]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/crypto/mv_cesa.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-edac
[karo-tx-linux.git] / drivers / crypto / mv_cesa.c
1 /*
2  * Support for Marvell's crypto engine which can be found on some Orion5X
3  * boards.
4  *
5  * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6  * License: GPLv2
7  *
8  */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/clk.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22
23 #include "mv_cesa.h"
24
25 #define MV_CESA "MV-CESA:"
26 #define MAX_HW_HASH_SIZE        0xFFFF
27 #define MV_CESA_EXPIRE          500 /* msec */
28
29 /*
30  * STM:
31  *   /---------------------------------------\
32  *   |                                       | request complete
33  *  \./                                      |
34  * IDLE -> new request -> BUSY -> done -> DEQUEUE
35  *                         /°\               |
36  *                          |                | more scatter entries
37  *                          \________________/
38  */
39 enum engine_status {
40         ENGINE_IDLE,
41         ENGINE_BUSY,
42         ENGINE_W_DEQUEUE,
43 };
44
45 /**
46  * struct req_progress - used for every crypt request
47  * @src_sg_it:          sg iterator for src
48  * @dst_sg_it:          sg iterator for dst
49  * @sg_src_left:        bytes left in src to process (scatter list)
50  * @src_start:          offset to add to src start position (scatter list)
51  * @crypt_len:          length of current hw crypt/hash process
52  * @hw_nbytes:          total bytes to process in hw for this request
53  * @copy_back:          whether to copy data back (crypt) or not (hash)
54  * @sg_dst_left:        bytes left dst to process in this scatter list
55  * @dst_start:          offset to add to dst start position (scatter list)
56  * @hw_processed_bytes: number of bytes processed by hw (request).
57  *
58  * sg helper are used to iterate over the scatterlist. Since the size of the
59  * SRAM may be less than the scatter size, this struct struct is used to keep
60  * track of progress within current scatterlist.
61  */
62 struct req_progress {
63         struct sg_mapping_iter src_sg_it;
64         struct sg_mapping_iter dst_sg_it;
65         void (*complete) (void);
66         void (*process) (int is_first);
67
68         /* src mostly */
69         int sg_src_left;
70         int src_start;
71         int crypt_len;
72         int hw_nbytes;
73         /* dst mostly */
74         int copy_back;
75         int sg_dst_left;
76         int dst_start;
77         int hw_processed_bytes;
78 };
79
80 struct crypto_priv {
81         void __iomem *reg;
82         void __iomem *sram;
83         int irq;
84         struct clk *clk;
85         struct task_struct *queue_th;
86
87         /* the lock protects queue and eng_st */
88         spinlock_t lock;
89         struct crypto_queue queue;
90         enum engine_status eng_st;
91         struct timer_list completion_timer;
92         struct crypto_async_request *cur_req;
93         struct req_progress p;
94         int max_req_size;
95         int sram_size;
96         int has_sha1;
97         int has_hmac_sha1;
98 };
99
100 static struct crypto_priv *cpg;
101
102 struct mv_ctx {
103         u8 aes_enc_key[AES_KEY_LEN];
104         u32 aes_dec_key[8];
105         int key_len;
106         u32 need_calc_aes_dkey;
107 };
108
109 enum crypto_op {
110         COP_AES_ECB,
111         COP_AES_CBC,
112 };
113
114 struct mv_req_ctx {
115         enum crypto_op op;
116         int decrypt;
117 };
118
119 enum hash_op {
120         COP_SHA1,
121         COP_HMAC_SHA1
122 };
123
124 struct mv_tfm_hash_ctx {
125         struct crypto_shash *fallback;
126         struct crypto_shash *base_hash;
127         u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
128         int count_add;
129         enum hash_op op;
130 };
131
132 struct mv_req_hash_ctx {
133         u64 count;
134         u32 state[SHA1_DIGEST_SIZE / 4];
135         u8 buffer[SHA1_BLOCK_SIZE];
136         int first_hash;         /* marks that we don't have previous state */
137         int last_chunk;         /* marks that this is the 'final' request */
138         int extra_bytes;        /* unprocessed bytes in buffer */
139         enum hash_op op;
140         int count_add;
141 };
142
143 static void mv_completion_timer_callback(unsigned long unused)
144 {
145         int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
146
147         printk(KERN_ERR MV_CESA
148                "completion timer expired (CESA %sactive), cleaning up.\n",
149                active ? "" : "in");
150
151         del_timer(&cpg->completion_timer);
152         writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
153         while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
154                 printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
155         cpg->eng_st = ENGINE_W_DEQUEUE;
156         wake_up_process(cpg->queue_th);
157 }
158
159 static void mv_setup_timer(void)
160 {
161         setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
162         mod_timer(&cpg->completion_timer,
163                         jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
164 }
165
166 static void compute_aes_dec_key(struct mv_ctx *ctx)
167 {
168         struct crypto_aes_ctx gen_aes_key;
169         int key_pos;
170
171         if (!ctx->need_calc_aes_dkey)
172                 return;
173
174         crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
175
176         key_pos = ctx->key_len + 24;
177         memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
178         switch (ctx->key_len) {
179         case AES_KEYSIZE_256:
180                 key_pos -= 2;
181                 /* fall */
182         case AES_KEYSIZE_192:
183                 key_pos -= 2;
184                 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
185                                 4 * 4);
186                 break;
187         }
188         ctx->need_calc_aes_dkey = 0;
189 }
190
191 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
192                 unsigned int len)
193 {
194         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
195         struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
196
197         switch (len) {
198         case AES_KEYSIZE_128:
199         case AES_KEYSIZE_192:
200         case AES_KEYSIZE_256:
201                 break;
202         default:
203                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
204                 return -EINVAL;
205         }
206         ctx->key_len = len;
207         ctx->need_calc_aes_dkey = 1;
208
209         memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
210         return 0;
211 }
212
213 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
214 {
215         int ret;
216         void *sbuf;
217         int copy_len;
218
219         while (len) {
220                 if (!p->sg_src_left) {
221                         ret = sg_miter_next(&p->src_sg_it);
222                         BUG_ON(!ret);
223                         p->sg_src_left = p->src_sg_it.length;
224                         p->src_start = 0;
225                 }
226
227                 sbuf = p->src_sg_it.addr + p->src_start;
228
229                 copy_len = min(p->sg_src_left, len);
230                 memcpy(dbuf, sbuf, copy_len);
231
232                 p->src_start += copy_len;
233                 p->sg_src_left -= copy_len;
234
235                 len -= copy_len;
236                 dbuf += copy_len;
237         }
238 }
239
240 static void setup_data_in(void)
241 {
242         struct req_progress *p = &cpg->p;
243         int data_in_sram =
244             min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
245         copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
246                         data_in_sram - p->crypt_len);
247         p->crypt_len = data_in_sram;
248 }
249
250 static void mv_process_current_q(int first_block)
251 {
252         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
253         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
254         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
255         struct sec_accel_config op;
256
257         switch (req_ctx->op) {
258         case COP_AES_ECB:
259                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
260                 break;
261         case COP_AES_CBC:
262         default:
263                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
264                 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
265                         ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
266                 if (first_block)
267                         memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
268                 break;
269         }
270         if (req_ctx->decrypt) {
271                 op.config |= CFG_DIR_DEC;
272                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
273                                 AES_KEY_LEN);
274         } else {
275                 op.config |= CFG_DIR_ENC;
276                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
277                                 AES_KEY_LEN);
278         }
279
280         switch (ctx->key_len) {
281         case AES_KEYSIZE_128:
282                 op.config |= CFG_AES_LEN_128;
283                 break;
284         case AES_KEYSIZE_192:
285                 op.config |= CFG_AES_LEN_192;
286                 break;
287         case AES_KEYSIZE_256:
288                 op.config |= CFG_AES_LEN_256;
289                 break;
290         }
291         op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
292                 ENC_P_DST(SRAM_DATA_OUT_START);
293         op.enc_key_p = SRAM_DATA_KEY_P;
294
295         setup_data_in();
296         op.enc_len = cpg->p.crypt_len;
297         memcpy(cpg->sram + SRAM_CONFIG, &op,
298                         sizeof(struct sec_accel_config));
299
300         /* GO */
301         mv_setup_timer();
302         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
303 }
304
305 static void mv_crypto_algo_completion(void)
306 {
307         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
308         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
309
310         sg_miter_stop(&cpg->p.src_sg_it);
311         sg_miter_stop(&cpg->p.dst_sg_it);
312
313         if (req_ctx->op != COP_AES_CBC)
314                 return ;
315
316         memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
317 }
318
319 static void mv_process_hash_current(int first_block)
320 {
321         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
322         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
323         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
324         struct req_progress *p = &cpg->p;
325         struct sec_accel_config op = { 0 };
326         int is_last;
327
328         switch (req_ctx->op) {
329         case COP_SHA1:
330         default:
331                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
332                 break;
333         case COP_HMAC_SHA1:
334                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
335                 memcpy(cpg->sram + SRAM_HMAC_IV_IN,
336                                 tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
337                 break;
338         }
339
340         op.mac_src_p =
341                 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
342                 req_ctx->
343                 count);
344
345         setup_data_in();
346
347         op.mac_digest =
348                 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
349         op.mac_iv =
350                 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
351                 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
352
353         is_last = req_ctx->last_chunk
354                 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
355                 && (req_ctx->count <= MAX_HW_HASH_SIZE);
356         if (req_ctx->first_hash) {
357                 if (is_last)
358                         op.config |= CFG_NOT_FRAG;
359                 else
360                         op.config |= CFG_FIRST_FRAG;
361
362                 req_ctx->first_hash = 0;
363         } else {
364                 if (is_last)
365                         op.config |= CFG_LAST_FRAG;
366                 else
367                         op.config |= CFG_MID_FRAG;
368
369                 if (first_block) {
370                         writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
371                         writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
372                         writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
373                         writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
374                         writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
375                 }
376         }
377
378         memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
379
380         /* GO */
381         mv_setup_timer();
382         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
383 }
384
385 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
386                                           struct shash_desc *desc)
387 {
388         int i;
389         struct sha1_state shash_state;
390
391         shash_state.count = ctx->count + ctx->count_add;
392         for (i = 0; i < 5; i++)
393                 shash_state.state[i] = ctx->state[i];
394         memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
395         return crypto_shash_import(desc, &shash_state);
396 }
397
398 static int mv_hash_final_fallback(struct ahash_request *req)
399 {
400         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
401         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
402         struct {
403                 struct shash_desc shash;
404                 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
405         } desc;
406         int rc;
407
408         desc.shash.tfm = tfm_ctx->fallback;
409         desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
410         if (unlikely(req_ctx->first_hash)) {
411                 crypto_shash_init(&desc.shash);
412                 crypto_shash_update(&desc.shash, req_ctx->buffer,
413                                     req_ctx->extra_bytes);
414         } else {
415                 /* only SHA1 for now....
416                  */
417                 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
418                 if (rc)
419                         goto out;
420         }
421         rc = crypto_shash_final(&desc.shash, req->result);
422 out:
423         return rc;
424 }
425
426 static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
427 {
428         ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
429         ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
430         ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
431         ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
432         ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
433 }
434
435 static void mv_hash_algo_completion(void)
436 {
437         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
438         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
439
440         if (ctx->extra_bytes)
441                 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
442         sg_miter_stop(&cpg->p.src_sg_it);
443
444         if (likely(ctx->last_chunk)) {
445                 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
446                         memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
447                                crypto_ahash_digestsize(crypto_ahash_reqtfm
448                                                        (req)));
449                 } else {
450                         mv_save_digest_state(ctx);
451                         mv_hash_final_fallback(req);
452                 }
453         } else {
454                 mv_save_digest_state(ctx);
455         }
456 }
457
458 static void dequeue_complete_req(void)
459 {
460         struct crypto_async_request *req = cpg->cur_req;
461         void *buf;
462         int ret;
463         cpg->p.hw_processed_bytes += cpg->p.crypt_len;
464         if (cpg->p.copy_back) {
465                 int need_copy_len = cpg->p.crypt_len;
466                 int sram_offset = 0;
467                 do {
468                         int dst_copy;
469
470                         if (!cpg->p.sg_dst_left) {
471                                 ret = sg_miter_next(&cpg->p.dst_sg_it);
472                                 BUG_ON(!ret);
473                                 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
474                                 cpg->p.dst_start = 0;
475                         }
476
477                         buf = cpg->p.dst_sg_it.addr;
478                         buf += cpg->p.dst_start;
479
480                         dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
481
482                         memcpy(buf,
483                                cpg->sram + SRAM_DATA_OUT_START + sram_offset,
484                                dst_copy);
485                         sram_offset += dst_copy;
486                         cpg->p.sg_dst_left -= dst_copy;
487                         need_copy_len -= dst_copy;
488                         cpg->p.dst_start += dst_copy;
489                 } while (need_copy_len > 0);
490         }
491
492         cpg->p.crypt_len = 0;
493
494         BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
495         if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
496                 /* process next scatter list entry */
497                 cpg->eng_st = ENGINE_BUSY;
498                 cpg->p.process(0);
499         } else {
500                 cpg->p.complete();
501                 cpg->eng_st = ENGINE_IDLE;
502                 local_bh_disable();
503                 req->complete(req, 0);
504                 local_bh_enable();
505         }
506 }
507
508 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
509 {
510         int i = 0;
511         size_t cur_len;
512
513         while (sl) {
514                 cur_len = sl[i].length;
515                 ++i;
516                 if (total_bytes > cur_len)
517                         total_bytes -= cur_len;
518                 else
519                         break;
520         }
521
522         return i;
523 }
524
525 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
526 {
527         struct req_progress *p = &cpg->p;
528         int num_sgs;
529
530         cpg->cur_req = &req->base;
531         memset(p, 0, sizeof(struct req_progress));
532         p->hw_nbytes = req->nbytes;
533         p->complete = mv_crypto_algo_completion;
534         p->process = mv_process_current_q;
535         p->copy_back = 1;
536
537         num_sgs = count_sgs(req->src, req->nbytes);
538         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
539
540         num_sgs = count_sgs(req->dst, req->nbytes);
541         sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
542
543         mv_process_current_q(1);
544 }
545
546 static void mv_start_new_hash_req(struct ahash_request *req)
547 {
548         struct req_progress *p = &cpg->p;
549         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
550         int num_sgs, hw_bytes, old_extra_bytes, rc;
551         cpg->cur_req = &req->base;
552         memset(p, 0, sizeof(struct req_progress));
553         hw_bytes = req->nbytes + ctx->extra_bytes;
554         old_extra_bytes = ctx->extra_bytes;
555
556         ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
557         if (ctx->extra_bytes != 0
558             && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
559                 hw_bytes -= ctx->extra_bytes;
560         else
561                 ctx->extra_bytes = 0;
562
563         num_sgs = count_sgs(req->src, req->nbytes);
564         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
565
566         if (hw_bytes) {
567                 p->hw_nbytes = hw_bytes;
568                 p->complete = mv_hash_algo_completion;
569                 p->process = mv_process_hash_current;
570
571                 if (unlikely(old_extra_bytes)) {
572                         memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
573                                old_extra_bytes);
574                         p->crypt_len = old_extra_bytes;
575                 }
576
577                 mv_process_hash_current(1);
578         } else {
579                 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
580                                 ctx->extra_bytes - old_extra_bytes);
581                 sg_miter_stop(&p->src_sg_it);
582                 if (ctx->last_chunk)
583                         rc = mv_hash_final_fallback(req);
584                 else
585                         rc = 0;
586                 cpg->eng_st = ENGINE_IDLE;
587                 local_bh_disable();
588                 req->base.complete(&req->base, rc);
589                 local_bh_enable();
590         }
591 }
592
593 static int queue_manag(void *data)
594 {
595         cpg->eng_st = ENGINE_IDLE;
596         do {
597                 struct crypto_async_request *async_req = NULL;
598                 struct crypto_async_request *backlog;
599
600                 __set_current_state(TASK_INTERRUPTIBLE);
601
602                 if (cpg->eng_st == ENGINE_W_DEQUEUE)
603                         dequeue_complete_req();
604
605                 spin_lock_irq(&cpg->lock);
606                 if (cpg->eng_st == ENGINE_IDLE) {
607                         backlog = crypto_get_backlog(&cpg->queue);
608                         async_req = crypto_dequeue_request(&cpg->queue);
609                         if (async_req) {
610                                 BUG_ON(cpg->eng_st != ENGINE_IDLE);
611                                 cpg->eng_st = ENGINE_BUSY;
612                         }
613                 }
614                 spin_unlock_irq(&cpg->lock);
615
616                 if (backlog) {
617                         backlog->complete(backlog, -EINPROGRESS);
618                         backlog = NULL;
619                 }
620
621                 if (async_req) {
622                         if (async_req->tfm->__crt_alg->cra_type !=
623                             &crypto_ahash_type) {
624                                 struct ablkcipher_request *req =
625                                     ablkcipher_request_cast(async_req);
626                                 mv_start_new_crypt_req(req);
627                         } else {
628                                 struct ahash_request *req =
629                                     ahash_request_cast(async_req);
630                                 mv_start_new_hash_req(req);
631                         }
632                         async_req = NULL;
633                 }
634
635                 schedule();
636
637         } while (!kthread_should_stop());
638         return 0;
639 }
640
641 static int mv_handle_req(struct crypto_async_request *req)
642 {
643         unsigned long flags;
644         int ret;
645
646         spin_lock_irqsave(&cpg->lock, flags);
647         ret = crypto_enqueue_request(&cpg->queue, req);
648         spin_unlock_irqrestore(&cpg->lock, flags);
649         wake_up_process(cpg->queue_th);
650         return ret;
651 }
652
653 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
654 {
655         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
656
657         req_ctx->op = COP_AES_ECB;
658         req_ctx->decrypt = 0;
659
660         return mv_handle_req(&req->base);
661 }
662
663 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
664 {
665         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
666         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
667
668         req_ctx->op = COP_AES_ECB;
669         req_ctx->decrypt = 1;
670
671         compute_aes_dec_key(ctx);
672         return mv_handle_req(&req->base);
673 }
674
675 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
676 {
677         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
678
679         req_ctx->op = COP_AES_CBC;
680         req_ctx->decrypt = 0;
681
682         return mv_handle_req(&req->base);
683 }
684
685 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
686 {
687         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
688         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
689
690         req_ctx->op = COP_AES_CBC;
691         req_ctx->decrypt = 1;
692
693         compute_aes_dec_key(ctx);
694         return mv_handle_req(&req->base);
695 }
696
697 static int mv_cra_init(struct crypto_tfm *tfm)
698 {
699         tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
700         return 0;
701 }
702
703 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
704                                  int is_last, unsigned int req_len,
705                                  int count_add)
706 {
707         memset(ctx, 0, sizeof(*ctx));
708         ctx->op = op;
709         ctx->count = req_len;
710         ctx->first_hash = 1;
711         ctx->last_chunk = is_last;
712         ctx->count_add = count_add;
713 }
714
715 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
716                                    unsigned req_len)
717 {
718         ctx->last_chunk = is_last;
719         ctx->count += req_len;
720 }
721
722 static int mv_hash_init(struct ahash_request *req)
723 {
724         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
725         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
726                              tfm_ctx->count_add);
727         return 0;
728 }
729
730 static int mv_hash_update(struct ahash_request *req)
731 {
732         if (!req->nbytes)
733                 return 0;
734
735         mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
736         return mv_handle_req(&req->base);
737 }
738
739 static int mv_hash_final(struct ahash_request *req)
740 {
741         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
742
743         ahash_request_set_crypt(req, NULL, req->result, 0);
744         mv_update_hash_req_ctx(ctx, 1, 0);
745         return mv_handle_req(&req->base);
746 }
747
748 static int mv_hash_finup(struct ahash_request *req)
749 {
750         mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
751         return mv_handle_req(&req->base);
752 }
753
754 static int mv_hash_digest(struct ahash_request *req)
755 {
756         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
757         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
758                              req->nbytes, tfm_ctx->count_add);
759         return mv_handle_req(&req->base);
760 }
761
762 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
763                              const void *ostate)
764 {
765         const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
766         int i;
767         for (i = 0; i < 5; i++) {
768                 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
769                 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
770         }
771 }
772
773 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
774                           unsigned int keylen)
775 {
776         int rc;
777         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
778         int bs, ds, ss;
779
780         if (!ctx->base_hash)
781                 return 0;
782
783         rc = crypto_shash_setkey(ctx->fallback, key, keylen);
784         if (rc)
785                 return rc;
786
787         /* Can't see a way to extract the ipad/opad from the fallback tfm
788            so I'm basically copying code from the hmac module */
789         bs = crypto_shash_blocksize(ctx->base_hash);
790         ds = crypto_shash_digestsize(ctx->base_hash);
791         ss = crypto_shash_statesize(ctx->base_hash);
792
793         {
794                 struct {
795                         struct shash_desc shash;
796                         char ctx[crypto_shash_descsize(ctx->base_hash)];
797                 } desc;
798                 unsigned int i;
799                 char ipad[ss];
800                 char opad[ss];
801
802                 desc.shash.tfm = ctx->base_hash;
803                 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
804                     CRYPTO_TFM_REQ_MAY_SLEEP;
805
806                 if (keylen > bs) {
807                         int err;
808
809                         err =
810                             crypto_shash_digest(&desc.shash, key, keylen, ipad);
811                         if (err)
812                                 return err;
813
814                         keylen = ds;
815                 } else
816                         memcpy(ipad, key, keylen);
817
818                 memset(ipad + keylen, 0, bs - keylen);
819                 memcpy(opad, ipad, bs);
820
821                 for (i = 0; i < bs; i++) {
822                         ipad[i] ^= 0x36;
823                         opad[i] ^= 0x5c;
824                 }
825
826                 rc = crypto_shash_init(&desc.shash) ? :
827                     crypto_shash_update(&desc.shash, ipad, bs) ? :
828                     crypto_shash_export(&desc.shash, ipad) ? :
829                     crypto_shash_init(&desc.shash) ? :
830                     crypto_shash_update(&desc.shash, opad, bs) ? :
831                     crypto_shash_export(&desc.shash, opad);
832
833                 if (rc == 0)
834                         mv_hash_init_ivs(ctx, ipad, opad);
835
836                 return rc;
837         }
838 }
839
840 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
841                             enum hash_op op, int count_add)
842 {
843         const char *fallback_driver_name = tfm->__crt_alg->cra_name;
844         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
845         struct crypto_shash *fallback_tfm = NULL;
846         struct crypto_shash *base_hash = NULL;
847         int err = -ENOMEM;
848
849         ctx->op = op;
850         ctx->count_add = count_add;
851
852         /* Allocate a fallback and abort if it failed. */
853         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
854                                           CRYPTO_ALG_NEED_FALLBACK);
855         if (IS_ERR(fallback_tfm)) {
856                 printk(KERN_WARNING MV_CESA
857                        "Fallback driver '%s' could not be loaded!\n",
858                        fallback_driver_name);
859                 err = PTR_ERR(fallback_tfm);
860                 goto out;
861         }
862         ctx->fallback = fallback_tfm;
863
864         if (base_hash_name) {
865                 /* Allocate a hash to compute the ipad/opad of hmac. */
866                 base_hash = crypto_alloc_shash(base_hash_name, 0,
867                                                CRYPTO_ALG_NEED_FALLBACK);
868                 if (IS_ERR(base_hash)) {
869                         printk(KERN_WARNING MV_CESA
870                                "Base driver '%s' could not be loaded!\n",
871                                base_hash_name);
872                         err = PTR_ERR(base_hash);
873                         goto err_bad_base;
874                 }
875         }
876         ctx->base_hash = base_hash;
877
878         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
879                                  sizeof(struct mv_req_hash_ctx) +
880                                  crypto_shash_descsize(ctx->fallback));
881         return 0;
882 err_bad_base:
883         crypto_free_shash(fallback_tfm);
884 out:
885         return err;
886 }
887
888 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
889 {
890         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
891
892         crypto_free_shash(ctx->fallback);
893         if (ctx->base_hash)
894                 crypto_free_shash(ctx->base_hash);
895 }
896
897 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
898 {
899         return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
900 }
901
902 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
903 {
904         return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
905 }
906
907 irqreturn_t crypto_int(int irq, void *priv)
908 {
909         u32 val;
910
911         val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
912         if (!(val & SEC_INT_ACCEL0_DONE))
913                 return IRQ_NONE;
914
915         if (!del_timer(&cpg->completion_timer)) {
916                 printk(KERN_WARNING MV_CESA
917                        "got an interrupt but no pending timer?\n");
918         }
919         val &= ~SEC_INT_ACCEL0_DONE;
920         writel(val, cpg->reg + FPGA_INT_STATUS);
921         writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
922         BUG_ON(cpg->eng_st != ENGINE_BUSY);
923         cpg->eng_st = ENGINE_W_DEQUEUE;
924         wake_up_process(cpg->queue_th);
925         return IRQ_HANDLED;
926 }
927
928 struct crypto_alg mv_aes_alg_ecb = {
929         .cra_name               = "ecb(aes)",
930         .cra_driver_name        = "mv-ecb-aes",
931         .cra_priority   = 300,
932         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
933                           CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
934         .cra_blocksize  = 16,
935         .cra_ctxsize    = sizeof(struct mv_ctx),
936         .cra_alignmask  = 0,
937         .cra_type       = &crypto_ablkcipher_type,
938         .cra_module     = THIS_MODULE,
939         .cra_init       = mv_cra_init,
940         .cra_u          = {
941                 .ablkcipher = {
942                         .min_keysize    =       AES_MIN_KEY_SIZE,
943                         .max_keysize    =       AES_MAX_KEY_SIZE,
944                         .setkey         =       mv_setkey_aes,
945                         .encrypt        =       mv_enc_aes_ecb,
946                         .decrypt        =       mv_dec_aes_ecb,
947                 },
948         },
949 };
950
951 struct crypto_alg mv_aes_alg_cbc = {
952         .cra_name               = "cbc(aes)",
953         .cra_driver_name        = "mv-cbc-aes",
954         .cra_priority   = 300,
955         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
956                           CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
957         .cra_blocksize  = AES_BLOCK_SIZE,
958         .cra_ctxsize    = sizeof(struct mv_ctx),
959         .cra_alignmask  = 0,
960         .cra_type       = &crypto_ablkcipher_type,
961         .cra_module     = THIS_MODULE,
962         .cra_init       = mv_cra_init,
963         .cra_u          = {
964                 .ablkcipher = {
965                         .ivsize         =       AES_BLOCK_SIZE,
966                         .min_keysize    =       AES_MIN_KEY_SIZE,
967                         .max_keysize    =       AES_MAX_KEY_SIZE,
968                         .setkey         =       mv_setkey_aes,
969                         .encrypt        =       mv_enc_aes_cbc,
970                         .decrypt        =       mv_dec_aes_cbc,
971                 },
972         },
973 };
974
975 struct ahash_alg mv_sha1_alg = {
976         .init = mv_hash_init,
977         .update = mv_hash_update,
978         .final = mv_hash_final,
979         .finup = mv_hash_finup,
980         .digest = mv_hash_digest,
981         .halg = {
982                  .digestsize = SHA1_DIGEST_SIZE,
983                  .base = {
984                           .cra_name = "sha1",
985                           .cra_driver_name = "mv-sha1",
986                           .cra_priority = 300,
987                           .cra_flags =
988                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
989                           CRYPTO_ALG_NEED_FALLBACK,
990                           .cra_blocksize = SHA1_BLOCK_SIZE,
991                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
992                           .cra_init = mv_cra_hash_sha1_init,
993                           .cra_exit = mv_cra_hash_exit,
994                           .cra_module = THIS_MODULE,
995                           }
996                  }
997 };
998
999 struct ahash_alg mv_hmac_sha1_alg = {
1000         .init = mv_hash_init,
1001         .update = mv_hash_update,
1002         .final = mv_hash_final,
1003         .finup = mv_hash_finup,
1004         .digest = mv_hash_digest,
1005         .setkey = mv_hash_setkey,
1006         .halg = {
1007                  .digestsize = SHA1_DIGEST_SIZE,
1008                  .base = {
1009                           .cra_name = "hmac(sha1)",
1010                           .cra_driver_name = "mv-hmac-sha1",
1011                           .cra_priority = 300,
1012                           .cra_flags =
1013                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1014                           CRYPTO_ALG_NEED_FALLBACK,
1015                           .cra_blocksize = SHA1_BLOCK_SIZE,
1016                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1017                           .cra_init = mv_cra_hash_hmac_sha1_init,
1018                           .cra_exit = mv_cra_hash_exit,
1019                           .cra_module = THIS_MODULE,
1020                           }
1021                  }
1022 };
1023
1024 static int mv_probe(struct platform_device *pdev)
1025 {
1026         struct crypto_priv *cp;
1027         struct resource *res;
1028         int irq;
1029         int ret;
1030
1031         if (cpg) {
1032                 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1033                 return -EEXIST;
1034         }
1035
1036         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1037         if (!res)
1038                 return -ENXIO;
1039
1040         cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1041         if (!cp)
1042                 return -ENOMEM;
1043
1044         spin_lock_init(&cp->lock);
1045         crypto_init_queue(&cp->queue, 50);
1046         cp->reg = ioremap(res->start, resource_size(res));
1047         if (!cp->reg) {
1048                 ret = -ENOMEM;
1049                 goto err;
1050         }
1051
1052         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1053         if (!res) {
1054                 ret = -ENXIO;
1055                 goto err_unmap_reg;
1056         }
1057         cp->sram_size = resource_size(res);
1058         cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1059         cp->sram = ioremap(res->start, cp->sram_size);
1060         if (!cp->sram) {
1061                 ret = -ENOMEM;
1062                 goto err_unmap_reg;
1063         }
1064
1065         irq = platform_get_irq(pdev, 0);
1066         if (irq < 0 || irq == NO_IRQ) {
1067                 ret = irq;
1068                 goto err_unmap_sram;
1069         }
1070         cp->irq = irq;
1071
1072         platform_set_drvdata(pdev, cp);
1073         cpg = cp;
1074
1075         cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1076         if (IS_ERR(cp->queue_th)) {
1077                 ret = PTR_ERR(cp->queue_th);
1078                 goto err_unmap_sram;
1079         }
1080
1081         ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1082                         cp);
1083         if (ret)
1084                 goto err_thread;
1085
1086         /* Not all platforms can gate the clock, so it is not
1087            an error if the clock does not exists. */
1088         cp->clk = clk_get(&pdev->dev, NULL);
1089         if (!IS_ERR(cp->clk))
1090                 clk_prepare_enable(cp->clk);
1091
1092         writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1093         writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1094         writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1095         writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1096
1097         ret = crypto_register_alg(&mv_aes_alg_ecb);
1098         if (ret) {
1099                 printk(KERN_WARNING MV_CESA
1100                        "Could not register aes-ecb driver\n");
1101                 goto err_irq;
1102         }
1103
1104         ret = crypto_register_alg(&mv_aes_alg_cbc);
1105         if (ret) {
1106                 printk(KERN_WARNING MV_CESA
1107                        "Could not register aes-cbc driver\n");
1108                 goto err_unreg_ecb;
1109         }
1110
1111         ret = crypto_register_ahash(&mv_sha1_alg);
1112         if (ret == 0)
1113                 cpg->has_sha1 = 1;
1114         else
1115                 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1116
1117         ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1118         if (ret == 0) {
1119                 cpg->has_hmac_sha1 = 1;
1120         } else {
1121                 printk(KERN_WARNING MV_CESA
1122                        "Could not register hmac-sha1 driver\n");
1123         }
1124
1125         return 0;
1126 err_unreg_ecb:
1127         crypto_unregister_alg(&mv_aes_alg_ecb);
1128 err_irq:
1129         free_irq(irq, cp);
1130         if (!IS_ERR(cp->clk)) {
1131                 clk_disable_unprepare(cp->clk);
1132                 clk_put(cp->clk);
1133         }
1134 err_thread:
1135         kthread_stop(cp->queue_th);
1136 err_unmap_sram:
1137         iounmap(cp->sram);
1138 err_unmap_reg:
1139         iounmap(cp->reg);
1140 err:
1141         kfree(cp);
1142         cpg = NULL;
1143         platform_set_drvdata(pdev, NULL);
1144         return ret;
1145 }
1146
1147 static int mv_remove(struct platform_device *pdev)
1148 {
1149         struct crypto_priv *cp = platform_get_drvdata(pdev);
1150
1151         crypto_unregister_alg(&mv_aes_alg_ecb);
1152         crypto_unregister_alg(&mv_aes_alg_cbc);
1153         if (cp->has_sha1)
1154                 crypto_unregister_ahash(&mv_sha1_alg);
1155         if (cp->has_hmac_sha1)
1156                 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1157         kthread_stop(cp->queue_th);
1158         free_irq(cp->irq, cp);
1159         memset(cp->sram, 0, cp->sram_size);
1160         iounmap(cp->sram);
1161         iounmap(cp->reg);
1162
1163         if (!IS_ERR(cp->clk)) {
1164                 clk_disable_unprepare(cp->clk);
1165                 clk_put(cp->clk);
1166         }
1167
1168         kfree(cp);
1169         cpg = NULL;
1170         return 0;
1171 }
1172
1173 static struct platform_driver marvell_crypto = {
1174         .probe          = mv_probe,
1175         .remove         = mv_remove,
1176         .driver         = {
1177                 .owner  = THIS_MODULE,
1178                 .name   = "mv_crypto",
1179         },
1180 };
1181 MODULE_ALIAS("platform:mv_crypto");
1182
1183 module_platform_driver(marvell_crypto);
1184
1185 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1186 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1187 MODULE_LICENSE("GPL");