]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/edac/i7core_edac.c
drm: msm: Add ASoC generic hdmi audio codec support.
[karo-tx-linux.git] / drivers / edac / i7core_edac.c
1 /* Intel i7 core/Nehalem Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5  * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6  * and Westmere-EP.
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License version 2 only.
10  *
11  * Copyright (c) 2009-2010 by:
12  *       Mauro Carvalho Chehab
13  *
14  * Red Hat Inc. http://www.redhat.com
15  *
16  * Forked and adapted from the i5400_edac driver
17  *
18  * Based on the following public Intel datasheets:
19  * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20  * Datasheet, Volume 2:
21  *      http://download.intel.com/design/processor/datashts/320835.pdf
22  * Intel Xeon Processor 5500 Series Datasheet Volume 2
23  *      http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24  * also available at:
25  *      http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
26  */
27
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/pci_ids.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/dmi.h>
35 #include <linux/edac.h>
36 #include <linux/mmzone.h>
37 #include <linux/smp.h>
38 #include <asm/mce.h>
39 #include <asm/processor.h>
40 #include <asm/div64.h>
41
42 #include "edac_core.h"
43
44 /* Static vars */
45 static LIST_HEAD(i7core_edac_list);
46 static DEFINE_MUTEX(i7core_edac_lock);
47 static int probed;
48
49 static int use_pci_fixup;
50 module_param(use_pci_fixup, int, 0444);
51 MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52 /*
53  * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
54  * registers start at bus 255, and are not reported by BIOS.
55  * We currently find devices with only 2 sockets. In order to support more QPI
56  * Quick Path Interconnect, just increment this number.
57  */
58 #define MAX_SOCKET_BUSES        2
59
60
61 /*
62  * Alter this version for the module when modifications are made
63  */
64 #define I7CORE_REVISION    " Ver: 1.0.0"
65 #define EDAC_MOD_STR      "i7core_edac"
66
67 /*
68  * Debug macros
69  */
70 #define i7core_printk(level, fmt, arg...)                       \
71         edac_printk(level, "i7core", fmt, ##arg)
72
73 #define i7core_mc_printk(mci, level, fmt, arg...)               \
74         edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
75
76 /*
77  * i7core Memory Controller Registers
78  */
79
80         /* OFFSETS for Device 0 Function 0 */
81
82 #define MC_CFG_CONTROL  0x90
83   #define MC_CFG_UNLOCK         0x02
84   #define MC_CFG_LOCK           0x00
85
86         /* OFFSETS for Device 3 Function 0 */
87
88 #define MC_CONTROL      0x48
89 #define MC_STATUS       0x4c
90 #define MC_MAX_DOD      0x64
91
92 /*
93  * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
94  * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
95  */
96
97 #define MC_TEST_ERR_RCV1        0x60
98   #define DIMM2_COR_ERR(r)                      ((r) & 0x7fff)
99
100 #define MC_TEST_ERR_RCV0        0x64
101   #define DIMM1_COR_ERR(r)                      (((r) >> 16) & 0x7fff)
102   #define DIMM0_COR_ERR(r)                      ((r) & 0x7fff)
103
104 /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
105 #define MC_SSRCONTROL           0x48
106   #define SSR_MODE_DISABLE      0x00
107   #define SSR_MODE_ENABLE       0x01
108   #define SSR_MODE_MASK         0x03
109
110 #define MC_SCRUB_CONTROL        0x4c
111   #define STARTSCRUB            (1 << 24)
112   #define SCRUBINTERVAL_MASK    0xffffff
113
114 #define MC_COR_ECC_CNT_0        0x80
115 #define MC_COR_ECC_CNT_1        0x84
116 #define MC_COR_ECC_CNT_2        0x88
117 #define MC_COR_ECC_CNT_3        0x8c
118 #define MC_COR_ECC_CNT_4        0x90
119 #define MC_COR_ECC_CNT_5        0x94
120
121 #define DIMM_TOP_COR_ERR(r)                     (((r) >> 16) & 0x7fff)
122 #define DIMM_BOT_COR_ERR(r)                     ((r) & 0x7fff)
123
124
125         /* OFFSETS for Devices 4,5 and 6 Function 0 */
126
127 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
128   #define THREE_DIMMS_PRESENT           (1 << 24)
129   #define SINGLE_QUAD_RANK_PRESENT      (1 << 23)
130   #define QUAD_RANK_PRESENT             (1 << 22)
131   #define REGISTERED_DIMM               (1 << 15)
132
133 #define MC_CHANNEL_MAPPER       0x60
134   #define RDLCH(r, ch)          ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
135   #define WRLCH(r, ch)          ((((r) >> (ch * 6)) & 0x07) - 1)
136
137 #define MC_CHANNEL_RANK_PRESENT 0x7c
138   #define RANK_PRESENT_MASK             0xffff
139
140 #define MC_CHANNEL_ADDR_MATCH   0xf0
141 #define MC_CHANNEL_ERROR_MASK   0xf8
142 #define MC_CHANNEL_ERROR_INJECT 0xfc
143   #define INJECT_ADDR_PARITY    0x10
144   #define INJECT_ECC            0x08
145   #define MASK_CACHELINE        0x06
146   #define MASK_FULL_CACHELINE   0x06
147   #define MASK_MSB32_CACHELINE  0x04
148   #define MASK_LSB32_CACHELINE  0x02
149   #define NO_MASK_CACHELINE     0x00
150   #define REPEAT_EN             0x01
151
152         /* OFFSETS for Devices 4,5 and 6 Function 1 */
153
154 #define MC_DOD_CH_DIMM0         0x48
155 #define MC_DOD_CH_DIMM1         0x4c
156 #define MC_DOD_CH_DIMM2         0x50
157   #define RANKOFFSET_MASK       ((1 << 12) | (1 << 11) | (1 << 10))
158   #define RANKOFFSET(x)         ((x & RANKOFFSET_MASK) >> 10)
159   #define DIMM_PRESENT_MASK     (1 << 9)
160   #define DIMM_PRESENT(x)       (((x) & DIMM_PRESENT_MASK) >> 9)
161   #define MC_DOD_NUMBANK_MASK           ((1 << 8) | (1 << 7))
162   #define MC_DOD_NUMBANK(x)             (((x) & MC_DOD_NUMBANK_MASK) >> 7)
163   #define MC_DOD_NUMRANK_MASK           ((1 << 6) | (1 << 5))
164   #define MC_DOD_NUMRANK(x)             (((x) & MC_DOD_NUMRANK_MASK) >> 5)
165   #define MC_DOD_NUMROW_MASK            ((1 << 4) | (1 << 3) | (1 << 2))
166   #define MC_DOD_NUMROW(x)              (((x) & MC_DOD_NUMROW_MASK) >> 2)
167   #define MC_DOD_NUMCOL_MASK            3
168   #define MC_DOD_NUMCOL(x)              ((x) & MC_DOD_NUMCOL_MASK)
169
170 #define MC_RANK_PRESENT         0x7c
171
172 #define MC_SAG_CH_0     0x80
173 #define MC_SAG_CH_1     0x84
174 #define MC_SAG_CH_2     0x88
175 #define MC_SAG_CH_3     0x8c
176 #define MC_SAG_CH_4     0x90
177 #define MC_SAG_CH_5     0x94
178 #define MC_SAG_CH_6     0x98
179 #define MC_SAG_CH_7     0x9c
180
181 #define MC_RIR_LIMIT_CH_0       0x40
182 #define MC_RIR_LIMIT_CH_1       0x44
183 #define MC_RIR_LIMIT_CH_2       0x48
184 #define MC_RIR_LIMIT_CH_3       0x4C
185 #define MC_RIR_LIMIT_CH_4       0x50
186 #define MC_RIR_LIMIT_CH_5       0x54
187 #define MC_RIR_LIMIT_CH_6       0x58
188 #define MC_RIR_LIMIT_CH_7       0x5C
189 #define MC_RIR_LIMIT_MASK       ((1 << 10) - 1)
190
191 #define MC_RIR_WAY_CH           0x80
192   #define MC_RIR_WAY_OFFSET_MASK        (((1 << 14) - 1) & ~0x7)
193   #define MC_RIR_WAY_RANK_MASK          0x7
194
195 /*
196  * i7core structs
197  */
198
199 #define NUM_CHANS 3
200 #define MAX_DIMMS 3             /* Max DIMMS per channel */
201 #define MAX_MCR_FUNC  4
202 #define MAX_CHAN_FUNC 3
203
204 struct i7core_info {
205         u32     mc_control;
206         u32     mc_status;
207         u32     max_dod;
208         u32     ch_map;
209 };
210
211
212 struct i7core_inject {
213         int     enable;
214
215         u32     section;
216         u32     type;
217         u32     eccmask;
218
219         /* Error address mask */
220         int channel, dimm, rank, bank, page, col;
221 };
222
223 struct i7core_channel {
224         bool            is_3dimms_present;
225         bool            is_single_4rank;
226         bool            has_4rank;
227         u32             dimms;
228 };
229
230 struct pci_id_descr {
231         int                     dev;
232         int                     func;
233         int                     dev_id;
234         int                     optional;
235 };
236
237 struct pci_id_table {
238         const struct pci_id_descr       *descr;
239         int                             n_devs;
240 };
241
242 struct i7core_dev {
243         struct list_head        list;
244         u8                      socket;
245         struct pci_dev          **pdev;
246         int                     n_devs;
247         struct mem_ctl_info     *mci;
248 };
249
250 struct i7core_pvt {
251         struct device *addrmatch_dev, *chancounts_dev;
252
253         struct pci_dev  *pci_noncore;
254         struct pci_dev  *pci_mcr[MAX_MCR_FUNC + 1];
255         struct pci_dev  *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
256
257         struct i7core_dev *i7core_dev;
258
259         struct i7core_info      info;
260         struct i7core_inject    inject;
261         struct i7core_channel   channel[NUM_CHANS];
262
263         int             ce_count_available;
264
265                         /* ECC corrected errors counts per udimm */
266         unsigned long   udimm_ce_count[MAX_DIMMS];
267         int             udimm_last_ce_count[MAX_DIMMS];
268                         /* ECC corrected errors counts per rdimm */
269         unsigned long   rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
270         int             rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
271
272         bool            is_registered, enable_scrub;
273
274         /* Fifo double buffers */
275         struct mce              mce_entry[MCE_LOG_LEN];
276         struct mce              mce_outentry[MCE_LOG_LEN];
277
278         /* Fifo in/out counters */
279         unsigned                mce_in, mce_out;
280
281         /* Count indicator to show errors not got */
282         unsigned                mce_overrun;
283
284         /* DCLK Frequency used for computing scrub rate */
285         int                     dclk_freq;
286
287         /* Struct to control EDAC polling */
288         struct edac_pci_ctl_info *i7core_pci;
289 };
290
291 #define PCI_DESCR(device, function, device_id)  \
292         .dev = (device),                        \
293         .func = (function),                     \
294         .dev_id = (device_id)
295
296 static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
297                 /* Memory controller */
298         { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
299         { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
300                         /* Exists only for RDIMM */
301         { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
302         { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
303
304                 /* Channel 0 */
305         { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
306         { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
307         { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
308         { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },
309
310                 /* Channel 1 */
311         { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
312         { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
313         { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
314         { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },
315
316                 /* Channel 2 */
317         { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
318         { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
319         { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
320         { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
321
322                 /* Generic Non-core registers */
323         /*
324          * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
325          * On Xeon 55xx, however, it has a different id (8086:2c40). So,
326          * the probing code needs to test for the other address in case of
327          * failure of this one
328          */
329         { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
330
331 };
332
333 static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
334         { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
335         { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
336         { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },
337
338         { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
339         { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
340         { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
341         { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },
342
343         { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
344         { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
345         { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
346         { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
347
348         /*
349          * This is the PCI device has an alternate address on some
350          * processors like Core i7 860
351          */
352         { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
353 };
354
355 static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
356                 /* Memory controller */
357         { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
358         { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
359                         /* Exists only for RDIMM */
360         { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
361         { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
362
363                 /* Channel 0 */
364         { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
365         { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
366         { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
367         { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },
368
369                 /* Channel 1 */
370         { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
371         { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
372         { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
373         { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },
374
375                 /* Channel 2 */
376         { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
377         { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
378         { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
379         { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
380
381                 /* Generic Non-core registers */
382         { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },
383
384 };
385
386 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
387 static const struct pci_id_table pci_dev_table[] = {
388         PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
389         PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
390         PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
391         {0,}                    /* 0 terminated list. */
392 };
393
394 /*
395  *      pci_device_id   table for which devices we are looking for
396  */
397 static const struct pci_device_id i7core_pci_tbl[] = {
398         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
399         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
400         {0,}                    /* 0 terminated list. */
401 };
402
403 /****************************************************************************
404                         Ancillary status routines
405  ****************************************************************************/
406
407         /* MC_CONTROL bits */
408 #define CH_ACTIVE(pvt, ch)      ((pvt)->info.mc_control & (1 << (8 + ch)))
409 #define ECCx8(pvt)              ((pvt)->info.mc_control & (1 << 1))
410
411         /* MC_STATUS bits */
412 #define ECC_ENABLED(pvt)        ((pvt)->info.mc_status & (1 << 4))
413 #define CH_DISABLED(pvt, ch)    ((pvt)->info.mc_status & (1 << ch))
414
415         /* MC_MAX_DOD read functions */
416 static inline int numdimms(u32 dimms)
417 {
418         return (dimms & 0x3) + 1;
419 }
420
421 static inline int numrank(u32 rank)
422 {
423         static const int ranks[] = { 1, 2, 4, -EINVAL };
424
425         return ranks[rank & 0x3];
426 }
427
428 static inline int numbank(u32 bank)
429 {
430         static const int banks[] = { 4, 8, 16, -EINVAL };
431
432         return banks[bank & 0x3];
433 }
434
435 static inline int numrow(u32 row)
436 {
437         static const int rows[] = {
438                 1 << 12, 1 << 13, 1 << 14, 1 << 15,
439                 1 << 16, -EINVAL, -EINVAL, -EINVAL,
440         };
441
442         return rows[row & 0x7];
443 }
444
445 static inline int numcol(u32 col)
446 {
447         static const int cols[] = {
448                 1 << 10, 1 << 11, 1 << 12, -EINVAL,
449         };
450         return cols[col & 0x3];
451 }
452
453 static struct i7core_dev *get_i7core_dev(u8 socket)
454 {
455         struct i7core_dev *i7core_dev;
456
457         list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
458                 if (i7core_dev->socket == socket)
459                         return i7core_dev;
460         }
461
462         return NULL;
463 }
464
465 static struct i7core_dev *alloc_i7core_dev(u8 socket,
466                                            const struct pci_id_table *table)
467 {
468         struct i7core_dev *i7core_dev;
469
470         i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
471         if (!i7core_dev)
472                 return NULL;
473
474         i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
475                                    GFP_KERNEL);
476         if (!i7core_dev->pdev) {
477                 kfree(i7core_dev);
478                 return NULL;
479         }
480
481         i7core_dev->socket = socket;
482         i7core_dev->n_devs = table->n_devs;
483         list_add_tail(&i7core_dev->list, &i7core_edac_list);
484
485         return i7core_dev;
486 }
487
488 static void free_i7core_dev(struct i7core_dev *i7core_dev)
489 {
490         list_del(&i7core_dev->list);
491         kfree(i7core_dev->pdev);
492         kfree(i7core_dev);
493 }
494
495 /****************************************************************************
496                         Memory check routines
497  ****************************************************************************/
498
499 static int get_dimm_config(struct mem_ctl_info *mci)
500 {
501         struct i7core_pvt *pvt = mci->pvt_info;
502         struct pci_dev *pdev;
503         int i, j;
504         enum edac_type mode;
505         enum mem_type mtype;
506         struct dimm_info *dimm;
507
508         /* Get data from the MC register, function 0 */
509         pdev = pvt->pci_mcr[0];
510         if (!pdev)
511                 return -ENODEV;
512
513         /* Device 3 function 0 reads */
514         pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
515         pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
516         pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
517         pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
518
519         edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
520                  pvt->i7core_dev->socket, pvt->info.mc_control,
521                  pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
522
523         if (ECC_ENABLED(pvt)) {
524                 edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
525                 if (ECCx8(pvt))
526                         mode = EDAC_S8ECD8ED;
527                 else
528                         mode = EDAC_S4ECD4ED;
529         } else {
530                 edac_dbg(0, "ECC disabled\n");
531                 mode = EDAC_NONE;
532         }
533
534         /* FIXME: need to handle the error codes */
535         edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
536                  numdimms(pvt->info.max_dod),
537                  numrank(pvt->info.max_dod >> 2),
538                  numbank(pvt->info.max_dod >> 4),
539                  numrow(pvt->info.max_dod >> 6),
540                  numcol(pvt->info.max_dod >> 9));
541
542         for (i = 0; i < NUM_CHANS; i++) {
543                 u32 data, dimm_dod[3], value[8];
544
545                 if (!pvt->pci_ch[i][0])
546                         continue;
547
548                 if (!CH_ACTIVE(pvt, i)) {
549                         edac_dbg(0, "Channel %i is not active\n", i);
550                         continue;
551                 }
552                 if (CH_DISABLED(pvt, i)) {
553                         edac_dbg(0, "Channel %i is disabled\n", i);
554                         continue;
555                 }
556
557                 /* Devices 4-6 function 0 */
558                 pci_read_config_dword(pvt->pci_ch[i][0],
559                                 MC_CHANNEL_DIMM_INIT_PARAMS, &data);
560
561
562                 if (data & THREE_DIMMS_PRESENT)
563                         pvt->channel[i].is_3dimms_present = true;
564
565                 if (data & SINGLE_QUAD_RANK_PRESENT)
566                         pvt->channel[i].is_single_4rank = true;
567
568                 if (data & QUAD_RANK_PRESENT)
569                         pvt->channel[i].has_4rank = true;
570
571                 if (data & REGISTERED_DIMM)
572                         mtype = MEM_RDDR3;
573                 else
574                         mtype = MEM_DDR3;
575
576                 /* Devices 4-6 function 1 */
577                 pci_read_config_dword(pvt->pci_ch[i][1],
578                                 MC_DOD_CH_DIMM0, &dimm_dod[0]);
579                 pci_read_config_dword(pvt->pci_ch[i][1],
580                                 MC_DOD_CH_DIMM1, &dimm_dod[1]);
581                 pci_read_config_dword(pvt->pci_ch[i][1],
582                                 MC_DOD_CH_DIMM2, &dimm_dod[2]);
583
584                 edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
585                          i,
586                          RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
587                          data,
588                          pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
589                          pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
590                          pvt->channel[i].has_4rank ? "HAS_4R " : "",
591                          (data & REGISTERED_DIMM) ? 'R' : 'U');
592
593                 for (j = 0; j < 3; j++) {
594                         u32 banks, ranks, rows, cols;
595                         u32 size, npages;
596
597                         if (!DIMM_PRESENT(dimm_dod[j]))
598                                 continue;
599
600                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
601                                        i, j, 0);
602                         banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
603                         ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
604                         rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
605                         cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
606
607                         /* DDR3 has 8 I/O banks */
608                         size = (rows * cols * banks * ranks) >> (20 - 3);
609
610                         edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
611                                  j, size,
612                                  RANKOFFSET(dimm_dod[j]),
613                                  banks, ranks, rows, cols);
614
615                         npages = MiB_TO_PAGES(size);
616
617                         dimm->nr_pages = npages;
618
619                         switch (banks) {
620                         case 4:
621                                 dimm->dtype = DEV_X4;
622                                 break;
623                         case 8:
624                                 dimm->dtype = DEV_X8;
625                                 break;
626                         case 16:
627                                 dimm->dtype = DEV_X16;
628                                 break;
629                         default:
630                                 dimm->dtype = DEV_UNKNOWN;
631                         }
632
633                         snprintf(dimm->label, sizeof(dimm->label),
634                                  "CPU#%uChannel#%u_DIMM#%u",
635                                  pvt->i7core_dev->socket, i, j);
636                         dimm->grain = 8;
637                         dimm->edac_mode = mode;
638                         dimm->mtype = mtype;
639                 }
640
641                 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
642                 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
643                 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
644                 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
645                 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
646                 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
647                 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
648                 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
649                 edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
650                 for (j = 0; j < 8; j++)
651                         edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
652                                  (value[j] >> 27) & 0x1,
653                                  (value[j] >> 24) & 0x7,
654                                  (value[j] & ((1 << 24) - 1)));
655         }
656
657         return 0;
658 }
659
660 /****************************************************************************
661                         Error insertion routines
662  ****************************************************************************/
663
664 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
665
666 /* The i7core has independent error injection features per channel.
667    However, to have a simpler code, we don't allow enabling error injection
668    on more than one channel.
669    Also, since a change at an inject parameter will be applied only at enable,
670    we're disabling error injection on all write calls to the sysfs nodes that
671    controls the error code injection.
672  */
673 static int disable_inject(const struct mem_ctl_info *mci)
674 {
675         struct i7core_pvt *pvt = mci->pvt_info;
676
677         pvt->inject.enable = 0;
678
679         if (!pvt->pci_ch[pvt->inject.channel][0])
680                 return -ENODEV;
681
682         pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
683                                 MC_CHANNEL_ERROR_INJECT, 0);
684
685         return 0;
686 }
687
688 /*
689  * i7core inject inject.section
690  *
691  *      accept and store error injection inject.section value
692  *      bit 0 - refers to the lower 32-byte half cacheline
693  *      bit 1 - refers to the upper 32-byte half cacheline
694  */
695 static ssize_t i7core_inject_section_store(struct device *dev,
696                                            struct device_attribute *mattr,
697                                            const char *data, size_t count)
698 {
699         struct mem_ctl_info *mci = to_mci(dev);
700         struct i7core_pvt *pvt = mci->pvt_info;
701         unsigned long value;
702         int rc;
703
704         if (pvt->inject.enable)
705                 disable_inject(mci);
706
707         rc = kstrtoul(data, 10, &value);
708         if ((rc < 0) || (value > 3))
709                 return -EIO;
710
711         pvt->inject.section = (u32) value;
712         return count;
713 }
714
715 static ssize_t i7core_inject_section_show(struct device *dev,
716                                           struct device_attribute *mattr,
717                                           char *data)
718 {
719         struct mem_ctl_info *mci = to_mci(dev);
720         struct i7core_pvt *pvt = mci->pvt_info;
721         return sprintf(data, "0x%08x\n", pvt->inject.section);
722 }
723
724 /*
725  * i7core inject.type
726  *
727  *      accept and store error injection inject.section value
728  *      bit 0 - repeat enable - Enable error repetition
729  *      bit 1 - inject ECC error
730  *      bit 2 - inject parity error
731  */
732 static ssize_t i7core_inject_type_store(struct device *dev,
733                                         struct device_attribute *mattr,
734                                         const char *data, size_t count)
735 {
736         struct mem_ctl_info *mci = to_mci(dev);
737 struct i7core_pvt *pvt = mci->pvt_info;
738         unsigned long value;
739         int rc;
740
741         if (pvt->inject.enable)
742                 disable_inject(mci);
743
744         rc = kstrtoul(data, 10, &value);
745         if ((rc < 0) || (value > 7))
746                 return -EIO;
747
748         pvt->inject.type = (u32) value;
749         return count;
750 }
751
752 static ssize_t i7core_inject_type_show(struct device *dev,
753                                        struct device_attribute *mattr,
754                                        char *data)
755 {
756         struct mem_ctl_info *mci = to_mci(dev);
757         struct i7core_pvt *pvt = mci->pvt_info;
758
759         return sprintf(data, "0x%08x\n", pvt->inject.type);
760 }
761
762 /*
763  * i7core_inject_inject.eccmask_store
764  *
765  * The type of error (UE/CE) will depend on the inject.eccmask value:
766  *   Any bits set to a 1 will flip the corresponding ECC bit
767  *   Correctable errors can be injected by flipping 1 bit or the bits within
768  *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
769  *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
770  *   uncorrectable error to be injected.
771  */
772 static ssize_t i7core_inject_eccmask_store(struct device *dev,
773                                            struct device_attribute *mattr,
774                                            const char *data, size_t count)
775 {
776         struct mem_ctl_info *mci = to_mci(dev);
777         struct i7core_pvt *pvt = mci->pvt_info;
778         unsigned long value;
779         int rc;
780
781         if (pvt->inject.enable)
782                 disable_inject(mci);
783
784         rc = kstrtoul(data, 10, &value);
785         if (rc < 0)
786                 return -EIO;
787
788         pvt->inject.eccmask = (u32) value;
789         return count;
790 }
791
792 static ssize_t i7core_inject_eccmask_show(struct device *dev,
793                                           struct device_attribute *mattr,
794                                           char *data)
795 {
796         struct mem_ctl_info *mci = to_mci(dev);
797         struct i7core_pvt *pvt = mci->pvt_info;
798
799         return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
800 }
801
802 /*
803  * i7core_addrmatch
804  *
805  * The type of error (UE/CE) will depend on the inject.eccmask value:
806  *   Any bits set to a 1 will flip the corresponding ECC bit
807  *   Correctable errors can be injected by flipping 1 bit or the bits within
808  *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
809  *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
810  *   uncorrectable error to be injected.
811  */
812
813 #define DECLARE_ADDR_MATCH(param, limit)                        \
814 static ssize_t i7core_inject_store_##param(                     \
815         struct device *dev,                                     \
816         struct device_attribute *mattr,                         \
817         const char *data, size_t count)                         \
818 {                                                               \
819         struct mem_ctl_info *mci = dev_get_drvdata(dev);        \
820         struct i7core_pvt *pvt;                                 \
821         long value;                                             \
822         int rc;                                                 \
823                                                                 \
824         edac_dbg(1, "\n");                                      \
825         pvt = mci->pvt_info;                                    \
826                                                                 \
827         if (pvt->inject.enable)                                 \
828                 disable_inject(mci);                            \
829                                                                 \
830         if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
831                 value = -1;                                     \
832         else {                                                  \
833                 rc = kstrtoul(data, 10, &value);                \
834                 if ((rc < 0) || (value >= limit))               \
835                         return -EIO;                            \
836         }                                                       \
837                                                                 \
838         pvt->inject.param = value;                              \
839                                                                 \
840         return count;                                           \
841 }                                                               \
842                                                                 \
843 static ssize_t i7core_inject_show_##param(                      \
844         struct device *dev,                                     \
845         struct device_attribute *mattr,                         \
846         char *data)                                             \
847 {                                                               \
848         struct mem_ctl_info *mci = dev_get_drvdata(dev);        \
849         struct i7core_pvt *pvt;                                 \
850                                                                 \
851         pvt = mci->pvt_info;                                    \
852         edac_dbg(1, "pvt=%p\n", pvt);                           \
853         if (pvt->inject.param < 0)                              \
854                 return sprintf(data, "any\n");                  \
855         else                                                    \
856                 return sprintf(data, "%d\n", pvt->inject.param);\
857 }
858
859 #define ATTR_ADDR_MATCH(param)                                  \
860         static DEVICE_ATTR(param, S_IRUGO | S_IWUSR,            \
861                     i7core_inject_show_##param,                 \
862                     i7core_inject_store_##param)
863
864 DECLARE_ADDR_MATCH(channel, 3);
865 DECLARE_ADDR_MATCH(dimm, 3);
866 DECLARE_ADDR_MATCH(rank, 4);
867 DECLARE_ADDR_MATCH(bank, 32);
868 DECLARE_ADDR_MATCH(page, 0x10000);
869 DECLARE_ADDR_MATCH(col, 0x4000);
870
871 ATTR_ADDR_MATCH(channel);
872 ATTR_ADDR_MATCH(dimm);
873 ATTR_ADDR_MATCH(rank);
874 ATTR_ADDR_MATCH(bank);
875 ATTR_ADDR_MATCH(page);
876 ATTR_ADDR_MATCH(col);
877
878 static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
879 {
880         u32 read;
881         int count;
882
883         edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
884                  dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
885                  where, val);
886
887         for (count = 0; count < 10; count++) {
888                 if (count)
889                         msleep(100);
890                 pci_write_config_dword(dev, where, val);
891                 pci_read_config_dword(dev, where, &read);
892
893                 if (read == val)
894                         return 0;
895         }
896
897         i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
898                 "write=%08x. Read=%08x\n",
899                 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
900                 where, val, read);
901
902         return -EINVAL;
903 }
904
905 /*
906  * This routine prepares the Memory Controller for error injection.
907  * The error will be injected when some process tries to write to the
908  * memory that matches the given criteria.
909  * The criteria can be set in terms of a mask where dimm, rank, bank, page
910  * and col can be specified.
911  * A -1 value for any of the mask items will make the MCU to ignore
912  * that matching criteria for error injection.
913  *
914  * It should be noticed that the error will only happen after a write operation
915  * on a memory that matches the condition. if REPEAT_EN is not enabled at
916  * inject mask, then it will produce just one error. Otherwise, it will repeat
917  * until the injectmask would be cleaned.
918  *
919  * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
920  *    is reliable enough to check if the MC is using the
921  *    three channels. However, this is not clear at the datasheet.
922  */
923 static ssize_t i7core_inject_enable_store(struct device *dev,
924                                           struct device_attribute *mattr,
925                                           const char *data, size_t count)
926 {
927         struct mem_ctl_info *mci = to_mci(dev);
928         struct i7core_pvt *pvt = mci->pvt_info;
929         u32 injectmask;
930         u64 mask = 0;
931         int  rc;
932         long enable;
933
934         if (!pvt->pci_ch[pvt->inject.channel][0])
935                 return 0;
936
937         rc = kstrtoul(data, 10, &enable);
938         if ((rc < 0))
939                 return 0;
940
941         if (enable) {
942                 pvt->inject.enable = 1;
943         } else {
944                 disable_inject(mci);
945                 return count;
946         }
947
948         /* Sets pvt->inject.dimm mask */
949         if (pvt->inject.dimm < 0)
950                 mask |= 1LL << 41;
951         else {
952                 if (pvt->channel[pvt->inject.channel].dimms > 2)
953                         mask |= (pvt->inject.dimm & 0x3LL) << 35;
954                 else
955                         mask |= (pvt->inject.dimm & 0x1LL) << 36;
956         }
957
958         /* Sets pvt->inject.rank mask */
959         if (pvt->inject.rank < 0)
960                 mask |= 1LL << 40;
961         else {
962                 if (pvt->channel[pvt->inject.channel].dimms > 2)
963                         mask |= (pvt->inject.rank & 0x1LL) << 34;
964                 else
965                         mask |= (pvt->inject.rank & 0x3LL) << 34;
966         }
967
968         /* Sets pvt->inject.bank mask */
969         if (pvt->inject.bank < 0)
970                 mask |= 1LL << 39;
971         else
972                 mask |= (pvt->inject.bank & 0x15LL) << 30;
973
974         /* Sets pvt->inject.page mask */
975         if (pvt->inject.page < 0)
976                 mask |= 1LL << 38;
977         else
978                 mask |= (pvt->inject.page & 0xffff) << 14;
979
980         /* Sets pvt->inject.column mask */
981         if (pvt->inject.col < 0)
982                 mask |= 1LL << 37;
983         else
984                 mask |= (pvt->inject.col & 0x3fff);
985
986         /*
987          * bit    0: REPEAT_EN
988          * bits 1-2: MASK_HALF_CACHELINE
989          * bit    3: INJECT_ECC
990          * bit    4: INJECT_ADDR_PARITY
991          */
992
993         injectmask = (pvt->inject.type & 1) |
994                      (pvt->inject.section & 0x3) << 1 |
995                      (pvt->inject.type & 0x6) << (3 - 1);
996
997         /* Unlock writes to registers - this register is write only */
998         pci_write_config_dword(pvt->pci_noncore,
999                                MC_CFG_CONTROL, 0x2);
1000
1001         write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1002                                MC_CHANNEL_ADDR_MATCH, mask);
1003         write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1004                                MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
1005
1006         write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1007                                MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1008
1009         write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1010                                MC_CHANNEL_ERROR_INJECT, injectmask);
1011
1012         /*
1013          * This is something undocumented, based on my tests
1014          * Without writing 8 to this register, errors aren't injected. Not sure
1015          * why.
1016          */
1017         pci_write_config_dword(pvt->pci_noncore,
1018                                MC_CFG_CONTROL, 8);
1019
1020         edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
1021                  mask, pvt->inject.eccmask, injectmask);
1022
1023
1024         return count;
1025 }
1026
1027 static ssize_t i7core_inject_enable_show(struct device *dev,
1028                                          struct device_attribute *mattr,
1029                                          char *data)
1030 {
1031         struct mem_ctl_info *mci = to_mci(dev);
1032         struct i7core_pvt *pvt = mci->pvt_info;
1033         u32 injectmask;
1034
1035         if (!pvt->pci_ch[pvt->inject.channel][0])
1036                 return 0;
1037
1038         pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1039                                MC_CHANNEL_ERROR_INJECT, &injectmask);
1040
1041         edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
1042
1043         if (injectmask & 0x0c)
1044                 pvt->inject.enable = 1;
1045
1046         return sprintf(data, "%d\n", pvt->inject.enable);
1047 }
1048
1049 #define DECLARE_COUNTER(param)                                  \
1050 static ssize_t i7core_show_counter_##param(                     \
1051         struct device *dev,                                     \
1052         struct device_attribute *mattr,                         \
1053         char *data)                                             \
1054 {                                                               \
1055         struct mem_ctl_info *mci = dev_get_drvdata(dev);        \
1056         struct i7core_pvt *pvt = mci->pvt_info;                 \
1057                                                                 \
1058         edac_dbg(1, "\n");                                      \
1059         if (!pvt->ce_count_available || (pvt->is_registered))   \
1060                 return sprintf(data, "data unavailable\n");     \
1061         return sprintf(data, "%lu\n",                           \
1062                         pvt->udimm_ce_count[param]);            \
1063 }
1064
1065 #define ATTR_COUNTER(param)                                     \
1066         static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR,     \
1067                     i7core_show_counter_##param,                \
1068                     NULL)
1069
1070 DECLARE_COUNTER(0);
1071 DECLARE_COUNTER(1);
1072 DECLARE_COUNTER(2);
1073
1074 ATTR_COUNTER(0);
1075 ATTR_COUNTER(1);
1076 ATTR_COUNTER(2);
1077
1078 /*
1079  * inject_addrmatch device sysfs struct
1080  */
1081
1082 static struct attribute *i7core_addrmatch_attrs[] = {
1083         &dev_attr_channel.attr,
1084         &dev_attr_dimm.attr,
1085         &dev_attr_rank.attr,
1086         &dev_attr_bank.attr,
1087         &dev_attr_page.attr,
1088         &dev_attr_col.attr,
1089         NULL
1090 };
1091
1092 static struct attribute_group addrmatch_grp = {
1093         .attrs  = i7core_addrmatch_attrs,
1094 };
1095
1096 static const struct attribute_group *addrmatch_groups[] = {
1097         &addrmatch_grp,
1098         NULL
1099 };
1100
1101 static void addrmatch_release(struct device *device)
1102 {
1103         edac_dbg(1, "Releasing device %s\n", dev_name(device));
1104         kfree(device);
1105 }
1106
1107 static struct device_type addrmatch_type = {
1108         .groups         = addrmatch_groups,
1109         .release        = addrmatch_release,
1110 };
1111
1112 /*
1113  * all_channel_counts sysfs struct
1114  */
1115
1116 static struct attribute *i7core_udimm_counters_attrs[] = {
1117         &dev_attr_udimm0.attr,
1118         &dev_attr_udimm1.attr,
1119         &dev_attr_udimm2.attr,
1120         NULL
1121 };
1122
1123 static struct attribute_group all_channel_counts_grp = {
1124         .attrs  = i7core_udimm_counters_attrs,
1125 };
1126
1127 static const struct attribute_group *all_channel_counts_groups[] = {
1128         &all_channel_counts_grp,
1129         NULL
1130 };
1131
1132 static void all_channel_counts_release(struct device *device)
1133 {
1134         edac_dbg(1, "Releasing device %s\n", dev_name(device));
1135         kfree(device);
1136 }
1137
1138 static struct device_type all_channel_counts_type = {
1139         .groups         = all_channel_counts_groups,
1140         .release        = all_channel_counts_release,
1141 };
1142
1143 /*
1144  * inject sysfs attributes
1145  */
1146
1147 static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
1148                    i7core_inject_section_show, i7core_inject_section_store);
1149
1150 static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
1151                    i7core_inject_type_show, i7core_inject_type_store);
1152
1153
1154 static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
1155                    i7core_inject_eccmask_show, i7core_inject_eccmask_store);
1156
1157 static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
1158                    i7core_inject_enable_show, i7core_inject_enable_store);
1159
1160 static struct attribute *i7core_dev_attrs[] = {
1161         &dev_attr_inject_section.attr,
1162         &dev_attr_inject_type.attr,
1163         &dev_attr_inject_eccmask.attr,
1164         &dev_attr_inject_enable.attr,
1165         NULL
1166 };
1167
1168 ATTRIBUTE_GROUPS(i7core_dev);
1169
1170 static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
1171 {
1172         struct i7core_pvt *pvt = mci->pvt_info;
1173         int rc;
1174
1175         pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
1176         if (!pvt->addrmatch_dev)
1177                 return -ENOMEM;
1178
1179         pvt->addrmatch_dev->type = &addrmatch_type;
1180         pvt->addrmatch_dev->bus = mci->dev.bus;
1181         device_initialize(pvt->addrmatch_dev);
1182         pvt->addrmatch_dev->parent = &mci->dev;
1183         dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
1184         dev_set_drvdata(pvt->addrmatch_dev, mci);
1185
1186         edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
1187
1188         rc = device_add(pvt->addrmatch_dev);
1189         if (rc < 0)
1190                 return rc;
1191
1192         if (!pvt->is_registered) {
1193                 pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
1194                                               GFP_KERNEL);
1195                 if (!pvt->chancounts_dev) {
1196                         put_device(pvt->addrmatch_dev);
1197                         device_del(pvt->addrmatch_dev);
1198                         return -ENOMEM;
1199                 }
1200
1201                 pvt->chancounts_dev->type = &all_channel_counts_type;
1202                 pvt->chancounts_dev->bus = mci->dev.bus;
1203                 device_initialize(pvt->chancounts_dev);
1204                 pvt->chancounts_dev->parent = &mci->dev;
1205                 dev_set_name(pvt->chancounts_dev, "all_channel_counts");
1206                 dev_set_drvdata(pvt->chancounts_dev, mci);
1207
1208                 edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
1209
1210                 rc = device_add(pvt->chancounts_dev);
1211                 if (rc < 0)
1212                         return rc;
1213         }
1214         return 0;
1215 }
1216
1217 static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
1218 {
1219         struct i7core_pvt *pvt = mci->pvt_info;
1220
1221         edac_dbg(1, "\n");
1222
1223         if (!pvt->is_registered) {
1224                 put_device(pvt->chancounts_dev);
1225                 device_del(pvt->chancounts_dev);
1226         }
1227         put_device(pvt->addrmatch_dev);
1228         device_del(pvt->addrmatch_dev);
1229 }
1230
1231 /****************************************************************************
1232         Device initialization routines: put/get, init/exit
1233  ****************************************************************************/
1234
1235 /*
1236  *      i7core_put_all_devices  'put' all the devices that we have
1237  *                              reserved via 'get'
1238  */
1239 static void i7core_put_devices(struct i7core_dev *i7core_dev)
1240 {
1241         int i;
1242
1243         edac_dbg(0, "\n");
1244         for (i = 0; i < i7core_dev->n_devs; i++) {
1245                 struct pci_dev *pdev = i7core_dev->pdev[i];
1246                 if (!pdev)
1247                         continue;
1248                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1249                          pdev->bus->number,
1250                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1251                 pci_dev_put(pdev);
1252         }
1253 }
1254
1255 static void i7core_put_all_devices(void)
1256 {
1257         struct i7core_dev *i7core_dev, *tmp;
1258
1259         list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1260                 i7core_put_devices(i7core_dev);
1261                 free_i7core_dev(i7core_dev);
1262         }
1263 }
1264
1265 static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1266 {
1267         struct pci_dev *pdev = NULL;
1268         int i;
1269
1270         /*
1271          * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1272          * aren't announced by acpi. So, we need to use a legacy scan probing
1273          * to detect them
1274          */
1275         while (table && table->descr) {
1276                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1277                 if (unlikely(!pdev)) {
1278                         for (i = 0; i < MAX_SOCKET_BUSES; i++)
1279                                 pcibios_scan_specific_bus(255-i);
1280                 }
1281                 pci_dev_put(pdev);
1282                 table++;
1283         }
1284 }
1285
1286 static unsigned i7core_pci_lastbus(void)
1287 {
1288         int last_bus = 0, bus;
1289         struct pci_bus *b = NULL;
1290
1291         while ((b = pci_find_next_bus(b)) != NULL) {
1292                 bus = b->number;
1293                 edac_dbg(0, "Found bus %d\n", bus);
1294                 if (bus > last_bus)
1295                         last_bus = bus;
1296         }
1297
1298         edac_dbg(0, "Last bus %d\n", last_bus);
1299
1300         return last_bus;
1301 }
1302
1303 /*
1304  *      i7core_get_all_devices  Find and perform 'get' operation on the MCH's
1305  *                      device/functions we want to reference for this driver
1306  *
1307  *                      Need to 'get' device 16 func 1 and func 2
1308  */
1309 static int i7core_get_onedevice(struct pci_dev **prev,
1310                                 const struct pci_id_table *table,
1311                                 const unsigned devno,
1312                                 const unsigned last_bus)
1313 {
1314         struct i7core_dev *i7core_dev;
1315         const struct pci_id_descr *dev_descr = &table->descr[devno];
1316
1317         struct pci_dev *pdev = NULL;
1318         u8 bus = 0;
1319         u8 socket = 0;
1320
1321         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1322                               dev_descr->dev_id, *prev);
1323
1324         /*
1325          * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
1326          * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1327          * to probe for the alternate address in case of failure
1328          */
1329         if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
1330                 pci_dev_get(*prev);     /* pci_get_device will put it */
1331                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1332                                       PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1333         }
1334
1335         if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
1336             !pdev) {
1337                 pci_dev_get(*prev);     /* pci_get_device will put it */
1338                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1339                                       PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1340                                       *prev);
1341         }
1342
1343         if (!pdev) {
1344                 if (*prev) {
1345                         *prev = pdev;
1346                         return 0;
1347                 }
1348
1349                 if (dev_descr->optional)
1350                         return 0;
1351
1352                 if (devno == 0)
1353                         return -ENODEV;
1354
1355                 i7core_printk(KERN_INFO,
1356                         "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1357                         dev_descr->dev, dev_descr->func,
1358                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1359
1360                 /* End of list, leave */
1361                 return -ENODEV;
1362         }
1363         bus = pdev->bus->number;
1364
1365         socket = last_bus - bus;
1366
1367         i7core_dev = get_i7core_dev(socket);
1368         if (!i7core_dev) {
1369                 i7core_dev = alloc_i7core_dev(socket, table);
1370                 if (!i7core_dev) {
1371                         pci_dev_put(pdev);
1372                         return -ENOMEM;
1373                 }
1374         }
1375
1376         if (i7core_dev->pdev[devno]) {
1377                 i7core_printk(KERN_ERR,
1378                         "Duplicated device for "
1379                         "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1380                         bus, dev_descr->dev, dev_descr->func,
1381                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1382                 pci_dev_put(pdev);
1383                 return -ENODEV;
1384         }
1385
1386         i7core_dev->pdev[devno] = pdev;
1387
1388         /* Sanity check */
1389         if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1390                         PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1391                 i7core_printk(KERN_ERR,
1392                         "Device PCI ID %04x:%04x "
1393                         "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1394                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1395                         bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1396                         bus, dev_descr->dev, dev_descr->func);
1397                 return -ENODEV;
1398         }
1399
1400         /* Be sure that the device is enabled */
1401         if (unlikely(pci_enable_device(pdev) < 0)) {
1402                 i7core_printk(KERN_ERR,
1403                         "Couldn't enable "
1404                         "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1405                         bus, dev_descr->dev, dev_descr->func,
1406                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1407                 return -ENODEV;
1408         }
1409
1410         edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1411                  socket, bus, dev_descr->dev,
1412                  dev_descr->func,
1413                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1414
1415         /*
1416          * As stated on drivers/pci/search.c, the reference count for
1417          * @from is always decremented if it is not %NULL. So, as we need
1418          * to get all devices up to null, we need to do a get for the device
1419          */
1420         pci_dev_get(pdev);
1421
1422         *prev = pdev;
1423
1424         return 0;
1425 }
1426
1427 static int i7core_get_all_devices(void)
1428 {
1429         int i, rc, last_bus;
1430         struct pci_dev *pdev = NULL;
1431         const struct pci_id_table *table = pci_dev_table;
1432
1433         last_bus = i7core_pci_lastbus();
1434
1435         while (table && table->descr) {
1436                 for (i = 0; i < table->n_devs; i++) {
1437                         pdev = NULL;
1438                         do {
1439                                 rc = i7core_get_onedevice(&pdev, table, i,
1440                                                           last_bus);
1441                                 if (rc < 0) {
1442                                         if (i == 0) {
1443                                                 i = table->n_devs;
1444                                                 break;
1445                                         }
1446                                         i7core_put_all_devices();
1447                                         return -ENODEV;
1448                                 }
1449                         } while (pdev);
1450                 }
1451                 table++;
1452         }
1453
1454         return 0;
1455 }
1456
1457 static int mci_bind_devs(struct mem_ctl_info *mci,
1458                          struct i7core_dev *i7core_dev)
1459 {
1460         struct i7core_pvt *pvt = mci->pvt_info;
1461         struct pci_dev *pdev;
1462         int i, func, slot;
1463         char *family;
1464
1465         pvt->is_registered = false;
1466         pvt->enable_scrub  = false;
1467         for (i = 0; i < i7core_dev->n_devs; i++) {
1468                 pdev = i7core_dev->pdev[i];
1469                 if (!pdev)
1470                         continue;
1471
1472                 func = PCI_FUNC(pdev->devfn);
1473                 slot = PCI_SLOT(pdev->devfn);
1474                 if (slot == 3) {
1475                         if (unlikely(func > MAX_MCR_FUNC))
1476                                 goto error;
1477                         pvt->pci_mcr[func] = pdev;
1478                 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1479                         if (unlikely(func > MAX_CHAN_FUNC))
1480                                 goto error;
1481                         pvt->pci_ch[slot - 4][func] = pdev;
1482                 } else if (!slot && !func) {
1483                         pvt->pci_noncore = pdev;
1484
1485                         /* Detect the processor family */
1486                         switch (pdev->device) {
1487                         case PCI_DEVICE_ID_INTEL_I7_NONCORE:
1488                                 family = "Xeon 35xx/ i7core";
1489                                 pvt->enable_scrub = false;
1490                                 break;
1491                         case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
1492                                 family = "i7-800/i5-700";
1493                                 pvt->enable_scrub = false;
1494                                 break;
1495                         case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
1496                                 family = "Xeon 34xx";
1497                                 pvt->enable_scrub = false;
1498                                 break;
1499                         case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
1500                                 family = "Xeon 55xx";
1501                                 pvt->enable_scrub = true;
1502                                 break;
1503                         case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
1504                                 family = "Xeon 56xx / i7-900";
1505                                 pvt->enable_scrub = true;
1506                                 break;
1507                         default:
1508                                 family = "unknown";
1509                                 pvt->enable_scrub = false;
1510                         }
1511                         edac_dbg(0, "Detected a processor type %s\n", family);
1512                 } else
1513                         goto error;
1514
1515                 edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
1516                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1517                          pdev, i7core_dev->socket);
1518
1519                 if (PCI_SLOT(pdev->devfn) == 3 &&
1520                         PCI_FUNC(pdev->devfn) == 2)
1521                         pvt->is_registered = true;
1522         }
1523
1524         return 0;
1525
1526 error:
1527         i7core_printk(KERN_ERR, "Device %d, function %d "
1528                       "is out of the expected range\n",
1529                       slot, func);
1530         return -EINVAL;
1531 }
1532
1533 /****************************************************************************
1534                         Error check routines
1535  ****************************************************************************/
1536
1537 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1538                                          const int chan,
1539                                          const int new0,
1540                                          const int new1,
1541                                          const int new2)
1542 {
1543         struct i7core_pvt *pvt = mci->pvt_info;
1544         int add0 = 0, add1 = 0, add2 = 0;
1545         /* Updates CE counters if it is not the first time here */
1546         if (pvt->ce_count_available) {
1547                 /* Updates CE counters */
1548
1549                 add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1550                 add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1551                 add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1552
1553                 if (add2 < 0)
1554                         add2 += 0x7fff;
1555                 pvt->rdimm_ce_count[chan][2] += add2;
1556
1557                 if (add1 < 0)
1558                         add1 += 0x7fff;
1559                 pvt->rdimm_ce_count[chan][1] += add1;
1560
1561                 if (add0 < 0)
1562                         add0 += 0x7fff;
1563                 pvt->rdimm_ce_count[chan][0] += add0;
1564         } else
1565                 pvt->ce_count_available = 1;
1566
1567         /* Store the new values */
1568         pvt->rdimm_last_ce_count[chan][2] = new2;
1569         pvt->rdimm_last_ce_count[chan][1] = new1;
1570         pvt->rdimm_last_ce_count[chan][0] = new0;
1571
1572         /*updated the edac core */
1573         if (add0 != 0)
1574                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
1575                                      0, 0, 0,
1576                                      chan, 0, -1, "error", "");
1577         if (add1 != 0)
1578                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
1579                                      0, 0, 0,
1580                                      chan, 1, -1, "error", "");
1581         if (add2 != 0)
1582                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
1583                                      0, 0, 0,
1584                                      chan, 2, -1, "error", "");
1585 }
1586
1587 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1588 {
1589         struct i7core_pvt *pvt = mci->pvt_info;
1590         u32 rcv[3][2];
1591         int i, new0, new1, new2;
1592
1593         /*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1594         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1595                                                                 &rcv[0][0]);
1596         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1597                                                                 &rcv[0][1]);
1598         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1599                                                                 &rcv[1][0]);
1600         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1601                                                                 &rcv[1][1]);
1602         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1603                                                                 &rcv[2][0]);
1604         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1605                                                                 &rcv[2][1]);
1606         for (i = 0 ; i < 3; i++) {
1607                 edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1608                          (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1609                 /*if the channel has 3 dimms*/
1610                 if (pvt->channel[i].dimms > 2) {
1611                         new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1612                         new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1613                         new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1614                 } else {
1615                         new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1616                                         DIMM_BOT_COR_ERR(rcv[i][0]);
1617                         new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1618                                         DIMM_BOT_COR_ERR(rcv[i][1]);
1619                         new2 = 0;
1620                 }
1621
1622                 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1623         }
1624 }
1625
1626 /* This function is based on the device 3 function 4 registers as described on:
1627  * Intel Xeon Processor 5500 Series Datasheet Volume 2
1628  *      http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1629  * also available at:
1630  *      http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1631  */
1632 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1633 {
1634         struct i7core_pvt *pvt = mci->pvt_info;
1635         u32 rcv1, rcv0;
1636         int new0, new1, new2;
1637
1638         if (!pvt->pci_mcr[4]) {
1639                 edac_dbg(0, "MCR registers not found\n");
1640                 return;
1641         }
1642
1643         /* Corrected test errors */
1644         pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1645         pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1646
1647         /* Store the new values */
1648         new2 = DIMM2_COR_ERR(rcv1);
1649         new1 = DIMM1_COR_ERR(rcv0);
1650         new0 = DIMM0_COR_ERR(rcv0);
1651
1652         /* Updates CE counters if it is not the first time here */
1653         if (pvt->ce_count_available) {
1654                 /* Updates CE counters */
1655                 int add0, add1, add2;
1656
1657                 add2 = new2 - pvt->udimm_last_ce_count[2];
1658                 add1 = new1 - pvt->udimm_last_ce_count[1];
1659                 add0 = new0 - pvt->udimm_last_ce_count[0];
1660
1661                 if (add2 < 0)
1662                         add2 += 0x7fff;
1663                 pvt->udimm_ce_count[2] += add2;
1664
1665                 if (add1 < 0)
1666                         add1 += 0x7fff;
1667                 pvt->udimm_ce_count[1] += add1;
1668
1669                 if (add0 < 0)
1670                         add0 += 0x7fff;
1671                 pvt->udimm_ce_count[0] += add0;
1672
1673                 if (add0 | add1 | add2)
1674                         i7core_printk(KERN_ERR, "New Corrected error(s): "
1675                                       "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1676                                       add0, add1, add2);
1677         } else
1678                 pvt->ce_count_available = 1;
1679
1680         /* Store the new values */
1681         pvt->udimm_last_ce_count[2] = new2;
1682         pvt->udimm_last_ce_count[1] = new1;
1683         pvt->udimm_last_ce_count[0] = new0;
1684 }
1685
1686 /*
1687  * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1688  * Architectures Software Developer’s Manual Volume 3B.
1689  * Nehalem are defined as family 0x06, model 0x1a
1690  *
1691  * The MCA registers used here are the following ones:
1692  *     struct mce field MCA Register
1693  *     m->status        MSR_IA32_MC8_STATUS
1694  *     m->addr          MSR_IA32_MC8_ADDR
1695  *     m->misc          MSR_IA32_MC8_MISC
1696  * In the case of Nehalem, the error information is masked at .status and .misc
1697  * fields
1698  */
1699 static void i7core_mce_output_error(struct mem_ctl_info *mci,
1700                                     const struct mce *m)
1701 {
1702         struct i7core_pvt *pvt = mci->pvt_info;
1703         char *optype, *err;
1704         enum hw_event_mc_err_type tp_event;
1705         unsigned long error = m->status & 0x1ff0000l;
1706         bool uncorrected_error = m->mcgstatus & 1ll << 61;
1707         bool ripv = m->mcgstatus & 1;
1708         u32 optypenum = (m->status >> 4) & 0x07;
1709         u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1710         u32 dimm = (m->misc >> 16) & 0x3;
1711         u32 channel = (m->misc >> 18) & 0x3;
1712         u32 syndrome = m->misc >> 32;
1713         u32 errnum = find_first_bit(&error, 32);
1714
1715         if (uncorrected_error) {
1716                 if (ripv)
1717                         tp_event = HW_EVENT_ERR_FATAL;
1718                 else
1719                         tp_event = HW_EVENT_ERR_UNCORRECTED;
1720         } else {
1721                 tp_event = HW_EVENT_ERR_CORRECTED;
1722         }
1723
1724         switch (optypenum) {
1725         case 0:
1726                 optype = "generic undef request";
1727                 break;
1728         case 1:
1729                 optype = "read error";
1730                 break;
1731         case 2:
1732                 optype = "write error";
1733                 break;
1734         case 3:
1735                 optype = "addr/cmd error";
1736                 break;
1737         case 4:
1738                 optype = "scrubbing error";
1739                 break;
1740         default:
1741                 optype = "reserved";
1742                 break;
1743         }
1744
1745         switch (errnum) {
1746         case 16:
1747                 err = "read ECC error";
1748                 break;
1749         case 17:
1750                 err = "RAS ECC error";
1751                 break;
1752         case 18:
1753                 err = "write parity error";
1754                 break;
1755         case 19:
1756                 err = "redundacy loss";
1757                 break;
1758         case 20:
1759                 err = "reserved";
1760                 break;
1761         case 21:
1762                 err = "memory range error";
1763                 break;
1764         case 22:
1765                 err = "RTID out of range";
1766                 break;
1767         case 23:
1768                 err = "address parity error";
1769                 break;
1770         case 24:
1771                 err = "byte enable parity error";
1772                 break;
1773         default:
1774                 err = "unknown";
1775         }
1776
1777         /*
1778          * Call the helper to output message
1779          * FIXME: what to do if core_err_cnt > 1? Currently, it generates
1780          * only one event
1781          */
1782         if (uncorrected_error || !pvt->is_registered)
1783                 edac_mc_handle_error(tp_event, mci, core_err_cnt,
1784                                      m->addr >> PAGE_SHIFT,
1785                                      m->addr & ~PAGE_MASK,
1786                                      syndrome,
1787                                      channel, dimm, -1,
1788                                      err, optype);
1789 }
1790
1791 /*
1792  *      i7core_check_error      Retrieve and process errors reported by the
1793  *                              hardware. Called by the Core module.
1794  */
1795 static void i7core_check_error(struct mem_ctl_info *mci)
1796 {
1797         struct i7core_pvt *pvt = mci->pvt_info;
1798         int i;
1799         unsigned count = 0;
1800         struct mce *m;
1801
1802         /*
1803          * MCE first step: Copy all mce errors into a temporary buffer
1804          * We use a double buffering here, to reduce the risk of
1805          * losing an error.
1806          */
1807         smp_rmb();
1808         count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1809                 % MCE_LOG_LEN;
1810         if (!count)
1811                 goto check_ce_error;
1812
1813         m = pvt->mce_outentry;
1814         if (pvt->mce_in + count > MCE_LOG_LEN) {
1815                 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1816
1817                 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1818                 smp_wmb();
1819                 pvt->mce_in = 0;
1820                 count -= l;
1821                 m += l;
1822         }
1823         memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1824         smp_wmb();
1825         pvt->mce_in += count;
1826
1827         smp_rmb();
1828         if (pvt->mce_overrun) {
1829                 i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1830                               pvt->mce_overrun);
1831                 smp_wmb();
1832                 pvt->mce_overrun = 0;
1833         }
1834
1835         /*
1836          * MCE second step: parse errors and display
1837          */
1838         for (i = 0; i < count; i++)
1839                 i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1840
1841         /*
1842          * Now, let's increment CE error counts
1843          */
1844 check_ce_error:
1845         if (!pvt->is_registered)
1846                 i7core_udimm_check_mc_ecc_err(mci);
1847         else
1848                 i7core_rdimm_check_mc_ecc_err(mci);
1849 }
1850
1851 /*
1852  * i7core_mce_check_error       Replicates mcelog routine to get errors
1853  *                              This routine simply queues mcelog errors, and
1854  *                              return. The error itself should be handled later
1855  *                              by i7core_check_error.
1856  * WARNING: As this routine should be called at NMI time, extra care should
1857  * be taken to avoid deadlocks, and to be as fast as possible.
1858  */
1859 static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
1860                                   void *data)
1861 {
1862         struct mce *mce = (struct mce *)data;
1863         struct i7core_dev *i7_dev;
1864         struct mem_ctl_info *mci;
1865         struct i7core_pvt *pvt;
1866
1867         i7_dev = get_i7core_dev(mce->socketid);
1868         if (!i7_dev)
1869                 return NOTIFY_DONE;
1870
1871         mci = i7_dev->mci;
1872         pvt = mci->pvt_info;
1873
1874         /*
1875          * Just let mcelog handle it if the error is
1876          * outside the memory controller
1877          */
1878         if (((mce->status & 0xffff) >> 7) != 1)
1879                 return NOTIFY_DONE;
1880
1881         /* Bank 8 registers are the only ones that we know how to handle */
1882         if (mce->bank != 8)
1883                 return NOTIFY_DONE;
1884
1885         smp_rmb();
1886         if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1887                 smp_wmb();
1888                 pvt->mce_overrun++;
1889                 return NOTIFY_DONE;
1890         }
1891
1892         /* Copy memory error at the ringbuffer */
1893         memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1894         smp_wmb();
1895         pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1896
1897         /* Handle fatal errors immediately */
1898         if (mce->mcgstatus & 1)
1899                 i7core_check_error(mci);
1900
1901         /* Advise mcelog that the errors were handled */
1902         return NOTIFY_STOP;
1903 }
1904
1905 static struct notifier_block i7_mce_dec = {
1906         .notifier_call  = i7core_mce_check_error,
1907 };
1908
1909 struct memdev_dmi_entry {
1910         u8 type;
1911         u8 length;
1912         u16 handle;
1913         u16 phys_mem_array_handle;
1914         u16 mem_err_info_handle;
1915         u16 total_width;
1916         u16 data_width;
1917         u16 size;
1918         u8 form;
1919         u8 device_set;
1920         u8 device_locator;
1921         u8 bank_locator;
1922         u8 memory_type;
1923         u16 type_detail;
1924         u16 speed;
1925         u8 manufacturer;
1926         u8 serial_number;
1927         u8 asset_tag;
1928         u8 part_number;
1929         u8 attributes;
1930         u32 extended_size;
1931         u16 conf_mem_clk_speed;
1932 } __attribute__((__packed__));
1933
1934
1935 /*
1936  * Decode the DRAM Clock Frequency, be paranoid, make sure that all
1937  * memory devices show the same speed, and if they don't then consider
1938  * all speeds to be invalid.
1939  */
1940 static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
1941 {
1942         int *dclk_freq = _dclk_freq;
1943         u16 dmi_mem_clk_speed;
1944
1945         if (*dclk_freq == -1)
1946                 return;
1947
1948         if (dh->type == DMI_ENTRY_MEM_DEVICE) {
1949                 struct memdev_dmi_entry *memdev_dmi_entry =
1950                         (struct memdev_dmi_entry *)dh;
1951                 unsigned long conf_mem_clk_speed_offset =
1952                         (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
1953                         (unsigned long)&memdev_dmi_entry->type;
1954                 unsigned long speed_offset =
1955                         (unsigned long)&memdev_dmi_entry->speed -
1956                         (unsigned long)&memdev_dmi_entry->type;
1957
1958                 /* Check that a DIMM is present */
1959                 if (memdev_dmi_entry->size == 0)
1960                         return;
1961
1962                 /*
1963                  * Pick the configured speed if it's available, otherwise
1964                  * pick the DIMM speed, or we don't have a speed.
1965                  */
1966                 if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
1967                         dmi_mem_clk_speed =
1968                                 memdev_dmi_entry->conf_mem_clk_speed;
1969                 } else if (memdev_dmi_entry->length > speed_offset) {
1970                         dmi_mem_clk_speed = memdev_dmi_entry->speed;
1971                 } else {
1972                         *dclk_freq = -1;
1973                         return;
1974                 }
1975
1976                 if (*dclk_freq == 0) {
1977                         /* First pass, speed was 0 */
1978                         if (dmi_mem_clk_speed > 0) {
1979                                 /* Set speed if a valid speed is read */
1980                                 *dclk_freq = dmi_mem_clk_speed;
1981                         } else {
1982                                 /* Otherwise we don't have a valid speed */
1983                                 *dclk_freq = -1;
1984                         }
1985                 } else if (*dclk_freq > 0 &&
1986                            *dclk_freq != dmi_mem_clk_speed) {
1987                         /*
1988                          * If we have a speed, check that all DIMMS are the same
1989                          * speed, otherwise set the speed as invalid.
1990                          */
1991                         *dclk_freq = -1;
1992                 }
1993         }
1994 }
1995
1996 /*
1997  * The default DCLK frequency is used as a fallback if we
1998  * fail to find anything reliable in the DMI. The value
1999  * is taken straight from the datasheet.
2000  */
2001 #define DEFAULT_DCLK_FREQ 800
2002
2003 static int get_dclk_freq(void)
2004 {
2005         int dclk_freq = 0;
2006
2007         dmi_walk(decode_dclk, (void *)&dclk_freq);
2008
2009         if (dclk_freq < 1)
2010                 return DEFAULT_DCLK_FREQ;
2011
2012         return dclk_freq;
2013 }
2014
2015 /*
2016  * set_sdram_scrub_rate         This routine sets byte/sec bandwidth scrub rate
2017  *                              to hardware according to SCRUBINTERVAL formula
2018  *                              found in datasheet.
2019  */
2020 static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
2021 {
2022         struct i7core_pvt *pvt = mci->pvt_info;
2023         struct pci_dev *pdev;
2024         u32 dw_scrub;
2025         u32 dw_ssr;
2026
2027         /* Get data from the MC register, function 2 */
2028         pdev = pvt->pci_mcr[2];
2029         if (!pdev)
2030                 return -ENODEV;
2031
2032         pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);
2033
2034         if (new_bw == 0) {
2035                 /* Prepare to disable petrol scrub */
2036                 dw_scrub &= ~STARTSCRUB;
2037                 /* Stop the patrol scrub engine */
2038                 write_and_test(pdev, MC_SCRUB_CONTROL,
2039                                dw_scrub & ~SCRUBINTERVAL_MASK);
2040
2041                 /* Get current status of scrub rate and set bit to disable */
2042                 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2043                 dw_ssr &= ~SSR_MODE_MASK;
2044                 dw_ssr |= SSR_MODE_DISABLE;
2045         } else {
2046                 const int cache_line_size = 64;
2047                 const u32 freq_dclk_mhz = pvt->dclk_freq;
2048                 unsigned long long scrub_interval;
2049                 /*
2050                  * Translate the desired scrub rate to a register value and
2051                  * program the corresponding register value.
2052                  */
2053                 scrub_interval = (unsigned long long)freq_dclk_mhz *
2054                         cache_line_size * 1000000;
2055                 do_div(scrub_interval, new_bw);
2056
2057                 if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
2058                         return -EINVAL;
2059
2060                 dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2061
2062                 /* Start the patrol scrub engine */
2063                 pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
2064                                        STARTSCRUB | dw_scrub);
2065
2066                 /* Get current status of scrub rate and set bit to enable */
2067                 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2068                 dw_ssr &= ~SSR_MODE_MASK;
2069                 dw_ssr |= SSR_MODE_ENABLE;
2070         }
2071         /* Disable or enable scrubbing */
2072         pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);
2073
2074         return new_bw;
2075 }
2076
2077 /*
2078  * get_sdram_scrub_rate         This routine convert current scrub rate value
2079  *                              into byte/sec bandwidth according to
2080  *                              SCRUBINTERVAL formula found in datasheet.
2081  */
2082 static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
2083 {
2084         struct i7core_pvt *pvt = mci->pvt_info;
2085         struct pci_dev *pdev;
2086         const u32 cache_line_size = 64;
2087         const u32 freq_dclk_mhz = pvt->dclk_freq;
2088         unsigned long long scrub_rate;
2089         u32 scrubval;
2090
2091         /* Get data from the MC register, function 2 */
2092         pdev = pvt->pci_mcr[2];
2093         if (!pdev)
2094                 return -ENODEV;
2095
2096         /* Get current scrub control data */
2097         pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);
2098
2099         /* Mask highest 8-bits to 0 */
2100         scrubval &=  SCRUBINTERVAL_MASK;
2101         if (!scrubval)
2102                 return 0;
2103
2104         /* Calculate scrub rate value into byte/sec bandwidth */
2105         scrub_rate =  (unsigned long long)freq_dclk_mhz *
2106                 1000000 * cache_line_size;
2107         do_div(scrub_rate, scrubval);
2108         return (int)scrub_rate;
2109 }
2110
2111 static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
2112 {
2113         struct i7core_pvt *pvt = mci->pvt_info;
2114         u32 pci_lock;
2115
2116         /* Unlock writes to pci registers */
2117         pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2118         pci_lock &= ~0x3;
2119         pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2120                                pci_lock | MC_CFG_UNLOCK);
2121
2122         mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
2123         mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
2124 }
2125
2126 static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
2127 {
2128         struct i7core_pvt *pvt = mci->pvt_info;
2129         u32 pci_lock;
2130
2131         /* Lock writes to pci registers */
2132         pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2133         pci_lock &= ~0x3;
2134         pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2135                                pci_lock | MC_CFG_LOCK);
2136 }
2137
2138 static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
2139 {
2140         pvt->i7core_pci = edac_pci_create_generic_ctl(
2141                                                 &pvt->i7core_dev->pdev[0]->dev,
2142                                                 EDAC_MOD_STR);
2143         if (unlikely(!pvt->i7core_pci))
2144                 i7core_printk(KERN_WARNING,
2145                               "Unable to setup PCI error report via EDAC\n");
2146 }
2147
2148 static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
2149 {
2150         if (likely(pvt->i7core_pci))
2151                 edac_pci_release_generic_ctl(pvt->i7core_pci);
2152         else
2153                 i7core_printk(KERN_ERR,
2154                                 "Couldn't find mem_ctl_info for socket %d\n",
2155                                 pvt->i7core_dev->socket);
2156         pvt->i7core_pci = NULL;
2157 }
2158
2159 static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
2160 {
2161         struct mem_ctl_info *mci = i7core_dev->mci;
2162         struct i7core_pvt *pvt;
2163
2164         if (unlikely(!mci || !mci->pvt_info)) {
2165                 edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
2166
2167                 i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
2168                 return;
2169         }
2170
2171         pvt = mci->pvt_info;
2172
2173         edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2174
2175         /* Disable scrubrate setting */
2176         if (pvt->enable_scrub)
2177                 disable_sdram_scrub_setting(mci);
2178
2179         /* Disable EDAC polling */
2180         i7core_pci_ctl_release(pvt);
2181
2182         /* Remove MC sysfs nodes */
2183         i7core_delete_sysfs_devices(mci);
2184         edac_mc_del_mc(mci->pdev);
2185
2186         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2187         kfree(mci->ctl_name);
2188         edac_mc_free(mci);
2189         i7core_dev->mci = NULL;
2190 }
2191
2192 static int i7core_register_mci(struct i7core_dev *i7core_dev)
2193 {
2194         struct mem_ctl_info *mci;
2195         struct i7core_pvt *pvt;
2196         int rc;
2197         struct edac_mc_layer layers[2];
2198
2199         /* allocate a new MC control structure */
2200
2201         layers[0].type = EDAC_MC_LAYER_CHANNEL;
2202         layers[0].size = NUM_CHANS;
2203         layers[0].is_virt_csrow = false;
2204         layers[1].type = EDAC_MC_LAYER_SLOT;
2205         layers[1].size = MAX_DIMMS;
2206         layers[1].is_virt_csrow = true;
2207         mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
2208                             sizeof(*pvt));
2209         if (unlikely(!mci))
2210                 return -ENOMEM;
2211
2212         edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2213
2214         pvt = mci->pvt_info;
2215         memset(pvt, 0, sizeof(*pvt));
2216
2217         /* Associates i7core_dev and mci for future usage */
2218         pvt->i7core_dev = i7core_dev;
2219         i7core_dev->mci = mci;
2220
2221         /*
2222          * FIXME: how to handle RDDR3 at MCI level? It is possible to have
2223          * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
2224          * memory channels
2225          */
2226         mci->mtype_cap = MEM_FLAG_DDR3;
2227         mci->edac_ctl_cap = EDAC_FLAG_NONE;
2228         mci->edac_cap = EDAC_FLAG_NONE;
2229         mci->mod_name = "i7core_edac.c";
2230         mci->mod_ver = I7CORE_REVISION;
2231         mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
2232                                   i7core_dev->socket);
2233         mci->dev_name = pci_name(i7core_dev->pdev[0]);
2234         mci->ctl_page_to_phys = NULL;
2235
2236         /* Store pci devices at mci for faster access */
2237         rc = mci_bind_devs(mci, i7core_dev);
2238         if (unlikely(rc < 0))
2239                 goto fail0;
2240
2241
2242         /* Get dimm basic config */
2243         get_dimm_config(mci);
2244         /* record ptr to the generic device */
2245         mci->pdev = &i7core_dev->pdev[0]->dev;
2246         /* Set the function pointer to an actual operation function */
2247         mci->edac_check = i7core_check_error;
2248
2249         /* Enable scrubrate setting */
2250         if (pvt->enable_scrub)
2251                 enable_sdram_scrub_setting(mci);
2252
2253         /* add this new MC control structure to EDAC's list of MCs */
2254         if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) {
2255                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2256                 /* FIXME: perhaps some code should go here that disables error
2257                  * reporting if we just enabled it
2258                  */
2259
2260                 rc = -EINVAL;
2261                 goto fail0;
2262         }
2263         if (i7core_create_sysfs_devices(mci)) {
2264                 edac_dbg(0, "MC: failed to create sysfs nodes\n");
2265                 edac_mc_del_mc(mci->pdev);
2266                 rc = -EINVAL;
2267                 goto fail0;
2268         }
2269
2270         /* Default error mask is any memory */
2271         pvt->inject.channel = 0;
2272         pvt->inject.dimm = -1;
2273         pvt->inject.rank = -1;
2274         pvt->inject.bank = -1;
2275         pvt->inject.page = -1;
2276         pvt->inject.col = -1;
2277
2278         /* allocating generic PCI control info */
2279         i7core_pci_ctl_create(pvt);
2280
2281         /* DCLK for scrub rate setting */
2282         pvt->dclk_freq = get_dclk_freq();
2283
2284         return 0;
2285
2286 fail0:
2287         kfree(mci->ctl_name);
2288         edac_mc_free(mci);
2289         i7core_dev->mci = NULL;
2290         return rc;
2291 }
2292
2293 /*
2294  *      i7core_probe    Probe for ONE instance of device to see if it is
2295  *                      present.
2296  *      return:
2297  *              0 for FOUND a device
2298  *              < 0 for error code
2299  */
2300
2301 static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2302 {
2303         int rc, count = 0;
2304         struct i7core_dev *i7core_dev;
2305
2306         /* get the pci devices we want to reserve for our use */
2307         mutex_lock(&i7core_edac_lock);
2308
2309         /*
2310          * All memory controllers are allocated at the first pass.
2311          */
2312         if (unlikely(probed >= 1)) {
2313                 mutex_unlock(&i7core_edac_lock);
2314                 return -ENODEV;
2315         }
2316         probed++;
2317
2318         rc = i7core_get_all_devices();
2319         if (unlikely(rc < 0))
2320                 goto fail0;
2321
2322         list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2323                 count++;
2324                 rc = i7core_register_mci(i7core_dev);
2325                 if (unlikely(rc < 0))
2326                         goto fail1;
2327         }
2328
2329         /*
2330          * Nehalem-EX uses a different memory controller. However, as the
2331          * memory controller is not visible on some Nehalem/Nehalem-EP, we
2332          * need to indirectly probe via a X58 PCI device. The same devices
2333          * are found on (some) Nehalem-EX. So, on those machines, the
2334          * probe routine needs to return -ENODEV, as the actual Memory
2335          * Controller registers won't be detected.
2336          */
2337         if (!count) {
2338                 rc = -ENODEV;
2339                 goto fail1;
2340         }
2341
2342         i7core_printk(KERN_INFO,
2343                       "Driver loaded, %d memory controller(s) found.\n",
2344                       count);
2345
2346         mutex_unlock(&i7core_edac_lock);
2347         return 0;
2348
2349 fail1:
2350         list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2351                 i7core_unregister_mci(i7core_dev);
2352
2353         i7core_put_all_devices();
2354 fail0:
2355         mutex_unlock(&i7core_edac_lock);
2356         return rc;
2357 }
2358
2359 /*
2360  *      i7core_remove   destructor for one instance of device
2361  *
2362  */
2363 static void i7core_remove(struct pci_dev *pdev)
2364 {
2365         struct i7core_dev *i7core_dev;
2366
2367         edac_dbg(0, "\n");
2368
2369         /*
2370          * we have a trouble here: pdev value for removal will be wrong, since
2371          * it will point to the X58 register used to detect that the machine
2372          * is a Nehalem or upper design. However, due to the way several PCI
2373          * devices are grouped together to provide MC functionality, we need
2374          * to use a different method for releasing the devices
2375          */
2376
2377         mutex_lock(&i7core_edac_lock);
2378
2379         if (unlikely(!probed)) {
2380                 mutex_unlock(&i7core_edac_lock);
2381                 return;
2382         }
2383
2384         list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2385                 i7core_unregister_mci(i7core_dev);
2386
2387         /* Release PCI resources */
2388         i7core_put_all_devices();
2389
2390         probed--;
2391
2392         mutex_unlock(&i7core_edac_lock);
2393 }
2394
2395 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2396
2397 /*
2398  *      i7core_driver   pci_driver structure for this module
2399  *
2400  */
2401 static struct pci_driver i7core_driver = {
2402         .name     = "i7core_edac",
2403         .probe    = i7core_probe,
2404         .remove   = i7core_remove,
2405         .id_table = i7core_pci_tbl,
2406 };
2407
2408 /*
2409  *      i7core_init             Module entry function
2410  *                      Try to initialize this module for its devices
2411  */
2412 static int __init i7core_init(void)
2413 {
2414         int pci_rc;
2415
2416         edac_dbg(2, "\n");
2417
2418         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2419         opstate_init();
2420
2421         if (use_pci_fixup)
2422                 i7core_xeon_pci_fixup(pci_dev_table);
2423
2424         pci_rc = pci_register_driver(&i7core_driver);
2425
2426         if (pci_rc >= 0) {
2427                 mce_register_decode_chain(&i7_mce_dec);
2428                 return 0;
2429         }
2430
2431         i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2432                       pci_rc);
2433
2434         return pci_rc;
2435 }
2436
2437 /*
2438  *      i7core_exit()   Module exit function
2439  *                      Unregister the driver
2440  */
2441 static void __exit i7core_exit(void)
2442 {
2443         edac_dbg(2, "\n");
2444         pci_unregister_driver(&i7core_driver);
2445         mce_unregister_decode_chain(&i7_mce_dec);
2446 }
2447
2448 module_init(i7core_init);
2449 module_exit(i7core_exit);
2450
2451 MODULE_LICENSE("GPL");
2452 MODULE_AUTHOR("Mauro Carvalho Chehab");
2453 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2454 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2455                    I7CORE_REVISION);
2456
2457 module_param(edac_op_state, int, 0444);
2458 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");