]> git.kernelconcepts.de Git - karo-tx-uboot.git/blobdiff - drivers/net/e1000.c
Merge branch 'u-boot-imx/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / drivers / net / e1000.c
index 060b5189968e32dbc2c8db6fcfb40f8a9de97a6d..c1863f4bb1d6f11f196ab8c7948ccdc9f3792bfd 100644 (file)
@@ -40,18 +40,19 @@ tested on both gig copper and gig fiber boards
  *  Copyright (C) Linux Networx.
  *  Massive upgrade to work with the new intel gigabit NICs.
  *  <ebiederman at lnxi dot com>
+ *
+ *  Copyright 2011 Freescale Semiconductor, Inc.
  */
 
 #include "e1000.h"
 
 #define TOUT_LOOP   100000
 
-#undef virt_to_bus
-#define        virt_to_bus(x)  ((unsigned long)x)
+#define virt_to_bus(devno, v)  pci_virt_to_mem(devno, (void *) (v))
 #define bus_to_phys(devno, a)  pci_mem_to_phys(devno, a)
-#define mdelay(n)      udelay((n)*1000)
 
-#define E1000_DEFAULT_PBA    0x00000030
+#define E1000_DEFAULT_PCI_PBA  0x00000030
+#define E1000_DEFAULT_PCIE_PBA 0x000a0026
 
 /* NIC specific static variables go here */
 
@@ -65,7 +66,7 @@ static struct e1000_rx_desc *rx_base;
 static int tx_tail;
 static int rx_tail, rx_last;
 
-static struct pci_device_id supported[] = {
+static struct pci_device_id e1000_supported[] = {
        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
@@ -79,9 +80,34 @@ static struct pci_device_id supported[] = {
        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
+       /* E1000 PCIe card */
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
+       {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
+       {}
 };
 
 /* Function forward declarations */
@@ -94,33 +120,31 @@ static int e1000_config_mac_to_phy(struct e1000_hw *hw);
 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
 static int e1000_check_for_link(struct eth_device *nic);
 static int e1000_wait_autoneg(struct e1000_hw *hw);
-static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
+static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
                                       uint16_t * duplex);
 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
                              uint16_t * phy_data);
 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
                               uint16_t phy_data);
-static void e1000_phy_hw_reset(struct e1000_hw *hw);
+static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
 static int e1000_phy_reset(struct e1000_hw *hw);
 static int e1000_detect_gig_phy(struct e1000_hw *hw);
+static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
+static void e1000_set_media_type(struct e1000_hw *hw);
 
-#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
-#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
-#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
-                       writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
-#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
-       readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
-#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
+static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
+static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
 
-#ifndef CONFIG_AP1000 /* remove for warnings */
+static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
+               uint16_t words,
+               uint16_t *data);
 /******************************************************************************
  * Raises the EEPROM's clock input.
  *
  * hw - Struct containing variables accessed by shared code
  * eecd - EECD's current value
  *****************************************************************************/
-static void
-e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
+void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
 {
        /* Raise the clock input to the EEPROM (by setting the SK bit), and then
         * wait 50 microseconds.
@@ -137,8 +161,7 @@ e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
  * hw - Struct containing variables accessed by shared code
  * eecd - EECD's current value
  *****************************************************************************/
-static void
-e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
+void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
 {
        /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
         * wait 50 microseconds.
@@ -203,17 +226,17 @@ e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
 static uint16_t
-e1000_shift_in_ee_bits(struct e1000_hw *hw)
+e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
 {
        uint32_t eecd;
        uint32_t i;
        uint16_t data;
 
-       /* In order to read a register from the EEPROM, we need to shift 16 bits
-        * in from the EEPROM. Bits are "shifted in" by raising the clock input to
-        * the EEPROM (setting the SK bit), and then reading the value of the "DO"
-        * bit.  During this "shifting in" process the "DI" bit should always be
-        * clear..
+       /* In order to read a register from the EEPROM, we need to shift 'count'
+        * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+        * input to the EEPROM (setting the SK bit), and then reading the
+        * value of the "DO" bit.  During this "shifting in" process the
+        * "DI" bit should always be clear.
         */
 
        eecd = E1000_READ_REG(hw, EECD);
@@ -221,7 +244,7 @@ e1000_shift_in_ee_bits(struct e1000_hw *hw)
        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
        data = 0;
 
-       for (i = 0; i < 16; i++) {
+       for (i = 0; i < count; i++) {
                data = data << 1;
                e1000_raise_ee_clk(hw, &eecd);
 
@@ -238,309 +261,892 @@ e1000_shift_in_ee_bits(struct e1000_hw *hw)
 }
 
 /******************************************************************************
- * Prepares EEPROM for access
+ * Returns EEPROM to a "standby" state
  *
  * hw - Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
  *****************************************************************************/
-static void
-e1000_setup_eeprom(struct e1000_hw *hw)
+void e1000_standby_eeprom(struct e1000_hw *hw)
 {
+       struct e1000_eeprom_info *eeprom = &hw->eeprom;
        uint32_t eecd;
 
        eecd = E1000_READ_REG(hw, EECD);
 
-       /* Clear SK and DI */
-       eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
-       E1000_WRITE_REG(hw, EECD, eecd);
+       if (eeprom->type == e1000_eeprom_microwire) {
+               eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
 
-       /* Set CS */
-       eecd |= E1000_EECD_CS;
-       E1000_WRITE_REG(hw, EECD, eecd);
+               /* Clock high */
+               eecd |= E1000_EECD_SK;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+
+               /* Select EEPROM */
+               eecd |= E1000_EECD_CS;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+
+               /* Clock low */
+               eecd &= ~E1000_EECD_SK;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+       } else if (eeprom->type == e1000_eeprom_spi) {
+               /* Toggle CS to flush commands */
+               eecd |= E1000_EECD_CS;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+               eecd &= ~E1000_EECD_CS;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(eeprom->delay_usec);
+       }
+}
+
+/***************************************************************************
+* Description:     Determines if the onboard NVM is FLASH or EEPROM.
+*
+* hw - Struct containing variables accessed by shared code
+****************************************************************************/
+static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
+{
+       uint32_t eecd = 0;
+
+       DEBUGFUNC();
+
+       if (hw->mac_type == e1000_ich8lan)
+               return false;
+
+       if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
+               eecd = E1000_READ_REG(hw, EECD);
+
+               /* Isolate bits 15 & 16 */
+               eecd = ((eecd >> 15) & 0x03);
+
+               /* If both bits are set, device is Flash type */
+               if (eecd == 0x03)
+                       return false;
+       }
+       return true;
 }
 
 /******************************************************************************
- * Returns EEPROM to a "standby" state
+ * Prepares EEPROM for access
  *
  * hw - Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
  *****************************************************************************/
-static void
-e1000_standby_eeprom(struct e1000_hw *hw)
+int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
 {
-       uint32_t eecd;
+       struct e1000_eeprom_info *eeprom = &hw->eeprom;
+       uint32_t eecd, i = 0;
+
+       DEBUGFUNC();
 
+       if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
+               return -E1000_ERR_SWFW_SYNC;
        eecd = E1000_READ_REG(hw, EECD);
 
-       /* Deselct EEPROM */
-       eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-       E1000_WRITE_REG(hw, EECD, eecd);
-       E1000_WRITE_FLUSH(hw);
-       udelay(50);
+       if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
+               /* Request EEPROM Access */
+               if (hw->mac_type > e1000_82544) {
+                       eecd |= E1000_EECD_REQ;
+                       E1000_WRITE_REG(hw, EECD, eecd);
+                       eecd = E1000_READ_REG(hw, EECD);
+                       while ((!(eecd & E1000_EECD_GNT)) &&
+                               (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+                               i++;
+                               udelay(5);
+                               eecd = E1000_READ_REG(hw, EECD);
+                       }
+                       if (!(eecd & E1000_EECD_GNT)) {
+                               eecd &= ~E1000_EECD_REQ;
+                               E1000_WRITE_REG(hw, EECD, eecd);
+                               DEBUGOUT("Could not acquire EEPROM grant\n");
+                               return -E1000_ERR_EEPROM;
+                       }
+               }
+       }
 
-       /* Clock high */
-       eecd |= E1000_EECD_SK;
-       E1000_WRITE_REG(hw, EECD, eecd);
-       E1000_WRITE_FLUSH(hw);
-       udelay(50);
+       /* Setup EEPROM for Read/Write */
 
-       /* Select EEPROM */
-       eecd |= E1000_EECD_CS;
-       E1000_WRITE_REG(hw, EECD, eecd);
-       E1000_WRITE_FLUSH(hw);
-       udelay(50);
+       if (eeprom->type == e1000_eeprom_microwire) {
+               /* Clear SK and DI */
+               eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+               E1000_WRITE_REG(hw, EECD, eecd);
 
-       /* Clock low */
-       eecd &= ~E1000_EECD_SK;
-       E1000_WRITE_REG(hw, EECD, eecd);
-       E1000_WRITE_FLUSH(hw);
-       udelay(50);
+               /* Set CS */
+               eecd |= E1000_EECD_CS;
+               E1000_WRITE_REG(hw, EECD, eecd);
+       } else if (eeprom->type == e1000_eeprom_spi) {
+               /* Clear SK and CS */
+               eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+               E1000_WRITE_REG(hw, EECD, eecd);
+               udelay(1);
+       }
+
+       return E1000_SUCCESS;
 }
 
 /******************************************************************************
- * Reads a 16 bit word from the EEPROM.
+ * Sets up eeprom variables in the hw struct.  Must be called after mac_type
+ * is configured.  Additionally, if this is ICH8, the flash controller GbE
+ * registers must be mapped, or this will crash.
  *
  * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
  *****************************************************************************/
-static int
-e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
+static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
 {
-       uint32_t eecd;
-       uint32_t i = 0;
-       int large_eeprom = FALSE;
+       struct e1000_eeprom_info *eeprom = &hw->eeprom;
+       uint32_t eecd = E1000_READ_REG(hw, EECD);
+       int32_t ret_val = E1000_SUCCESS;
+       uint16_t eeprom_size;
 
-       /* Request EEPROM Access */
-       if (hw->mac_type > e1000_82544) {
-               eecd = E1000_READ_REG(hw, EECD);
-               if (eecd & E1000_EECD_SIZE)
-                       large_eeprom = TRUE;
-               eecd |= E1000_EECD_REQ;
-               E1000_WRITE_REG(hw, EECD, eecd);
-               eecd = E1000_READ_REG(hw, EECD);
-               while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
-                       i++;
-                       udelay(10);
-                       eecd = E1000_READ_REG(hw, EECD);
+       DEBUGFUNC();
+
+       switch (hw->mac_type) {
+       case e1000_82542_rev2_0:
+       case e1000_82542_rev2_1:
+       case e1000_82543:
+       case e1000_82544:
+               eeprom->type = e1000_eeprom_microwire;
+               eeprom->word_size = 64;
+               eeprom->opcode_bits = 3;
+               eeprom->address_bits = 6;
+               eeprom->delay_usec = 50;
+               eeprom->use_eerd = false;
+               eeprom->use_eewr = false;
+       break;
+       case e1000_82540:
+       case e1000_82545:
+       case e1000_82545_rev_3:
+       case e1000_82546:
+       case e1000_82546_rev_3:
+               eeprom->type = e1000_eeprom_microwire;
+               eeprom->opcode_bits = 3;
+               eeprom->delay_usec = 50;
+               if (eecd & E1000_EECD_SIZE) {
+                       eeprom->word_size = 256;
+                       eeprom->address_bits = 8;
+               } else {
+                       eeprom->word_size = 64;
+                       eeprom->address_bits = 6;
+               }
+               eeprom->use_eerd = false;
+               eeprom->use_eewr = false;
+               break;
+       case e1000_82541:
+       case e1000_82541_rev_2:
+       case e1000_82547:
+       case e1000_82547_rev_2:
+               if (eecd & E1000_EECD_TYPE) {
+                       eeprom->type = e1000_eeprom_spi;
+                       eeprom->opcode_bits = 8;
+                       eeprom->delay_usec = 1;
+                       if (eecd & E1000_EECD_ADDR_BITS) {
+                               eeprom->page_size = 32;
+                               eeprom->address_bits = 16;
+                       } else {
+                               eeprom->page_size = 8;
+                               eeprom->address_bits = 8;
+                       }
+               } else {
+                       eeprom->type = e1000_eeprom_microwire;
+                       eeprom->opcode_bits = 3;
+                       eeprom->delay_usec = 50;
+                       if (eecd & E1000_EECD_ADDR_BITS) {
+                               eeprom->word_size = 256;
+                               eeprom->address_bits = 8;
+                       } else {
+                               eeprom->word_size = 64;
+                               eeprom->address_bits = 6;
+                       }
+               }
+               eeprom->use_eerd = false;
+               eeprom->use_eewr = false;
+               break;
+       case e1000_82571:
+       case e1000_82572:
+               eeprom->type = e1000_eeprom_spi;
+               eeprom->opcode_bits = 8;
+               eeprom->delay_usec = 1;
+               if (eecd & E1000_EECD_ADDR_BITS) {
+                       eeprom->page_size = 32;
+                       eeprom->address_bits = 16;
+               } else {
+                       eeprom->page_size = 8;
+                       eeprom->address_bits = 8;
+               }
+               eeprom->use_eerd = false;
+               eeprom->use_eewr = false;
+               break;
+       case e1000_82573:
+       case e1000_82574:
+               eeprom->type = e1000_eeprom_spi;
+               eeprom->opcode_bits = 8;
+               eeprom->delay_usec = 1;
+               if (eecd & E1000_EECD_ADDR_BITS) {
+                       eeprom->page_size = 32;
+                       eeprom->address_bits = 16;
+               } else {
+                       eeprom->page_size = 8;
+                       eeprom->address_bits = 8;
                }
-               if (!(eecd & E1000_EECD_GNT)) {
-                       eecd &= ~E1000_EECD_REQ;
+               eeprom->use_eerd = true;
+               eeprom->use_eewr = true;
+               if (e1000_is_onboard_nvm_eeprom(hw) == false) {
+                       eeprom->type = e1000_eeprom_flash;
+                       eeprom->word_size = 2048;
+
+               /* Ensure that the Autonomous FLASH update bit is cleared due to
+                * Flash update issue on parts which use a FLASH for NVM. */
+                       eecd &= ~E1000_EECD_AUPDEN;
                        E1000_WRITE_REG(hw, EECD, eecd);
-                       DEBUGOUT("Could not acquire EEPROM grant\n");
-                       return -E1000_ERR_EEPROM;
                }
-       }
+               break;
+       case e1000_80003es2lan:
+               eeprom->type = e1000_eeprom_spi;
+               eeprom->opcode_bits = 8;
+               eeprom->delay_usec = 1;
+               if (eecd & E1000_EECD_ADDR_BITS) {
+                       eeprom->page_size = 32;
+                       eeprom->address_bits = 16;
+               } else {
+                       eeprom->page_size = 8;
+                       eeprom->address_bits = 8;
+               }
+               eeprom->use_eerd = true;
+               eeprom->use_eewr = false;
+               break;
 
-       /*  Prepare the EEPROM for reading  */
-       e1000_setup_eeprom(hw);
+       /* ich8lan does not support currently. if needed, please
+        * add corresponding code and functions.
+        */
+#if 0
+       case e1000_ich8lan:
+               {
+               int32_t  i = 0;
+
+               eeprom->type = e1000_eeprom_ich8;
+               eeprom->use_eerd = false;
+               eeprom->use_eewr = false;
+               eeprom->word_size = E1000_SHADOW_RAM_WORDS;
+               uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
+                               ICH_FLASH_GFPREG);
+               /* Zero the shadow RAM structure. But don't load it from NVM
+                * so as to save time for driver init */
+               if (hw->eeprom_shadow_ram != NULL) {
+                       for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+                               hw->eeprom_shadow_ram[i].modified = false;
+                               hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
+                       }
+               }
 
-       /*  Send the READ command (opcode + addr)  */
-       e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
-       e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
+               hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
+                               ICH_FLASH_SECTOR_SIZE;
 
-       /* Read the data */
-       *data = e1000_shift_in_ee_bits(hw);
+               hw->flash_bank_size = ((flash_size >> 16)
+                               & ICH_GFPREG_BASE_MASK) + 1;
+               hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
 
-       /* End this read operation */
-       e1000_standby_eeprom(hw);
+               hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
 
-       /* Stop requesting EEPROM access */
-       if (hw->mac_type > e1000_82544) {
-               eecd = E1000_READ_REG(hw, EECD);
-               eecd &= ~E1000_EECD_REQ;
-               E1000_WRITE_REG(hw, EECD, eecd);
+               hw->flash_bank_size /= 2 * sizeof(uint16_t);
+               break;
+               }
+#endif
+       default:
+               break;
        }
 
-       return 0;
+       if (eeprom->type == e1000_eeprom_spi) {
+               /* eeprom_size will be an enum [0..8] that maps
+                * to eeprom sizes 128B to
+                * 32KB (incremented by powers of 2).
+                */
+               if (hw->mac_type <= e1000_82547_rev_2) {
+                       /* Set to default value for initial eeprom read. */
+                       eeprom->word_size = 64;
+                       ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
+                                       &eeprom_size);
+                       if (ret_val)
+                               return ret_val;
+                       eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
+                               >> EEPROM_SIZE_SHIFT;
+                       /* 256B eeprom size was not supported in earlier
+                        * hardware, so we bump eeprom_size up one to
+                        * ensure that "1" (which maps to 256B) is never
+                        * the result used in the shifting logic below. */
+                       if (eeprom_size)
+                               eeprom_size++;
+               } else {
+                       eeprom_size = (uint16_t)((eecd &
+                               E1000_EECD_SIZE_EX_MASK) >>
+                               E1000_EECD_SIZE_EX_SHIFT);
+               }
+
+               eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+       }
+       return ret_val;
 }
 
-#if 0
-static void
-e1000_eeprom_cleanup(struct e1000_hw *hw)
+/******************************************************************************
+ * Polls the status bit (bit 1) of the EERD to determine when the read is done.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t
+e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
 {
-       uint32_t eecd;
+       uint32_t attempts = 100000;
+       uint32_t i, reg = 0;
+       int32_t done = E1000_ERR_EEPROM;
 
-       eecd = E1000_READ_REG(hw, EECD);
-       eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
-       E1000_WRITE_REG(hw, EECD, eecd);
-       e1000_raise_ee_clk(hw, &eecd);
-       e1000_lower_ee_clk(hw, &eecd);
+       for (i = 0; i < attempts; i++) {
+               if (eerd == E1000_EEPROM_POLL_READ)
+                       reg = E1000_READ_REG(hw, EERD);
+               else
+                       reg = E1000_READ_REG(hw, EEWR);
+
+               if (reg & E1000_EEPROM_RW_REG_DONE) {
+                       done = E1000_SUCCESS;
+                       break;
+               }
+               udelay(5);
+       }
+
+       return done;
 }
 
-static uint16_t
-e1000_wait_eeprom_done(struct e1000_hw *hw)
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+static int32_t
+e1000_read_eeprom_eerd(struct e1000_hw *hw,
+                       uint16_t offset,
+                       uint16_t words,
+                       uint16_t *data)
 {
-       uint32_t eecd;
-       uint32_t i;
+       uint32_t i, eerd = 0;
+       int32_t error = 0;
+
+       for (i = 0; i < words; i++) {
+               eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
+                       E1000_EEPROM_RW_REG_START;
+
+               E1000_WRITE_REG(hw, EERD, eerd);
+               error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
+
+               if (error)
+                       break;
+               data[i] = (E1000_READ_REG(hw, EERD) >>
+                               E1000_EEPROM_RW_REG_DATA);
 
-       e1000_standby_eeprom(hw);
-       for (i = 0; i < 200; i++) {
-               eecd = E1000_READ_REG(hw, EECD);
-               if (eecd & E1000_EECD_DO)
-                       return (TRUE);
-               udelay(5);
        }
-       return (FALSE);
+
+       return error;
 }
 
-static int
-e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
+void e1000_release_eeprom(struct e1000_hw *hw)
 {
        uint32_t eecd;
-       int large_eeprom = FALSE;
-       int i = 0;
 
-       /* Request EEPROM Access */
-       if (hw->mac_type > e1000_82544) {
-               eecd = E1000_READ_REG(hw, EECD);
-               if (eecd & E1000_EECD_SIZE)
-                       large_eeprom = TRUE;
-               eecd |= E1000_EECD_REQ;
+       DEBUGFUNC();
+
+       eecd = E1000_READ_REG(hw, EECD);
+
+       if (hw->eeprom.type == e1000_eeprom_spi) {
+               eecd |= E1000_EECD_CS;  /* Pull CS high */
+               eecd &= ~E1000_EECD_SK; /* Lower SCK */
+
                E1000_WRITE_REG(hw, EECD, eecd);
-               eecd = E1000_READ_REG(hw, EECD);
-               while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
-                       i++;
-                       udelay(5);
-                       eecd = E1000_READ_REG(hw, EECD);
-               }
-               if (!(eecd & E1000_EECD_GNT)) {
-                       eecd &= ~E1000_EECD_REQ;
-                       E1000_WRITE_REG(hw, EECD, eecd);
-                       DEBUGOUT("Could not acquire EEPROM grant\n");
-                       return FALSE;
-               }
-       }
-       e1000_setup_eeprom(hw);
-       e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
-       e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
-       e1000_standby_eeprom(hw);
-       e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
-       e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
-       e1000_shift_out_ee_bits(hw, Data, 16);
-       if (!e1000_wait_eeprom_done(hw)) {
-               return FALSE;
+
+               udelay(hw->eeprom.delay_usec);
+       } else if (hw->eeprom.type == e1000_eeprom_microwire) {
+               /* cleanup eeprom */
+
+               /* CS on Microwire is active-high */
+               eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+               E1000_WRITE_REG(hw, EECD, eecd);
+
+               /* Rising edge of clock */
+               eecd |= E1000_EECD_SK;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(hw->eeprom.delay_usec);
+
+               /* Falling edge of clock */
+               eecd &= ~E1000_EECD_SK;
+               E1000_WRITE_REG(hw, EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               udelay(hw->eeprom.delay_usec);
        }
-       e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
-       e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
-       e1000_eeprom_cleanup(hw);
 
        /* Stop requesting EEPROM access */
        if (hw->mac_type > e1000_82544) {
-               eecd = E1000_READ_REG(hw, EECD);
                eecd &= ~E1000_EECD_REQ;
                E1000_WRITE_REG(hw, EECD, eecd);
        }
-       i = 0;
-       eecd = E1000_READ_REG(hw, EECD);
-       while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
-               i++;
-               udelay(10);
-               eecd = E1000_READ_REG(hw, EECD);
-       }
-       if ((eecd & E1000_EECD_GNT)) {
-               DEBUGOUT("Could not release EEPROM grant\n");
-       }
-       return TRUE;
 }
-#endif
-
 /******************************************************************************
- * Verifies that the EEPROM has a valid checksum
+ * Reads a 16 bit word from the EEPROM.
  *
  * hw - Struct containing variables accessed by shared code
- *
- * Reads the first 64 16 bit words of the EEPROM and sums the values read.
- * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
- * valid.
  *****************************************************************************/
-static int
-e1000_validate_eeprom_checksum(struct eth_device *nic)
+static int32_t
+e1000_spi_eeprom_ready(struct e1000_hw *hw)
 {
-       struct e1000_hw *hw = nic->priv;
-       uint16_t checksum = 0;
-       uint16_t i, eeprom_data;
+       uint16_t retry_count = 0;
+       uint8_t spi_stat_reg;
 
        DEBUGFUNC();
 
-       for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
-               if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
-                       DEBUGOUT("EEPROM Read Error\n");
-                       return -E1000_ERR_EEPROM;
-               }
-               checksum += eeprom_data;
-       }
+       /* Read "Status Register" repeatedly until the LSB is cleared.  The
+        * EEPROM will signal that the command has been completed by clearing
+        * bit 0 of the internal status register.  If it's not cleared within
+        * 5 milliseconds, then error out.
+        */
+       retry_count = 0;
+       do {
+               e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+                       hw->eeprom.opcode_bits);
+               spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
+               if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+                       break;
 
-       if (checksum == (uint16_t) EEPROM_SUM) {
-               return 0;
-       } else {
-               DEBUGOUT("EEPROM Checksum Invalid\n");
+               udelay(5);
+               retry_count += 5;
+
+               e1000_standby_eeprom(hw);
+       } while (retry_count < EEPROM_MAX_RETRY_SPI);
+
+       /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+        * only 0-5mSec on 5V devices)
+        */
+       if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+               DEBUGOUT("SPI EEPROM Status error\n");
                return -E1000_ERR_EEPROM;
        }
+
+       return E1000_SUCCESS;
 }
-#endif /* #ifndef CONFIG_AP1000 */
 
 /******************************************************************************
- * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
- * second function of dual function devices
+ * Reads a 16 bit word from the EEPROM.
  *
- * nic - Struct containing variables accessed by shared code
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM
  *****************************************************************************/
-static int
-e1000_read_mac_addr(struct eth_device *nic)
+static int32_t
+e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
+               uint16_t words, uint16_t *data)
 {
-#ifndef CONFIG_AP1000
-       struct e1000_hw *hw = nic->priv;
-       uint16_t offset;
-       uint16_t eeprom_data;
-       int i;
+       struct e1000_eeprom_info *eeprom = &hw->eeprom;
+       uint32_t i = 0;
 
        DEBUGFUNC();
 
-       for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
-               offset = i >> 1;
-               if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
-                       DEBUGOUT("EEPROM Read Error\n");
-                       return -E1000_ERR_EEPROM;
-               }
-               nic->enetaddr[i] = eeprom_data & 0xff;
-               nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
-       }
-       if ((hw->mac_type == e1000_82546) &&
-           (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
-               /* Invert the last bit if this is the second device */
-               nic->enetaddr[5] += 1;
-       }
-#ifdef CONFIG_E1000_FALLBACK_MAC
-       if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 )
-               for ( i=0; i < NODE_ADDRESS_SIZE; i++ )
-                       nic->enetaddr[i] = (CONFIG_E1000_FALLBACK_MAC >> (8*(5-i))) & 0xff;
-#endif
-#else
-       /*
-        * The AP1000's e1000 has no eeprom; the MAC address is stored in the
-        * environment variables.  Currently this does not support the addition
-        * of a PMC e1000 card, which is certainly a possibility, so this should
-        * be updated to properly use the env variable only for the onboard e1000
+       /* If eeprom is not yet detected, do so now */
+       if (eeprom->word_size == 0)
+               e1000_init_eeprom_params(hw);
+
+       /* A check for invalid values:  offset too large, too many words,
+        * and not enough words.
         */
+       if ((offset >= eeprom->word_size) ||
+               (words > eeprom->word_size - offset) ||
+               (words == 0)) {
+               DEBUGOUT("\"words\" parameter out of bounds."
+                       "Words = %d, size = %d\n", offset, eeprom->word_size);
+               return -E1000_ERR_EEPROM;
+       }
 
-       int ii;
-       char *s, *e;
+       /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+        * directly. In this case, we need to acquire the EEPROM so that
+        * FW or other port software does not interrupt.
+        */
+       if (e1000_is_onboard_nvm_eeprom(hw) == true &&
+               hw->eeprom.use_eerd == false) {
+
+               /* Prepare the EEPROM for bit-bang reading */
+               if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+                       return -E1000_ERR_EEPROM;
+       }
+
+       /* Eerd register EEPROM access requires no eeprom aquire/release */
+       if (eeprom->use_eerd == true)
+               return e1000_read_eeprom_eerd(hw, offset, words, data);
+
+       /* ich8lan does not support currently. if needed, please
+        * add corresponding code and functions.
+        */
+#if 0
+       /* ICH EEPROM access is done via the ICH flash controller */
+       if (eeprom->type == e1000_eeprom_ich8)
+               return e1000_read_eeprom_ich8(hw, offset, words, data);
+#endif
+       /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
+        * acquired the EEPROM at this point, so any returns should relase it */
+       if (eeprom->type == e1000_eeprom_spi) {
+               uint16_t word_in;
+               uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
+
+               if (e1000_spi_eeprom_ready(hw)) {
+                       e1000_release_eeprom(hw);
+                       return -E1000_ERR_EEPROM;
+               }
+
+               e1000_standby_eeprom(hw);
+
+               /* Some SPI eeproms use the 8th address bit embedded in
+                * the opcode */
+               if ((eeprom->address_bits == 8) && (offset >= 128))
+                       read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+               /* Send the READ command (opcode + addr)  */
+               e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+               e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
+                               eeprom->address_bits);
+
+               /* Read the data.  The address of the eeprom internally
+                * increments with each byte (spi) being read, saving on the
+                * overhead of eeprom setup and tear-down.  The address
+                * counter will roll over if reading beyond the size of
+                * the eeprom, thus allowing the entire memory to be read
+                * starting from any offset. */
+               for (i = 0; i < words; i++) {
+                       word_in = e1000_shift_in_ee_bits(hw, 16);
+                       data[i] = (word_in >> 8) | (word_in << 8);
+               }
+       } else if (eeprom->type == e1000_eeprom_microwire) {
+               for (i = 0; i < words; i++) {
+                       /* Send the READ command (opcode + addr)  */
+                       e1000_shift_out_ee_bits(hw,
+                               EEPROM_READ_OPCODE_MICROWIRE,
+                               eeprom->opcode_bits);
+                       e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
+                               eeprom->address_bits);
+
+                       /* Read the data.  For microwire, each word requires
+                        * the overhead of eeprom setup and tear-down. */
+                       data[i] = e1000_shift_in_ee_bits(hw, 16);
+                       e1000_standby_eeprom(hw);
+               }
+       }
+
+       /* End this read operation */
+       e1000_release_eeprom(hw);
+
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Verifies that the EEPROM has a valid checksum
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ *****************************************************************************/
+static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+       uint16_t i, checksum, checksum_reg, *buf;
 
        DEBUGFUNC();
 
-       s = getenv ("ethaddr");
-       if (s == NULL){
+       /* Allocate a temporary buffer */
+       buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
+       if (!buf) {
+               E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
                return -E1000_ERR_EEPROM;
        }
-       else{
-               for(ii = 0; ii < 6; ii++) {
-                       nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
-                       if (s){
-                               s = (*e) ? e + 1 : e;
-                       }
+
+       /* Read the EEPROM */
+       if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
+               E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
+               return -E1000_ERR_EEPROM;
+       }
+
+       /* Compute the checksum */
+       checksum = 0;
+       for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
+               checksum += buf[i];
+       checksum = ((uint16_t)EEPROM_SUM) - checksum;
+       checksum_reg = buf[i];
+
+       /* Verify it! */
+       if (checksum == checksum_reg)
+               return 0;
+
+       /* Hrm, verification failed, print an error */
+       E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
+       E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
+                       checksum_reg, checksum);
+
+       return -E1000_ERR_EEPROM;
+}
+
+/*****************************************************************************
+ * Set PHY to class A mode
+ * Assumes the following operations will follow to enable the new class mode.
+ *  1. Do a PHY soft reset
+ *  2. Restart auto-negotiation or force link.
+ *
+ * hw - Struct containing variables accessed by shared code
+ ****************************************************************************/
+static int32_t
+e1000_set_phy_mode(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       uint16_t eeprom_data;
+
+       DEBUGFUNC();
+
+       if ((hw->mac_type == e1000_82545_rev_3) &&
+               (hw->media_type == e1000_media_type_copper)) {
+               ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
+                               1, &eeprom_data);
+               if (ret_val)
+                       return ret_val;
+
+               if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+                       (eeprom_data & EEPROM_PHY_CLASS_A)) {
+                       ret_val = e1000_write_phy_reg(hw,
+                                       M88E1000_PHY_PAGE_SELECT, 0x000B);
+                       if (ret_val)
+                               return ret_val;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       M88E1000_PHY_GEN_CONTROL, 0x8104);
+                       if (ret_val)
+                               return ret_val;
+
+                       hw->phy_reset_disable = false;
+               }
+       }
+
+       return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Obtaining software semaphore bit (SMBI) before resetting PHY.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to obtain semaphore.
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t
+e1000_get_software_semaphore(struct e1000_hw *hw)
+{
+        int32_t timeout = hw->eeprom.word_size + 1;
+        uint32_t swsm;
+
+       DEBUGFUNC();
+
+       if (hw->mac_type != e1000_80003es2lan)
+               return E1000_SUCCESS;
+
+       while (timeout) {
+               swsm = E1000_READ_REG(hw, SWSM);
+               /* If SMBI bit cleared, it is now set and we hold
+                * the semaphore */
+               if (!(swsm & E1000_SWSM_SMBI))
+                       break;
+               mdelay(1);
+               timeout--;
+       }
+
+       if (!timeout) {
+               DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+               return -E1000_ERR_RESET;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ * This function clears HW semaphore bits.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - None.
+ *
+ ***************************************************************************/
+static void
+e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+        uint32_t swsm;
+
+       DEBUGFUNC();
+
+       if (!hw->eeprom_semaphore_present)
+               return;
+
+       swsm = E1000_READ_REG(hw, SWSM);
+       if (hw->mac_type == e1000_80003es2lan) {
+               /* Release both semaphores. */
+               swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+       } else
+               swsm &= ~(E1000_SWSM_SWESMBI);
+       E1000_WRITE_REG(hw, SWSM, swsm);
+}
+
+/***************************************************************************
+ *
+ * Using the combination of SMBI and SWESMBI semaphore bits when resetting
+ * adapter or Eeprom access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t
+e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+       int32_t timeout;
+       uint32_t swsm;
+
+       DEBUGFUNC();
+
+       if (!hw->eeprom_semaphore_present)
+               return E1000_SUCCESS;
+
+       if (hw->mac_type == e1000_80003es2lan) {
+               /* Get the SW semaphore. */
+               if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
+                       return -E1000_ERR_EEPROM;
+       }
+
+       /* Get the FW semaphore. */
+       timeout = hw->eeprom.word_size + 1;
+       while (timeout) {
+               swsm = E1000_READ_REG(hw, SWSM);
+               swsm |= E1000_SWSM_SWESMBI;
+               E1000_WRITE_REG(hw, SWSM, swsm);
+               /* if we managed to set the bit we got the semaphore. */
+               swsm = E1000_READ_REG(hw, SWSM);
+               if (swsm & E1000_SWSM_SWESMBI)
+                       break;
+
+               udelay(50);
+               timeout--;
+       }
+
+       if (!timeout) {
+               /* Release semaphores */
+               e1000_put_hw_eeprom_semaphore(hw);
+               DEBUGOUT("Driver can't access the Eeprom - "
+                               "SWESMBI bit is set.\n");
+               return -E1000_ERR_EEPROM;
+       }
+
+       return E1000_SUCCESS;
+}
+
+static int32_t
+e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
+{
+       uint32_t swfw_sync = 0;
+       uint32_t swmask = mask;
+       uint32_t fwmask = mask << 16;
+       int32_t timeout = 200;
+
+       DEBUGFUNC();
+       while (timeout) {
+               if (e1000_get_hw_eeprom_semaphore(hw))
+                       return -E1000_ERR_SWFW_SYNC;
+
+               swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
+               if (!(swfw_sync & (fwmask | swmask)))
+                       break;
+
+               /* firmware currently using resource (fwmask) */
+               /* or other software thread currently using resource (swmask) */
+               e1000_put_hw_eeprom_semaphore(hw);
+               mdelay(5);
+               timeout--;
+       }
+
+       if (!timeout) {
+               DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+               return -E1000_ERR_SWFW_SYNC;
+       }
+
+       swfw_sync |= swmask;
+       E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
+
+       e1000_put_hw_eeprom_semaphore(hw);
+       return E1000_SUCCESS;
+}
+
+static bool e1000_is_second_port(struct e1000_hw *hw)
+{
+       switch (hw->mac_type) {
+       case e1000_80003es2lan:
+       case e1000_82546:
+       case e1000_82571:
+               if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+                       return true;
+               /* Fallthrough */
+       default:
+               return false;
+       }
+}
+
+/******************************************************************************
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ *
+ * nic - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int
+e1000_read_mac_addr(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+       uint16_t offset;
+       uint16_t eeprom_data;
+       int i;
+
+       DEBUGFUNC();
+
+       for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+               offset = i >> 1;
+               if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+                       DEBUGOUT("EEPROM Read Error\n");
+                       return -E1000_ERR_EEPROM;
                }
+               nic->enetaddr[i] = eeprom_data & 0xff;
+               nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
+       }
+
+       /* Invert the last bit if this is the second device */
+       if (e1000_is_second_port(hw))
+               nic->enetaddr[5] ^= 1;
+
+#ifdef CONFIG_E1000_FALLBACK_MAC
+       if (!is_valid_ether_addr(nic->enetaddr)) {
+               unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
+
+               memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
        }
 #endif
        return 0;
@@ -603,7 +1209,7 @@ e1000_clear_vfta(struct e1000_hw *hw)
  *
  * hw - Struct containing variables accessed by shared code
  *****************************************************************************/
-static int
+int32_t
 e1000_set_mac_type(struct e1000_hw *hw)
 {
        DEBUGFUNC();
@@ -634,21 +1240,91 @@ e1000_set_mac_type(struct e1000_hw *hw)
                break;
        case E1000_DEV_ID_82540EM:
        case E1000_DEV_ID_82540EM_LOM:
+       case E1000_DEV_ID_82540EP:
+       case E1000_DEV_ID_82540EP_LOM:
+       case E1000_DEV_ID_82540EP_LP:
                hw->mac_type = e1000_82540;
                break;
        case E1000_DEV_ID_82545EM_COPPER:
-       case E1000_DEV_ID_82545GM_COPPER:
        case E1000_DEV_ID_82545EM_FIBER:
                hw->mac_type = e1000_82545;
                break;
+       case E1000_DEV_ID_82545GM_COPPER:
+       case E1000_DEV_ID_82545GM_FIBER:
+       case E1000_DEV_ID_82545GM_SERDES:
+               hw->mac_type = e1000_82545_rev_3;
+               break;
        case E1000_DEV_ID_82546EB_COPPER:
        case E1000_DEV_ID_82546EB_FIBER:
+       case E1000_DEV_ID_82546EB_QUAD_COPPER:
                hw->mac_type = e1000_82546;
                break;
+       case E1000_DEV_ID_82546GB_COPPER:
+       case E1000_DEV_ID_82546GB_FIBER:
+       case E1000_DEV_ID_82546GB_SERDES:
+       case E1000_DEV_ID_82546GB_PCIE:
+       case E1000_DEV_ID_82546GB_QUAD_COPPER:
+       case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+               hw->mac_type = e1000_82546_rev_3;
+               break;
+       case E1000_DEV_ID_82541EI:
+       case E1000_DEV_ID_82541EI_MOBILE:
+       case E1000_DEV_ID_82541ER_LOM:
+               hw->mac_type = e1000_82541;
+               break;
        case E1000_DEV_ID_82541ER:
+       case E1000_DEV_ID_82541GI:
        case E1000_DEV_ID_82541GI_LF:
+       case E1000_DEV_ID_82541GI_MOBILE:
                hw->mac_type = e1000_82541_rev_2;
                break;
+       case E1000_DEV_ID_82547EI:
+       case E1000_DEV_ID_82547EI_MOBILE:
+               hw->mac_type = e1000_82547;
+               break;
+       case E1000_DEV_ID_82547GI:
+               hw->mac_type = e1000_82547_rev_2;
+               break;
+       case E1000_DEV_ID_82571EB_COPPER:
+       case E1000_DEV_ID_82571EB_FIBER:
+       case E1000_DEV_ID_82571EB_SERDES:
+       case E1000_DEV_ID_82571EB_SERDES_DUAL:
+       case E1000_DEV_ID_82571EB_SERDES_QUAD:
+       case E1000_DEV_ID_82571EB_QUAD_COPPER:
+       case E1000_DEV_ID_82571PT_QUAD_COPPER:
+       case E1000_DEV_ID_82571EB_QUAD_FIBER:
+       case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
+               hw->mac_type = e1000_82571;
+               break;
+       case E1000_DEV_ID_82572EI_COPPER:
+       case E1000_DEV_ID_82572EI_FIBER:
+       case E1000_DEV_ID_82572EI_SERDES:
+       case E1000_DEV_ID_82572EI:
+               hw->mac_type = e1000_82572;
+               break;
+       case E1000_DEV_ID_82573E:
+       case E1000_DEV_ID_82573E_IAMT:
+       case E1000_DEV_ID_82573L:
+               hw->mac_type = e1000_82573;
+               break;
+       case E1000_DEV_ID_82574L:
+               hw->mac_type = e1000_82574;
+               break;
+       case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+       case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+       case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+       case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+               hw->mac_type = e1000_80003es2lan;
+               break;
+       case E1000_DEV_ID_ICH8_IGP_M_AMT:
+       case E1000_DEV_ID_ICH8_IGP_AMT:
+       case E1000_DEV_ID_ICH8_IGP_C:
+       case E1000_DEV_ID_ICH8_IFE:
+       case E1000_DEV_ID_ICH8_IFE_GT:
+       case E1000_DEV_ID_ICH8_IFE_G:
+       case E1000_DEV_ID_ICH8_IGP_M:
+               hw->mac_type = e1000_ich8lan;
+               break;
        default:
                /* Should never have loaded on this device */
                return -E1000_ERR_MAC_TYPE;
@@ -666,17 +1342,22 @@ e1000_reset_hw(struct e1000_hw *hw)
 {
        uint32_t ctrl;
        uint32_t ctrl_ext;
-       uint32_t icr;
        uint32_t manc;
+       uint32_t pba = 0;
 
        DEBUGFUNC();
 
+       /* get the correct pba value for both PCI and PCIe*/
+       if (hw->mac_type <  e1000_82571)
+               pba = E1000_DEFAULT_PCI_PBA;
+       else
+               pba = E1000_DEFAULT_PCIE_PBA;
+
        /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
        if (hw->mac_type == e1000_82542_rev2_0) {
                DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
                pci_write_config_word(hw->pdev, PCI_COMMAND,
-                                     hw->
-                                     pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
+                               hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
        }
 
        /* Clear interrupt mask to stop board from generating interrupts */
@@ -692,7 +1373,7 @@ e1000_reset_hw(struct e1000_hw *hw)
        E1000_WRITE_FLUSH(hw);
 
        /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
-       hw->tbi_compatibility_on = FALSE;
+       hw->tbi_compatibility_on = false;
 
        /* Delay to allow any outstanding PCI transactions to complete before
         * resetting the device
@@ -707,12 +1388,7 @@ e1000_reset_hw(struct e1000_hw *hw)
        DEBUGOUT("Issuing a global reset to MAC\n");
        ctrl = E1000_READ_REG(hw, CTRL);
 
-#if 0
-       if (hw->mac_type > e1000_82543)
-               E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
-       else
-#endif
-               E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+       E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
 
        /* Force a reload from the EEPROM if necessary */
        if (hw->mac_type < e1000_82540) {
@@ -738,12 +1414,134 @@ e1000_reset_hw(struct e1000_hw *hw)
        E1000_WRITE_REG(hw, IMC, 0xffffffff);
 
        /* Clear any pending interrupt events. */
-       icr = E1000_READ_REG(hw, ICR);
+       E1000_READ_REG(hw, ICR);
 
        /* If MWI was previously enabled, reenable it. */
        if (hw->mac_type == e1000_82542_rev2_0) {
                pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
        }
+       E1000_WRITE_REG(hw, PBA, pba);
+}
+
+/******************************************************************************
+ *
+ * Initialize a number of hardware-dependent bits
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * This function contains hardware limitation workarounds for PCI-E adapters
+ *
+ *****************************************************************************/
+static void
+e1000_initialize_hardware_bits(struct e1000_hw *hw)
+{
+       if ((hw->mac_type >= e1000_82571) &&
+                       (!hw->initialize_hw_bits_disable)) {
+               /* Settings common to all PCI-express silicon */
+               uint32_t reg_ctrl, reg_ctrl_ext;
+               uint32_t reg_tarc0, reg_tarc1;
+               uint32_t reg_tctl;
+               uint32_t reg_txdctl, reg_txdctl1;
+
+               /* link autonegotiation/sync workarounds */
+               reg_tarc0 = E1000_READ_REG(hw, TARC0);
+               reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
+
+               /* Enable not-done TX descriptor counting */
+               reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+               reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
+               E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+
+               reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
+               reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
+               E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
+
+               switch (hw->mac_type) {
+               case e1000_82571:
+               case e1000_82572:
+                       /* Clear PHY TX compatible mode bits */
+                       reg_tarc1 = E1000_READ_REG(hw, TARC1);
+                       reg_tarc1 &= ~((1 << 30)|(1 << 29));
+
+                       /* link autonegotiation/sync workarounds */
+                       reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
+
+                       /* TX ring control fixes */
+                       reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
+
+                       /* Multiple read bit is reversed polarity */
+                       reg_tctl = E1000_READ_REG(hw, TCTL);
+                       if (reg_tctl & E1000_TCTL_MULR)
+                               reg_tarc1 &= ~(1 << 28);
+                       else
+                               reg_tarc1 |= (1 << 28);
+
+                       E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+                       break;
+               case e1000_82573:
+               case e1000_82574:
+                       reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+                       reg_ctrl_ext &= ~(1 << 23);
+                       reg_ctrl_ext |= (1 << 22);
+
+                       /* TX byte count fix */
+                       reg_ctrl = E1000_READ_REG(hw, CTRL);
+                       reg_ctrl &= ~(1 << 29);
+
+                       E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+                       E1000_WRITE_REG(hw, CTRL, reg_ctrl);
+                       break;
+               case e1000_80003es2lan:
+       /* improve small packet performace for fiber/serdes */
+                       if ((hw->media_type == e1000_media_type_fiber)
+                       || (hw->media_type ==
+                               e1000_media_type_internal_serdes)) {
+                               reg_tarc0 &= ~(1 << 20);
+                       }
+
+               /* Multiple read bit is reversed polarity */
+                       reg_tctl = E1000_READ_REG(hw, TCTL);
+                       reg_tarc1 = E1000_READ_REG(hw, TARC1);
+                       if (reg_tctl & E1000_TCTL_MULR)
+                               reg_tarc1 &= ~(1 << 28);
+                       else
+                               reg_tarc1 |= (1 << 28);
+
+                       E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+                       break;
+               case e1000_ich8lan:
+                       /* Reduce concurrent DMA requests to 3 from 4 */
+                       if ((hw->revision_id < 3) ||
+                       ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+                               (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
+                               reg_tarc0 |= ((1 << 29)|(1 << 28));
+
+                       reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+                       reg_ctrl_ext |= (1 << 22);
+                       E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+
+                       /* workaround TX hang with TSO=on */
+                       reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
+
+                       /* Multiple read bit is reversed polarity */
+                       reg_tctl = E1000_READ_REG(hw, TCTL);
+                       reg_tarc1 = E1000_READ_REG(hw, TARC1);
+                       if (reg_tctl & E1000_TCTL_MULR)
+                               reg_tarc1 &= ~(1 << 28);
+                       else
+                               reg_tarc1 |= (1 << 28);
+
+                       /* workaround TX hang with TSO=on */
+                       reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
+
+                       E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+                       break;
+               default:
+                       break;
+               }
+
+               E1000_WRITE_REG(hw, TARC0, reg_tarc0);
+       }
 }
 
 /******************************************************************************
@@ -761,49 +1559,43 @@ static int
 e1000_init_hw(struct eth_device *nic)
 {
        struct e1000_hw *hw = nic->priv;
-       uint32_t ctrl, status;
+       uint32_t ctrl;
        uint32_t i;
        int32_t ret_val;
        uint16_t pcix_cmd_word;
        uint16_t pcix_stat_hi_word;
        uint16_t cmd_mmrbc;
        uint16_t stat_mmrbc;
-       e1000_bus_type bus_type = e1000_bus_type_unknown;
-
+       uint32_t mta_size;
+       uint32_t reg_data;
+       uint32_t ctrl_ext;
        DEBUGFUNC();
-#if 0
-       /* Initialize Identification LED */
-       ret_val = e1000_id_led_init(hw);
-       if (ret_val < 0) {
-               DEBUGOUT("Error Initializing Identification LED\n");
-               return ret_val;
-       }
-#endif
-       /* Set the Media Type and exit with error if it is not valid. */
-       if (hw->mac_type != e1000_82543) {
-               /* tbi_compatibility is only valid on 82543 */
-               hw->tbi_compatibility_en = FALSE;
+       /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
+       if ((hw->mac_type == e1000_ich8lan) &&
+               ((hw->revision_id < 3) ||
+               ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+               (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
+                       reg_data = E1000_READ_REG(hw, STATUS);
+                       reg_data &= ~0x80000000;
+                       E1000_WRITE_REG(hw, STATUS, reg_data);
        }
+       /* Do not need initialize Identification LED */
 
-       if (hw->mac_type >= e1000_82543) {
-               status = E1000_READ_REG(hw, STATUS);
-               if (status & E1000_STATUS_TBIMODE) {
-                       hw->media_type = e1000_media_type_fiber;
-                       /* tbi_compatibility not valid on fiber */
-                       hw->tbi_compatibility_en = FALSE;
-               } else {
-                       hw->media_type = e1000_media_type_copper;
-               }
-       } else {
-               /* This is an 82542 (fiber only) */
-               hw->media_type = e1000_media_type_fiber;
-       }
+       /* Set the media type and TBI compatibility */
+       e1000_set_media_type(hw);
+
+       /* Must be called after e1000_set_media_type
+        * because media_type is used */
+       e1000_initialize_hardware_bits(hw);
 
        /* Disabling VLAN filtering. */
        DEBUGOUT("Initializing the IEEE VLAN\n");
-       E1000_WRITE_REG(hw, VET, 0);
-
-       e1000_clear_vfta(hw);
+       /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
+       if (hw->mac_type != e1000_ich8lan) {
+               if (hw->mac_type < e1000_82545_rev_3)
+                       E1000_WRITE_REG(hw, VET, 0);
+               e1000_clear_vfta(hw);
+       }
 
        /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
        if (hw->mac_type == e1000_82542_rev2_0) {
@@ -831,26 +1623,33 @@ e1000_init_hw(struct eth_device *nic)
 
        /* Zero out the Multicast HASH table */
        DEBUGOUT("Zeroing the MTA\n");
-       for (i = 0; i < E1000_MC_TBL_SIZE; i++)
+       mta_size = E1000_MC_TBL_SIZE;
+       if (hw->mac_type == e1000_ich8lan)
+               mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
+       for (i = 0; i < mta_size; i++) {
                E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
-
+               /* use write flush to prevent Memory Write Block (MWB) from
+                * occuring when accessing our register space */
+               E1000_WRITE_FLUSH(hw);
+       }
 #if 0
        /* Set the PCI priority bit correctly in the CTRL register.  This
         * determines if the adapter gives priority to receives, or if it
-        * gives equal priority to transmits and receives.
+        * gives equal priority to transmits and receives.  Valid only on
+        * 82542 and 82543 silicon.
         */
-       if (hw->dma_fairness) {
+       if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
                ctrl = E1000_READ_REG(hw, CTRL);
                E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
        }
 #endif
-       if (hw->mac_type >= e1000_82543) {
-               status = E1000_READ_REG(hw, STATUS);
-               bus_type = (status & E1000_STATUS_PCIX_MODE) ?
-                   e1000_bus_type_pcix : e1000_bus_type_pci;
-       }
+       switch (hw->mac_type) {
+       case e1000_82545_rev_3:
+       case e1000_82546_rev_3:
+               break;
+       default:
        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
-       if (bus_type == e1000_bus_type_pcix) {
+       if (hw->bus_type == e1000_bus_type_pcix) {
                pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
                                     &pcix_cmd_word);
                pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
@@ -870,6 +1669,12 @@ e1000_init_hw(struct eth_device *nic)
                                              pcix_cmd_word);
                }
        }
+               break;
+       }
+
+       /* More time needed for PHY to initialize */
+       if (hw->mac_type == e1000_ich8lan)
+               mdelay(15);
 
        /* Call a subroutine to configure the link and setup flow control. */
        ret_val = e1000_setup_link(nic);
@@ -882,6 +1687,57 @@ e1000_init_hw(struct eth_device *nic)
                    E1000_TXDCTL_FULL_TX_DESC_WB;
                E1000_WRITE_REG(hw, TXDCTL, ctrl);
        }
+
+       /* Set the receive descriptor write back policy */
+
+       if (hw->mac_type >= e1000_82571) {
+               ctrl = E1000_READ_REG(hw, RXDCTL);
+               ctrl =
+                   (ctrl & ~E1000_RXDCTL_WTHRESH) |
+                   E1000_RXDCTL_FULL_RX_DESC_WB;
+               E1000_WRITE_REG(hw, RXDCTL, ctrl);
+       }
+
+       switch (hw->mac_type) {
+       default:
+               break;
+       case e1000_80003es2lan:
+               /* Enable retransmit on late collisions */
+               reg_data = E1000_READ_REG(hw, TCTL);
+               reg_data |= E1000_TCTL_RTLC;
+               E1000_WRITE_REG(hw, TCTL, reg_data);
+
+               /* Configure Gigabit Carry Extend Padding */
+               reg_data = E1000_READ_REG(hw, TCTL_EXT);
+               reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+               reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
+               E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
+
+               /* Configure Transmit Inter-Packet Gap */
+               reg_data = E1000_READ_REG(hw, TIPG);
+               reg_data &= ~E1000_TIPG_IPGT_MASK;
+               reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+               E1000_WRITE_REG(hw, TIPG, reg_data);
+
+               reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
+               reg_data &= ~0x00100000;
+               E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
+               /* Fall through */
+       case e1000_82571:
+       case e1000_82572:
+       case e1000_ich8lan:
+               ctrl = E1000_READ_REG(hw, TXDCTL1);
+               ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
+                       | E1000_TXDCTL_FULL_TX_DESC_WB;
+               E1000_WRITE_REG(hw, TXDCTL1, ctrl);
+               break;
+       case e1000_82573:
+       case e1000_82574:
+               reg_data = E1000_READ_REG(hw, GCR);
+               reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+               E1000_WRITE_REG(hw, GCR, reg_data);
+       }
+
 #if 0
        /* Clear all of the statistics registers (clear on read).  It is
         * important that we do this after we have tried to establish link
@@ -889,8 +1745,22 @@ e1000_init_hw(struct eth_device *nic)
         * is no link.
         */
        e1000_clear_hw_cntrs(hw);
+
+       /* ICH8 No-snoop bits are opposite polarity.
+        * Set to snoop by default after reset. */
+       if (hw->mac_type == e1000_ich8lan)
+               e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
 #endif
 
+       if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+               hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+               ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+               /* Relaxed ordering must be disabled to avoid a parity
+                * error crash in a PCI slot. */
+               ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+               E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+       }
+
        return ret_val;
 }
 
@@ -915,7 +1785,11 @@ e1000_setup_link(struct eth_device *nic)
 
        DEBUGFUNC();
 
-#ifndef CONFIG_AP1000
+       /* In the case of the phy reset being blocked, we already have a link.
+        * We do not have to set it up again. */
+       if (e1000_check_phy_reset_block(hw))
+               return E1000_SUCCESS;
+
        /* Read and store word 0x0F of the EEPROM. This word contains bits
         * that determine the hardware's default PAUSE (flow control) mode,
         * a bit that determines whether the HW defaults to enabling or
@@ -924,24 +1798,35 @@ e1000_setup_link(struct eth_device *nic)
         * control setting, then the variable hw->fc will
         * be initialized based on a value in the EEPROM.
         */
-       if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
+       if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
+                               &eeprom_data) < 0) {
                DEBUGOUT("EEPROM Read Error\n");
                return -E1000_ERR_EEPROM;
        }
-#else
-       /* we have to hardcode the proper value for our hardware. */
-       /* this value is for the 82540EM pci card used for prototyping, and it works. */
-       eeprom_data = 0xb220;
-#endif
 
        if (hw->fc == e1000_fc_default) {
-               if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
-                       hw->fc = e1000_fc_none;
-               else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
-                        EEPROM_WORD0F_ASM_DIR)
-                       hw->fc = e1000_fc_tx_pause;
-               else
+               switch (hw->mac_type) {
+               case e1000_ich8lan:
+               case e1000_82573:
+               case e1000_82574:
                        hw->fc = e1000_fc_full;
+                       break;
+               default:
+                       ret_val = e1000_read_eeprom(hw,
+                               EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
+                       if (ret_val) {
+                               DEBUGOUT("EEPROM Read Error\n");
+                               return -E1000_ERR_EEPROM;
+                       }
+                       if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+                               hw->fc = e1000_fc_none;
+                       else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+                                   EEPROM_WORD0F_ASM_DIR)
+                               hw->fc = e1000_fc_tx_pause;
+                       else
+                               hw->fc = e1000_fc_full;
+                       break;
+               }
        }
 
        /* We want to save off the original Flow Control configuration just
@@ -983,12 +1868,16 @@ e1000_setup_link(struct eth_device *nic)
         * control is disabled, because it does not hurt anything to
         * initialize these registers.
         */
-       DEBUGOUT
-           ("Initializing the Flow Control address, type and timer regs\n");
+       DEBUGOUT("Initializing the Flow Control address, type"
+                       "and timer regs\n");
+
+       /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
+       if (hw->mac_type != e1000_ich8lan) {
+               E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+               E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+               E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+       }
 
-       E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
-       E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
-       E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
        E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
 
        /* Set the flow control receive threshold registers.  Normally,
@@ -1153,17 +2042,15 @@ e1000_setup_fiber_link(struct eth_device *nic)
 }
 
 /******************************************************************************
-* Detects which PHY is present and the speed and duplex
+* Make sure we have a valid PHY and change PHY mode before link setup.
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int
-e1000_setup_copper_link(struct eth_device *nic)
+static int32_t
+e1000_copper_link_preconfig(struct e1000_hw *hw)
 {
-       struct e1000_hw *hw = nic->priv;
        uint32_t ctrl;
        int32_t ret_val;
-       uint16_t i;
        uint16_t phy_data;
 
        DEBUGFUNC();
@@ -1178,28 +2065,676 @@ e1000_setup_copper_link(struct eth_device *nic)
                ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
                E1000_WRITE_REG(hw, CTRL, ctrl);
        } else {
-               ctrl |=
-                   (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+               ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
+                               | E1000_CTRL_SLU);
                E1000_WRITE_REG(hw, CTRL, ctrl);
-               e1000_phy_hw_reset(hw);
+               ret_val = e1000_phy_hw_reset(hw);
+               if (ret_val)
+                       return ret_val;
        }
 
        /* Make sure we have a valid PHY */
        ret_val = e1000_detect_gig_phy(hw);
-       if (ret_val < 0) {
+       if (ret_val) {
                DEBUGOUT("Error, did not detect valid phy.\n");
                return ret_val;
        }
        DEBUGOUT("Phy ID = %x \n", hw->phy_id);
 
-       /* Enable CRS on TX. This must be set for half-duplex operation. */
-       if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
-               DEBUGOUT("PHY Read Error\n");
-               return -E1000_ERR_PHY;
-       }
+       /* Set PHY to class A mode (if necessary) */
+       ret_val = e1000_set_phy_mode(hw);
+       if (ret_val)
+               return ret_val;
+       if ((hw->mac_type == e1000_82545_rev_3) ||
+               (hw->mac_type == e1000_82546_rev_3)) {
+               ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+                               &phy_data);
+               phy_data |= 0x00000008;
+               ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+                               phy_data);
+       }
+
+       if (hw->mac_type <= e1000_82543 ||
+               hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+               hw->mac_type == e1000_82541_rev_2
+               || hw->mac_type == e1000_82547_rev_2)
+                       hw->phy_reset_disable = false;
+
+       return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+static int32_t
+e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+       uint32_t phy_ctrl = 0;
+       int32_t ret_val;
+       uint16_t phy_data;
+       DEBUGFUNC();
+
+       if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
+           && hw->phy_type != e1000_phy_igp_3)
+               return E1000_SUCCESS;
+
+       /* During driver activity LPLU should not be used or it will attain link
+        * from the lowest speeds starting from 10Mbps. The capability is used
+        * for Dx transitions and states */
+       if (hw->mac_type == e1000_82541_rev_2
+                       || hw->mac_type == e1000_82547_rev_2) {
+               ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+                               &phy_data);
+               if (ret_val)
+                       return ret_val;
+       } else if (hw->mac_type == e1000_ich8lan) {
+               /* MAC writes into PHY register based on the state transition
+                * and start auto-negotiation. SW driver can overwrite the
+                * settings in CSR PHY power control E1000_PHY_CTRL register. */
+               phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+       } else {
+               ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+                               &phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       if (!active) {
+               if (hw->mac_type == e1000_82541_rev_2 ||
+                       hw->mac_type == e1000_82547_rev_2) {
+                       phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+                       ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+                                       phy_data);
+                       if (ret_val)
+                               return ret_val;
+               } else {
+                       if (hw->mac_type == e1000_ich8lan) {
+                               phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+                               E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+                       } else {
+                               phy_data &= ~IGP02E1000_PM_D3_LPLU;
+                               ret_val = e1000_write_phy_reg(hw,
+                                       IGP02E1000_PHY_POWER_MGMT, phy_data);
+                               if (ret_val)
+                                       return ret_val;
+                       }
+               }
+
+       /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+        * Dx states where the power conservation is most important.  During
+        * driver activity we should enable SmartSpeed, so performance is
+        * maintained. */
+               if (hw->smart_speed == e1000_smart_speed_on) {
+                       ret_val = e1000_read_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               } else if (hw->smart_speed == e1000_smart_speed_off) {
+                       ret_val = e1000_read_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+       } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
+               || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
+               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
+
+               if (hw->mac_type == e1000_82541_rev_2 ||
+                   hw->mac_type == e1000_82547_rev_2) {
+                       phy_data |= IGP01E1000_GMII_FLEX_SPD;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_GMII_FIFO, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               } else {
+                       if (hw->mac_type == e1000_ich8lan) {
+                               phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+                               E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+                       } else {
+                               phy_data |= IGP02E1000_PM_D3_LPLU;
+                               ret_val = e1000_write_phy_reg(hw,
+                                       IGP02E1000_PHY_POWER_MGMT, phy_data);
+                               if (ret_val)
+                                       return ret_val;
+                       }
+               }
+
+               /* When LPLU is enabled we should disable SmartSpeed */
+               ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                               &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+               ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                               phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+       return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu d0 state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+static int32_t
+e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+       uint32_t phy_ctrl = 0;
+       int32_t ret_val;
+       uint16_t phy_data;
+       DEBUGFUNC();
+
+       if (hw->mac_type <= e1000_82547_rev_2)
+               return E1000_SUCCESS;
+
+       if (hw->mac_type == e1000_ich8lan) {
+               phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+       } else {
+               ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+                               &phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       if (!active) {
+               if (hw->mac_type == e1000_ich8lan) {
+                       phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+                       E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+               } else {
+                       phy_data &= ~IGP02E1000_PM_D0_LPLU;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP02E1000_PHY_POWER_MGMT, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+       /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+        * Dx states where the power conservation is most important.  During
+        * driver activity we should enable SmartSpeed, so performance is
+        * maintained. */
+               if (hw->smart_speed == e1000_smart_speed_on) {
+                       ret_val = e1000_read_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               } else if (hw->smart_speed == e1000_smart_speed_off) {
+                       ret_val = e1000_read_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+
+       } else {
+
+               if (hw->mac_type == e1000_ich8lan) {
+                       phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+                       E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+               } else {
+                       phy_data |= IGP02E1000_PM_D0_LPLU;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP02E1000_PHY_POWER_MGMT, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+               /* When LPLU is enabled we should disable SmartSpeed */
+               ret_val = e1000_read_phy_reg(hw,
+                               IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+               ret_val = e1000_write_phy_reg(hw,
+                               IGP01E1000_PHY_PORT_CONFIG, phy_data);
+               if (ret_val)
+                       return ret_val;
+
+       }
+       return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_igp series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_igp_setup(struct e1000_hw *hw)
+{
+       uint32_t led_ctrl;
+       int32_t ret_val;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
+
+       if (hw->phy_reset_disable)
+               return E1000_SUCCESS;
+
+       ret_val = e1000_phy_reset(hw);
+       if (ret_val) {
+               DEBUGOUT("Error Resetting the PHY\n");
+               return ret_val;
+       }
+
+       /* Wait 15ms for MAC to configure PHY from eeprom settings */
+       mdelay(15);
+       if (hw->mac_type != e1000_ich8lan) {
+               /* Configure activity LED after PHY reset */
+               led_ctrl = E1000_READ_REG(hw, LEDCTL);
+               led_ctrl &= IGP_ACTIVITY_LED_MASK;
+               led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+               E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+       }
+
+       /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+       if (hw->phy_type == e1000_phy_igp) {
+               /* disable lplu d3 during driver init */
+               ret_val = e1000_set_d3_lplu_state(hw, false);
+               if (ret_val) {
+                       DEBUGOUT("Error Disabling LPLU D3\n");
+                       return ret_val;
+               }
+       }
+
+       /* disable lplu d0 during driver init */
+       ret_val = e1000_set_d0_lplu_state(hw, false);
+       if (ret_val) {
+               DEBUGOUT("Error Disabling LPLU D0\n");
+               return ret_val;
+       }
+       /* Configure mdi-mdix settings */
+       ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+               hw->dsp_config_state = e1000_dsp_config_disabled;
+               /* Force MDI for earlier revs of the IGP PHY */
+               phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
+                               | IGP01E1000_PSCR_FORCE_MDI_MDIX);
+               hw->mdix = 1;
+
+       } else {
+               hw->dsp_config_state = e1000_dsp_config_enabled;
+               phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+               switch (hw->mdix) {
+               case 1:
+                       phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+                       break;
+               case 2:
+                       phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+                       break;
+               case 0:
+               default:
+                       phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+                       break;
+               }
+       }
+       ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* set auto-master slave resolution settings */
+       if (hw->autoneg) {
+               e1000_ms_type phy_ms_setting = hw->master_slave;
+
+               if (hw->ffe_config_state == e1000_ffe_config_active)
+                       hw->ffe_config_state = e1000_ffe_config_enabled;
+
+               if (hw->dsp_config_state == e1000_dsp_config_activated)
+                       hw->dsp_config_state = e1000_dsp_config_enabled;
+
+               /* when autonegotiation advertisment is only 1000Mbps then we
+                 * should disable SmartSpeed and enable Auto MasterSlave
+                 * resolution as hardware default. */
+               if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+                       /* Disable SmartSpeed */
+                       ret_val = e1000_read_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+                       phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       IGP01E1000_PHY_PORT_CONFIG, phy_data);
+                       if (ret_val)
+                               return ret_val;
+                       /* Set auto Master/Slave resolution process */
+                       ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
+                                       &phy_data);
+                       if (ret_val)
+                               return ret_val;
+                       phy_data &= ~CR_1000T_MS_ENABLE;
+                       ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+                                       phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+               ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               /* load defaults for future use */
+               hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+                               ((phy_data & CR_1000T_MS_VALUE) ?
+                               e1000_ms_force_master :
+                               e1000_ms_force_slave) :
+                               e1000_ms_auto;
+
+               switch (phy_ms_setting) {
+               case e1000_ms_force_master:
+                       phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+                       break;
+               case e1000_ms_force_slave:
+                       phy_data |= CR_1000T_MS_ENABLE;
+                       phy_data &= ~(CR_1000T_MS_VALUE);
+                       break;
+               case e1000_ms_auto:
+                       phy_data &= ~CR_1000T_MS_ENABLE;
+               default:
+                       break;
+               }
+               ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ * This function checks the mode of the firmware.
+ *
+ * returns  - true when the mode is IAMT or false.
+ ****************************************************************************/
+bool
+e1000_check_mng_mode(struct e1000_hw *hw)
+{
+       uint32_t fwsm;
+       DEBUGFUNC();
+
+       fwsm = E1000_READ_REG(hw, FWSM);
+
+       if (hw->mac_type == e1000_ich8lan) {
+               if ((fwsm & E1000_FWSM_MODE_MASK) ==
+                   (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+                       return true;
+       } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
+                      (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+                       return true;
+
+       return false;
+}
+
+static int32_t
+e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
+{
+       uint16_t swfw = E1000_SWFW_PHY0_SM;
+       uint32_t reg_val;
+       DEBUGFUNC();
+
+       if (e1000_is_second_port(hw))
+               swfw = E1000_SWFW_PHY1_SM;
+
+       if (e1000_swfw_sync_acquire(hw, swfw))
+               return -E1000_ERR_SWFW_SYNC;
+
+       reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
+                       & E1000_KUMCTRLSTA_OFFSET) | data;
+       E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+       udelay(2);
+
+       return E1000_SUCCESS;
+}
+
+static int32_t
+e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
+{
+       uint16_t swfw = E1000_SWFW_PHY0_SM;
+       uint32_t reg_val;
+       DEBUGFUNC();
+
+       if (e1000_is_second_port(hw))
+               swfw = E1000_SWFW_PHY1_SM;
+
+       if (e1000_swfw_sync_acquire(hw, swfw))
+               return -E1000_ERR_SWFW_SYNC;
+
+       /* Write register address */
+       reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
+                       E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
+       E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+       udelay(2);
+
+       /* Read the data returned */
+       reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
+       *data = (uint16_t)reg_val;
+
+       return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_gg82563 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_ggp_setup(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       uint16_t phy_data;
+       uint32_t reg_data;
+
+       DEBUGFUNC();
+
+       if (!hw->phy_reset_disable) {
+               /* Enable CRS on TX for half-duplex operation. */
+               ret_val = e1000_read_phy_reg(hw,
+                               GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+               /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
+               phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
+
+               ret_val = e1000_write_phy_reg(hw,
+                               GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               /* Options:
+                *   MDI/MDI-X = 0 (default)
+                *   0 - Auto for all speeds
+                *   1 - MDI mode
+                *   2 - MDI-X mode
+                *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+                */
+               ret_val = e1000_read_phy_reg(hw,
+                               GG82563_PHY_SPEC_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+               switch (hw->mdix) {
+               case 1:
+                       phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+                       break;
+               case 2:
+                       phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+                       break;
+               case 0:
+               default:
+                       phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+                       break;
+               }
+
+               /* Options:
+                *   disable_polarity_correction = 0 (default)
+                *       Automatic Correction for Reversed Cable Polarity
+                *   0 - Disabled
+                *   1 - Enabled
+                */
+               phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+               ret_val = e1000_write_phy_reg(hw,
+                               GG82563_PHY_SPEC_CTRL, phy_data);
+
+               if (ret_val)
+                       return ret_val;
+
+               /* SW Reset the PHY so all changes take effect */
+               ret_val = e1000_phy_reset(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error Resetting the PHY\n");
+                       return ret_val;
+               }
+       } /* phy_reset_disable */
+
+       if (hw->mac_type == e1000_80003es2lan) {
+               /* Bypass RX and TX FIFO's */
+               ret_val = e1000_write_kmrn_reg(hw,
+                               E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
+                               E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
+                               | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = e1000_read_phy_reg(hw,
+                               GG82563_PHY_SPEC_CTRL_2, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+               ret_val = e1000_write_phy_reg(hw,
+                               GG82563_PHY_SPEC_CTRL_2, phy_data);
+
+               if (ret_val)
+                       return ret_val;
+
+               reg_data = E1000_READ_REG(hw, CTRL_EXT);
+               reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+               E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
+
+               ret_val = e1000_read_phy_reg(hw,
+                               GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+       /* Do not init these registers when the HW is in IAMT mode, since the
+        * firmware will have already initialized them.  We only initialize
+        * them if the HW is not in IAMT mode.
+        */
+               if (e1000_check_mng_mode(hw) == false) {
+                       /* Enable Electrical Idle on the PHY */
+                       phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       GG82563_PHY_PWR_MGMT_CTRL, phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       ret_val = e1000_read_phy_reg(hw,
+                                       GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+
+                       phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       GG82563_PHY_KMRN_MODE_CTRL, phy_data);
+
+                       if (ret_val)
+                               return ret_val;
+               }
+
+               /* Workaround: Disable padding in Kumeran interface in the MAC
+                * and in the PHY to avoid CRC errors.
+                */
+               ret_val = e1000_read_phy_reg(hw,
+                               GG82563_PHY_INBAND_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+               phy_data |= GG82563_ICR_DIS_PADDING;
+               ret_val = e1000_write_phy_reg(hw,
+                               GG82563_PHY_INBAND_CTRL, phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+       return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_m88 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
+
+       if (hw->phy_reset_disable)
+               return E1000_SUCCESS;
+
+       /* Enable CRS on TX. This must be set for half-duplex operation. */
+       ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 
-#if 0
        /* Options:
         *   MDI/MDI-X = 0 (default)
         *   0 - Auto for all speeds
@@ -1208,6 +2743,7 @@ e1000_setup_copper_link(struct eth_device *nic)
         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
         */
        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
        switch (hw->mdix) {
        case 1:
                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
@@ -1223,68 +2759,75 @@ e1000_setup_copper_link(struct eth_device *nic)
                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
                break;
        }
-#else
-       phy_data |= M88E1000_PSCR_AUTO_X_MODE;
-#endif
 
-#if 0
        /* Options:
         *   disable_polarity_correction = 0 (default)
-        *       Automatic Correction for Reversed Cable Polarity
+        *       Automatic Correction for Reversed Cable Polarity
         *   0 - Disabled
         *   1 - Enabled
         */
        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
-       if (hw->disable_polarity_correction == 1)
-               phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-#else
-       phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
-#endif
-       if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
-               DEBUGOUT("PHY Write Error\n");
-               return -E1000_ERR_PHY;
-       }
+       ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+       if (ret_val)
+               return ret_val;
 
-       /* Force TX_CLK in the Extended PHY Specific Control Register
-        * to 25MHz clock.
-        */
-       if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
-               DEBUGOUT("PHY Read Error\n");
-               return -E1000_ERR_PHY;
-       }
-       phy_data |= M88E1000_EPSCR_TX_CLK_25;
-       /* Configure Master and Slave downshift values */
-       phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
-                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
-       phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
-                    M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
-       if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
-               DEBUGOUT("PHY Write Error\n");
-               return -E1000_ERR_PHY;
+       if (hw->phy_revision < M88E1011_I_REV_4) {
+               /* Force TX_CLK in the Extended PHY Specific Control Register
+                * to 25MHz clock.
+                */
+               ret_val = e1000_read_phy_reg(hw,
+                               M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+               if ((hw->phy_revision == E1000_REVISION_2) &&
+                       (hw->phy_id == M88E1111_I_PHY_ID)) {
+                       /* Vidalia Phy, set the downshift counter to 5x */
+                       phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+                       phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+                       ret_val = e1000_write_phy_reg(hw,
+                                       M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               } else {
+                       /* Configure Master and Slave downshift values */
+                       phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
+                                       | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+                       phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
+                                       | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+                       ret_val = e1000_write_phy_reg(hw,
+                                       M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+                       if (ret_val)
+                               return ret_val;
+               }
        }
 
        /* SW Reset the PHY so all changes take effect */
        ret_val = e1000_phy_reset(hw);
-       if (ret_val < 0) {
+       if (ret_val) {
                DEBUGOUT("Error Resetting the PHY\n");
                return ret_val;
        }
 
-       /* Options:
-        *   autoneg = 1 (default)
-        *      PHY will advertise value(s) parsed from
-        *      autoneg_advertised and fc
-        *   autoneg = 0
-        *      PHY will be set to 10H, 10F, 100H, or 100F
-        *      depending on value parsed from forced_speed_duplex.
-        */
+       return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Setup auto-negotiation and flow control advertisements,
+* and then perform auto-negotiation.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       uint16_t phy_data;
+
+       DEBUGFUNC();
 
-       /* Is autoneg enabled?  This is enabled by default or by software override.
-        * If so, call e1000_phy_setup_autoneg routine to parse the
-        * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
-        * user should have provided a speed/duplex override.  If so, then call
-        * e1000_phy_force_speed_duplex to parse and set this up.
-        */
        /* Perform some bounds checking on the hw->autoneg_advertised
         * parameter.  If this variable is zero, then set it to the default.
         */
@@ -1296,9 +2839,13 @@ e1000_setup_copper_link(struct eth_device *nic)
        if (hw->autoneg_advertised == 0)
                hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 
+       /* IFE phy only supports 10/100 */
+       if (hw->phy_type == e1000_phy_ife)
+               hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
+
        DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
        ret_val = e1000_phy_setup_autoneg(hw);
-       if (ret_val < 0) {
+       if (ret_val) {
                DEBUGOUT("Error Setting up Auto-Negotiation\n");
                return ret_val;
        }
@@ -1307,82 +2854,177 @@ e1000_setup_copper_link(struct eth_device *nic)
        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
         * the Auto Neg Restart bit in the PHY control register.
         */
-       if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
-               DEBUGOUT("PHY Read Error\n");
-               return -E1000_ERR_PHY;
-       }
+       ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
        phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
-       if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
-               DEBUGOUT("PHY Write Error\n");
-               return -E1000_ERR_PHY;
-       }
-#if 0
+       ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+       if (ret_val)
+               return ret_val;
+
        /* Does the user want to wait for Auto-Neg to complete here, or
         * check at a later time (for example, callback routine).
         */
+       /* If we do not wait for autonegtation to complete I
+        * do not see a valid link status.
+        * wait_autoneg_complete = 1 .
+        */
        if (hw->wait_autoneg_complete) {
                ret_val = e1000_wait_autoneg(hw);
-               if (ret_val < 0) {
-                       DEBUGOUT
-                           ("Error while waiting for autoneg to complete\n");
+               if (ret_val) {
+                       DEBUGOUT("Error while waiting for autoneg"
+                                       "to complete\n");
                        return ret_val;
                }
        }
-#else
-       /* If we do not wait for autonegtation to complete I
-        * do not see a valid link status.
-        */
-       ret_val = e1000_wait_autoneg(hw);
-       if (ret_val < 0) {
-               DEBUGOUT("Error while waiting for autoneg to complete\n");
+
+       hw->get_link_status = true;
+
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Config the MAC and the PHY after link is up.
+*   1) Set up the MAC to the current PHY speed/duplex
+*      if we are on 82543.  If we
+*      are on newer silicon, we only need to configure
+*      collision distance in the Transmit Control Register.
+*   2) Set up flow control on the MAC to that established with
+*      the link partner.
+*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+       int32_t ret_val;
+       DEBUGFUNC();
+
+       if (hw->mac_type >= e1000_82544) {
+               e1000_config_collision_dist(hw);
+       } else {
+               ret_val = e1000_config_mac_to_phy(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error configuring MAC to PHY settings\n");
+                       return ret_val;
+               }
+       }
+       ret_val = e1000_config_fc_after_link_up(hw);
+       if (ret_val) {
+               DEBUGOUT("Error Configuring Flow Control\n");
                return ret_val;
        }
-#endif
+       return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Detects which PHY is present and setup the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int
+e1000_setup_copper_link(struct eth_device *nic)
+{
+       struct e1000_hw *hw = nic->priv;
+       int32_t ret_val;
+       uint16_t i;
+       uint16_t phy_data;
+       uint16_t reg_data;
+
+       DEBUGFUNC();
+
+       switch (hw->mac_type) {
+       case e1000_80003es2lan:
+       case e1000_ich8lan:
+               /* Set the mac to wait the maximum time between each
+                * iteration and increase the max iterations when
+                * polling the phy; this fixes erroneous timeouts at 10Mbps. */
+               ret_val = e1000_write_kmrn_reg(hw,
+                               GG82563_REG(0x34, 4), 0xFFFF);
+               if (ret_val)
+                       return ret_val;
+               ret_val = e1000_read_kmrn_reg(hw,
+                               GG82563_REG(0x34, 9), &reg_data);
+               if (ret_val)
+                       return ret_val;
+               reg_data |= 0x3F;
+               ret_val = e1000_write_kmrn_reg(hw,
+                               GG82563_REG(0x34, 9), reg_data);
+               if (ret_val)
+                       return ret_val;
+       default:
+               break;
+       }
+
+       /* Check if it is a valid PHY and set PHY mode if necessary. */
+       ret_val = e1000_copper_link_preconfig(hw);
+       if (ret_val)
+               return ret_val;
+       switch (hw->mac_type) {
+       case e1000_80003es2lan:
+               /* Kumeran registers are written-only */
+               reg_data =
+               E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
+               reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
+               ret_val = e1000_write_kmrn_reg(hw,
+                               E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
+               if (ret_val)
+                       return ret_val;
+               break;
+       default:
+               break;
+       }
+
+       if (hw->phy_type == e1000_phy_igp ||
+               hw->phy_type == e1000_phy_igp_3 ||
+               hw->phy_type == e1000_phy_igp_2) {
+               ret_val = e1000_copper_link_igp_setup(hw);
+               if (ret_val)
+                       return ret_val;
+       } else if (hw->phy_type == e1000_phy_m88) {
+               ret_val = e1000_copper_link_mgp_setup(hw);
+               if (ret_val)
+                       return ret_val;
+       } else if (hw->phy_type == e1000_phy_gg82563) {
+               ret_val = e1000_copper_link_ggp_setup(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       /* always auto */
+       /* Setup autoneg and flow control advertisement
+         * and perform autonegotiation */
+       ret_val = e1000_copper_link_autoneg(hw);
+       if (ret_val)
+               return ret_val;
 
        /* Check link status. Wait up to 100 microseconds for link to become
         * valid.
         */
        for (i = 0; i < 10; i++) {
-               if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
-                       DEBUGOUT("PHY Read Error\n");
-                       return -E1000_ERR_PHY;
-               }
-               if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
-                       DEBUGOUT("PHY Read Error\n");
-                       return -E1000_ERR_PHY;
-               }
+               ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+               if (ret_val)
+                       return ret_val;
+               ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
                if (phy_data & MII_SR_LINK_STATUS) {
-                       /* We have link, so we need to finish the config process:
-                        *   1) Set up the MAC to the current PHY speed/duplex
-                        *      if we are on 82543.  If we
-                        *      are on newer silicon, we only need to configure
-                        *      collision distance in the Transmit Control Register.
-                        *   2) Set up flow control on the MAC to that established with
-                        *      the link partner.
-                        */
-                       if (hw->mac_type >= e1000_82544) {
-                               e1000_config_collision_dist(hw);
-                       } else {
-                               ret_val = e1000_config_mac_to_phy(hw);
-                               if (ret_val < 0) {
-                                       DEBUGOUT
-                                           ("Error configuring MAC to PHY settings\n");
-                                       return ret_val;
-                               }
-                       }
-                       ret_val = e1000_config_fc_after_link_up(hw);
-                       if (ret_val < 0) {
-                               DEBUGOUT("Error Configuring Flow Control\n");
+                       /* Config the MAC and PHY after link is up */
+                       ret_val = e1000_copper_link_postconfig(hw);
+                       if (ret_val)
                                return ret_val;
-                       }
+
                        DEBUGOUT("Valid link established!!!\n");
-                       return 0;
+                       return E1000_SUCCESS;
                }
                udelay(10);
        }
 
        DEBUGOUT("Unable to establish link!!!\n");
-       return -E1000_ERR_NOLINK;
+       return E1000_SUCCESS;
 }
 
 /******************************************************************************
@@ -1390,25 +3032,28 @@ e1000_setup_copper_link(struct eth_device *nic)
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int
+int32_t
 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 {
+       int32_t ret_val;
        uint16_t mii_autoneg_adv_reg;
        uint16_t mii_1000t_ctrl_reg;
 
        DEBUGFUNC();
 
        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
-       if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
-               DEBUGOUT("PHY Read Error\n");
-               return -E1000_ERR_PHY;
-       }
+       ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+       if (ret_val)
+               return ret_val;
 
-       /* Read the MII 1000Base-T Control Register (Address 9). */
-       if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
-               DEBUGOUT("PHY Read Error\n");
-               return -E1000_ERR_PHY;
-       }
+       if (hw->phy_type != e1000_phy_ife) {
+               /* Read the MII 1000Base-T Control Register (Address 9). */
+               ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
+                               &mii_1000t_ctrl_reg);
+               if (ret_val)
+                       return ret_val;
+       } else
+               mii_1000t_ctrl_reg = 0;
 
        /* Need to parse both autoneg_advertised and fc and set up
         * the appropriate PHY registers.  First we will parse for
@@ -1419,7 +3064,7 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
 
        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
         * Advertisement Register (Address 4) and the 1000 mb speed bits in
-        * the  1000Base-T Control Register (Address 9).
+        * the  1000Base-T Control Register (Address 9).
         */
        mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
        mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
@@ -1515,18 +3160,20 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
                return -E1000_ERR_CONFIG;
        }
 
-       if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
-               DEBUGOUT("PHY Write Error\n");
-               return -E1000_ERR_PHY;
-       }
+       ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+       if (ret_val)
+               return ret_val;
 
        DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
 
-       if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
-               DEBUGOUT("PHY Write Error\n");
-               return -E1000_ERR_PHY;
+       if (hw->phy_type != e1000_phy_ife) {
+               ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+                               mii_1000t_ctrl_reg);
+               if (ret_val)
+                       return ret_val;
        }
-       return 0;
+
+       return E1000_SUCCESS;
 }
 
 /******************************************************************************
@@ -1540,12 +3187,19 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
 static void
 e1000_config_collision_dist(struct e1000_hw *hw)
 {
-       uint32_t tctl;
+       uint32_t tctl, coll_dist;
+
+       DEBUGFUNC();
+
+       if (hw->mac_type < e1000_82543)
+               coll_dist = E1000_COLLISION_DISTANCE_82542;
+       else
+               coll_dist = E1000_COLLISION_DISTANCE;
 
        tctl = E1000_READ_REG(hw, TCTL);
 
        tctl &= ~E1000_TCTL_COLD;
-       tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+       tctl |= coll_dist << E1000_COLD_SHIFT;
 
        E1000_WRITE_REG(hw, TCTL, tctl);
        E1000_WRITE_FLUSH(hw);
@@ -1679,7 +3333,7 @@ e1000_force_mac_fc(struct e1000_hw *hw)
  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
  *****************************************************************************/
-static int
+static int32_t
 e1000_config_fc_after_link_up(struct e1000_hw *hw)
 {
        int32_t ret_val;
@@ -1695,7 +3349,11 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
         * so we had to force link.  In this case, we need to force the
         * configuration of the MAC to match the "fc" parameter.
         */
-       if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
+       if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
+               || ((hw->media_type == e1000_media_type_internal_serdes)
+               && (hw->autoneg_failed))
+               || ((hw->media_type == e1000_media_type_copper)
+               && (!hw->autoneg))) {
                ret_val = e1000_force_mac_fc(hw);
                if (ret_val < 0) {
                        DEBUGOUT("Error forcing flow control settings\n");
@@ -1879,7 +3537,7 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
                            ("Copper PHY and Auto Neg has not completed.\r\n");
                }
        }
-       return 0;
+       return E1000_SUCCESS;
 }
 
 /******************************************************************************
@@ -1940,7 +3598,7 @@ e1000_check_for_link(struct eth_device *nic)
                }
 
                if (phy_data & MII_SR_LINK_STATUS) {
-                       hw->get_link_status = FALSE;
+                       hw->get_link_status = false;
                } else {
                        /* No link detected */
                        return -E1000_ERR_NOLINK;
@@ -2003,7 +3661,7 @@ e1000_check_for_link(struct eth_device *nic)
                                        rctl = E1000_READ_REG(hw, RCTL);
                                        rctl &= ~E1000_RCTL_SBP;
                                        E1000_WRITE_REG(hw, RCTL, rctl);
-                                       hw->tbi_compatibility_on = FALSE;
+                                       hw->tbi_compatibility_on = false;
                                }
                        } else {
                                /* If TBI compatibility is was previously off, turn it on. For
@@ -2012,7 +3670,7 @@ e1000_check_for_link(struct eth_device *nic)
                                 * will look like CRC errors to to the hardware.
                                 */
                                if (!hw->tbi_compatibility_on) {
-                                       hw->tbi_compatibility_on = TRUE;
+                                       hw->tbi_compatibility_on = true;
                                        rctl = E1000_READ_REG(hw, RCTL);
                                        rctl |= E1000_RCTL_SBP;
                                        E1000_WRITE_REG(hw, RCTL, rctl);
@@ -2067,6 +3725,79 @@ e1000_check_for_link(struct eth_device *nic)
        return 0;
 }
 
+/******************************************************************************
+* Configure the MAC-to-PHY interface for 10/100Mbps
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
+{
+       int32_t ret_val = E1000_SUCCESS;
+       uint32_t tipg;
+       uint16_t reg_data;
+
+       DEBUGFUNC();
+
+       reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
+       ret_val = e1000_write_kmrn_reg(hw,
+                       E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Configure Transmit Inter-Packet Gap */
+       tipg = E1000_READ_REG(hw, TIPG);
+       tipg &= ~E1000_TIPG_IPGT_MASK;
+       tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
+       E1000_WRITE_REG(hw, TIPG, tipg);
+
+       ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
+       if (ret_val)
+               return ret_val;
+
+       if (duplex == HALF_DUPLEX)
+               reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+       else
+               reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+       ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+       return ret_val;
+}
+
+static int32_t
+e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
+{
+       int32_t ret_val = E1000_SUCCESS;
+       uint16_t reg_data;
+       uint32_t tipg;
+
+       DEBUGFUNC();
+
+       reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
+       ret_val = e1000_write_kmrn_reg(hw,
+                       E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Configure Transmit Inter-Packet Gap */
+       tipg = E1000_READ_REG(hw, TIPG);
+       tipg &= ~E1000_TIPG_IPGT_MASK;
+       tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+       E1000_WRITE_REG(hw, TIPG, tipg);
+
+       ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
+       if (ret_val)
+               return ret_val;
+
+       reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+       ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+       return ret_val;
+}
+
 /******************************************************************************
  * Detects the current speed and duplex settings of the hardware.
  *
@@ -2074,11 +3805,13 @@ e1000_check_for_link(struct eth_device *nic)
  * speed - Speed of the connection
  * duplex - Duplex setting of the connection
  *****************************************************************************/
-static void
-e1000_get_speed_and_duplex(struct e1000_hw *hw,
-                          uint16_t * speed, uint16_t * duplex)
+static int
+e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
+               uint16_t *duplex)
 {
        uint32_t status;
+       int32_t ret_val;
+       uint16_t phy_data;
 
        DEBUGFUNC();
 
@@ -2107,6 +3840,41 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw,
                *speed = SPEED_1000;
                *duplex = FULL_DUPLEX;
        }
+
+       /* IGP01 PHY may advertise full duplex operation after speed downgrade
+        * even if it is operating at half duplex.  Here we set the duplex
+        * settings to match the duplex in the link partner's capabilities.
+        */
+       if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+               ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+                       *duplex = HALF_DUPLEX;
+               else {
+                       ret_val = e1000_read_phy_reg(hw,
+                                       PHY_LP_ABILITY, &phy_data);
+                       if (ret_val)
+                               return ret_val;
+                       if ((*speed == SPEED_100 &&
+                               !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
+                               || (*speed == SPEED_10
+                               && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+                               *duplex = HALF_DUPLEX;
+               }
+       }
+
+       if ((hw->mac_type == e1000_80003es2lan) &&
+               (hw->media_type == e1000_media_type_copper)) {
+               if (*speed == SPEED_1000)
+                       ret_val = e1000_configure_kmrn_for_1000(hw);
+               else
+                       ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
+               if (ret_val)
+                       return ret_val;
+       }
+       return E1000_SUCCESS;
 }
 
 /******************************************************************************
@@ -2426,31 +4194,133 @@ e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
        return 0;
 }
 
+/******************************************************************************
+ * Checks if PHY reset is blocked due to SOL/IDER session, for example.
+ * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
+ * the caller to figure out how to deal with it.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_BLK_PHY_RESET
+ *            E1000_SUCCESS
+ *
+ *****************************************************************************/
+int32_t
+e1000_check_phy_reset_block(struct e1000_hw *hw)
+{
+       uint32_t manc = 0;
+       uint32_t fwsm = 0;
+
+       if (hw->mac_type == e1000_ich8lan) {
+               fwsm = E1000_READ_REG(hw, FWSM);
+               return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
+                                               : E1000_BLK_PHY_RESET;
+       }
+
+       if (hw->mac_type > e1000_82547_rev_2)
+               manc = E1000_READ_REG(hw, MANC);
+       return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+               E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/***************************************************************************
+ * Checks if the PHY configuration is done
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t
+e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+       int32_t timeout = PHY_CFG_TIMEOUT;
+       uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
+
+       DEBUGFUNC();
+
+       switch (hw->mac_type) {
+       default:
+               mdelay(10);
+               break;
+
+       case e1000_80003es2lan:
+               /* Separate *_CFG_DONE_* bit for each port */
+               if (e1000_is_second_port(hw))
+                       cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
+               /* Fall Through */
+
+       case e1000_82571:
+       case e1000_82572:
+               while (timeout) {
+                       if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
+                               break;
+                       else
+                               mdelay(1);
+                       timeout--;
+               }
+               if (!timeout) {
+                       DEBUGOUT("MNG configuration cycle has not "
+                                       "completed.\n");
+                       return -E1000_ERR_RESET;
+               }
+               break;
+       }
+
+       return E1000_SUCCESS;
+}
+
 /******************************************************************************
 * Returns the PHY to the power-on reset state
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static void
+int32_t
 e1000_phy_hw_reset(struct e1000_hw *hw)
 {
-       uint32_t ctrl;
-       uint32_t ctrl_ext;
+       uint16_t swfw = E1000_SWFW_PHY0_SM;
+       uint32_t ctrl, ctrl_ext;
+       uint32_t led_ctrl;
+       int32_t ret_val;
 
        DEBUGFUNC();
 
+       /* In the case of the phy reset being blocked, it's not an error, we
+        * simply return success without performing the reset. */
+       ret_val = e1000_check_phy_reset_block(hw);
+       if (ret_val)
+               return E1000_SUCCESS;
+
        DEBUGOUT("Resetting Phy...\n");
 
        if (hw->mac_type > e1000_82543) {
+               if (e1000_is_second_port(hw))
+                       swfw = E1000_SWFW_PHY1_SM;
+
+               if (e1000_swfw_sync_acquire(hw, swfw)) {
+                       DEBUGOUT("Unable to acquire swfw sync\n");
+                       return -E1000_ERR_SWFW_SYNC;
+               }
+
                /* Read the device control register and assert the E1000_CTRL_PHY_RST
                 * bit. Then, take it out of reset.
                 */
                ctrl = E1000_READ_REG(hw, CTRL);
                E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
                E1000_WRITE_FLUSH(hw);
-               mdelay(10);
+
+               if (hw->mac_type < e1000_82571)
+                       udelay(10);
+               else
+                       udelay(100);
+
                E1000_WRITE_REG(hw, CTRL, ctrl);
                E1000_WRITE_FLUSH(hw);
+
+               if (hw->mac_type >= e1000_82571)
+                       mdelay(10);
+
        } else {
                /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
                 * bit to put the PHY into reset. Then, take it out of reset.
@@ -2466,6 +4336,128 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
                E1000_WRITE_FLUSH(hw);
        }
        udelay(150);
+
+       if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+               /* Configure activity LED after PHY reset */
+               led_ctrl = E1000_READ_REG(hw, LEDCTL);
+               led_ctrl &= IGP_ACTIVITY_LED_MASK;
+               led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+               E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+       }
+
+       /* Wait for FW to finish PHY configuration. */
+       ret_val = e1000_get_phy_cfg_done(hw);
+       if (ret_val != E1000_SUCCESS)
+               return ret_val;
+
+       return ret_val;
+}
+
+/******************************************************************************
+ * IGP phy init script - initializes the GbE PHY
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_phy_init_script(struct e1000_hw *hw)
+{
+       uint32_t ret_val;
+       uint16_t phy_saved_data;
+       DEBUGFUNC();
+
+       if (hw->phy_init_script) {
+               mdelay(20);
+
+               /* Save off the current value of register 0x2F5B to be
+                * restored at the end of this routine. */
+               ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+               /* Disabled the PHY transmitter */
+               e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+               mdelay(20);
+
+               e1000_write_phy_reg(hw, 0x0000, 0x0140);
+
+               mdelay(5);
+
+               switch (hw->mac_type) {
+               case e1000_82541:
+               case e1000_82547:
+                       e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+
+                       e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+
+                       e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+
+                       e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+
+                       e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+
+                       e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+
+                       e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+
+                       e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+
+                       e1000_write_phy_reg(hw, 0x2010, 0x0008);
+                       break;
+
+               case e1000_82541_rev_2:
+               case e1000_82547_rev_2:
+                       e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+                       break;
+               default:
+                       break;
+               }
+
+               e1000_write_phy_reg(hw, 0x0000, 0x3300);
+
+               mdelay(20);
+
+               /* Now enable the transmitter */
+               if (!ret_val)
+                       e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+               if (hw->mac_type == e1000_82547) {
+                       uint16_t fused, fine, coarse;
+
+                       /* Move to analog registers page */
+                       e1000_read_phy_reg(hw,
+                               IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
+
+                       if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+                               e1000_read_phy_reg(hw,
+                                       IGP01E1000_ANALOG_FUSE_STATUS, &fused);
+
+                               fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+                               coarse = fused
+                                       & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+                               if (coarse >
+                                       IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+                                       coarse -=
+                                       IGP01E1000_ANALOG_FUSE_COARSE_10;
+                                       fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+                               } else if (coarse
+                                       == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+                                       fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+                               fused = (fused
+                                       & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+                                       (fine
+                                       & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+                                       (coarse
+                                       & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+                               e1000_write_phy_reg(hw,
+                                       IGP01E1000_ANALOG_FUSE_CONTROL, fused);
+                               e1000_write_phy_reg(hw,
+                                       IGP01E1000_ANALOG_FUSE_BYPASS,
+                               IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+                       }
+               }
+       }
 }
 
 /******************************************************************************
@@ -2473,26 +4465,49 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
 *
 * hw - Struct containing variables accessed by shared code
 *
-* Sets bit 15 of the MII Control regiser
+* Sets bit 15 of the MII Control register
 ******************************************************************************/
-static int
+int32_t
 e1000_phy_reset(struct e1000_hw *hw)
 {
+       int32_t ret_val;
        uint16_t phy_data;
 
        DEBUGFUNC();
 
-       if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
-               DEBUGOUT("PHY Read Error\n");
-               return -E1000_ERR_PHY;
-       }
-       phy_data |= MII_CR_RESET;
-       if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
-               DEBUGOUT("PHY Write Error\n");
-               return -E1000_ERR_PHY;
+       /* In the case of the phy reset being blocked, it's not an error, we
+        * simply return success without performing the reset. */
+       ret_val = e1000_check_phy_reset_block(hw);
+       if (ret_val)
+               return E1000_SUCCESS;
+
+       switch (hw->phy_type) {
+       case e1000_phy_igp:
+       case e1000_phy_igp_2:
+       case e1000_phy_igp_3:
+       case e1000_phy_ife:
+               ret_val = e1000_phy_hw_reset(hw);
+               if (ret_val)
+                       return ret_val;
+               break;
+       default:
+               ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data |= MII_CR_RESET;
+               ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               udelay(1);
+               break;
        }
-       udelay(1);
-       return 0;
+
+       if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
+               e1000_phy_init_script(hw);
+
+       return E1000_SUCCESS;
 }
 
 static int e1000_set_phy_type (struct e1000_hw *hw)
@@ -2506,14 +4521,34 @@ static int e1000_set_phy_type (struct e1000_hw *hw)
        case M88E1000_E_PHY_ID:
        case M88E1000_I_PHY_ID:
        case M88E1011_I_PHY_ID:
+       case M88E1111_I_PHY_ID:
                hw->phy_type = e1000_phy_m88;
                break;
        case IGP01E1000_I_PHY_ID:
                if (hw->mac_type == e1000_82541 ||
-                   hw->mac_type == e1000_82541_rev_2) {
+                       hw->mac_type == e1000_82541_rev_2 ||
+                       hw->mac_type == e1000_82547 ||
+                       hw->mac_type == e1000_82547_rev_2) {
                        hw->phy_type = e1000_phy_igp;
+                       hw->phy_type = e1000_phy_igp;
+                       break;
+               }
+       case IGP03E1000_E_PHY_ID:
+               hw->phy_type = e1000_phy_igp_3;
+               break;
+       case IFE_E_PHY_ID:
+       case IFE_PLUS_E_PHY_ID:
+       case IFE_C_E_PHY_ID:
+               hw->phy_type = e1000_phy_ife;
+               break;
+       case GG82563_E_PHY_ID:
+               if (hw->mac_type == e1000_80003es2lan) {
+                       hw->phy_type = e1000_phy_gg82563;
                        break;
                }
+       case BME1000_E_PHY_ID:
+               hw->phy_type = e1000_phy_bm;
+               break;
                /* Fall Through */
        default:
                /* Should never have loaded on this device */
@@ -2529,48 +4564,95 @@ static int e1000_set_phy_type (struct e1000_hw *hw)
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int
+static int32_t
 e1000_detect_gig_phy(struct e1000_hw *hw)
 {
-       int32_t phy_init_status;
+       int32_t phy_init_status, ret_val;
        uint16_t phy_id_high, phy_id_low;
-       int match = FALSE;
+       bool match = false;
 
        DEBUGFUNC();
 
-       /* Read the PHY ID Registers to identify which PHY is onboard. */
-       if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
-               DEBUGOUT("PHY Read Error\n");
-               return -E1000_ERR_PHY;
+       /* The 82571 firmware may still be configuring the PHY.  In this
+        * case, we cannot access the PHY until the configuration is done.  So
+        * we explicitly set the PHY values. */
+       if (hw->mac_type == e1000_82571 ||
+               hw->mac_type == e1000_82572) {
+               hw->phy_id = IGP01E1000_I_PHY_ID;
+               hw->phy_type = e1000_phy_igp_2;
+               return E1000_SUCCESS;
        }
+
+       /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
+        * work- around that forces PHY page 0 to be set or the reads fail.
+        * The rest of the code in this routine uses e1000_read_phy_reg to
+        * read the PHY ID.  So for ESB-2 we need to have this set so our
+        * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
+        * the routines below will figure this out as well. */
+       if (hw->mac_type == e1000_80003es2lan)
+               hw->phy_type = e1000_phy_gg82563;
+
+       /* Read the PHY ID Registers to identify which PHY is onboard. */
+       ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+       if (ret_val)
+               return ret_val;
+
        hw->phy_id = (uint32_t) (phy_id_high << 16);
-       udelay(2);
-       if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
-               DEBUGOUT("PHY Read Error\n");
-               return -E1000_ERR_PHY;
-       }
+       udelay(20);
+       ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+       if (ret_val)
+               return ret_val;
+
        hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+       hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
 
        switch (hw->mac_type) {
        case e1000_82543:
                if (hw->phy_id == M88E1000_E_PHY_ID)
-                       match = TRUE;
+                       match = true;
                break;
        case e1000_82544:
                if (hw->phy_id == M88E1000_I_PHY_ID)
-                       match = TRUE;
+                       match = true;
                break;
        case e1000_82540:
        case e1000_82545:
+       case e1000_82545_rev_3:
        case e1000_82546:
+       case e1000_82546_rev_3:
                if (hw->phy_id == M88E1011_I_PHY_ID)
-                       match = TRUE;
+                       match = true;
                break;
+       case e1000_82541:
        case e1000_82541_rev_2:
+       case e1000_82547:
+       case e1000_82547_rev_2:
                if(hw->phy_id == IGP01E1000_I_PHY_ID)
-                       match = TRUE;
+                       match = true;
 
                break;
+       case e1000_82573:
+               if (hw->phy_id == M88E1111_I_PHY_ID)
+                       match = true;
+               break;
+       case e1000_82574:
+               if (hw->phy_id == BME1000_E_PHY_ID)
+                       match = true;
+               break;
+       case e1000_80003es2lan:
+               if (hw->phy_id == GG82563_E_PHY_ID)
+                       match = true;
+               break;
+       case e1000_ich8lan:
+               if (hw->phy_id == IGP03E1000_E_PHY_ID)
+                       match = true;
+               if (hw->phy_id == IFE_E_PHY_ID)
+                       match = true;
+               if (hw->phy_id == IFE_PLUS_E_PHY_ID)
+                       match = true;
+               if (hw->phy_id == IFE_C_E_PHY_ID)
+                       match = true;
+               break;
        default:
                DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
                return -E1000_ERR_CONFIG;
@@ -2586,6 +4668,61 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
        return -E1000_ERR_PHY;
 }
 
+/*****************************************************************************
+ * Set media type and TBI compatibility.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * **************************************************************************/
+void
+e1000_set_media_type(struct e1000_hw *hw)
+{
+       uint32_t status;
+
+       DEBUGFUNC();
+
+       if (hw->mac_type != e1000_82543) {
+               /* tbi_compatibility is only valid on 82543 */
+               hw->tbi_compatibility_en = false;
+       }
+
+       switch (hw->device_id) {
+       case E1000_DEV_ID_82545GM_SERDES:
+       case E1000_DEV_ID_82546GB_SERDES:
+       case E1000_DEV_ID_82571EB_SERDES:
+       case E1000_DEV_ID_82571EB_SERDES_DUAL:
+       case E1000_DEV_ID_82571EB_SERDES_QUAD:
+       case E1000_DEV_ID_82572EI_SERDES:
+       case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+               hw->media_type = e1000_media_type_internal_serdes;
+               break;
+       default:
+               switch (hw->mac_type) {
+               case e1000_82542_rev2_0:
+               case e1000_82542_rev2_1:
+                       hw->media_type = e1000_media_type_fiber;
+                       break;
+               case e1000_ich8lan:
+               case e1000_82573:
+               case e1000_82574:
+                       /* The STATUS_TBIMODE bit is reserved or reused
+                        * for the this device.
+                        */
+                       hw->media_type = e1000_media_type_copper;
+                       break;
+               default:
+                       status = E1000_READ_REG(hw, STATUS);
+                       if (status & E1000_STATUS_TBIMODE) {
+                               hw->media_type = e1000_media_type_fiber;
+                               /* tbi_compatibility not valid on fiber */
+                               hw->tbi_compatibility_en = false;
+                       } else {
+                               hw->media_type = e1000_media_type_copper;
+                       }
+                       break;
+               }
+       }
+}
+
 /**
  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  *
@@ -2595,7 +4732,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
  **/
 
 static int
-e1000_sw_init(struct eth_device *nic, int cardnum)
+e1000_sw_init(struct eth_device *nic)
 {
        struct e1000_hw *hw = (typeof(hw)) nic->priv;
        int result;
@@ -2613,17 +4750,20 @@ e1000_sw_init(struct eth_device *nic, int cardnum)
        /* identify the MAC */
        result = e1000_set_mac_type(hw);
        if (result) {
-               E1000_ERR("Unknown MAC Type\n");
+               E1000_ERR(hw->nic, "Unknown MAC Type\n");
                return result;
        }
 
-       /* lan a vs. lan b settings */
-       if (hw->mac_type == e1000_82546)
-               /*this also works w/ multiple 82546 cards */
-               /*but not if they're intermingled /w other e1000s */
-               hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
-       else
-               hw->lan_loc = e1000_lan_a;
+       switch (hw->mac_type) {
+       default:
+               break;
+       case e1000_82541:
+       case e1000_82547:
+       case e1000_82541_rev_2:
+       case e1000_82547_rev_2:
+               hw->phy_init_script = 1;
+               break;
+       }
 
        /* flow control settings */
        hw->fc_high_water = E1000_FC_HIGH_THRESH;
@@ -2632,6 +4772,7 @@ e1000_sw_init(struct eth_device *nic, int cardnum)
        hw->fc_send_xon = 1;
 
        /* Media type - copper or fiber */
+       e1000_set_media_type(hw);
 
        if (hw->mac_type >= e1000_82543) {
                uint32_t status = E1000_READ_REG(hw, STATUS);
@@ -2647,22 +4788,13 @@ e1000_sw_init(struct eth_device *nic, int cardnum)
                hw->media_type = e1000_media_type_fiber;
        }
 
+       hw->tbi_compatibility_en = true;
+       hw->wait_autoneg_complete = true;
        if (hw->mac_type < e1000_82543)
                hw->report_tx_early = 0;
        else
                hw->report_tx_early = 1;
 
-       hw->tbi_compatibility_en = TRUE;
-#if 0
-       hw->wait_autoneg_complete = FALSE;
-       hw->adaptive_ifs = TRUE;
-
-       /* Copper options */
-       if (hw->media_type == e1000_media_type_copper) {
-               hw->mdix = AUTO_ALL_MODES;
-               hw->disable_polarity_correction = FALSE;
-       }
-#endif
        return E1000_SUCCESS;
 }
 
@@ -2691,7 +4823,8 @@ e1000_configure_tx(struct e1000_hw *hw)
 {
        unsigned long ptr;
        unsigned long tctl;
-       unsigned long tipg;
+       unsigned long tipg, tarc;
+       uint32_t ipgr1, ipgr2;
 
        ptr = (u32) tx_pool;
        if (ptr & 0xf)
@@ -2709,46 +4842,65 @@ e1000_configure_tx(struct e1000_hw *hw)
        E1000_WRITE_REG(hw, TDT, 0);
        tx_tail = 0;
 
+       /* Set the default values for the Tx Inter Packet Gap timer */
+       if (hw->mac_type <= e1000_82547_rev_2 &&
+           (hw->media_type == e1000_media_type_fiber ||
+            hw->media_type == e1000_media_type_internal_serdes))
+               tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+       else
+               tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+
        /* Set the default values for the Tx Inter Packet Gap timer */
        switch (hw->mac_type) {
        case e1000_82542_rev2_0:
        case e1000_82542_rev2_1:
                tipg = DEFAULT_82542_TIPG_IPGT;
-               tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
-               tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+               ipgr1 = DEFAULT_82542_TIPG_IPGR1;
+               ipgr2 = DEFAULT_82542_TIPG_IPGR2;
+               break;
+       case e1000_80003es2lan:
+               ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+               ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
                break;
        default:
-               if (hw->media_type == e1000_media_type_fiber)
-                       tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
-               else
-                       tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
-               tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
-               tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+               ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+               ipgr2 = DEFAULT_82543_TIPG_IPGR2;
+               break;
        }
+       tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+       tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
        E1000_WRITE_REG(hw, TIPG, tipg);
-#if 0
-       /* Set the Tx Interrupt Delay register */
-       E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
-       if (hw->mac_type >= e1000_82540)
-               E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
-#endif
        /* Program the Transmit Control Register */
        tctl = E1000_READ_REG(hw, TCTL);
        tctl &= ~E1000_TCTL_CT;
        tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
            (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
-       E1000_WRITE_REG(hw, TCTL, tctl);
+
+       if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
+               tarc = E1000_READ_REG(hw, TARC0);
+               /* set the speed mode bit, we'll clear it if we're not at
+                * gigabit link later */
+               /* git bit can be set to 1*/
+       } else if (hw->mac_type == e1000_80003es2lan) {
+               tarc = E1000_READ_REG(hw, TARC0);
+               tarc |= 1;
+               E1000_WRITE_REG(hw, TARC0, tarc);
+               tarc = E1000_READ_REG(hw, TARC1);
+               tarc |= 1;
+               E1000_WRITE_REG(hw, TARC1, tarc);
+       }
+
 
        e1000_config_collision_dist(hw);
-#if 0
-       /* Setup Transmit Descriptor Settings for this adapter */
-       adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
+       /* Setup Transmit Descriptor Settings for eop descriptor */
+       hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
 
-       if (adapter->hw.report_tx_early == 1)
-               adapter->txd_cmd |= E1000_TXD_CMD_RS;
+       /* Need to set up RS bit */
+       if (hw->mac_type < e1000_82543)
+               hw->txd_cmd |= E1000_TXD_CMD_RPS;
        else
-               adapter->txd_cmd |= E1000_TXD_CMD_RPS;
-#endif
+               hw->txd_cmd |= E1000_TXD_CMD_RS;
+       E1000_WRITE_REG(hw, TCTL, tctl);
 }
 
 /**
@@ -2764,8 +4916,9 @@ e1000_setup_rctl(struct e1000_hw *hw)
 
        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 
-       rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF;     /* |
-                                                                                                  (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
+       rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
+               | E1000_RCTL_RDMTS_HALF;        /* |
+                       (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
 
        if (hw->tbi_compatibility_on == 1)
                rctl |= E1000_RCTL_SBP;
@@ -2773,26 +4926,8 @@ e1000_setup_rctl(struct e1000_hw *hw)
                rctl &= ~E1000_RCTL_SBP;
 
        rctl &= ~(E1000_RCTL_SZ_4096);
-#if 0
-       switch (adapter->rx_buffer_len) {
-       case E1000_RXBUFFER_2048:
-       default:
-#endif
                rctl |= E1000_RCTL_SZ_2048;
                rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
-#if 0
-               break;
-       case E1000_RXBUFFER_4096:
-               rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
-               break;
-       case E1000_RXBUFFER_8192:
-               rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
-               break;
-       case E1000_RXBUFFER_16384:
-               rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
-               break;
-       }
-#endif
        E1000_WRITE_REG(hw, RCTL, rctl);
 }
 
@@ -2806,23 +4941,12 @@ static void
 e1000_configure_rx(struct e1000_hw *hw)
 {
        unsigned long ptr;
-       unsigned long rctl;
-#if 0
-       unsigned long rxcsum;
-#endif
+       unsigned long rctl, ctrl_ext;
        rx_tail = 0;
        /* make sure receives are disabled while setting up the descriptors */
        rctl = E1000_READ_REG(hw, RCTL);
        E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
-#if 0
-       /* set the Receive Delay Timer Register */
-
-       E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
-#endif
        if (hw->mac_type >= e1000_82540) {
-#if 0
-               E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
-#endif
                /* Set the interrupt throttling rate.  Value is calculated
                 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
 #define MAX_INTS_PER_SEC       8000
@@ -2830,6 +4954,13 @@ e1000_configure_rx(struct e1000_hw *hw)
                E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
        }
 
+       if (hw->mac_type >= e1000_82571) {
+               ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+               /* Reset delay timers after every interrupt */
+               ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
+               E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+               E1000_WRITE_FLUSH(hw);
+       }
        /* Setup the Base and Length of the Rx Descriptor Ring */
        ptr = (u32) rx_pool;
        if (ptr & 0xf)
@@ -2843,14 +4974,6 @@ e1000_configure_rx(struct e1000_hw *hw)
        /* Setup the HW Rx Head and Tail Descriptor Pointers */
        E1000_WRITE_REG(hw, RDH, 0);
        E1000_WRITE_REG(hw, RDT, 0);
-#if 0
-       /* Enable 82543 Receive Checksum Offload for TCP and UDP */
-       if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
-               rxcsum = E1000_READ_REG(hw, RXCSUM);
-               rxcsum |= E1000_RXCSUM_TUOFL;
-               E1000_WRITE_REG(hw, RXCSUM, rxcsum);
-       }
-#endif
        /* Enable Receives */
 
        E1000_WRITE_REG(hw, RCTL, rctl);
@@ -2878,9 +5001,9 @@ e1000_poll(struct eth_device *nic)
 /**************************************************************************
 TRANSMIT - Transmit a frame
 ***************************************************************************/
-static int
-e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
+static int e1000_transmit(struct eth_device *nic, void *packet, int length)
 {
+       void *nv_packet = (void *)packet;
        struct e1000_hw *hw = nic->priv;
        struct e1000_tx_desc *txp;
        int i = 0;
@@ -2888,12 +5011,12 @@ e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
        txp = tx_base + tx_tail;
        tx_tail = (tx_tail + 1) % 8;
 
-       txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
-       txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
-                                     E1000_TXD_CMD_IFCS | length);
+       txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
+       txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
        txp->upper.data = 0;
        E1000_WRITE_REG(hw, TDT, tx_tail);
 
+       E1000_WRITE_FLUSH(hw);
        while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
                if (i++ > TOUT_LOOP) {
                        DEBUGOUT("e1000: tx timeout\n");
@@ -2958,9 +5081,9 @@ e1000_init(struct eth_device *nic, bd_t * bis)
        if (ret_val < 0) {
                if ((ret_val == -E1000_ERR_NOLINK) ||
                    (ret_val == -E1000_ERR_TIMEOUT)) {
-                       E1000_ERR("Valid Link not detected\n");
+                       E1000_ERR(hw->nic, "Valid Link not detected\n");
                } else {
-                       E1000_ERR("Hardware Initialization Failed\n");
+                       E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
                }
                return 0;
        }
@@ -2970,6 +5093,41 @@ e1000_init(struct eth_device *nic, bd_t * bis)
        return 1;
 }
 
+/******************************************************************************
+ * Gets the current PCI bus type of hardware
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void e1000_get_bus_type(struct e1000_hw *hw)
+{
+       uint32_t status;
+
+       switch (hw->mac_type) {
+       case e1000_82542_rev2_0:
+       case e1000_82542_rev2_1:
+               hw->bus_type = e1000_bus_type_pci;
+               break;
+       case e1000_82571:
+       case e1000_82572:
+       case e1000_82573:
+       case e1000_82574:
+       case e1000_80003es2lan:
+               hw->bus_type = e1000_bus_type_pci_express;
+               break;
+       case e1000_ich8lan:
+               hw->bus_type = e1000_bus_type_pci_express;
+               break;
+       default:
+               status = E1000_READ_REG(hw, STATUS);
+               hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+                               e1000_bus_type_pcix : e1000_bus_type_pci;
+               break;
+       }
+}
+
+/* A list of all registered e1000 devices */
+static LIST_HEAD(e1000_hw_list);
+
 /**************************************************************************
 PROBE - Look for an adapter, this routine's visible to the outside
 You should omit the last argument struct pci_device * for a non-PCI NIC
@@ -2977,86 +5135,165 @@ You should omit the last argument struct pci_device * for a non-PCI NIC
 int
 e1000_initialize(bd_t * bis)
 {
+       unsigned int i;
        pci_dev_t devno;
-       int card_number = 0;
-       struct eth_device *nic = NULL;
-       struct e1000_hw *hw = NULL;
-       u32 iobase;
-       int idx = 0;
-       u32 PciCommandWord;
-
-       while (1) {             /* Find PCI device(s) */
-               if ((devno = pci_find_devices(supported, idx++)) < 0) {
-                       break;
-               }
 
-               pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
-               iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
-               DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
+       DEBUGFUNC();
+
+       /* Find and probe all the matching PCI devices */
+       for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
+               u32 val;
 
-               pci_write_config_dword(devno, PCI_COMMAND,
-                                      PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
-               /* Check if I/O accesses and Bus Mastering are enabled. */
-               pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
-               if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
-                       printf("Error: Can not enable MEM access.\n");
-                       continue;
-               } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
-                       printf("Error: Can not enable Bus Mastering.\n");
+               /*
+                * These will never get freed due to errors, this allows us to
+                * perform SPI EEPROM programming from U-boot, for example.
+                */
+               struct eth_device *nic = malloc(sizeof(*nic));
+               struct e1000_hw *hw = malloc(sizeof(*hw));
+               if (!nic || !hw) {
+                       printf("e1000#%u: Out of Memory!\n", i);
+                       free(nic);
+                       free(hw);
                        continue;
                }
 
-               nic = (struct eth_device *) malloc(sizeof (*nic));
-               hw = (struct e1000_hw *) malloc(sizeof (*hw));
+               /* Make sure all of the fields are initially zeroed */
+               memset(nic, 0, sizeof(*nic));
+               memset(hw, 0, sizeof(*hw));
+
+               /* Assign the passed-in values */
+               hw->cardnum = i;
                hw->pdev = devno;
+               hw->nic = nic;
                nic->priv = hw;
-               nic->iobase = bus_to_phys(devno, iobase);
 
-               sprintf(nic->name, "e1000#%d", card_number);
+               /* Generate a card name */
+               sprintf(nic->name, "e1000#%u", hw->cardnum);
+
+               /* Print a debug message with the IO base address */
+               pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
+               E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
+
+               /* Try to enable I/O accesses and bus-mastering */
+               val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
+               pci_write_config_dword(devno, PCI_COMMAND, val);
+
+               /* Make sure it worked */
+               pci_read_config_dword(devno, PCI_COMMAND, &val);
+               if (!(val & PCI_COMMAND_MEMORY)) {
+                       E1000_ERR(nic, "Can't enable I/O memory\n");
+                       continue;
+               }
+               if (!(val & PCI_COMMAND_MASTER)) {
+                       E1000_ERR(nic, "Can't enable bus-mastering\n");
+                       continue;
+               }
 
                /* Are these variables needed? */
-#if 0
-               hw->fc = e1000_fc_none;
-               hw->original_fc = e1000_fc_none;
-#else
                hw->fc = e1000_fc_default;
                hw->original_fc = e1000_fc_default;
-#endif
                hw->autoneg_failed = 0;
-               hw->get_link_status = TRUE;
-               hw->hw_addr = (typeof(hw->hw_addr)) iobase;
+               hw->autoneg = 1;
+               hw->get_link_status = true;
+               hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
+                                                       PCI_REGION_MEM);
                hw->mac_type = e1000_undefined;
 
                /* MAC and Phy settings */
-               if (e1000_sw_init(nic, card_number) < 0) {
-                       free(hw);
-                       free(nic);
-                       return 0;
+               if (e1000_sw_init(nic) < 0) {
+                       E1000_ERR(nic, "Software init failed\n");
+                       continue;
                }
-#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
-               if (e1000_validate_eeprom_checksum(nic) < 0) {
-                       printf("The EEPROM Checksum Is Not Valid\n");
-                       free(hw);
-                       free(nic);
-                       return 0;
+               if (e1000_check_phy_reset_block(hw))
+                       E1000_ERR(nic, "PHY Reset is blocked!\n");
+
+               /* Basic init was OK, reset the hardware and allow SPI access */
+               e1000_reset_hw(hw);
+               list_add_tail(&hw->list_node, &e1000_hw_list);
+
+               /* Validate the EEPROM and get chipset information */
+#if !defined(CONFIG_MVBC_1G)
+               if (e1000_init_eeprom_params(hw)) {
+                       E1000_ERR(nic, "EEPROM is invalid!\n");
+                       continue;
                }
+               if (e1000_validate_eeprom_checksum(hw))
+                       continue;
 #endif
                e1000_read_mac_addr(nic);
+               e1000_get_bus_type(hw);
 
-               E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
-
-               printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
+               printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
                       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
                       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
 
+               /* Set up the function pointers and register the device */
                nic->init = e1000_init;
                nic->recv = e1000_poll;
                nic->send = e1000_transmit;
                nic->halt = e1000_disable;
-
                eth_register(nic);
+       }
+
+       return i;
+}
+
+struct e1000_hw *e1000_find_card(unsigned int cardnum)
+{
+       struct e1000_hw *hw;
+
+       list_for_each_entry(hw, &e1000_hw_list, list_node)
+               if (hw->cardnum == cardnum)
+                       return hw;
+
+       return NULL;
+}
+
+#ifdef CONFIG_CMD_E1000
+static int do_e1000(cmd_tbl_t *cmdtp, int flag,
+               int argc, char * const argv[])
+{
+       struct e1000_hw *hw;
+
+       if (argc < 3) {
+               cmd_usage(cmdtp);
+               return 1;
+       }
 
-               card_number++;
+       /* Make sure we can find the requested e1000 card */
+       hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
+       if (!hw) {
+               printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
+               return 1;
        }
+
+       if (!strcmp(argv[2], "print-mac-address")) {
+               unsigned char *mac = hw->nic->enetaddr;
+               printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
+                       mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
+               return 0;
+       }
+
+#ifdef CONFIG_E1000_SPI
+       /* Handle the "SPI" subcommand */
+       if (!strcmp(argv[2], "spi"))
+               return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
+#endif
+
+       cmd_usage(cmdtp);
        return 1;
 }
+
+U_BOOT_CMD(
+       e1000, 7, 0, do_e1000,
+       "Intel e1000 controller management",
+       /*  */"<card#> print-mac-address\n"
+#ifdef CONFIG_E1000_SPI
+       "e1000 <card#> spi show [<offset> [<length>]]\n"
+       "e1000 <card#> spi dump <addr> <offset> <length>\n"
+       "e1000 <card#> spi program <addr> <offset> <length>\n"
+       "e1000 <card#> spi checksum [update]\n"
+#endif
+       "       - Manage the Intel E1000 PCI device"
+);
+#endif /* not CONFIG_CMD_E1000 */