]> git.kernelconcepts.de Git - karo-tx-redboot.git/blob - packages/net/lwip_tcpip/v2_0/src/netif/ppp/randm.c
unified MX27, MX25, MX37 trees
[karo-tx-redboot.git] / packages / net / lwip_tcpip / v2_0 / src / netif / ppp / randm.c
1 /*****************************************************************************
2 * randm.c - Random number generator program file.
3 *
4 * Copyright (c) 2003 by Marc Boucher, Services Informatiques (MBSI) inc.
5 * Copyright (c) 1998 by Global Election Systems Inc.
6 *
7 * The authors hereby grant permission to use, copy, modify, distribute,
8 * and license this software and its documentation for any purpose, provided
9 * that existing copyright notices are retained in all copies and that this
10 * notice and the following disclaimer are included verbatim in any 
11 * distributions. No written agreement, license, or royalty fee is required
12 * for any of the authorized uses.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS *AS IS* AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 
17 * IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 ******************************************************************************
26 * REVISION HISTORY
27 *
28 * 03-01-01 Marc Boucher <marc@mbsi.ca>
29 *   Ported to lwIP.
30 * 98-06-03 Guy Lancaster <lancasterg@acm.org>, Global Election Systems Inc.
31 *   Extracted from avos.
32 *****************************************************************************/
33
34 #include "ppp.h"
35 #if PPP_SUPPORT > 0
36 #include "md5.h"
37 #include "randm.h"
38
39 #include "pppdebug.h"
40
41
42 #if MD5_SUPPORT>0   /* this module depends on MD5 */
43 #define RANDPOOLSZ 16   /* Bytes stored in the pool of randomness. */
44
45 /*****************************/
46 /*** LOCAL DATA STRUCTURES ***/
47 /*****************************/
48 static char randPool[RANDPOOLSZ];   /* Pool of randomness. */
49 static long randCount = 0;      /* Pseudo-random incrementer */
50
51
52 /***********************************/
53 /*** PUBLIC FUNCTION DEFINITIONS ***/
54 /***********************************/
55 /*
56  * Initialize the random number generator.
57  *
58  * Since this is to be called on power up, we don't have much
59  *  system randomess to work with.  Here all we use is the
60  *  real-time clock.  We'll accumulate more randomness as soon
61  *  as things start happening.
62  */
63 void avRandomInit()
64 {
65     avChurnRand(NULL, 0);
66 }
67
68 /*
69  * Churn the randomness pool on a random event.  Call this early and often
70  *  on random and semi-random system events to build randomness in time for
71  *  usage.  For randomly timed events, pass a null pointer and a zero length
72  *  and this will use the system timer and other sources to add randomness.
73  *  If new random data is available, pass a pointer to that and it will be
74  *  included.
75  *
76  * Ref: Applied Cryptography 2nd Ed. by Bruce Schneier p. 427
77  */
78 void avChurnRand(char *randData, u32_t randLen)
79 {
80     MD5_CTX md5;
81
82 /*  ppp_trace(LOG_INFO, "churnRand: %u@%P\n", randLen, randData); */
83     MD5Init(&md5);
84     MD5Update(&md5, (u_char *)randPool, sizeof(randPool));
85     if (randData)
86         MD5Update(&md5, (u_char *)randData, randLen);
87     else {
88         struct {
89             /* INCLUDE fields for any system sources of randomness */
90             char foobar;
91         } sysData;
92
93         /* Load sysData fields here. */
94         ;
95         MD5Update(&md5, (u_char *)&sysData, sizeof(sysData));
96     }
97     MD5Final((u_char *)randPool, &md5);
98 /*  ppp_trace(LOG_INFO, "churnRand: -> 0\n"); */
99 }
100
101 /*
102  * Use the random pool to generate random data.  This degrades to pseudo
103  *  random when used faster than randomness is supplied using churnRand().
104  * Note: It's important that there be sufficient randomness in randPool
105  *  before this is called for otherwise the range of the result may be
106  *  narrow enough to make a search feasible.
107  *
108  * Ref: Applied Cryptography 2nd Ed. by Bruce Schneier p. 427
109  *
110  * XXX Why does he not just call churnRand() for each block?  Probably
111  *  so that you don't ever publish the seed which could possibly help
112  *  predict future values.
113  * XXX Why don't we preserve md5 between blocks and just update it with
114  *  randCount each time?  Probably there is a weakness but I wish that
115  *  it was documented.
116  */
117 void avGenRand(char *buf, u32_t bufLen)
118 {
119     MD5_CTX md5;
120     u_char tmp[16];
121     u32_t n;
122
123     while (bufLen > 0) {
124         n = LWIP_MIN(bufLen, RANDPOOLSZ);
125         MD5Init(&md5);
126         MD5Update(&md5, (u_char *)randPool, sizeof(randPool));
127         MD5Update(&md5, (u_char *)&randCount, sizeof(randCount));
128         MD5Final(tmp, &md5);
129         randCount++;
130         memcpy(buf, tmp, n);
131         buf += n;
132         bufLen -= n;
133     }
134 }
135
136 /*
137  * Return a new random number.
138  */
139 u32_t avRandom()
140 {
141     u32_t newRand;
142
143     avGenRand((char *)&newRand, sizeof(newRand));
144
145     return newRand;
146 }
147
148 #else /* MD5_SUPPORT */
149
150
151 /*****************************/
152 /*** LOCAL DATA STRUCTURES ***/
153 /*****************************/
154 static int  avRandomized = 0;       /* Set when truely randomized. */
155 static u32_t avRandomSeed = 0;      /* Seed used for random number generation. */
156
157
158 /***********************************/
159 /*** PUBLIC FUNCTION DEFINITIONS ***/
160 /***********************************/
161 /*
162  * Initialize the random number generator.
163  *
164  * Here we attempt to compute a random number seed but even if
165  * it isn't random, we'll randomize it later.
166  *
167  * The current method uses the fields from the real time clock,
168  * the idle process counter, the millisecond counter, and the
169  * hardware timer tick counter.  When this is invoked
170  * in startup(), then the idle counter and timer values may
171  * repeat after each boot and the real time clock may not be
172  * operational.  Thus we call it again on the first random
173  * event.
174  */
175 void avRandomInit()
176 {
177 #if 0
178     /* Get a pointer into the last 4 bytes of clockBuf. */
179     u32_t *lptr1 = (u32_t *)((char *)&clockBuf[3]);
180
181     /*
182      * Initialize our seed using the real-time clock, the idle
183      * counter, the millisecond timer, and the hardware timer
184      * tick counter.  The real-time clock and the hardware
185      * tick counter are the best sources of randomness but
186      * since the tick counter is only 16 bit (and truncated
187      * at that), the idle counter and millisecond timer
188      * (which may be small values) are added to help
189      * randomize the lower 16 bits of the seed.
190      */
191     readClk();
192     avRandomSeed += *(u32_t *)clockBuf + *lptr1 + OSIdleCtr
193              + ppp_mtime() + ((u32_t)TM1 << 16) + TM1;
194 #else
195     avRandomSeed += sys_jiffies(); /* XXX */
196 #endif
197         
198     /* Initialize the Borland random number generator. */
199     srand((unsigned)avRandomSeed);
200 }
201
202 /*
203  * Randomize our random seed value.  Here we use the fact that
204  * this function is called at *truely random* times by the polling
205  * and network functions.  Here we only get 16 bits of new random
206  * value but we use the previous value to randomize the other 16
207  * bits.
208  */
209 void avRandomize(void)
210 {
211     static u32_t last_jiffies;
212
213     if (!avRandomized) {
214         avRandomized = !0;
215         avRandomInit();
216         /* The initialization function also updates the seed. */
217     } else {
218 /*        avRandomSeed += (avRandomSeed << 16) + TM1; */
219         avRandomSeed += (sys_jiffies() - last_jiffies); /* XXX */
220     }
221     last_jiffies = sys_jiffies();
222 }
223
224 /*
225  * Return a new random number.
226  * Here we use the Borland rand() function to supply a pseudo random
227  * number which we make truely random by combining it with our own
228  * seed which is randomized by truely random events. 
229  * Thus the numbers will be truely random unless there have been no
230  * operator or network events in which case it will be pseudo random
231  * seeded by the real time clock.
232  */
233 u32_t avRandom()
234 {
235     return ((((u32_t)rand() << 16) + rand()) + avRandomSeed);
236 }
237
238
239
240 #endif /* MD5_SUPPORT */
241 #endif /* PPP_SUPPORT */
242