]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm64/kernel/cpufeature.c
arm64/HWCAP: Use system wide safe values
[karo-tx-linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
29
30 unsigned long elf_hwcap __read_mostly;
31 EXPORT_SYMBOL_GPL(elf_hwcap);
32
33 #ifdef CONFIG_COMPAT
34 #define COMPAT_ELF_HWCAP_DEFAULT        \
35                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
36                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
37                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
38                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
39                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
40                                  COMPAT_HWCAP_LPAE)
41 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
42 unsigned int compat_elf_hwcap2 __read_mostly;
43 #endif
44
45 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
46
47 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
48         {                                               \
49                 .strict = STRICT,                       \
50                 .type = TYPE,                           \
51                 .shift = SHIFT,                         \
52                 .width = WIDTH,                         \
53                 .safe_val = SAFE_VAL,                   \
54         }
55
56 #define ARM64_FTR_END                                   \
57         {                                               \
58                 .width = 0,                             \
59         }
60
61 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
62         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
63         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
64         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
65         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
66         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
67         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
68         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
69         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
70         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
71         ARM64_FTR_END,
72 };
73
74 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
75         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
76         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
77         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
80         /* Linux doesn't care about the EL3 */
81         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
85         ARM64_FTR_END,
86 };
87
88 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
89         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
90         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
94         /* Linux shouldn't care about secure memory */
95         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
96         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
97         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
98         /*
99          * Differing PARange is fine as long as all peripherals and memory are mapped
100          * within the minimum PARange of all CPUs
101          */
102         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
103         ARM64_FTR_END,
104 };
105
106 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
107         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
108         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
109         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
110         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
111         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
112         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
113         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
114         ARM64_FTR_END,
115 };
116
117 static struct arm64_ftr_bits ftr_ctr[] = {
118         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),        /* RAO */
119         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
120         ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),  /* CWG */
121         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),   /* ERG */
122         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),   /* DminLine */
123         /*
124          * Linux can handle differing I-cache policies. Userspace JITs will
125          * make use of *minLine
126          */
127         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),     /* L1Ip */
128         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
129         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* IminLine */
130         ARM64_FTR_END,
131 };
132
133 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
134         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
135         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
136         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
137         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
138         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
139         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
140         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
141         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
142         ARM64_FTR_END,
143 };
144
145 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
146         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
147         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
148         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
149         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
150         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
151         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
152         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
153         ARM64_FTR_END,
154 };
155
156 static struct arm64_ftr_bits ftr_mvfr2[] = {
157         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
158         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
159         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
160         ARM64_FTR_END,
161 };
162
163 static struct arm64_ftr_bits ftr_dczid[] = {
164         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
165         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
166         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
167         ARM64_FTR_END,
168 };
169
170
171 static struct arm64_ftr_bits ftr_id_isar5[] = {
172         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
174         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
175         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
176         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
177         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
178         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
179         ARM64_FTR_END,
180 };
181
182 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
183         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
184         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
185         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
186         ARM64_FTR_END,
187 };
188
189 static struct arm64_ftr_bits ftr_id_pfr0[] = {
190         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
191         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
192         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
195         ARM64_FTR_END,
196 };
197
198 /*
199  * Common ftr bits for a 32bit register with all hidden, strict
200  * attributes, with 4bit feature fields and a default safe value of
201  * 0. Covers the following 32bit registers:
202  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
203  */
204 static struct arm64_ftr_bits ftr_generic_32bits[] = {
205         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
206         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
207         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
208         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
209         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
210         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
211         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
212         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
213         ARM64_FTR_END,
214 };
215
216 static struct arm64_ftr_bits ftr_generic[] = {
217         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
218         ARM64_FTR_END,
219 };
220
221 static struct arm64_ftr_bits ftr_generic32[] = {
222         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
223         ARM64_FTR_END,
224 };
225
226 static struct arm64_ftr_bits ftr_aa64raz[] = {
227         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
228         ARM64_FTR_END,
229 };
230
231 #define ARM64_FTR_REG(id, table)                \
232         {                                       \
233                 .sys_id = id,                   \
234                 .name = #id,                    \
235                 .ftr_bits = &((table)[0]),      \
236         }
237
238 static struct arm64_ftr_reg arm64_ftr_regs[] = {
239
240         /* Op1 = 0, CRn = 0, CRm = 1 */
241         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
242         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
243         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
244         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
245         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
246         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
247         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
248
249         /* Op1 = 0, CRn = 0, CRm = 2 */
250         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
251         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
252         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
253         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
254         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
255         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
256         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
257
258         /* Op1 = 0, CRn = 0, CRm = 3 */
259         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
260         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
261         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
262
263         /* Op1 = 0, CRn = 0, CRm = 4 */
264         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
265         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
266
267         /* Op1 = 0, CRn = 0, CRm = 5 */
268         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
269         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
270
271         /* Op1 = 0, CRn = 0, CRm = 6 */
272         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
273         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
274
275         /* Op1 = 0, CRn = 0, CRm = 7 */
276         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
277         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
278
279         /* Op1 = 3, CRn = 0, CRm = 0 */
280         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
281         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
282
283         /* Op1 = 3, CRn = 14, CRm = 0 */
284         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
285 };
286
287 static int search_cmp_ftr_reg(const void *id, const void *regp)
288 {
289         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
290 }
291
292 /*
293  * get_arm64_ftr_reg - Lookup a feature register entry using its
294  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
295  * ascending order of sys_id , we use binary search to find a matching
296  * entry.
297  *
298  * returns - Upon success,  matching ftr_reg entry for id.
299  *         - NULL on failure. It is upto the caller to decide
300  *           the impact of a failure.
301  */
302 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
303 {
304         return bsearch((const void *)(unsigned long)sys_id,
305                         arm64_ftr_regs,
306                         ARRAY_SIZE(arm64_ftr_regs),
307                         sizeof(arm64_ftr_regs[0]),
308                         search_cmp_ftr_reg);
309 }
310
311 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
312 {
313         u64 mask = arm64_ftr_mask(ftrp);
314
315         reg &= ~mask;
316         reg |= (ftr_val << ftrp->shift) & mask;
317         return reg;
318 }
319
320 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
321 {
322         s64 ret = 0;
323
324         switch (ftrp->type) {
325         case FTR_EXACT:
326                 ret = ftrp->safe_val;
327                 break;
328         case FTR_LOWER_SAFE:
329                 ret = new < cur ? new : cur;
330                 break;
331         case FTR_HIGHER_SAFE:
332                 ret = new > cur ? new : cur;
333                 break;
334         default:
335                 BUG();
336         }
337
338         return ret;
339 }
340
341 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
342 {
343         return ((const struct arm64_ftr_reg *)a)->sys_id -
344                  ((const struct arm64_ftr_reg *)b)->sys_id;
345 }
346
347 static void __init swap_ftr_regs(void *a, void *b, int size)
348 {
349         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
350         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
351         *(struct arm64_ftr_reg *)b = tmp;
352 }
353
354 static void __init sort_ftr_regs(void)
355 {
356         /* Keep the array sorted so that we can do the binary search */
357         sort(arm64_ftr_regs,
358                 ARRAY_SIZE(arm64_ftr_regs),
359                 sizeof(arm64_ftr_regs[0]),
360                 sort_cmp_ftr_regs,
361                 swap_ftr_regs);
362 }
363
364 /*
365  * Initialise the CPU feature register from Boot CPU values.
366  * Also initiliases the strict_mask for the register.
367  */
368 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
369 {
370         u64 val = 0;
371         u64 strict_mask = ~0x0ULL;
372         struct arm64_ftr_bits *ftrp;
373         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
374
375         BUG_ON(!reg);
376
377         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
378                 s64 ftr_new = arm64_ftr_value(ftrp, new);
379
380                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
381                 if (!ftrp->strict)
382                         strict_mask &= ~arm64_ftr_mask(ftrp);
383         }
384         reg->sys_val = val;
385         reg->strict_mask = strict_mask;
386 }
387
388 void __init init_cpu_features(struct cpuinfo_arm64 *info)
389 {
390         /* Before we start using the tables, make sure it is sorted */
391         sort_ftr_regs();
392
393         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
394         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
395         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
396         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
397         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
398         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
399         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
400         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
401         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
402         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
403         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
404         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
405         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
406         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
407         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
408         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
409         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
410         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
411         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
412         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
413         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
414         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
415         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
416         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
417         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
418         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
419         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
420 }
421
422 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
423 {
424         struct arm64_ftr_bits *ftrp;
425
426         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
427                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
428                 s64 ftr_new = arm64_ftr_value(ftrp, new);
429
430                 if (ftr_cur == ftr_new)
431                         continue;
432                 /* Find a safe value */
433                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
434                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
435         }
436
437 }
438
439 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
440 {
441         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
442
443         BUG_ON(!regp);
444         update_cpu_ftr_reg(regp, val);
445         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
446                 return 0;
447         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
448                         regp->name, boot, cpu, val);
449         return 1;
450 }
451
452 /*
453  * Update system wide CPU feature registers with the values from a
454  * non-boot CPU. Also performs SANITY checks to make sure that there
455  * aren't any insane variations from that of the boot CPU.
456  */
457 void update_cpu_features(int cpu,
458                          struct cpuinfo_arm64 *info,
459                          struct cpuinfo_arm64 *boot)
460 {
461         int taint = 0;
462
463         /*
464          * The kernel can handle differing I-cache policies, but otherwise
465          * caches should look identical. Userspace JITs will make use of
466          * *minLine.
467          */
468         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
469                                       info->reg_ctr, boot->reg_ctr);
470
471         /*
472          * Userspace may perform DC ZVA instructions. Mismatched block sizes
473          * could result in too much or too little memory being zeroed if a
474          * process is preempted and migrated between CPUs.
475          */
476         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
477                                       info->reg_dczid, boot->reg_dczid);
478
479         /* If different, timekeeping will be broken (especially with KVM) */
480         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
481                                       info->reg_cntfrq, boot->reg_cntfrq);
482
483         /*
484          * The kernel uses self-hosted debug features and expects CPUs to
485          * support identical debug features. We presently need CTX_CMPs, WRPs,
486          * and BRPs to be identical.
487          * ID_AA64DFR1 is currently RES0.
488          */
489         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
490                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
491         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
492                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
493         /*
494          * Even in big.LITTLE, processors should be identical instruction-set
495          * wise.
496          */
497         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
498                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
499         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
500                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
501
502         /*
503          * Differing PARange support is fine as long as all peripherals and
504          * memory are mapped within the minimum PARange of all CPUs.
505          * Linux should not care about secure memory.
506          */
507         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
508                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
509         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
510                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
511
512         /*
513          * EL3 is not our concern.
514          * ID_AA64PFR1 is currently RES0.
515          */
516         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
517                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
518         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
519                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
520
521         /*
522          * If we have AArch32, we care about 32-bit features for compat. These
523          * registers should be RES0 otherwise.
524          */
525         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
526                                         info->reg_id_dfr0, boot->reg_id_dfr0);
527         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
528                                         info->reg_id_isar0, boot->reg_id_isar0);
529         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
530                                         info->reg_id_isar1, boot->reg_id_isar1);
531         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
532                                         info->reg_id_isar2, boot->reg_id_isar2);
533         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
534                                         info->reg_id_isar3, boot->reg_id_isar3);
535         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
536                                         info->reg_id_isar4, boot->reg_id_isar4);
537         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
538                                         info->reg_id_isar5, boot->reg_id_isar5);
539
540         /*
541          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
542          * ACTLR formats could differ across CPUs and therefore would have to
543          * be trapped for virtualization anyway.
544          */
545         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
546                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
547         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
548                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
549         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
550                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
551         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
552                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
553         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
554                                         info->reg_id_pfr0, boot->reg_id_pfr0);
555         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
556                                         info->reg_id_pfr1, boot->reg_id_pfr1);
557         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
558                                         info->reg_mvfr0, boot->reg_mvfr0);
559         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
560                                         info->reg_mvfr1, boot->reg_mvfr1);
561         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
562                                         info->reg_mvfr2, boot->reg_mvfr2);
563
564         /*
565          * Mismatched CPU features are a recipe for disaster. Don't even
566          * pretend to support them.
567          */
568         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
569                         "Unsupported CPU feature variation.\n");
570 }
571
572 u64 read_system_reg(u32 id)
573 {
574         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
575
576         /* We shouldn't get a request for an unsupported register */
577         BUG_ON(!regp);
578         return regp->sys_val;
579 }
580
581 static bool
582 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
583 {
584         int val = cpuid_feature_extract_field(reg, entry->field_pos);
585
586         return val >= entry->min_field_value;
587 }
588
589 static bool
590 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
591 {
592         u64 val;
593
594         val = read_system_reg(entry->sys_reg);
595         return feature_matches(val, entry);
596 }
597
598 static const struct arm64_cpu_capabilities arm64_features[] = {
599         {
600                 .desc = "GIC system register CPU interface",
601                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
602                 .matches = has_cpuid_feature,
603                 .sys_reg = SYS_ID_AA64PFR0_EL1,
604                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
605                 .min_field_value = 1,
606         },
607 #ifdef CONFIG_ARM64_PAN
608         {
609                 .desc = "Privileged Access Never",
610                 .capability = ARM64_HAS_PAN,
611                 .matches = has_cpuid_feature,
612                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
613                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
614                 .min_field_value = 1,
615                 .enable = cpu_enable_pan,
616         },
617 #endif /* CONFIG_ARM64_PAN */
618 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
619         {
620                 .desc = "LSE atomic instructions",
621                 .capability = ARM64_HAS_LSE_ATOMICS,
622                 .matches = has_cpuid_feature,
623                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
624                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
625                 .min_field_value = 2,
626         },
627 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
628         {},
629 };
630
631 #define HWCAP_CAP(reg, field, min_value, type, cap)             \
632         {                                                       \
633                 .desc = #cap,                                   \
634                 .matches = has_cpuid_feature,                   \
635                 .sys_reg = reg,                                 \
636                 .field_pos = field,                             \
637                 .min_field_value = min_value,                   \
638                 .hwcap_type = type,                             \
639                 .hwcap = cap,                                   \
640         }
641
642 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
643         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
644         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
645         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
646         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
647         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
648         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
649 #ifdef CONFIG_COMPAT
650         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
651         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
652         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
653         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
654         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
655 #endif
656         {},
657 };
658
659 static void cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
660 {
661         switch (cap->hwcap_type) {
662         case CAP_HWCAP:
663                 elf_hwcap |= cap->hwcap;
664                 break;
665 #ifdef CONFIG_COMPAT
666         case CAP_COMPAT_HWCAP:
667                 compat_elf_hwcap |= (u32)cap->hwcap;
668                 break;
669         case CAP_COMPAT_HWCAP2:
670                 compat_elf_hwcap2 |= (u32)cap->hwcap;
671                 break;
672 #endif
673         default:
674                 WARN_ON(1);
675                 break;
676         }
677 }
678
679 /* Check if we have a particular HWCAP enabled */
680 static bool cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
681 {
682         bool rc;
683
684         switch (cap->hwcap_type) {
685         case CAP_HWCAP:
686                 rc = (elf_hwcap & cap->hwcap) != 0;
687                 break;
688 #ifdef CONFIG_COMPAT
689         case CAP_COMPAT_HWCAP:
690                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
691                 break;
692         case CAP_COMPAT_HWCAP2:
693                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
694                 break;
695 #endif
696         default:
697                 WARN_ON(1);
698                 rc = false;
699         }
700
701         return rc;
702 }
703
704 static void setup_cpu_hwcaps(void)
705 {
706         int i;
707         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
708
709         for (i = 0; hwcaps[i].desc; i++)
710                 if (hwcaps[i].matches(&hwcaps[i]))
711                         cap_set_hwcap(&hwcaps[i]);
712 }
713
714 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
715                             const char *info)
716 {
717         int i;
718
719         for (i = 0; caps[i].desc; i++) {
720                 if (!caps[i].matches(&caps[i]))
721                         continue;
722
723                 if (!cpus_have_cap(caps[i].capability))
724                         pr_info("%s %s\n", info, caps[i].desc);
725                 cpus_set_cap(caps[i].capability);
726         }
727 }
728
729 /*
730  * Run through the enabled capabilities and enable() it on all active
731  * CPUs
732  */
733 void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
734 {
735         int i;
736
737         for (i = 0; caps[i].desc; i++)
738                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
739                         on_each_cpu(caps[i].enable, NULL, true);
740 }
741
742 #ifdef CONFIG_HOTPLUG_CPU
743
744 /*
745  * Flag to indicate if we have computed the system wide
746  * capabilities based on the boot time active CPUs. This
747  * will be used to determine if a new booting CPU should
748  * go through the verification process to make sure that it
749  * supports the system capabilities, without using a hotplug
750  * notifier.
751  */
752 static bool sys_caps_initialised;
753
754 static inline void set_sys_caps_initialised(void)
755 {
756         sys_caps_initialised = true;
757 }
758
759 /*
760  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
761  */
762 static u64 __raw_read_system_reg(u32 sys_id)
763 {
764         switch (sys_id) {
765         case SYS_ID_PFR0_EL1:           return (u64)read_cpuid(ID_PFR0_EL1);
766         case SYS_ID_PFR1_EL1:           return (u64)read_cpuid(ID_PFR1_EL1);
767         case SYS_ID_DFR0_EL1:           return (u64)read_cpuid(ID_DFR0_EL1);
768         case SYS_ID_MMFR0_EL1:          return (u64)read_cpuid(ID_MMFR0_EL1);
769         case SYS_ID_MMFR1_EL1:          return (u64)read_cpuid(ID_MMFR1_EL1);
770         case SYS_ID_MMFR2_EL1:          return (u64)read_cpuid(ID_MMFR2_EL1);
771         case SYS_ID_MMFR3_EL1:          return (u64)read_cpuid(ID_MMFR3_EL1);
772         case SYS_ID_ISAR0_EL1:          return (u64)read_cpuid(ID_ISAR0_EL1);
773         case SYS_ID_ISAR1_EL1:          return (u64)read_cpuid(ID_ISAR1_EL1);
774         case SYS_ID_ISAR2_EL1:          return (u64)read_cpuid(ID_ISAR2_EL1);
775         case SYS_ID_ISAR3_EL1:          return (u64)read_cpuid(ID_ISAR3_EL1);
776         case SYS_ID_ISAR4_EL1:          return (u64)read_cpuid(ID_ISAR4_EL1);
777         case SYS_ID_ISAR5_EL1:          return (u64)read_cpuid(ID_ISAR4_EL1);
778         case SYS_MVFR0_EL1:             return (u64)read_cpuid(MVFR0_EL1);
779         case SYS_MVFR1_EL1:             return (u64)read_cpuid(MVFR1_EL1);
780         case SYS_MVFR2_EL1:             return (u64)read_cpuid(MVFR2_EL1);
781
782         case SYS_ID_AA64PFR0_EL1:       return (u64)read_cpuid(ID_AA64PFR0_EL1);
783         case SYS_ID_AA64PFR1_EL1:       return (u64)read_cpuid(ID_AA64PFR0_EL1);
784         case SYS_ID_AA64DFR0_EL1:       return (u64)read_cpuid(ID_AA64DFR0_EL1);
785         case SYS_ID_AA64DFR1_EL1:       return (u64)read_cpuid(ID_AA64DFR0_EL1);
786         case SYS_ID_AA64MMFR0_EL1:      return (u64)read_cpuid(ID_AA64MMFR0_EL1);
787         case SYS_ID_AA64MMFR1_EL1:      return (u64)read_cpuid(ID_AA64MMFR1_EL1);
788         case SYS_ID_AA64ISAR0_EL1:      return (u64)read_cpuid(ID_AA64ISAR0_EL1);
789         case SYS_ID_AA64ISAR1_EL1:      return (u64)read_cpuid(ID_AA64ISAR1_EL1);
790
791         case SYS_CNTFRQ_EL0:            return (u64)read_cpuid(CNTFRQ_EL0);
792         case SYS_CTR_EL0:               return (u64)read_cpuid(CTR_EL0);
793         case SYS_DCZID_EL0:             return (u64)read_cpuid(DCZID_EL0);
794         default:
795                 BUG();
796                 return 0;
797         }
798 }
799
800 /*
801  * Park the CPU which doesn't have the capability as advertised
802  * by the system.
803  */
804 static void fail_incapable_cpu(char *cap_type,
805                                  const struct arm64_cpu_capabilities *cap)
806 {
807         int cpu = smp_processor_id();
808
809         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
810         /* Mark this CPU absent */
811         set_cpu_present(cpu, 0);
812
813         /* Check if we can park ourselves */
814         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
815                 cpu_ops[cpu]->cpu_die(cpu);
816         asm(
817         "1:     wfe\n"
818         "       wfi\n"
819         "       b       1b");
820 }
821
822 /*
823  * Run through the enabled system capabilities and enable() it on this CPU.
824  * The capabilities were decided based on the available CPUs at the boot time.
825  * Any new CPU should match the system wide status of the capability. If the
826  * new CPU doesn't have a capability which the system now has enabled, we
827  * cannot do anything to fix it up and could cause unexpected failures. So
828  * we park the CPU.
829  */
830 void verify_local_cpu_capabilities(void)
831 {
832         int i;
833         const struct arm64_cpu_capabilities *caps;
834
835         /*
836          * If we haven't computed the system capabilities, there is nothing
837          * to verify.
838          */
839         if (!sys_caps_initialised)
840                 return;
841
842         caps = arm64_features;
843         for (i = 0; caps[i].desc; i++) {
844                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
845                         continue;
846                 /*
847                  * If the new CPU misses an advertised feature, we cannot proceed
848                  * further, park the cpu.
849                  */
850                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
851                         fail_incapable_cpu("arm64_features", &caps[i]);
852                 if (caps[i].enable)
853                         caps[i].enable(NULL);
854         }
855
856         for (i = 0, caps = arm64_hwcaps; caps[i].desc; i++) {
857                 if (!cpus_have_hwcap(&caps[i]))
858                         continue;
859                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
860                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
861         }
862 }
863
864 #else   /* !CONFIG_HOTPLUG_CPU */
865
866 static inline void set_sys_caps_initialised(void)
867 {
868 }
869
870 #endif  /* CONFIG_HOTPLUG_CPU */
871
872 static void setup_feature_capabilities(void)
873 {
874         update_cpu_capabilities(arm64_features, "detected feature:");
875         enable_cpu_capabilities(arm64_features);
876 }
877
878 void __init setup_cpu_features(void)
879 {
880         u32 cwg;
881         int cls;
882
883         /* Set the CPU feature capabilies */
884         setup_feature_capabilities();
885         setup_cpu_hwcaps();
886
887         /* Advertise that we have computed the system capabilities */
888         set_sys_caps_initialised();
889
890         /*
891          * Check for sane CTR_EL0.CWG value.
892          */
893         cwg = cache_type_cwg();
894         cls = cache_line_size();
895         if (!cwg)
896                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
897                         cls);
898         if (L1_CACHE_BYTES < cls)
899                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
900                         L1_CACHE_BYTES, cls);
901 }