]> git.kernelconcepts.de Git - karo-tx-uboot.git/blobdiff - drivers/mtd/nand/omap_gpmc.c
Merge branch 'u-boot-imx/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / drivers / mtd / nand / omap_gpmc.c
index f1469d11050a04705bc8fa89f91df153359f0bac..bc1bcad3bad6d66576167dfb26add5651f959c7c 100644 (file)
 #include <asm/io.h>
 #include <asm/errno.h>
 #include <asm/arch/mem.h>
-#include <asm/arch/omap_gpmc.h>
+#include <asm/arch/cpu.h>
+#include <asm/omap_gpmc.h>
 #include <linux/mtd/nand_ecc.h>
+#include <linux/bch.h>
 #include <linux/compiler.h>
 #include <nand.h>
+#ifdef CONFIG_AM33XX
+#include <asm/arch/elm.h>
+#endif
 
 static uint8_t cs;
 static __maybe_unused struct nand_ecclayout hw_nand_oob =
        GPMC_NAND_HW_ECC_LAYOUT;
+static __maybe_unused struct nand_ecclayout hw_bch8_nand_oob =
+       GPMC_NAND_HW_BCH8_ECC_LAYOUT;
 
 /*
  * omap_nand_hwcontrol - Set the address pointers corretly for the
@@ -234,15 +241,544 @@ static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
        }
 }
 
-#ifndef CONFIG_SPL_BUILD
 /*
- * omap_nand_switch_ecc - switch the ECC operation b/w h/w ecc and s/w ecc.
- * The default is to come up on s/w ecc
+ * Generic BCH interface
+ */
+struct nand_bch_priv {
+       uint8_t mode;
+       uint8_t type;
+       uint8_t nibbles;
+       struct bch_control *control;
+};
+
+/* bch types */
+#define ECC_BCH4       0
+#define ECC_BCH8       1
+#define ECC_BCH16      2
+
+/* GPMC ecc engine settings */
+#define BCH_WRAPMODE_1         1       /* BCH wrap mode 1 */
+#define BCH_WRAPMODE_6         6       /* BCH wrap mode 6 */
+
+/* BCH nibbles for diff bch levels */
+#define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
+#define ECC_BCH4_NIBBLES       13
+#define ECC_BCH8_NIBBLES       26
+#define ECC_BCH16_NIBBLES      52
+
+/*
+ * This can be a single instance cause all current users have only one NAND
+ * with nearly the same setup (BCH8, some with ELM and others with sw BCH
+ * library).
+ * When some users with other BCH strength will exists this have to change!
+ */
+static __maybe_unused struct nand_bch_priv bch_priv = {
+       .mode = NAND_ECC_HW_BCH,
+       .type = ECC_BCH8,
+       .nibbles = ECC_BCH8_NIBBLES,
+       .control = NULL
+};
+
+/*
+ * omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
+ *                             GPMC controller
+ * @mtd:       MTD device structure
+ * @mode:      Read/Write mode
+ */
+__maybe_unused
+static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
+{
+       uint32_t val;
+       uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
+#ifdef CONFIG_AM33XX
+       uint32_t unused_length = 0;
+#endif
+       uint32_t wr_mode = BCH_WRAPMODE_6;
+       struct nand_bch_priv *bch = chip->priv;
+
+       /* Clear the ecc result registers, select ecc reg as 1 */
+       writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
+
+#ifdef CONFIG_AM33XX
+       wr_mode = BCH_WRAPMODE_1;
+
+       switch (bch->nibbles) {
+       case ECC_BCH4_NIBBLES:
+               unused_length = 3;
+               break;
+       case ECC_BCH8_NIBBLES:
+               unused_length = 2;
+               break;
+       case ECC_BCH16_NIBBLES:
+               unused_length = 0;
+               break;
+       }
+
+       /*
+        * This is ecc_size_config for ELM mode.
+        * Here we are using different settings for read and write access and
+        * also depending on BCH strength.
+        */
+       switch (mode) {
+       case NAND_ECC_WRITE:
+               /* write access only setup eccsize1 config */
+               val = ((unused_length + bch->nibbles) << 22);
+               break;
+
+       case NAND_ECC_READ:
+       default:
+               /*
+                * by default eccsize0 selected for ecc1resultsize
+                * eccsize0 config.
+                */
+               val  = (bch->nibbles << 12);
+               /* eccsize1 config */
+               val |= (unused_length << 22);
+               break;
+       }
+#else
+       /*
+        * This ecc_size_config setting is for BCH sw library.
+        *
+        * Note: we only support BCH8 currently with BCH sw library!
+        * Should be really easy to adobt to BCH4, however some omap3 have
+        * flaws with BCH4.
+        *
+        * Here we are using wrapping mode 6 both for reading and writing, with:
+        *  size0 = 0  (no additional protected byte in spare area)
+        *  size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
+        */
+       val = (32 << 22) | (0 << 12);
+#endif
+       /* ecc size configuration */
+       writel(val, &gpmc_cfg->ecc_size_config);
+
+       /*
+        * Configure the ecc engine in gpmc
+        * We assume 512 Byte sector pages for access to NAND.
+        */
+       val  = (1 << 16);               /* enable BCH mode */
+       val |= (bch->type << 12);       /* setup BCH type */
+       val |= (wr_mode << 8);          /* setup wrapping mode */
+       val |= (dev_width << 7);        /* setup device width (16 or 8 bit) */
+       val |= (cs << 1);               /* setup chip select to work on */
+       debug("set ECC_CONFIG=0x%08x\n", val);
+       writel(val, &gpmc_cfg->ecc_config);
+}
+
+/*
+ * omap_enable_ecc_bch - This function enables the bch h/w ecc functionality
+ * @mtd:       MTD device structure
+ * @mode:      Read/Write mode
+ */
+__maybe_unused
+static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
+{
+       struct nand_chip *chip = mtd->priv;
+
+       omap_hwecc_init_bch(chip, mode);
+       /* enable ecc */
+       writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
+}
+
+/*
+ * omap_ecc_disable - Disable H/W ECC calculation
+ *
+ * @mtd:       MTD device structure
+ */
+static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd)
+{
+       writel((readl(&gpmc_cfg->ecc_config) & ~0x1), &gpmc_cfg->ecc_config);
+}
+
+/*
+ * BCH8 support (needs ELM and thus AM33xx-only)
+ */
+#ifdef CONFIG_AM33XX
+/*
+ * omap_read_bch8_result - Read BCH result for BCH8 level
+ *
+ * @mtd:       MTD device structure
+ * @big_endian:        When set read register 3 first
+ * @ecc_code:  Read syndrome from BCH result registers
+ */
+static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
+                               uint8_t *ecc_code)
+{
+       uint32_t *ptr;
+       int8_t i = 0, j;
+
+       if (big_endian) {
+               ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
+               ecc_code[i++] = readl(ptr) & 0xFF;
+               ptr--;
+               for (j = 0; j < 3; j++) {
+                       ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
+                       ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
+                       ecc_code[i++] = (readl(ptr) >>  8) & 0xFF;
+                       ecc_code[i++] = readl(ptr) & 0xFF;
+                       ptr--;
+               }
+       } else {
+               ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
+               for (j = 0; j < 3; j++) {
+                       ecc_code[i++] = readl(ptr) & 0xFF;
+                       ecc_code[i++] = (readl(ptr) >>  8) & 0xFF;
+                       ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
+                       ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
+                       ptr++;
+               }
+               ecc_code[i++] = readl(ptr) & 0xFF;
+               ecc_code[i++] = 0;      /* 14th byte is always zero */
+       }
+}
+
+/*
+ * omap_rotate_ecc_bch - Rotate the syndrome bytes
+ *
+ * @mtd:       MTD device structure
+ * @calc_ecc:  ECC read from ECC registers
+ * @syndrome:  Rotated syndrome will be retuned in this array
+ *
+ */
+static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
+               uint8_t *syndrome)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct nand_bch_priv *bch = chip->priv;
+       uint8_t n_bytes = 0;
+       int8_t i, j;
+
+       switch (bch->type) {
+       case ECC_BCH4:
+               n_bytes = 8;
+               break;
+
+       case ECC_BCH16:
+               n_bytes = 28;
+               break;
+
+       case ECC_BCH8:
+       default:
+               n_bytes = 13;
+               break;
+       }
+
+       for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
+               syndrome[i] =  calc_ecc[j];
+}
+
+/*
+ *  omap_calculate_ecc_bch - Read BCH ECC result
+ *
+ *  @mtd:      MTD structure
+ *  @dat:      unused
+ *  @ecc_code: ecc_code buffer
+ */
+static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
+                               uint8_t *ecc_code)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct nand_bch_priv *bch = chip->priv;
+       uint8_t big_endian = 1;
+       int8_t ret = 0;
+
+       if (bch->type == ECC_BCH8)
+               omap_read_bch8_result(mtd, big_endian, ecc_code);
+       else /* BCH4 and BCH16 currently not supported */
+               ret = -1;
+
+       /*
+        * Stop reading anymore ECC vals and clear old results
+        * enable will be called if more reads are required
+        */
+       omap_ecc_disable(mtd);
+
+       return ret;
+}
+
+/*
+ * omap_fix_errors_bch - Correct bch error in the data
  *
- * @hardware - 1 -switch to h/w ecc, 0 - s/w ecc
+ * @mtd:       MTD device structure
+ * @data:      Data read from flash
+ * @error_count:Number of errors in data
+ * @error_loc: Locations of errors in the data
  *
  */
-void omap_nand_switch_ecc(int32_t hardware)
+static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
+               uint32_t error_count, uint32_t *error_loc)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct nand_bch_priv *bch = chip->priv;
+       uint8_t count = 0;
+       uint32_t error_byte_pos;
+       uint32_t error_bit_mask;
+       uint32_t last_bit = (bch->nibbles * 4) - 1;
+
+       /* Flip all bits as specified by the error location array. */
+       /* FOR( each found error location flip the bit ) */
+       for (count = 0; count < error_count; count++) {
+               if (error_loc[count] > last_bit) {
+                       /* Remove the ECC spare bits from correction. */
+                       error_loc[count] -= (last_bit + 1);
+                       /* Offset bit in data region */
+                       error_byte_pos = ((512 * 8) -
+                                       (error_loc[count]) - 1) / 8;
+                       /* Error Bit mask */
+                       error_bit_mask = 0x1 << (error_loc[count] % 8);
+                       /* Toggle the error bit to make the correction. */
+                       data[error_byte_pos] ^= error_bit_mask;
+               }
+       }
+}
+
+/*
+ * omap_correct_data_bch - Compares the ecc read from nand spare area
+ * with ECC registers values and corrects one bit error if it has occured
+ *
+ * @mtd:       MTD device structure
+ * @dat:       page data
+ * @read_ecc:  ecc read from nand flash (ignored)
+ * @calc_ecc:  ecc read from ECC registers
+ *
+ * @return 0 if data is OK or corrected, else returns -1
+ */
+static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
+                               uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct nand_bch_priv *bch = chip->priv;
+       uint8_t syndrome[28];
+       uint32_t error_count = 0;
+       uint32_t error_loc[8];
+       uint32_t i, ecc_flag;
+
+       ecc_flag = 0;
+       for (i = 0; i < chip->ecc.bytes; i++)
+               if (read_ecc[i] != 0xff)
+                       ecc_flag = 1;
+
+       if (!ecc_flag)
+               return 0;
+
+       elm_reset();
+       elm_config((enum bch_level)(bch->type));
+
+       /*
+        * while reading ECC result we read it in big endian.
+        * Hence while loading to ELM we have rotate to get the right endian.
+        */
+       omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
+
+       /* use elm module to check for errors */
+       if (elm_check_error(syndrome, bch->nibbles, &error_count,
+                               error_loc) != 0) {
+               printf("ECC: uncorrectable.\n");
+               return -1;
+       }
+
+       /* correct bch error */
+       if (error_count > 0)
+               omap_fix_errors_bch(mtd, dat, error_count, error_loc);
+
+       return 0;
+}
+
+/**
+ * omap_read_page_bch - hardware ecc based page read function
+ * @mtd:       mtd info structure
+ * @chip:      nand chip info structure
+ * @buf:       buffer to store read data
+ * @page:      page number to read
+ *
+ */
+static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
+                               uint8_t *buf, int page)
+{
+       int i, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *p = buf;
+       uint8_t *ecc_calc = chip->buffers->ecccalc;
+       uint8_t *ecc_code = chip->buffers->ecccode;
+       uint32_t *eccpos = chip->ecc.layout->eccpos;
+       uint8_t *oob = chip->oob_poi;
+       uint32_t data_pos;
+       uint32_t oob_pos;
+
+       data_pos = 0;
+       /* oob area start */
+       oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
+       oob += chip->ecc.layout->eccpos[0];
+
+       for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
+                               oob += eccbytes) {
+               chip->ecc.hwctl(mtd, NAND_ECC_READ);
+               /* read data */
+               chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
+               chip->read_buf(mtd, p, eccsize);
+
+               /* read respective ecc from oob area */
+               chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
+               chip->read_buf(mtd, oob, eccbytes);
+               /* read syndrome */
+               chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+               data_pos += eccsize;
+               oob_pos += eccbytes;
+       }
+
+       for (i = 0; i < chip->ecc.total; i++)
+               ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+       eccsteps = chip->ecc.steps;
+       p = buf;
+
+       for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+               int stat;
+
+               stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+               if (stat < 0)
+                       mtd->ecc_stats.failed++;
+               else
+                       mtd->ecc_stats.corrected += stat;
+       }
+       return 0;
+}
+#endif /* CONFIG_AM33XX */
+
+/*
+ * OMAP3 BCH8 support (with BCH library)
+ */
+#ifdef CONFIG_NAND_OMAP_BCH8
+/*
+ *  omap_calculate_ecc_bch - Read BCH ECC result
+ *
+ *  @mtd:      MTD device structure
+ *  @dat:      The pointer to data on which ecc is computed (unused here)
+ *  @ecc:      The ECC output buffer
+ */
+static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
+                               uint8_t *ecc)
+{
+       int ret = 0;
+       size_t i;
+       unsigned long nsectors, val1, val2, val3, val4;
+
+       nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
+
+       for (i = 0; i < nsectors; i++) {
+               /* Read hw-computed remainder */
+               val1 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[0]);
+               val2 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[1]);
+               val3 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[2]);
+               val4 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[3]);
+
+               /*
+                * Add constant polynomial to remainder, in order to get an ecc
+                * sequence of 0xFFs for a buffer filled with 0xFFs.
+                */
+               *ecc++ = 0xef ^ (val4 & 0xFF);
+               *ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
+               *ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
+               *ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
+               *ecc++ = 0xed ^ (val3 & 0xFF);
+               *ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
+               *ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
+               *ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
+               *ecc++ = 0x97 ^ (val2 & 0xFF);
+               *ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
+               *ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
+               *ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
+               *ecc++ = 0xb5 ^ (val1 & 0xFF);
+       }
+
+       /*
+        * Stop reading anymore ECC vals and clear old results
+        * enable will be called if more reads are required
+        */
+       omap_ecc_disable(mtd);
+
+       return ret;
+}
+
+/**
+ * omap_correct_data_bch - Decode received data and correct errors
+ * @mtd: MTD device structure
+ * @data: page data
+ * @read_ecc: ecc read from nand flash
+ * @calc_ecc: ecc read from HW ECC registers
+ */
+static int omap_correct_data_bch(struct mtd_info *mtd, u_char *data,
+                                u_char *read_ecc, u_char *calc_ecc)
+{
+       int i, count;
+       /* cannot correct more than 8 errors */
+       unsigned int errloc[8];
+       struct nand_chip *chip = mtd->priv;
+       struct nand_bch_priv *chip_priv = chip->priv;
+       struct bch_control *bch = chip_priv->control;
+
+       count = decode_bch(bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc);
+       if (count > 0) {
+               /* correct errors */
+               for (i = 0; i < count; i++) {
+                       /* correct data only, not ecc bytes */
+                       if (errloc[i] < 8*512)
+                               data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
+                       printf("corrected bitflip %u\n", errloc[i]);
+#ifdef DEBUG
+                       puts("read_ecc: ");
+                       /*
+                        * BCH8 have 13 bytes of ECC; BCH4 needs adoption
+                        * here!
+                        */
+                       for (i = 0; i < 13; i++)
+                               printf("%02x ", read_ecc[i]);
+                       puts("\n");
+                       puts("calc_ecc: ");
+                       for (i = 0; i < 13; i++)
+                               printf("%02x ", calc_ecc[i]);
+                       puts("\n");
+#endif
+               }
+       } else if (count < 0) {
+               puts("ecc unrecoverable error\n");
+       }
+       return count;
+}
+
+/**
+ * omap_free_bch - Release BCH ecc resources
+ * @mtd: MTD device structure
+ */
+static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct nand_bch_priv *chip_priv = chip->priv;
+       struct bch_control *bch = NULL;
+
+       if (chip_priv)
+               bch = chip_priv->control;
+
+       if (bch) {
+               free_bch(bch);
+               chip_priv->control = NULL;
+       }
+}
+#endif /* CONFIG_NAND_OMAP_BCH8 */
+
+#ifndef CONFIG_SPL_BUILD
+/*
+ * omap_nand_switch_ecc - switch the ECC operation between different engines
+ * (h/w and s/w) and different algorithms (hamming and BCHx)
+ *
+ * @hardware           - true if one of the HW engines should be used
+ * @eccstrength                - the number of bits that could be corrected
+ *                       (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
+ */
+void omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
 {
        struct nand_chip *nand;
        struct mtd_info *mtd;
@@ -260,6 +796,7 @@ void omap_nand_switch_ecc(int32_t hardware)
        nand->options |= NAND_OWN_BUFFERS;
 
        /* Reset ecc interface */
+       nand->ecc.mode = NAND_ECC_NONE;
        nand->ecc.read_page = NULL;
        nand->ecc.write_page = NULL;
        nand->ecc.read_oob = NULL;
@@ -270,15 +807,35 @@ void omap_nand_switch_ecc(int32_t hardware)
 
        /* Setup the ecc configurations again */
        if (hardware) {
-               nand->ecc.mode = NAND_ECC_HW;
-               nand->ecc.layout = &hw_nand_oob;
-               nand->ecc.size = 512;
-               nand->ecc.bytes = 3;
-               nand->ecc.hwctl = omap_enable_hwecc;
-               nand->ecc.correct = omap_correct_data;
-               nand->ecc.calculate = omap_calculate_ecc;
-               omap_hwecc_init(nand);
-               printf("HW ECC selected\n");
+               if (eccstrength == 1) {
+                       nand->ecc.mode = NAND_ECC_HW;
+                       nand->ecc.layout = &hw_nand_oob;
+                       nand->ecc.size = 512;
+                       nand->ecc.bytes = 3;
+                       nand->ecc.hwctl = omap_enable_hwecc;
+                       nand->ecc.correct = omap_correct_data;
+                       nand->ecc.calculate = omap_calculate_ecc;
+                       omap_hwecc_init(nand);
+                       printf("1-bit hamming HW ECC selected\n");
+               }
+#if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
+               else if (eccstrength == 8) {
+                       nand->ecc.mode = NAND_ECC_HW;
+                       nand->ecc.layout = &hw_bch8_nand_oob;
+                       nand->ecc.size = 512;
+#ifdef CONFIG_AM33XX
+                       nand->ecc.bytes = 14;
+                       nand->ecc.read_page = omap_read_page_bch;
+#else
+                       nand->ecc.bytes = 13;
+#endif
+                       nand->ecc.hwctl = omap_enable_ecc_bch;
+                       nand->ecc.correct = omap_correct_data_bch;
+                       nand->ecc.calculate = omap_calculate_ecc_bch;
+                       omap_hwecc_init_bch(nand, NAND_ECC_READ);
+                       printf("8-bit BCH HW ECC selected\n");
+               }
+#endif
        } else {
                nand->ecc.mode = NAND_ECC_SOFT;
                /* Use mtd default settings */
@@ -350,7 +907,41 @@ int board_nand_init(struct nand_chip *nand)
                nand->options |= NAND_BUSWIDTH_16;
 
        nand->chip_delay = 100;
+
+#if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
+#ifdef CONFIG_AM33XX
+       /* AM33xx uses the ELM */
+       /* required in case of BCH */
+       elm_init();
+#else
+       /*
+        * Whereas other OMAP based SoC do not have the ELM, they use the BCH
+        * SW library.
+        */
+       bch_priv.control = init_bch(13, 8, 0x201b /* hw polynominal */);
+       if (!bch_priv.control) {
+               puts("Could not init_bch()\n");
+               return -ENODEV;
+       }
+#endif
+       /* BCH info that will be correct for SPL or overridden otherwise. */
+       nand->priv = &bch_priv;
+#endif
+
        /* Default ECC mode */
+#if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
+       nand->ecc.mode = NAND_ECC_HW;
+       nand->ecc.layout = &hw_bch8_nand_oob;
+       nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
+       nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
+       nand->ecc.hwctl = omap_enable_ecc_bch;
+       nand->ecc.correct = omap_correct_data_bch;
+       nand->ecc.calculate = omap_calculate_ecc_bch;
+#ifdef CONFIG_AM33XX
+       nand->ecc.read_page = omap_read_page_bch;
+#endif
+       omap_hwecc_init_bch(nand, NAND_ECC_READ);
+#else
 #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_NAND_SOFTECC)
        nand->ecc.mode = NAND_ECC_SOFT;
 #else
@@ -363,6 +954,7 @@ int board_nand_init(struct nand_chip *nand)
        nand->ecc.calculate = omap_calculate_ecc;
        omap_hwecc_init(nand);
 #endif
+#endif
 
 #ifdef CONFIG_SPL_BUILD
        if (nand->options & NAND_BUSWIDTH_16)