]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/mmp_pdma.c
drm: msm: Add ASoC generic hdmi audio codec support.
[karo-tx-linux.git] / drivers / dma / mmp_pdma.c
1 /*
2  * Copyright 2012 Marvell International Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/interrupt.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/slab.h>
16 #include <linux/dmaengine.h>
17 #include <linux/platform_device.h>
18 #include <linux/device.h>
19 #include <linux/platform_data/mmp_dma.h>
20 #include <linux/dmapool.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/of.h>
24 #include <linux/dma/mmp-pdma.h>
25
26 #include "dmaengine.h"
27
28 #define DCSR            0x0000
29 #define DALGN           0x00a0
30 #define DINT            0x00f0
31 #define DDADR           0x0200
32 #define DSADR(n)        (0x0204 + ((n) << 4))
33 #define DTADR(n)        (0x0208 + ((n) << 4))
34 #define DCMD            0x020c
35
36 #define DCSR_RUN        BIT(31) /* Run Bit (read / write) */
37 #define DCSR_NODESC     BIT(30) /* No-Descriptor Fetch (read / write) */
38 #define DCSR_STOPIRQEN  BIT(29) /* Stop Interrupt Enable (read / write) */
39 #define DCSR_REQPEND    BIT(8)  /* Request Pending (read-only) */
40 #define DCSR_STOPSTATE  BIT(3)  /* Stop State (read-only) */
41 #define DCSR_ENDINTR    BIT(2)  /* End Interrupt (read / write) */
42 #define DCSR_STARTINTR  BIT(1)  /* Start Interrupt (read / write) */
43 #define DCSR_BUSERR     BIT(0)  /* Bus Error Interrupt (read / write) */
44
45 #define DCSR_EORIRQEN   BIT(28) /* End of Receive Interrupt Enable (R/W) */
46 #define DCSR_EORJMPEN   BIT(27) /* Jump to next descriptor on EOR */
47 #define DCSR_EORSTOPEN  BIT(26) /* STOP on an EOR */
48 #define DCSR_SETCMPST   BIT(25) /* Set Descriptor Compare Status */
49 #define DCSR_CLRCMPST   BIT(24) /* Clear Descriptor Compare Status */
50 #define DCSR_CMPST      BIT(10) /* The Descriptor Compare Status */
51 #define DCSR_EORINTR    BIT(9)  /* The end of Receive */
52
53 #define DRCMR(n)        ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
54 #define DRCMR_MAPVLD    BIT(7)  /* Map Valid (read / write) */
55 #define DRCMR_CHLNUM    0x1f    /* mask for Channel Number (read / write) */
56
57 #define DDADR_DESCADDR  0xfffffff0      /* Address of next descriptor (mask) */
58 #define DDADR_STOP      BIT(0)  /* Stop (read / write) */
59
60 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */
61 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */
62 #define DCMD_FLOWSRC    BIT(29) /* Flow Control by the source. */
63 #define DCMD_FLOWTRG    BIT(28) /* Flow Control by the target. */
64 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */
65 #define DCMD_ENDIRQEN   BIT(21) /* End Interrupt Enable */
66 #define DCMD_ENDIAN     BIT(18) /* Device Endian-ness. */
67 #define DCMD_BURST8     (1 << 16)       /* 8 byte burst */
68 #define DCMD_BURST16    (2 << 16)       /* 16 byte burst */
69 #define DCMD_BURST32    (3 << 16)       /* 32 byte burst */
70 #define DCMD_WIDTH1     (1 << 14)       /* 1 byte width */
71 #define DCMD_WIDTH2     (2 << 14)       /* 2 byte width (HalfWord) */
72 #define DCMD_WIDTH4     (3 << 14)       /* 4 byte width (Word) */
73 #define DCMD_LENGTH     0x01fff         /* length mask (max = 8K - 1) */
74
75 #define PDMA_MAX_DESC_BYTES     DCMD_LENGTH
76
77 struct mmp_pdma_desc_hw {
78         u32 ddadr;      /* Points to the next descriptor + flags */
79         u32 dsadr;      /* DSADR value for the current transfer */
80         u32 dtadr;      /* DTADR value for the current transfer */
81         u32 dcmd;       /* DCMD value for the current transfer */
82 } __aligned(32);
83
84 struct mmp_pdma_desc_sw {
85         struct mmp_pdma_desc_hw desc;
86         struct list_head node;
87         struct list_head tx_list;
88         struct dma_async_tx_descriptor async_tx;
89 };
90
91 struct mmp_pdma_phy;
92
93 struct mmp_pdma_chan {
94         struct device *dev;
95         struct dma_chan chan;
96         struct dma_async_tx_descriptor desc;
97         struct mmp_pdma_phy *phy;
98         enum dma_transfer_direction dir;
99
100         struct mmp_pdma_desc_sw *cyclic_first;  /* first desc_sw if channel
101                                                  * is in cyclic mode */
102
103         /* channel's basic info */
104         struct tasklet_struct tasklet;
105         u32 dcmd;
106         u32 drcmr;
107         u32 dev_addr;
108
109         /* list for desc */
110         spinlock_t desc_lock;           /* Descriptor list lock */
111         struct list_head chain_pending; /* Link descriptors queue for pending */
112         struct list_head chain_running; /* Link descriptors queue for running */
113         bool idle;                      /* channel statue machine */
114         bool byte_align;
115
116         struct dma_pool *desc_pool;     /* Descriptors pool */
117 };
118
119 struct mmp_pdma_phy {
120         int idx;
121         void __iomem *base;
122         struct mmp_pdma_chan *vchan;
123 };
124
125 struct mmp_pdma_device {
126         int                             dma_channels;
127         void __iomem                    *base;
128         struct device                   *dev;
129         struct dma_device               device;
130         struct mmp_pdma_phy             *phy;
131         spinlock_t phy_lock; /* protect alloc/free phy channels */
132 };
133
134 #define tx_to_mmp_pdma_desc(tx)                                 \
135         container_of(tx, struct mmp_pdma_desc_sw, async_tx)
136 #define to_mmp_pdma_desc(lh)                                    \
137         container_of(lh, struct mmp_pdma_desc_sw, node)
138 #define to_mmp_pdma_chan(dchan)                                 \
139         container_of(dchan, struct mmp_pdma_chan, chan)
140 #define to_mmp_pdma_dev(dmadev)                                 \
141         container_of(dmadev, struct mmp_pdma_device, device)
142
143 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
144 {
145         u32 reg = (phy->idx << 4) + DDADR;
146
147         writel(addr, phy->base + reg);
148 }
149
150 static void enable_chan(struct mmp_pdma_phy *phy)
151 {
152         u32 reg, dalgn;
153
154         if (!phy->vchan)
155                 return;
156
157         reg = DRCMR(phy->vchan->drcmr);
158         writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
159
160         dalgn = readl(phy->base + DALGN);
161         if (phy->vchan->byte_align)
162                 dalgn |= 1 << phy->idx;
163         else
164                 dalgn &= ~(1 << phy->idx);
165         writel(dalgn, phy->base + DALGN);
166
167         reg = (phy->idx << 2) + DCSR;
168         writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg);
169 }
170
171 static void disable_chan(struct mmp_pdma_phy *phy)
172 {
173         u32 reg;
174
175         if (!phy)
176                 return;
177
178         reg = (phy->idx << 2) + DCSR;
179         writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg);
180 }
181
182 static int clear_chan_irq(struct mmp_pdma_phy *phy)
183 {
184         u32 dcsr;
185         u32 dint = readl(phy->base + DINT);
186         u32 reg = (phy->idx << 2) + DCSR;
187
188         if (!(dint & BIT(phy->idx)))
189                 return -EAGAIN;
190
191         /* clear irq */
192         dcsr = readl(phy->base + reg);
193         writel(dcsr, phy->base + reg);
194         if ((dcsr & DCSR_BUSERR) && (phy->vchan))
195                 dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
196
197         return 0;
198 }
199
200 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
201 {
202         struct mmp_pdma_phy *phy = dev_id;
203
204         if (clear_chan_irq(phy) != 0)
205                 return IRQ_NONE;
206
207         tasklet_schedule(&phy->vchan->tasklet);
208         return IRQ_HANDLED;
209 }
210
211 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
212 {
213         struct mmp_pdma_device *pdev = dev_id;
214         struct mmp_pdma_phy *phy;
215         u32 dint = readl(pdev->base + DINT);
216         int i, ret;
217         int irq_num = 0;
218
219         while (dint) {
220                 i = __ffs(dint);
221                 /* only handle interrupts belonging to pdma driver*/
222                 if (i >= pdev->dma_channels)
223                         break;
224                 dint &= (dint - 1);
225                 phy = &pdev->phy[i];
226                 ret = mmp_pdma_chan_handler(irq, phy);
227                 if (ret == IRQ_HANDLED)
228                         irq_num++;
229         }
230
231         if (irq_num)
232                 return IRQ_HANDLED;
233
234         return IRQ_NONE;
235 }
236
237 /* lookup free phy channel as descending priority */
238 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
239 {
240         int prio, i;
241         struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
242         struct mmp_pdma_phy *phy, *found = NULL;
243         unsigned long flags;
244
245         /*
246          * dma channel priorities
247          * ch 0 - 3,  16 - 19  <--> (0)
248          * ch 4 - 7,  20 - 23  <--> (1)
249          * ch 8 - 11, 24 - 27  <--> (2)
250          * ch 12 - 15, 28 - 31  <--> (3)
251          */
252
253         spin_lock_irqsave(&pdev->phy_lock, flags);
254         for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
255                 for (i = 0; i < pdev->dma_channels; i++) {
256                         if (prio != (i & 0xf) >> 2)
257                                 continue;
258                         phy = &pdev->phy[i];
259                         if (!phy->vchan) {
260                                 phy->vchan = pchan;
261                                 found = phy;
262                                 goto out_unlock;
263                         }
264                 }
265         }
266
267 out_unlock:
268         spin_unlock_irqrestore(&pdev->phy_lock, flags);
269         return found;
270 }
271
272 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
273 {
274         struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
275         unsigned long flags;
276         u32 reg;
277
278         if (!pchan->phy)
279                 return;
280
281         /* clear the channel mapping in DRCMR */
282         reg = DRCMR(pchan->drcmr);
283         writel(0, pchan->phy->base + reg);
284
285         spin_lock_irqsave(&pdev->phy_lock, flags);
286         pchan->phy->vchan = NULL;
287         pchan->phy = NULL;
288         spin_unlock_irqrestore(&pdev->phy_lock, flags);
289 }
290
291 /**
292  * start_pending_queue - transfer any pending transactions
293  * pending list ==> running list
294  */
295 static void start_pending_queue(struct mmp_pdma_chan *chan)
296 {
297         struct mmp_pdma_desc_sw *desc;
298
299         /* still in running, irq will start the pending list */
300         if (!chan->idle) {
301                 dev_dbg(chan->dev, "DMA controller still busy\n");
302                 return;
303         }
304
305         if (list_empty(&chan->chain_pending)) {
306                 /* chance to re-fetch phy channel with higher prio */
307                 mmp_pdma_free_phy(chan);
308                 dev_dbg(chan->dev, "no pending list\n");
309                 return;
310         }
311
312         if (!chan->phy) {
313                 chan->phy = lookup_phy(chan);
314                 if (!chan->phy) {
315                         dev_dbg(chan->dev, "no free dma channel\n");
316                         return;
317                 }
318         }
319
320         /*
321          * pending -> running
322          * reintilize pending list
323          */
324         desc = list_first_entry(&chan->chain_pending,
325                                 struct mmp_pdma_desc_sw, node);
326         list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
327
328         /*
329          * Program the descriptor's address into the DMA controller,
330          * then start the DMA transaction
331          */
332         set_desc(chan->phy, desc->async_tx.phys);
333         enable_chan(chan->phy);
334         chan->idle = false;
335 }
336
337
338 /* desc->tx_list ==> pending list */
339 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
340 {
341         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
342         struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
343         struct mmp_pdma_desc_sw *child;
344         unsigned long flags;
345         dma_cookie_t cookie = -EBUSY;
346
347         spin_lock_irqsave(&chan->desc_lock, flags);
348
349         list_for_each_entry(child, &desc->tx_list, node) {
350                 cookie = dma_cookie_assign(&child->async_tx);
351         }
352
353         /* softly link to pending list - desc->tx_list ==> pending list */
354         list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
355
356         spin_unlock_irqrestore(&chan->desc_lock, flags);
357
358         return cookie;
359 }
360
361 static struct mmp_pdma_desc_sw *
362 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
363 {
364         struct mmp_pdma_desc_sw *desc;
365         dma_addr_t pdesc;
366
367         desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
368         if (!desc) {
369                 dev_err(chan->dev, "out of memory for link descriptor\n");
370                 return NULL;
371         }
372
373         memset(desc, 0, sizeof(*desc));
374         INIT_LIST_HEAD(&desc->tx_list);
375         dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
376         /* each desc has submit */
377         desc->async_tx.tx_submit = mmp_pdma_tx_submit;
378         desc->async_tx.phys = pdesc;
379
380         return desc;
381 }
382
383 /**
384  * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
385  *
386  * This function will create a dma pool for descriptor allocation.
387  * Request irq only when channel is requested
388  * Return - The number of allocated descriptors.
389  */
390
391 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
392 {
393         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
394
395         if (chan->desc_pool)
396                 return 1;
397
398         chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
399                                           chan->dev,
400                                           sizeof(struct mmp_pdma_desc_sw),
401                                           __alignof__(struct mmp_pdma_desc_sw),
402                                           0);
403         if (!chan->desc_pool) {
404                 dev_err(chan->dev, "unable to allocate descriptor pool\n");
405                 return -ENOMEM;
406         }
407
408         mmp_pdma_free_phy(chan);
409         chan->idle = true;
410         chan->dev_addr = 0;
411         return 1;
412 }
413
414 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
415                                     struct list_head *list)
416 {
417         struct mmp_pdma_desc_sw *desc, *_desc;
418
419         list_for_each_entry_safe(desc, _desc, list, node) {
420                 list_del(&desc->node);
421                 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
422         }
423 }
424
425 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
426 {
427         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
428         unsigned long flags;
429
430         spin_lock_irqsave(&chan->desc_lock, flags);
431         mmp_pdma_free_desc_list(chan, &chan->chain_pending);
432         mmp_pdma_free_desc_list(chan, &chan->chain_running);
433         spin_unlock_irqrestore(&chan->desc_lock, flags);
434
435         dma_pool_destroy(chan->desc_pool);
436         chan->desc_pool = NULL;
437         chan->idle = true;
438         chan->dev_addr = 0;
439         mmp_pdma_free_phy(chan);
440         return;
441 }
442
443 static struct dma_async_tx_descriptor *
444 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
445                      dma_addr_t dma_dst, dma_addr_t dma_src,
446                      size_t len, unsigned long flags)
447 {
448         struct mmp_pdma_chan *chan;
449         struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
450         size_t copy = 0;
451
452         if (!dchan)
453                 return NULL;
454
455         if (!len)
456                 return NULL;
457
458         chan = to_mmp_pdma_chan(dchan);
459         chan->byte_align = false;
460
461         if (!chan->dir) {
462                 chan->dir = DMA_MEM_TO_MEM;
463                 chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
464                 chan->dcmd |= DCMD_BURST32;
465         }
466
467         do {
468                 /* Allocate the link descriptor from DMA pool */
469                 new = mmp_pdma_alloc_descriptor(chan);
470                 if (!new) {
471                         dev_err(chan->dev, "no memory for desc\n");
472                         goto fail;
473                 }
474
475                 copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
476                 if (dma_src & 0x7 || dma_dst & 0x7)
477                         chan->byte_align = true;
478
479                 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
480                 new->desc.dsadr = dma_src;
481                 new->desc.dtadr = dma_dst;
482
483                 if (!first)
484                         first = new;
485                 else
486                         prev->desc.ddadr = new->async_tx.phys;
487
488                 new->async_tx.cookie = 0;
489                 async_tx_ack(&new->async_tx);
490
491                 prev = new;
492                 len -= copy;
493
494                 if (chan->dir == DMA_MEM_TO_DEV) {
495                         dma_src += copy;
496                 } else if (chan->dir == DMA_DEV_TO_MEM) {
497                         dma_dst += copy;
498                 } else if (chan->dir == DMA_MEM_TO_MEM) {
499                         dma_src += copy;
500                         dma_dst += copy;
501                 }
502
503                 /* Insert the link descriptor to the LD ring */
504                 list_add_tail(&new->node, &first->tx_list);
505         } while (len);
506
507         first->async_tx.flags = flags; /* client is in control of this ack */
508         first->async_tx.cookie = -EBUSY;
509
510         /* last desc and fire IRQ */
511         new->desc.ddadr = DDADR_STOP;
512         new->desc.dcmd |= DCMD_ENDIRQEN;
513
514         chan->cyclic_first = NULL;
515
516         return &first->async_tx;
517
518 fail:
519         if (first)
520                 mmp_pdma_free_desc_list(chan, &first->tx_list);
521         return NULL;
522 }
523
524 static struct dma_async_tx_descriptor *
525 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
526                        unsigned int sg_len, enum dma_transfer_direction dir,
527                        unsigned long flags, void *context)
528 {
529         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
530         struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
531         size_t len, avail;
532         struct scatterlist *sg;
533         dma_addr_t addr;
534         int i;
535
536         if ((sgl == NULL) || (sg_len == 0))
537                 return NULL;
538
539         chan->byte_align = false;
540
541         for_each_sg(sgl, sg, sg_len, i) {
542                 addr = sg_dma_address(sg);
543                 avail = sg_dma_len(sgl);
544
545                 do {
546                         len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
547                         if (addr & 0x7)
548                                 chan->byte_align = true;
549
550                         /* allocate and populate the descriptor */
551                         new = mmp_pdma_alloc_descriptor(chan);
552                         if (!new) {
553                                 dev_err(chan->dev, "no memory for desc\n");
554                                 goto fail;
555                         }
556
557                         new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
558                         if (dir == DMA_MEM_TO_DEV) {
559                                 new->desc.dsadr = addr;
560                                 new->desc.dtadr = chan->dev_addr;
561                         } else {
562                                 new->desc.dsadr = chan->dev_addr;
563                                 new->desc.dtadr = addr;
564                         }
565
566                         if (!first)
567                                 first = new;
568                         else
569                                 prev->desc.ddadr = new->async_tx.phys;
570
571                         new->async_tx.cookie = 0;
572                         async_tx_ack(&new->async_tx);
573                         prev = new;
574
575                         /* Insert the link descriptor to the LD ring */
576                         list_add_tail(&new->node, &first->tx_list);
577
578                         /* update metadata */
579                         addr += len;
580                         avail -= len;
581                 } while (avail);
582         }
583
584         first->async_tx.cookie = -EBUSY;
585         first->async_tx.flags = flags;
586
587         /* last desc and fire IRQ */
588         new->desc.ddadr = DDADR_STOP;
589         new->desc.dcmd |= DCMD_ENDIRQEN;
590
591         chan->dir = dir;
592         chan->cyclic_first = NULL;
593
594         return &first->async_tx;
595
596 fail:
597         if (first)
598                 mmp_pdma_free_desc_list(chan, &first->tx_list);
599         return NULL;
600 }
601
602 static struct dma_async_tx_descriptor *
603 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
604                          dma_addr_t buf_addr, size_t len, size_t period_len,
605                          enum dma_transfer_direction direction,
606                          unsigned long flags)
607 {
608         struct mmp_pdma_chan *chan;
609         struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
610         dma_addr_t dma_src, dma_dst;
611
612         if (!dchan || !len || !period_len)
613                 return NULL;
614
615         /* the buffer length must be a multiple of period_len */
616         if (len % period_len != 0)
617                 return NULL;
618
619         if (period_len > PDMA_MAX_DESC_BYTES)
620                 return NULL;
621
622         chan = to_mmp_pdma_chan(dchan);
623
624         switch (direction) {
625         case DMA_MEM_TO_DEV:
626                 dma_src = buf_addr;
627                 dma_dst = chan->dev_addr;
628                 break;
629         case DMA_DEV_TO_MEM:
630                 dma_dst = buf_addr;
631                 dma_src = chan->dev_addr;
632                 break;
633         default:
634                 dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
635                 return NULL;
636         }
637
638         chan->dir = direction;
639
640         do {
641                 /* Allocate the link descriptor from DMA pool */
642                 new = mmp_pdma_alloc_descriptor(chan);
643                 if (!new) {
644                         dev_err(chan->dev, "no memory for desc\n");
645                         goto fail;
646                 }
647
648                 new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
649                                   (DCMD_LENGTH & period_len));
650                 new->desc.dsadr = dma_src;
651                 new->desc.dtadr = dma_dst;
652
653                 if (!first)
654                         first = new;
655                 else
656                         prev->desc.ddadr = new->async_tx.phys;
657
658                 new->async_tx.cookie = 0;
659                 async_tx_ack(&new->async_tx);
660
661                 prev = new;
662                 len -= period_len;
663
664                 if (chan->dir == DMA_MEM_TO_DEV)
665                         dma_src += period_len;
666                 else
667                         dma_dst += period_len;
668
669                 /* Insert the link descriptor to the LD ring */
670                 list_add_tail(&new->node, &first->tx_list);
671         } while (len);
672
673         first->async_tx.flags = flags; /* client is in control of this ack */
674         first->async_tx.cookie = -EBUSY;
675
676         /* make the cyclic link */
677         new->desc.ddadr = first->async_tx.phys;
678         chan->cyclic_first = first;
679
680         return &first->async_tx;
681
682 fail:
683         if (first)
684                 mmp_pdma_free_desc_list(chan, &first->tx_list);
685         return NULL;
686 }
687
688 static int mmp_pdma_config(struct dma_chan *dchan,
689                            struct dma_slave_config *cfg)
690 {
691         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
692         u32 maxburst = 0, addr = 0;
693         enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
694
695         if (!dchan)
696                 return -EINVAL;
697
698         if (cfg->direction == DMA_DEV_TO_MEM) {
699                 chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
700                 maxburst = cfg->src_maxburst;
701                 width = cfg->src_addr_width;
702                 addr = cfg->src_addr;
703         } else if (cfg->direction == DMA_MEM_TO_DEV) {
704                 chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
705                 maxburst = cfg->dst_maxburst;
706                 width = cfg->dst_addr_width;
707                 addr = cfg->dst_addr;
708         }
709
710         if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
711                 chan->dcmd |= DCMD_WIDTH1;
712         else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
713                 chan->dcmd |= DCMD_WIDTH2;
714         else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
715                 chan->dcmd |= DCMD_WIDTH4;
716
717         if (maxburst == 8)
718                 chan->dcmd |= DCMD_BURST8;
719         else if (maxburst == 16)
720                 chan->dcmd |= DCMD_BURST16;
721         else if (maxburst == 32)
722                 chan->dcmd |= DCMD_BURST32;
723
724         chan->dir = cfg->direction;
725         chan->dev_addr = addr;
726         /* FIXME: drivers should be ported over to use the filter
727          * function. Once that's done, the following two lines can
728          * be removed.
729          */
730         if (cfg->slave_id)
731                 chan->drcmr = cfg->slave_id;
732
733         return 0;
734 }
735
736 static int mmp_pdma_terminate_all(struct dma_chan *dchan)
737 {
738         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
739         unsigned long flags;
740
741         if (!dchan)
742                 return -EINVAL;
743
744         disable_chan(chan->phy);
745         mmp_pdma_free_phy(chan);
746         spin_lock_irqsave(&chan->desc_lock, flags);
747         mmp_pdma_free_desc_list(chan, &chan->chain_pending);
748         mmp_pdma_free_desc_list(chan, &chan->chain_running);
749         spin_unlock_irqrestore(&chan->desc_lock, flags);
750         chan->idle = true;
751
752         return 0;
753 }
754
755 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
756                                      dma_cookie_t cookie)
757 {
758         struct mmp_pdma_desc_sw *sw;
759         u32 curr, residue = 0;
760         bool passed = false;
761         bool cyclic = chan->cyclic_first != NULL;
762
763         /*
764          * If the channel does not have a phy pointer anymore, it has already
765          * been completed. Therefore, its residue is 0.
766          */
767         if (!chan->phy)
768                 return 0;
769
770         if (chan->dir == DMA_DEV_TO_MEM)
771                 curr = readl(chan->phy->base + DTADR(chan->phy->idx));
772         else
773                 curr = readl(chan->phy->base + DSADR(chan->phy->idx));
774
775         list_for_each_entry(sw, &chan->chain_running, node) {
776                 u32 start, end, len;
777
778                 if (chan->dir == DMA_DEV_TO_MEM)
779                         start = sw->desc.dtadr;
780                 else
781                         start = sw->desc.dsadr;
782
783                 len = sw->desc.dcmd & DCMD_LENGTH;
784                 end = start + len;
785
786                 /*
787                  * 'passed' will be latched once we found the descriptor which
788                  * lies inside the boundaries of the curr pointer. All
789                  * descriptors that occur in the list _after_ we found that
790                  * partially handled descriptor are still to be processed and
791                  * are hence added to the residual bytes counter.
792                  */
793
794                 if (passed) {
795                         residue += len;
796                 } else if (curr >= start && curr <= end) {
797                         residue += end - curr;
798                         passed = true;
799                 }
800
801                 /*
802                  * Descriptors that have the ENDIRQEN bit set mark the end of a
803                  * transaction chain, and the cookie assigned with it has been
804                  * returned previously from mmp_pdma_tx_submit().
805                  *
806                  * In case we have multiple transactions in the running chain,
807                  * and the cookie does not match the one the user asked us
808                  * about, reset the state variables and start over.
809                  *
810                  * This logic does not apply to cyclic transactions, where all
811                  * descriptors have the ENDIRQEN bit set, and for which we
812                  * can't have multiple transactions on one channel anyway.
813                  */
814                 if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
815                         continue;
816
817                 if (sw->async_tx.cookie == cookie) {
818                         return residue;
819                 } else {
820                         residue = 0;
821                         passed = false;
822                 }
823         }
824
825         /* We should only get here in case of cyclic transactions */
826         return residue;
827 }
828
829 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
830                                           dma_cookie_t cookie,
831                                           struct dma_tx_state *txstate)
832 {
833         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
834         enum dma_status ret;
835
836         ret = dma_cookie_status(dchan, cookie, txstate);
837         if (likely(ret != DMA_ERROR))
838                 dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
839
840         return ret;
841 }
842
843 /**
844  * mmp_pdma_issue_pending - Issue the DMA start command
845  * pending list ==> running list
846  */
847 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
848 {
849         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
850         unsigned long flags;
851
852         spin_lock_irqsave(&chan->desc_lock, flags);
853         start_pending_queue(chan);
854         spin_unlock_irqrestore(&chan->desc_lock, flags);
855 }
856
857 /*
858  * dma_do_tasklet
859  * Do call back
860  * Start pending list
861  */
862 static void dma_do_tasklet(unsigned long data)
863 {
864         struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data;
865         struct mmp_pdma_desc_sw *desc, *_desc;
866         LIST_HEAD(chain_cleanup);
867         unsigned long flags;
868
869         if (chan->cyclic_first) {
870                 dma_async_tx_callback cb = NULL;
871                 void *cb_data = NULL;
872
873                 spin_lock_irqsave(&chan->desc_lock, flags);
874                 desc = chan->cyclic_first;
875                 cb = desc->async_tx.callback;
876                 cb_data = desc->async_tx.callback_param;
877                 spin_unlock_irqrestore(&chan->desc_lock, flags);
878
879                 if (cb)
880                         cb(cb_data);
881
882                 return;
883         }
884
885         /* submit pending list; callback for each desc; free desc */
886         spin_lock_irqsave(&chan->desc_lock, flags);
887
888         list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
889                 /*
890                  * move the descriptors to a temporary list so we can drop
891                  * the lock during the entire cleanup operation
892                  */
893                 list_move(&desc->node, &chain_cleanup);
894
895                 /*
896                  * Look for the first list entry which has the ENDIRQEN flag
897                  * set. That is the descriptor we got an interrupt for, so
898                  * complete that transaction and its cookie.
899                  */
900                 if (desc->desc.dcmd & DCMD_ENDIRQEN) {
901                         dma_cookie_t cookie = desc->async_tx.cookie;
902                         dma_cookie_complete(&desc->async_tx);
903                         dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
904                         break;
905                 }
906         }
907
908         /*
909          * The hardware is idle and ready for more when the
910          * chain_running list is empty.
911          */
912         chan->idle = list_empty(&chan->chain_running);
913
914         /* Start any pending transactions automatically */
915         start_pending_queue(chan);
916         spin_unlock_irqrestore(&chan->desc_lock, flags);
917
918         /* Run the callback for each descriptor, in order */
919         list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
920                 struct dma_async_tx_descriptor *txd = &desc->async_tx;
921
922                 /* Remove from the list of transactions */
923                 list_del(&desc->node);
924                 /* Run the link descriptor callback function */
925                 if (txd->callback)
926                         txd->callback(txd->callback_param);
927
928                 dma_pool_free(chan->desc_pool, desc, txd->phys);
929         }
930 }
931
932 static int mmp_pdma_remove(struct platform_device *op)
933 {
934         struct mmp_pdma_device *pdev = platform_get_drvdata(op);
935
936         dma_async_device_unregister(&pdev->device);
937         return 0;
938 }
939
940 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
941 {
942         struct mmp_pdma_phy *phy  = &pdev->phy[idx];
943         struct mmp_pdma_chan *chan;
944         int ret;
945
946         chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
947         if (chan == NULL)
948                 return -ENOMEM;
949
950         phy->idx = idx;
951         phy->base = pdev->base;
952
953         if (irq) {
954                 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
955                                        IRQF_SHARED, "pdma", phy);
956                 if (ret) {
957                         dev_err(pdev->dev, "channel request irq fail!\n");
958                         return ret;
959                 }
960         }
961
962         spin_lock_init(&chan->desc_lock);
963         chan->dev = pdev->dev;
964         chan->chan.device = &pdev->device;
965         tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
966         INIT_LIST_HEAD(&chan->chain_pending);
967         INIT_LIST_HEAD(&chan->chain_running);
968
969         /* register virt channel to dma engine */
970         list_add_tail(&chan->chan.device_node, &pdev->device.channels);
971
972         return 0;
973 }
974
975 static const struct of_device_id mmp_pdma_dt_ids[] = {
976         { .compatible = "marvell,pdma-1.0", },
977         {}
978 };
979 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
980
981 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
982                                            struct of_dma *ofdma)
983 {
984         struct mmp_pdma_device *d = ofdma->of_dma_data;
985         struct dma_chan *chan;
986
987         chan = dma_get_any_slave_channel(&d->device);
988         if (!chan)
989                 return NULL;
990
991         to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
992
993         return chan;
994 }
995
996 static int mmp_pdma_probe(struct platform_device *op)
997 {
998         struct mmp_pdma_device *pdev;
999         const struct of_device_id *of_id;
1000         struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
1001         struct resource *iores;
1002         int i, ret, irq = 0;
1003         int dma_channels = 0, irq_num = 0;
1004         const enum dma_slave_buswidth widths =
1005                 DMA_SLAVE_BUSWIDTH_1_BYTE   | DMA_SLAVE_BUSWIDTH_2_BYTES |
1006                 DMA_SLAVE_BUSWIDTH_4_BYTES;
1007
1008         pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1009         if (!pdev)
1010                 return -ENOMEM;
1011
1012         pdev->dev = &op->dev;
1013
1014         spin_lock_init(&pdev->phy_lock);
1015
1016         iores = platform_get_resource(op, IORESOURCE_MEM, 0);
1017         pdev->base = devm_ioremap_resource(pdev->dev, iores);
1018         if (IS_ERR(pdev->base))
1019                 return PTR_ERR(pdev->base);
1020
1021         of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev);
1022         if (of_id)
1023                 of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1024                                      &dma_channels);
1025         else if (pdata && pdata->dma_channels)
1026                 dma_channels = pdata->dma_channels;
1027         else
1028                 dma_channels = 32;      /* default 32 channel */
1029         pdev->dma_channels = dma_channels;
1030
1031         for (i = 0; i < dma_channels; i++) {
1032                 if (platform_get_irq(op, i) > 0)
1033                         irq_num++;
1034         }
1035
1036         pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1037                                  GFP_KERNEL);
1038         if (pdev->phy == NULL)
1039                 return -ENOMEM;
1040
1041         INIT_LIST_HEAD(&pdev->device.channels);
1042
1043         if (irq_num != dma_channels) {
1044                 /* all chan share one irq, demux inside */
1045                 irq = platform_get_irq(op, 0);
1046                 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1047                                        IRQF_SHARED, "pdma", pdev);
1048                 if (ret)
1049                         return ret;
1050         }
1051
1052         for (i = 0; i < dma_channels; i++) {
1053                 irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1054                 ret = mmp_pdma_chan_init(pdev, i, irq);
1055                 if (ret)
1056                         return ret;
1057         }
1058
1059         dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1060         dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1061         dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1062         dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1063         pdev->device.dev = &op->dev;
1064         pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1065         pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1066         pdev->device.device_tx_status = mmp_pdma_tx_status;
1067         pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1068         pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1069         pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1070         pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1071         pdev->device.device_config = mmp_pdma_config;
1072         pdev->device.device_terminate_all = mmp_pdma_terminate_all;
1073         pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES;
1074         pdev->device.src_addr_widths = widths;
1075         pdev->device.dst_addr_widths = widths;
1076         pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1077         pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1078
1079         if (pdev->dev->coherent_dma_mask)
1080                 dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1081         else
1082                 dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1083
1084         ret = dma_async_device_register(&pdev->device);
1085         if (ret) {
1086                 dev_err(pdev->device.dev, "unable to register\n");
1087                 return ret;
1088         }
1089
1090         if (op->dev.of_node) {
1091                 /* Device-tree DMA controller registration */
1092                 ret = of_dma_controller_register(op->dev.of_node,
1093                                                  mmp_pdma_dma_xlate, pdev);
1094                 if (ret < 0) {
1095                         dev_err(&op->dev, "of_dma_controller_register failed\n");
1096                         return ret;
1097                 }
1098         }
1099
1100         platform_set_drvdata(op, pdev);
1101         dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1102         return 0;
1103 }
1104
1105 static const struct platform_device_id mmp_pdma_id_table[] = {
1106         { "mmp-pdma", },
1107         { },
1108 };
1109
1110 static struct platform_driver mmp_pdma_driver = {
1111         .driver         = {
1112                 .name   = "mmp-pdma",
1113                 .of_match_table = mmp_pdma_dt_ids,
1114         },
1115         .id_table       = mmp_pdma_id_table,
1116         .probe          = mmp_pdma_probe,
1117         .remove         = mmp_pdma_remove,
1118 };
1119
1120 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param)
1121 {
1122         struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan);
1123
1124         if (chan->device->dev->driver != &mmp_pdma_driver.driver)
1125                 return false;
1126
1127         c->drcmr = *(unsigned int *)param;
1128
1129         return true;
1130 }
1131 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn);
1132
1133 module_platform_driver(mmp_pdma_driver);
1134
1135 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1136 MODULE_AUTHOR("Marvell International Ltd.");
1137 MODULE_LICENSE("GPL v2");