]> git.kernelconcepts.de Git - karo-tx-uboot.git/blobdiff - nand_spl/nand_boot.c
Fix all linker script to handle all rodata sections
[karo-tx-uboot.git] / nand_spl / nand_boot.c
index bc577252cf754fe695e5061ce51da6fd13104390..c7eadad1b9aa9335c5dcc4e8d7ba1db4881daa7f 100644 (file)
 
 #include <common.h>
 #include <nand.h>
+#include <asm/io.h>
 
-#define CFG_NAND_READ_DELAY \
+#define CONFIG_SYS_NAND_READ_DELAY \
        { volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
 
-static int nand_ecc_pos[] = CFG_NAND_ECCPOS;
+static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
 
-extern void board_nand_init(struct nand_chip *nand);
-
-#if (CFG_NAND_PAGE_SIZE <= 512)
+#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
 /*
  * NAND command for small page NAND devices (512)
  */
 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
 {
        struct nand_chip *this = mtd->priv;
-       int page_addr = page + block * CFG_NAND_PAGE_COUNT;
+       int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
 
        if (this->dev_ready)
-               this->dev_ready(mtd);
+               while (!this->dev_ready(mtd))
+                       ;
        else
-               CFG_NAND_READ_DELAY;
+               CONFIG_SYS_NAND_READ_DELAY;
 
        /* Begin command latch cycle */
-       this->hwcontrol(mtd, NAND_CTL_SETCLE);
-       this->write_byte(mtd, cmd);
+       this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
        /* Set ALE and clear CLE to start address cycle */
-       this->hwcontrol(mtd, NAND_CTL_CLRCLE);
-       this->hwcontrol(mtd, NAND_CTL_SETALE);
        /* Column address */
-       this->write_byte(mtd, offs);                                    /* A[7:0] */
-       this->write_byte(mtd, (uchar)(page_addr & 0xff));               /* A[16:9] */
-       this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff));        /* A[24:17] */
-#ifdef CFG_NAND_4_ADDR_CYCLE
+       this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+       this->cmd_ctrl(mtd, page_addr & 0xff, 0); /* A[16:9] */
+       this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff, 0); /* A[24:17] */
+#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
        /* One more address cycle for devices > 32MiB */
-       this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f));       /* A[xx:25] */
+       this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f, 0); /* A[28:25] */
 #endif
        /* Latch in address */
-       this->hwcontrol(mtd, NAND_CTL_CLRALE);
+       this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 
        /*
         * Wait a while for the data to be ready
         */
        if (this->dev_ready)
-               this->dev_ready(mtd);
+               while (!this->dev_ready(mtd))
+                       ;
        else
-               CFG_NAND_READ_DELAY;
+               CONFIG_SYS_NAND_READ_DELAY;
 
        return 0;
 }
@@ -76,53 +74,47 @@ static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8
 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
 {
        struct nand_chip *this = mtd->priv;
-       int page_offs = offs;
-       int page_addr = page + block * CFG_NAND_PAGE_COUNT;
+       int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
 
        if (this->dev_ready)
-               this->dev_ready(mtd);
+               while (!this->dev_ready(mtd))
+                       ;
        else
-               CFG_NAND_READ_DELAY;
+               CONFIG_SYS_NAND_READ_DELAY;
 
        /* Emulate NAND_CMD_READOOB */
        if (cmd == NAND_CMD_READOOB) {
-               page_offs += CFG_NAND_PAGE_SIZE;
+               offs += CONFIG_SYS_NAND_PAGE_SIZE;
                cmd = NAND_CMD_READ0;
        }
 
        /* Begin command latch cycle */
-       this->hwcontrol(mtd, NAND_CTL_SETCLE);
-       this->write_byte(mtd, cmd);
+       this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
        /* Set ALE and clear CLE to start address cycle */
-       this->hwcontrol(mtd, NAND_CTL_CLRCLE);
-       this->hwcontrol(mtd, NAND_CTL_SETALE);
        /* Column address */
-       this->write_byte(mtd, page_offs & 0xff);                        /* A[7:0] */
-       this->write_byte(mtd, (uchar)((page_offs >> 8) & 0xff));        /* A[11:9] */
+       this->cmd_ctrl(mtd, offs & 0xff,
+                      NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
+       this->cmd_ctrl(mtd, (offs >> 8) & 0xff, 0); /* A[11:9] */
        /* Row address */
-       this->write_byte(mtd, (uchar)(page_addr & 0xff));               /* A[19:12] */
-       this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff));        /* A[27:20] */
-#ifdef CFG_NAND_5_ADDR_CYCLE
+       this->cmd_ctrl(mtd, (page_addr & 0xff), 0); /* A[19:12] */
+       this->cmd_ctrl(mtd, ((page_addr >> 8) & 0xff), 0); /* A[27:20] */
+#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
        /* One more address cycle for devices > 128MiB */
-       this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f));       /* A[xx:28] */
+       this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f, 0); /* A[31:28] */
 #endif
        /* Latch in address */
-       this->hwcontrol(mtd, NAND_CTL_CLRALE);
-
-       /* Begin command latch cycle */
-       this->hwcontrol(mtd, NAND_CTL_SETCLE);
-       /* Write out the start read command */
-       this->write_byte(mtd, NAND_CMD_READSTART);
-       /* End command latch cycle */
-       this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+       this->cmd_ctrl(mtd, NAND_CMD_READSTART,
+                      NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+       this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 
        /*
         * Wait a while for the data to be ready
         */
        if (this->dev_ready)
-               this->dev_ready(mtd);
+               while (!this->dev_ready(mtd))
+                       ;
        else
-               CFG_NAND_READ_DELAY;
+               CONFIG_SYS_NAND_READ_DELAY;
 
        return 0;
 }
@@ -132,12 +124,12 @@ static int nand_is_bad_block(struct mtd_info *mtd, int block)
 {
        struct nand_chip *this = mtd->priv;
 
-       nand_command(mtd, block, 0, CFG_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
+       nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
 
        /*
         * Read one byte
         */
-       if (this->read_byte(mtd) != 0xff)
+       if (readb(this->IO_ADDR_R) != 0xff)
                return 1;
 
        return 0;
@@ -150,9 +142,9 @@ static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
        u_char *ecc_code;
        u_char *oob_data;
        int i;
-       int eccsize = CFG_NAND_ECCSIZE;
-       int eccbytes = CFG_NAND_ECCBYTES;
-       int eccsteps = CFG_NAND_ECCSTEPS;
+       int eccsize = CONFIG_SYS_NAND_ECCSIZE;
+       int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
+       int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
        uint8_t *p = dst;
        int stat;
 
@@ -161,22 +153,22 @@ static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
        /* No malloc available for now, just use some temporary locations
         * in SDRAM
         */
-       ecc_calc = (u_char *)(CFG_SDRAM_BASE + 0x10000);
+       ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
        ecc_code = ecc_calc + 0x100;
        oob_data = ecc_calc + 0x200;
 
        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
-               this->enable_hwecc(mtd, NAND_ECC_READ);
+               this->ecc.hwctl(mtd, NAND_ECC_READ);
                this->read_buf(mtd, p, eccsize);
-               this->calculate_ecc(mtd, p, &ecc_calc[i]);
+               this->ecc.calculate(mtd, p, &ecc_calc[i]);
        }
-       this->read_buf(mtd, oob_data, CFG_NAND_OOBSIZE);
+       this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
 
        /* Pick the ECC bytes out of the oob data */
-       for (i = 0; i < CFG_NAND_ECCTOTAL; i++)
+       for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
                ecc_code[i] = oob_data[nand_ecc_pos[i]];
 
-       eccsteps = CFG_NAND_ECCSTEPS;
+       eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
        p = dst;
 
        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
@@ -184,35 +176,39 @@ static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
                 * from correct_data(). We just hope that all possible errors
                 * are corrected by this routine.
                 */
-               stat = this->correct_data(mtd, p, &ecc_code[i], &ecc_calc[i]);
+               stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
        }
 
        return 0;
 }
 
-static int nand_load(struct mtd_info *mtd, int offs, int uboot_size, uchar *dst)
+static int nand_load(struct mtd_info *mtd, unsigned int offs,
+                    unsigned int uboot_size, uchar *dst)
 {
-       int block;
-       int blockcopy_count;
-       int page;
+       unsigned int block, lastblock;
+       unsigned int page;
 
        /*
-        * offs has to be aligned to a block address!
+        * offs has to be aligned to a page address!
         */
-       block = offs / CFG_NAND_BLOCK_SIZE;
-       blockcopy_count = 0;
+       block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
+       lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
+       page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
 
-       while (blockcopy_count < (uboot_size / CFG_NAND_BLOCK_SIZE)) {
+       while (block <= lastblock) {
                if (!nand_is_bad_block(mtd, block)) {
                        /*
                         * Skip bad blocks
                         */
-                       for (page = 0; page < CFG_NAND_PAGE_COUNT; page++) {
+                       while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
                                nand_read_page(mtd, block, page, dst);
-                               dst += CFG_NAND_PAGE_SIZE;
+                               dst += CONFIG_SYS_NAND_PAGE_SIZE;
+                               page++;
                        }
 
-                       blockcopy_count++;
+                       page = 0;
+               } else {
+                       lastblock++;
                }
 
                block++;
@@ -221,36 +217,41 @@ static int nand_load(struct mtd_info *mtd, int offs, int uboot_size, uchar *dst)
        return 0;
 }
 
+/*
+ * The main entry for NAND booting. It's necessary that SDRAM is already
+ * configured and available since this code loads the main U-Boot image
+ * from NAND into SDRAM and starts it from there.
+ */
 void nand_boot(void)
 {
-       ulong mem_size;
        struct nand_chip nand_chip;
        nand_info_t nand_info;
        int ret;
-       void (*uboot)(void);
-
-       /*
-        * Init sdram, so we have access to memory
-        */
-       mem_size = initdram(0);
+       __attribute__((noreturn)) void (*uboot)(void);
 
        /*
         * Init board specific nand support
         */
        nand_info.priv = &nand_chip;
-       nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CFG_NAND_BASE;
+       nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CONFIG_SYS_NAND_BASE;
        nand_chip.dev_ready = NULL;     /* preset to NULL */
        board_nand_init(&nand_chip);
 
+       if (nand_chip.select_chip)
+               nand_chip.select_chip(&nand_info, 0);
+
        /*
         * Load U-Boot image from NAND into RAM
         */
-       ret = nand_load(&nand_info, CFG_NAND_U_BOOT_OFFS, CFG_NAND_U_BOOT_SIZE,
-                       (uchar *)CFG_NAND_U_BOOT_DST);
+       ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
+                       (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
+
+       if (nand_chip.select_chip)
+               nand_chip.select_chip(&nand_info, -1);
 
        /*
         * Jump to U-Boot image
         */
-       uboot = (void (*)(void))CFG_NAND_U_BOOT_START;
+       uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
        (*uboot)();
 }