]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Dissolve invocation of sdr_get_addr(&sdr_mgr_.*->.*)
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
17
18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
19         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
20
21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
22         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
23
24 static struct socfpga_sdr_reg_file *sdr_reg_file =
25         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
26
27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
28         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
29
30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
31         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
32
33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
34         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
35
36 static struct socfpga_data_mgr *data_mgr =
37         (struct socfpga_data_mgr *)(BASE_DATA_MGR);
38
39 #define DELTA_D         1
40 #define MGR_SELECT_MASK         0xf8000
41
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59         STATIC_SKIP_DELAY_LOOPS)
60
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72
73 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
74
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76         ((non_skip_value) & skip_delay_mask)
77
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83         uint32_t write_group, uint32_t use_dm,
84         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85
86 static u32 sdr_get_addr(u32 *base)
87 {
88         u32 addr = (u32)base & MGR_SELECT_MASK;
89
90         switch (addr) {
91         case BASE_PHY_MGR:
92                 addr = (((u32)base >> 8) & (1 << 6)) | ((u32)base & 0x3f) |
93                         SDR_PHYGRP_PHYMGRGRP_ADDRESS;
94                 break;
95         case BASE_RW_MGR:
96                 addr = ((u32)base & 0x1fff) | SDR_PHYGRP_RWMGRGRP_ADDRESS;
97                 break;
98         case BASE_DATA_MGR:
99                 addr = ((u32)base & 0x7ff) | SDR_PHYGRP_DATAMGRGRP_ADDRESS;
100                 break;
101         case BASE_SCC_MGR:
102                 addr = ((u32)base & 0xfff) | SDR_PHYGRP_SCCGRP_ADDRESS;
103                 break;
104         case BASE_REG_FILE:
105                 addr = ((u32)base & 0x7ff) | SDR_PHYGRP_REGFILEGRP_ADDRESS;
106                 break;
107         case BASE_MMR:
108                 addr = ((u32)base & 0xfff) | SDR_CTRLGRP_ADDRESS;
109                 break;
110         default:
111                 return -1;
112         }
113
114         return addr;
115 }
116
117 static void set_failing_group_stage(uint32_t group, uint32_t stage,
118         uint32_t substage)
119 {
120         /*
121          * Only set the global stage if there was not been any other
122          * failing group
123          */
124         if (gbl->error_stage == CAL_STAGE_NIL)  {
125                 gbl->error_substage = substage;
126                 gbl->error_stage = stage;
127                 gbl->error_group = group;
128         }
129 }
130
131 static void reg_file_set_group(uint32_t set_group)
132 {
133         u32 addr = (u32)&sdr_reg_file->cur_stage;
134
135         /* Read the current group and stage */
136         uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
137
138         /* Clear the group */
139         cur_stage_group &= 0x0000FFFF;
140
141         /* Set the group */
142         cur_stage_group |= (set_group << 16);
143
144         /* Write the data back */
145         writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
146 }
147
148 static void reg_file_set_stage(uint32_t set_stage)
149 {
150         u32 addr = (u32)&sdr_reg_file->cur_stage;
151
152         /* Read the current group and stage */
153         uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
154
155         /* Clear the stage and substage */
156         cur_stage_group &= 0xFFFF0000;
157
158         /* Set the stage */
159         cur_stage_group |= (set_stage & 0x000000FF);
160
161         /* Write the data back */
162         writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
163 }
164
165 static void reg_file_set_sub_stage(uint32_t set_sub_stage)
166 {
167         u32 addr = (u32)&sdr_reg_file->cur_stage;
168
169         /* Read the current group and stage */
170         uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
171
172         /* Clear the substage */
173         cur_stage_group &= 0xFFFF00FF;
174
175         /* Set the sub stage */
176         cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
177
178         /* Write the data back */
179         writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
180 }
181
182 static void initialize(void)
183 {
184         u32 addr = (u32)&phy_mgr_cfg->mux_sel;
185
186         debug("%s:%d\n", __func__, __LINE__);
187         /* USER calibration has control over path to memory */
188         /*
189          * In Hard PHY this is a 2-bit control:
190          * 0: AFI Mux Select
191          * 1: DDIO Mux Select
192          */
193         writel(0x3, SOCFPGA_SDR_ADDRESS + addr);
194
195         /* USER memory clock is not stable we begin initialization  */
196         addr = (u32)&phy_mgr_cfg->reset_mem_stbl;
197         writel(0, SOCFPGA_SDR_ADDRESS + addr);
198
199         /* USER calibration status all set to zero */
200         addr = (u32)&phy_mgr_cfg->cal_status;
201         writel(0, SOCFPGA_SDR_ADDRESS + addr);
202
203         addr = (u32)&phy_mgr_cfg->cal_debug_info;
204         writel(0, SOCFPGA_SDR_ADDRESS + addr);
205
206         if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
207                 param->read_correct_mask_vg  = ((uint32_t)1 <<
208                         (RW_MGR_MEM_DQ_PER_READ_DQS /
209                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
210                 param->write_correct_mask_vg = ((uint32_t)1 <<
211                         (RW_MGR_MEM_DQ_PER_READ_DQS /
212                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
213                 param->read_correct_mask     = ((uint32_t)1 <<
214                         RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
215                 param->write_correct_mask    = ((uint32_t)1 <<
216                         RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
217                 param->dm_correct_mask       = ((uint32_t)1 <<
218                         (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
219                         - 1;
220         }
221 }
222
223 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
224 {
225         uint32_t odt_mask_0 = 0;
226         uint32_t odt_mask_1 = 0;
227         uint32_t cs_and_odt_mask;
228         uint32_t addr;
229
230         if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
231                 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
232                         /*
233                          * 1 Rank
234                          * Read: ODT = 0
235                          * Write: ODT = 1
236                          */
237                         odt_mask_0 = 0x0;
238                         odt_mask_1 = 0x1;
239                 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
240                         /* 2 Ranks */
241                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
242                                 /* - Dual-Slot , Single-Rank
243                                  * (1 chip-select per DIMM)
244                                  * OR
245                                  * - RDIMM, 4 total CS (2 CS per DIMM)
246                                  * means 2 DIMM
247                                  * Since MEM_NUMBER_OF_RANKS is 2 they are
248                                  * both single rank
249                                  * with 2 CS each (special for RDIMM)
250                                  * Read: Turn on ODT on the opposite rank
251                                  * Write: Turn on ODT on all ranks
252                                  */
253                                 odt_mask_0 = 0x3 & ~(1 << rank);
254                                 odt_mask_1 = 0x3;
255                         } else {
256                                 /*
257                                  * USER - Single-Slot , Dual-rank DIMMs
258                                  * (2 chip-selects per DIMM)
259                                  * USER Read: Turn on ODT off on all ranks
260                                  * USER Write: Turn on ODT on active rank
261                                  */
262                                 odt_mask_0 = 0x0;
263                                 odt_mask_1 = 0x3 & (1 << rank);
264                         }
265                 } else {
266                         /* 4 Ranks
267                          * Read:
268                          * ----------+-----------------------+
269                          *           |                       |
270                          *           |         ODT           |
271                          * Read From +-----------------------+
272                          *   Rank    |  3  |  2  |  1  |  0  |
273                          * ----------+-----+-----+-----+-----+
274                          *     0     |  0  |  1  |  0  |  0  |
275                          *     1     |  1  |  0  |  0  |  0  |
276                          *     2     |  0  |  0  |  0  |  1  |
277                          *     3     |  0  |  0  |  1  |  0  |
278                          * ----------+-----+-----+-----+-----+
279                          *
280                          * Write:
281                          * ----------+-----------------------+
282                          *           |                       |
283                          *           |         ODT           |
284                          * Write To  +-----------------------+
285                          *   Rank    |  3  |  2  |  1  |  0  |
286                          * ----------+-----+-----+-----+-----+
287                          *     0     |  0  |  1  |  0  |  1  |
288                          *     1     |  1  |  0  |  1  |  0  |
289                          *     2     |  0  |  1  |  0  |  1  |
290                          *     3     |  1  |  0  |  1  |  0  |
291                          * ----------+-----+-----+-----+-----+
292                          */
293                         switch (rank) {
294                         case 0:
295                                 odt_mask_0 = 0x4;
296                                 odt_mask_1 = 0x5;
297                                 break;
298                         case 1:
299                                 odt_mask_0 = 0x8;
300                                 odt_mask_1 = 0xA;
301                                 break;
302                         case 2:
303                                 odt_mask_0 = 0x1;
304                                 odt_mask_1 = 0x5;
305                                 break;
306                         case 3:
307                                 odt_mask_0 = 0x2;
308                                 odt_mask_1 = 0xA;
309                                 break;
310                         }
311                 }
312         } else {
313                 odt_mask_0 = 0x0;
314                 odt_mask_1 = 0x0;
315         }
316
317         cs_and_odt_mask =
318                 (0xFF & ~(1 << rank)) |
319                 ((0xFF & odt_mask_0) << 8) |
320                 ((0xFF & odt_mask_1) << 16);
321         addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
322         writel(cs_and_odt_mask, SOCFPGA_SDR_ADDRESS + addr);
323 }
324
325 static void scc_mgr_initialize(void)
326 {
327         u32 addr = sdr_get_addr((u32 *)SCC_MGR_HHP_RFILE);
328
329         /*
330          * Clear register file for HPS
331          * 16 (2^4) is the size of the full register file in the scc mgr:
332          *      RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
333          * MEM_IF_READ_DQS_WIDTH - 1) + 1;
334          */
335         uint32_t i;
336         for (i = 0; i < 16; i++) {
337                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
338                            __func__, __LINE__, i);
339                 writel(0, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
340         }
341 }
342
343 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
344                                                 uint32_t delay)
345 {
346         u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
347
348         /* Load the setting in the SCC manager */
349         writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
350 }
351
352 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
353         uint32_t delay)
354 {
355         u32 addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
356
357         writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
358 }
359
360 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
361 {
362         u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_PHASE);
363
364         /* Load the setting in the SCC manager */
365         writel(phase, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
366 }
367
368 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
369                                                uint32_t phase)
370 {
371         uint32_t r;
372         uint32_t update_scan_chains;
373         uint32_t addr;
374
375         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
376              r += NUM_RANKS_PER_SHADOW_REG) {
377                 /*
378                  * USER although the h/w doesn't support different phases per
379                  * shadow register, for simplicity our scc manager modeling
380                  * keeps different phase settings per shadow reg, and it's
381                  * important for us to keep them in sync to match h/w.
382                  * for efficiency, the scan chain update should occur only
383                  * once to sr0.
384                  */
385                 update_scan_chains = (r == 0) ? 1 : 0;
386
387                 scc_mgr_set_dqs_en_phase(read_group, phase);
388
389                 if (update_scan_chains) {
390                         addr = (u32)&sdr_scc_mgr->dqs_ena;
391                         writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
392
393                         addr = (u32)&sdr_scc_mgr->update;
394                         writel(0, SOCFPGA_SDR_ADDRESS + addr);
395                 }
396         }
397 }
398
399 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
400                                                   uint32_t phase)
401 {
402         u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQDQS_OUT_PHASE);
403
404         /* Load the setting in the SCC manager */
405         writel(phase, SOCFPGA_SDR_ADDRESS + addr + (write_group << 2));
406 }
407
408 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
409                                                      uint32_t phase)
410 {
411         uint32_t r;
412         uint32_t update_scan_chains;
413         uint32_t addr;
414
415         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
416              r += NUM_RANKS_PER_SHADOW_REG) {
417                 /*
418                  * USER although the h/w doesn't support different phases per
419                  * shadow register, for simplicity our scc manager modeling
420                  * keeps different phase settings per shadow reg, and it's
421                  * important for us to keep them in sync to match h/w.
422                  * for efficiency, the scan chain update should occur only
423                  * once to sr0.
424                  */
425                 update_scan_chains = (r == 0) ? 1 : 0;
426
427                 scc_mgr_set_dqdqs_output_phase(write_group, phase);
428
429                 if (update_scan_chains) {
430                         addr = (u32)&sdr_scc_mgr->dqs_ena;
431                         writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
432
433                         addr = (u32)&sdr_scc_mgr->update;
434                         writel(0, SOCFPGA_SDR_ADDRESS + addr);
435                 }
436         }
437 }
438
439 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
440 {
441         uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_DELAY);
442
443         /* Load the setting in the SCC manager */
444         writel(delay + IO_DQS_EN_DELAY_OFFSET, SOCFPGA_SDR_ADDRESS + addr +
445                (read_group << 2));
446 }
447
448 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
449                                                uint32_t delay)
450 {
451         uint32_t r;
452         uint32_t addr;
453
454         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
455                 r += NUM_RANKS_PER_SHADOW_REG) {
456                 scc_mgr_set_dqs_en_delay(read_group, delay);
457
458                 addr = (u32)&sdr_scc_mgr->dqs_ena;
459                 writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
460                 /*
461                  * In shadow register mode, the T11 settings are stored in
462                  * registers in the core, which are updated by the DQS_ENA
463                  * signals. Not issuing the SCC_MGR_UPD command allows us to
464                  * save lots of rank switching overhead, by calling
465                  * select_shadow_regs_for_update with update_scan_chains
466                  * set to 0.
467                  */
468                 addr = (u32)&sdr_scc_mgr->update;
469                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
470         }
471         /*
472          * In shadow register mode, the T11 settings are stored in
473          * registers in the core, which are updated by the DQS_ENA
474          * signals. Not issuing the SCC_MGR_UPD command allows us to
475          * save lots of rank switching overhead, by calling
476          * select_shadow_regs_for_update with update_scan_chains
477          * set to 0.
478          */
479         addr = (u32)&sdr_scc_mgr->update;
480         writel(0, SOCFPGA_SDR_ADDRESS + addr);
481 }
482
483 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
484 {
485         uint32_t read_group;
486         uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_OCT_OUT1_DELAY);
487
488         /*
489          * Load the setting in the SCC manager
490          * Although OCT affects only write data, the OCT delay is controlled
491          * by the DQS logic block which is instantiated once per read group.
492          * For protocols where a write group consists of multiple read groups,
493          * the setting must be set multiple times.
494          */
495         for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
496              RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
497              read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
498              RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
499                 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
500 }
501
502 static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
503                                       uint32_t dq_in_group, uint32_t delay)
504 {
505         uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
506
507         /* Load the setting in the SCC manager */
508         writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
509 }
510
511 static void scc_mgr_set_dq_in_delay(uint32_t write_group,
512         uint32_t dq_in_group, uint32_t delay)
513 {
514         uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
515
516         /* Load the setting in the SCC manager */
517         writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
518 }
519
520 static void scc_mgr_set_hhp_extras(void)
521 {
522         /*
523          * Load the fixed setting in the SCC manager
524          * bits: 0:0 = 1'b1   - dqs bypass
525          * bits: 1:1 = 1'b1   - dq bypass
526          * bits: 4:2 = 3'b001   - rfifo_mode
527          * bits: 6:5 = 2'b01  - rfifo clock_select
528          * bits: 7:7 = 1'b0  - separate gating from ungating setting
529          * bits: 8:8 = 1'b0  - separate OE from Output delay setting
530          */
531         uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
532         uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_HHP_GLOBALS);
533
534         writel(value, SOCFPGA_SDR_ADDRESS + addr + SCC_MGR_HHP_EXTRAS_OFFSET);
535 }
536
537 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
538                                               uint32_t delay)
539 {
540         uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
541
542         /* Load the setting in the SCC manager */
543         writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
544 }
545
546 static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
547                                              uint32_t dm, uint32_t delay)
548 {
549         uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
550
551         /* Load the setting in the SCC manager */
552         writel(delay, SOCFPGA_SDR_ADDRESS + addr +
553                 ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
554 }
555
556 /*
557  * USER Zero all DQS config
558  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
559  */
560 static void scc_mgr_zero_all(void)
561 {
562         uint32_t i, r;
563         uint32_t addr;
564
565         /*
566          * USER Zero all DQS config settings, across all groups and all
567          * shadow registers
568          */
569         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
570              NUM_RANKS_PER_SHADOW_REG) {
571                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
572                         /*
573                          * The phases actually don't exist on a per-rank basis,
574                          * but there's no harm updating them several times, so
575                          * let's keep the code simple.
576                          */
577                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
578                         scc_mgr_set_dqs_en_phase(i, 0);
579                         scc_mgr_set_dqs_en_delay(i, 0);
580                 }
581
582                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
583                         scc_mgr_set_dqdqs_output_phase(i, 0);
584                         /* av/cv don't have out2 */
585                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
586                 }
587         }
588
589         /* multicast to all DQS group enables */
590         addr = (u32)&sdr_scc_mgr->dqs_ena;
591         writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
592
593         addr = (u32)&sdr_scc_mgr->update;
594         writel(0, SOCFPGA_SDR_ADDRESS + addr);
595 }
596
597 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
598 {
599         uint32_t addr;
600         /* mode = 0 : Do NOT bypass - Half Rate Mode */
601         /* mode = 1 : Bypass - Full Rate Mode */
602
603         /* only need to set once for all groups, pins, dq, dqs, dm */
604         if (write_group == 0) {
605                 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
606                            __LINE__);
607                 scc_mgr_set_hhp_extras();
608                 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
609                           __func__, __LINE__);
610         }
611         /* multicast to all DQ enables */
612         addr = (u32)&sdr_scc_mgr->dq_ena;
613         writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
614
615         addr = (u32)&sdr_scc_mgr->dm_ena;
616         writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
617
618         /* update current DQS IO enable */
619         addr = (u32)&sdr_scc_mgr->dqs_io_ena;
620         writel(0, SOCFPGA_SDR_ADDRESS + addr);
621
622         /* update the DQS logic */
623         addr = (u32)&sdr_scc_mgr->dqs_ena;
624         writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
625
626         /* hit update */
627         addr = (u32)&sdr_scc_mgr->update;
628         writel(0, SOCFPGA_SDR_ADDRESS + addr);
629 }
630
631 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
632                                int32_t out_only)
633 {
634         uint32_t i, r;
635         uint32_t addr;
636
637         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
638                 NUM_RANKS_PER_SHADOW_REG) {
639                 /* Zero all DQ config settings */
640                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
641                         scc_mgr_set_dq_out1_delay(write_group, i, 0);
642                         if (!out_only)
643                                 scc_mgr_set_dq_in_delay(write_group, i, 0);
644                 }
645
646                 /* multicast to all DQ enables */
647                 addr = (u32)&sdr_scc_mgr->dq_ena;
648                 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
649
650                 /* Zero all DM config settings */
651                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
652                         scc_mgr_set_dm_out1_delay(write_group, i, 0);
653                 }
654
655                 /* multicast to all DM enables */
656                 addr = (u32)&sdr_scc_mgr->dm_ena;
657                 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
658
659                 /* zero all DQS io settings */
660                 if (!out_only)
661                         scc_mgr_set_dqs_io_in_delay(write_group, 0);
662                 /* av/cv don't have out2 */
663                 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
664                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
665                 scc_mgr_load_dqs_for_write_group(write_group);
666
667                 /* multicast to all DQS IO enables (only 1) */
668                 addr = (u32)&sdr_scc_mgr->dqs_io_ena;
669                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
670
671                 /* hit update to zero everything */
672                 addr = (u32)&sdr_scc_mgr->update;
673                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
674         }
675 }
676
677 /* load up dqs config settings */
678 static void scc_mgr_load_dqs(uint32_t dqs)
679 {
680         uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
681
682         writel(dqs, SOCFPGA_SDR_ADDRESS + addr);
683 }
684
685 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
686 {
687         uint32_t read_group;
688         uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
689         /*
690          * Although OCT affects only write data, the OCT delay is controlled
691          * by the DQS logic block which is instantiated once per read group.
692          * For protocols where a write group consists of multiple read groups,
693          * the setting must be scanned multiple times.
694          */
695         for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
696              RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
697              read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
698              RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
699                 writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
700 }
701
702 /* load up dqs io config settings */
703 static void scc_mgr_load_dqs_io(void)
704 {
705         uint32_t addr = (u32)&sdr_scc_mgr->dqs_io_ena;
706
707         writel(0, SOCFPGA_SDR_ADDRESS + addr);
708 }
709
710 /* load up dq config settings */
711 static void scc_mgr_load_dq(uint32_t dq_in_group)
712 {
713         uint32_t addr = (u32)&sdr_scc_mgr->dq_ena;
714
715         writel(dq_in_group, SOCFPGA_SDR_ADDRESS + addr);
716 }
717
718 /* load up dm config settings */
719 static void scc_mgr_load_dm(uint32_t dm)
720 {
721         uint32_t addr = (u32)&sdr_scc_mgr->dm_ena;
722
723         writel(dm, SOCFPGA_SDR_ADDRESS + addr);
724 }
725
726 /*
727  * apply and load a particular input delay for the DQ pins in a group
728  * group_bgn is the index of the first dq pin (in the write group)
729  */
730 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
731                                             uint32_t group_bgn, uint32_t delay)
732 {
733         uint32_t i, p;
734
735         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
736                 scc_mgr_set_dq_in_delay(write_group, p, delay);
737                 scc_mgr_load_dq(p);
738         }
739 }
740
741 /* apply and load a particular output delay for the DQ pins in a group */
742 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
743                                               uint32_t group_bgn,
744                                               uint32_t delay1)
745 {
746         uint32_t i, p;
747
748         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
749                 scc_mgr_set_dq_out1_delay(write_group, i, delay1);
750                 scc_mgr_load_dq(i);
751         }
752 }
753
754 /* apply and load a particular output delay for the DM pins in a group */
755 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
756                                               uint32_t delay1)
757 {
758         uint32_t i;
759
760         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
761                 scc_mgr_set_dm_out1_delay(write_group, i, delay1);
762                 scc_mgr_load_dm(i);
763         }
764 }
765
766
767 /* apply and load delay on both DQS and OCT out1 */
768 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
769                                                     uint32_t delay)
770 {
771         scc_mgr_set_dqs_out1_delay(write_group, delay);
772         scc_mgr_load_dqs_io();
773
774         scc_mgr_set_oct_out1_delay(write_group, delay);
775         scc_mgr_load_dqs_for_write_group(write_group);
776 }
777
778 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
779 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
780                                                   uint32_t group_bgn,
781                                                   uint32_t delay)
782 {
783         uint32_t i, p, new_delay;
784
785         /* dq shift */
786         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
787                 new_delay = READ_SCC_DQ_OUT2_DELAY;
788                 new_delay += delay;
789
790                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
791                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
792                                    %u > %lu => %lu", __func__, __LINE__,
793                                    write_group, group_bgn, delay, i, p, new_delay,
794                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
795                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
796                         new_delay = IO_IO_OUT2_DELAY_MAX;
797                 }
798
799                 scc_mgr_load_dq(i);
800         }
801
802         /* dm shift */
803         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
804                 new_delay = READ_SCC_DM_IO_OUT2_DELAY;
805                 new_delay += delay;
806
807                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
808                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
809                                    %u > %lu => %lu\n",  __func__, __LINE__,
810                                    write_group, group_bgn, delay, i, new_delay,
811                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
812                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
813                         new_delay = IO_IO_OUT2_DELAY_MAX;
814                 }
815
816                 scc_mgr_load_dm(i);
817         }
818
819         /* dqs shift */
820         new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
821         new_delay += delay;
822
823         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
824                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
825                            " adding %u to OUT1\n", __func__, __LINE__,
826                            write_group, group_bgn, delay, new_delay,
827                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
828                            new_delay - IO_IO_OUT2_DELAY_MAX);
829                 scc_mgr_set_dqs_out1_delay(write_group, new_delay -
830                                            IO_IO_OUT2_DELAY_MAX);
831                 new_delay = IO_IO_OUT2_DELAY_MAX;
832         }
833
834         scc_mgr_load_dqs_io();
835
836         /* oct shift */
837         new_delay = READ_SCC_OCT_OUT2_DELAY;
838         new_delay += delay;
839
840         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
841                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
842                            " adding %u to OUT1\n", __func__, __LINE__,
843                            write_group, group_bgn, delay, new_delay,
844                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
845                            new_delay - IO_IO_OUT2_DELAY_MAX);
846                 scc_mgr_set_oct_out1_delay(write_group, new_delay -
847                                            IO_IO_OUT2_DELAY_MAX);
848                 new_delay = IO_IO_OUT2_DELAY_MAX;
849         }
850
851         scc_mgr_load_dqs_for_write_group(write_group);
852 }
853
854 /*
855  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
856  * and to all ranks
857  */
858 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
859         uint32_t write_group, uint32_t group_bgn, uint32_t delay)
860 {
861         uint32_t r;
862         uint32_t addr = (u32)&sdr_scc_mgr->update;
863
864         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
865                 r += NUM_RANKS_PER_SHADOW_REG) {
866                 scc_mgr_apply_group_all_out_delay_add(write_group,
867                                                       group_bgn, delay);
868                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
869         }
870 }
871
872 /* optimization used to recover some slots in ddr3 inst_rom */
873 /* could be applied to other protocols if we wanted to */
874 static void set_jump_as_return(void)
875 {
876         uint32_t addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
877
878         /*
879          * to save space, we replace return with jump to special shared
880          * RETURN instruction so we set the counter to large value so that
881          * we always jump
882          */
883         writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
884         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
885         writel(RW_MGR_RETURN, SOCFPGA_SDR_ADDRESS + addr);
886 }
887
888 /*
889  * should always use constants as argument to ensure all computations are
890  * performed at compile time
891  */
892 static void delay_for_n_mem_clocks(const uint32_t clocks)
893 {
894         uint32_t afi_clocks;
895         uint8_t inner = 0;
896         uint8_t outer = 0;
897         uint16_t c_loop = 0;
898         uint32_t addr;
899
900         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
901
902
903         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
904         /* scale (rounding up) to get afi clocks */
905
906         /*
907          * Note, we don't bother accounting for being off a little bit
908          * because of a few extra instructions in outer loops
909          * Note, the loops have a test at the end, and do the test before
910          * the decrement, and so always perform the loop
911          * 1 time more than the counter value
912          */
913         if (afi_clocks == 0) {
914                 ;
915         } else if (afi_clocks <= 0x100) {
916                 inner = afi_clocks-1;
917                 outer = 0;
918                 c_loop = 0;
919         } else if (afi_clocks <= 0x10000) {
920                 inner = 0xff;
921                 outer = (afi_clocks-1) >> 8;
922                 c_loop = 0;
923         } else {
924                 inner = 0xff;
925                 outer = 0xff;
926                 c_loop = (afi_clocks-1) >> 16;
927         }
928
929         /*
930          * rom instructions are structured as follows:
931          *
932          *    IDLE_LOOP2: jnz cntr0, TARGET_A
933          *    IDLE_LOOP1: jnz cntr1, TARGET_B
934          *                return
935          *
936          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
937          * TARGET_B is set to IDLE_LOOP2 as well
938          *
939          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
940          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
941          *
942          * a little confusing, but it helps save precious space in the inst_rom
943          * and sequencer rom and keeps the delays more accurate and reduces
944          * overhead
945          */
946         if (afi_clocks <= 0x100) {
947                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
948                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
949
950                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
951                 writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
952
953                 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
954                 writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
955         } else {
956                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
957                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
958
959                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
960                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), SOCFPGA_SDR_ADDRESS + addr);
961
962                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
963                 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
964
965                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
966                 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
967
968                 /* hack to get around compiler not being smart enough */
969                 if (afi_clocks <= 0x10000) {
970                         /* only need to run once */
971                         addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
972                         writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
973                 } else {
974                         do {
975                                 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
976                                 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
977                         } while (c_loop-- != 0);
978                 }
979         }
980         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
981 }
982
983 static void rw_mgr_mem_initialize(void)
984 {
985         uint32_t r;
986         uint32_t addr;
987
988         debug("%s:%d\n", __func__, __LINE__);
989
990         /* The reset / cke part of initialization is broadcasted to all ranks */
991         addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
992         writel(RW_MGR_RANK_ALL, SOCFPGA_SDR_ADDRESS + addr);
993
994         /*
995          * Here's how you load register for a loop
996          * Counters are located @ 0x800
997          * Jump address are located @ 0xC00
998          * For both, registers 0 to 3 are selected using bits 3 and 2, like
999          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
1000          * I know this ain't pretty, but Avalon bus throws away the 2 least
1001          * significant bits
1002          */
1003
1004         /* start with memory RESET activated */
1005
1006         /* tINIT = 200us */
1007
1008         /*
1009          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
1010          * If a and b are the number of iteration in 2 nested loops
1011          * it takes the following number of cycles to complete the operation:
1012          * number_of_cycles = ((2 + n) * a + 2) * b
1013          * where n is the number of instruction in the inner loop
1014          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
1015          * b = 6A
1016          */
1017
1018         /* Load counters */
1019         addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
1020         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
1021                SOCFPGA_SDR_ADDRESS + addr);
1022         addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
1023         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
1024                SOCFPGA_SDR_ADDRESS + addr);
1025         addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
1026         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
1027                SOCFPGA_SDR_ADDRESS + addr);
1028
1029         /* Load jump address */
1030         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
1031         writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1032
1033         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
1034         writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1035
1036         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
1037         writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1038
1039         /* Execute count instruction */
1040         addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1041         writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1042
1043         /* indicate that memory is stable */
1044         addr = (u32)&phy_mgr_cfg->reset_mem_stbl;
1045         writel(1, SOCFPGA_SDR_ADDRESS + addr);
1046
1047         /*
1048          * transition the RESET to high
1049          * Wait for 500us
1050          */
1051
1052         /*
1053          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1054          * If a and b are the number of iteration in 2 nested loops
1055          * it takes the following number of cycles to complete the operation
1056          * number_of_cycles = ((2 + n) * a + 2) * b
1057          * where n is the number of instruction in the inner loop
1058          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1059          * b = FF
1060          */
1061
1062         /* Load counters */
1063         addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
1064         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
1065                SOCFPGA_SDR_ADDRESS + addr);
1066         addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
1067         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
1068                SOCFPGA_SDR_ADDRESS + addr);
1069         addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
1070         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
1071                SOCFPGA_SDR_ADDRESS + addr);
1072
1073         /* Load jump address */
1074         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
1075         writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1076         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
1077         writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1078         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
1079         writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1080
1081         addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1082         writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1083
1084         /* bring up clock enable */
1085
1086         /* tXRP < 250 ck cycles */
1087         delay_for_n_mem_clocks(250);
1088
1089         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1090                 if (param->skip_ranks[r]) {
1091                         /* request to skip the rank */
1092                         continue;
1093                 }
1094
1095                 /* set rank */
1096                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1097
1098                 /*
1099                  * USER Use Mirror-ed commands for odd ranks if address
1100                  * mirrorring is on
1101                  */
1102                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1103                         set_jump_as_return();
1104                         addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1105                         writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1106                         delay_for_n_mem_clocks(4);
1107                         set_jump_as_return();
1108                         writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1109                         delay_for_n_mem_clocks(4);
1110                         set_jump_as_return();
1111                         writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1112                         delay_for_n_mem_clocks(4);
1113                         set_jump_as_return();
1114                         writel(RW_MGR_MRS0_DLL_RESET_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1115                 } else {
1116                         set_jump_as_return();
1117                         addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1118                         writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
1119                         delay_for_n_mem_clocks(4);
1120                         set_jump_as_return();
1121                         writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
1122                         delay_for_n_mem_clocks(4);
1123                         set_jump_as_return();
1124                         writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
1125                         set_jump_as_return();
1126                         writel(RW_MGR_MRS0_DLL_RESET, SOCFPGA_SDR_ADDRESS + addr);
1127                 }
1128                 set_jump_as_return();
1129                 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1130                 writel(RW_MGR_ZQCL, SOCFPGA_SDR_ADDRESS + addr);
1131
1132                 /* tZQinit = tDLLK = 512 ck cycles */
1133                 delay_for_n_mem_clocks(512);
1134         }
1135 }
1136
1137 /*
1138  * At the end of calibration we have to program the user settings in, and
1139  * USER  hand off the memory to the user.
1140  */
1141 static void rw_mgr_mem_handoff(void)
1142 {
1143         uint32_t r;
1144         uint32_t addr;
1145
1146         debug("%s:%d\n", __func__, __LINE__);
1147         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1148                 if (param->skip_ranks[r])
1149                         /* request to skip the rank */
1150                         continue;
1151                 /* set rank */
1152                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1153
1154                 /* precharge all banks ... */
1155                 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1156                 writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
1157
1158                 /* load up MR settings specified by user */
1159
1160                 /*
1161                  * Use Mirror-ed commands for odd ranks if address
1162                  * mirrorring is on
1163                  */
1164                 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1165                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1166                         set_jump_as_return();
1167                         writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1168                         delay_for_n_mem_clocks(4);
1169                         set_jump_as_return();
1170                         writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1171                         delay_for_n_mem_clocks(4);
1172                         set_jump_as_return();
1173                         writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1174                         delay_for_n_mem_clocks(4);
1175                         set_jump_as_return();
1176                         writel(RW_MGR_MRS0_USER_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1177                 } else {
1178                         set_jump_as_return();
1179                         writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
1180                         delay_for_n_mem_clocks(4);
1181                         set_jump_as_return();
1182                         writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
1183                         delay_for_n_mem_clocks(4);
1184                         set_jump_as_return();
1185                         writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
1186                         delay_for_n_mem_clocks(4);
1187                         set_jump_as_return();
1188                         writel(RW_MGR_MRS0_USER, SOCFPGA_SDR_ADDRESS + addr);
1189                 }
1190                 /*
1191                  * USER  need to wait tMOD (12CK or 15ns) time before issuing
1192                  * other commands, but we will have plenty of NIOS cycles before
1193                  * actual handoff so its okay.
1194                  */
1195         }
1196 }
1197
1198 /*
1199  * performs a guaranteed read on the patterns we are going to use during a
1200  * read test to ensure memory works
1201  */
1202 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1203         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1204         uint32_t all_ranks)
1205 {
1206         uint32_t r, vg;
1207         uint32_t correct_mask_vg;
1208         uint32_t tmp_bit_chk;
1209         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1210                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1211         uint32_t addr;
1212         uint32_t base_rw_mgr;
1213
1214         *bit_chk = param->read_correct_mask;
1215         correct_mask_vg = param->read_correct_mask_vg;
1216
1217         for (r = rank_bgn; r < rank_end; r++) {
1218                 if (param->skip_ranks[r])
1219                         /* request to skip the rank */
1220                         continue;
1221
1222                 /* set rank */
1223                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1224
1225                 /* Load up a constant bursts of read commands */
1226                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
1227                 writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1228                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
1229                 writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr);
1230
1231                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
1232                 writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1233                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
1234                 writel(RW_MGR_GUARANTEED_READ_CONT, SOCFPGA_SDR_ADDRESS + addr);
1235
1236                 tmp_bit_chk = 0;
1237                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1238                         /* reset the fifos to get pointers to known state */
1239
1240                         addr = (u32)&phy_mgr_cmd->fifo_reset;
1241                         writel(0, SOCFPGA_SDR_ADDRESS + addr);
1242                         addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
1243                         writel(0, SOCFPGA_SDR_ADDRESS + addr);
1244
1245                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1246                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1247
1248                         addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1249                         writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr +
1250                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1251                                 vg) << 2));
1252
1253                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
1254                         base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
1255                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1256
1257                         if (vg == 0)
1258                                 break;
1259                 }
1260                 *bit_chk &= tmp_bit_chk;
1261         }
1262
1263         addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1264         writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
1265
1266         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1267         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1268                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1269                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1270         return *bit_chk == param->read_correct_mask;
1271 }
1272
1273 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1274         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1275 {
1276         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1277                 num_tries, bit_chk, 1);
1278 }
1279
1280 /* load up the patterns we are going to use during a read test */
1281 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1282         uint32_t all_ranks)
1283 {
1284         uint32_t r;
1285         uint32_t addr;
1286         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1287                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1288
1289         debug("%s:%d\n", __func__, __LINE__);
1290         for (r = rank_bgn; r < rank_end; r++) {
1291                 if (param->skip_ranks[r])
1292                         /* request to skip the rank */
1293                         continue;
1294
1295                 /* set rank */
1296                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1297
1298                 /* Load up a constant bursts */
1299                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
1300                 writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1301
1302                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
1303                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, SOCFPGA_SDR_ADDRESS + addr);
1304
1305                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
1306                 writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1307
1308                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
1309                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
1310
1311                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
1312                 writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
1313
1314                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
1315                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
1316
1317                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr3;
1318                 writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
1319
1320                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
1321                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, SOCFPGA_SDR_ADDRESS + addr);
1322
1323                 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1324                 writel(RW_MGR_GUARANTEED_WRITE, SOCFPGA_SDR_ADDRESS + addr);
1325         }
1326
1327         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1328 }
1329
1330 /*
1331  * try a read and see if it returns correct data back. has dummy reads
1332  * inserted into the mix used to align dqs enable. has more thorough checks
1333  * than the regular read test.
1334  */
1335 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1336         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1337         uint32_t all_groups, uint32_t all_ranks)
1338 {
1339         uint32_t r, vg;
1340         uint32_t correct_mask_vg;
1341         uint32_t tmp_bit_chk;
1342         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1343                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1344         uint32_t addr;
1345         uint32_t base_rw_mgr;
1346
1347         *bit_chk = param->read_correct_mask;
1348         correct_mask_vg = param->read_correct_mask_vg;
1349
1350         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1351                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1352
1353         for (r = rank_bgn; r < rank_end; r++) {
1354                 if (param->skip_ranks[r])
1355                         /* request to skip the rank */
1356                         continue;
1357
1358                 /* set rank */
1359                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1360
1361                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
1362                 writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
1363
1364                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
1365                 writel(RW_MGR_READ_B2B_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
1366
1367                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
1368                 writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
1369                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
1370                 writel(RW_MGR_READ_B2B_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
1371
1372                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
1373                 if (quick_read_mode)
1374                         writel(0x1, SOCFPGA_SDR_ADDRESS + addr);
1375                         /* need at least two (1+1) reads to capture failures */
1376                 else if (all_groups)
1377                         writel(0x06, SOCFPGA_SDR_ADDRESS + addr);
1378                 else
1379                         writel(0x32, SOCFPGA_SDR_ADDRESS + addr);
1380
1381                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
1382                 writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
1383                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr3;
1384                 if (all_groups)
1385                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1386                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1387                                SOCFPGA_SDR_ADDRESS + addr);
1388                 else
1389                         writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
1390
1391                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
1392                 writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
1393
1394                 tmp_bit_chk = 0;
1395                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1396                         /* reset the fifos to get pointers to known state */
1397                         addr = (u32)&phy_mgr_cmd->fifo_reset;
1398                         writel(0, SOCFPGA_SDR_ADDRESS + addr);
1399                         addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
1400                         writel(0, SOCFPGA_SDR_ADDRESS + addr);
1401
1402                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1403                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1404
1405                         addr = sdr_get_addr((u32 *)(all_groups ? RW_MGR_RUN_ALL_GROUPS :
1406                                             RW_MGR_RUN_SINGLE_GROUP));
1407                         writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr +
1408                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1409                                vg) << 2));
1410
1411                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
1412                         base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
1413                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1414
1415                         if (vg == 0)
1416                                 break;
1417                 }
1418                 *bit_chk &= tmp_bit_chk;
1419         }
1420
1421         addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1422         writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
1423
1424         if (all_correct) {
1425                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1426                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1427                            (%u == %u) => %lu", __func__, __LINE__, group,
1428                            all_groups, *bit_chk, param->read_correct_mask,
1429                            (long unsigned int)(*bit_chk ==
1430                            param->read_correct_mask));
1431                 return *bit_chk == param->read_correct_mask;
1432         } else  {
1433                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1434                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1435                            (%u != %lu) => %lu\n", __func__, __LINE__,
1436                            group, all_groups, *bit_chk, (long unsigned int)0,
1437                            (long unsigned int)(*bit_chk != 0x00));
1438                 return *bit_chk != 0x00;
1439         }
1440 }
1441
1442 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1443         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1444         uint32_t all_groups)
1445 {
1446         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1447                                               bit_chk, all_groups, 1);
1448 }
1449
1450 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1451 {
1452         uint32_t addr = (u32)&phy_mgr_cmd->inc_vfifo_hard_phy;
1453
1454         writel(grp, SOCFPGA_SDR_ADDRESS + addr);
1455         (*v)++;
1456 }
1457
1458 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1459 {
1460         uint32_t i;
1461
1462         for (i = 0; i < VFIFO_SIZE-1; i++)
1463                 rw_mgr_incr_vfifo(grp, v);
1464 }
1465
1466 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1467 {
1468         uint32_t  v;
1469         uint32_t fail_cnt = 0;
1470         uint32_t test_status;
1471
1472         for (v = 0; v < VFIFO_SIZE; ) {
1473                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1474                            __func__, __LINE__, v);
1475                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1476                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1477                 if (!test_status) {
1478                         fail_cnt++;
1479
1480                         if (fail_cnt == 2)
1481                                 break;
1482                 }
1483
1484                 /* fiddle with FIFO */
1485                 rw_mgr_incr_vfifo(grp, &v);
1486         }
1487
1488         if (v >= VFIFO_SIZE) {
1489                 /* no failing read found!! Something must have gone wrong */
1490                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1491                            __func__, __LINE__);
1492                 return 0;
1493         } else {
1494                 return v;
1495         }
1496 }
1497
1498 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1499                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1500                               uint32_t *v, uint32_t *d, uint32_t *p,
1501                               uint32_t *i, uint32_t *max_working_cnt)
1502 {
1503         uint32_t found_begin = 0;
1504         uint32_t tmp_delay = 0;
1505         uint32_t test_status;
1506
1507         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1508                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1509                 *work_bgn = tmp_delay;
1510                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1511
1512                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1513                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1514                                 IO_DELAY_PER_OPA_TAP) {
1515                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1516
1517                                 test_status =
1518                                 rw_mgr_mem_calibrate_read_test_all_ranks
1519                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1520
1521                                 if (test_status) {
1522                                         *max_working_cnt = 1;
1523                                         found_begin = 1;
1524                                         break;
1525                                 }
1526                         }
1527
1528                         if (found_begin)
1529                                 break;
1530
1531                         if (*p > IO_DQS_EN_PHASE_MAX)
1532                                 /* fiddle with FIFO */
1533                                 rw_mgr_incr_vfifo(*grp, v);
1534                 }
1535
1536                 if (found_begin)
1537                         break;
1538         }
1539
1540         if (*i >= VFIFO_SIZE) {
1541                 /* cannot find working solution */
1542                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1543                            ptap/dtap\n", __func__, __LINE__);
1544                 return 0;
1545         } else {
1546                 return 1;
1547         }
1548 }
1549
1550 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1551                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1552                              uint32_t *p, uint32_t *max_working_cnt)
1553 {
1554         uint32_t found_begin = 0;
1555         uint32_t tmp_delay;
1556
1557         /* Special case code for backing up a phase */
1558         if (*p == 0) {
1559                 *p = IO_DQS_EN_PHASE_MAX;
1560                 rw_mgr_decr_vfifo(*grp, v);
1561         } else {
1562                 (*p)--;
1563         }
1564         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1565         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1566
1567         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1568                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1569                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1570
1571                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1572                                                              PASS_ONE_BIT,
1573                                                              bit_chk, 0)) {
1574                         found_begin = 1;
1575                         *work_bgn = tmp_delay;
1576                         break;
1577                 }
1578         }
1579
1580         /* We have found a working dtap before the ptap found above */
1581         if (found_begin == 1)
1582                 (*max_working_cnt)++;
1583
1584         /*
1585          * Restore VFIFO to old state before we decremented it
1586          * (if needed).
1587          */
1588         (*p)++;
1589         if (*p > IO_DQS_EN_PHASE_MAX) {
1590                 *p = 0;
1591                 rw_mgr_incr_vfifo(*grp, v);
1592         }
1593
1594         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1595 }
1596
1597 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1598                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1599                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1600                              uint32_t *work_end)
1601 {
1602         uint32_t found_end = 0;
1603
1604         (*p)++;
1605         *work_end += IO_DELAY_PER_OPA_TAP;
1606         if (*p > IO_DQS_EN_PHASE_MAX) {
1607                 /* fiddle with FIFO */
1608                 *p = 0;
1609                 rw_mgr_incr_vfifo(*grp, v);
1610         }
1611
1612         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1613                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1614                         += IO_DELAY_PER_OPA_TAP) {
1615                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1616
1617                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1618                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1619                                 found_end = 1;
1620                                 break;
1621                         } else {
1622                                 (*max_working_cnt)++;
1623                         }
1624                 }
1625
1626                 if (found_end)
1627                         break;
1628
1629                 if (*p > IO_DQS_EN_PHASE_MAX) {
1630                         /* fiddle with FIFO */
1631                         rw_mgr_incr_vfifo(*grp, v);
1632                         *p = 0;
1633                 }
1634         }
1635
1636         if (*i >= VFIFO_SIZE + 1) {
1637                 /* cannot see edge of failing read */
1638                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1639                            failed\n", __func__, __LINE__);
1640                 return 0;
1641         } else {
1642                 return 1;
1643         }
1644 }
1645
1646 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1647                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1648                                   uint32_t *p, uint32_t *work_mid,
1649                                   uint32_t *work_end)
1650 {
1651         int i;
1652         int tmp_delay = 0;
1653
1654         *work_mid = (*work_bgn + *work_end) / 2;
1655
1656         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1657                    *work_bgn, *work_end, *work_mid);
1658         /* Get the middle delay to be less than a VFIFO delay */
1659         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1660                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1661                 ;
1662         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1663         while (*work_mid > tmp_delay)
1664                 *work_mid -= tmp_delay;
1665         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1666
1667         tmp_delay = 0;
1668         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1669                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1670                 ;
1671         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1672         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1673         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1674                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1675                 ;
1676         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1677
1678         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1679         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1680
1681         /*
1682          * push vfifo until we can successfully calibrate. We can do this
1683          * because the largest possible margin in 1 VFIFO cycle.
1684          */
1685         for (i = 0; i < VFIFO_SIZE; i++) {
1686                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1687                            *v);
1688                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1689                                                              PASS_ONE_BIT,
1690                                                              bit_chk, 0)) {
1691                         break;
1692                 }
1693
1694                 /* fiddle with FIFO */
1695                 rw_mgr_incr_vfifo(*grp, v);
1696         }
1697
1698         if (i >= VFIFO_SIZE) {
1699                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1700                            failed\n", __func__, __LINE__);
1701                 return 0;
1702         } else {
1703                 return 1;
1704         }
1705 }
1706
1707 /* find a good dqs enable to use */
1708 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1709 {
1710         uint32_t v, d, p, i;
1711         uint32_t max_working_cnt;
1712         uint32_t bit_chk;
1713         uint32_t dtaps_per_ptap;
1714         uint32_t work_bgn, work_mid, work_end;
1715         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1716         uint32_t addr;
1717
1718         debug("%s:%d %u\n", __func__, __LINE__, grp);
1719
1720         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1721
1722         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1723         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1724
1725         /* ************************************************************** */
1726         /* * Step 0 : Determine number of delay taps for each phase tap * */
1727         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1728
1729         /* ********************************************************* */
1730         /* * Step 1 : First push vfifo until we get a failing read * */
1731         v = find_vfifo_read(grp, &bit_chk);
1732
1733         max_working_cnt = 0;
1734
1735         /* ******************************************************** */
1736         /* * step 2: find first working phase, increment in ptaps * */
1737         work_bgn = 0;
1738         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1739                                 &p, &i, &max_working_cnt) == 0)
1740                 return 0;
1741
1742         work_end = work_bgn;
1743
1744         /*
1745          * If d is 0 then the working window covers a phase tap and
1746          * we can follow the old procedure otherwise, we've found the beginning,
1747          * and we need to increment the dtaps until we find the end.
1748          */
1749         if (d == 0) {
1750                 /* ********************************************************* */
1751                 /* * step 3a: if we have room, back off by one and
1752                 increment in dtaps * */
1753
1754                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1755                                  &max_working_cnt);
1756
1757                 /* ********************************************************* */
1758                 /* * step 4a: go forward from working phase to non working
1759                 phase, increment in ptaps * */
1760                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1761                                          &i, &max_working_cnt, &work_end) == 0)
1762                         return 0;
1763
1764                 /* ********************************************************* */
1765                 /* * step 5a:  back off one from last, increment in dtaps  * */
1766
1767                 /* Special case code for backing up a phase */
1768                 if (p == 0) {
1769                         p = IO_DQS_EN_PHASE_MAX;
1770                         rw_mgr_decr_vfifo(grp, &v);
1771                 } else {
1772                         p = p - 1;
1773                 }
1774
1775                 work_end -= IO_DELAY_PER_OPA_TAP;
1776                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1777
1778                 /* * The actual increment of dtaps is done outside of
1779                 the if/else loop to share code */
1780                 d = 0;
1781
1782                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1783                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1784                            v, p);
1785         } else {
1786                 /* ******************************************************* */
1787                 /* * step 3-5b:  Find the right edge of the window using
1788                 delay taps   * */
1789                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1790                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1791                            v, p, d, work_bgn);
1792
1793                 work_end = work_bgn;
1794
1795                 /* * The actual increment of dtaps is done outside of the
1796                 if/else loop to share code */
1797
1798                 /* Only here to counterbalance a subtract later on which is
1799                 not needed if this branch of the algorithm is taken */
1800                 max_working_cnt++;
1801         }
1802
1803         /* The dtap increment to find the failing edge is done here */
1804         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1805                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1806                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1807                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1808                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1809
1810                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1811                                                                       PASS_ONE_BIT,
1812                                                                       &bit_chk, 0)) {
1813                                 break;
1814                         }
1815         }
1816
1817         /* Go back to working dtap */
1818         if (d != 0)
1819                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1820
1821         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1822                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1823                    v, p, d-1, work_end);
1824
1825         if (work_end < work_bgn) {
1826                 /* nil range */
1827                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1828                            failed\n", __func__, __LINE__);
1829                 return 0;
1830         }
1831
1832         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1833                    __func__, __LINE__, work_bgn, work_end);
1834
1835         /* *************************************************************** */
1836         /*
1837          * * We need to calculate the number of dtaps that equal a ptap
1838          * * To do that we'll back up a ptap and re-find the edge of the
1839          * * window using dtaps
1840          */
1841
1842         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1843                    for tracking\n", __func__, __LINE__);
1844
1845         /* Special case code for backing up a phase */
1846         if (p == 0) {
1847                 p = IO_DQS_EN_PHASE_MAX;
1848                 rw_mgr_decr_vfifo(grp, &v);
1849                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1850                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1851                            v, p);
1852         } else {
1853                 p = p - 1;
1854                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1855                            phase only: v=%u p=%u", __func__, __LINE__,
1856                            v, p);
1857         }
1858
1859         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1860
1861         /*
1862          * Increase dtap until we first see a passing read (in case the
1863          * window is smaller than a ptap),
1864          * and then a failing read to mark the edge of the window again
1865          */
1866
1867         /* Find a passing read */
1868         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1869                    __func__, __LINE__);
1870         found_passing_read = 0;
1871         found_failing_read = 0;
1872         initial_failing_dtap = d;
1873         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1874                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1875                            read d=%u\n", __func__, __LINE__, d);
1876                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1877
1878                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1879                                                              PASS_ONE_BIT,
1880                                                              &bit_chk, 0)) {
1881                         found_passing_read = 1;
1882                         break;
1883                 }
1884         }
1885
1886         if (found_passing_read) {
1887                 /* Find a failing read */
1888                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1889                            read\n", __func__, __LINE__);
1890                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1891                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1892                                    testing read d=%u\n", __func__, __LINE__, d);
1893                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1894
1895                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1896                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1897                                 found_failing_read = 1;
1898                                 break;
1899                         }
1900                 }
1901         } else {
1902                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1903                            calculate dtaps", __func__, __LINE__);
1904                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1905         }
1906
1907         /*
1908          * The dynamically calculated dtaps_per_ptap is only valid if we
1909          * found a passing/failing read. If we didn't, it means d hit the max
1910          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1911          * statically calculated value.
1912          */
1913         if (found_passing_read && found_failing_read)
1914                 dtaps_per_ptap = d - initial_failing_dtap;
1915
1916         addr = (u32)&sdr_reg_file->dtaps_per_ptap;
1917         writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
1918         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1919                    - %u = %u",  __func__, __LINE__, d,
1920                    initial_failing_dtap, dtaps_per_ptap);
1921
1922         /* ******************************************** */
1923         /* * step 6:  Find the centre of the window   * */
1924         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1925                                    &work_mid, &work_end) == 0)
1926                 return 0;
1927
1928         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1929                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1930                    v, p-1, d);
1931         return 1;
1932 }
1933
1934 /*
1935  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1936  * dq_in_delay values
1937  */
1938 static uint32_t
1939 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1940 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1941 {
1942         uint32_t found;
1943         uint32_t i;
1944         uint32_t p;
1945         uint32_t d;
1946         uint32_t r;
1947         uint32_t addr;
1948
1949         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1950                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1951                 /* we start at zero, so have one less dq to devide among */
1952
1953         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1954               test_bgn);
1955
1956         /* try different dq_in_delays since the dq path is shorter than dqs */
1957
1958         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1959              r += NUM_RANKS_PER_SHADOW_REG) {
1960                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1961                         i++, p++, d += delay_step) {
1962                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1963                                    vfifo_find_dqs_", __func__, __LINE__);
1964                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1965                                write_group, read_group);
1966                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1967                         scc_mgr_set_dq_in_delay(write_group, p, d);
1968                         scc_mgr_load_dq(p);
1969                 }
1970                 addr = (u32)&sdr_scc_mgr->update;
1971                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
1972         }
1973
1974         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1975
1976         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1977                    en_phase_sweep_dq", __func__, __LINE__);
1978         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1979                    chain to zero\n", write_group, read_group, found);
1980
1981         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1982              r += NUM_RANKS_PER_SHADOW_REG) {
1983                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1984                         i++, p++) {
1985                         scc_mgr_set_dq_in_delay(write_group, p, 0);
1986                         scc_mgr_load_dq(p);
1987                 }
1988                 addr = (u32)&sdr_scc_mgr->update;
1989                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
1990         }
1991
1992         return found;
1993 }
1994
1995 /* per-bit deskew DQ and center */
1996 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1997         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1998         uint32_t use_read_test, uint32_t update_fom)
1999 {
2000         uint32_t i, p, d, min_index;
2001         /*
2002          * Store these as signed since there are comparisons with
2003          * signed numbers.
2004          */
2005         uint32_t bit_chk;
2006         uint32_t sticky_bit_chk;
2007         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2008         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2009         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
2010         int32_t mid;
2011         int32_t orig_mid_min, mid_min;
2012         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
2013                 final_dqs_en;
2014         int32_t dq_margin, dqs_margin;
2015         uint32_t stop;
2016         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
2017         uint32_t addr;
2018
2019         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
2020
2021         addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
2022         start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
2023         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2024                 start_dqs_en = readl(SOCFPGA_SDR_ADDRESS + addr + ((read_group << 2)
2025                                      - IO_DQS_EN_DELAY_OFFSET));
2026
2027         /* set the left and right edge of each bit to an illegal value */
2028         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2029         sticky_bit_chk = 0;
2030         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2031                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2032                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2033         }
2034
2035         addr = (u32)&sdr_scc_mgr->update;
2036         /* Search for the left edge of the window for each bit */
2037         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
2038                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
2039
2040                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2041
2042                 /*
2043                  * Stop searching when the read test doesn't pass AND when
2044                  * we've seen a passing read on every bit.
2045                  */
2046                 if (use_read_test) {
2047                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
2048                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2049                                 &bit_chk, 0, 0);
2050                 } else {
2051                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2052                                                         0, PASS_ONE_BIT,
2053                                                         &bit_chk, 0);
2054                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2055                                 (read_group - (write_group *
2056                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
2057                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2058                         stop = (bit_chk == 0);
2059                 }
2060                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2061                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2062                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
2063                            && %u", __func__, __LINE__, d,
2064                            sticky_bit_chk,
2065                         param->read_correct_mask, stop);
2066
2067                 if (stop == 1) {
2068                         break;
2069                 } else {
2070                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2071                                 if (bit_chk & 1) {
2072                                         /* Remember a passing test as the
2073                                         left_edge */
2074                                         left_edge[i] = d;
2075                                 } else {
2076                                         /* If a left edge has not been seen yet,
2077                                         then a future passing test will mark
2078                                         this edge as the right edge */
2079                                         if (left_edge[i] ==
2080                                                 IO_IO_IN_DELAY_MAX + 1) {
2081                                                 right_edge[i] = -(d + 1);
2082                                         }
2083                                 }
2084                                 bit_chk = bit_chk >> 1;
2085                         }
2086                 }
2087         }
2088
2089         /* Reset DQ delay chains to 0 */
2090         scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
2091         sticky_bit_chk = 0;
2092         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
2093                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2094                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2095                            i, left_edge[i], i, right_edge[i]);
2096
2097                 /*
2098                  * Check for cases where we haven't found the left edge,
2099                  * which makes our assignment of the the right edge invalid.
2100                  * Reset it to the illegal value.
2101                  */
2102                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
2103                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
2104                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2105                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
2106                                    right_edge[%u]: %d\n", __func__, __LINE__,
2107                                    i, right_edge[i]);
2108                 }
2109
2110                 /*
2111                  * Reset sticky bit (except for bits where we have seen
2112                  * both the left and right edge).
2113                  */
2114                 sticky_bit_chk = sticky_bit_chk << 1;
2115                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
2116                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
2117                         sticky_bit_chk = sticky_bit_chk | 1;
2118                 }
2119
2120                 if (i == 0)
2121                         break;
2122         }
2123
2124         addr = (u32)&sdr_scc_mgr->update;
2125         /* Search for the right edge of the window for each bit */
2126         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
2127                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2128                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2129                         uint32_t delay = d + start_dqs_en;
2130                         if (delay > IO_DQS_EN_DELAY_MAX)
2131                                 delay = IO_DQS_EN_DELAY_MAX;
2132                         scc_mgr_set_dqs_en_delay(read_group, delay);
2133                 }
2134                 scc_mgr_load_dqs(read_group);
2135
2136                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2137
2138                 /*
2139                  * Stop searching when the read test doesn't pass AND when
2140                  * we've seen a passing read on every bit.
2141                  */
2142                 if (use_read_test) {
2143                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
2144                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2145                                 &bit_chk, 0, 0);
2146                 } else {
2147                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2148                                                         0, PASS_ONE_BIT,
2149                                                         &bit_chk, 0);
2150                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2151                                 (read_group - (write_group *
2152                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
2153                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2154                         stop = (bit_chk == 0);
2155                 }
2156                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2157                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2158
2159                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2160                            %u && %u", __func__, __LINE__, d,
2161                            sticky_bit_chk, param->read_correct_mask, stop);
2162
2163                 if (stop == 1) {
2164                         break;
2165                 } else {
2166                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2167                                 if (bit_chk & 1) {
2168                                         /* Remember a passing test as
2169                                         the right_edge */
2170                                         right_edge[i] = d;
2171                                 } else {
2172                                         if (d != 0) {
2173                                                 /* If a right edge has not been
2174                                                 seen yet, then a future passing
2175                                                 test will mark this edge as the
2176                                                 left edge */
2177                                                 if (right_edge[i] ==
2178                                                 IO_IO_IN_DELAY_MAX + 1) {
2179                                                         left_edge[i] = -(d + 1);
2180                                                 }
2181                                         } else {
2182                                                 /* d = 0 failed, but it passed
2183                                                 when testing the left edge,
2184                                                 so it must be marginal,
2185                                                 set it to -1 */
2186                                                 if (right_edge[i] ==
2187                                                         IO_IO_IN_DELAY_MAX + 1 &&
2188                                                         left_edge[i] !=
2189                                                         IO_IO_IN_DELAY_MAX
2190                                                         + 1) {
2191                                                         right_edge[i] = -1;
2192                                                 }
2193                                                 /* If a right edge has not been
2194                                                 seen yet, then a future passing
2195                                                 test will mark this edge as the
2196                                                 left edge */
2197                                                 else if (right_edge[i] ==
2198                                                         IO_IO_IN_DELAY_MAX +
2199                                                         1) {
2200                                                         left_edge[i] = -(d + 1);
2201                                                 }
2202                                         }
2203                                 }
2204
2205                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2206                                            d=%u]: ", __func__, __LINE__, d);
2207                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2208                                            (int)(bit_chk & 1), i, left_edge[i]);
2209                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2210                                            right_edge[i]);
2211                                 bit_chk = bit_chk >> 1;
2212                         }
2213                 }
2214         }
2215
2216         /* Check that all bits have a window */
2217         addr = (u32)&sdr_scc_mgr->update;
2218         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2219                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2220                            %d right_edge[%u]: %d", __func__, __LINE__,
2221                            i, left_edge[i], i, right_edge[i]);
2222                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2223                         == IO_IO_IN_DELAY_MAX + 1)) {
2224                         /*
2225                          * Restore delay chain settings before letting the loop
2226                          * in rw_mgr_mem_calibrate_vfifo to retry different
2227                          * dqs/ck relationships.
2228                          */
2229                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2230                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2231                                 scc_mgr_set_dqs_en_delay(read_group,
2232                                                          start_dqs_en);
2233                         }
2234                         scc_mgr_load_dqs(read_group);
2235                         writel(0, SOCFPGA_SDR_ADDRESS + addr);
2236
2237                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2238                                    find edge [%u]: %d %d", __func__, __LINE__,
2239                                    i, left_edge[i], right_edge[i]);
2240                         if (use_read_test) {
2241                                 set_failing_group_stage(read_group *
2242                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2243                                         CAL_STAGE_VFIFO,
2244                                         CAL_SUBSTAGE_VFIFO_CENTER);
2245                         } else {
2246                                 set_failing_group_stage(read_group *
2247                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2248                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2249                                         CAL_SUBSTAGE_VFIFO_CENTER);
2250                         }
2251                         return 0;
2252                 }
2253         }
2254
2255         /* Find middle of window for each DQ bit */
2256         mid_min = left_edge[0] - right_edge[0];
2257         min_index = 0;
2258         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2259                 mid = left_edge[i] - right_edge[i];
2260                 if (mid < mid_min) {
2261                         mid_min = mid;
2262                         min_index = i;
2263                 }
2264         }
2265
2266         /*
2267          * -mid_min/2 represents the amount that we need to move DQS.
2268          * If mid_min is odd and positive we'll need to add one to
2269          * make sure the rounding in further calculations is correct
2270          * (always bias to the right), so just add 1 for all positive values.
2271          */
2272         if (mid_min > 0)
2273                 mid_min++;
2274
2275         mid_min = mid_min / 2;
2276
2277         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2278                    __func__, __LINE__, mid_min, min_index);
2279
2280         /* Determine the amount we can change DQS (which is -mid_min) */
2281         orig_mid_min = mid_min;
2282         new_dqs = start_dqs - mid_min;
2283         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2284                 new_dqs = IO_DQS_IN_DELAY_MAX;
2285         else if (new_dqs < 0)
2286                 new_dqs = 0;
2287
2288         mid_min = start_dqs - new_dqs;
2289         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2290                    mid_min, new_dqs);
2291
2292         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2293                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2294                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2295                 else if (start_dqs_en - mid_min < 0)
2296                         mid_min += start_dqs_en - mid_min;
2297         }
2298         new_dqs = start_dqs - mid_min;
2299
2300         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2301                    new_dqs=%d mid_min=%d\n", start_dqs,
2302                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2303                    new_dqs, mid_min);
2304
2305         /* Initialize data for export structures */
2306         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2307         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2308
2309         addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
2310         /* add delay to bring centre of all DQ windows to the same "level" */
2311         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2312                 /* Use values before divide by 2 to reduce round off error */
2313                 shift_dq = (left_edge[i] - right_edge[i] -
2314                         (left_edge[min_index] - right_edge[min_index]))/2  +
2315                         (orig_mid_min - mid_min);
2316
2317                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2318                            shift_dq[%u]=%d\n", i, shift_dq);
2319
2320                 temp_dq_in_delay1 = readl(SOCFPGA_SDR_ADDRESS + addr + (p << 2));
2321                 temp_dq_in_delay2 = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2));
2322
2323                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2324                         (int32_t)IO_IO_IN_DELAY_MAX) {
2325                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2326                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2327                         shift_dq = -(int32_t)temp_dq_in_delay1;
2328                 }
2329                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2330                            shift_dq[%u]=%d\n", i, shift_dq);
2331                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2332                 scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
2333                 scc_mgr_load_dq(p);
2334
2335                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2336                            left_edge[i] - shift_dq + (-mid_min),
2337                            right_edge[i] + shift_dq - (-mid_min));
2338                 /* To determine values for export structures */
2339                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2340                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2341
2342                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2343                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2344         }
2345
2346         final_dqs = new_dqs;
2347         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2348                 final_dqs_en = start_dqs_en - mid_min;
2349
2350         /* Move DQS-en */
2351         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2352                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2353                 scc_mgr_load_dqs(read_group);
2354         }
2355
2356         /* Move DQS */
2357         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2358         scc_mgr_load_dqs(read_group);
2359         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2360                    dqs_margin=%d", __func__, __LINE__,
2361                    dq_margin, dqs_margin);
2362
2363         /*
2364          * Do not remove this line as it makes sure all of our decisions
2365          * have been applied. Apply the update bit.
2366          */
2367         addr = (u32)&sdr_scc_mgr->update;
2368         writel(0, SOCFPGA_SDR_ADDRESS + addr);
2369
2370         return (dq_margin >= 0) && (dqs_margin >= 0);
2371 }
2372
2373 /*
2374  * calibrate the read valid prediction FIFO.
2375  *
2376  *  - read valid prediction will consist of finding a good DQS enable phase,
2377  * DQS enable delay, DQS input phase, and DQS input delay.
2378  *  - we also do a per-bit deskew on the DQ lines.
2379  */
2380 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2381                                            uint32_t test_bgn)
2382 {
2383         uint32_t p, d, rank_bgn, sr;
2384         uint32_t dtaps_per_ptap;
2385         uint32_t tmp_delay;
2386         uint32_t bit_chk;
2387         uint32_t grp_calibrated;
2388         uint32_t write_group, write_test_bgn;
2389         uint32_t failed_substage;
2390
2391         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2392
2393         /* update info for sims */
2394         reg_file_set_stage(CAL_STAGE_VFIFO);
2395
2396         write_group = read_group;
2397         write_test_bgn = test_bgn;
2398
2399         /* USER Determine number of delay taps for each phase tap */
2400         dtaps_per_ptap = 0;
2401         tmp_delay = 0;
2402         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2403                 dtaps_per_ptap++;
2404                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2405         }
2406         dtaps_per_ptap--;
2407         tmp_delay = 0;
2408
2409         /* update info for sims */
2410         reg_file_set_group(read_group);
2411
2412         grp_calibrated = 0;
2413
2414         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2415         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2416
2417         for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2418                 /*
2419                  * In RLDRAMX we may be messing the delay of pins in
2420                  * the same write group but outside of the current read
2421                  * the group, but that's ok because we haven't
2422                  * calibrated output side yet.
2423                  */
2424                 if (d > 0) {
2425                         scc_mgr_apply_group_all_out_delay_add_all_ranks
2426                         (write_group, write_test_bgn, d);
2427                 }
2428
2429                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2430                         p++) {
2431                         /* set a particular dqdqs phase */
2432                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2433
2434                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2435                                    p=%u d=%u\n", __func__, __LINE__,
2436                                    read_group, p, d);
2437
2438                         /*
2439                          * Load up the patterns used by read calibration
2440                          * using current DQDQS phase.
2441                          */
2442                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2443                         if (!(gbl->phy_debug_mode_flags &
2444                                 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2445                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2446                                     (read_group, 1, &bit_chk)) {
2447                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2448                                                    __func__, __LINE__);
2449                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2450                                                    read_group, p, d);
2451                                         break;
2452                                 }
2453                         }
2454
2455 /* case:56390 */
2456                         grp_calibrated = 1;
2457                 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2458                     (write_group, read_group, test_bgn)) {
2459                                 /*
2460                                  * USER Read per-bit deskew can be done on a
2461                                  * per shadow register basis.
2462                                  */
2463                                 for (rank_bgn = 0, sr = 0;
2464                                         rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2465                                         rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2466                                         ++sr) {
2467                                         /*
2468                                          * Determine if this set of ranks
2469                                          * should be skipped entirely.
2470                                          */
2471                                         if (!param->skip_shadow_regs[sr]) {
2472                                                 /*
2473                                                  * If doing read after write
2474                                                  * calibration, do not update
2475                                                  * FOM, now - do it then.
2476                                                  */
2477                                         if (!rw_mgr_mem_calibrate_vfifo_center
2478                                                 (rank_bgn, write_group,
2479                                                 read_group, test_bgn, 1, 0)) {
2480                                                         grp_calibrated = 0;
2481                                                         failed_substage =
2482                                                 CAL_SUBSTAGE_VFIFO_CENTER;
2483                                                 }
2484                                         }
2485                                 }
2486                         } else {
2487                                 grp_calibrated = 0;
2488                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2489                         }
2490                 }
2491         }
2492
2493         if (grp_calibrated == 0) {
2494                 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2495                                         failed_substage);
2496                 return 0;
2497         }
2498
2499         /*
2500          * Reset the delay chains back to zero if they have moved > 1
2501          * (check for > 1 because loop will increase d even when pass in
2502          * first case).
2503          */
2504         if (d > 2)
2505                 scc_mgr_zero_group(write_group, write_test_bgn, 1);
2506
2507         return 1;
2508 }
2509
2510 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2511 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2512                                                uint32_t test_bgn)
2513 {
2514         uint32_t rank_bgn, sr;
2515         uint32_t grp_calibrated;
2516         uint32_t write_group;
2517
2518         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2519
2520         /* update info for sims */
2521
2522         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2523         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2524
2525         write_group = read_group;
2526
2527         /* update info for sims */
2528         reg_file_set_group(read_group);
2529
2530         grp_calibrated = 1;
2531         /* Read per-bit deskew can be done on a per shadow register basis */
2532         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2533                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2534                 /* Determine if this set of ranks should be skipped entirely */
2535                 if (!param->skip_shadow_regs[sr]) {
2536                 /* This is the last calibration round, update FOM here */
2537                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2538                                                                 write_group,
2539                                                                 read_group,
2540                                                                 test_bgn, 0,
2541                                                                 1)) {
2542                                 grp_calibrated = 0;
2543                         }
2544                 }
2545         }
2546
2547
2548         if (grp_calibrated == 0) {
2549                 set_failing_group_stage(write_group,
2550                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2551                                         CAL_SUBSTAGE_VFIFO_CENTER);
2552                 return 0;
2553         }
2554
2555         return 1;
2556 }
2557
2558 /* Calibrate LFIFO to find smallest read latency */
2559 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2560 {
2561         uint32_t found_one;
2562         uint32_t bit_chk;
2563         uint32_t addr;
2564
2565         debug("%s:%d\n", __func__, __LINE__);
2566
2567         /* update info for sims */
2568         reg_file_set_stage(CAL_STAGE_LFIFO);
2569         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2570
2571         /* Load up the patterns used by read calibration for all ranks */
2572         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2573         found_one = 0;
2574
2575         addr = (u32)&phy_mgr_cfg->phy_rlat;
2576         do {
2577                 writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
2578                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2579                            __func__, __LINE__, gbl->curr_read_lat);
2580
2581                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2582                                                               NUM_READ_TESTS,
2583                                                               PASS_ALL_BITS,
2584                                                               &bit_chk, 1)) {
2585                         break;
2586                 }
2587
2588                 found_one = 1;
2589                 /* reduce read latency and see if things are working */
2590                 /* correctly */
2591                 gbl->curr_read_lat--;
2592         } while (gbl->curr_read_lat > 0);
2593
2594         /* reset the fifos to get pointers to known state */
2595
2596         addr = (u32)&phy_mgr_cmd->fifo_reset;
2597         writel(0, SOCFPGA_SDR_ADDRESS + addr);
2598
2599         if (found_one) {
2600                 /* add a fudge factor to the read latency that was determined */
2601                 gbl->curr_read_lat += 2;
2602                 addr = (u32)&phy_mgr_cfg->phy_rlat;
2603                 writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
2604                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2605                            read_lat=%u\n", __func__, __LINE__,
2606                            gbl->curr_read_lat);
2607                 return 1;
2608         } else {
2609                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2610                                         CAL_SUBSTAGE_READ_LATENCY);
2611
2612                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2613                            read_lat=%u\n", __func__, __LINE__,
2614                            gbl->curr_read_lat);
2615                 return 0;
2616         }
2617 }
2618
2619 /*
2620  * issue write test command.
2621  * two variants are provided. one that just tests a write pattern and
2622  * another that tests datamask functionality.
2623  */
2624 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2625                                                   uint32_t test_dm)
2626 {
2627         uint32_t mcc_instruction;
2628         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2629                 ENABLE_SUPER_QUICK_CALIBRATION);
2630         uint32_t rw_wl_nop_cycles;
2631         uint32_t addr;
2632
2633         /*
2634          * Set counter and jump addresses for the right
2635          * number of NOP cycles.
2636          * The number of supported NOP cycles can range from -1 to infinity
2637          * Three different cases are handled:
2638          *
2639          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2640          *    mechanism will be used to insert the right number of NOPs
2641          *
2642          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2643          *    issuing the write command will jump straight to the
2644          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2645          *    data (for RLD), skipping
2646          *    the NOP micro-instruction all together
2647          *
2648          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2649          *    turned on in the same micro-instruction that issues the write
2650          *    command. Then we need
2651          *    to directly jump to the micro-instruction that sends out the data
2652          *
2653          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2654          *       (2 and 3). One jump-counter (0) is used to perform multiple
2655          *       write-read operations.
2656          *       one counter left to issue this command in "multiple-group" mode
2657          */
2658
2659         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2660
2661         if (rw_wl_nop_cycles == -1) {
2662                 /*
2663                  * CNTR 2 - We want to execute the special write operation that
2664                  * turns on DQS right away and then skip directly to the
2665                  * instruction that sends out the data. We set the counter to a
2666                  * large number so that the jump is always taken.
2667                  */
2668                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
2669                 writel(0xFF, SOCFPGA_SDR_ADDRESS + addr);
2670
2671                 /* CNTR 3 - Not used */
2672                 if (test_dm) {
2673                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2674                         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
2675                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2676                                SOCFPGA_SDR_ADDRESS + addr);
2677                         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
2678                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2679                                SOCFPGA_SDR_ADDRESS + addr);
2680                 } else {
2681                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2682                         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
2683                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, SOCFPGA_SDR_ADDRESS + addr);
2684                         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
2685                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2686                 }
2687         } else if (rw_wl_nop_cycles == 0) {
2688                 /*
2689                  * CNTR 2 - We want to skip the NOP operation and go straight
2690                  * to the DQS enable instruction. We set the counter to a large
2691                  * number so that the jump is always taken.
2692                  */
2693                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
2694                 writel(0xFF, SOCFPGA_SDR_ADDRESS + addr);
2695
2696                 /* CNTR 3 - Not used */
2697                 if (test_dm) {
2698                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2699                         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
2700                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2701                                SOCFPGA_SDR_ADDRESS + addr);
2702                 } else {
2703                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2704                         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
2705                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, SOCFPGA_SDR_ADDRESS + addr);
2706                 }
2707         } else {
2708                 /*
2709                  * CNTR 2 - In this case we want to execute the next instruction
2710                  * and NOT take the jump. So we set the counter to 0. The jump
2711                  * address doesn't count.
2712                  */
2713                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
2714                 writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
2715                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
2716                 writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
2717
2718                 /*
2719                  * CNTR 3 - Set the nop counter to the number of cycles we
2720                  * need to loop for, minus 1.
2721                  */
2722                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr3;
2723                 writel(rw_wl_nop_cycles - 1, SOCFPGA_SDR_ADDRESS + addr);
2724                 if (test_dm) {
2725                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2726                         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
2727                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2728                 } else {
2729                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2730                         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
2731                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2732                 }
2733         }
2734
2735         addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
2736         writel(0, SOCFPGA_SDR_ADDRESS + addr);
2737
2738         addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
2739         if (quick_write_mode)
2740                 writel(0x08, SOCFPGA_SDR_ADDRESS + addr);
2741         else
2742                 writel(0x40, SOCFPGA_SDR_ADDRESS + addr);
2743
2744         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
2745         writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr);
2746
2747         /*
2748          * CNTR 1 - This is used to ensure enough time elapses
2749          * for read data to come back.
2750          */
2751         addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
2752         writel(0x30, SOCFPGA_SDR_ADDRESS + addr);
2753
2754         addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
2755         if (test_dm) {
2756                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr);
2757         } else {
2758                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr);
2759         }
2760
2761         addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
2762         writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
2763 }
2764
2765 /* Test writes, can check for a single bit pass or multiple bit pass */
2766 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2767         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2768         uint32_t *bit_chk, uint32_t all_ranks)
2769 {
2770         uint32_t addr;
2771         uint32_t r;
2772         uint32_t correct_mask_vg;
2773         uint32_t tmp_bit_chk;
2774         uint32_t vg;
2775         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2776                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2777         uint32_t addr_rw_mgr;
2778         uint32_t base_rw_mgr;
2779
2780         *bit_chk = param->write_correct_mask;
2781         correct_mask_vg = param->write_correct_mask_vg;
2782
2783         for (r = rank_bgn; r < rank_end; r++) {
2784                 if (param->skip_ranks[r]) {
2785                         /* request to skip the rank */
2786                         continue;
2787                 }
2788
2789                 /* set rank */
2790                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2791
2792                 tmp_bit_chk = 0;
2793                 addr = (u32)&phy_mgr_cmd->fifo_reset;
2794                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2795                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2796                         /* reset the fifos to get pointers to known state */
2797                         writel(0, SOCFPGA_SDR_ADDRESS + addr);
2798
2799                         tmp_bit_chk = tmp_bit_chk <<
2800                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2801                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2802                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2803                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2804                                 use_dm);
2805
2806                         base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr_rw_mgr);
2807                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2808                         if (vg == 0)
2809                                 break;
2810                 }
2811                 *bit_chk &= tmp_bit_chk;
2812         }
2813
2814         if (all_correct) {
2815                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2816                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2817                            %u => %lu", write_group, use_dm,
2818                            *bit_chk, param->write_correct_mask,
2819                            (long unsigned int)(*bit_chk ==
2820                            param->write_correct_mask));
2821                 return *bit_chk == param->write_correct_mask;
2822         } else {
2823                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2824                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2825                        write_group, use_dm, *bit_chk);
2826                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2827                         (long unsigned int)(*bit_chk != 0));
2828                 return *bit_chk != 0x00;
2829         }
2830 }
2831
2832 /*
2833  * center all windows. do per-bit-deskew to possibly increase size of
2834  * certain windows.
2835  */
2836 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2837         uint32_t write_group, uint32_t test_bgn)
2838 {
2839         uint32_t i, p, min_index;
2840         int32_t d;
2841         /*
2842          * Store these as signed since there are comparisons with
2843          * signed numbers.
2844          */
2845         uint32_t bit_chk;
2846         uint32_t sticky_bit_chk;
2847         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2848         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2849         int32_t mid;
2850         int32_t mid_min, orig_mid_min;
2851         int32_t new_dqs, start_dqs, shift_dq;
2852         int32_t dq_margin, dqs_margin, dm_margin;
2853         uint32_t stop;
2854         uint32_t temp_dq_out1_delay;
2855         uint32_t addr;
2856
2857         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2858
2859         dm_margin = 0;
2860
2861         addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
2862         start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr +
2863                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2864
2865         /* per-bit deskew */
2866
2867         /*
2868          * set the left and right edge of each bit to an illegal value
2869          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2870          */
2871         sticky_bit_chk = 0;
2872         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2873                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2874                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2875         }
2876
2877         /* Search for the left edge of the window for each bit */
2878         addr = (u32)&sdr_scc_mgr->update;
2879         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2880                 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
2881
2882                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2883
2884                 /*
2885                  * Stop searching when the read test doesn't pass AND when
2886                  * we've seen a passing read on every bit.
2887                  */
2888                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2889                         0, PASS_ONE_BIT, &bit_chk, 0);
2890                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2891                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2892                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2893                            == %u && %u [bit_chk= %u ]\n",
2894                         d, sticky_bit_chk, param->write_correct_mask,
2895                         stop, bit_chk);
2896
2897                 if (stop == 1) {
2898                         break;
2899                 } else {
2900                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2901                                 if (bit_chk & 1) {
2902                                         /*
2903                                          * Remember a passing test as the
2904                                          * left_edge.
2905                                          */
2906                                         left_edge[i] = d;
2907                                 } else {
2908                                         /*
2909                                          * If a left edge has not been seen
2910                                          * yet, then a future passing test will
2911                                          * mark this edge as the right edge.
2912                                          */
2913                                         if (left_edge[i] ==
2914                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2915                                                 right_edge[i] = -(d + 1);
2916                                         }
2917                                 }
2918                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2919                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2920                                            (int)(bit_chk & 1), i, left_edge[i]);
2921                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2922                                        right_edge[i]);
2923                                 bit_chk = bit_chk >> 1;
2924                         }
2925                 }
2926         }
2927
2928         /* Reset DQ delay chains to 0 */
2929         scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
2930         sticky_bit_chk = 0;
2931         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2932                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2933                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2934                            i, left_edge[i], i, right_edge[i]);
2935
2936                 /*
2937                  * Check for cases where we haven't found the left edge,
2938                  * which makes our assignment of the the right edge invalid.
2939                  * Reset it to the illegal value.
2940                  */
2941                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2942                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2943                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2944                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2945                                    right_edge[%u]: %d\n", __func__, __LINE__,
2946                                    i, right_edge[i]);
2947                 }
2948
2949                 /*
2950                  * Reset sticky bit (except for bits where we have
2951                  * seen the left edge).
2952                  */
2953                 sticky_bit_chk = sticky_bit_chk << 1;
2954                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2955                         sticky_bit_chk = sticky_bit_chk | 1;
2956
2957                 if (i == 0)
2958                         break;
2959         }
2960
2961         /* Search for the right edge of the window for each bit */
2962         addr = (u32)&sdr_scc_mgr->update;
2963         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2964                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2965                                                         d + start_dqs);
2966
2967                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
2968
2969                 /*
2970                  * Stop searching when the read test doesn't pass AND when
2971                  * we've seen a passing read on every bit.
2972                  */
2973                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2974                         0, PASS_ONE_BIT, &bit_chk, 0);
2975
2976                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2977                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2978
2979                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2980                            %u && %u\n", d, sticky_bit_chk,
2981                            param->write_correct_mask, stop);
2982
2983                 if (stop == 1) {
2984                         if (d == 0) {
2985                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2986                                         i++) {
2987                                         /* d = 0 failed, but it passed when
2988                                         testing the left edge, so it must be
2989                                         marginal, set it to -1 */
2990                                         if (right_edge[i] ==
2991                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2992                                                 left_edge[i] !=
2993                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2994                                                 right_edge[i] = -1;
2995                                         }
2996                                 }
2997                         }
2998                         break;
2999                 } else {
3000                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3001                                 if (bit_chk & 1) {
3002                                         /*
3003                                          * Remember a passing test as
3004                                          * the right_edge.
3005                                          */
3006                                         right_edge[i] = d;
3007                                 } else {
3008                                         if (d != 0) {
3009                                                 /*
3010                                                  * If a right edge has not
3011                                                  * been seen yet, then a future
3012                                                  * passing test will mark this
3013                                                  * edge as the left edge.
3014                                                  */
3015                                                 if (right_edge[i] ==
3016                                                     IO_IO_OUT1_DELAY_MAX + 1)
3017                                                         left_edge[i] = -(d + 1);
3018                                         } else {
3019                                                 /*
3020                                                  * d = 0 failed, but it passed
3021                                                  * when testing the left edge,
3022                                                  * so it must be marginal, set
3023                                                  * it to -1.
3024                                                  */
3025                                                 if (right_edge[i] ==
3026                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
3027                                                     left_edge[i] !=
3028                                                     IO_IO_OUT1_DELAY_MAX + 1)
3029                                                         right_edge[i] = -1;
3030                                                 /*
3031                                                  * If a right edge has not been
3032                                                  * seen yet, then a future
3033                                                  * passing test will mark this
3034                                                  * edge as the left edge.
3035                                                  */
3036                                                 else if (right_edge[i] ==
3037                                                         IO_IO_OUT1_DELAY_MAX +
3038                                                         1)
3039                                                         left_edge[i] = -(d + 1);
3040                                         }
3041                                 }
3042                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
3043                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
3044                                            (int)(bit_chk & 1), i, left_edge[i]);
3045                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
3046                                            right_edge[i]);
3047                                 bit_chk = bit_chk >> 1;
3048                         }
3049                 }
3050         }
3051
3052         /* Check that all bits have a window */
3053         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3054                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
3055                            %d right_edge[%u]: %d", __func__, __LINE__,
3056                            i, left_edge[i], i, right_edge[i]);
3057                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
3058                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
3059                         set_failing_group_stage(test_bgn + i,
3060                                                 CAL_STAGE_WRITES,
3061                                                 CAL_SUBSTAGE_WRITES_CENTER);
3062                         return 0;
3063                 }
3064         }
3065
3066         /* Find middle of window for each DQ bit */
3067         mid_min = left_edge[0] - right_edge[0];
3068         min_index = 0;
3069         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3070                 mid = left_edge[i] - right_edge[i];
3071                 if (mid < mid_min) {
3072                         mid_min = mid;
3073                         min_index = i;
3074                 }
3075         }
3076
3077         /*
3078          * -mid_min/2 represents the amount that we need to move DQS.
3079          * If mid_min is odd and positive we'll need to add one to
3080          * make sure the rounding in further calculations is correct
3081          * (always bias to the right), so just add 1 for all positive values.
3082          */
3083         if (mid_min > 0)
3084                 mid_min++;
3085         mid_min = mid_min / 2;
3086         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
3087                    __LINE__, mid_min);
3088
3089         /* Determine the amount we can change DQS (which is -mid_min) */
3090         orig_mid_min = mid_min;
3091         new_dqs = start_dqs;
3092         mid_min = 0;
3093         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
3094                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
3095         /* Initialize data for export structures */
3096         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
3097         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
3098
3099         /* add delay to bring centre of all DQ windows to the same "level" */
3100         addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
3101         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
3102                 /* Use values before divide by 2 to reduce round off error */
3103                 shift_dq = (left_edge[i] - right_edge[i] -
3104                         (left_edge[min_index] - right_edge[min_index]))/2  +
3105                 (orig_mid_min - mid_min);
3106
3107                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
3108                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
3109
3110                 temp_dq_out1_delay = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3111                 if (shift_dq + (int32_t)temp_dq_out1_delay >
3112                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
3113                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
3114                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
3115                         shift_dq = -(int32_t)temp_dq_out1_delay;
3116                 }
3117                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
3118                            i, shift_dq);
3119                 scc_mgr_set_dq_out1_delay(write_group, i, temp_dq_out1_delay +
3120                                           shift_dq);
3121                 scc_mgr_load_dq(i);
3122
3123                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
3124                            left_edge[i] - shift_dq + (-mid_min),
3125                            right_edge[i] + shift_dq - (-mid_min));
3126                 /* To determine values for export structures */
3127                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
3128                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
3129
3130                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3131                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3132         }
3133
3134         /* Move DQS */
3135         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3136         addr = (u32)&sdr_scc_mgr->update;
3137         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3138
3139         /* Centre DM */
3140         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3141
3142         /*
3143          * set the left and right edge of each bit to an illegal value,
3144          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3145          */
3146         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3147         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3148         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3149         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3150         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3151         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3152         int32_t win_best = 0;
3153
3154         /* Search for the/part of the window with DM shift */
3155         addr = (u32)&sdr_scc_mgr->update;
3156         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3157                 scc_mgr_apply_group_dm_out1_delay(write_group, d);
3158                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3159
3160                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3161                                                     PASS_ALL_BITS, &bit_chk,
3162                                                     0)) {
3163                         /* USE Set current end of the window */
3164                         end_curr = -d;
3165                         /*
3166                          * If a starting edge of our window has not been seen
3167                          * this is our current start of the DM window.
3168                          */
3169                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3170                                 bgn_curr = -d;
3171
3172                         /*
3173                          * If current window is bigger than best seen.
3174                          * Set best seen to be current window.
3175                          */
3176                         if ((end_curr-bgn_curr+1) > win_best) {
3177                                 win_best = end_curr-bgn_curr+1;
3178                                 bgn_best = bgn_curr;
3179                                 end_best = end_curr;
3180                         }
3181                 } else {
3182                         /* We just saw a failing test. Reset temp edge */
3183                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3184                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3185                         }
3186                 }
3187
3188
3189         /* Reset DM delay chains to 0 */
3190         scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3191
3192         /*
3193          * Check to see if the current window nudges up aganist 0 delay.
3194          * If so we need to continue the search by shifting DQS otherwise DQS
3195          * search begins as a new search. */
3196         if (end_curr != 0) {
3197                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3198                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3199         }
3200
3201         /* Search for the/part of the window with DQS shifts */
3202         addr = (u32)&sdr_scc_mgr->update;
3203         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3204                 /*
3205                  * Note: This only shifts DQS, so are we limiting ourselve to
3206                  * width of DQ unnecessarily.
3207                  */
3208                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3209                                                         d + new_dqs);
3210
3211                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3212                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3213                                                     PASS_ALL_BITS, &bit_chk,
3214                                                     0)) {
3215                         /* USE Set current end of the window */
3216                         end_curr = d;
3217                         /*
3218                          * If a beginning edge of our window has not been seen
3219                          * this is our current begin of the DM window.
3220                          */
3221                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3222                                 bgn_curr = d;
3223
3224                         /*
3225                          * If current window is bigger than best seen. Set best
3226                          * seen to be current window.
3227                          */
3228                         if ((end_curr-bgn_curr+1) > win_best) {
3229                                 win_best = end_curr-bgn_curr+1;
3230                                 bgn_best = bgn_curr;
3231                                 end_best = end_curr;
3232                         }
3233                 } else {
3234                         /* We just saw a failing test. Reset temp edge */
3235                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3236                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3237
3238                         /* Early exit optimization: if ther remaining delay
3239                         chain space is less than already seen largest window
3240                         we can exit */
3241                         if ((win_best-1) >
3242                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3243                                         break;
3244                                 }
3245                         }
3246                 }
3247
3248         /* assign left and right edge for cal and reporting; */
3249         left_edge[0] = -1*bgn_best;
3250         right_edge[0] = end_best;
3251
3252         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3253                    __LINE__, left_edge[0], right_edge[0]);
3254
3255         /* Move DQS (back to orig) */
3256         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3257
3258         /* Move DM */
3259
3260         /* Find middle of window for the DM bit */
3261         mid = (left_edge[0] - right_edge[0]) / 2;
3262
3263         /* only move right, since we are not moving DQS/DQ */
3264         if (mid < 0)
3265                 mid = 0;
3266
3267         /* dm_marign should fail if we never find a window */
3268         if (win_best == 0)
3269                 dm_margin = -1;
3270         else
3271                 dm_margin = left_edge[0] - mid;
3272
3273         scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3274         addr = (u32)&sdr_scc_mgr->update;
3275         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3276
3277         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3278                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3279                    right_edge[0], mid, dm_margin);
3280         /* Export values */
3281         gbl->fom_out += dq_margin + dqs_margin;
3282
3283         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3284                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3285                    dq_margin, dqs_margin, dm_margin);
3286
3287         /*
3288          * Do not remove this line as it makes sure all of our
3289          * decisions have been applied.
3290          */
3291         addr = (u32)&sdr_scc_mgr->update;
3292         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3293         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3294 }
3295
3296 /* calibrate the write operations */
3297 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3298         uint32_t test_bgn)
3299 {
3300         /* update info for sims */
3301         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3302
3303         reg_file_set_stage(CAL_STAGE_WRITES);
3304         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3305
3306         reg_file_set_group(g);
3307
3308         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3309                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3310                                         CAL_SUBSTAGE_WRITES_CENTER);
3311                 return 0;
3312         }
3313
3314         return 1;
3315 }
3316
3317 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3318 static void mem_precharge_and_activate(void)
3319 {
3320         uint32_t r;
3321         uint32_t addr;
3322
3323         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3324                 if (param->skip_ranks[r]) {
3325                         /* request to skip the rank */
3326                         continue;
3327                 }
3328
3329                 /* set rank */
3330                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3331
3332                 /* precharge all banks ... */
3333                 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
3334                 writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
3335
3336                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
3337                 writel(0x0F, SOCFPGA_SDR_ADDRESS + addr);
3338                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
3339                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
3340
3341                 addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
3342                 writel(0x0F, SOCFPGA_SDR_ADDRESS + addr);
3343                 addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
3344                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
3345
3346                 /* activate rows */
3347                 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
3348                 writel(RW_MGR_ACTIVATE_0_AND_1, SOCFPGA_SDR_ADDRESS + addr);
3349         }
3350 }
3351
3352 /* Configure various memory related parameters. */
3353 static void mem_config(void)
3354 {
3355         uint32_t rlat, wlat;
3356         uint32_t rw_wl_nop_cycles;
3357         uint32_t max_latency;
3358         uint32_t addr;
3359
3360         debug("%s:%d\n", __func__, __LINE__);
3361         /* read in write and read latency */
3362         addr = sdr_get_addr(&data_mgr->t_wl_add);
3363         wlat = readl(SOCFPGA_SDR_ADDRESS + addr);
3364
3365         addr = sdr_get_addr(&data_mgr->mem_t_add);
3366         wlat += readl(SOCFPGA_SDR_ADDRESS + addr);
3367         /* WL for hard phy does not include additive latency */
3368
3369         /*
3370          * add addtional write latency to offset the address/command extra
3371          * clock cycle. We change the AC mux setting causing AC to be delayed
3372          * by one mem clock cycle. Only do this for DDR3
3373          */
3374         wlat = wlat + 1;
3375
3376         addr = sdr_get_addr(&data_mgr->t_rl_add);
3377         rlat = readl(SOCFPGA_SDR_ADDRESS + addr);
3378
3379         rw_wl_nop_cycles = wlat - 2;
3380         gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3381
3382         /*
3383          * For AV/CV, lfifo is hardened and always runs at full rate so
3384          * max latency in AFI clocks, used here, is correspondingly smaller.
3385          */
3386         max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3387         /* configure for a burst length of 8 */
3388
3389         /* write latency */
3390         /* Adjust Write Latency for Hard PHY */
3391         wlat = wlat + 1;
3392
3393         /* set a pretty high read latency initially */
3394         gbl->curr_read_lat = rlat + 16;
3395
3396         if (gbl->curr_read_lat > max_latency)
3397                 gbl->curr_read_lat = max_latency;
3398
3399         addr = (u32)&phy_mgr_cfg->phy_rlat;
3400         writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
3401
3402         /* advertise write latency */
3403         gbl->curr_write_lat = wlat;
3404         addr = (u32)&phy_mgr_cfg->afi_wlat;
3405         writel(wlat - 2, SOCFPGA_SDR_ADDRESS + addr);
3406
3407         /* initialize bit slips */
3408         mem_precharge_and_activate();
3409 }
3410
3411 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3412 static void mem_skip_calibrate(void)
3413 {
3414         uint32_t vfifo_offset;
3415         uint32_t i, j, r;
3416         uint32_t addr;
3417
3418         debug("%s:%d\n", __func__, __LINE__);
3419         /* Need to update every shadow register set used by the interface */
3420         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3421                 r += NUM_RANKS_PER_SHADOW_REG) {
3422                 /*
3423                  * Set output phase alignment settings appropriate for
3424                  * skip calibration.
3425                  */
3426                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3427                         scc_mgr_set_dqs_en_phase(i, 0);
3428 #if IO_DLL_CHAIN_LENGTH == 6
3429                         scc_mgr_set_dqdqs_output_phase(i, 6);
3430 #else
3431                         scc_mgr_set_dqdqs_output_phase(i, 7);
3432 #endif
3433                         /*
3434                          * Case:33398
3435                          *
3436                          * Write data arrives to the I/O two cycles before write
3437                          * latency is reached (720 deg).
3438                          *   -> due to bit-slip in a/c bus
3439                          *   -> to allow board skew where dqs is longer than ck
3440                          *      -> how often can this happen!?
3441                          *      -> can claim back some ptaps for high freq
3442                          *       support if we can relax this, but i digress...
3443                          *
3444                          * The write_clk leads mem_ck by 90 deg
3445                          * The minimum ptap of the OPA is 180 deg
3446                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3447                          * The write_clk is always delayed by 2 ptaps
3448                          *
3449                          * Hence, to make DQS aligned to CK, we need to delay
3450                          * DQS by:
3451                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3452                          *
3453                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3454                          * gives us the number of ptaps, which simplies to:
3455                          *
3456                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3457                          */
3458                         scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3459                                 IO_DLL_CHAIN_LENGTH - 2));
3460                 }
3461                 addr = (u32)&sdr_scc_mgr->dqs_ena;
3462                 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3463                 addr = (u32)&sdr_scc_mgr->dqs_io_ena;
3464                 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3465
3466                 addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3467                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3468                         writel(i, SOCFPGA_SDR_ADDRESS + addr);
3469                 }
3470                 addr = (u32)&sdr_scc_mgr->dq_ena;
3471                 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3472                 addr = (u32)&sdr_scc_mgr->dm_ena;
3473                 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3474                 addr = (u32)&sdr_scc_mgr->update;
3475                 writel(0, SOCFPGA_SDR_ADDRESS + addr);
3476         }
3477
3478         /* Compensate for simulation model behaviour */
3479         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3480                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3481                 scc_mgr_load_dqs(i);
3482         }
3483         addr = (u32)&sdr_scc_mgr->update;
3484         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3485
3486         /*
3487          * ArriaV has hard FIFOs that can only be initialized by incrementing
3488          * in sequencer.
3489          */
3490         vfifo_offset = CALIB_VFIFO_OFFSET;
3491         addr = (u32)&phy_mgr_cmd->inc_vfifo_hard_phy;
3492         for (j = 0; j < vfifo_offset; j++) {
3493                 writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3494         }
3495         addr = (u32)&phy_mgr_cmd->fifo_reset;
3496         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3497
3498         /*
3499          * For ACV with hard lfifo, we get the skip-cal setting from
3500          * generation-time constant.
3501          */
3502         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3503         addr = (u32)&phy_mgr_cfg->phy_rlat;
3504         writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
3505 }
3506
3507 /* Memory calibration entry point */
3508 static uint32_t mem_calibrate(void)
3509 {
3510         uint32_t i;
3511         uint32_t rank_bgn, sr;
3512         uint32_t write_group, write_test_bgn;
3513         uint32_t read_group, read_test_bgn;
3514         uint32_t run_groups, current_run;
3515         uint32_t failing_groups = 0;
3516         uint32_t group_failed = 0;
3517         uint32_t sr_failed = 0;
3518         uint32_t addr;
3519
3520         debug("%s:%d\n", __func__, __LINE__);
3521         /* Initialize the data settings */
3522
3523         gbl->error_substage = CAL_SUBSTAGE_NIL;
3524         gbl->error_stage = CAL_STAGE_NIL;
3525         gbl->error_group = 0xff;
3526         gbl->fom_in = 0;
3527         gbl->fom_out = 0;
3528
3529         mem_config();
3530
3531         uint32_t bypass_mode = 0x1;
3532         addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3533         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3534                 writel(i, SOCFPGA_SDR_ADDRESS + addr);
3535                 scc_set_bypass_mode(i, bypass_mode);
3536         }
3537
3538         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3539                 /*
3540                  * Set VFIFO and LFIFO to instant-on settings in skip
3541                  * calibration mode.
3542                  */
3543                 mem_skip_calibrate();
3544         } else {
3545                 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3546                         /*
3547                          * Zero all delay chain/phase settings for all
3548                          * groups and all shadow register sets.
3549                          */
3550                         scc_mgr_zero_all();
3551
3552                         run_groups = ~param->skip_groups;
3553
3554                         for (write_group = 0, write_test_bgn = 0; write_group
3555                                 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3556                                 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3557                                 /* Initialized the group failure */
3558                                 group_failed = 0;
3559
3560                                 current_run = run_groups & ((1 <<
3561                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3562                                 run_groups = run_groups >>
3563                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3564
3565                                 if (current_run == 0)
3566                                         continue;
3567
3568                                 addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3569                                 writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
3570                                 scc_mgr_zero_group(write_group, write_test_bgn,
3571                                                    0);
3572
3573                                 for (read_group = write_group *
3574                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3575                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3576                                         read_test_bgn = 0;
3577                                         read_group < (write_group + 1) *
3578                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3579                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3580                                         group_failed == 0;
3581                                         read_group++, read_test_bgn +=
3582                                         RW_MGR_MEM_DQ_PER_READ_DQS) {
3583                                         /* Calibrate the VFIFO */
3584                                         if (!((STATIC_CALIB_STEPS) &
3585                                                 CALIB_SKIP_VFIFO)) {
3586                                                 if (!rw_mgr_mem_calibrate_vfifo
3587                                                         (read_group,
3588                                                         read_test_bgn)) {
3589                                                         group_failed = 1;
3590
3591                                                         if (!(gbl->
3592                                                         phy_debug_mode_flags &
3593                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3594                                                                 return 0;
3595                                                         }
3596                                                 }
3597                                         }
3598                                 }
3599
3600                                 /* Calibrate the output side */
3601                                 if (group_failed == 0)  {
3602                                         for (rank_bgn = 0, sr = 0; rank_bgn
3603                                                 < RW_MGR_MEM_NUMBER_OF_RANKS;
3604                                                 rank_bgn +=
3605                                                 NUM_RANKS_PER_SHADOW_REG,
3606                                                 ++sr) {
3607                                                 sr_failed = 0;
3608                                                 if (!((STATIC_CALIB_STEPS) &
3609                                                 CALIB_SKIP_WRITES)) {
3610                                                         if ((STATIC_CALIB_STEPS)
3611                                                 & CALIB_SKIP_DELAY_SWEEPS) {
3612                                                 /* not needed in quick mode! */
3613                                                         } else {
3614                                                 /*
3615                                                  * Determine if this set of
3616                                                  * ranks should be skipped
3617                                                  * entirely.
3618                                                  */
3619                                         if (!param->skip_shadow_regs[sr]) {
3620                                                 if (!rw_mgr_mem_calibrate_writes
3621                                                 (rank_bgn, write_group,
3622                                                 write_test_bgn)) {
3623                                                         sr_failed = 1;
3624                                                         if (!(gbl->
3625                                                         phy_debug_mode_flags &
3626                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3627                                                                 return 0;
3628                                                                         }
3629                                                                         }
3630                                                                 }
3631                                                         }
3632                                                 }
3633                                                 if (sr_failed != 0)
3634                                                         group_failed = 1;
3635                                         }
3636                                 }
3637
3638                                 if (group_failed == 0) {
3639                                         for (read_group = write_group *
3640                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3641                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3642                                         read_test_bgn = 0;
3643                                                 read_group < (write_group + 1)
3644                                                 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3645                                                 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3646                                                 group_failed == 0;
3647                                                 read_group++, read_test_bgn +=
3648                                                 RW_MGR_MEM_DQ_PER_READ_DQS) {
3649                                                 if (!((STATIC_CALIB_STEPS) &
3650                                                         CALIB_SKIP_WRITES)) {
3651                                         if (!rw_mgr_mem_calibrate_vfifo_end
3652                                                 (read_group, read_test_bgn)) {
3653                                                         group_failed = 1;
3654
3655                                                 if (!(gbl->phy_debug_mode_flags
3656                                                 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3657                                                                 return 0;
3658                                                                 }
3659                                                         }
3660                                                 }
3661                                         }
3662                                 }
3663
3664                                 if (group_failed != 0)
3665                                         failing_groups++;
3666                         }
3667
3668                         /*
3669                          * USER If there are any failing groups then report
3670                          * the failure.
3671                          */
3672                         if (failing_groups != 0)
3673                                 return 0;
3674
3675                         /* Calibrate the LFIFO */
3676                         if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3677                                 /*
3678                                  * If we're skipping groups as part of debug,
3679                                  * don't calibrate LFIFO.
3680                                  */
3681                                 if (param->skip_groups == 0) {
3682                                         if (!rw_mgr_mem_calibrate_lfifo())
3683                                                 return 0;
3684                                 }
3685                         }
3686                 }
3687         }
3688
3689         /*
3690          * Do not remove this line as it makes sure all of our decisions
3691          * have been applied.
3692          */
3693         addr = (u32)&sdr_scc_mgr->update;
3694         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3695         return 1;
3696 }
3697
3698 static uint32_t run_mem_calibrate(void)
3699 {
3700         uint32_t pass;
3701         uint32_t debug_info;
3702         uint32_t addr;
3703
3704         debug("%s:%d\n", __func__, __LINE__);
3705
3706         /* Reset pass/fail status shown on afi_cal_success/fail */
3707         addr = (u32)&phy_mgr_cfg->cal_status;
3708         writel(PHY_MGR_CAL_RESET, SOCFPGA_SDR_ADDRESS + addr);
3709
3710         addr = sdr_get_addr((u32 *)BASE_MMR);
3711         /* stop tracking manger */
3712         uint32_t ctrlcfg = readl(SOCFPGA_SDR_ADDRESS + addr);
3713
3714         addr = sdr_get_addr((u32 *)BASE_MMR);
3715         writel(ctrlcfg & 0xFFBFFFFF, SOCFPGA_SDR_ADDRESS + addr);
3716
3717         initialize();
3718         rw_mgr_mem_initialize();
3719
3720         pass = mem_calibrate();
3721
3722         mem_precharge_and_activate();
3723         addr = (u32)&phy_mgr_cmd->fifo_reset;
3724         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3725
3726         /*
3727          * Handoff:
3728          * Don't return control of the PHY back to AFI when in debug mode.
3729          */
3730         if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3731                 rw_mgr_mem_handoff();
3732                 /*
3733                  * In Hard PHY this is a 2-bit control:
3734                  * 0: AFI Mux Select
3735                  * 1: DDIO Mux Select
3736                  */
3737                 addr = (u32)&phy_mgr_cfg->mux_sel;
3738                 writel(0x2, SOCFPGA_SDR_ADDRESS + addr);
3739         }
3740
3741         addr = sdr_get_addr((u32 *)BASE_MMR);
3742         writel(ctrlcfg, SOCFPGA_SDR_ADDRESS + addr);
3743
3744         if (pass) {
3745                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3746
3747                 gbl->fom_in /= 2;
3748                 gbl->fom_out /= 2;
3749
3750                 if (gbl->fom_in > 0xff)
3751                         gbl->fom_in = 0xff;
3752
3753                 if (gbl->fom_out > 0xff)
3754                         gbl->fom_out = 0xff;
3755
3756                 /* Update the FOM in the register file */
3757                 debug_info = gbl->fom_in;
3758                 debug_info |= gbl->fom_out << 8;
3759                 addr = (u32)&sdr_reg_file->fom;
3760                 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3761
3762                 addr = (u32)&phy_mgr_cfg->cal_debug_info;
3763                 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3764                 addr = (u32)&phy_mgr_cfg->cal_status;
3765                 writel(PHY_MGR_CAL_SUCCESS, SOCFPGA_SDR_ADDRESS + addr);
3766         } else {
3767                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3768
3769                 debug_info = gbl->error_stage;
3770                 debug_info |= gbl->error_substage << 8;
3771                 debug_info |= gbl->error_group << 16;
3772
3773                 addr = (u32)&sdr_reg_file->failing_stage;
3774                 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3775                 addr = (u32)&phy_mgr_cfg->cal_debug_info;
3776                 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3777                 addr = (u32)&phy_mgr_cfg->cal_status;
3778                 writel(PHY_MGR_CAL_FAIL, SOCFPGA_SDR_ADDRESS + addr);
3779
3780                 /* Update the failing group/stage in the register file */
3781                 debug_info = gbl->error_stage;
3782                 debug_info |= gbl->error_substage << 8;
3783                 debug_info |= gbl->error_group << 16;
3784                 addr = (u32)&sdr_reg_file->failing_stage;
3785                 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3786         }
3787
3788         return pass;
3789 }
3790
3791 static void hc_initialize_rom_data(void)
3792 {
3793         uint32_t i;
3794         uint32_t addr;
3795
3796         addr = sdr_get_addr((u32 *)(RW_MGR_INST_ROM_WRITE));
3797         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) {
3798                 uint32_t data = inst_rom_init[i];
3799                 writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3800         }
3801
3802         addr = sdr_get_addr((u32 *)(RW_MGR_AC_ROM_WRITE));
3803         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) {
3804                 uint32_t data = ac_rom_init[i];
3805                 writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3806         }
3807 }
3808
3809 static void initialize_reg_file(void)
3810 {
3811         uint32_t addr;
3812
3813         /* Initialize the register file with the correct data */
3814         addr = (u32)&sdr_reg_file->signature;
3815         writel(REG_FILE_INIT_SEQ_SIGNATURE, SOCFPGA_SDR_ADDRESS + addr);
3816
3817         addr = (u32)&sdr_reg_file->debug_data_addr;
3818         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3819
3820         addr = (u32)&sdr_reg_file->cur_stage;
3821         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3822
3823         addr = (u32)&sdr_reg_file->fom;
3824         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3825
3826         addr = (u32)&sdr_reg_file->failing_stage;
3827         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3828
3829         addr = (u32)&sdr_reg_file->debug1;
3830         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3831
3832         addr = (u32)&sdr_reg_file->debug2;
3833         writel(0, SOCFPGA_SDR_ADDRESS + addr);
3834 }
3835
3836 static void initialize_hps_phy(void)
3837 {
3838         uint32_t reg;
3839         uint32_t addr;
3840         /*
3841          * Tracking also gets configured here because it's in the
3842          * same register.
3843          */
3844         uint32_t trk_sample_count = 7500;
3845         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3846         /*
3847          * Format is number of outer loops in the 16 MSB, sample
3848          * count in 16 LSB.
3849          */
3850
3851         reg = 0;
3852         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3853         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3854         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3855         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3856         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3857         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3858         /*
3859          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3860          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3861          */
3862         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3863         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3864                 trk_sample_count);
3865         addr = sdr_get_addr((u32 *)BASE_MMR);
3866         writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET);
3867
3868         reg = 0;
3869         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3870                 trk_sample_count >>
3871                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3872         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3873                 trk_long_idle_sample_count);
3874         writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET);
3875
3876         reg = 0;
3877         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3878                 trk_long_idle_sample_count >>
3879                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3880         writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET);
3881 }
3882
3883 static void initialize_tracking(void)
3884 {
3885         uint32_t concatenated_longidle = 0x0;
3886         uint32_t concatenated_delays = 0x0;
3887         uint32_t concatenated_rw_addr = 0x0;
3888         uint32_t concatenated_refresh = 0x0;
3889         uint32_t trk_sample_count = 7500;
3890         uint32_t dtaps_per_ptap;
3891         uint32_t tmp_delay;
3892         uint32_t addr;
3893
3894         /*
3895          * compute usable version of value in case we skip full
3896          * computation later
3897          */
3898         dtaps_per_ptap = 0;
3899         tmp_delay = 0;
3900         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3901                 dtaps_per_ptap++;
3902                 tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3903         }
3904         dtaps_per_ptap--;
3905
3906         concatenated_longidle = concatenated_longidle ^ 10;
3907                 /*longidle outer loop */
3908         concatenated_longidle = concatenated_longidle << 16;
3909         concatenated_longidle = concatenated_longidle ^ 100;
3910                 /*longidle sample count */
3911         concatenated_delays = concatenated_delays ^ 243;
3912                 /* trfc, worst case of 933Mhz 4Gb */
3913         concatenated_delays = concatenated_delays << 8;
3914         concatenated_delays = concatenated_delays ^ 14;
3915                 /* trcd, worst case */
3916         concatenated_delays = concatenated_delays << 8;
3917         concatenated_delays = concatenated_delays ^ 10;
3918                 /* vfifo wait */
3919         concatenated_delays = concatenated_delays << 8;
3920         concatenated_delays = concatenated_delays ^ 4;
3921                 /* mux delay */
3922
3923         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3924         concatenated_rw_addr = concatenated_rw_addr << 8;
3925         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3926         concatenated_rw_addr = concatenated_rw_addr << 8;
3927         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3928         concatenated_rw_addr = concatenated_rw_addr << 8;
3929         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3930
3931         concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3932         concatenated_refresh = concatenated_refresh << 24;
3933         concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3934
3935         /* Initialize the register file with the correct data */
3936         addr = (u32)&sdr_reg_file->dtaps_per_ptap;
3937         writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
3938
3939         addr = (u32)&sdr_reg_file->trk_sample_count;
3940         writel(trk_sample_count, SOCFPGA_SDR_ADDRESS + addr);
3941
3942         addr = (u32)&sdr_reg_file->trk_longidle;
3943         writel(concatenated_longidle, SOCFPGA_SDR_ADDRESS + addr);
3944
3945         addr = (u32)&sdr_reg_file->delays;
3946         writel(concatenated_delays, SOCFPGA_SDR_ADDRESS + addr);
3947
3948         addr = (u32)&sdr_reg_file->trk_rw_mgr_addr;
3949         writel(concatenated_rw_addr, SOCFPGA_SDR_ADDRESS + addr);
3950
3951         addr = (u32)&sdr_reg_file->trk_read_dqs_width;
3952         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, SOCFPGA_SDR_ADDRESS + addr);
3953
3954         addr = (u32)&sdr_reg_file->trk_rfsh;
3955         writel(concatenated_refresh, SOCFPGA_SDR_ADDRESS + addr);
3956 }
3957
3958 int sdram_calibration_full(void)
3959 {
3960         struct param_type my_param;
3961         struct gbl_type my_gbl;
3962         uint32_t pass;
3963         uint32_t i;
3964
3965         param = &my_param;
3966         gbl = &my_gbl;
3967
3968         /* Initialize the debug mode flags */
3969         gbl->phy_debug_mode_flags = 0;
3970         /* Set the calibration enabled by default */
3971         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3972         /*
3973          * Only sweep all groups (regardless of fail state) by default
3974          * Set enabled read test by default.
3975          */
3976 #if DISABLE_GUARANTEED_READ
3977         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3978 #endif
3979         /* Initialize the register file */
3980         initialize_reg_file();
3981
3982         /* Initialize any PHY CSR */
3983         initialize_hps_phy();
3984
3985         scc_mgr_initialize();
3986
3987         initialize_tracking();
3988
3989         /* USER Enable all ranks, groups */
3990         for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3991                 param->skip_ranks[i] = 0;
3992         for (i = 0; i < NUM_SHADOW_REGS; ++i)
3993                 param->skip_shadow_regs[i] = 0;
3994         param->skip_groups = 0;
3995
3996         printf("%s: Preparing to start memory calibration\n", __FILE__);
3997
3998         debug("%s:%d\n", __func__, __LINE__);
3999         debug_cond(DLEVEL == 1,
4000                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
4001                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
4002                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
4003                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
4004                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
4005         debug_cond(DLEVEL == 1,
4006                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
4007                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
4008                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
4009                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
4010         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
4011                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
4012         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
4013                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
4014                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
4015         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
4016                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
4017                    IO_IO_OUT2_DELAY_MAX);
4018         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
4019                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
4020
4021         hc_initialize_rom_data();
4022
4023         /* update info for sims */
4024         reg_file_set_stage(CAL_STAGE_NIL);
4025         reg_file_set_group(0);
4026
4027         /*
4028          * Load global needed for those actions that require
4029          * some dynamic calibration support.
4030          */
4031         dyn_calib_steps = STATIC_CALIB_STEPS;
4032         /*
4033          * Load global to allow dynamic selection of delay loop settings
4034          * based on calibration mode.
4035          */
4036         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
4037                 skip_delay_mask = 0xff;
4038         else
4039                 skip_delay_mask = 0x0;
4040
4041         pass = run_mem_calibrate();
4042
4043         printf("%s: Calibration complete\n", __FILE__);
4044         return pass;
4045 }