if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
+               printf ("Offset and size must be sector aligned, erasesize = %d\n",
+                       (int) nand->erasesize);
+               return -1;
+       }
+
+       nandptr = nand->IO_ADDR;
+
+       /* Select the NAND device */
+#ifdef CONFIG_OMAP1510
+       archflashwp(0,0);
+#endif
+#ifdef CFG_NAND_WP
+       NAND_WP_OFF();
+#endif
+    NAND_ENABLE_CE(nand);  /* set pin low */
+
+       /* Check the WP bit */
+       NanD_Command(nand, NAND_CMD_STATUS);
+       if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+               printf ("nand_write_ecc: Device is write protected!!!\n");
+               ret = -1;
+               goto out;
+       }
+
+       /* Check the WP bit */
+       NanD_Command(nand, NAND_CMD_STATUS);
+       if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+               printf ("%s: Device is write protected!!!\n", __FUNCTION__);
+               ret = -1;
+               goto out;
+       }
+
+       /* FIXME: Do nand in the background. Use timers or schedule_task() */
+       while(len) {
+               /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
+               mychip = &nand->chips[ofs >> nand->chipshift];
+
+               /* always check for bad block first, genuine bad blocks
+                * should _never_  be erased.
+                */
+               if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
+                       /* Select the NAND device */
+                       NAND_ENABLE_CE(nand);  /* set pin low */
+
+                       NanD_Command(nand, NAND_CMD_ERASE1);
+                       NanD_Address(nand, ADDR_PAGE, ofs);
+                       NanD_Command(nand, NAND_CMD_ERASE2);
+
+                       NanD_Command(nand, NAND_CMD_STATUS);
+
+#ifdef NAND_NO_RB
+                       {       u_char ret_val;
+                               do {
+                                       ret_val = READ_NAND(nandptr); /* wait till ready */
+                               } while ((ret_val & 0x40) != 0x40);
+                       }
+#endif
+                       if (READ_NAND(nandptr) & 1) {
+                               printf ("%s: Error erasing at 0x%lx\n",
+                                       __FUNCTION__, (long)ofs);
+                               /* There was an error */
+                               ret = -1;
+                               goto out;
+                       }
+                       if (clean) {
+                               int n;  /* return value not used */
+                               int p, l;
+
+                               /* clean marker position and size depend
+                                * on the page size, since 256 byte pages
+                                * only have 8 bytes of oob data
+                                */
+                               if (nand->page256) {
+                                       p = NAND_JFFS2_OOB8_FSDAPOS;
+                                       l = NAND_JFFS2_OOB8_FSDALEN;
+                               } else {
+                                       p = NAND_JFFS2_OOB16_FSDAPOS;
+                                       l = NAND_JFFS2_OOB16_FSDALEN;
+                               }
+
+                               ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n,
+                                                    (u_char *)&clean_marker);
+                               /* quit here if write failed */
+                               if (ret)
+                                       goto out;
+                       }
+               }
+               ofs += nand->erasesize;
+               len -= nand->erasesize;
+       }
+
+out:
+       /* De-select the NAND device */
+       NAND_DISABLE_CE(nand);  /* set pin high */
+#ifdef CONFIG_OMAP1510
+       archflashwp(0,1);
+#endif
+#ifdef CFG_NAND_WP
+       NAND_WP_ON();
+#endif
+
+       return ret;
+}
+
+static inline int nandcheck(unsigned long potential, unsigned long physadr)
+{
+       return 0;
+}
+
+unsigned long nand_probe(unsigned long physadr)
+{
+       struct nand_chip *nand = NULL;
+       int i = 0, ChipID = 1;
+
+#ifdef CONFIG_MTD_NAND_ECC_JFFS2
+       oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
+       oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
+       oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
+       oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
+       oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
+       oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
+       oob_config.eccvalid_pos = 4;
+#else
+       oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
+       oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
+       oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
+       oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
+       oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
+       oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
+       oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
+#endif
+       oob_config.badblock_pos = 5;
+
+       for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
+               if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
+                       nand = &nand_dev_desc[i];
+                       break;
+               }
+       }
+       if (!nand)
+               return (0);
+
+       memset((char *)nand, 0, sizeof(struct nand_chip));
+
+       nand->IO_ADDR = physadr;
+       nand->cache_page = -1;  /* init the cache page */
+       NanD_ScanChips(nand);
+
+       if (nand->totlen == 0) {
+               /* no chips found, clean up and quit */
+               memset((char *)nand, 0, sizeof(struct nand_chip));
+               nand->ChipID = NAND_ChipID_UNKNOWN;
+               return (0);
+       }
+
+       nand->ChipID = ChipID;
+       if (curr_device == -1)
+               curr_device = i;
+
+       nand->data_buf = malloc (nand->oobblock + nand->oobsize);
+       if (!nand->data_buf) {
+               puts ("Cannot allocate memory for data structures.\n");
+               return (0);
+       }
+
+       return (nand->totlen);
+}
+
+#ifdef CONFIG_MTD_NAND_ECC
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+       0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
+       0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+       0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
+       0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+       0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
+       0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+       0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
+       0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+       0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
+       0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+       0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
+       0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+       0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
+       0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+       0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
+       0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+       0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
+       0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+       0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
+       0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+       0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
+       0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+       0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
+       0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+       0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
+       0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+       0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
+       0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+       0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
+       0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+       0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
+       0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+
+/*
+ * Creates non-inverted ECC code from line parity
+ */
+static void nand_trans_result(u_char reg2, u_char reg3,
+       u_char *ecc_code)
+{
+       u_char a, b, i, tmp1, tmp2;
+
+       /* Initialize variables */
+       a = b = 0x80;
+       tmp1 = tmp2 = 0;
+
+       /* Calculate first ECC byte */
+       for (i = 0; i < 4; i++) {
+               if (reg3 & a)           /* LP15,13,11,9 --> ecc_code[0] */
+                       tmp1 |= b;
+               b >>= 1;
+               if (reg2 & a)           /* LP14,12,10,8 --> ecc_code[0] */
+                       tmp1 |= b;
+               b >>= 1;
+               a >>= 1;
+       }
+
+       /* Calculate second ECC byte */
+       b = 0x80;
+       for (i = 0; i < 4; i++) {
+               if (reg3 & a)           /* LP7,5,3,1 --> ecc_code[1] */
+                       tmp2 |= b;
+               b >>= 1;
+               if (reg2 & a)           /* LP6,4,2,0 --> ecc_code[1] */
+                       tmp2 |= b;
+               b >>= 1;
+               a >>= 1;
+       }
+
+       /* Store two of the ECC bytes */
+       ecc_code[0] = tmp1;
+       ecc_code[1] = tmp2;
+}
+
+/*
+ * Calculate 3 byte ECC code for 256 byte block
+ */
+static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
+{
+       u_char idx, reg1, reg3;
+       int j;
+
+       /* Initialize variables */
+       reg1 = reg3 = 0;
+       ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
+
+       /* Build up column parity */
+       for(j = 0; j < 256; j++) {
+
+               /* Get CP0 - CP5 from table */
+               idx = nand_ecc_precalc_table[dat[j]];
+               reg1 ^= idx;
+
+               /* All bit XOR = 1 ? */
+               if (idx & 0x40) {
+                       reg3 ^= (u_char) j;
+               }
+       }
+
+       /* Create non-inverted ECC code from line parity */
+       nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
+
+       /* Calculate final ECC code */
+       ecc_code[0] = ~ecc_code[0];
+       ecc_code[1] = ~ecc_code[1];
+       ecc_code[2] = ((~reg1) << 2) | 0x03;
+}
+
+/*
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+       u_char a, b, c, d1, d2, d3, add, bit, i;
+
+       /* Do error detection */
+       d1 = calc_ecc[0] ^ read_ecc[0];
+       d2 = calc_ecc[1] ^ read_ecc[1];
+       d3 = calc_ecc[2] ^ read_ecc[2];
+
+       if ((d1 | d2 | d3) == 0) {
+               /* No errors */
+               return 0;
+       } else {
+               a = (d1 ^ (d1 >> 1)) & 0x55;
+               b = (d2 ^ (d2 >> 1)) & 0x55;
+               c = (d3 ^ (d3 >> 1)) & 0x54;
+
+               /* Found and will correct single bit error in the data */
+               if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
+                       c = 0x80;
+                       add = 0;
+                       a = 0x80;
+                       for (i=0; i<4; i++) {
+                               if (d1 & c)
+                                       add |= a;
+                               c >>= 2;
+                               a >>= 1;
+                       }
+                       c = 0x80;
+                       for (i=0; i<4; i++) {
+                               if (d2 & c)
+                                       add |= a;
+                               c >>= 2;
+                               a >>= 1;
+                       }
+                       bit = 0;
+                       b = 0x04;
+                       c = 0x80;
+                       for (i=0; i<3; i++) {
+                               if (d3 & c)
+                                       bit |= b;
+                               c >>= 2;
+                               b >>= 1;
+                       }
+                       b = 0x01;
+                       a = dat[add];
+                       a ^= (b << bit);
+                       dat[add] = a;
+                       return 1;
+               }
+               else {
+                       i = 0;
+                       while (d1) {
+                               if (d1 & 0x01)
+                                       ++i;
+                               d1 >>= 1;
+                       }
+                       while (d2) {
+                               if (d2 & 0x01)
+                                       ++i;
+                               d2 >>= 1;
+                       }
+                       while (d3) {
+                               if (d3 & 0x01)
+                                       ++i;
+                               d3 >>= 1;
+                       }
+                       if (i == 1) {
+                               /* ECC Code Error Correction */
+                               read_ecc[0] = calc_ecc[0];
+                               read_ecc[1] = calc_ecc[1];
+                               read_ecc[2] = calc_ecc[2];
+                               return 2;
+                       }
+                       else {
+                               /* Uncorrectable Error */
+                               return -1;
+                       }
+               }
+       }
+
+       /* Should never happen */
+       return -1;
+}
+
+#endif
+
+#ifdef CONFIG_JFFS2_NAND
+
+int read_jffs2_nand(size_t start, size_t len,
+                   size_t * retlen, u_char * buf, int nanddev)
+{
+       return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
+                      start, len, retlen, buf);
+}
 
+#endif /* CONFIG_JFFS2_NAND */
 
-#endif                         /* (CONFIG_COMMANDS & CFG_CMD_NAND) */
 
+#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */