2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
5 * See file CREDITS for list of people who contributed to this
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 * Problems with CONFIG_SYS_64BIT_LBA:
27 * struct disk_partition.start in include/part.h is sized as ulong.
28 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
29 * For now, it is cast back to ulong at assignment.
31 * This limits the maximum size of addressable storage to < 2 Terra Bytes
38 #include <linux/ctype.h>
40 DECLARE_GLOBAL_DATA_PTR;
42 #if defined(CONFIG_CMD_IDE) || \
43 defined(CONFIG_CMD_SATA) || \
44 defined(CONFIG_CMD_SCSI) || \
45 defined(CONFIG_CMD_USB) || \
46 defined(CONFIG_MMC) || \
47 defined(CONFIG_SYSTEMACE)
50 * efi_crc32() - EFI version of crc32 function
51 * @buf: buffer to calculate crc32 of
52 * @len - length of buf
54 * Description: Returns EFI-style CRC32 value for @buf
56 static inline u32 efi_crc32(const void *buf, u32 len)
58 return crc32(0, buf, len);
62 * Private function prototypes
65 static int pmbr_part_valid(struct partition *part);
66 static int is_pmbr_valid(legacy_mbr * mbr);
67 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
68 gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
69 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
70 gpt_header * pgpt_head);
71 static int is_pte_valid(gpt_entry * pte);
73 static char *print_efiname(gpt_entry *pte)
75 static char name[PARTNAME_SZ + 1];
77 for (i = 0; i < PARTNAME_SZ; i++) {
79 c = pte->partition_name[i] & 0xff;
80 c = (c && !isprint(c)) ? '.' : c;
83 name[PARTNAME_SZ] = 0;
87 static void uuid_string(unsigned char *uuid, char *str)
89 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11,
93 for (i = 0; i < 16; i++) {
94 sprintf(str, "%02x", uuid[le[i]]);
107 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
109 static inline int is_bootable(gpt_entry *p)
111 return p->attributes.fields.legacy_bios_bootable ||
112 !memcmp(&(p->partition_type_guid), &system_guid,
116 #ifdef CONFIG_EFI_PARTITION
118 * Public Functions (include/part.h)
121 void print_part_efi(block_dev_desc_t * dev_desc)
123 ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
124 gpt_entry *gpt_pte = NULL;
129 printf("%s: Invalid Argument(s)\n", __func__);
132 /* This function validates AND fills in the GPT header and PTE */
133 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
134 gpt_head, &gpt_pte) != 1) {
135 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
139 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
141 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
142 printf("\tAttributes\n");
143 printf("\tType UUID\n");
144 printf("\tPartition UUID\n");
146 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
147 /* Stop at the first non valid PTE */
148 if (!is_pte_valid(&gpt_pte[i]))
151 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
152 le64_to_cpu(gpt_pte[i].starting_lba),
153 le64_to_cpu(gpt_pte[i].ending_lba),
154 print_efiname(&gpt_pte[i]));
155 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
156 uuid_string(gpt_pte[i].partition_type_guid.b, uuid);
157 printf("\ttype:\t%s\n", uuid);
158 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid);
159 printf("\tuuid:\t%s\n", uuid);
162 /* Remember to free pte */
167 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
168 disk_partition_t * info)
170 ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
171 gpt_entry *gpt_pte = NULL;
173 /* "part" argument must be at least 1 */
174 if (!dev_desc || !info || part < 1) {
175 printf("%s: Invalid Argument(s)\n", __func__);
179 /* This function validates AND fills in the GPT header and PTE */
180 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
181 gpt_head, &gpt_pte) != 1) {
182 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
186 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
187 !is_pte_valid(&gpt_pte[part - 1])) {
188 printf("%s: *** ERROR: Invalid partition number %d ***\n",
193 /* The ulong casting limits the maximum disk size to 2 TB */
194 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba);
195 /* The ending LBA is inclusive, to calculate size, add 1 to it */
196 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1)
198 info->blksz = GPT_BLOCK_SIZE;
200 sprintf((char *)info->name, "%s",
201 print_efiname(&gpt_pte[part - 1]));
202 sprintf((char *)info->type, "U-Boot");
203 info->bootable = is_bootable(&gpt_pte[part - 1]);
204 #ifdef CONFIG_PARTITION_UUIDS
205 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
208 debug("%s: start 0x%lX, size 0x%lX, name %s", __func__,
209 info->start, info->size, info->name);
211 /* Remember to free pte */
216 int test_part_efi(block_dev_desc_t * dev_desc)
218 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, legacymbr, 1);
220 /* Read legacy MBR from block 0 and validate it */
221 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
222 || (is_pmbr_valid(legacymbr) != 1)) {
229 * set_protective_mbr(): Set the EFI protective MBR
230 * @param dev_desc - block device descriptor
232 * @return - zero on success, otherwise error
234 static int set_protective_mbr(block_dev_desc_t *dev_desc)
238 /* Setup the Protective MBR */
239 p_mbr = calloc(1, sizeof(p_mbr));
241 printf("%s: calloc failed!\n", __func__);
244 /* Append signature */
245 p_mbr->signature = MSDOS_MBR_SIGNATURE;
246 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
247 p_mbr->partition_record[0].start_sect = 1;
248 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba;
250 /* Write MBR sector to the MMC device */
251 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
252 printf("** Can't write to device %d **\n",
263 * string_uuid(); Convert UUID stored as string to bytes
265 * @param uuid - UUID represented as string
266 * @param dst - GUID buffer
268 * @return return 0 on successful conversion
270 static int string_uuid(char *uuid, u8 *dst)
279 const u8 uuid_str_len = 36;
281 /* The UUID is written in text: */
283 /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */
285 debug("%s: uuid: %s\n", __func__, uuid);
287 if (strlen(uuid) != uuid_str_len)
290 for (i = 0; i < uuid_str_len; i++) {
291 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) {
295 if (!isxdigit(uuid[i]))
300 a = (u32)simple_strtoul(uuid, NULL, 16);
301 b = (u16)simple_strtoul(uuid + 9, NULL, 16);
302 c = (u16)simple_strtoul(uuid + 14, NULL, 16);
303 d = (u16)simple_strtoul(uuid + 19, NULL, 16);
304 e = (u64)simple_strtoull(uuid + 24, NULL, 16);
307 guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF,
308 *(p + 5), *(p + 4), *(p + 3),
309 *(p + 2), *(p + 1) , *p);
311 memcpy(dst, guid.b, sizeof(efi_guid_t));
316 int write_gpt_table(block_dev_desc_t *dev_desc,
317 gpt_header *gpt_h, gpt_entry *gpt_e)
319 const int pte_blk_num = (gpt_h->num_partition_entries
320 * sizeof(gpt_entry)) / dev_desc->blksz;
325 debug("max lba: %x\n", (u32) dev_desc->lba);
326 /* Setup the Protective MBR */
327 if (set_protective_mbr(dev_desc) < 0)
330 /* Generate CRC for the Primary GPT Header */
331 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
332 le32_to_cpu(gpt_h->num_partition_entries) *
333 le32_to_cpu(gpt_h->sizeof_partition_entry));
334 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
336 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
337 le32_to_cpu(gpt_h->header_size));
338 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
340 /* Write the First GPT to the block right after the Legacy MBR */
341 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
344 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_num, gpt_e)
348 /* recalculate the values for the Second GPT Header */
349 val = le64_to_cpu(gpt_h->my_lba);
350 gpt_h->my_lba = gpt_h->alternate_lba;
351 gpt_h->alternate_lba = cpu_to_le64(val);
352 gpt_h->header_crc32 = 0;
354 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
355 le32_to_cpu(gpt_h->header_size));
356 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
358 if (dev_desc->block_write(dev_desc->dev,
359 le32_to_cpu(gpt_h->last_usable_lba + 1),
360 pte_blk_num, gpt_e) != pte_blk_num)
363 if (dev_desc->block_write(dev_desc->dev,
364 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1)
367 debug("GPT successfully written to block device!\n");
371 printf("** Can't write to device %d **\n", dev_desc->dev);
375 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
376 disk_partition_t *partitions, int parts)
378 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba);
382 #ifdef CONFIG_PARTITION_UUIDS
386 for (i = 0; i < parts; i++) {
387 /* partition starting lba */
388 start = partitions[i].start;
389 if (start && (start < offset)) {
390 printf("Partition overlap\n");
394 gpt_e[i].starting_lba = cpu_to_le64(start);
395 offset = start + partitions[i].size;
397 gpt_e[i].starting_lba = cpu_to_le64(offset);
398 offset += partitions[i].size;
400 if (offset >= gpt_h->last_usable_lba) {
401 printf("Partitions layout exceds disk size\n");
404 /* partition ending lba */
405 if ((i == parts - 1) && (partitions[i].size == 0))
406 /* extend the last partition to maximuim */
407 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
409 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
411 /* partition type GUID */
412 memcpy(gpt_e[i].partition_type_guid.b,
413 &PARTITION_BASIC_DATA_GUID, 16);
415 #ifdef CONFIG_PARTITION_UUIDS
416 str_uuid = partitions[i].uuid;
417 if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) {
418 printf("Partition no. %d: invalid guid: %s\n",
424 /* partition attributes */
425 memset(&gpt_e[i].attributes, 0,
426 sizeof(gpt_entry_attributes));
429 name_len = sizeof(gpt_e[i].partition_name)
430 / sizeof(efi_char16_t);
431 for (k = 0; k < name_len; k++)
432 gpt_e[i].partition_name[k] =
433 (efi_char16_t)(partitions[i].name[k]);
435 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x%lx\n",
436 __func__, partitions[i].name, i,
437 offset, i, partitions[i].size);
443 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
444 char *str_guid, int parts_count)
446 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
447 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
448 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
449 gpt_h->my_lba = cpu_to_le64(1);
450 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
451 gpt_h->first_usable_lba = cpu_to_le64(34);
452 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
453 gpt_h->partition_entry_lba = cpu_to_le64(2);
454 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
455 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
456 gpt_h->header_crc32 = 0;
457 gpt_h->partition_entry_array_crc32 = 0;
459 if (string_uuid(str_guid, gpt_h->disk_guid.b))
465 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
466 disk_partition_t *partitions, int parts_count)
470 gpt_header *gpt_h = calloc(1, sizeof(gpt_header));
472 printf("%s: calloc failed!\n", __func__);
476 gpt_entry *gpt_e = calloc(GPT_ENTRY_NUMBERS, sizeof(gpt_entry));
478 printf("%s: calloc failed!\n", __func__);
483 /* Generate Primary GPT header (LBA1) */
484 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
488 /* Generate partition entries */
489 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
493 /* Write GPT partition table */
494 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
507 * pmbr_part_valid(): Check for EFI partition signature
509 * Returns: 1 if EFI GPT partition type is found.
511 static int pmbr_part_valid(struct partition *part)
513 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
514 le32_to_cpu(part->start_sect) == 1UL) {
522 * is_pmbr_valid(): test Protective MBR for validity
524 * Returns: 1 if PMBR is valid, 0 otherwise.
525 * Validity depends on two things:
526 * 1) MSDOS signature is in the last two bytes of the MBR
527 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
529 static int is_pmbr_valid(legacy_mbr * mbr)
533 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
536 for (i = 0; i < 4; i++) {
537 if (pmbr_part_valid(&mbr->partition_record[i])) {
545 * is_gpt_valid() - tests one GPT header and PTEs for validity
547 * lba is the logical block address of the GPT header to test
548 * gpt is a GPT header ptr, filled on return.
549 * ptes is a PTEs ptr, filled on return.
551 * Description: returns 1 if valid, 0 on error.
552 * If valid, returns pointers to PTEs.
554 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
555 gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
557 u32 crc32_backup = 0;
559 unsigned long long lastlba;
561 if (!dev_desc || !pgpt_head) {
562 printf("%s: Invalid Argument(s)\n", __func__);
566 /* Read GPT Header from device */
567 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
568 printf("*** ERROR: Can't read GPT header ***\n");
572 /* Check the GPT header signature */
573 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
574 printf("GUID Partition Table Header signature is wrong:"
575 "0x%llX != 0x%llX\n",
576 le64_to_cpu(pgpt_head->signature),
577 GPT_HEADER_SIGNATURE);
581 /* Check the GUID Partition Table CRC */
582 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup));
583 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
585 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
586 le32_to_cpu(pgpt_head->header_size));
588 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup));
590 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
591 printf("GUID Partition Table Header CRC is wrong:"
593 le32_to_cpu(crc32_backup), calc_crc32);
597 /* Check that the my_lba entry points to the LBA that contains the GPT */
598 if (le64_to_cpu(pgpt_head->my_lba) != lba) {
599 printf("GPT: my_lba incorrect: %llX != %llX\n",
600 le64_to_cpu(pgpt_head->my_lba),
605 /* Check the first_usable_lba and last_usable_lba are within the disk. */
606 lastlba = (unsigned long long)dev_desc->lba;
607 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) {
608 printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
609 le64_to_cpu(pgpt_head->first_usable_lba), lastlba);
612 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) {
613 printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
614 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
618 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
619 le64_to_cpu(pgpt_head->first_usable_lba),
620 le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
622 /* Read and allocate Partition Table Entries */
623 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
624 if (*pgpt_pte == NULL) {
625 printf("GPT: Failed to allocate memory for PTE\n");
629 /* Check the GUID Partition Table Entry Array CRC */
630 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
631 le32_to_cpu(pgpt_head->num_partition_entries) *
632 le32_to_cpu(pgpt_head->sizeof_partition_entry));
634 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) {
635 printf("GUID Partition Table Entry Array CRC is wrong:"
637 le32_to_cpu(pgpt_head->partition_entry_array_crc32),
644 /* We're done, all's well */
649 * alloc_read_gpt_entries(): reads partition entries from disk
653 * Description: Returns ptes on success, NULL on error.
654 * Allocates space for PTEs based on information found in @gpt.
655 * Notes: remember to free pte when you're done!
657 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
658 gpt_header * pgpt_head)
661 gpt_entry *pte = NULL;
663 if (!dev_desc || !pgpt_head) {
664 printf("%s: Invalid Argument(s)\n", __func__);
668 count = le32_to_cpu(pgpt_head->num_partition_entries) *
669 le32_to_cpu(pgpt_head->sizeof_partition_entry);
671 debug("%s: count = %u * %u = %zu\n", __func__,
672 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
673 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
675 /* Allocate memory for PTE, remember to FREE */
677 pte = memalign(ARCH_DMA_MINALIGN, count);
680 if (count == 0 || pte == NULL) {
681 printf("%s: ERROR: Can't allocate 0x%zX "
682 "bytes for GPT Entries\n",
687 /* Read GPT Entries from device */
688 if (dev_desc->block_read (dev_desc->dev,
689 le64_to_cpu(pgpt_head->partition_entry_lba),
690 (lbaint_t) (count / GPT_BLOCK_SIZE), pte)
691 != (count / GPT_BLOCK_SIZE)) {
693 printf("*** ERROR: Can't read GPT Entries ***\n");
701 * is_pte_valid(): validates a single Partition Table Entry
702 * @gpt_entry - Pointer to a single Partition Table Entry
704 * Description: returns 1 if valid, 0 on error.
706 static int is_pte_valid(gpt_entry * pte)
708 efi_guid_t unused_guid;
711 printf("%s: Invalid Argument(s)\n", __func__);
715 /* Only one validation for now:
716 * The GUID Partition Type != Unused Entry (ALL-ZERO)
718 memset(unused_guid.b, 0, sizeof(unused_guid.b));
720 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
721 sizeof(unused_guid.b)) == 0) {
723 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
724 (unsigned int)(uintptr_t)pte);